forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_resizer.py
79 lines (59 loc) · 2.41 KB
/
img_resizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from PIL import Image
from absl import app, flags
import threading
import math
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '', 'Directory containing datasets.')
flags.DEFINE_integer('workers', 3, 'Number of workers.')
flags.DEFINE_integer('target_size', 640, 'Target size of the images.')
def worker_split(dataset: list, workers: int) -> list:
datasets_list = []
if len(dataset) / workers % 2 == 0 or workers == 1:
split_idx = int(len(dataset) / workers)
for w in range(workers):
datasets_list.append(dataset[split_idx * w: split_idx * (w + 1)])
else:
overrun = math.ceil(len(dataset) / workers % 2)
split_idx = split_idx = int(len(dataset) / workers)
for w in range(workers):
datasets_list.append(dataset[split_idx * w: split_idx * (w + 1)])
new_list = datasets_list[-1] + dataset[-overrun:]
datasets_list.pop(-1)
datasets_list.append(new_list)
return datasets_list
def worker(img_list: list, size: int):
for i in img_list:
print(f'Processing {i}')
img = Image.open(i)
width, height = img.size
if width == height:
new_img = img.resize((size, size))
elif width < height:
scale_factor = size / width
width = size
height = int(height * scale_factor)
new_img = img.resize((width, height))
elif height < width:
scale_factor = size / height
height = size
width = int(width * scale_factor)
new_img = img.resize((width, height))
new_img.save(i)
def main(argv):
train_dir = os.path.join(FLAGS.data_dir, 'train')
val_dir = os.path.join(FLAGS.data_dir, 'val')
train_list = [os.path.join(train_dir, img) for img in os.listdir(train_dir)]
val_list = [os.path.join(val_dir, img) for img in os.listdir(val_dir)]
final_list = train_list + val_list
split_list = worker_split(final_list, workers=FLAGS.workers)
del train_list, val_list, final_list
threads = list()
for w in range(FLAGS.workers):
thread = threading.Thread(target=worker, args=(split_list[w], FLAGS.target_size))
threads.append(thread)
thread.start()
for index, thread in enumerate(threads):
thread.join()
if __name__ == '__main__':
app.run(main)