|
| 1 | +""" |
| 2 | +Examples of compressing data when saving to .nc |
| 3 | +============================================================================== |
| 4 | +""" |
| 5 | + |
| 6 | +# %% |
| 7 | + |
| 8 | +import xarray as xr |
| 9 | +from trajan.readers.omb import read_omb_csv |
| 10 | +from pathlib import Path |
| 11 | +import os |
| 12 | + |
| 13 | +# %% |
| 14 | + |
| 15 | +path_to_test_data = Path.cwd().parent / "tests" / "test_data" / "csv" / "omb_large.csv" |
| 16 | +xr_buoys = read_omb_csv(path_to_test_data) |
| 17 | + |
| 18 | +# %% |
| 19 | + |
| 20 | +# by default, to_netcdf does not perform any compression |
| 21 | +xr_buoys.to_netcdf("no_compression.nc") |
| 22 | + |
| 23 | +# on my machine, this is around 33MB |
| 24 | +print(f"size no compression: {round(os.stat('no_compression.nc').st_size/(pow(1024,2)), 2)} MB") |
| 25 | + |
| 26 | +# %% |
| 27 | + |
| 28 | +# one can perform compression by providing explicitly the right arguments |
| 29 | +# note that the best way to compress may depend on your dataset, the access |
| 30 | +# pattern you want to be fastest, etc - be aware of memory layout and |
| 31 | +# performance! |
| 32 | + |
| 33 | +# a simple compression, on a per-trajectory basis: each trajectory will |
| 34 | +# be compressed as a chunk, this means that it will be fast to retrieve one |
| 35 | +# full trajectory, but slow to retrieve e.g. the 5th point of all trajectories. |
| 36 | + |
| 37 | +# choose the encoding chunking - this may be application dependent, here |
| 38 | +# chunk trajectory as a whole |
| 39 | +def generate_chunksize(var): |
| 40 | + dims = xr_buoys[var].dims |
| 41 | + shape = list(xr_buoys[var].shape) |
| 42 | + |
| 43 | + idx_trajectory = dims.index("trajectory") |
| 44 | + shape[idx_trajectory] = 1 |
| 45 | + |
| 46 | + return tuple(shape) |
| 47 | + |
| 48 | + |
| 49 | +# set the encoding for each variable |
| 50 | +encoding = { |
| 51 | + var: {"zlib": True, "complevel": 5, "chunksizes": generate_chunksize(var)} \ |
| 52 | + for var in xr_buoys.data_vars |
| 53 | +} |
| 54 | + |
| 55 | +# the encoding looks like: |
| 56 | +for var in encoding: |
| 57 | + print(f"{var}: {encoding[var] = }") |
| 58 | +print("") |
| 59 | + |
| 60 | +# save, this time with compression |
| 61 | +xr_buoys.to_netcdf("trajectory_compression.nc", encoding=encoding) |
| 62 | + |
| 63 | +# on my machine, this is around 5.6MB |
| 64 | +print(f"size with compression: {round(os.stat('trajectory_compression.nc').st_size/(pow(1024,2)), 2)} MB") |
| 65 | + |
| 66 | +# %% |
0 commit comments