-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimages.py
41 lines (35 loc) · 1.11 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from PIL import Image
import cv2
import numpy as np
def load_image(img, tgt_width=640):
pil_in = Image.open(img)
w, h = pil_in.size
ratio = h / w
height = int(tgt_width * ratio)
pil_out = pil_in.resize((tgt_width, height))
return pil_out
def caching_images():
text_bar = "Caching images..."
bar = st.progress(0, text=text_bar)
n_imgs = st.session_state.n_imgs
file_imgs = st.session_state.file_imgs
pil_imgs = st.session_state.pil_imgs
portion = int(100 / n_imgs)
# showing progress bar of caching images
for i in range(n_imgs):
pil = pil_imgs[i]
if pil is None:
pil = load_image(file_imgs[i])
st.session_state.pil_imgs[i] = pil
bar.progress((i + 1) * portion, text=text_bar)
bar.empty()
def avg_rgb(img_pil):
"""
Assuming the img_pil is in mode "RGBA"
"""
# turn 4-channel 2d array to 1d array
rgbvec = np.array(img_pil)[:, :, :3].reshape(-1, 3)
a_vec = np.array(img_pil)[:, :, 3].reshape(-1)
# get average value of each channel
return np.mean(rgbvec[a_vec > 0], axis=0)