You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
To define the function we can use the basic formula of quadratics and the Vertex Formula:
$$
\begin{align*}
f(x) &= ax^2 + bx + c \rightarrow \text{Basic Formula} \
\text{And} \
f(x) &= a(x - u)^2 + v \rightarrow \text{Vertex Formula}
\end{align*}
$$
There are three ways to define it:
This has 3 Unknown values, which means we need 3 equations | Information is needed.
Vertex is given, which means the vertex formula only has a single unknown variable. Which means one additional point is needed to define the functional function.
Is there a third way?
Example 1
Define a function, so that it goes through the points $P(1, -1)$, $Q(2, 4)$ and $R(4, 8)$
Basic Formula: $\displaystyle y = ax^2 + bx + c$
Point P: $\displaystyle -1 = a * 1^2 + b * 1 + c$
Point Q: $\displaystyle 4 = a * 2^2 + b * 2 + c$
Point R: $\displaystyle 8 = a * 4^2 + b * 4 + c$
$$
{\left|
\begin{align*}
-1 &= a + b + c \\
4 &= 4a + 2b + c \\
8 &= 16a + 4b + c
\end{align*}
\right|
\text{Solve 3x3 System of Equations (SoE)}
}
$$
$$
{\left|
\begin{align*}
-1 &= a + b + c \\
-5 &= -3a - b \\
4 &= 12a + 2b
\end{align*}
\right|
\begin{align*}\\
(I - II) = (IV) \\
(III - II) = (V)
\end{align*}
}
$$
$$
{\left|
\begin{align*}
-1 &= a + b + c \\
-5 &= -3a - b \\
-6 &= 6a
\end{align*}
\right|
\begin{align*}
\\
\\
(IV * 2)+(V) \\
\end{align*}
}
$$
$$
\begin{align*}
a &= \underline{-1} \\
b &= -3a + 5 = 3 + 5 = \underline{8} \\
c &= -1 - a - b = -1 + 1 - 8 = \underline{-8} \\
\rightarrow f(x) &= \underline{\underline{-x^2 + 8x - 8}}
\end{align*}
$$
Example 2
Define a function, so that it goes through the points $P(-4, 8)$, $Q(0, 0)$ and $R(10, 15)$
Basic Formula: $\displaystyle y = ax^2 + bx + c$
Point P: $\displaystyle 8 = a * -4^2 + b * -4 + c$
Point Q: $\displaystyle 0 = a * 0^2 + b * 0 + c$
Point R: $\displaystyle 15 = a * 10^2 + b * 10 + c$
$$
{\left|
\begin{align*}
8 &= 16a + -4b + c \\
0 &= c \\
15 &= 100a + 10b + c
\end{align*}
\right|
\text{Solve 3x3 System of Equations (SoE)}
}
$$
$$
{\left|
\begin{align*}
8 &= 16a + -4b \\
15 &= 100a + 10b
\end{align*}
\right|
\text{Multiply I by 5 and II by 2}
}
$$
$$
{\left|
\begin{align*}
70 = 280a
\end{align*}
\right|
\text{Shorten it}
}
$$$$
{\left|
\begin{align*}
\frac{1}{4} = a
\end{align*}
\right|
\text{Replace this, in one of the previous functions, to get B}
}
$$
$$
{\left|
\begin{align*}
8 &= 16a + -4b \\
&\downarrow \\
8 &= 16 * \frac{1}{4} - 4b \\
8 &= 4 - 4b \\
4 &= -4b \\
4b &= -4 \\
b &= -1
\end{align*}
\right|
\text{Multiply I by 5 and II by 2}
}
$$
Defining function from 2 points
Example 1
Define a function, so that it goes through the points $S(-1, 0)$ and $P(1, 3)$
Vertex formula: $f(x) = a(x - u)^2 + v$
Fill in values from points: $f(x) = a(x + 1)^2 + 0 = a(x + 1)^2$
Fill in $P$: $3 = a(1 + 1)^2 = a * 2^2 = 4a$
Calculate $a = \frac{3}{4}$
Then: $f(x) = \frac{3}{4}(x + 1)^2$
And then convert to basic formula: