-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdemo_gradio.py
574 lines (503 loc) · 19.5 KB
/
demo_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import io
import argparse
import sys
import os
import json
import logging
import yaml
import random
import re
import asyncio
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import torchaudio
from typing import Any, List, Union
from transformers import HfArgumentParser
from transformers import (
AutoTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
HfArgumentParser,
)
from mimo_qwen2_grouped import *
from Codec.models.codec import Generator as SpeechGPT2Tokenizer
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
class MIMOStopper(StoppingCriteria):
def __init__(
self, stop_id: int, group_size: int, audio_channels: int, max_tokens: int
) -> None:
super().__init__()
self.stop_id = stop_id
self.group_size = group_size
self.audio_channels = audio_channels
self.max_tokens = max_tokens
def __call__(self, input_ids: torch.LongTensor, scores) -> bool:
# Stop when last token of channel 0 is the stop token
return (
input_ids[0, -((self.audio_channels + 1) * self.group_size)].item()
== self.stop_id
) or input_ids.numel() // self.group_size // (
self.audio_channels + 1
) >= self.max_tokens
class InputSegment:
def __init__(
self,
text: str = None,
audio: torch.Tensor = None,
tokenized_text: torch.Tensor = None,
zeroemb_idx: int = 1024, # TODO: Make this a parameter
add_sosp_eosp=True,
add_zeroemb_loss=False,
) -> None:
has_text = text is not None
has_tokenized_text = tokenized_text is not None
assert has_text or has_tokenized_text, "Text channel cannot be empty"
assert not (
has_text and has_tokenized_text
), "Can't both have text and tokenized text"
if has_tokenized_text:
assert tokenized_text.shape[0] <= audio.reshape(-1, 3).shape[0]
self.audio = audio
self.text = text
self.tokenized_text = tokenized_text
self.zeroemb_idx = zeroemb_idx
self.add_sosp_eosp = add_sosp_eosp
@staticmethod
def insert_between(tensor, i, value=-1):
return torch.scatter(
torch.full(
(1, tensor.shape[1] + (tensor.shape[1] - 1) * i + i),
value,
dtype=tensor.dtype,
),
1,
torch.arange(0, tensor.shape[1], dtype=torch.int64)[None] * (i + 1),
tensor,
)
def to_input_id(
self,
tokenizer,
group_size: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.tokenized_text is None:
tokenized_text = tokenizer(
self.text,
return_tensors="pt",
truncation=True,
max_length=999999,
padding=False,
add_special_tokens=False,
)[
"input_ids"
].int() # [1, seqlen]
else:
tokenized_text = self.tokenized_text.unsqueeze(0)
if self.audio is None: # Pure text block
# Add group_size - 1 tokens between every two text tokens
if group_size > 1:
tokenized_text = self.insert_between(
tokenized_text, group_size - 1, value=-100
)
audio_part_input_id = torch.full(
(3, tokenized_text.shape[1]), self.zeroemb_idx, dtype=torch.int
)
else: # Audio + text block
sosp_token = (
tokenizer.convert_tokens_to_ids("<|sosp|>")
if self.add_sosp_eosp
else None
)
eosp_token = (
tokenizer.convert_tokens_to_ids("<|eosp|>")
if self.add_sosp_eosp
else None
)
audio_part = self.audio.reshape(-1, 3).T # [3, seqlen]
assert (
audio_part.shape[1] % group_size == 0
), f"Audio shape {audio_part.shape} is not divisible by group_size {group_size}"
if tokenized_text.shape[1] * group_size > audio_part.shape[1]:
print(
f"Expected text to be shorter than or equal to audio, but got text {tokenized_text.shape} * group_size and audio {audio_part.shape}"
)
tokenized_text = tokenized_text[:, : audio_part.shape[1] // group_size]
print(f"Truncated text to {tokenized_text.shape} * group_size")
print(f"The offending text is: {self.text}")
if tokenized_text.shape[1] * group_size < audio_part.shape[1]:
tokenized_text = F.pad(
tokenized_text,
(0, audio_part.shape[1] // group_size - tokenized_text.shape[1]),
value=tokenizer.convert_tokens_to_ids("<|empty|>"),
).int()
tokenized_text = (
torch.cat(
[
torch.tensor([[sosp_token]], dtype=torch.int),
tokenized_text,
torch.tensor([[eosp_token]], dtype=torch.int),
],
dim=1,
)
if self.add_sosp_eosp
else tokenized_text
)
tokenized_text = self.insert_between(
tokenized_text, group_size - 1, value=-100
)
audio_part_input_id = (
torch.cat(
[
torch.full((3, group_size), self.zeroemb_idx, dtype=torch.int),
audio_part,
torch.full((3, group_size), self.zeroemb_idx, dtype=torch.int),
],
dim=1,
)
if self.add_sosp_eosp
else audio_part
)
input_ids = torch.cat(
[tokenized_text, audio_part_input_id], dim=0
) # [4, seqlen]
return input_ids
class Inference:
def __init__(
self, path, args, model_args, codec_ckpt_path, codec_config_path
) -> None:
self.args = args
self.device = DEVICE
self.group_size = 3
self.tokenizer = AutoTokenizer.from_pretrained(path)
padding_idx = self.tokenizer.pad_token_id
self.sosp_idx = self.tokenizer.convert_tokens_to_ids("<|sosp|>")
self.eosp_idx = self.tokenizer.convert_tokens_to_ids("<|eosp|>")
self.empty_token = self.tokenizer.convert_tokens_to_ids("<|empty|>")
self.end_empty_token = self.tokenizer.convert_tokens_to_ids("<|end_empty|>")
self.model = MIMOLlamaForCausalLM.from_pretrained(
path,
padding_idx=padding_idx,
sosp_idx=self.sosp_idx,
eosp_idx=self.eosp_idx,
args=model_args,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map=self.device,
)
self.model.eval()
self.model = torch.compile(self.model, mode="reduce-overhead")
self.generate_kwargs = {
"max_new_tokens": 5000,
"temperature": 0.8,
"do_sample": True,
"top_p": 0.9,
"eos_token_id": self.tokenizer.eos_token_id,
"pad_token_id": (
self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None
else self.tokenizer.eos_token_id
),
}
self.generator = SpeechGPT2Tokenizer.load_from_checkpoint(
config_path=codec_config_path, checkpoint_path=codec_ckpt_path
)
self.generator = self.generator.to(self.device)
self.generator.eval()
self.generator = torch.compile(self.generator, mode="reduce-overhead")
self.history = []
self.greeting = None
def set_greeting(self, text, audio):
text = torch.tensor(text)
audio = torch.tensor(audio).reshape(3, -1)
self.greeting = [
InputSegment(f"[|SpeechGPT|]: "),
InputSegment(
tokenized_text=text,
audio=audio,
),
InputSegment(f" ###\n{self.tokenizer.eos_token}"),
]
greeting_audio_detokenized = self.generator.inference_detokenize(
audio.reshape(-1, 3)
.unsqueeze(0)
.permute(2, 0, 1)
.type(torch.LongTensor)
.to(self.device)
)
return (
24000,
greeting_audio_detokenized.reshape(-1).detach().cpu().numpy(),
)
def clear_history(self):
self.history.clear()
def read_wav(self, audio_path: str, sampling_rate: int):
wav, raw_sample_rate = torchaudio.load(audio_path) # (1, T) tensor
if raw_sample_rate != sampling_rate:
wav = torchaudio.functional.resample(
wav, raw_sample_rate, sampling_rate
) # tensor
return wav
def preprocess(
self,
task: Union[None, str] = None,
input: Union[None, str] = None,
instruction: Union[None, str] = None,
add_silence_at_end=True,
silence_frames=8,
audio_channels=3,
group_size=4,
mode="s2s",
transcript=None,
):
if type(input) != str:
wav = (
self.read_wav(input, self.generator.sampling_rate)
.reshape(1, 1, -1)
.to(self.device)
)
tokens = self.generator.inference_tokenize(wav) # [n_vq, B, t]
token_flat = (
tokens.squeeze(1).permute(1, 0).reshape(-1).detach().cpu().numpy()
) # [T*n_q]
silence_tokens = torch.tensor([688, 131, 226])
token_flat = np.concatenate(
[token_flat, np.tile(silence_tokens, silence_frames)]
)
token_flat = np.concatenate(
[
token_flat,
np.tile(
silence_tokens,
(
group_size * audio_channels
- token_flat.shape[0] % (group_size * audio_channels)
)
// len(silence_tokens),
),
]
)
audio_tokenized = torch.tensor(token_flat)
else:
text = input
assert self.greeting, "Must load greeting first"
prompt = (
[
InputSegment(
f"You are an helpful assistant. You should answer the user's {'text' if mode[0] == 't' else 'speech'} questions in {'text' if mode[2] == 't' else 'speech'}.\n\n\n",
),
*self.greeting,
]
if not self.history
else []
)
prompt += [
InputSegment(f"[|Human|]: "),
(
InputSegment("", audio=audio_tokenized)
if mode[0] == "s"
else InputSegment(transcript)
),
InputSegment(f" ###\n[|SpeechGPT|]: "),
]
input_ids = [seg.to_input_id(self.tokenizer, group_size) for seg in prompt]
input_ids = torch.cat(input_ids, dim=1)
return input_ids.to(self.device)
def forward(
self,
task: Union[None, str] = None,
input: Union[None, str] = None,
instruction: Union[None, str] = None,
mode: Union[None, str] = "s2s",
text: Union[None, str] = None,
audio_channels=3,
):
group_size = self.group_size
with torch.no_grad():
input_ids = self.preprocess(
task=task,
input=input,
instruction=instruction,
group_size=group_size,
audio_channels=audio_channels,
mode=mode,
transcript=text,
)
generation_config = GenerationConfig(**self.generate_kwargs)
input_ids = input_ids.T.reshape(1, -1)
input_ids = torch.cat(self.history + [input_ids], dim=-1)
prompt_length = input_ids.shape[1] // (audio_channels + 1)
stopping_criteria = [
MIMOStopper(
self.tokenizer.eos_token_id,
group_size,
audio_channels,
max_tokens=1024 + prompt_length,
)
]
generated_ids = self.model.generate(
input_ids,
generation_config,
stopping_criteria=stopping_criteria,
)
# self.history.append(generated_ids)
self.history = [generated_ids]
generated_ids = (
generated_ids.int().cpu().reshape(-1, 4).T[:, prompt_length:]
)
text = generated_ids[0, ::group_size][:-1]
detokenized_text = self.tokenizer.decode(text, skip_special_tokens=True)
answer = {
"speech": "",
"thought": detokenized_text,
"result": "",
}
# Find <|sosp|> and <|eosp|> tokens locations in text channel token sequence
sosp_idx_locations = (text == self.sosp_idx).nonzero(as_tuple=True)[0]
eosp_idx_locations = (text == self.eosp_idx).nonzero(as_tuple=True)[0]
if len(sosp_idx_locations) == 0:
print("No <|sosp|> token found in the text channel")
else:
if len(eosp_idx_locations) == 0:
eosp_idx_locations = [text.shape[0]]
sosp_idx_location = sosp_idx_locations[0] * group_size
eosp_idx_location = eosp_idx_locations[0] * group_size
audio_sequence = generated_ids[
:, sosp_idx_location + group_size : eosp_idx_location
]
speech_sequence = audio_sequence[1:].T.flatten()
assert (speech_sequence < 1024).all()
answer["result"] = detokenized_text.strip().replace("<|empty|>", ".")
answer["speech"] = "".join([f"<{i}>" for i in speech_sequence])
# dump wav
wav = torch.tensor(0)
if answer["speech"]:
tokens = torch.tensor(
[int(num) for num in re.findall(r"(\d+)>", answer["speech"])]
)
x = (
tokens.reshape(-1, 3)
.unsqueeze(0)
.permute(2, 0, 1)
.type(torch.LongTensor)
.to(self.device)
) # [n_vq, B, t]
wav = self.generator.inference_detokenize(x)
return detokenized_text, (24000, wav.reshape(-1).detach().cpu().numpy())
return detokenized_text, None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
default="ckpt/",
)
parser.add_argument(
"--codec_ckpt_path",
type=str,
)
parser.add_argument(
"--codec_config_path", type=str, default="Codec/config/sg2_codec_config.yaml"
)
args = parser.parse_args()
return args
class MIMOInterface:
def __init__(self):
self.args = parse_args()
parser = HfArgumentParser((MIMOModelArguments,))
self.model_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
self.model_args.model_name_or_path = self.args.model_path
self.inference = Inference(
self.args.model_path,
self.args,
self.model_args,
self.args.codec_ckpt_path,
self.args.codec_config_path,
)
def process_input(self, audio_input, text_input, mode):
try:
# Handle audio input
if audio_input is not None:
buffer = io.BytesIO()
sf.write(buffer, audio_input[1], audio_input[0], format="WAV")
buffer.seek(0)
input_data = buffer
else:
input_data = text_input
return self.inference.forward(
task="thought", input=input_data, text=text_input, mode=mode
)
except Exception as e:
return f"Error: {str(e)}", None, None
def process_greeting(self, greeting_source, greeting_line_idx):
greeting_line_idx = int(greeting_line_idx)
with open(greeting_source, "r") as f:
for idx, line in enumerate(f):
if idx == greeting_line_idx:
greeting = json.loads(line)
greeting_text = greeting["text"]
greeting_audio = greeting["audio"]
break
self.inference.clear_history()
return self.inference.set_greeting(greeting_text, greeting_audio)
def create_interface(self):
with gr.Blocks() as demo:
gr.Markdown("# SpeechGPT 2.0-preview")
gr.Markdown("## Greeting Preview")
with gr.Row():
with gr.Column():
greeting_source = gr.Textbox(
label="Greeting File", value="extra/greetings.jsonl"
)
greeting_line_idx = gr.Textbox(label="Greeting ID", value="0")
load_greeting_btn = gr.Button("Load Greeting")
with gr.Column():
greeting_audio = gr.Audio(label="Greeting Preview")
gr.Markdown(
"## Model Interaction\n\nNote: the model expects a greeting message to be played before first interaction with user. Make sure to load a greeting before sending the first message. Changing greeting message will clear chat history."
)
mode = gr.Radio(
["s2s", "s2t", "t2s", "t2t"],
label="Interaction Mode",
value="s2s",
info="s2s: speech-to-speech, s2t: speech-to-text, t2s: text-to-speech, t2t: text-to-text\nModifying interaction mode will clear chat history.",
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(sources=["microphone"], type="numpy")
text_input = gr.Textbox(label="Text Input", visible=False)
submit_btn = gr.Button("Submit", variant="primary")
clear_history_btn = gr.Button("Clear History")
with gr.Column():
text_output = gr.Textbox(label="Text")
audio_output = gr.Audio(label="Speech")
submit_btn.click(
fn=self.process_input,
inputs=[audio_input, text_input, mode],
outputs=[text_output, audio_output],
)
clear_history_btn.click(
fn=self.inference.clear_history,
)
load_greeting_btn.click(
fn=self.process_greeting,
inputs=[greeting_source, greeting_line_idx],
outputs=[greeting_audio],
)
def update_inputs(mode_value):
self.inference.clear_history()
if mode_value[0] == "t":
return gr.update(visible=False, value=None), gr.update(visible=True)
elif mode_value[0] == "s":
return gr.update(visible=True), gr.update(visible=False, value=None)
mode.change(
fn=update_inputs, inputs=mode, outputs=[audio_input, text_input]
)
return demo
if __name__ == "__main__":
interface = MIMOInterface()
demo = interface.create_interface()
demo.launch()