|
| 1 | +// @HEADER |
| 2 | +// |
| 3 | +// *********************************************************************** |
| 4 | +// |
| 5 | +// Zoltan2: A package of combinatorial algorithms for scientific computing |
| 6 | +// Copyright 2012 Sandia Corporation |
| 7 | +// |
| 8 | +// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, |
| 9 | +// the U.S. Government retains certain rights in this software. |
| 10 | +// |
| 11 | +// Redistribution and use in source and binary forms, with or without |
| 12 | +// modification, are permitted provided that the following conditions are |
| 13 | +// met: |
| 14 | +// |
| 15 | +// 1. Redistributions of source code must retain the above copyright |
| 16 | +// notice, this list of conditions and the following disclaimer. |
| 17 | +// |
| 18 | +// 2. Redistributions in binary form must reproduce the above copyright |
| 19 | +// notice, this list of conditions and the following disclaimer in the |
| 20 | +// documentation and/or other materials provided with the distribution. |
| 21 | +// |
| 22 | +// 3. Neither the name of the Corporation nor the names of the |
| 23 | +// contributors may be used to endorse or promote products derived from |
| 24 | +// this software without specific prior written permission. |
| 25 | +// |
| 26 | +// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY |
| 27 | +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 28 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 29 | +// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE |
| 30 | +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 31 | +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 32 | +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 33 | +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 34 | +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 35 | +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 36 | +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 37 | +// |
| 38 | +// Questions? Contact Karen Devine ([email protected]) |
| 39 | + |
| 40 | +// Siva Rajamanickam ([email protected]) |
| 41 | +// |
| 42 | +// *********************************************************************** |
| 43 | +// |
| 44 | +// @HEADER |
| 45 | + |
| 46 | +/*! \file Zoltan2_TpetraMultiVectorAdapter.hpp |
| 47 | + \brief Defines the TpetraMultiVectorAdapter |
| 48 | +*/ |
| 49 | + |
| 50 | +#ifndef _ZOLTAN2_TPETRAMULTIVECTORADAPTER_HPP_ |
| 51 | +#define _ZOLTAN2_TPETRAMULTIVECTORADAPTER_HPP_ |
| 52 | + |
| 53 | +#include <Zoltan2_VectorAdapter.hpp> |
| 54 | +#include <Zoltan2_StridedData.hpp> |
| 55 | +#include <Zoltan2_PartitioningHelpers.hpp> |
| 56 | + |
| 57 | +namespace Zoltan2 { |
| 58 | + |
| 59 | +/*! \brief An adapter for Tpetra::MultiVector. |
| 60 | +
|
| 61 | + The template parameter is the user's input object: |
| 62 | + \li \c Tpetra::MultiVector |
| 63 | +
|
| 64 | + The \c scalar_t type, representing use data such as vector values, is |
| 65 | + used by Zoltan2 for weights, coordinates, part sizes and |
| 66 | + quality metrics. |
| 67 | + Some User types (like Tpetra::CrsMatrix) have an inherent scalar type, |
| 68 | + and some |
| 69 | + (like Tpetra::CrsGraph) do not. For such objects, the scalar type is |
| 70 | + set by Zoltan2 to \c float. If you wish to change it to double, set |
| 71 | + the second template parameter to \c double. |
| 72 | +*/ |
| 73 | + |
| 74 | +template <typename User> |
| 75 | + class TpetraMultiVectorAdapter : public VectorAdapter<User> { |
| 76 | +public: |
| 77 | + |
| 78 | +#ifndef DOXYGEN_SHOULD_SKIP_THIS |
| 79 | + typedef typename InputTraits<User>::scalar_t scalar_t; |
| 80 | + typedef typename InputTraits<User>::lno_t lno_t; |
| 81 | + typedef typename InputTraits<User>::gno_t gno_t; |
| 82 | + typedef typename InputTraits<User>::part_t part_t; |
| 83 | + typedef typename InputTraits<User>::node_t node_t; |
| 84 | + typedef User user_t; |
| 85 | + typedef User userCoord_t; |
| 86 | + |
| 87 | + typedef Tpetra::MultiVector<scalar_t, lno_t, gno_t, node_t> t_mvector_t; |
| 88 | +#endif |
| 89 | + |
| 90 | + /*! \brief Constructor |
| 91 | + * |
| 92 | + * \param invector the user's Tpetra MultiVector object |
| 93 | + * \param weights a list of pointers to arrays of weights. |
| 94 | + * The number of weights per multivector element is assumed to be |
| 95 | + * \c weights.size(). |
| 96 | + * \param weightStrides a list of strides for the \c weights. |
| 97 | + * The weight for weight index \c n for multivector element |
| 98 | + * \c k should be found at <tt>weights[n][weightStrides[n] * k]</tt>. |
| 99 | + * If \c weightStrides.size() is zero, it is assumed all strides are one. |
| 100 | + * |
| 101 | + * The values pointed to the arguments must remain valid for the |
| 102 | + * lifetime of this Adapter. |
| 103 | + */ |
| 104 | + |
| 105 | + TpetraMultiVectorAdapter(const RCP<const User> &invector, |
| 106 | + std::vector<const scalar_t *> &weights, std::vector<int> &weightStrides); |
| 107 | + |
| 108 | + /*! \brief Constructor for case when weights are not being used. |
| 109 | + * |
| 110 | + * \param invector the user's Tpetra MultiVector object |
| 111 | + */ |
| 112 | + |
| 113 | + TpetraMultiVectorAdapter(const RCP<const User> &invector); |
| 114 | + |
| 115 | + |
| 116 | + //////////////////////////////////////////////////// |
| 117 | + // The Adapter interface. |
| 118 | + //////////////////////////////////////////////////// |
| 119 | + |
| 120 | + size_t getLocalNumIDs() const { return vector_->getLocalLength();} |
| 121 | + |
| 122 | + void getIDsView(const gno_t *&ids) const |
| 123 | + { |
| 124 | + ids = map_->getLocalElementList().getRawPtr(); |
| 125 | + } |
| 126 | + |
| 127 | + void getIDsKokkosView( |
| 128 | + Kokkos::View<const gno_t *, typename node_t::device_type> &ids) const { |
| 129 | + using device_type = typename node_t::device_type; |
| 130 | + // MJ can be running Host, CudaSpace, or CudaUVMSpace while Map now |
| 131 | + // internally never stores CudaUVMSpace so we may need a conversion. |
| 132 | + // However Map stores both Host and CudaSpace so this could be improved |
| 133 | + // if device_type was CudaSpace. Then we could add a new accessor to |
| 134 | + // Map such as getMyGlobalIndicesDevice() which could be direct assigned |
| 135 | + // here. Since Tpetra is still UVM dependent that is not going to happen |
| 136 | + // yet so just leaving this as Host to device_type conversion for now. |
| 137 | + ids = Kokkos::create_mirror_view_and_copy(device_type(), |
| 138 | + map_->getMyGlobalIndices()); |
| 139 | + } |
| 140 | + |
| 141 | + int getNumWeightsPerID() const { return numWeights_;} |
| 142 | + |
| 143 | + void getWeightsView(const scalar_t *&weights, int &stride, int idx) const |
| 144 | + { |
| 145 | + if(idx<0 || idx >= numWeights_) |
| 146 | + { |
| 147 | + std::ostringstream emsg; |
| 148 | + emsg << __FILE__ << ":" << __LINE__ |
| 149 | + << " Invalid weight index " << idx << std::endl; |
| 150 | + throw std::runtime_error(emsg.str()); |
| 151 | + } |
| 152 | + |
| 153 | + size_t length; |
| 154 | + weights_[idx].getStridedList(length, weights, stride); |
| 155 | + } |
| 156 | + |
| 157 | + void getWeightsKokkos2dView(Kokkos::View<scalar_t **, |
| 158 | + typename node_t::device_type> &wgt) const { |
| 159 | + typedef Kokkos::View<scalar_t**, typename node_t::device_type> view_t; |
| 160 | + wgt = view_t("wgts", vector_->getLocalLength(), numWeights_); |
| 161 | + typename view_t::HostMirror host_wgt = Kokkos::create_mirror_view(wgt); |
| 162 | + for(int idx = 0; idx < numWeights_; ++idx) { |
| 163 | + const scalar_t * weights; |
| 164 | + size_t length; |
| 165 | + int stride; |
| 166 | + weights_[idx].getStridedList(length, weights, stride); |
| 167 | + size_t fill_index = 0; |
| 168 | + for(size_t n = 0; n < length; n += stride) { |
| 169 | + host_wgt(fill_index++,idx) = weights[n]; |
| 170 | + } |
| 171 | + } |
| 172 | + Kokkos::deep_copy(wgt, host_wgt); |
| 173 | + } |
| 174 | + |
| 175 | + //////////////////////////////////////////////////// |
| 176 | + // The VectorAdapter interface. |
| 177 | + //////////////////////////////////////////////////// |
| 178 | + |
| 179 | + int getNumEntriesPerID() const {return vector_->getNumVectors();} |
| 180 | + |
| 181 | + void getEntriesView(const scalar_t *&elements, int &stride, int idx=0) const; |
| 182 | + |
| 183 | + void getEntriesKokkosView( |
| 184 | + // coordinates in MJ are LayoutLeft since Tpetra Multivector gives LayoutLeft |
| 185 | + Kokkos::View<scalar_t **, Kokkos::LayoutLeft, |
| 186 | + typename node_t::device_type> & elements) const; |
| 187 | + |
| 188 | + template <typename Adapter> |
| 189 | + void applyPartitioningSolution(const User &in, User *&out, |
| 190 | + const PartitioningSolution<Adapter> &solution) const; |
| 191 | + |
| 192 | + template <typename Adapter> |
| 193 | + void applyPartitioningSolution(const User &in, RCP<User> &out, |
| 194 | + const PartitioningSolution<Adapter> &solution) const; |
| 195 | + |
| 196 | +private: |
| 197 | + |
| 198 | + // MPL: 07/20/2023: TOCHECK: invector_ seems to be useless |
| 199 | + RCP<const User> invector_; |
| 200 | + RCP<const t_mvector_t> vector_; |
| 201 | + RCP<const Tpetra::Map<lno_t, gno_t, node_t> > map_; |
| 202 | + |
| 203 | + int numWeights_; |
| 204 | + ArrayRCP<StridedData<lno_t, scalar_t> > weights_; |
| 205 | + |
| 206 | + RCP<User> doMigration(const User &from, size_t numLocalRows, |
| 207 | + const gno_t *myNewRows) const; |
| 208 | +}; |
| 209 | + |
| 210 | +//////////////////////////////////////////////////////////////////////////// |
| 211 | +// Definitions |
| 212 | +//////////////////////////////////////////////////////////////////////////// |
| 213 | + |
| 214 | +template <typename User> |
| 215 | + TpetraMultiVectorAdapter<User>::TpetraMultiVectorAdapter( |
| 216 | + const RCP<const User> &invector, |
| 217 | + std::vector<const scalar_t *> &weights, std::vector<int> &weightStrides): |
| 218 | + invector_(invector), vector_(), map_(), |
| 219 | + numWeights_(weights.size()), weights_(weights.size()) |
| 220 | +{ |
| 221 | + typedef StridedData<lno_t, scalar_t> input_t; |
| 222 | + // MPL: 07/13/86: should we copy the data from invector to vector_ ? |
| 223 | + vector_ = invector; |
| 224 | + |
| 225 | + map_ = vector_->getMap(); |
| 226 | + |
| 227 | + size_t length = vector_->getLocalLength(); |
| 228 | + |
| 229 | + if (length > 0 && numWeights_ > 0){ |
| 230 | + int stride = 1; |
| 231 | + for (int w=0; w < numWeights_; w++){ |
| 232 | + if (weightStrides.size()) |
| 233 | + stride = weightStrides[w]; |
| 234 | + ArrayRCP<const scalar_t> wgtV(weights[w], 0, stride*length, false); |
| 235 | + weights_[w] = input_t(wgtV, stride); |
| 236 | + } |
| 237 | + } |
| 238 | +} |
| 239 | + |
| 240 | + |
| 241 | +//////////////////////////////////////////////////////////////////////////// |
| 242 | +template <typename User> |
| 243 | + TpetraMultiVectorAdapter<User>::TpetraMultiVectorAdapter( |
| 244 | + const RCP<const User> &invector): |
| 245 | + invector_(invector), vector_(), map_(), |
| 246 | + numWeights_(0), weights_() |
| 247 | +{ |
| 248 | + // MPL: 07/13/86: should we copy the data from invector to vector_ ? |
| 249 | + vector_ = invector; |
| 250 | + map_ = vector_->getMap(); |
| 251 | +} |
| 252 | + |
| 253 | +//////////////////////////////////////////////////////////////////////////// |
| 254 | +template <typename User> |
| 255 | + void TpetraMultiVectorAdapter<User>::getEntriesView( |
| 256 | + const scalar_t *&elements, int &stride, int idx) const |
| 257 | +{ |
| 258 | + size_t vecsize; |
| 259 | + stride = 1; |
| 260 | + elements = NULL; |
| 261 | + |
| 262 | + vecsize = vector_->getLocalLength(); |
| 263 | + if (vecsize > 0){ |
| 264 | + ArrayRCP<const scalar_t> data = vector_->getData(idx); |
| 265 | + elements = data.get(); |
| 266 | + } |
| 267 | +} |
| 268 | + |
| 269 | +//////////////////////////////////////////////////////////////////////////// |
| 270 | +template <typename User> |
| 271 | + void TpetraMultiVectorAdapter<User>::getEntriesKokkosView( |
| 272 | + // coordinates in MJ are LayoutLeft since Tpetra Multivector gives LayoutLeft |
| 273 | + Kokkos::View<scalar_t **, Kokkos::LayoutLeft, typename node_t::device_type> & elements) const |
| 274 | +{ |
| 275 | + // coordinates in MJ are LayoutLeft since Tpetra Multivector gives LayoutLeft |
| 276 | + Tpetra::MultiVector<scalar_t, lno_t, gno_t, node_t> vec = *vector_.get(); |
| 277 | + Kokkos::View<scalar_t **, Kokkos::LayoutLeft, typename node_t::device_type> view2d = |
| 278 | + vec.template getLocalView<typename node_t::device_type>(Tpetra::Access::ReadWrite); |
| 279 | + elements = view2d; |
| 280 | + |
| 281 | +} |
| 282 | + |
| 283 | +//////////////////////////////////////////////////////////////////////////// |
| 284 | +template <typename User> |
| 285 | + template <typename Adapter> |
| 286 | + void TpetraMultiVectorAdapter<User>::applyPartitioningSolution( |
| 287 | + const User &in, User *&out, |
| 288 | + const PartitioningSolution<Adapter> &solution) const |
| 289 | +{ |
| 290 | + // Get an import list (rows to be received) |
| 291 | + size_t numNewRows; |
| 292 | + ArrayRCP<gno_t> importList; |
| 293 | + try{ |
| 294 | + numNewRows = Zoltan2::getImportList<Adapter, |
| 295 | + TpetraMultiVectorAdapter<User> > |
| 296 | + (solution, this, importList); |
| 297 | + } |
| 298 | + Z2_FORWARD_EXCEPTIONS; |
| 299 | + |
| 300 | + // Move the rows, creating a new vector. |
| 301 | + RCP<User> outPtr = doMigration(in, numNewRows, importList.getRawPtr()); |
| 302 | + out = outPtr.get(); |
| 303 | + outPtr.release(); |
| 304 | +} |
| 305 | + |
| 306 | +//////////////////////////////////////////////////////////////////////////// |
| 307 | +template <typename User> |
| 308 | + template <typename Adapter> |
| 309 | + void TpetraMultiVectorAdapter<User>::applyPartitioningSolution( |
| 310 | + const User &in, RCP<User> &out, |
| 311 | + const PartitioningSolution<Adapter> &solution) const |
| 312 | +{ |
| 313 | + // Get an import list (rows to be received) |
| 314 | + size_t numNewRows; |
| 315 | + ArrayRCP<gno_t> importList; |
| 316 | + try{ |
| 317 | + numNewRows = Zoltan2::getImportList<Adapter, |
| 318 | + TpetraMultiVectorAdapter<User> > |
| 319 | + (solution, this, importList); |
| 320 | + } |
| 321 | + Z2_FORWARD_EXCEPTIONS; |
| 322 | + |
| 323 | + // Move the rows, creating a new vector. |
| 324 | + out = doMigration(in, numNewRows, importList.getRawPtr()); |
| 325 | +} |
| 326 | + |
| 327 | +//////////////////////////////////////////////////////////////////////////// |
| 328 | +template < typename User> |
| 329 | +RCP<User> TpetraMultiVectorAdapter<User>::doMigration( |
| 330 | + const User &from, |
| 331 | + size_t numLocalRows, |
| 332 | + const gno_t *myNewRows |
| 333 | +) const |
| 334 | +{ |
| 335 | + typedef Tpetra::Map<lno_t, gno_t, node_t> map_t; |
| 336 | + |
| 337 | + // source map |
| 338 | + const RCP<const map_t> &smap = from.getMap(); |
| 339 | + gno_t numGlobalElts = smap->getGlobalNumElements(); |
| 340 | + gno_t base = smap->getMinAllGlobalIndex(); |
| 341 | + |
| 342 | + // target map |
| 343 | + ArrayView<const gno_t> eltList(myNewRows, numLocalRows); |
| 344 | + const RCP<const Teuchos::Comm<int> > comm = from.getMap()->getComm(); |
| 345 | + RCP<const map_t> tmap = rcp(new map_t(numGlobalElts, eltList, base, comm)); |
| 346 | + |
| 347 | + // importer |
| 348 | + Tpetra::Import<lno_t, gno_t, node_t> importer(smap, tmap); |
| 349 | + |
| 350 | + // target vector |
| 351 | + RCP<t_mvector_t> MV = rcp( |
| 352 | + new t_mvector_t(tmap, from.getNumVectors(), true)); |
| 353 | + MV->doImport(from, importer, Tpetra::INSERT); |
| 354 | + |
| 355 | + gno_t base2 = smap->getMinAllGlobalIndex(); |
| 356 | + |
| 357 | + return MV; |
| 358 | +} |
| 359 | + |
| 360 | +} //namespace Zoltan2 |
| 361 | + |
| 362 | +#endif |
0 commit comments