forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_stats.py
148 lines (115 loc) Β· 4.89 KB
/
data_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
from pathlib import Path
from absl import app, flags
import cv2
from tqdm import tqdm
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '', 'Directory containing datasets.')
def get_img_size(img_dir: str) -> tuple:
imgs_list = os.listdir(img_dir)
test_img = os.path.join(img_dir, imgs_list[0])
img = cv2.imread(test_img)
return img.shape[1], img.shape[0]
def get_no_imgs(img_dir: str) -> int:
imgs_list = os.listdir(img_dir)
return len(imgs_list)
def get_no_labels(label_dir: str) -> int:
label_list = os.listdir(label_dir)
cnt = 0
for label in label_list:
with open(os.path.join(label_dir, label), 'r') as annotation:
lines = annotation.readlines()
cnt += len(lines)
return cnt
def get_labels(label_dir: str) -> dict:
label_list = os.listdir(label_dir)
label_dist_dir = {
'0': 0,
'1': 0,
'2': 0,
'3': 0,
}
for label in label_list:
with open(os.path.join(label_dir, label), 'r') as annotation:
lines = annotation.readlines()
for line in lines:
cls = line[0]
label_dist_dir[cls] = label_dist_dir[cls] + 1
return label_dist_dir
def prepare_dump_file(file_path: str):
with open(file_path, 'w') as d_file:
string = '|'
string = string + '{c:<20}'.format(c='Country')
string = string + '|'
string = string + '{i_s:<15}'.format(i_s='Image Size')
string = string + '|'
string = string + '{i_n:<15}'.format(i_n='No Images')
string = string + '|'
string = string + '{l_n:<9}'.format(l_n='No Labels')
string = string + '|\n'
string = string + '|' + '-' * 20 + '|' + '-' * 15 + '|' + '-' * 15 + '|' + '-' * 9 + '|\n'
d_file.write(string)
def prepare_label_dump_file(file_path: str):
with open(file_path, 'w') as l_d_file:
string = '|'
string = string + '{c:<20}'.format(c='Country')
string = string + '|'
string = string + '{l_c:<24}'.format(l_c='Longitudinal Crack (D00)')
string = string + '|'
string = string + '{t_c:<22}'.format(t_c='Transverse Crack (D10)')
string = string + '|'
string = string + '{a_c:<20}'.format(a_c='Aligator Crack (D20)')
string = string + '|'
string = string + '{p:<13}'.format(p='Pothole (D40)')
string = string + '|\n'
string = string + '|' + '-' * 20 + '|' + '-' * 24 + '|' + '-' * 22 + '|' + '-' * 20 + '|' + '-' * 13 + '|\n'
l_d_file.write(string)
def dump_results(dump_file: str, country: str, img_shape: tuple, nr_imgs: int, nr_labels: int):
with open(dump_file, 'a') as d_file:
string = '|'
string = string + '{c:<20}'.format(c=country)
string = string + '|'
string = string + '{i_s_1:<5}'.format(i_s_1=img_shape[0])
string = string + ','
string = string + ' {i_s_2:<8}'.format(i_s_2=img_shape[1])
string = string + '|'
string = string + '{i_n:<15}'.format(i_n=nr_imgs)
string = string + '|'
string = string + '{l_n:<9}'.format(l_n=nr_labels)
string = string + '|\n'
d_file.write(string)
def dump_label_results(dump_file: str, country: str, class_dict: dict):
with open(dump_file, 'a') as d_file:
string = '|'
string = string + '{c:<20}'.format(c=country)
string = string + '|'
string = string + '{l_c:<24}'.format(l_c=class_dict['0'])
string = string + '|'
string = string + '{t_c:<22}'.format(t_c=class_dict['1'])
string = string + '|'
string = string + '{a_c:<20}'.format(a_c=class_dict['2'])
string = string + '|'
string = string + '{p:<13}'.format(p=class_dict['3'])
string = string + '|\n'
d_file.write(string)
def main(argv):
# List of data directories
countries = os.listdir(FLAGS.data_dir)
stats_path = Path(os.path.join(FLAGS.data_dir, 'stats'))
stats_path.mkdir(parents=True, exist_ok=True)
dump_file = os.path.join(stats_path, 'results.txt')
label_dump_file = os.path.join(stats_path, 'labels_per_country.txt')
prepare_dump_file(dump_file)
prepare_label_dump_file(label_dump_file)
for c in tqdm(countries):
if not c == 'stats':
img_path = os.path.join(FLAGS.data_dir, c, 'train', 'images')
label_path = os.path.join(FLAGS.data_dir, c, 'train', 'annotations', 'yolo')
img_size = get_img_size(img_path)
no_imgs = get_no_imgs(img_path)
no_labels = get_no_labels(label_path)
classes = get_labels(label_path)
dump_results(dump_file, c, img_size, no_imgs, no_labels)
dump_label_results(label_dump_file, c, classes)
if __name__ == '__main__':
app.run(main)