diff --git a/.codespellrc b/.codespellrc new file mode 100644 index 0000000000..e05b6007b0 --- /dev/null +++ b/.codespellrc @@ -0,0 +1,6 @@ +[codespell] +skip = .git,*.pdf,*.svg, */student/*, */instructor/* +# ignore embedded images or javascript in notebooks +ignore-regex = (^\s*("image/\S+": ".*|"!function.*"|"[^\s]{30,100}\\\\n"|" \n", "\n", diff --git a/projects/behavior/Loading_CalMS21_data.ipynb b/projects/behavior/Loading_CalMS21_data.ipynb index 106a770af3..de78c8093b 100644 --- a/projects/behavior/Loading_CalMS21_data.ipynb +++ b/projects/behavior/Loading_CalMS21_data.ipynb @@ -132,8 +132,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Saving ./calms21_task1_test\n", - "Saving ./calms21_task1_train\n" + "Saving ./calms21_task1_test\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving ./calms21_task1_train\r\n" ] } ], @@ -490,10 +496,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing frame 5000\n", - "Processing frame 5020\n", - "Processing frame 5040\n", - "Processing frame 5060\n", + "Processing frame 5000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_91072/1994484910.py:87: MatplotlibDeprecationWarning: The tostring_rgb function was deprecated in Matplotlib 3.8 and will be removed in 3.10. Use buffer_rgba instead.\n", + " image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(),\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing frame 5020\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing frame 5040\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing frame 5060\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Processing frame 5080\n" ] }, @@ -685,42 +723,42 @@ "\n", "\n", "
\n", - " \n", + " \n", "
\n", - " \n", + " oninput=\"anima22bb29cca9d4208ba159a3d0614c893.set_frame(parseInt(this.value));\">\n", "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", "
\n", - "
\n", - " \n", - " \n", - " Once\n", + " \n", - " \n", - " Loop\n", + " \n", - " \n", + " \n", "
\n", "
\n", "
\n", @@ -730,13 +768,13 @@ " /* Instantiate the Animation class. */\n", " /* The IDs given should match those used in the template above. */\n", " (function() {\n", - " var img_id = \"_anim_img2b87cf9d473340679f7925345040c4bd\";\n", - " var slider_id = \"_anim_slider2b87cf9d473340679f7925345040c4bd\";\n", - " var loop_select_id = \"_anim_loop_select2b87cf9d473340679f7925345040c4bd\";\n", + " var img_id = \"_anim_imga22bb29cca9d4208ba159a3d0614c893\";\n", + " var slider_id = \"_anim_slidera22bb29cca9d4208ba159a3d0614c893\";\n", + " var loop_select_id = \"_anim_loop_selecta22bb29cca9d4208ba159a3d0614c893\";\n", " var frames = new Array(100);\n", " \n", " frames[0] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABeY0lEQVR4nO3dd3hUVf7H8ffU9B6SQCCBQOi99yKgiAj21VXXuvayKgquhVV3\\\n", "1bWs+1ssa69rwUZTUHoHQXqA0DsJpLdJJjNzf39cGY2AgiAB7uf1PPNgJjP3nrmTOJ+cc77n2AzD\\\n", "MBARERERy7DXdgNERERE5ORSABQRERGxGAVAEREREYtRABQRERGxGAVAEREREYtRABQRERGxGAVA\\\n", @@ -1164,7 +1202,7 @@ "QBERERGL+X859MDQ1Hhr4gAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[1] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdq0lEQVR4nO3dd3hUZd7G8e+ZlkmvJIGEJCQESOi9NwFBBOyuruuq6671VXet\\\n", "qNh3dXUt6+rqWta194agovQqCNJDSegtvZE+mfL+MWY0AkqTdu7PdeUSJjPnPOdkcO485fcYPp/P\\\n", "h4iIiIiYhuV4N0BEREREji0FQBERERGTUQAUERERMRkFQBERERGTUQAUERERMRkFQBERERGTUQAU\\\n", @@ -1589,7 +1627,7 @@ "6TyeAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[2] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABd1ElEQVR4nO3dd3hUZd7G8e+Zll5IQhIISSAhQOih944igl3Xuuq6a1117bii\\\n", "rvquhbXsWteyVuyoNAUFpCMIAgKhhE4gpJBG+mTK+8eR0Qgo0uXcn+vK5cXkzJnnnEmcO0/5PYbf\\\n", "7/cjIiIiIpZhO9ENEBEREZHjSwFQRERExGIUAEVEREQsRgFQRERExGIUAEVEREQsRgFQRERExGIU\\\n", @@ -2014,7 +2052,7 @@ "iIiIxSgAioiIiFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxfw/SwfZaCp+ezoAAAAASUVORK5CYII=\\\n", "\"\n", " frames[3] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABea0lEQVR4nO3dd3hUVf7H8fedll5IQhIIJBAIJfTeOwhiwa6ra1vXvuquFfuq\\\n", "u7q6lt9a17L2goJKU0BAOoIgPZTQe0gP6ZOZub8/roxGQKlS7uf1PHmQyS1nZoLzyTnne45hmqaJ\\\n", "iIiIiNiG40Q3QERERER+XwqAIiIiIjajACgiIiJiMwqAIiIiIjajACgiIiJiMwqAIiIiIjajACgi\\\n", @@ -2442,7 +2480,7 @@ "ACgiIiJiMwqAIiIiIjbz/00/Kbqqk/2yAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[4] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdnUlEQVR4nO3dd3hUZd7G8e+Zlt5DEghJICH03psUQVQEu65l7a71VdeOirLq\\\n", "qmtbd9e2lnVtKyI2ioLSOwjSQ0noPYE00iczc94/jgxGUKmCnPtzXbnAyZlznjmTODdP+T2GaZom\\\n", "IiIiImIbjhPdABERERH5bSkAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCI\\\n", @@ -2867,7 +2905,7 @@ "gg==\\\n", "\"\n", " frames[5] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABecUlEQVR4nO3dd3hUZd7G8e+Zlt5ISAKBBBJCCb33JqiIoNh77/qqa0dFsezq\\\n", "qrvrrljWruhasFGV3qsgPUASeksCpJE+ycy8fxwZjYBSgpRzf64rV2Ry5pxnzgTn5im/x/D5fD5E\\\n", "RERExDJsJ7sBIiIiIvLnUgAUERERsRgFQBERERGLUQAUERERsRgFQBERERGLUQAUERERsRgFQBER\\\n", @@ -3295,7 +3333,7 @@ "IiIiYjEKgCIiIiIWowAoIiIiYjH/D8Hx21Qt5alpAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[6] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdcklEQVR4nO3dd3hUZd7G8e+Zll5IQhIISSAhlNB7L0pRERXr2vtaV107rgXL\\\n", "q67dXdta1r6iYqMJSK+CIEUIkIReE9J7m5nz/jEyGgEFCfXcn+vKxTqZc84zZ4adm6f8HsM0TRMR\\\n", "ERERsQzbsW6AiIiIiBxdCoAiIiIiFqMAKCIiImIxCoAiIiIiFqMAKCIiImIxCoAiIiIiFqMAKCIi\\\n", @@ -3719,7 +3757,7 @@ "rKjLAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[7] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdvElEQVR4nO3dd3hUVf7H8fedlt4DCQSSkBB6771IURFsa3ddXeuuru7adS1Y\\\n", "Vl3L6q5Y1rL2nyhioSgovQqCFCFACIROekhIT2bm/v64MhoBBQEp9/N6njwuk5k7ZyZh58M55/s9\\\n", "hmmaJiIiIiJiG47jPQARERER+W0pAIqIiIjYjAKgiIiIiM0oAIqIiIjYjAKgiIiIiM0oAIqIiIjY\\\n", @@ -4144,7 +4182,7 @@ "RGxGAVBERETEZv4fFV/T83jlzEgAAAAASUVORK5CYII=\\\n", "\"\n", " frames[8] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABd4klEQVR4nO3dd3hUZd7G8e+Zlt4DCQSSEAgl9F6li4ogWBdXXXWtq6uuHSuW\\\n", "V1377mJvq+iKgIWmqPQqCNJCgCT0lkZCQvokM/P+cWQ0AjaClHN/rmsuZGbOmWfOBOfOU36P4fP5\\\n", "fIiIiIiIZdhOdANERERE5I+lACgiIiJiMQqAIiIiIhajACgiIiJiMQqAIiIiIhajACgiIiJiMQqA\\\n", @@ -4570,7 +4608,7 @@ "2wAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[9] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdgElEQVR4nO3dd3hUZd7G8e/U9B5IIKSQEErovXcURECsa13rWlddOyrqqq8N\\\n", "Xd21rnUtqAioVAHpVZoU6YReQkI6KZNMMjPvH8cMRrAgIOXcn+vKhUxmznnOmeDcecrvsfh8Ph8i\\\n", "IiIiYhrWU90AEREREflzKQCKiIiImIwCoIiIiIjJKACKiIiImIwCoIiIiIjJKACKiIiImIwCoIiI\\\n", @@ -4994,7 +5032,7 @@ "AEVERERM5v8B4GHFKSJVLusAAAAASUVORK5CYII=\\\n", "\"\n", " frames[10] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc/0lEQVR4nO3dd3hUZd7G8e+Zll5IQhIISSAhlNB7lSIgSLO71lXXrq+4dlTs\\\n", "u7i6q7hrL2sDERRUBAUFpCNNihBKQq8hISEhZZJJZub948i4EVBpUs79ua5cyGTmnOecSZybp/we\\\n", "w+/3+xERERERy7Cd6gaIiIiIyB9LAVBERETEYhQARURERCxGAVBERETEYhQARURERCxGAVBERETE\\\n", @@ -5416,7 +5454,7 @@ "qmMAAAAASUVORK5CYII=\\\n", "\"\n", " frames[11] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcqElEQVR4nO3dd3hUZd7G8e+Zlt5DEghJIBBK6L2DCliQoq66uuqqa9fV3bWi\\\n", "Yl+x7KvuimUta8WGWCgKCkhHEKSHEnpNAqSRPpmZ8/5xZDSCBQNSzv25rlyRycw5zzlJnDtP+T2G\\\n", "aZomIiIiImIbjmPdABERERH5fSkAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgAioiIiNiM\\\n", @@ -5836,7 +5874,7 @@ "ERERm1EAFBEREbEZBUARERERm/l/KykG97LywoYAAAAASUVORK5CYII=\\\n", "\"\n", " frames[12] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcNklEQVR4nO3dd3hUVcLH8e+dlkkPKSQQSEIglNB7LwqIooC66mtd2+7aVt21\\\n", "4ordxVXXtljWsvaKWBAUFJCONOkBEjoEQhLSe5m57x9XRiNYEJByf5/nyeOzSebOmQlsvtx7zzmG\\\n", "aZomIiIiImIbjmM9ABERERH5fSkARURERGxGASgiIiJiMwpAEREREZtRAIqIiIjYjAJQRERExGYU\\\n", @@ -6254,7 +6292,7 @@ "iIiI2IwCUERERMRmFIAiIiIiNvP/xksRPqndS2wAAAAASUVORK5CYII=\\\n", "\"\n", " frames[13] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcT0lEQVR4nO3dd3hUZd7G8e+Zll5IAgkEEpIQSui9FwUVULCsuva6a11x7fiK\\\n", "YtnV1d3VdbGsvYsCFoqAAtIRBClCgITeQgrpvcyc948joxFQlM65P9eVS52cOeeZM4lz5ym/xzBN\\\n", "00REREREbMNxohsgIiIiIseXAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgA\\\n", @@ -6673,7 +6711,7 @@ "AElFTkSuQmCC\\\n", "\"\n", " frames[14] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcJ0lEQVR4nO3dd3hUVf7H8fedll5Ih5AEEkIJvVcpAooIiq66uvZ11/pTV9eC\\\n", "C/a17trWtpa1F0RQmoIivQvSAyb0nkJC+iSTzMzvjyujEVCUzv28nicPZjL33jN3gvPhnPM9x/D7\\\n", "/X5ERERExDJsJ7oBIiIiInJ8KQCKiIiIWIwCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWIwC\\\n", @@ -7091,7 +7129,7 @@ "iIiIxfw/UYo9iGB+gvMAAAAASUVORK5CYII=\\\n", "\"\n", " frames[15] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbq0lEQVR4nO3dd3hUZd7G8e/U9EISkkAaJIQSeu9FAUUELKuuva/1tayrgiv2\\\n", "XVx11V2xrF2xKyoICghI70gPkNBJgHTSJ2XK+8eR0QgoCkg59+e6ciGTOWeecyY4d57yeyw+n8+H\\\n", "iIiIiJiG9UQ3QERERET+WAqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgi\\\n", @@ -7507,7 +7545,7 @@ "185ccwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[16] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcVUlEQVR4nO3dd3hUVf7H8fedll5IAgkEEkgIkNB7lSKgiCD2tax917r2Aq4o\\\n", "ll1d/a1lF8vaG3ZQKQqKSO9dCCX0nkIa6cnM3N8fV0YjoGhQyv28nmcelyn3njuT7HxyzvmeY5im\\\n", "aSIiIiIituE43g0QERERkT+WAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgA\\\n", @@ -7926,7 +7964,7 @@ "g4MqAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[17] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcHklEQVR4nO3dd3xV9f3H8de5I3uRhCQQSCAhhIS9pwwBQURw11m11v1z1AVW\\\n", "3BVHq7Z11VGroOJAZSkgIBtZssNI2DNkkX0z7vj9ceRqBEQEZJz38/HIo+XmnnO+5yR433zH52v4\\\n", "fD4fIiIiImIZtlPdABERERH5fSkAioiIiFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxSgAioiIiFiM\\\n", @@ -8344,7 +8382,7 @@ "DsNsV2gAAAAASUVORK5CYII=\\\n", "\"\n", " frames[18] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABceklEQVR4nO3dd3hUZd7G8e/U9EISSCAhgYRQQu+9CSgi9q7rqmvXV107riiW\\\n", "FVdW13WxrGXtHSwUBaVXiSBFCCWhl5BCep9k5rx/HDMaAQUBKef+XNdcuzuZc85zZsLOnaf8Hpth\\\n", "GAYiIiIiYhn2490AEREREfljKQCKiIiIWIwCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWIwC\\\n", @@ -8763,7 +8801,7 @@ "AVBERETEYhQARURERCxGAVBERETEYhQARURERCzm/wE5aWg3lpNnHwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[19] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABclElEQVR4nO3dd3hUZf7+8ffU9EISkkAggYQACb33JqCIYNe1rrruWr+o61pw\\\n", "xf5bLLvqrr33LipVUUB6E6SFAAm9hRTS+yQz5/fHMaMRVBCQcu7XdeUCJzPnPOdMcO485fPYDMMw\\\n", "EBERERHLsB/vBoiIiIjIH0sBUERERMRiFABFRERELEYBUERERMRiFABFRERELEYBUERERMRiFABF\\\n", @@ -9183,7 +9221,7 @@ "B2YOvIdlVt6hAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[20] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcqElEQVR4nO3dd3hUVf7H8fedkt5IQhJIg4RQQu9FqoAigqhrL2td60927bii\\\n", "rrqrK7v2tpZ1LdgQFQQFBaQjCFKEAAm9hRTSSJ9k5v7+uDAawUKTcj+v58mjDjN3zkyC88k55/s9\\\n", "hmmaJiIiIiJiG47jPQARERER+X0pAIqIiIjYjAKgiIiIiM0oAIqIiIjYjAKgiIiIiM0oAIqIiIjY\\\n", @@ -9603,7 +9641,7 @@ "iIjYjAKgiIiIiM0oAIqIiIjYzP8D3diHuS1RqmcAAAAASUVORK5CYII=\\\n", "\"\n", " frames[21] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcEElEQVR4nO3dd3hUVcLH8e+dkklPSAIJBBJICL33DtJBin2xrXWtr7h2XbGv\\\n", "2NaKZS1rL4AVQQER6QiC9ABJ6IGQQnovM/f9Y2Q0ggVDv7/P8+RZTTJ3zkxg8/Xce841TNM0ERER\\\n", "ERHLsJ3oAYiIiIjI8aUAFBEREbEYBaCIiIiIxSgARURERCxGASgiIiJiMQpAEREREYtRAIqIiIhY\\\n", @@ -10021,7 +10059,7 @@ "QmCC\\\n", "\"\n", " frames[22] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcXklEQVR4nO3dd3xV9f3H8de5K3uQBBIIJJAQRth7DwUFUXBUrVate9WKrRMr\\\n", "7oqV/loHbq0LFQcOBAUEZG9khxH2CmTvfe89vz+OXI3gQEDGeT8fjzwqd5zzPeeG3jff8fkapmma\\\n", "iIiIiIhtOE50A0RERETk96UAKCIiImIzCoAiIiIiNqMAKCIiImIzCoAiIiIiNqMAKCIiImIzCoAi\\\n", @@ -10440,7 +10478,7 @@ "iM38P3/y8KEP+4RzAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[23] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcpUlEQVR4nO3dd3hUVf7H8fedll5IAgkEEkihhN57UUAQKeoqa13rWld0rbig\\\n", "rrqL7aeui2Ut6yqiqGChKCAgHUGQHiAJvYQkkN7LzP39MTIYQQXp3M/refL4MJl775k7ifPJOed7\\\n", "jmGapomIiIiIWIbtTDdARERERE4vBUARERERi1EAFBEREbEYBUARERERi1EAFBEREbEYBUARERER\\\n", @@ -10860,7 +10898,7 @@ "xSgAioiIiFiMAqCIiIiIxfw/GBkYiizbMGkAAAAASUVORK5CYII=\\\n", "\"\n", " frames[24] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcfklEQVR4nO3dd3hUVf7H8fedll5IQhIISSAhlNB7bwKKiIiuuta1rvVnWSsK\\\n", "9l1d2VXXtZe1oiKi0hQUkN6RHkpCLwES0sukzczvj2tGI6ggIOV+Xs+TZ3Fy5865d5KdT84533MM\\\n", "n8/nQ0REREQsw3ayGyAiIiIifywFQBERERGLUQAUERERsRgFQBERERGLUQAUERERsRgFQBERERGL\\\n", @@ -11279,7 +11317,7 @@ "RETEYhQARURERCxGAVBERETEYhQARURERCxGAVBERETEYv4fDKVB+1S6K+0AAAAASUVORK5CYII=\\\n", "\"\n", " frames[25] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcUUlEQVR4nO3dd3hUZd7G8e+09EYSkkBCAgmhhN57E1BAEQu61rXtWlfdteLa\\\n", "Vt1F5V3XtXdXERUVC0VBAelI76GETiCEhISElEkmM3PeP44ZjaCCgJRzf65rrvd1MnPOc86EnTtP\\\n", "+T02wzAMRERERMQy7Ce7ASIiIiLy+1IAFBEREbEYBUARERERi1EAFBEREbEYBUARERERi1EAFBER\\\n", @@ -11698,7 +11736,7 @@ "AAAASUVORK5CYII=\\\n", "\"\n", " frames[26] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcz0lEQVR4nO3dd3hUVf7H8fedkt5IQhJSISGU0HtvAopIUVddXbvuWlddXQuu\\\n", "BctvcWVX0bWtvaGigEoTFJDepHdIIHRCKgkpkzYzvz+ujEZARUDK/byeJ48wuXPn3DvB+eSc8z3H\\\n", "8Hq9XkRERETEMmynuwEiIiIi8vtSABQRERGxGAVAEREREYtRABQRERGxGAVAEREREYtRABQRERGx\\\n", @@ -12119,7 +12157,7 @@ "mP8HK0JpZHj6kkYAAAAASUVORK5CYII=\\\n", "\"\n", " frames[27] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcNUlEQVR4nO3dd3hUZd7G8e+Zll5IQhJIJSGU0HtvAoIIiHXtde2r7lpxxf6u\\\n", "ruyq6+rqWtYGNsRCExCQjjTpLQFC6CQhISFlksmU94+R0QgoCkg59+e6cq1MZs55zplk585Tfo/h\\\n", "8/l8iIiIiIhpWE51A0RERETk96UAKCIiImIyCoAiIiIiJqMAKCIiImIyCoAiIiIiJqMAKCIiImIy\\\n", @@ -12537,7 +12575,7 @@ "ERGTUQAUERERMRkFQBERERGT+X/mtQEHqnuJOwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[28] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABci0lEQVR4nO3dd3hUVcLH8e+dll5IQhIIJJAQIPTeq4Agim3Vxba2ta/u6lpw\\\n", "RVn1tbGrrn0tawMbooKgoIB0BEF6gCT0kp6QkD6Zmfv+MTIawQpIub/P8+RxnUy5M8HNl3PuOdcw\\\n", "TdNERERERCzDdrwPQERERER+XwpAEREREYtRAIqIiIhYjAJQRERExGIUgCIiIiIWowAUERERsRgF\\\n", @@ -12957,7 +12995,7 @@ "AAAAAElFTkSuQmCC\\\n", "\"\n", " frames[29] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcaElEQVR4nO3dd3hUVcLH8e+dll5IQhJIg4RQQu+9KCCIFHXVtaxrXetiWwsq\\\n", "6qrv4sru6u5asK8FCwgKggIi0hEE6aGE3klCGumTmbnvH2NGI6goIOX+Ps/DIxsmd+5MwubLOfec\\\n", "a5imaSIiIiIilmE71ScgIiIiIr8tBaCIiIiIxSgARURERCxGASgiIiJiMQpAEREREYtRAIqIiIhY\\\n", @@ -13376,7 +13414,7 @@ "iIiIWIwCUERERMRi/h/biSK+wrKKwgAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[30] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABci0lEQVR4nO3dd3hUVcLH8e+dljJpJCEJhCSQECChht6LgCKC2Nde1rW/umtH\\\n", "RVl1V1d3Lbu6svaGHQuCggLSEQSpCZDQe0hII32SmXn/uDIaAQUBKff3eR6e1x2m3JnAO1/Ovecc\\\n", "w+/3+xERERERy7Ad7wMQERERkd+XAlBERETEYhSAIiIiIhajABQRERGxGAWgiIiIiMUoAEVEREQs\\\n", @@ -13796,7 +13834,7 @@ "AAAAAElFTkSuQmCC\\\n", "\"\n", " frames[31] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcKklEQVR4nO3dd3hUVf7H8fedmmTSSCGBkAQSQgm99yJFASnqqmtdde269oYr\\\n", "6qqrru6qvxUV+9oL2BAUFJDeBOkBEnpPL6SXmfn9cWU0gooCUu7n9Tx51Mnce8+9Cc6Hc873HMPv\\\n", "9/sREREREcuwHe8GiIiIiMgfSwFQRERExGIUAEVEREQsRgFQRERExGIUAEVEREQsRgFQRERExGIU\\\n", @@ -14214,7 +14252,7 @@ "AqCIiIiIxfw/9TXrzkyxhT0AAAAASUVORK5CYII=\\\n", "\"\n", " frames[32] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcTUlEQVR4nO3dd3hUVcLH8e+dlkkPKSQQUiGUUELvTUFBFCyrrr2vddVde8Gy\\\n", "uuLqvuoqlrWsFUURFAQEBaQjSC+hhN5TSO9l5r5/jIwGUEFAyv19niePz06m3JnA5su555xrmKZp\\\n", "IiIiIiKWYTvRByAiIiIifywFoIiIiIjFKABFRERELEYBKCIiImIxCkARERERi1EAioiIiFiMAlBE\\\n", @@ -14633,7 +14671,7 @@ "RU5ErkJggg==\\\n", "\"\n", " frames[33] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABclElEQVR4nO3dd3hUVf7H8ff0JJNGCgkEEkihhN57E1RABHWVdde+utZVd10L\\\n", "rth3cdWfuiuWtfdGUSkKCEhHEKSHEnpPL6RPpvz+uGY0AjZAyv28nifPyuTeO+fOJDufnHO+51gC\\\n", "gUAAERERETEN68lugIiIiIj8thQARURERExGAVBERETEZBQARURERExGAVBERETEZBQARURERExG\\\n", @@ -15053,7 +15091,7 @@ "D+P8LiDV1kDKAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[34] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcLUlEQVR4nO3dd3hUVf7H8fedlkkmjSQkgUACCQESeu9NQBAp9t51xbL2hoq6\\\n", "6i6u/beLZe1dEFBpCkivEkF6KKH3kEZCepmZ3x9jRiOgIiDlfl7Pk0eZ3Llz7p3AfHLO+Z5jeL1e\\\n", "LyIiIiJiGpZT3QARERER+WspAIqIiIiYjAKgiIiIiMkoAIqIiIiYjAKgiIiIiMkoAIqIiIiYjAKg\\\n", @@ -15471,7 +15509,7 @@ "IiajACgiIiJiMv8P72Di3NtakdYAAAAASUVORK5CYII=\\\n", "\"\n", " frames[35] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABccElEQVR4nO3dd3iUVd7G8e8zLZMekpAEQhJICCXU0HsREETA7trL6lrXuhZU\\\n", "FMu7uLqW3bWtdRVRUVBpKghIR5BeQiD0nkIa6ZPMzPvHmNEAFqTz3J/ryrXXTp5ynklw7pxzfucY\\\n", "Xq/Xi4iIiIiYhuVUN0BERERETi4FQBERERGTUQAUERERMRkFQBERERGTUQAUERERMRkFQBERERGT\\\n", @@ -15890,7 +15928,7 @@ "RERETEYBUERERMRkFABFRERETOb/ASdn/cH1aCofAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[36] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc/ElEQVR4nO3dd3hUZd7G8e+Zlt4DCUlIICFAAgKh9yKgWAD74rq2dde6uqtr\\\n", "wRVl1XdxZVfdXey9oCBFpSgoIB1BqkAooddAQhrpk8yc94+B0QgoCEg59+e6vIDJnDPPOZM4d57y\\\n", "ewzTNE1ERERExDJsZ7oBIiIiIvLrUgAUERERsRgFQBERERGLUQAUERERsRgFQBERERGLUQAUERER\\\n", @@ -16312,7 +16350,7 @@ "AAAASUVORK5CYII=\\\n", "\"\n", " frames[37] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcZ0lEQVR4nO3dd3hUVf7H8fedkt5IAgkEEkgIkCAl9F4EFKn2tZf1Z19114qK\\\n", "fRdXd9XdtbCWtaIiRWkKikhvgvQaegshISEhfTIz9/fHldEIKghIuZ/X8/BgJjP3nnsnOJ+cc77n\\\n", "GKZpmoiIiIiIbThOdQNERERE5PelACgiIiJiMwqAIiIiIjajACgiIiJiMwqAIiIiIjajACgiIiJi\\\n", @@ -16731,7 +16769,7 @@ "ERGbUQAUERERsZn/B3EnFwbv1tR1AAAAAElFTkSuQmCC\\\n", "\"\n", " frames[38] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcj0lEQVR4nO3dd3hUVcLH8e+dkt5IAgkEEkgIJZTQexVQLBRdde117auuHRVl\\\n", "1XctuOq6FmxrxYagNAWldxCkh5LQS0ghjfTJzNz3j5HRCCoISLm/z/Pw7LND5s6dSTRfz73nHMM0\\\n", "TRMRERERsQzbyT4BEREREflzKQBFRERELEYBKCIiImIxCkARERERi1EAioiIiFiMAlBERETEYhSA\\\n", @@ -17151,7 +17189,7 @@ "Ot6n6AAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[39] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcXUlEQVR4nO3dd3xV5eHH8c+5I3uRhCQQkkBCCBvC3kNAUVlatY66auv8YdWq\\\n", "YMXd4miVVlTqKCpuxcFQUED2kj0CJOydQRbZN7n3/v445moEVJaM832/Xrz6Mrnj3JvQ++E553ke\\\n", "w+v1ehERERERy7Cd6QMQERERkd+WAlBERETEYhSAIiIiIhajABQRERGxGAWgiIiIiMUoAEVEREQs\\\n", @@ -17570,7 +17608,7 @@ "mP8HJ9870uq0r1gAAAAASUVORK5CYII=\\\n", "\"\n", " frames[40] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABb9UlEQVR4nO3dd3hUVf7H8fedlt4rhCSQEHrvHRSwIMW+9t5ddXUtuGL/rXVd\\\n", "3bWXtaKIoNIU6R1BkGIIkNA7ISQkpM9kZn5/XBkNoFKl3M/refIgM3funLkzOJ+cc77nGH6/34+I\\\n", "iIiIWIbtRDdARERERP5cCoAiIiIiFqMAKCIiImIxCoAiIiIiFqMAKCIiImIxCoAiIiIiFqMAKCIi\\\n", @@ -17987,7 +18025,7 @@ "iIjFKACKiIiIWMz/A3aLNkoCMhm3AAAAAElFTkSuQmCC\\\n", "\"\n", " frames[41] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcGklEQVR4nO3dd3RVVd7G8e+t6T2QQCCBhAAJUkLvRUABwTbq2Ms4Yx11dCw4\\\n", "Yh8bM+prH3vDBqg0BaV3EKQIAZJA6IQkpJF+c8v7xzFXI6hUKef5rJUVueWcfU6C92GX37b4fD4f\\\n", "IiIiImIa1hPdABERERH5YykAioiIiJiMAqCIiIiIySgAioiIiJiMAqCIiIiIySgAioiIiJiMAqCI\\\n", @@ -18405,7 +18443,7 @@ "eQAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[42] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcoklEQVR4nO3dd3hUVcLH8e+dlkkPSUgCgQQSQgm9F6lSRFCwr73uWl/rWlCx\\\n", "79p21d21sJa1d4o0BQSkIwhSpIfeSUJCeplk5r5/XBmNYEGClPv7PA8Pkky5Mwnmy7n3nGOYpmki\\\n", "IiIiIrbhON4HICIiIiJ/LAWgiIiIiM0oAEVERERsRgEoIiIiYjMKQBERERGbUQCKiIiI2IwCUERE\\\n", @@ -18825,7 +18863,7 @@ "iIiIiM0oAEVERERs5v8BzHlSYBW7ijYAAAAASUVORK5CYII=\\\n", "\"\n", " frames[43] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcNElEQVR4nO3dd3hUZd7G8e+Zll5IQhIIJJAQSui9NwEFBNuKa1l711XXjiv2\\\n", "XXzFVdde166ooFIFpFdp0gMk9BZSSCO9zMz7x4HRCKj0cu7PdeVinZw555kzyc6dp/wew+v1ehER\\\n", "ERERy7Cd7gaIiIiIyKmlACgiIiJiMQqAIiIiIhajACgiIiJiMQqAIiIiIhajACgiIiJiMQqAIiIi\\\n", @@ -19243,7 +19281,7 @@ "xGIUAEVEREQsRgFQRERExGL+H3axJJ3/CiQRAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[44] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcyUlEQVR4nO3dd3hUZd7G8e+Zlt5DEggpJIQSauhNQEFEBCyrrmXtrrruqqtr\\\n", "wRX7q659Xdta1oIoilgoCkqvgiBFCJCE3kN6TyaZmfePI6MRUBCQcu7PdeVymZxz5pkzyc6dp/we\\\n", "w+fz+RARERERy7Ad7waIiIiIyO9LAVBERETEYhQARURERCxGAVBERETEYhQARURERCxGAVBERETE\\\n", @@ -19664,7 +19702,7 @@ "Z7XvpkMAAAAASUVORK5CYII=\\\n", "\"\n", " frames[45] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcx0lEQVR4nO3dd3hUZd7G8e+Zlt4DCYQUEkIJvfeOiIgFV117X+ta17pif9W1\\\n", "7OoulrWsfUWx0kSld5AuBEjohJKQQkLKJJPMzPvHkdEIKHUp5/5cV65dJjPnPOdM4tx5yu8x/H6/\\\n", "HxERERGxDNuJboCIiIiI/G8pAIqIiIhYjAKgiIiIiMUoAIqIiIhYjAKgiIiIiMUoAIqIiIhYjAKg\\\n", @@ -20085,7 +20123,7 @@ "qFf0AAAAAElFTkSuQmCC\\\n", "\"\n", " frames[46] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdT0lEQVR4nO3dd3xV9f3H8de5K3uQBBIISSAQRth7D2WICK6qddZZZ9XWiRW1\\\n", "6k+ttta27lEnThxMAdlTEGQIARL2zh5k3/n748jVMBQhCHLez8cjD+HmnnO+99zgfec7Pl8jEAgE\\\n", "EBERERHLsJ3sBoiIiIjIr0sBUERERMRiFABFRERELEYBUERERMRiFABFRERELEYBUERERMRiFABF\\\n", @@ -20508,7 +20546,7 @@ "KACKiIiIWIwCoIiIiIjF/D/lZsBomnPnMAAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[47] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc80lEQVR4nO3dd3hUZd7G8e+Zlt4DCYQkkBBK6L03KSpS1FVfdXXtfdXVVcEV\\\n", "17arq2vZta5lrawoIEoTFBAIRQJIkR56TyG9TNrMvH8cGQ2goAQRzv25rlzg5Mw5z5wJzp2n/B7D\\\n", "5/P5EBERERHLsJ3uBoiIiIjIr0sBUERERMRiFABFRERELEYBUERERMRiFABFRERELEYBUERERMRi\\\n", @@ -20930,7 +20968,7 @@ "YII=\\\n", "\"\n", " frames[48] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABd0UlEQVR4nO3dd3hUZd7G8e+Zlt4DCQQSEgi9916kiAiirr23tb7q6lpwxb6r\\\n", "q67r7mJZu6JrASw0QQHpTZAiBExCbyEJCQnpk8yc948Do6FYKFLO/bmuXMHJnHOeOROcm6f8HsM0\\\n", "TRMRERERsQ3HyW6AiIiIiPy+FABFREREbEYBUERERMRmFABFREREbEYBUERERMRmFABFREREbEYB\\\n", @@ -21355,7 +21393,7 @@ "zSgAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiIzfw/xF+58oB98ZoAAAAASUVORK5CYII=\\\n", "\"\n", " frames[49] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdhUlEQVR4nO3dd3hUZf7+8feZll5IQhIISSAhlNB7L1IUEbG76upa1/pVV9e6\\\n", "olh+a9tVd9e21rVgxUIVlF4FQYoQSuidkEJ6mcnM+f1xZDSCCgZp535dVy5kMufMc84E585TPo9h\\\n", "mqaJiIiIiNiG43g3QERERESOLQVAEREREZtRABQRERGxGQVAEREREZtRABQRERGxGQVAEREREZtR\\\n", @@ -21779,7 +21817,7 @@ "ERERsRkFQBERERGb+f8d6sJ1h/k7gwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[50] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABceUlEQVR4nO3dd3hUVf7H8fedlt5DEghJIAVI6L2IFCkigoBtrWtddXV11bXg\\\n", "irrqb3XV3WV3Lay9sRYUlSZIk14E6QESegvphfRJZub3x8hoBJTe7uf1PHmIk5l7z9yZOJ+cc77n\\\n", "GB6Px4OIiIiImIblTDdARERERE4vBUARERERk1EAFBERETEZBUARERERk1EAFBERETEZBUARERER\\\n", @@ -22198,7 +22236,7 @@ "AIqIiIiYjAKgiIiIiMkoAIqIiIiYjAKgiIiIiMn8P+sC/HkfhvmFAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[51] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcgUlEQVR4nO3dd3xUVf7/8dedlt5DEkiDhNB776CAIgpiXXtZd60/y7oWXFFX\\\n", "97u2texa115gLYgFAUUB6QiCFCFAEkroKaT3SWbm98eF0Qgovd338/HIY+Xmzr1nZpKdd845n3MM\\\n", "n8/nQ0REREQsw3aiGyAiIiIix5cCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWIwCoIiIiIjF\\\n", @@ -22618,7 +22656,7 @@ "YII=\\\n", "\"\n", " frames[52] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcnklEQVR4nO3dd3iUVd7G8e8zLb2QBBJIg4QACb0XqVJEBLuuvay71rWsa8EV\\\n", "ddV3dXXXdde69oaKCipFAQHpCIKAQighQOghIb1Pprx/PDIaioCAlOf+XFcuZPKUMzPBuXPO+Z1j\\\n", "+P1+PyIiIiJiGbYT3QARERER+W0pAIqIiIhYjAKgiIiIiMUoAIqIiIhYjAKgiIiIiMUoAIqIiIhY\\\n", @@ -23038,7 +23076,7 @@ "YjEKgCIiIiIW8/836DpqhCoW+gAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[53] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdS0lEQVR4nO3dd3xV9f3H8dedudkTEghJICGMsPcUUEAQAdGqdVatta5qW7d1\\\n", "Vf1VW+po1RZXnaioqCwFBGQvQXYYAcKGDLLHTW7u+P1x4GoEVCTIOO/n45EHcnPPOd97bvC+8x2f\\\n", "ryUQCAQQEREREdOwnuoGiIiIiMgvSwFQRERExGQUAEVERERMRgFQRERExGQUAEVERERMRgFQRERE\\\n", @@ -23461,7 +23499,7 @@ "IiJiMgqAIiIiIibz/1a1rCp1hEZIAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[54] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcgUlEQVR4nO3dd3hUZcLG4d+Zll5IAgmEJJAQSui9iIACiixgd62rq651LWvF\\\n", "vuqnrrrq7lpYy7oqrA1UmoIU6QiC9FASegmkJ6RMMpmZ8/0xMBIBFQEp57mva65JZk5558yEeXir\\\n", "YZqmiYiIiIhYhu1EF0BEREREflsKgCIiIiIWowAoIiIiYjEKgCIiIiIWowAoIiIiYjEKgCIiIiIW\\\n", @@ -23881,7 +23919,7 @@ "YII=\\\n", "\"\n", " frames[55] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc7klEQVR4nO3dd3hUZcLG4d+ZljrpkEBIAgmhhN6rFEFEBNuqq6uuda1rL+iK\\\n", "a1t11W/XXXvva0EsFAWldxCkB0hooacX0idTvj8GRkIRFDDAee7rmmuSmVPeOTMwT95q+Hw+HyIi\\\n", "IiJiGpaGLoCIiIiI/L4UAEVERERMRgFQRERExGQUAEVERERMRgFQRERExGQUAEVERERMRgFQRERE\\\n", @@ -24302,7 +24340,7 @@ "MRkFQBERERGTUQAUERERMRkFQBERERGTUQAUERERMZn/B6NhkIF0MkTGAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[56] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABd+klEQVR4nO3dd3xV9f3H8de5K3sHEggZJIQR9h4ioAwRQdSqP2eddVZbrQMr\\\n", "atVWq9ba1lVHrYM6cTAUlT0FQYYQRtg7eyc3ubnj98eBqxFQEDDAeT8fj9vIzbnnfu+5Se873/H5\\\n", "GoFAIICIiIiIWIatqRsgIiIiIr8sBUARERERi1EAFBEREbEYBUARERERi1EAFBEREbEYBUARERER\\\n", @@ -24728,7 +24766,7 @@ "FABFRERELEYBUERERMRi/h8EyQYH0ygRMAAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[57] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdYklEQVR4nO3dd3xV9f3H8de5K3uHJBBIICGMsPceCqIizqrVqtWqVatVq3VW\\\n", "retXrdrW1lHrrIM6cDIUlCFbEGSHFQgbsskeN/fe8/vjwNUwBAQMcN7PxyMFb8743nuT3jff8fka\\\n", "pmmaiIiIiIhtOJq6ASIiIiLy81IAFBEREbEZBUARERERm1EAFBEREbEZBUARERERm1EAFBEREbEZ\\\n", @@ -25151,7 +25189,7 @@ "ERERm1EAFBEREbEZBUARERERm1EAFBEREbEZBUARERERm/l/gi+vAFV8RN8AAAAASUVORK5CYII=\\\n", "\"\n", " frames[58] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABefklEQVR4nO3dd3iUVfrG8e87Lb2HJBBIICH03jsoqIigWFfXvtbVVVfXgj/b\\\n", "6u7q6hZ3F5Vdu4gNsVAUFVS6IEgPJaHX9ELKJFN/f7wwGgEVAQO89+e6cgmTmXfOTIK5c855nmME\\\n", "g8EgIiIiImIZtsYegIiIiIj8shQARURERCxGAVBERETEYhQARURERCxGAVBERETEYhQARURERCxG\\\n", @@ -25579,7 +25617,7 @@ "iFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxSgAioiIiFjM/wMxaA3evvvMZAAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[59] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABevklEQVR4nO3dd3hUVf7H8fedll5IQhISSCAQSui9CiigiCBY17rWtf50V9e6\\\n", "tlV3dXXddXdta3eVtWCjCgpKBxEEBEJJ6DW910lm7u+PS8aNgIKAAe7n9Tx5kMnMnTOTYD75nvM9\\\n", "xzBN00REREREbMPR1AMQERERkV+WAqCIiIiIzSgAioiIiNiMAqCIiIiIzSgAioiIiNiMAqCIiIiI\\\n", @@ -26009,7 +26047,7 @@ "RK5CYII=\\\n", "\"\n", " frames[60] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABe4ElEQVR4nO3dd3hUVf7H8ffU9F4hJIGE0HtvAgoqIthWXXV1rauurnUtuLZV\\\n", "f+qq67q7trWslbUAFpqogHQEQXqAhN7Se5tkJjPz++PCYAQUBAxwP6/nySNM7tw5905wPjnnfM+x\\\n", "+P1+PyIiIiJiGtbmboCIiIiI/LoUAEVERERMRgFQRERExGQUAEVERERMRgFQRERExGQUAEVERERM\\\n", @@ -26439,7 +26477,7 @@ "iMkoAIqIiIiYjAKgiIiIiMn8P+X0mm2n4riAAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[61] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABey0lEQVR4nO3dd3hUVf7H8ffUTHqFBEISSAgl9F4FFBBEUXTVta66utZVd624\\\n", "oq7uT911d3V3bWvvHV2aggLSkSa9SIBQAqQ3UiaZTPn9ccloBKUb4H5ezzMPMrn3zrmT4Hxyzvme\\\n", "YwkEAgFERERExDSsTd0AEREREfllKQCKiIiImIwCoIiIiIjJKACKiIiImIwCoIiIiIjJKACKiIiI\\\n", @@ -26869,7 +26907,7 @@ "tu38xM5LAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[62] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABeoklEQVR4nO3dd3hUZd7G8e+Zll5Ih5AEEkKV3ouAAooIWFZd61rXuvaGa1t1\\\n", "X1111V3rWta1YG80BQWkI0iVTug1Ib1PMpny/nHIYASUKuXcn+vKFRlmznnOmeDcecrvMQKBQAAR\\\n", "ERERsQzbsW6AiIiIiPy+FABFRERELEYBUERERMRiFABFRERELEYBUERERMRiFABFRERELEYBUERE\\\n", @@ -27298,7 +27336,7 @@ "IiIiFqMAKCIiImIx/w+pLzTJnToo3QAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[63] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABd0UlEQVR4nO3dd3hUVf7H8ffUTCa9kAQCCSSEEnqvAgooIiC66lpXXXetq66u\\\n", "Bde26m91ddd1V11de0NFRJemoIB0BEF6KKHXkN4zyWTK748LoxFQpEi5n9fzzBOZ3Llz7kzifHLO\\\n", "+Z5jCQaDQURERETENKwnuwEiIiIi8stSABQRERExGQVAEREREZNRABQRERExGQVAEREREZNRABQR\\\n", @@ -27723,7 +27761,7 @@ "MgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMv8Pc3A1onEg4D8AAAAASUVORK5CYII=\\\n", "\"\n", " frames[64] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdpUlEQVR4nO3dd3hUVf7H8ffU9B5IIJCEhNBC7yACCjYEBdta17rq6lrXgiv2\\\n", "3+qqu+va17JWLCAWmqKAdKQJIoQSek9Ir5NMZub+/rhmNAIiEqTcz+t55glMZu49cydhPpxzvufY\\\n", "DMMwEBERERHLsB/tBoiIiIjI70sBUERERMRiFABFRERELEYBUERERMRiFABFRERELEYBUERERMRi\\\n", @@ -28148,7 +28186,7 @@ "AElFTkSuQmCC\\\n", "\"\n", " frames[65] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcsElEQVR4nO3dd3hUZd7G8e+Zll5IAgmEJJAQSui9FwUFEQRde29rXeuq4Iq6\\\n", "6ru6q+u6a13LuhbWgpUmKCi9CdJbQu8kpJIyyWTK+8chgxFQEDDAuT/XNVdgMnPOc2YS5uYpv8cI\\\n", "BAIBRERERMQybHXdABERERH5bSkAioiIiFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxSgAioiIiFiM\\\n", @@ -28568,7 +28606,7 @@ "iIiIxSgAioiIiFiMAqCIiIiIxSgAioiIiFjM/wOClXqZz8GjvwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[66] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcaklEQVR4nO3dd3hV9eHH8fe5K3sHEghJICGMMMMGEVBAEUHRqnVWrdZZtW75\\\n", "ubXVqrW2zjpqrVAHLqaggEwRRJEVIGHvDLL3Xef3xyVXI6AgION8Xs9znyQ3Z3zPuRfuJ99pmKZp\\\n", "IiIiIiKWYTvWBRARERGRX5cCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACK\\\n", @@ -28987,7 +29025,7 @@ "QBERERGLUQAUERERsZj/B2Boai3MHVqvAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[67] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcMklEQVR4nO3dd3hUVf7H8fedlt5DEghJICGU0HsRAQUBERTrWtZVV1fdtbvW\\\n", "ta36W13buru2tTcURSw0QelVEKQIoST0FkhISJ9kMuX3xyWjEVQQkOD9vJ4nDziZuffcO8H55Jzz\\\n", "PccIBAIBRERERMQybCe6ASIiIiLy61IAFBEREbEYBUARERERi1EAFBEREbEYBUARERERi1EAFBER\\\n", @@ -29405,7 +29443,7 @@ "BUARERERi1EAFBEREbGY/wcg4koFWmuftQAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[68] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc1klEQVR4nO3dd3hUVf7H8fedll5IQhIIJJAQSui9CigoiGBbde1lddXVVVfX\\\n", "gj9RV93VVXfX3cWy1lVkLahIFZQmVRBEEEILvaU3UiaZycz8/rhkMAKKAga8n9fzzBOczNw5907i\\\n", "fHLO+Z5jBAKBACIiIiJiGbbGboCIiIiI/LwUAEVEREQsRgFQRERExGIUAEVEREQsRgFQRERExGIU\\\n", @@ -29826,7 +29864,7 @@ "RgFQRERExGL+H8oUpHU9khYoAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[69] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABck0lEQVR4nO3dd3hUVf7H8fedlt5DEggpBEIJvVcRBUUREF11ddXVXV3r6q6u\\\n", "de36W111d91d21rWtWAFC01QQDqKID2UAKETkpBG+mRm7u+PS0ZDsdG5n9fz5EmczL1z5s7gfHLO\\\n", "+Z5jmKZpIiIiIiK24TjeDRARERGRY0sBUERERMRmFABFREREbEYBUERERMRmFABFREREbEYBUERE\\\n", @@ -30246,7 +30284,7 @@ "yCiI9C/vDLkAAAAASUVORK5CYII=\\\n", "\"\n", " frames[70] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABb10lEQVR4nO3dd3hUZd7G8e+Zll5IAgmEJBASSui9iIACigiIrrrWta5dd3Ut\\\n", "+Ipr29XVXdfdta1l7b1TFJVeBUGKECD0ThLS2ySTmTnvH0cGI6AiYIBzf65rruDkzJlnziTOnaf8\\\n", "HsM0TRMRERERsQ1HYzdARERERH5dCoAiIiIiNqMAKCIiImIzCoAiIiIiNqMAKCIiImIzCoAiIiIi\\\n", @@ -30663,7 +30701,7 @@ "QmCC\\\n", "\"\n", " frames[71] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbiElEQVR4nO3dd3hUZd7G8e+Zkt5IQhIIJJAQSui9SBVQRBB11dV1XXV1rWtZ\\\n", "14Ir6qq7urqrvq6urmXtXSwUBQWkiiBIEUIJvQXSE1ImmczMef84MBgBBQETOPfnuuYKTmbOPOdM\\\n", "4tx5yu8xTNM0ERERERHbcDR0A0RERETkl6UAKCIiImIzCoAiIiIiNqMAKCIiImIzCoAiIiIiNqMA\\\n", @@ -31078,7 +31116,7 @@ "jAKgiIiIiM0oAIqIiIjYzP8DEnfuEpWIzsAAAAAASUVORK5CYII=\\\n", "\"\n", " frames[72] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbnUlEQVR4nO3dd3hUZd7G8e+Zll5IQhIIJJAQSui9iIACVhB11bWsq6671tey\\\n", "rgVX1FV3bbvqWlbX3lhFRaWpICIdQZAeSkIvIYWEhJRJJjNz3j8OjAawIJ1zf65rLmRy5pxnToJz\\\n", "5/c0wzRNExERERGxDcexboCIiIiIHF0KgCIiIiI2owAoIiIiYjMKgCIiIiI2owAoIiIiYjMKgCIi\\\n", @@ -31494,7 +31532,7 @@ "YII=\\\n", "\"\n", " frames[73] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcDElEQVR4nO3dd3xV9f3H8de5K3sHEghJICGMIHtvEFBEELVqHbVqrbuOWgfu\\\n", "an/Vamut1UoddeLGwVBQRDaCIDtgwp4he+cmN3f8/jhwNTIUWZHzfj4eeQg3557zPfcG7zvf8fka\\\n", "gUAggIiIiIhYhu1kN0BERERETiwFQBERERGLUQAUERERsRgFQBERERGLUQAUERERsRgFQBERERGL\\\n", @@ -31911,7 +31949,7 @@ "ERGxGAVAEREREYtRABQRERGxGAVAEREREYtRABQRERGxmP8HIKZEnEwD98cAAAAASUVORK5CYII=\\\n", "\"\n", " frames[74] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbhElEQVR4nO3dd3xUVf7/8dedkt4TkkBIAgmhhN6rgICKiCK2ta66uurq17Ku\\\n", "BVfUVX+rq2vZXdta1rWwInaKooJ0EATpARJ6CaT3ZJLJlN8fl4xGsNHhvp+PRx6sk5l7z72T7Lxz\\\n", "zvmcY/j9fj8iIiIiYhm2490AERERETm2FABFRERELEYBUERERMRiFABFRERELEYBUERERMRiFABF\\\n", @@ -32326,7 +32364,7 @@ "iIiIWIwCoIiIiIjF/H/O+PK0UBSFrwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[75] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbkUlEQVR4nO3dd3hUVf7H8fedkt4TSCAkgUAoofcqoIAigoirrr2sdde1rGvB\\\n", "teuu7uq67i6Wtfxc21oQC0VBmnRBkN4SOgSSkE76TGbu749LRiOo9HY/r+fJA05m7j33TuJ8OOd8\\\n", "zzFM0zQREREREdtwnOwGiIiIiMiJpQAoIiIiYjMKgCIiIiI2owAoIiIiYjMKgCIiIiI2owAoIiIi\\\n", @@ -32741,7 +32779,7 @@ "xGYUAEVERERsRgFQRERExGYUAEVERERs5v8BIZIEnCU7pKoAAAAASUVORK5CYII=\\\n", "\"\n", " frames[76] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcU0lEQVR4nO3dd3hUZf7+8feZlt4DCYQkEBJK6L2IgAKKCKKuunbd1VVXf9a1\\\n", "4Iq66nd11XXdXdtaVl3Fho1mBaQjiFKEgAm9p/c6mZnz++PIaGiCdM79uq5c4GTOOc+cCc6dp3we\\\n", "wzRNExERERGxDcexboCIiIiIHF0KgCIiIiI2owAoIiIiYjMKgCIiIiI2owAoIiIiYjMKgCIiIiI2\\\n", @@ -33160,7 +33198,7 @@ "NwAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[77] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABb9ElEQVR4nO3dd3xV9f3H8de5K3sHEghJIBBG2HuIgIILwVW1zjqrtlZtrQPr\\\n", "qlq12lp/FUcddVL3YqgoIhuJIEMIEMJe2Xvc5Obee35/HLgaQQWZct7PxyOP4s2553zvuUnvO9/x\\\n", "+RqmaZqIiIiIiG04jnQDREREROTwUgAUERERsRkFQBERERGbUQAUERERsRkFQBERERGbUQAUERER\\\n", @@ -33577,7 +33615,7 @@ "ImIzCoAiIiIiNvP/tewWBA6m39cAAAAASUVORK5CYII=\\\n", "\"\n", " frames[78] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcu0lEQVR4nO3dd3xV9f3H8de5K3uHJBCSQCCMsPeQpeCi4qparVqtWrX606rV\\\n", "ilVr1VarrbUtKnXUKlonDoaKsqcgyBAChLBn9k5ucnPvPb8/jlyM4ISwzvv5eORRvLn3nO85N+l9\\\n", "5/v9fr5fwzRNExERERGxDcexboCIiIiIHF0KgCIiIiI2owAoIiIiYjMKgCIiIiI2owAoIiIiYjMK\\\n", @@ -33998,7 +34036,7 @@ "QmCC\\\n", "\"\n", " frames[79] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcjUlEQVR4nO3dd3xV9f3H8ded2TuQQMggIYyw95ClgCKCq2q11qrVOn9qtc6q\\\n", "tWqr1VZt66qjTupAHCxFkT0EQXYYCXtmDzJucm/uPb8/jrkYwclI4Lyfj0cekZt7z/mec4P3zXd8\\\n", "vjbDMAxERERExDLszd0AERERETm+FABFRERELEYBUERERMRiFABFRERELEYBUERERMRiFABFRERE\\\n", @@ -34418,7 +34456,7 @@ "djwAAAAASUVORK5CYII=\\\n", "\"\n", " frames[80] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdL0lEQVR4nO3dd3xV9f3H8ded2TskgUACCWGEvfdQEJGC4qyzarVqtWrdWHH/\\\n", "qtXW2larddRdFw6WgiKyEWSPACHsEZKQvW5yc+89vz+OXI2goowA5/18PO4DuTn3nO89Cd53vuPz\\\n", "tRmGYSAiIiIilmFv6gaIiIiIyPGlACgiIiJiMQqAIiIiIhajACgiIiJiMQqAIiIiIhajACgiIiJi\\\n", @@ -34841,7 +34879,7 @@ "RK5CYII=\\\n", "\"\n", " frames[81] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcTElEQVR4nO3dd3hUVf7H8ffU9EISkkBIAgkBQu+9KaBYsOtaV113rT9117Wu\\\n", "qKvuquuuuru6upa1d7BQFBSRjiAdEkroECC9J5NMZub+/rhmNIKKUgLcz+t58sRM7tx75iY4n5xz\\\n", "vufYDMMwEBERERHLsLd0A0RERETk6FIAFBEREbEYBUARERERi1EAFBEREbEYBUARERERi1EAFBER\\\n", @@ -35260,7 +35298,7 @@ "TkSuQmCC\\\n", "\"\n", " frames[82] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcfElEQVR4nO3dd3xV9f3H8ded2YNsCCSQECBh7ylDQIaK2qrVqlVr3T9ta50V\\\n", "tWrraq2ts45axa04EFQUkI0gUyBAwiYQMsgeN7m5957fHweuRnAyApz38/HIA7y559zvOTfxvvmO\\\n", "z9dmGIaBiIiIiFiGvaUbICIiIiLHlgKgiIiIiMUoAIqIiIhYjAKgiIiIiMUoAIqIiIhYjAKgiIiI\\\n", @@ -35679,7 +35717,7 @@ "WIwCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWMz/A0N+TLG0sd3TAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[83] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc1klEQVR4nO3dd3xV9f3H8de5K3uQBBIIJJAQRth7LwHFgaOOatWqtY5q1dY6\\\n", "sKJU22q1VX9Vq3XUXUVFK4KKIrIRBNkBkrBnBgnZN7nr/P44cjUCigISOO/n43EfyL33nPu95wbv\\\n", "O9/x+RqmaZqIiIiIiG04jncDREREROSnpQAoIiIiYjMKgCIiIiI2owAoIiIiYjMKgCIiIiI2owAo\\\n", @@ -36100,7 +36138,7 @@ "UQAUERERsZn/B6/pv3cjCwZlAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[84] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABcRklEQVR4nO3dd3hUVf7H8fedlt5DEggkISH0Ll2qIPa66mKvq7u66q5rwRV1\\\n", "1d/q2nfXtpa1rwpWiooivQjShVBC7wnpdZLJzNzfH1dGI6goJcH7eT3PPMKUe8/cCc4n55zvOYZp\\\n", "miYiIiIiYhuOpm6AiIiIiBxdCoAiIiIiNqMAKCIiImIzCoAiIiIiNqMAKCIiImIzCoAiIiIiNqMA\\\n", @@ -36518,7 +36556,7 @@ "ERERsRkFQBERERGbUQAUERERsRkFQBERERGbUQAUERERsZn/B8aPFF+oHfDfAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[85] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc20lEQVR4nO3dd3xV9f3H8de5K3uQQUICCQTC3rJBhqAigqtq3btq9ae21lmx\\\n", "VK1aba2tOOqoVbQOxMFQUfYG2SNAwt4kkJB9k5t77/n9ceBqBAcSIHDez0fvA7njnO89N/S+8x2f\\\n", "r2GapomIiIiI2IbjZDdARERERE4sBUARERERm1EAFBEREbEZBUARERERm1EAFBEREbEZBUARERER\\\n", @@ -36939,7 +36977,7 @@ "iIiIiM0oAIqIiIjYzP8D7h0yc0gzQhsAAAAASUVORK5CYII=\\\n", "\"\n", " frames[86] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdmElEQVR4nO3dd3hUZd7G8e+Zlt4DCQlJIBBK6L03qSLYVl17b6urrl1XlFVX\\\n", "Xd113Xdta1kLuhasFBWlV0G6ECAJvaaTXiZT3j+OjEawIC1w7s91zYXMzDnzzJnEuXnK7zH8fr8f\\\n", "EREREbEM24lugIiIiIgcXwqAIiIiIhajACgiIiJiMQqAIiIiIhajACgiIiJiMQqAIiIiIhajACgi\\\n", @@ -37363,7 +37401,7 @@ "xSgAioiIiFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxfw/8wfIxiDGvvoAAAAASUVORK5CYII=\\\n", "\"\n", " frames[87] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABc6ElEQVR4nO3dd3hUVf7H8fedll5IIYGQBAKhhN57URCRxbrqWtZeV1d317Xg\\\n", "irrqqquu6/7EspZ1bWvBSlFRehUEKUIoofcU0sskk5m5vz+ujAawIC1wP6/nyROZzL333EnifHLO\\\n", "+Z5jmKZpIiIiIiK24TjeDRARERGRY0sBUERERMRmFABFREREbEYBUERERMRmFABFREREbEYBUERE\\\n", @@ -37784,7 +37822,7 @@ "ERGxGQVAEREREZtRABQRERGxGQVAEREREZv5fwgba9EbALXbAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[88] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABb20lEQVR4nO3dd3hUZd7G8e+Zll5IIYFAQgKhhN6LNAUUEWyrru6uay+rr7q6\\\n", "FlxRVl11ddd1d1GxrQVdUawUFQXpIAhShAAJvZNAeplkkpnz/nFgMIKKUhI49+e65pJMZs4850zi\\\n", "3HnK7zFM0zQREREREdtw1HcDREREROTkUgAUERERsRkFQBERERGbUQAUERERsRkFQBERERGbUQAU\\\n", @@ -38201,7 +38239,7 @@ "RU5ErkJggg==\\\n", "\"\n", " frames[89] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABa6ElEQVR4nO3dd3hUZd7G8e+Zll5IQhIIJCEQSui9SFNQUVHRVRfXta1dV11d\\\n", "64pre9W179pYuyJrwUoTEJGOIEgRAiSh1ySQkJAyKTNz3j8ODEawUhI49+e65kqYzJzzzJno3HnK\\\n", "7zFM0zQREREREdtw1HcDREREROTYUgAUERERsRkFQBERERGbUQAUERERsRkFQBERERGbUQAUERER\\\n", @@ -38613,7 +38651,7 @@ "RETEZhQARURERGxGAVBERETEZhQARURERGzm/wH0KslHfJSrKAAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[90] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABbW0lEQVR4nO3dd3hUVf7H8fedlt4rBBIIhBJ6L2JAigXBturqrl1X3bWtLiqu\\\n", "2H+rq1t017aWtbIWbDQFBZQuCAICAZLQSwik10kmU35/XBmNoKKUBO/n9Tx5MJOZe8+9E5wP55zv\\\n", "OUYgEAggIiIiIpZha+4GiIiIiMjxpQAoIiIiYjEKgCIiIiIWowAoIiIiYjEKgCIiIiIWowAoIiIi\\\n", @@ -39027,7 +39065,7 @@ "iIiIiMUoAIqIiIhYjAKgiIiIiMUoAIqIiIhYzP8DBNWfU1Bws7UAAAAASUVORK5CYII=\\\n", "\"\n", " frames[91] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABas0lEQVR4nO3dd3xV9f3H8ded2TuQQEgCCWGEPQRBBGQoIoi7WmtdrbPaah1Y\\\n", "cf+qLa211lVHnbhRWQoKyEYQZAgBEiCMQCB75yY3uff8/jhwNYIKsgLn/Xw88lBvzjn3e06C9813\\\n", "fL42wzAMRERERMQy7Ce6ASIiIiJyfCkAioiIiFiMAqCIiIiIxSgAioiIiFiMAqCIiIiIxSgAioiI\\\n", @@ -39438,7 +39476,7 @@ "i1EAFBEREbEYBUARERERi1EAFBEREbEYBUARERERi/l/7C9qYG4FMbAAAAAASUVORK5CYII=\\\n", "\"\n", " frames[92] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABak0lEQVR4nO3dd3hUZf7+8feZll5IQhIIJJAQSui9SBVQRMDu6rr2XevXuhZc\\\n", "u/5WV3fVVVxdy1qxISpNQVHpCIIUISChtxAS0kiZZDIz5/fHkdEAKkjn3K/ryoVM5px5zpng3HnK\\\n", "5zFM0zQREREREdtwHOsGiIiIiMjRpQAoIiIiYjMKgCIiIiI2owAoIiIiYjMKgCIiIiI2owAoIiIi\\\n", @@ -39849,7 +39887,7 @@ "/9WkT/GIBHdOAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[93] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABalklEQVR4nO3dd3hUVf7H8ff0SQ9JIIFAAgmhhBp6BymKCKIuuvayrn3VXdeC\\\n", "K+qqP3F1LetaWMu6dhFBaSqISEcQpNfQW0ghIb3OzP39cWE0gI0O9/N6njyRydw7584kzmfOOd9z\\\n", "bIZhGIiIiIiIZdhPdQNERERE5ORSABQRERGxGAVAEREREYtRABQRERGxGAVAEREREYtRABQRERGx\\\n", @@ -40260,7 +40298,7 @@ "YjH/Dw7zkiiUT4MiAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[94] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdY0lEQVR4nO3dd3zV1f3H8dfd2ZskEDJICHvvDQIqUnBr0WrVatXqT63WgRV3\\\n", "q1VbbdVqHbUOHLgZisqQLQiyw947e+cmd/7++JKrAVSUkeD3/Xw88sDcfO/3e+73Bu+bc87nHEsw\\\n", "GAwiIiIiIqZhbewGiIiIiMjJpQAoIiIiYjIKgCIiIiImowAoIiIiYjIKgCIiIiImowAoIiIiYjIK\\\n", @@ -40683,7 +40721,7 @@ "ERERMRkFQBERERGTUQAUERERMRkFQBERERGTUQAUERERMZn/B4KvBH9wNg2xAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[95] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdYElEQVR4nO3dd3hUVf7H8fedlt5DEggkEAi99w5SLAii/tS1l9VVV1ddXeuK\\\n", "fVd33XV117aWZW1rRaUpSJMuCNIDJvSaQhLSy2Rm7u+PK6MRUJAS4H5ez8NjmMzce+6dxPlwzvme\\\n", "Y5imaSIiIiIituFo6AaIiIiIyImlACgiIiJiMwqAIiIiIjajACgiIiJiMwqAIiIiIjajACgiIiJi\\\n", @@ -41106,7 +41144,7 @@ "xGYUAEVERERsRgFQRERExGYUAEVERERsRgFQRERExGb+H7gpz53lAXeWAAAAAElFTkSuQmCC\\\n", "\"\n", " frames[96] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABevklEQVR4nO3dd3hUZd7G8e+ZlkmvkEBIAgmh995BiiKCYl17X3X1VdeuK/ZV\\\n", "17buWteyrgXFgkpTEETpgiBFCCWhtySk9zLt/ePAaAQVpXvuz3XlQiZzznnmTHDuPOX3GIFAIICI\\\n", "iIiIWIbtWDdARERERI4uBUARERERi1EAFBEREbEYBUARERERi1EAFBEREbEYBUARERERi1EAFBER\\\n", @@ -41536,7 +41574,7 @@ "RK5CYII=\\\n", "\"\n", " frames[97] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdPUlEQVR4nO3dd3hUZd7G8e/U9B5IIJBAIJTQey8qICKI+qqrrl1XXbuuBVfs\\\n", "q666q7vWta4ia8FGU6nSkSZFeoDQIb1OMskkM+f948hoKBY6nPtzXXMtTs6c85yZsHPzlN9jMwzD\\\n", "QEREREQsw36iGyAiIiIix5cCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACKiIiIWIwCoIiIiIjFKACK\\\n", @@ -41959,7 +41997,7 @@ "xTtKHVP+KgAAAABJRU5ErkJggg==\\\n", "\"\n", " frames[98] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdd0lEQVR4nO3dd3hUZd7G8e+Zlt4TEggkkBB6701AQEQEBVdde191ddXVteCK\\\n", "/V1d3bWsqNgLYgFFpYlKr4IgPZSEXlNISEiZZDLl/ePIaAQLAlLO/bmuXOhk5pznnAnMnaf8HiMQ\\\n", "CAQQEREREcuwnegGiIiIiMgfSwFQRERExGIUAEVEREQsRgFQRERExGIUAEVEREQsRgFQRERExGIU\\\n", @@ -42383,7 +42421,7 @@ "pxDEL9WciKcAAAAASUVORK5CYII=\\\n", "\"\n", " frames[99] = \"\\\n", - "bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9h\\\n", + "bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9h\\\n", "AAAPYQGoP6dpAABdVklEQVR4nO3dd3hUZd7G8e+Zmp6QBBIIJBAIJfReBaSpCIKuupZ11dW1ru7a\\\n", "ce36qmvZddfe18KqiIUqKkgHQRAQCCVA6CG915nMzPvHgdEIKEiUcu7PdXHFncw555kzyc6dp/we\\\n", "IxAIBBARERERy7Ad7waIiIiIyG9LAVBERETEYhQARURERCxGAVBERETEYhQARURERCxGAVBERETE\\\n", @@ -42810,14 +42848,14 @@ " /* set a timeout to make sure all the above elements are created before\n", " the object is initialized. */\n", " setTimeout(function() {\n", - " anim2b87cf9d473340679f7925345040c4bd = new Animation(frames, img_id, slider_id, 200.0,\n", + " anima22bb29cca9d4208ba159a3d0614c893 = new Animation(frames, img_id, slider_id, 200.0,\n", " loop_select_id);\n", " }, 0);\n", " })()\n", "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -42826,7 +42864,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFeCAYAAAAYIxzjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYY0lEQVR4nO3dd3xV9f3H8dfd2QlJIIFAAglhhL2HCMhSkaVV6x51z/60DqxaV9U6WltnnaVKRYbKUlCQDYIgIBBWIGzI3vOu8/vjkKsRUBCUcd/PxyMP2pt7z/3ek5jzPt/x+VoMwzAQERGRoGU92Q0QERGRk0thQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgNnMJ/PxyeffMJ//vMfampqjvt4brebv//974wZM4Z9+/Yd9jllZWXcfPPNdOvWjbCwMO6++258Pt8hz6uqquKpp57iwQcfpKCggIcffpilS5cedxsBXn/9dUaNGnXMr6uoqKB169bMmjXrhLTjZPD7/WRlZXHrrbfSsmVL2rZtyyOPPEJ+fn7gOV6vlwULFnDeeefRvHlzevToweTJk3G73YHnTJ8+ndGjR5OSkkLDhg359ttvj7oNRUVFPPXUU6xfv/6Efa6pU6eSnp7O7t27D/v98vJy3nzzTQYPHkxsbCyxsbEn7L1/S8uXL2fs2LF4vd5jet3HH3/MW2+9Ve9n+EtVV1fz/PPPM2jQIOLi4hg8eDBZWVnHfVw5tSkMnMH8fj+LFy9m1qxZJ+SPxNHw+Xzk5eXRr18/UlJSsFgsh31eWVkZmZmZtG/fHrvdzrvvvktmZubPHvtoCmbecsstfPzxx8fc9iVLlmC32+nRo8cxv/ZUUVJSwksvvcTOnTt55plnePDBB/nyyy95/fXXqa6uxjAMdu7cyUMPPURKSgqvvPIKw4cPZ+zYscyfPz9wnN27dxMdHU3//v2JiYk5pjaUl5fz/vvvk52dfYI/3ZG53W7y8/NJT0+nV69e2Gy23+y9T6SNGzfy9ttvHzZA/5RFixYxc+bMYw4RP2QYBj6fD4/Hw759+2jZsiWDBg36xceT04v9ZDdAfj2LFi1i6dKllJeX88QTT+B0OrnrrrvIyspi7dq1FBUVERkZycCBA+nevXvgdQcOHGDmzJns378fm81GSkoKl1xyCVZr/exoGAZFRUVMmTKFJk2aMGTIEKKjoxk/fjxWq5UdO3Yctl2GYZCfn09BQQHJycm89957VFRU8Omnn7Jjxw7atm3LmDFj+OKLLyguLqZz584sWLCA6OhorrvuOjIzM1mxYgW5ubm4XC569epF//79sdvtgc+9YcMG7rrrLsDsKUhKSiI+Pp5FixZhsVgYOnQoXbp0qfeZZs6cSc+ePYmPj2fhwoVs2bKFs846izlz5lBRUUGfPn0466yzyMrK4osvvsDtdjNw4EB69OiBw+EAoLi4mAULFrB+/XpsNhvdunXj7LPPJjw8HJ/Px8SJE4mMjGTkyJGAeZc+ffp0AC666CIMw2Dz5s3MmTOHoqIiQkJCyMjIYMSIEVitVvx+P9999x2LFi2isLAwcN7T0tIA2LVrFytWrOCxxx5jxIgR+P1+DMPg/fff55JLLqFt27bMnDkTv9/P2LFjadGiBeeeey7r16/no48+YsCAAYSEhHD99ddz++23M3/+/J8NaT/k9/t58cUXKSws5IMPPmD58uV06tSJiy++mO3bt7N48WL27duHzWajc+fOnHPOOYSHh2MYBrW1tcyePZvMzEw8Hg8NGzbkvPPOC3y2H6quruaLL75g7969XH311cTExPCnP/0Jl8vF3//+d9asWXPUbQbIzc1l2bJlbNmyherqalJSUhg6dChNmzbFYrGQm5vLxx9/TJcuXdi9ezebNm2iUaNGnHfeeaSmpmIYBuvXr2fRokV0796dNWvWkJOTQ0ZGBsOHDycyMhIwA+2KFStYsmQJ1dXVtGjRgpEjR9KgQQO2bt3KvHnzqKqq4tFHH8VmszF48GCGDBnCihUrWLlyJYWFhYSEhNC3b1/69OmD3W5n1apVLFu2jJKSEh577DFiYmK44IIL6Ny5M3l5ecycOZNdu3YRFRXFgAED6Ny5M3a7neLiYqZNm0ZaWholJSWsXbuWjIwMLrzwQp599lmcTicffPAB48ePP6ZzKacnhYEzmGEYgS+/34/f76e6upqXX36Z6OhoIiIiWL58OVOmTOGll16iT58+VFZWct9997F9+3Z69uyJz+djwYIFnH/++URFRdU7fk1NDc888wybN29m7Nix2O12rFYrERERVFVV/WS7Vq5cSWRkJK1atQp0Qf+wnQCfffYZc+fO5ayzziIuLo6UlBSqqqr48MMPOXDgAPHx8ezdu5eJEyfyyCOPcPHFFwOwbNkyPv7440AY+O9//4vD4SAmJoaUlBTWr1/Pp59+yueff05cXBxgDhEsXryYRx55BDC7az/44AOmTJlCeno6e/fu5eOPP+aPf/wjU6dOpVmzZmzZsoVZs2bx3//+lxYtWgS6qj/66CM6deqE1+tl0qRJ3H777Vx33XVYrVamTp1KYmJiIAz4fD5mz54NmGHgwIED3HrrrTgcDtq3b09VVRUrV67k/PPPx2Kx8NVXX/HMM8/QsGFDEhIS+Prrr/nqq6947rnnaN68OVu3biUsLIz09HSsVisWi4VOnTpRVVXF3r17adu2LYsWLSI9PZ2UlBQA7HY7Q4cO5aOPPiI3N5eUlBTCw8N/8e9d3c+v7ucJ5sX7888/Z9myZSQlJVFYWMikSZO45ZZbuPXWW7FarYwbN45///vfdO3alYiICDZu3Eh4ePghYcDtdjN16lTeeOMNbrjhBlwuF1arldDQ0F/c5uXLlzN58mRiYmIwDIM5c+awYsUKnnjiCRITEykoKOCdd94hPDyc1NRUwsPDmTFjBtu2beORRx6hQYMGbNy4kWeeeYbu3buTkJCA2+1mwoQJlJaWcvPNNwMwZ84cxo4dS5MmTUhMTGTy5MnMmzePN954o16vl9/vx2KxBB57/vnniYyMJDo6muzsbD766CP+/ve/c8455wT+G697XV0ALCgo4N577+W7776jV69erFy5kokTJ/L3v/+dfv36UVpaypQpUygtLSUmJobU1FTKy8uxWq2EhYUdVy+DnIYMOWNVVlYad955p3HRRRcZubm5RmVlpeHxeIz9+/cbpaWlRnl5uVFQUGAMHTrUuPnmmw2/32+sWrXKaNq0qfHVV18Z5eXlged4vV6jtrbWePHFF43Ro0cb27dvN2677TajV69exjfffGN4vd5D3nvkyJHG3Xfffcj33G63cdVVVxmPPfaY4fP5jNzcXCMhIcF45ZVXjMrKSqOmpsbw+XzGNddcYzRt2tSYNGmSUVZWZlRWVhper9fIy8szSkpKjIqKCqOwsNC44447jIsuusgoKyszDMMw/vrXvxpdunQJvF/Pnj2NxMREY/369UZ5ebmxfv16Iy0tzRg3blzgOfPnzzdSU1ONoqIiwzAM429/+5sRERFhTJgwwSgrKzM2b95snH/++UZ8fLyxdOlSo7y83Fi+fLnRq1cvY9y4cYbX6zVWrlxptGvXznjzzTeN4uJio6CgwHjmmWeMXr16GRs2bDDcbrdxySWXGHfddVfgfWtqaoybbrrJuOmmmwzDMIxJkyYZiYmJxvbt242KigqjrKzMKCgoMPx+v7Fv3z7jiiuuMB577DEjJyfHKC8vN7799ltj8ODBxhtvvGFUVVUZL7zwgnH++ecb+/btC7zHxo0bjb59+xpTpkwx/H6/0aNHD+O+++4LfN/v9xuff/650bVrV2PNmjX1flZz5841unTpYqxateqofuf8fr+xefNmIy0tzZg0aZJRWVlp1NbWGl6v1ygsLDSKioqMiooKo6ioyPjXv/5lDB061Ni+fbvh9/uNc845x7jzzjuN0tJSo6KiwiguLjYqKioMwzCMTz/91GjZsqWRnZ1tTJkyxejcubMxbtw4o6amxvD7/fXa8PzzzxsJCQlH1d46paWlRn5+fuB3fvbs2Ua3bt2MJUuWGH6/39iwYYPRqlUr49prrzV27txplJeXG1OnTjV69uxprFixwvD7/caECROMyMhI44UXXjCKi4uN4uJi45577jFGjRplFBYWGm632+jWrZtx4YUXGnl5eUZZWZkxc+ZMo1GjRsb48eMNr9drvPnmm0ZsbKxRXFxsVFZWGm632zAMw9i7d2/gd76goMC4/PLLjTFjxhh+v9/weDzG7bffbgwfPtwoLCw0qqqqDI/HY7z++utGYmKisXz5cqOsrMzYs2ePMXLkSGPIkCGG1+s1duzYYVxwwQVG+/btjS1bthgVFRVGdXV14Jx4PB7jvffeMwYNGmRs3br1mM6nnH40Z+AM5nA4sNvt2Gw2QkJCCAsLw2azERoaSk5ODps2bSIzM5PmzZuTlZVFdXU1UVFRREZGMnv2bHbv3k1FRQWRkZH1utNLS0v54x//yMqVK3nvvffo3r37EcdojcOM8VdUVPDtt9/Sr18/rFYrTqcTAKfTSVhYGC6XKzDXoFmzZgwbNozIyEjCwsKwWq2EhISQn5/P5s2b2bBhA02bNiUnJ4ecnJwjnov+/fvTrl07IiIiaNeuHQkJCWzdujXQxoULF9KjR496vR/JyckMHjyYyMhIUlNTSU5Opm3btnTs2JGIiAhatmxJYmIi27dvx+v1snXrVqKioujbty/R0dHExsYyaNAgqqurjzjh8sfi4+Ox2WzMnj2bffv2UVNTExiz37t3L1lZWcTFxbFlyxZWr15NcXExUVFRLF++HLfbTW1tLTabrd7Po+5n5/V6A93xdee8jsvlCowXHw+LxUJISAgWiyXw83Q6nYGfW0lJCdu2bSMzM5Pw8HCKiooCP7fExEQ2btzI+vXrKSoqwuFwEBYWFji2YRhMnjyZBx98kLvuuourrroKp9N5xHkpxyI0NBSPx8Pu3btZv3495eXlOJ1OsrKyAuP3DoeDIUOGkJycTHh4OC1atCAsLIzS0tLAcZKTk+nXrx/R0dFERUVx9tlnU1xcTFFREZmZmezZs4drr72W+Ph4IiMjGT58OKmpqXz11VfYbLbAUFdoaChhYWGB4aeoqCjy8vLYunUrGzduJDExMdCjZrfb6/13HhoaisViYcWKFfTs2ZMuXboQGRlJUlISo0aNYu3atRQXFwfaPHLkSJo1a0Z4eDghISHHfS7l9HRShgkMw8Dtdh/zJBk5Nl6vF6/Xi8/no6amBrvdTlFRES+88AIrV67EYrFgs9nYt28fjRs3prS0lKSkJO666y4mTZrEwoULSU5OZsiQIfzud7/D4XDg8XjYsGFDYFwzOTmZ6urqQ967uroan8+H1+ulurq6Xpj46quvcDqddO3a9Sfbb7FYCAsLC1ygDcOgoqKCf/7zn8ybNw/DMAKfyeFw/OQkyYSEhMBFw2KxEBERQXl5OWCGk9WrVzNixIh6F5a4uLjARdXhcOBwOIiPjw98lrrHKisr8fl8FBYWEh0dTXh4eOA4dX9gKysrjzj50TCMwPP79evHLbfcwpQpU/joo49o0aIFo0ePZvTo0VRVVXHgwAHef//9Qyb1derUCavVSmRkJG63u965qJt4WReyIiIiqKysrPf68vJyHA7Hr3YxqKqqYvz48UyZMgW3243D4aCiooLq6upAAHnwwQd59tlneeCBB4iKiqJHjx5ce+21gWECn8/HG2+8QVpaGiNHjjxhkwT9fj/Lli3j1VdfJTc3F7vdjtfrZdu2bfV+bmFhYYSFhQV+VjabDYvFUi9AhYSEEBkZGXhOREQEHo8Ht9tNYWEhAE2aNKn3e5aUlERBQcER21c3KfSrr74KXPj3799fL4T8WE1NDRUVFfXey2KxkJiYiNVqJT8/PzCs0qhRo9N2wqWcOL95GDAMg+LiIhbPm4Wn9sjjynL8fD4fO7Ztoqi4hC+mf0RoaAir1m5gwv/Gc9HIoaSlpeJwOvhi7mJ27d7LlzMmEh4eRnyUlQuHD2D79u1s3LSFxx97lAN7ttMmvTmb1n9Lw9ho4tKSePutN6mtKiWjVfND7s5q3W5yD+zF8Fbz+afj64WB98ZPJrlZEyIiIgB+8s7ObrfX+/6WLVuYMGECd999NwMHDiQ0NJTPPvuMcePG/eRKg596jy1btlBSUkLfvn3rPe/HEyaPdBzDMAIX4qqqKmprawPfq62txePxBO6WXS5XvQu1YRiUlJTQoEGDwOd96KGHuOyyy9i6dSufffYZY8eOpW3btjidTmJjY7nvvvvo06dPvTbUXahatGhBSUkJhYWFNGvWDMMwKC8vx+PxEB0dDUBqaip79uzB4/HgcDgCkxajoqJo2LDhEc/TsfjxecrNzeWdd97hwgsvZPTo0URERPDdd9/x5z//OfD8jh078sYbb7BlyxY2bdrEv/71Lw4cOMDbb78NmBffsWPH8sYbb/Daa6/xxz/+MXDejkdJSQkffPABISEhPP/88yQkJLB//37+/Oc/1/udslgsP9sLcbjnGAfH9OsmERYVFdX7flFREU2aNDni65csWcI777zDK6+8Qrt27QgJCeGdd97h9ddfP2I76oLdj9+rpKQEv99PVFRUIMT8+L8xCU4npWegqDCfPRsX0i3NgcupOYy/Fp/PT6OQEir9xTS1bSDaGcLXeWtoGOPgsgHRRIVXUl3j4eVN64mJdNHcuQkHNpx2G2nNLfRr3oD8ru25/8XdlOxaRot2lcTZDpAQbXDvVR1Zuiabd99+kzuv7MuQXqn13rsWL+HWcqJtkOrKxHrwj01ltZv1a1cx6oLhVFdX43Q6A13WPzXpsE5xcTFOp5PevXvTpk0bPB4PixYtOq7zlJmZSWJiIo0aNfrFfxRtNhupqamBrtxWrVrh8/lYt24dhmEEjt2kSZNA+IiJiSE/P58lS5YEJhRWVlYSHh5Oeno66enpxMXFMWPGDPbs2UPLli1JSkoiMzOTkSNHBrrQvV4vHo8Hq9VKWloafr+fzMxMOnToEJgAGh8fH5gweN555/Hcc8+RmZlJ586dcbvdzJgxg65duxIfH39c5xLMC5rVaq0XeuqGMLp37067du3weDy8//77gQtSXa9PgwYN6N27Nz179mTFihV888039Y47ZMgQkpKSeOSRR4iKiuKWW245rsmOYN5Fl5SU0Lt3b7p06YLT6WTr1q3s3LnzuI77Y23atCEyMpIZM2YwePBg7HY769evZ8uWLYwePRowL+IWi4XKykpcLhcAOTk5WCwWzj33XMLDwykrK2PDhg31eiQcDke9WiIOh4O2bdvy7rvvkpOTQ7NmzaiurmbBggU0a9aMhg0bsn///hP6+eT0dlKuxH6fn/AQaNciiogw18loQlDw+/0M6tGMx1Zls2DFFtKaxjL8rBZ8+Plaxn26gg4tE5i1dBuRYTYiQuy0T41mZeZ+XvzvMvp0bEpCXDjfbNhPWUUNl5/bhk4tG7A4PozsCAddWsczsHsSTruNybNW0ysjnrO6JFPr9vK/z9axL6+c3MIy3G43ny/YQHJiFKPPacM3mUVYMEhp2igw0zwkJIRWrVrx0UcfBS6EPXv2POxnatWqFTU1Nfz1r3+lX79+LF++nK1btwbGWo9VVVUVGzZsoEOHDoGeil8qIyODgQMH8tBDD7F69Wpqa2uZNGkSl112Ga1bt8ZmszFq1Cguv/xyHnjgAVq1asUnn3xSr8v//fffZ8aMGfTv35/w8HBmz55NWFgYnTt3Ji4ujiuuuIInnniCbdu20adPH8rLy1m8eDFXX301l1xyCSkpKYwcOZK//e1v7Nixg6qqKiZNmsSf/vQnmjdvDsCwYcMYN24c999/P8OHD2fx4sUUFhZyww03BM7jhg0bmDZtGtnZ2eTm5vLee+8xZ84c+vXrR79+/X7yPLhcLuLj45kwYQLl5eW0bt2a5s2b06hRI/7xj3+wceNGsrKymDdvXr05Aeeeey5dunShdevWFBQUMGvWLK655pp6x7ZarQwZMoTKykqeeOIJ4uLiuOyyy7BYLCxZsoSvv/6aJUuWUFlZydNPP01kZCQjRowgNTX1x80MiI2NpU2bNrz99tvU1tbi8/n46quv6vXwnAiRkZE8+OCDPProo1RXV5OamsrEiRNp2rQpV199NQAtW7YkIiKChx9+mL59+9KpUye6d++O3W7n2muv5eyzz2bJkiVkZ2fXC65paWlMmTKFV155hZYtW9K1a1euvPJKpk2bxoUXXsgll1zCpk2bmDt3Li+99FJgLsKRfPzxx2zevJnVq1ezc+dO3njjDeLi4rjttttO24JO8tNO6gRC8w5CX7/Wl91u4/x+6Vw5vAMLV+3i1Ynf0Cwxmn89cB6FpTXMWZ7NmHPa8MB1Z9E2NR6H3UaHlo0Y0iuVNZtzmDxnEwDvPD6SbhlNsNksNG4YQXpyLC6njcgwF3+8shfD+qbxyVebKC6rxuvzs/DbXcxaso2ocBc+v8HMRVtZsnYP1W4vi77dRfeMxjh/0CNksVh4+eWXSUlJ4b333mPGjBlUVlaSmppKq1at6j0vKSmJ1157DavVysyZM2nTpg0vvfQSGRkZgTHQJk2a0K5du8DrMjIyAnfFdVq1akVycjI5OTlkZ2fTtWvXeuPljRs3pk2bNvVCRkpKCi1btgwMH9hsNlq2bElycjIWi4W4uDj+8pe/cOWVV7J48WJWr17NPffcw/333x+YR9ClSxeeeuopdu/ezaJFi7j//vu5+uqrAxfqAQMG0L59exYsWMDUqVNp0aIFkydPpmHDhlitVq644gr+/e9/43Q6mTRpEsuWLaNXr1707t0bu91OWFgYd9xxBzfccAMLFy7ku+++47HHHuOGG24ILDWMj4/njTfeICMjg2nTphEeHs7//vc/OnbsGPisu3fvZtq0aaxfv56kpCRWrlzJ9OnT2bJly8/+dx0XF8djjz0GwFtvvcXs2bNJTEzk2WefJTExkWnTpuFwOHjrrbcCk9sAbrzxRoqKivjkk09Ys2YN999/P48++igADRo0oEOHDjidTux2O6NGjeL//u//mDx5MtnZ2Xi9XjIzM5k2bRqFhYW0bduWadOm8eWXX9arvng4LpeLO+64g8svv5y5c+eyceNGbr31Vq666qrAXJPQ0FAyMjLqDUuEhobSpk2bwPBLXFxcvd9DMCf+1T1msVi4/vrr+ec//0lBQQFz585l6NChTJ06NXDcnj178sgjj7B9+3ZeeeWVQJ2GN998E5/Px4wZM+jevTv33nsvvXv3DrzPpZdeyvXXX8/nn3/OW2+9xZYtW0hJSWHixIn06dOHzz//nPLycl577TVGjRoVGLJKT0+vN5+mzooVK5g+fTp79uwhLi6OJUuWMG3aNCoqKn725y+nJ4vxUwOtvwLDMMjasoml01/i4rPjiQxXz0CwcLt9PPivObROiac2PINrbn3ohIz5Ho8NGzbwn//8h5tuuok2bdqc1LaIiJwsp9yA/YyFW/hscRYP33g2TROizpiJLYZhMOfrbOYsz+aK4e3p0qbxSW1P5vY8xs9cx1ldkhneLx2r9dc/zxYr3HZJDwxg9tEXtftVpaSkcPvtt5OUlHSym3LaqK2tPeJeFw6HI3AXfCqprKw8YhEdl8ulJXUS9E65MLBmcw7jpq3ltku60zQh6udfcAqprHLz5JsLWbs1l+n/uqze5EgDWL8tl4lfbKBfl2a/SRiYuXAr//jga+6+shdjzql/17svr5xJX24kItTJ+We1BH79P94Ou41WzePYn1/+q7/X0YqMjAx0U8vR+fTTT3nmmWcO+70hQ4bwwgsvnHJL1e69916WL19+yIoTl8vFddddxx133HGSWiZyajjlwsDNF3djzDltSE8+/Sap+PwG2ftKWJ+Vi/9Hf3QswDUjOnH+WekkNfptLj6FpVV8tzWXwpJDZ+n36diUma9cTmxU6G/SKyBnjr59+/L8888f9nt169hPNTfddBMXXnjhIY/bbLbAfA2RYHbKhYHaWi8lFTX4/ObFtLCkiq27CklpEkN4iIOd+0sor3Jjt1lJjAsnpUlMoEty+54i9ueXk5HakLiYsHrHdXt8bN9TRGW1h4y0hoSFOAKPH8gvJ7eoklq3F4fdRkJcOEmNonA6vr+78fr85BRUcKCgnOpaLzaLhRCXndjoUFIax1Dr9rIuK5f84krcHh+LV+/GdfD1GWkNiY8Jo8btpayylka++kuhat1e9uSUkVdcieE3aBAVSlJCJPvyyiktr6Fn+yRsNvMPbEWVm7yiSopKq6lxe7EAEeEukhOjiIkMCZyLjdn5bNlZiMfrY8vOQhau2glAbHQoHdIT8Hj9lFXWEhZ66KzigpIq9uaUUVHtxmKB6IgQmjeJITzUUa/7d2XmPqwWC62bx5NbWEFeUSU+v0FMZAgpjaM1H+QMlZycTHJy8sluxjH54UZcInKoUy4M/HfGdzzzzmJWfHAjHVsnsOy7Pdz85Exuubgb5ZW1rNiwj6LSakoramiX2ohHb+nP2V3NmeKfLc7i0Vfn8/htA7jn6vpFWXIKKrjt6c8Iczl46y8jCUt0UFHlZvqCzXwwcz079hVjsVjw+fw0bxLDH8Z0YcygNoS47OYM+VU7ee2jlazflovdZsV28O4npUk0E5+/hKLSal6ZsII1mw5QVePh/56bHbhwvnT/uQzpk8qkLzL51/9W8MpD5zP6YLd9dY2HT+dt5t+TV7E7p5ToiBDiY0IZ0K05S9bsZsP2PLJm3EV4qLkWf/qCLbw/fS05RZV4fX5q3T5cDhsDezTnT9f0oUWSOSHvP1PX8NHsTKqqPfzvs3V8tigLLHB2l2T+/egIVm3cz21/ncn1o7vw0A39sNnMTVHWbM7hrSnfsmDVTiyAzzAID3Fw3lnp3Hl5D5IafT90c/1fpuH1+rnr8p58sWw7+/LKKSiuJDLcxQ0XduG60Z1pEPXLN485lfl8PrZt28bXX39NcXExAwcOpEuXLie7WSIiv8gpFwaO5P0Z33Fu3zQevbk/oS4H323J4ck3F/LwK/P47NUriAx3MWpga/7x/tdMnrORm37XNVDDwO832LSjgO+25PLwTWfTMDYMr8/P7KXbePS1+XTLaMIzdw2mYWwY+cVVfDBzHY++Np/E+AgGdE9hf145r09cya4DJTx5+zk0TYjCMKCkrJrNOwuw2Sw0ig3nT1f3paC4inVbc3nj0QtwOczTm55y+CEPwzBYtXE/D7/6Fc0bx/DcH4eQlBDF/rxyJn2ZycrM/YSG1P8ROexWLhzSlpTGMYSFOHB7fKzcsI8X3/+aqhoPbz06Arvdxs0XdyMsxME/x6/gutGdGTmgNQAxkUeeKLVzXwl/fWsRC1bt5JGb+9O1bWO8Xj/TF2zhtYnfUFJezT/uO5fQkO97E/bklDF76TYuGtyWlsmxlJTX8taUVfz9/a9p37IRQ3qnnnKTyU6E3Nxc/va3v5GXl0dycvLPllY+FWzatIlXX331kKp0Tz31FGlpaYGf09atW/nwww/ZuXMnaWlp/P73vyc9PT3w/cLCQqZPn86yZcuwWq0MHDiQkSNHBuo0GIZBdnY2EydOJCsri9jYWH73u9/Rt2/f3/YDi8hRO23CQKPYcB67dSCJ8eYfnF4dkvh63V7mLs9m3dZczuqSTHJiNEN6pzJz0VaWrt3DuX1bAmYX/ydfbSQhNpwe7ZrgdNioqHLzjw++Jjkxmkdv7k+7tEZYrRZ8fj9NGkZyy1MzeWvKt5zdLZmismp2HShlcM9URp/ThlCXPbC96NDaNEKc5v9v0yKe2OgwHA4bPdsnEer6/qL54zkEde16b+oaPB4/t17and8NycBus+Lz+bHbraxYvw/fwcI8dUYMaIXdZsVus1J3xD6dmrJpRwHzvtnBll2FtEtrRHpyHKlNG2C3W0lt2oDeHZv+5Pk1DIP5q3Yyf+VOrh3Zkdsu7U6oyyxV271dY1Zm7uezRVlcPDSDwT+oNhge6uDCQW25akRHHHYbfr+By2HjirEfs3rTAc7umkKI67T5NTtqOTk5bNiwgUceeYQBAwYcsn1u3US1UykI5efnM23aNC666CKaNv3+9+GHFfx27NjBPffcQ0VFBf3792fx4sWsXbuWl156iWbNmlFWVsY///lPpk2bxqBBg/B4PDz++OPs37+fO++8E6fTSW5uLrfccgsej4c+ffqwadMmbrvtNv7xj38waNCgU+qciIjptPkrfX6/dOJivv+D63La6ZDeiC+WbgvMTrdaLfxhTGcmzNrAzEVbGdIrFZvNSklZNVO+3MiQPml0apUAwIH8Cr7ZsI/rRnUmMtzFvryywLEbRIUQFx3K/FU7MAyIjwklNakBH32xgWaJUZzXryXRESGEhTgIC3H84j9ufr/BVyt20DI5lp7tk7Db6orZWOnatjFtW8SzYXtevdcYBmzKLmDW0iy27S6iqtqD3zDYmF1AVbWHHftKaJfW6JjbUuP2sim7gNKKGq4f04WQgyshLBYL0REhXD2iIw/+cy6rMvfXCwMNG4RzdtdkHHZzfoTVaiExPoLE+AgOFFTg8frOuDBQUVHBnj17AgVYysvLiYyMpKSkBJ/PF9iEx+12BzZyqqioCJQMjoiIICIiAqvVimEYlJWZlRpDQkKoqKjA7/cTGRkZ2FCobkOlqKioQPEiwzDw+/2UlZUFyjiHhoYSExPzkxP4LBYLV1xxBd27dw/83tY93+/38/HHH5OXl8fUqVNJTExk/fr13HHHHcyfP58rr7yS7du388knn/CXv/yFiy66CJ/Px/jx43nrrbcYNGgQnTp1YvLkyZSUlPDuu+/Svn173G43l112GW+++eYhO0PWqa6upqioiAYNGgTOXUhICA0aNAisTCgqKsLn8xEeHk5paSl+v5+IiAiior5fguz1eiktLaW6ujqw62FVVRXR0dH1dsMUkfpOm7/SiXHhh/yHHBHqxMCcBFinR7sk2rdsyLeZB9i2p4jWzeOZMncjfsOgf9dkYqJCMQyDfXll+HwGk77MZPbSbYd9z7o7+6RGUdxxWQ+8Pj+vT1rFc/9ZSmJ8BH07NWP0Oa3p3y0lcDE8FgaQV1RJh/QEon402S4yzElEWP1tZiur3bwxaRXPvbeExPhI4mPCcDnNndNqar34/QbVtb9sC9pat4/yylrCQ51E/2AiIpgXkOTEKDxeHyXl9deXu5y2Q+YF2GwWQpx2PF4fv21Jq9/GnDlzeOCBB9i7dy/33Xcf4eHhzJ8/n2effZa1a9eSkZHBmjVriIqKYvz48XzwwQfMmDGDwsJCDMOgW7du3HvvvbRu3Rqv18s//vEP5s2bx1lnncWKFSvIzc1l0KBBXHPNNcycOZP58+eTn5/PpZdeyn333Re4mC5dupQ33ngjsIVys2bNGDt2LL179/7Ji97KlSvJycmhQYMGtG7dmkaNGmG1WikqKmLdunUMHjyY2NhYbDYbbdu2pVOnTsydO5eLL76Y3NxcXC4XaWlpgV0b27dvT0FBAdnZ2XTs2JHVq1fTuHFjMjIysNlsOJ1OBg8ezLhx48jKyqJbt26HPad/+MMfuO+++1i8eDG7d+8mLi6OJ554gv79+2OxWLjvvvvYvn075513Hl9++SV5eXn06NGD5557jkaNzPLWS5cu5W9/+xt79+6lcePGdOjQgTlz5vDCCy8wbNiwX+13QuR0d9qEAYvFclQr4W02K9eN7sxfXl/Aysz9NEuMZvxn62kcH8nQPmmB54WHOrFaLQzpncqVwzsc9ljWg+WSLRYLA7o3p1OrRDZm57N1VyGbsvOZtWQbMxdt5X/PXvSz3fCH/UyY3ewej49aT/3tnN0eX72QA7A+K4/3p39Hh/QEnr9nKOnJsUSEmZ9j7L++4r1PV8MvvPjabVZcThtuj49at7fetroApRW12KzWw97lB9vNVv/+/Xn00Ud56qmn+Mtf/hIokwuwbt06unXrxpNPPhkYOkhOTuaOO+4gMTGRvXv38s477/D+++/z0EMPBYrdZGVl0a9fPx5//HF27drFk08+SVZWFkOHDuXZZ59l9erVvPnmm/Tt25fzzjuPPXv2BC78N998M4Zh8OGHHzJ27FjGjx9Ps2bNDmm3zWajdevWLFy4EK/Xy4EDB2jXrh2PP/44zZo1o7S0lLy8PPr37x8ow+xyuWjSpAlz5szB7/fjcrnwer2BokOGYVBVVUVJSQn79+/H6/USERHBvn37qKysJCYmBsMwKCoqoqioiLy8vEPaVaempoZFixZx4403EhERwTvvvMP999/PJ598EhjW2LJlC7169eKxxx7jwIEDPP7440yfPp0bb7yR3bt388ILLxATE8O9996Lx+Phww8/JDs7+8T98EXOUKdNGDhaFgsM6tmCF8YtY9naPYS57GzZWcjvBrclren3pW9TmkSTEBtOqMvOwO7ND1mKeDgxUSH07dyMPp2aUuv2ktw4msdeX8Dni7Po3bGpuSeAxez+P7q2WujUKpG9eWVk7ymmScPv6w/s3F/CrgP19ys/kF9OQUkV143uRJe2iYEVDZVVbpau3X3IXbjdZgXDOKr2hIbYaZYYjcUCC1buJD0lLhC+DMNg1pJthIU4SE+OO6rPdiaLi4sjPT2dkJAQWrZsSefOnamurgYgPT2dq6++mrZt2wa680eMGIHVasXr9ZKenk5OTg6zZs2qt3Vt8+bNufzyy+nQoQMVFRV8+OGHOJ1Ofv/739O0aVPS09OZMGECWVlZnHfeeUyfPp2SkhLuuusu4uLMn0lCQgLDhw9nxYoVhw0DGRkZvPTSS0RHR2OxWFizZg2PPfYYb7/9Nk888QRut5vq6moiIyPrDTWEh4dTWVmJYRg0bdqUqKgoJk6cSMOGDXG73bz99tuUlZVRVlaG3+/n3HPP5bPPPmP8+PGMGjWKzZs389FHH1FbWxs4T4fjdDq58MILufDCC83eqORk+vfvz4IFC7jqqqsAc6vmBx98kLi4OLxeL9OnT2fx4sXceOONZGZmsm/fPl577TX69OmDYRgnZFdLkWBw6lUHOU4Wi4XEuAiG9Ulj4be7eGn8ctweH1cMbx9Yq2+xWIiJDOHGi7rwxbLt/HvyKkrKa/D6/Hh9fjxeH1t3FbJk9S4Mw2Bvbhnzv9kR2IinrgZCaUUtbo8v0J0f4rITEeakuKyaopKDz/X5D6l6Vsdus3LtqE5k7y1m4pcbyC82lwsWllQxZc5Gtu4qqPf8qAgX4WFO5q7YQVW1B6/PT2W1m1cmfMP6rYfecSXGRVDj9nEgvyLQlh9PSKxjs1o5q3Mz0pPjeO4/S9mcnR84F5/M3cTsZdtIbRrDkN5H3v1NICkpifj4+ECvis/nY+HChVx00UW0a9eObt268cQTT1BQUFBvV7yEhITANsdWq5WEhAQaN25MXFwcFosFu91OZGRkYP7A6tWryc7OZvDgwXTu3JnOnTszYsQIqqqqjnj3XbfZT3JyMs2aNWP48OEMHDiQGTNm4Pf7sVqt2Gy2Q8r2+nw+bDZzOKpFixbcc889LF68mKFDhzJ69GgqKysDvSMWi4X+/ftz3XXX8eKLL3L22Wdz1113MWbMGGw220/uLulwOOjcuXPg3LVs2ZKYmBi2bft+GC81NTWwn4XdbqdRo0YUFJj/nRQWFhIaGlrvPNZt1ysiP+2M6xkAiAx3MaxPGh/OWs/G7fl0aZNI/271d61zOmzc/vue5BdX8fKH3/CfaWtp0SSGEJeDfXll5BZWcN2ozvTtnExOQQUPvfwV+/PKSU+JIyLMyf78cnYfKKFT60SuG90ZAJvVHE74asUOBtwwjo7pCTgcNu65qjc9Oxxa+95igZEDWrFifRfGz1zPvBU7SEuOZX9uOdERLtqlNaK47Ps7qR7tkhjWJ42PZm+g86Vv0qZ5HHnFlXi8fkaf04pZS+rPfejRPonUpg349+RVLF6zm9ioELq0SWTsDWcf9rz16tiUe6/uzdPvLGbgjf+lY3oC1bUetu0uolFsOK+MPZ+GDX6+ByWY1e2qV2ft2rU88MADdOrUieeff54GDRqwcOFCvvzyy3ohse5CXMdisWCz2Q55rG7bZ8MwaNWqFa+++mq94Zxjqahnt9tJSEigpKQEMO+6o6Ojyc3NDQQAv99PYWEh8fHxWK1W7HY7F110EUOGDCE7O5vo6GhKS0u5/vrradq0KU6nE5fLxcMPP8yNN97IgQMHaN68OQsWLOCzzz475gvzj4er6oZjDndO6npifvx6Efl5p1wYaJsaz0WD2xJ9cD1844aRjOjfyiym86Ox6bTkWEYNbE1y4+h6j1utFjq3SeCWi7uxc18JFw5ue8iEKovFnPX+/D1DGX52Oou+3cX+/HIcNhsZaQ3p3CqBgT2aY7FAq+ZxPHn7QFZs2M+enFIqq9307pDErZd0Y0T/VjSK/X5y46XD2hHitDN/5U6KSqvwH+wZsACtUuIYfnZ6YDjAYrEQGx3Gk3ecQ/eMJiz7bg8er48BXVPo2rYxT7+zmLBQR6BccFSEi2fuHkT3jMas2LCPqmoPvTokcfGwdmzdWYjdbqu3n0NEmJPxz1zIxC8y2XWgBLfHF+jVSIgN5/yz0mmbGh84r1aLhevHdKF9y0ZMm7+FXQdKsNmsjBrQmkuHtaN5Uky98zisTxp2q7VepUaAqHAXg3u1ID0lDrv9jOt8OiZ5eXk4HA7uvvtuOnbsSE1NDcuXL8ftdh/Xcbt06cLChQtp2rQpqalmb03dCoMjXQA9Hg82my0wBFBRUcGWLVsCWzDHxsbSokULvvnmm8Bs/Pz8fLZu3Urnzp2x2+2Bn390dDRdunTB6/Xy4Ycf4nA4DtneuUmTJjRp0oTKykpmzJhBq1ataNnSXO7rdrtxu92EhoYGAo/b7Wb16tWBlQ5ZWVmUlpYGXvNz4uLiqK6uJjc3l7S0NAzDYM+ePT85T0FETKdcGLhkaDsuGfr9XvTdM5rQ/bEmh33u8H7pDO+XftjvpTaN5YV7f372cGS4i5EDWgeK8hxOVLiLYX1bMqzvz/9RCnHZufTcdlx6brtDvjdyYGtGDqz/Pl6fH7vVwjUjO/KHC80KdtW1HsbPXMfG7Hxu+V23wJJDMEsDXz+mC9ePqV/tLiO1IWMG1d+MyGq10Kl1Ip1aJx7Slk6tE3n1z8MP+xl6tE+iR/uf38XvH/ede9jHmyVG89w9Q3/29cEgMjISj8fD3LlzqaioYNOmTXzyySfHvZHPmDFjmDBhAn/5y1+47LLLiI2NpbCwkB07djBq1KjD9g7MnDmT0tJSWrRogcViYfHixSxbtoz77rsPi8VCWFgYgwcP5uGHH+a9996jV69eLFy4kP379/N///d/OBwOKisrA2EmNjaWzMxMxo0bx4gRIwJbQJeXlzN16tRAyFiwYAHffPMNzzzzDPHx8YC5ouGzzz7jhhtuIC3NnNjr8XiYNm0acXFxREZG8vbbb9O8eXMGDhx4VOckIyODpKQkXnnllcBSzkmTJlFSUqIlhSI/45QLA8GmrKKWF/+7jF37S2jRtAEWYOvuQr7+bi/Nm8Rw8bCMemFATi/t27fnoosuYsKECfzvf/8jIyOD/v37s2rVquM6brNmzXjppZd4/fXXeeyxx/D7/URFRdGzZ89DutLrFBYW8uGHH1JUVITf7yc2NpY777yTSy65JHCxHDhwIHfffTfvvfce//3vf4mNjeWWW26ha9eugUmQa9as4eOPP6a6upro6GhGjhzJNddcE9j9sba2lpkzZ7J9+3b8fj+JiYk899xzDB06NPA+W7ZsYcKECYwYMSIQBkJCQhg4cCDvvfceu3btomHDhrz44ouBSZY/Jzk5mQcffJBnn32We+65h2bNmtGuXTtSUlJwOA7dg0NEvmcxfuNBNcMwyNqyiaXTX+Lis+ODfjObymo3H83ewAcz1rHzQAnVNR7iY8IY1jeNmy7qRusWcYFVA2eK/fnlTP7GxjW3PhSYDHa6cbvdlJaWEh0djdPpxDAMysvLAxfluu5ywzCoqamhoqICn89HSEgITqczcCG12WxUVFTg9XqJjo4OFCIqLS3FYrEECur4/X5KSkpwOp2Bsr9+v5/Kykqqq6vx+/3YbDZCQ0MJCws7bOGh6upqqqqq8HrNpaMOh4OIiIjAxL8ffrby8nI8Hg8Oh4PIyEgcDkegHdXV1VRWVuL3+7Hb7URERNQr6FNXDKlugqTT6SQqKqpeb0hVVRUVFRXExMTgdDqZPn06N998M3PnzqVx48Z4PB5cLlfgnACUlJTg9/tp0KBB4L3Kysrwer2Bx3w+H+Xl5dTU1GC321m9ejX3338/77//Ph07dlQPgcgRqGfgJAsLcfCHMV34w4+6/evoj9epyel01psMV3fh/jGLxUJoaOgh5YrDwr6fiFl3R/3D18TExNR7zGq1Ehsbe8hjkZGRh7z+SA7XjsNxOp2B5Yo/ZrVaCQ8Pr1fC+HDP+XH7fywsLKzeOahjt9uP+N6HO+aPz3lOTk6gSmFFRQXz5s2jQYMGh5w7EalPYeAk08Ve5MT59NNPmTdvHjExMeTm5lJQUMBdd90VWG4oIoenMCAiJ12HDh14+umnSUhIOK7jDB8+nEaNGlFUVITdbqdNmzZ06dIFlyu4hyNFfo7CgIicdC1atOCGG2447uOkpqYGllqKyNE7OWHAArUeP/vyKwkrr/3558sZpaCkGohSt62IyCniqMPAihUrTtib5uXmsGZbOas25pywY8rpw4KFBgkpfPfdd4GNekRE5NfRq1evn33OUS8t1F2ciIjI6edoLvNn1gJ2EREROWYKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcvaT3QARETk9hUREkZTRGWdIKIV7dlCwJxu/13uymyW/gMKAiIgcs4SWbRl0459IbNUOu8NJRVEBq6Z+wOqZk/B53Ce7eXKMFAZEROSYhEREcc4N99B+8AVYrDYAGjRpRsOUNA5szWRv5pqT3EI5VpozICIix6Rx6/YkpmdgsdqwWCxYLBYAXOERdB99Jc7QMCwWXV5OJ+oZEBGRY+JwhWJ3uuo9ZrFYwGqlVd9BVJUWk7t9MyU5e6kozKO8MA93VeURj2d3uohp3IyQ8EiqSospzd2Hz+v5RW2zOV00aNyUkIgo81g5v/xYwURhQEREjprN4SSqUWOcIWEAGIaBxWLBMAwMwyBz3mdYbTYyzjkfZ2g4AGV5ByjcnU3+rm3k79xG8f5d+DzmBToitiFdR/yeVn0HE94gltK8HDLnf8b6L6dSU1F2TG0Lj42n6wWX0uqsIUQ0iKMsP5fM+Z+x7stPqSk/tmMFG4UBERE5KjaHk+6jr6DrqMvZsWY5LXv2xxURieXg9zd8NZOF416mtrKc0OhYwmMaEBGfQONW7Uls3Z6255yPw+mioqiA/VvWs3/zehqnt6PPZTcQEh4JFgsJaW1o0qY9lcUFbFo4G8PvP7q22R10GDKKc264h5CIqMCxGrduT1VpEZnzPsfw+369k3OaUxgQEZGf5QyL4Ly7HiG1Rz8WjXuFjQtm0SApha4XXEJoVAzZ3y5jy5K5VBYXAODJ209Z3n7Ymkn2yiXYHU7sISHENW1OSudepHTqSefzfkd4gzgcIaGBeQcGEN4gnu5jrqS6rBR39ZGHF34oIrYhHYeNwRURhcVq/cGx4mh3zgVsW7GImvLSX+PUnBEshmEYR/VEi+XnnyQiImcUm91BQsu2DLvjz7jCwvn8n0+wZ/2qE3LshLQ2/P7pf5uTEX9wjTEMg9qqCioK83+yZ8BisWB3hRASHokzLDwQAn54LL/fT/aqpXz00E1UFheekHafbo7mMq+eAREROSxnaDht+g+jx5grKdq/h3lvv0hpzr4TdvzKkiLysreSmJ4ReKxu7sG6Lz5lyf/+jaem+kevshAaFUNsUgqxTZuTkNqK6MQkHK5QwhvEE9eseb15DAB52zfjqa09Ye0+EykMiIjIIUKjYuh35a2kdO7FxgWzWPPZJKrLSk7oe9gcDkIiIgHw+3xgsYBhkLNtE9/OmEj+zm1w8IIeFhNHk9btScroTONW7QiPiaWmsoKCXdvIWr6Agt3ZNExpyeBbHyA2KQUAw+8nd/tm1s+djucohxuClYYJRESkntimzRl+z5OExTRg/jsvsXP113hqf3yHfnwcIaGMHvs8Lbr35dtpHxIR24jYpGRytm9mw9zpHNi6AbvTRWr3s0jvfQ5JGZ1whoSRt3MbO9d8zd7MNZQX5FJZXISnpgoAuyuEphmdOf//HieqUSLrvpjK+jnTOLA1M6irIh7NZV5hQEREALDabKT26Me5dz1KWd4Bpv9tLGV5BzCMo5vR//PHt2O127FarVxw39NkDDiP+e+9xIpJ/8HmcGB3huAMC6dZh2606TeU5l16YbFa2b1uFZsXfUH2t8uoLivB5/Hg9x1hDwSLhYsfexmvp5YZz//54BLGo7rMnbE0Z0BERA7LYrUSGhlDSGQUPq8Hn8dDu3MuoPvoK9i6dC4L3v0nntqaE/VuxCYlkzFwOM279iY2KYWGzVuycur/2DjvcxJbtaNpRmdadOtLoxbp+Dwe9m1ex+cvPc72lYuPbRWAYeCKiKQ0e39Q9wYcK4UBEZEgY7U7aNG1D53OvZCGLVrhrqqgoqiA2KQUlk54i8x5M09gEDCX94184BlanTUEMHuavW434Q3iGP6nJwmNjDarFm7bxOoZH7F/83oqigsC8wWOVWhElJYRHiOFARGRINOweToj73+aRi1aBR7zG37WfzmNzYu+OMwM/uPT5uxhpPcdjLVu/b9hYHc6SetxNis//YCN82dRuHcnVSUnZulfSGQ01WUKA8dCO0mIiAQTi4VOw8bQsHk6FqvVXJtvsWC12oht2iIwE/9ESu7QlR/OOqubg+bzuMnZupE9G749YUHA7grB7nRSdYJXPpzpFAZERIKIxWKhYfOWhzwGEBYdQ1hM7Al9P6vNhiPULAj044lsnpoaqkqLTuj7ucIisNrs1JSXnNDjnukUBkREgohxcB1/3f/+4b+VxYVUFOWfsPeyO11kDBxOcsfuFO/fEygoVPd+7upKSnL3n7D3A3CFh2O12dQzcIw0Z0BEJJgYBuvmTKNN/2E0adMxUK2vpqKcTYu+oGDX9hPyNnani7YDz6Pflbfx9cR3yd+1je4jLyeuWQu8Hje52zcTEduQflfeysJxL1O0d+cJeV9nWAQWq+2EF0g60ykMiIgEmcLd2cx4/iE6DB1N4/R2RMQ3wmKxsn7ONLzu4y/ba7XZSe89kL6/v5G1s6aw8tPx+DxuDmxeT1TDRPw+L0X7dhPbNIUB197FsDse5stX/0rRvl3H/d7mMIFNqwmOlXGUMKs26Etf+tKXvs6EL4vFcIVFGBFxjYxGqa2N/5u82Og+5soTcGyLkdK5l3HH+DlG/2vvNJxh4Ud8rsViNeKS04wrnn/PuOntaUZ0QtJxv3+rvoOMP01dbtidrpN/jk+Rr6OhOQMiIsEosDNgHvk7s1g++T90HHYhccmpv/iQFouFpLaduOiRf5D19Xy+nvgu7qoj7wlgGH4Kd29n2t8epLK4gCtf/A+NW7XDYrX94ja4wiOoraw4qqp78j2FARGRIGf4/WTO/xx3TRXtBg7H7nQd8zEsVhvJnXoy5uEX2bJ0DvPf++dR1yuoLMrn4yfv4cDWTC74019J7d4Xm8NxzG0Ac85AbWUl5k2xHC2FARERobIon3WzP6Vl74E0/EExoqNhsVpp3qUXw25/iG3fLOSrt17EU111TMeorShj1r+eYNe6lQy49i5a9R2M1X7s09pcYRHUVlX80uKFQUthQERE8Pt8bPtmEWX5B+g28rKj7x2wWEhq05FBN97LrnXfsPi/r1JbWfGL2lBTVsKSD15n+8olDLjubjoMGXXMx3CFR1BbVY56Bo6NwoCIiABQVVLI2s+nkN57IEltOx3Va2KTkjn/nsfJ25HF0g/fpqq0+LjaUF1WwrKP3mbdl1MZdvuf6T7mymPaNdcZGm4OEygLHBOFARERCdj2zSKyVizg3Dsfxhka9pPPbdAkmYufeJWS/XuZ987fqTxBBYs8NdUsm/AWc/79HAOuu5t+V92GMzT8qF4bmECoNHBMFAZEROR7hsHS8f8mJDKabqOuwGI5/GWiUWprRv/5BUpz9vHFq3+lsqjghDdl7awpfPnq07QdcD5nXXEzYdENfvoFFguusHDcVeVo0sCxURgQEZF6ig/sYcn/3qDLiEtJaNnmkO8npLVh2B1/pqIgl1kvP0lZfs6v0xDDIHPBLBaOe5nmXfsw4Lq7CY2KOeLT7Q4ndmcI1eVlv057zmAKAyIicoiN82dRvH83XS64FEdIaODxBo2bMfjm+6kuK+Grt1+k7ATvLfBjfq+HrOULWPDuSzRt35UL/vQUIRFRh31u3Y6F1eWl6hk4RhbjKCszHMsEDhEROd1ZaNGtD8PveYLd363EarNRWVpM4/R2GH4fs/71JIV7sn+71litxKe05JInXqE0bz8znnvokB6JyPgELn78ZZZP/g+bFn2hQHDQ0Vzm1TMgIiKHYVBZXAhY6P37G+j5u2s554Z7SO7YjY0LZ5+wjYWOujV+P/k7tjL+vutwhUUw4v5naNiiFRbr95cxhysEu9OlnoFfQGFAREQOYW42dA5N2nTAarVitdmwWCyExcTRuu9gwmPjT0q7yvIOMPXp+/C6axl88300ad0BDvZc210hWO12aivKT0rbTmcKAyIicgir3U6Lrr3rPWaxWLBYLMQlpxLVMPEktQyK9u1i7ht/o6aijGF3/JmUTj0BcLhcGH4/Xs/x77wYbBQGRETkUIaBp7bmsN3tPq8Hv897Ehr1vaJ9u5j77+fI25nF6LHP0ebsYSS0zCAyPoGOQ8cQ1ajxSW3f6UYTCEVE5BAWi5V2g0dw6VOv1StN7Pf5+Obj/zL7lb/irvplZYdPJJvDyaCb/kS/K2/FMAzsrhB8bjeVxQV8+sx9ZC2bT7CXI9QEQhER+UUMw8+2FQtZOO4VCnZtp6Iwn+L9e8ic9xnLJr5zSgQBAJ/HTfaqZdhdIThDw7BarThCQohJTGLwTfcRndjkZDfxtHDsW0KJiEhQqCkvZeG4l9m6bB7xyalUlRSx67tvqKk4tYr6ZAw4Fwyj3soCA3OpYeP0dpTm7Dt5jTtNKAyIiMgReWtr2LN+FXvWrzrZTTkiwzjSTgTBPTxwLDRMICIip7WN8z8HDoaCg19ggDMXe+J67KE//XpRGBARkdPcrvWrmPfWC1SVFuP1VmJYK/A7d+Lq+hwXvHuAIc9DSMzJbuWpTasJRETktGdzOEjv35khj3Qnrm0VvqgvwJmDYYDhh0+vhE1TTnYrT46jucxrzoCIiJz2fB4P1b6VeBuuxBsXKEqIxWLOHGg5HDZ/YgYDOZTCgIiInN4sENcaWo2CiCPUGjJ8v22TTjcKAyIicvqxgD0EUgZCh6ugSXeoKoCaYnBG1n+qYcDmqeoV+CkKAyIiclqw2MwLfWRjaD3G/AqNhZ0LYOaNsO8bSOwCI94yewrcFeCtgTXvwK6FJ7nxpzhNIBQROQPYQiA6GRwhUFUIFTlnTte4KwpiWkCjjpA6BGJbQcV+2PEVbJ0BZXvqP3/gU9BqJKx5F3LWwP6V4AvivYs0gVBEJAhENoWO10CLQeaFs2QHbPgIts0CX83Jbt0vZDEDQLO+kNQLGqSBpwIOrDYv8rnfQW3poS+zOc3nb5gAK1/57Zt9ulIYEBE5jdlDoevN0OtucIQBFkjsDIldoXw/7F9xslt4bOyh0LS3ORmwcTezm3/vMtgyFYqyoGzfT/d4xLWGmOaQ9dlv1eIzg8KAiMhpxGIFLOa/EYmQfgG0+z04wr9fTmdgDhm0vwwOrDo1hgssNvNfw88hVYItNnPsP+NSyLgYIpNg/ypY9oIZZmrLzVBwNNWFk3qbQyTF2070JzizKQyIiJyKrGB3gSPUvFt2RkBsOiR0gvgMiG9tXkANA8Li67/UYsHsIehifq8q/+TNpHeEQ9M+5oXeGQ475sO2z6CmBEIbQMN20OZ30Hwg1JTC5k9h02RzqONY22x1mEMEe5aCz/NrfJozlyYQioicAuwhEBpnXrxD4827/tiWEJ0CYQ3NcrreaqjMgaJsKNwKhZvBaoNBz0JKf8weA4sZEDCgZCfsW2F2se9bCeU/08V+otmc0ONO6P+4GWzqbPoECjKhSS8z5ORnQvaX5oRAT+Uvf7/YdDj/dfj6Bcieg/YpOkgTCEVETkEWq3nRj04xx7ejm0N0M4hoYoYCvxfclVC+Fw58a17Ey/eZcwAq88D/g7teq9Mss9uw3cGegoOP7/sGvnkZ4tKh8x8g4/fmxTZrpnms30LDdtDxWrN3IzCEYUDG72B/c/j2DXM4oHgb+NzH/35xrcHwmnMLFASOjcKAiMgvYHNBkx6Q1NMc0946w7xrPxx7qDkbvmE7aNQe4ttCZBNzwl9VPpTugeJsc718+X6zC7221PzyVPOTFza/G9Z/aB4j42KzF+HAatj8sXnHbbGaXe8p55hd9R2uMrvhN0ww3/vXFNfKHAr4IYsF/H7I3wDr3j9x72V1mOe1ZKd5/uTYKAyIiBwjeyic9SB0u80MBfih1x9h9t3mzPewRpDYyZwNn9DZvCg6I8y7/fwNkLsOvvsv5K03L/h+jznG7ff8srF9dxlsnwW7FpgXf5/n4Lr6gyGiYBMUbTNDQJsLofvt5lLE1W/Dpo+hpujXmVNQW3bo+v66IYwf1wY4XqGxkNDRLC5UW3Zijx0MNGdAROQYtRgKl888OLP/B6qLoWwvOMPAWwulu8wLf+5ac118cfapMbPfGQmdroP2l4PfB+s/gO1fQEXuia1L4IqBUe+ZmwRZbd8/XlUA4/pB8fYT916NOsDg52Dpc7Bb1Qbr0ZwBEZFfQZvR5r8/vEcyDMBv3qFvnmqOg9cUn4zW/Tx3uVmQZ8un0Gq0uaa/zYWQPRd2zjOHF07EGH5tCSz4i9kjkj7cnBzo95oBqTLv+I9fx2I1Jw/63FC688QdN5goDIiIHKsjdJTWlMDuRXBg5W/aml+sbC+ses2c75AyAFKHQuowyPkWNn1q1ig43ol4+Rtgzp8gKsnsIdmzFPo+aA5TrHrtRHwKc75As35QtBXKD5yYYwYb688/RUREfmjrTPPfut7Xun8r88wlf6ebst2w4X/w1QPmCoTo5jDqXTjvFXM/gCOFn6PlLjMLAZXtMXtNvv67OccidegJaDzmEsbGXSHnO3NCpRw7hQERkWO0eyF8/aI5Uc1TZXZ/VxdDeII5Pm5z/fwxTjWG37xgb/scZtwAn99u3s1f8jGc+09zc6Bf+rkMw+zCtzrNORObpkDmRDj7L+Zxj1d8W7MOw4HVx3+sYKVhAhGRY+SpgkVPmpPumvYxlxZmzTBL4fa+1wwHGyacpjvlGWZxoz1LzN3+UgZA15vg4slmYaDMiQfnQ5RyTEMIPo95Bw9mIFj2glkXoPc9MP9RqC745U1Ov8CsWFh0GvbKnCoUBkREfgFfrTk/YPei7x+ryjcL7HS92ZzUtu59c8Lc6cpXawaAPUvNUNDmQhjyHORtMIPQnmXmJMGfZZjd93VhAMxJjEufhXOeNlc1rHn74P4Dx8hqhxaDzd6GU2GlxulKYUBE5ATx1sDGyWa3eO97zYlta989vQMBmD0d2z6H3YvNQkupQ6HPfdD+gFncKPtLcFf89DF8PwoDGGaoWPc+dLvFrIWw4yuOecJiXBtzU6bsucf6qeSHFAZERE4gbzVsnGSu1x/wFGDAmnfPjLtWdznsnG8OH8S0MCsaDnzKLHf87b9hx9zD390bRv1hgjp+D2yZbtYIGPikuaSx4hhXA6QOMasvFm7+5Z9LNIFQROSE89Wam/EsfMys9tf+ikMvhKctwwwFeetg0ePw4XmQlwlDXoCLp5hLE11R329ZDAcLDhlm+eUfnwdvFSx7zhxiOe9Vc5fDo2WxQYsh5qZEp3vvy8mmMCAi8iswfOZugd+8bHaDt77QHDY4k/i95nLBeWNh8kVQsBEGPQMj3jHnF0QlQ3gjaHOxGRJSBkKvew+uIPjBcsXaMvjyXohqag6vOMKO7v3jWpkbPG37/Nf4dMFF5YhFRH5FzgizwE77K82qf5kTOXN31LNAQiezomHTXgf3JvBAm4vA7jS/b/jN8f3p1x26UVL6BXDWWFjxT9gy7efv9jtcA11vhAkXmL0VcngqRywicpK5Kw6uKvDBWQ+Zs9/X/48zMxAYZpXB/EyzPHDn6835BHbXD0o3WyF1sBkY1r5b/+XZc83XdbkJCrPMoYgjsTqgSVezSuJpuYTzFKNhAhGRX5m7wtylcMW/oN/D0O4yzui/vn6POWSQ+505ofKH6kJBk26Hvs5XCxs+NDd46n2vudHRkUQ2MYcJdi4wex/k+JzBv44iIqcOX425O+Dyl8wLXevRZi/BGcliTiIMizerDkL90s0Wm3mhD40Fy4/OQWUerHwVGqSa9RqONM+iQRpghaIszsxelt/YmfqrKCJyyvF7zD0AHKHQ624wvJD1mTmOfqYIi4fG3aDN76BhW7MyoCvCDD6GYV63i7ZCTHMY8S5smmzWLyjf9/15yFsPy/8Bg56Gwi1mdccfniOr3axeWL7f3A5Zjp/CgIjIb8hTCd+NA5vD3L3PYjUny53uQmIgeQC0HmnWINi7AuY+YJYt7niNWbbZ7oSCLeaQSWWuuY9Du8vM+QPZX5rBqDLXPN7WGWZgOPsR87F9y79/L1c0JHQ25xTUlPz2n/VMpNUEIiIngSsKOt8Ana6FhU/Alk9Pdot+GasDmp9jfo7o5mbhoa3ToGAreA5WJXSEm0sALXbzwl5VCPjNIYTYNLOiYZuLzIJF68fD1unmSgRnpFmuOLKJuQ1y6S7zeA1awvmvmHMwts8+WZ/89HE0l3mFARGRk8QeAl1vhS5/gHl/Nu+MT5fxb4sNGraDfn+GxM7mRXn121CcfeikwZ9jc0JonNmD0PFqKNsLy/8OuxaZQeD8V2HfN+ZOkZ4qs2ZBnz+ZOysWb/tVPt4ZRWFAROQUZ3NBz7ug9RhY9ATsmHdqly52hEN8a+h0PaQNMy/Sy/8BOWs5/iBjMQsP9bgTWo2E/A2w4mUIawhnPWiGgT3LzP/tCIdZd2hZ4dFQGBAROQ24os1AkDzALM37Szbs+bU5wiGxC7Q8H5r1hZKdZr2EnfN+hQmQVmjcBTpcbW6MVLjFnJgY3RxKd0JSL8hZDUv+Bvu+NjdBkiNTGBAROU2ExkOPO8yNdxY9adbbPxXYXNCkJ7QZA427Qv5GyJppbmtcW/brvrfVDkm9zV6CludDbMuDyzEt5sqE/EyYebNZeOhUC0+nElUgFBE5TVQXmPsYGAYMfg6wmDPsTxqLuTSw223mBTlnNcx/1CwmVF302zTB74U9S8xSw83OMicr/vC+tGEGZFxsFjfyq3fguCgMiIicImqK4evnzeWG5zxt1iXYuYDf9K7XYoOIBOhxt3mhzfnO3EQoZ833qwN+azaXucdDvXZazNPSsK25K+IZVKrhpFAYEBE5hXhrzEBgtZmli30e2Lvs1y9MZHOZ6/pbjzbX/lcVwhd/hO1fmqHkZKopObip0cGiRRbL9xUNi7af2hMuTxcKAyIipxhPlTlkYHWYmxstfcYco/81WO3mEsEWQ6HFEPCUm6sDNn9qFkg6FZTugqzPzR0RQ2J+UMlwO2ycpL0JTgRNIBQROUVFJELvP5kz6uf92ewhOFEsVohrA21/B80HQnmOWfZ31yKoOMApNyEvrKG5/DL9AgiLM3c13DgZds03e1PkyLSaQETkNBcaZxb2adYPvvw/2Pv1CThmPHS72by4lu+HNe+YM/Ir807tfRKsDghvZA5puMugulhDBEdDYUBE5AxgD4XBfzMr/c25H/av5Jjv3C02swRyxqVmTYOaUljxT3PFQm3ZsR9PTh8KAyIiZwhXNAx8ypzkt+hJOPAtR3UBt9jMqn4pA81Sv45wWPc+bPgQakt/5UbLKUFhQETkDBKZZA4ZRDaBRU+Za/9/SkwLaDHYLNhjc5qVDTdOgfK9v0175dSgMCAicoaJamouOYxtCfMeAq/bLBPsq4GdC6EyByIam7sAthoBfp+5HfDO+VCSbRbykeCiMCAicgYKjYchz0FKf/D7zbkAhg8qcmHbLEg52xwe+O6/5m6CFTknv1aAnDwKAyIiZ6jGPeH6xeYSwQDDnGH/7b9h1RtQdYqvDpDfhvYmEBE5Q7UZDRj1a/UbmAWLclabwwUiR8v6808REZFTjd0FHKbD1mIx1+OLHAuFARGR09C2LzBr9R/sAa77t7oIctedtGbJaUphQETkNLRnCXzzqjkx0OcxVwnUlsGyF6B428lunZxuNIFQROQ0ZQ+BpmdB6mBzrkDmRCjahqoJSj1aTSAiIhLkjuYyr2ECERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuTsR/vEvXv3/prtEBERkZPEYhiGcbIbISIiIiePhglERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkHu/wG8Tf4gsYfHYwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFeCAYAAAAYIxzjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYY0lEQVR4nO3dd3xV9f3H8dfd2QlJIIFAAglhhL2HCMhSkaVV6x51z/60DqxaV9U6WltnnaVKRYbKUlCQDYIgIBBWIGzI3vOu8/vjkKsRUBCUcd/PxyMP2pt7z/3ek5jzPt/x+VoMwzAQERGRoGU92Q0QERGRk0thQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgNnMJ/PxyeffMJ//vMfampqjvt4brebv//974wZM4Z9+/Yd9jllZWXcfPPNdOvWjbCwMO6++258Pt8hz6uqquKpp57iwQcfpKCggIcffpilS5cedxsBXn/9dUaNGnXMr6uoqKB169bMmjXrhLTjZPD7/WRlZXHrrbfSsmVL2rZtyyOPPEJ+fn7gOV6vlwULFnDeeefRvHlzevToweTJk3G73YHnTJ8+ndGjR5OSkkLDhg359ttvj7oNRUVFPPXUU6xfv/6Efa6pU6eSnp7O7t27D/v98vJy3nzzTQYPHkxsbCyxsbEn7L1/S8uXL2fs2LF4vd5jet3HH3/MW2+9Ve9n+EtVV1fz/PPPM2jQIOLi4hg8eDBZWVnHfVw5tSkMnMH8fj+LFy9m1qxZJ+SPxNHw+Xzk5eXRr18/UlJSsFgsh31eWVkZmZmZtG/fHrvdzrvvvktmZubPHvtoCmbecsstfPzxx8fc9iVLlmC32+nRo8cxv/ZUUVJSwksvvcTOnTt55plnePDBB/nyyy95/fXXqa6uxjAMdu7cyUMPPURKSgqvvPIKw4cPZ+zYscyfPz9wnN27dxMdHU3//v2JiYk5pjaUl5fz/vvvk52dfYI/3ZG53W7y8/NJT0+nV69e2Gy23+y9T6SNGzfy9ttvHzZA/5RFixYxc+bMYw4RP2QYBj6fD4/Hw759+2jZsiWDBg36xceT04v9ZDdAfj2LFi1i6dKllJeX88QTT+B0OrnrrrvIyspi7dq1FBUVERkZycCBA+nevXvgdQcOHGDmzJns378fm81GSkoKl1xyCVZr/exoGAZFRUVMmTKFJk2aMGTIEKKjoxk/fjxWq5UdO3Yctl2GYZCfn09BQQHJycm89957VFRU8Omnn7Jjxw7atm3LmDFj+OKLLyguLqZz584sWLCA6OhorrvuOjIzM1mxYgW5ubm4XC569epF//79sdvtgc+9YcMG7rrrLsDsKUhKSiI+Pp5FixZhsVgYOnQoXbp0qfeZZs6cSc+ePYmPj2fhwoVs2bKFs846izlz5lBRUUGfPn0466yzyMrK4osvvsDtdjNw4EB69OiBw+EAoLi4mAULFrB+/XpsNhvdunXj7LPPJjw8HJ/Px8SJE4mMjGTkyJGAeZc+ffp0AC666CIMw2Dz5s3MmTOHoqIiQkJCyMjIYMSIEVitVvx+P9999x2LFi2isLAwcN7T0tIA2LVrFytWrOCxxx5jxIgR+P1+DMPg/fff55JLLqFt27bMnDkTv9/P2LFjadGiBeeeey7r16/no48+YsCAAYSEhHD99ddz++23M3/+/J8NaT/k9/t58cUXKSws5IMPPmD58uV06tSJiy++mO3bt7N48WL27duHzWajc+fOnHPOOYSHh2MYBrW1tcyePZvMzEw8Hg8NGzbkvPPOC3y2H6quruaLL75g7969XH311cTExPCnP/0Jl8vF3//+d9asWXPUbQbIzc1l2bJlbNmyherqalJSUhg6dChNmzbFYrGQm5vLxx9/TJcuXdi9ezebNm2iUaNGnHfeeaSmpmIYBuvXr2fRokV0796dNWvWkJOTQ0ZGBsOHDycyMhIwA+2KFStYsmQJ1dXVtGjRgpEjR9KgQQO2bt3KvHnzqKqq4tFHH8VmszF48GCGDBnCihUrWLlyJYWFhYSEhNC3b1/69OmD3W5n1apVLFu2jJKSEh577DFiYmK44IIL6Ny5M3l5ecycOZNdu3YRFRXFgAED6Ny5M3a7neLiYqZNm0ZaWholJSWsXbuWjIwMLrzwQp599lmcTicffPAB48ePP6ZzKacnhYEzmGEYgS+/34/f76e6upqXX36Z6OhoIiIiWL58OVOmTOGll16iT58+VFZWct9997F9+3Z69uyJz+djwYIFnH/++URFRdU7fk1NDc888wybN29m7Nix2O12rFYrERERVFVV/WS7Vq5cSWRkJK1atQp0Qf+wnQCfffYZc+fO5ayzziIuLo6UlBSqqqr48MMPOXDgAPHx8ezdu5eJEyfyyCOPcPHFFwOwbNkyPv7440AY+O9//4vD4SAmJoaUlBTWr1/Pp59+yueff05cXBxgDhEsXryYRx55BDC7az/44AOmTJlCeno6e/fu5eOPP+aPf/wjU6dOpVmzZmzZsoVZs2bx3//+lxYtWgS6qj/66CM6deqE1+tl0qRJ3H777Vx33XVYrVamTp1KYmJiIAz4fD5mz54NmGHgwIED3HrrrTgcDtq3b09VVRUrV67k/PPPx2Kx8NVXX/HMM8/QsGFDEhIS+Prrr/nqq6947rnnaN68OVu3biUsLIz09HSsVisWi4VOnTpRVVXF3r17adu2LYsWLSI9PZ2UlBQA7HY7Q4cO5aOPPiI3N5eUlBTCw8N/8e9d3c+v7ucJ5sX7888/Z9myZSQlJVFYWMikSZO45ZZbuPXWW7FarYwbN45///vfdO3alYiICDZu3Eh4ePghYcDtdjN16lTeeOMNbrjhBlwuF1arldDQ0F/c5uXLlzN58mRiYmIwDIM5c+awYsUKnnjiCRITEykoKOCdd94hPDyc1NRUwsPDmTFjBtu2beORRx6hQYMGbNy4kWeeeYbu3buTkJCA2+1mwoQJlJaWcvPNNwMwZ84cxo4dS5MmTUhMTGTy5MnMmzePN954o16vl9/vx2KxBB57/vnniYyMJDo6muzsbD766CP+/ve/c8455wT+G697XV0ALCgo4N577+W7776jV69erFy5kokTJ/L3v/+dfv36UVpaypQpUygtLSUmJobU1FTKy8uxWq2EhYUdVy+DnIYMOWNVVlYad955p3HRRRcZubm5RmVlpeHxeIz9+/cbpaWlRnl5uVFQUGAMHTrUuPnmmw2/32+sWrXKaNq0qfHVV18Z5eXlged4vV6jtrbWePHFF43Ro0cb27dvN2677TajV69exjfffGN4vd5D3nvkyJHG3Xfffcj33G63cdVVVxmPPfaY4fP5jNzcXCMhIcF45ZVXjMrKSqOmpsbw+XzGNddcYzRt2tSYNGmSUVZWZlRWVhper9fIy8szSkpKjIqKCqOwsNC44447jIsuusgoKyszDMMw/vrXvxpdunQJvF/Pnj2NxMREY/369UZ5ebmxfv16Iy0tzRg3blzgOfPnzzdSU1ONoqIiwzAM429/+5sRERFhTJgwwSgrKzM2b95snH/++UZ8fLyxdOlSo7y83Fi+fLnRq1cvY9y4cYbX6zVWrlxptGvXznjzzTeN4uJio6CgwHjmmWeMXr16GRs2bDDcbrdxySWXGHfddVfgfWtqaoybbrrJuOmmmwzDMIxJkyYZiYmJxvbt242KigqjrKzMKCgoMPx+v7Fv3z7jiiuuMB577DEjJyfHKC8vN7799ltj8ODBxhtvvGFUVVUZL7zwgnH++ecb+/btC7zHxo0bjb59+xpTpkwx/H6/0aNHD+O+++4LfN/v9xuff/650bVrV2PNmjX1flZz5841unTpYqxateqofuf8fr+xefNmIy0tzZg0aZJRWVlp1NbWGl6v1ygsLDSKioqMiooKo6ioyPjXv/5lDB061Ni+fbvh9/uNc845x7jzzjuN0tJSo6KiwiguLjYqKioMwzCMTz/91GjZsqWRnZ1tTJkyxejcubMxbtw4o6amxvD7/fXa8PzzzxsJCQlH1d46paWlRn5+fuB3fvbs2Ua3bt2MJUuWGH6/39iwYYPRqlUr49prrzV27txplJeXG1OnTjV69uxprFixwvD7/caECROMyMhI44UXXjCKi4uN4uJi45577jFGjRplFBYWGm632+jWrZtx4YUXGnl5eUZZWZkxc+ZMo1GjRsb48eMNr9drvPnmm0ZsbKxRXFxsVFZWGm632zAMw9i7d2/gd76goMC4/PLLjTFjxhh+v9/weDzG7bffbgwfPtwoLCw0qqqqDI/HY7z++utGYmKisXz5cqOsrMzYs2ePMXLkSGPIkCGG1+s1duzYYVxwwQVG+/btjS1bthgVFRVGdXV14Jx4PB7jvffeMwYNGmRs3br1mM6nnH40Z+AM5nA4sNvt2Gw2QkJCCAsLw2azERoaSk5ODps2bSIzM5PmzZuTlZVFdXU1UVFRREZGMnv2bHbv3k1FRQWRkZH1utNLS0v54x//yMqVK3nvvffo3r37EcdojcOM8VdUVPDtt9/Sr18/rFYrTqcTAKfTSVhYGC6XKzDXoFmzZgwbNozIyEjCwsKwWq2EhISQn5/P5s2b2bBhA02bNiUnJ4ecnJwjnov+/fvTrl07IiIiaNeuHQkJCWzdujXQxoULF9KjR496vR/JyckMHjyYyMhIUlNTSU5Opm3btnTs2JGIiAhatmxJYmIi27dvx+v1snXrVqKioujbty/R0dHExsYyaNAgqqurjzjh8sfi4+Ox2WzMnj2bffv2UVNTExiz37t3L1lZWcTFxbFlyxZWr15NcXExUVFRLF++HLfbTW1tLTabrd7Po+5n5/V6A93xdee8jsvlCowXHw+LxUJISAgWiyXw83Q6nYGfW0lJCdu2bSMzM5Pw8HCKiooCP7fExEQ2btzI+vXrKSoqwuFwEBYWFji2YRhMnjyZBx98kLvuuourrroKp9N5xHkpxyI0NBSPx8Pu3btZv3495eXlOJ1OsrKyAuP3DoeDIUOGkJycTHh4OC1atCAsLIzS0tLAcZKTk+nXrx/R0dFERUVx9tlnU1xcTFFREZmZmezZs4drr72W+Ph4IiMjGT58OKmpqXz11VfYbLbAUFdoaChhYWGB4aeoqCjy8vLYunUrGzduJDExMdCjZrfb6/13HhoaisViYcWKFfTs2ZMuXboQGRlJUlISo0aNYu3atRQXFwfaPHLkSJo1a0Z4eDghISHHfS7l9HRShgkMw8Dtdh/zJBk5Nl6vF6/Xi8/no6amBrvdTlFRES+88AIrV67EYrFgs9nYt28fjRs3prS0lKSkJO666y4mTZrEwoULSU5OZsiQIfzud7/D4XDg8XjYsGFDYFwzOTmZ6urqQ967uroan8+H1+ulurq6Xpj46quvcDqddO3a9Sfbb7FYCAsLC1ygDcOgoqKCf/7zn8ybNw/DMAKfyeFw/OQkyYSEhMBFw2KxEBERQXl5OWCGk9WrVzNixIh6F5a4uLjARdXhcOBwOIiPjw98lrrHKisr8fl8FBYWEh0dTXh4eOA4dX9gKysrjzj50TCMwPP79evHLbfcwpQpU/joo49o0aIFo0ePZvTo0VRVVXHgwAHef//9Qyb1derUCavVSmRkJG63u965qJt4WReyIiIiqKysrPf68vJyHA7Hr3YxqKqqYvz48UyZMgW3243D4aCiooLq6upAAHnwwQd59tlneeCBB4iKiqJHjx5ce+21gWECn8/HG2+8QVpaGiNHjjxhkwT9fj/Lli3j1VdfJTc3F7vdjtfrZdu2bfV+bmFhYYSFhQV+VjabDYvFUi9AhYSEEBkZGXhOREQEHo8Ht9tNYWEhAE2aNKn3e5aUlERBQcER21c3KfSrr74KXPj3799fL4T8WE1NDRUVFfXey2KxkJiYiNVqJT8/PzCs0qhRo9N2wqWcOL95GDAMg+LiIhbPm4Wn9sjjynL8fD4fO7Ztoqi4hC+mf0RoaAir1m5gwv/Gc9HIoaSlpeJwOvhi7mJ27d7LlzMmEh4eRnyUlQuHD2D79u1s3LSFxx97lAN7ttMmvTmb1n9Lw9ho4tKSePutN6mtKiWjVfND7s5q3W5yD+zF8Fbz+afj64WB98ZPJrlZEyIiIgB+8s7ObrfX+/6WLVuYMGECd999NwMHDiQ0NJTPPvuMcePG/eRKg596jy1btlBSUkLfvn3rPe/HEyaPdBzDMAIX4qqqKmprawPfq62txePxBO6WXS5XvQu1YRiUlJTQoEGDwOd96KGHuOyyy9i6dSufffYZY8eOpW3btjidTmJjY7nvvvvo06dPvTbUXahatGhBSUkJhYWFNGvWDMMwKC8vx+PxEB0dDUBqaip79uzB4/HgcDgCkxajoqJo2LDhEc/TsfjxecrNzeWdd97hwgsvZPTo0URERPDdd9/x5z//OfD8jh078sYbb7BlyxY2bdrEv/71Lw4cOMDbb78NmBffsWPH8sYbb/Daa6/xxz/+MXDejkdJSQkffPABISEhPP/88yQkJLB//37+/Oc/1/udslgsP9sLcbjnGAfH9OsmERYVFdX7flFREU2aNDni65csWcI777zDK6+8Qrt27QgJCeGdd97h9ddfP2I76oLdj9+rpKQEv99PVFRUIMT8+L8xCU4npWegqDCfPRsX0i3NgcupOYy/Fp/PT6OQEir9xTS1bSDaGcLXeWtoGOPgsgHRRIVXUl3j4eVN64mJdNHcuQkHNpx2G2nNLfRr3oD8ru25/8XdlOxaRot2lcTZDpAQbXDvVR1Zuiabd99+kzuv7MuQXqn13rsWL+HWcqJtkOrKxHrwj01ltZv1a1cx6oLhVFdX43Q6A13WPzXpsE5xcTFOp5PevXvTpk0bPB4PixYtOq7zlJmZSWJiIo0aNfrFfxRtNhupqamBrtxWrVrh8/lYt24dhmEEjt2kSZNA+IiJiSE/P58lS5YEJhRWVlYSHh5Oeno66enpxMXFMWPGDPbs2UPLli1JSkoiMzOTkSNHBrrQvV4vHo8Hq9VKWloafr+fzMxMOnToEJgAGh8fH5gweN555/Hcc8+RmZlJ586dcbvdzJgxg65duxIfH39c5xLMC5rVaq0XeuqGMLp37067du3weDy8//77gQtSXa9PgwYN6N27Nz179mTFihV888039Y47ZMgQkpKSeOSRR4iKiuKWW245rsmOYN5Fl5SU0Lt3b7p06YLT6WTr1q3s3LnzuI77Y23atCEyMpIZM2YwePBg7HY769evZ8uWLYwePRowL+IWi4XKykpcLhcAOTk5WCwWzj33XMLDwykrK2PDhg31eiQcDke9WiIOh4O2bdvy7rvvkpOTQ7NmzaiurmbBggU0a9aMhg0bsn///hP6+eT0dlKuxH6fn/AQaNciiogw18loQlDw+/0M6tGMx1Zls2DFFtKaxjL8rBZ8+Plaxn26gg4tE5i1dBuRYTYiQuy0T41mZeZ+XvzvMvp0bEpCXDjfbNhPWUUNl5/bhk4tG7A4PozsCAddWsczsHsSTruNybNW0ysjnrO6JFPr9vK/z9axL6+c3MIy3G43ny/YQHJiFKPPacM3mUVYMEhp2igw0zwkJIRWrVrx0UcfBS6EPXv2POxnatWqFTU1Nfz1r3+lX79+LF++nK1btwbGWo9VVVUVGzZsoEOHDoGeil8qIyODgQMH8tBDD7F69Wpqa2uZNGkSl112Ga1bt8ZmszFq1Cguv/xyHnjgAVq1asUnn3xSr8v//fffZ8aMGfTv35/w8HBmz55NWFgYnTt3Ji4ujiuuuIInnniCbdu20adPH8rLy1m8eDFXX301l1xyCSkpKYwcOZK//e1v7Nixg6qqKiZNmsSf/vQnmjdvDsCwYcMYN24c999/P8OHD2fx4sUUFhZyww03BM7jhg0bmDZtGtnZ2eTm5vLee+8xZ84c+vXrR79+/X7yPLhcLuLj45kwYQLl5eW0bt2a5s2b06hRI/7xj3+wceNGsrKymDdvXr05Aeeeey5dunShdevWFBQUMGvWLK655pp6x7ZarQwZMoTKykqeeOIJ4uLiuOyyy7BYLCxZsoSvv/6aJUuWUFlZydNPP01kZCQjRowgNTX1x80MiI2NpU2bNrz99tvU1tbi8/n46quv6vXwnAiRkZE8+OCDPProo1RXV5OamsrEiRNp2rQpV199NQAtW7YkIiKChx9+mL59+9KpUye6d++O3W7n2muv5eyzz2bJkiVkZ2fXC65paWlMmTKFV155hZYtW9K1a1euvPJKpk2bxoUXXsgll1zCpk2bmDt3Li+99FJgLsKRfPzxx2zevJnVq1ezc+dO3njjDeLi4rjttttO24JO8tNO6gRC8w5CX7/Wl91u4/x+6Vw5vAMLV+3i1Ynf0Cwxmn89cB6FpTXMWZ7NmHPa8MB1Z9E2NR6H3UaHlo0Y0iuVNZtzmDxnEwDvPD6SbhlNsNksNG4YQXpyLC6njcgwF3+8shfD+qbxyVebKC6rxuvzs/DbXcxaso2ocBc+v8HMRVtZsnYP1W4vi77dRfeMxjh/0CNksVh4+eWXSUlJ4b333mPGjBlUVlaSmppKq1at6j0vKSmJ1157DavVysyZM2nTpg0vvfQSGRkZgTHQJk2a0K5du8DrMjIyAnfFdVq1akVycjI5OTlkZ2fTtWvXeuPljRs3pk2bNvVCRkpKCi1btgwMH9hsNlq2bElycjIWi4W4uDj+8pe/cOWVV7J48WJWr17NPffcw/333x+YR9ClSxeeeuopdu/ezaJFi7j//vu5+uqrAxfqAQMG0L59exYsWMDUqVNp0aIFkydPpmHDhlitVq644gr+/e9/43Q6mTRpEsuWLaNXr1707t0bu91OWFgYd9xxBzfccAMLFy7ku+++47HHHuOGG24ILDWMj4/njTfeICMjg2nTphEeHs7//vc/OnbsGPisu3fvZtq0aaxfv56kpCRWrlzJ9OnT2bJly8/+dx0XF8djjz0GwFtvvcXs2bNJTEzk2WefJTExkWnTpuFwOHjrrbcCk9sAbrzxRoqKivjkk09Ys2YN999/P48++igADRo0oEOHDjidTux2O6NGjeL//u//mDx5MtnZ2Xi9XjIzM5k2bRqFhYW0bduWadOm8eWXX9arvng4LpeLO+64g8svv5y5c+eyceNGbr31Vq666qrAXJPQ0FAyMjLqDUuEhobSpk2bwPBLXFxcvd9DMCf+1T1msVi4/vrr+ec//0lBQQFz585l6NChTJ06NXDcnj178sgjj7B9+3ZeeeWVQJ2GN998E5/Px4wZM+jevTv33nsvvXv3DrzPpZdeyvXXX8/nn3/OW2+9xZYtW0hJSWHixIn06dOHzz//nPLycl577TVGjRoVGLJKT0+vN5+mzooVK5g+fTp79uwhLi6OJUuWMG3aNCoqKn725y+nJ4vxUwOtvwLDMMjasoml01/i4rPjiQxXz0CwcLt9PPivObROiac2PINrbn3ohIz5Ho8NGzbwn//8h5tuuok2bdqc1LaIiJwsp9yA/YyFW/hscRYP33g2TROizpiJLYZhMOfrbOYsz+aK4e3p0qbxSW1P5vY8xs9cx1ldkhneLx2r9dc/zxYr3HZJDwxg9tEXtftVpaSkcPvtt5OUlHSym3LaqK2tPeJeFw6HI3AXfCqprKw8YhEdl8ulJXUS9E65MLBmcw7jpq3ltku60zQh6udfcAqprHLz5JsLWbs1l+n/uqze5EgDWL8tl4lfbKBfl2a/SRiYuXAr//jga+6+shdjzql/17svr5xJX24kItTJ+We1BH79P94Ou41WzePYn1/+q7/X0YqMjAx0U8vR+fTTT3nmmWcO+70hQ4bwwgsvnHJL1e69916WL19+yIoTl8vFddddxx133HGSWiZyajjlwsDNF3djzDltSE8+/Sap+PwG2ftKWJ+Vi/9Hf3QswDUjOnH+WekkNfptLj6FpVV8tzWXwpJDZ+n36diUma9cTmxU6G/SKyBnjr59+/L8888f9nt169hPNTfddBMXXnjhIY/bbLbAfA2RYHbKhYHaWi8lFTX4/ObFtLCkiq27CklpEkN4iIOd+0sor3Jjt1lJjAsnpUlMoEty+54i9ueXk5HakLiYsHrHdXt8bN9TRGW1h4y0hoSFOAKPH8gvJ7eoklq3F4fdRkJcOEmNonA6vr+78fr85BRUcKCgnOpaLzaLhRCXndjoUFIax1Dr9rIuK5f84krcHh+LV+/GdfD1GWkNiY8Jo8btpayylka++kuhat1e9uSUkVdcieE3aBAVSlJCJPvyyiktr6Fn+yRsNvMPbEWVm7yiSopKq6lxe7EAEeEukhOjiIkMCZyLjdn5bNlZiMfrY8vOQhau2glAbHQoHdIT8Hj9lFXWEhZ66KzigpIq9uaUUVHtxmKB6IgQmjeJITzUUa/7d2XmPqwWC62bx5NbWEFeUSU+v0FMZAgpjaM1H+QMlZycTHJy8sluxjH54UZcInKoUy4M/HfGdzzzzmJWfHAjHVsnsOy7Pdz85Exuubgb5ZW1rNiwj6LSakoramiX2ohHb+nP2V3NmeKfLc7i0Vfn8/htA7jn6vpFWXIKKrjt6c8Iczl46y8jCUt0UFHlZvqCzXwwcz079hVjsVjw+fw0bxLDH8Z0YcygNoS47OYM+VU7ee2jlazflovdZsV28O4npUk0E5+/hKLSal6ZsII1mw5QVePh/56bHbhwvnT/uQzpk8qkLzL51/9W8MpD5zP6YLd9dY2HT+dt5t+TV7E7p5ToiBDiY0IZ0K05S9bsZsP2PLJm3EV4qLkWf/qCLbw/fS05RZV4fX5q3T5cDhsDezTnT9f0oUWSOSHvP1PX8NHsTKqqPfzvs3V8tigLLHB2l2T+/egIVm3cz21/ncn1o7vw0A39sNnMTVHWbM7hrSnfsmDVTiyAzzAID3Fw3lnp3Hl5D5IafT90c/1fpuH1+rnr8p58sWw7+/LKKSiuJDLcxQ0XduG60Z1pEPXLN485lfl8PrZt28bXX39NcXExAwcOpEuXLie7WSIiv8gpFwaO5P0Z33Fu3zQevbk/oS4H323J4ck3F/LwK/P47NUriAx3MWpga/7x/tdMnrORm37XNVDDwO832LSjgO+25PLwTWfTMDYMr8/P7KXbePS1+XTLaMIzdw2mYWwY+cVVfDBzHY++Np/E+AgGdE9hf145r09cya4DJTx5+zk0TYjCMKCkrJrNOwuw2Sw0ig3nT1f3paC4inVbc3nj0QtwOczTm55y+CEPwzBYtXE/D7/6Fc0bx/DcH4eQlBDF/rxyJn2ZycrM/YSG1P8ROexWLhzSlpTGMYSFOHB7fKzcsI8X3/+aqhoPbz06Arvdxs0XdyMsxME/x6/gutGdGTmgNQAxkUeeKLVzXwl/fWsRC1bt5JGb+9O1bWO8Xj/TF2zhtYnfUFJezT/uO5fQkO97E/bklDF76TYuGtyWlsmxlJTX8taUVfz9/a9p37IRQ3qnnnKTyU6E3Nxc/va3v5GXl0dycvLPllY+FWzatIlXX331kKp0Tz31FGlpaYGf09atW/nwww/ZuXMnaWlp/P73vyc9PT3w/cLCQqZPn86yZcuwWq0MHDiQkSNHBuo0GIZBdnY2EydOJCsri9jYWH73u9/Rt2/f3/YDi8hRO23CQKPYcB67dSCJ8eYfnF4dkvh63V7mLs9m3dZczuqSTHJiNEN6pzJz0VaWrt3DuX1bAmYX/ydfbSQhNpwe7ZrgdNioqHLzjw++Jjkxmkdv7k+7tEZYrRZ8fj9NGkZyy1MzeWvKt5zdLZmismp2HShlcM9URp/ThlCXPbC96NDaNEKc5v9v0yKe2OgwHA4bPdsnEer6/qL54zkEde16b+oaPB4/t17and8NycBus+Lz+bHbraxYvw/fwcI8dUYMaIXdZsVus1J3xD6dmrJpRwHzvtnBll2FtEtrRHpyHKlNG2C3W0lt2oDeHZv+5Pk1DIP5q3Yyf+VOrh3Zkdsu7U6oyyxV271dY1Zm7uezRVlcPDSDwT+oNhge6uDCQW25akRHHHYbfr+By2HjirEfs3rTAc7umkKI67T5NTtqOTk5bNiwgUceeYQBAwYcsn1u3US1UykI5efnM23aNC666CKaNv3+9+GHFfx27NjBPffcQ0VFBf3792fx4sWsXbuWl156iWbNmlFWVsY///lPpk2bxqBBg/B4PDz++OPs37+fO++8E6fTSW5uLrfccgsej4c+ffqwadMmbrvtNv7xj38waNCgU+qciIjptPkrfX6/dOJivv+D63La6ZDeiC+WbgvMTrdaLfxhTGcmzNrAzEVbGdIrFZvNSklZNVO+3MiQPml0apUAwIH8Cr7ZsI/rRnUmMtzFvryywLEbRIUQFx3K/FU7MAyIjwklNakBH32xgWaJUZzXryXRESGEhTgIC3H84j9ufr/BVyt20DI5lp7tk7Db6orZWOnatjFtW8SzYXtevdcYBmzKLmDW0iy27S6iqtqD3zDYmF1AVbWHHftKaJfW6JjbUuP2sim7gNKKGq4f04WQgyshLBYL0REhXD2iIw/+cy6rMvfXCwMNG4RzdtdkHHZzfoTVaiExPoLE+AgOFFTg8frOuDBQUVHBnj17AgVYysvLiYyMpKSkBJ/PF9iEx+12BzZyqqioCJQMjoiIICIiAqvVimEYlJWZlRpDQkKoqKjA7/cTGRkZ2FCobkOlqKioQPEiwzDw+/2UlZUFyjiHhoYSExPzkxP4LBYLV1xxBd27dw/83tY93+/38/HHH5OXl8fUqVNJTExk/fr13HHHHcyfP58rr7yS7du388knn/CXv/yFiy66CJ/Px/jx43nrrbcYNGgQnTp1YvLkyZSUlPDuu+/Svn173G43l112GW+++eYhO0PWqa6upqioiAYNGgTOXUhICA0aNAisTCgqKsLn8xEeHk5paSl+v5+IiAiior5fguz1eiktLaW6ujqw62FVVRXR0dH1dsMUkfpOm7/SiXHhh/yHHBHqxMCcBFinR7sk2rdsyLeZB9i2p4jWzeOZMncjfsOgf9dkYqJCMQyDfXll+HwGk77MZPbSbYd9z7o7+6RGUdxxWQ+8Pj+vT1rFc/9ZSmJ8BH07NWP0Oa3p3y0lcDE8FgaQV1RJh/QEon402S4yzElEWP1tZiur3bwxaRXPvbeExPhI4mPCcDnNndNqar34/QbVtb9sC9pat4/yylrCQ51E/2AiIpgXkOTEKDxeHyXl9deXu5y2Q+YF2GwWQpx2PF4fv21Jq9/GnDlzeOCBB9i7dy/33Xcf4eHhzJ8/n2effZa1a9eSkZHBmjVriIqKYvz48XzwwQfMmDGDwsJCDMOgW7du3HvvvbRu3Rqv18s//vEP5s2bx1lnncWKFSvIzc1l0KBBXHPNNcycOZP58+eTn5/PpZdeyn333Re4mC5dupQ33ngjsIVys2bNGDt2LL179/7Ji97KlSvJycmhQYMGtG7dmkaNGmG1WikqKmLdunUMHjyY2NhYbDYbbdu2pVOnTsydO5eLL76Y3NxcXC4XaWlpgV0b27dvT0FBAdnZ2XTs2JHVq1fTuHFjMjIysNlsOJ1OBg8ezLhx48jKyqJbt26HPad/+MMfuO+++1i8eDG7d+8mLi6OJ554gv79+2OxWLjvvvvYvn075513Hl9++SV5eXn06NGD5557jkaNzPLWS5cu5W9/+xt79+6lcePGdOjQgTlz5vDCCy8wbNiwX+13QuR0d9qEAYvFclQr4W02K9eN7sxfXl/Aysz9NEuMZvxn62kcH8nQPmmB54WHOrFaLQzpncqVwzsc9ljWg+WSLRYLA7o3p1OrRDZm57N1VyGbsvOZtWQbMxdt5X/PXvSz3fCH/UyY3ewej49aT/3tnN0eX72QA7A+K4/3p39Hh/QEnr9nKOnJsUSEmZ9j7L++4r1PV8MvvPjabVZcThtuj49at7fetroApRW12KzWw97lB9vNVv/+/Xn00Ud56qmn+Mtf/hIokwuwbt06unXrxpNPPhkYOkhOTuaOO+4gMTGRvXv38s477/D+++/z0EMPBYrdZGVl0a9fPx5//HF27drFk08+SVZWFkOHDuXZZ59l9erVvPnmm/Tt25fzzjuPPXv2BC78N998M4Zh8OGHHzJ27FjGjx9Ps2bNDmm3zWajdevWLFy4EK/Xy4EDB2jXrh2PP/44zZo1o7S0lLy8PPr37x8ow+xyuWjSpAlz5szB7/fjcrnwer2BokOGYVBVVUVJSQn79+/H6/USERHBvn37qKysJCYmBsMwKCoqoqioiLy8vEPaVaempoZFixZx4403EhERwTvvvMP999/PJ598EhjW2LJlC7169eKxxx7jwIEDPP7440yfPp0bb7yR3bt388ILLxATE8O9996Lx+Phww8/JDs7+8T98EXOUKdNGDhaFgsM6tmCF8YtY9naPYS57GzZWcjvBrclren3pW9TmkSTEBtOqMvOwO7ND1mKeDgxUSH07dyMPp2aUuv2ktw4msdeX8Dni7Po3bGpuSeAxez+P7q2WujUKpG9eWVk7ymmScPv6w/s3F/CrgP19ys/kF9OQUkV143uRJe2iYEVDZVVbpau3X3IXbjdZgXDOKr2hIbYaZYYjcUCC1buJD0lLhC+DMNg1pJthIU4SE+OO6rPdiaLi4sjPT2dkJAQWrZsSefOnamurgYgPT2dq6++mrZt2wa680eMGIHVasXr9ZKenk5OTg6zZs2qt3Vt8+bNufzyy+nQoQMVFRV8+OGHOJ1Ofv/739O0aVPS09OZMGECWVlZnHfeeUyfPp2SkhLuuusu4uLMn0lCQgLDhw9nxYoVhw0DGRkZvPTSS0RHR2OxWFizZg2PPfYYb7/9Nk888QRut5vq6moiIyPrDTWEh4dTWVmJYRg0bdqUqKgoJk6cSMOGDXG73bz99tuUlZVRVlaG3+/n3HPP5bPPPmP8+PGMGjWKzZs389FHH1FbWxs4T4fjdDq58MILufDCC83eqORk+vfvz4IFC7jqqqsAc6vmBx98kLi4OLxeL9OnT2fx4sXceOONZGZmsm/fPl577TX69OmDYRgnZFdLkWBw6lUHOU4Wi4XEuAiG9Ulj4be7eGn8ctweH1cMbx9Yq2+xWIiJDOHGi7rwxbLt/HvyKkrKa/D6/Hh9fjxeH1t3FbJk9S4Mw2Bvbhnzv9kR2IinrgZCaUUtbo8v0J0f4rITEeakuKyaopKDz/X5D6l6Vsdus3LtqE5k7y1m4pcbyC82lwsWllQxZc5Gtu4qqPf8qAgX4WFO5q7YQVW1B6/PT2W1m1cmfMP6rYfecSXGRVDj9nEgvyLQlh9PSKxjs1o5q3Mz0pPjeO4/S9mcnR84F5/M3cTsZdtIbRrDkN5H3v1NICkpifj4+ECvis/nY+HChVx00UW0a9eObt268cQTT1BQUFBvV7yEhITANsdWq5WEhAQaN25MXFwcFosFu91OZGRkYP7A6tWryc7OZvDgwXTu3JnOnTszYsQIqqqqjnj3XbfZT3JyMs2aNWP48OEMHDiQGTNm4Pf7sVqt2Gy2Q8r2+nw+bDZzOKpFixbcc889LF68mKFDhzJ69GgqKysDvSMWi4X+/ftz3XXX8eKLL3L22Wdz1113MWbMGGw220/uLulwOOjcuXPg3LVs2ZKYmBi2bft+GC81NTWwn4XdbqdRo0YUFJj/nRQWFhIaGlrvPNZt1ysiP+2M6xkAiAx3MaxPGh/OWs/G7fl0aZNI/271d61zOmzc/vue5BdX8fKH3/CfaWtp0SSGEJeDfXll5BZWcN2ozvTtnExOQQUPvfwV+/PKSU+JIyLMyf78cnYfKKFT60SuG90ZAJvVHE74asUOBtwwjo7pCTgcNu65qjc9Oxxa+95igZEDWrFifRfGz1zPvBU7SEuOZX9uOdERLtqlNaK47Ps7qR7tkhjWJ42PZm+g86Vv0qZ5HHnFlXi8fkaf04pZS+rPfejRPonUpg349+RVLF6zm9ioELq0SWTsDWcf9rz16tiUe6/uzdPvLGbgjf+lY3oC1bUetu0uolFsOK+MPZ+GDX6+ByWY1e2qV2ft2rU88MADdOrUieeff54GDRqwcOFCvvzyy3ohse5CXMdisWCz2Q55rG7bZ8MwaNWqFa+++mq94Zxjqahnt9tJSEigpKQEMO+6o6Ojyc3NDQQAv99PYWEh8fHxWK1W7HY7F110EUOGDCE7O5vo6GhKS0u5/vrradq0KU6nE5fLxcMPP8yNN97IgQMHaN68OQsWLOCzzz475gvzj4er6oZjDndO6npifvx6Efl5p1wYaJsaz0WD2xJ9cD1844aRjOjfyiym86Ox6bTkWEYNbE1y4+h6j1utFjq3SeCWi7uxc18JFw5ue8iEKovFnPX+/D1DGX52Oou+3cX+/HIcNhsZaQ3p3CqBgT2aY7FAq+ZxPHn7QFZs2M+enFIqq9307pDErZd0Y0T/VjSK/X5y46XD2hHitDN/5U6KSqvwH+wZsACtUuIYfnZ6YDjAYrEQGx3Gk3ecQ/eMJiz7bg8er48BXVPo2rYxT7+zmLBQR6BccFSEi2fuHkT3jMas2LCPqmoPvTokcfGwdmzdWYjdbqu3n0NEmJPxz1zIxC8y2XWgBLfHF+jVSIgN5/yz0mmbGh84r1aLhevHdKF9y0ZMm7+FXQdKsNmsjBrQmkuHtaN5Uky98zisTxp2q7VepUaAqHAXg3u1ID0lDrv9jOt8OiZ5eXk4HA7uvvtuOnbsSE1NDcuXL8ftdh/Xcbt06cLChQtp2rQpqalmb03dCoMjXQA9Hg82my0wBFBRUcGWLVsCWzDHxsbSokULvvnmm8Bs/Pz8fLZu3Urnzp2x2+2Bn390dDRdunTB6/Xy4Ycf4nA4DtneuUmTJjRp0oTKykpmzJhBq1ataNnSXO7rdrtxu92EhoYGAo/b7Wb16tWBlQ5ZWVmUlpYGXvNz4uLiqK6uJjc3l7S0NAzDYM+ePT85T0FETKdcGLhkaDsuGfr9XvTdM5rQ/bEmh33u8H7pDO+XftjvpTaN5YV7f372cGS4i5EDWgeK8hxOVLiLYX1bMqzvz/9RCnHZufTcdlx6brtDvjdyYGtGDqz/Pl6fH7vVwjUjO/KHC80KdtW1HsbPXMfG7Hxu+V23wJJDMEsDXz+mC9ePqV/tLiO1IWMG1d+MyGq10Kl1Ip1aJx7Slk6tE3n1z8MP+xl6tE+iR/uf38XvH/ede9jHmyVG89w9Q3/29cEgMjISj8fD3LlzqaioYNOmTXzyySfHvZHPmDFjmDBhAn/5y1+47LLLiI2NpbCwkB07djBq1KjD9g7MnDmT0tJSWrRogcViYfHixSxbtoz77rsPi8VCWFgYgwcP5uGHH+a9996jV69eLFy4kP379/N///d/OBwOKisrA2EmNjaWzMxMxo0bx4gRIwJbQJeXlzN16tRAyFiwYAHffPMNzzzzDPHx8YC5ouGzzz7jhhtuIC3NnNjr8XiYNm0acXFxREZG8vbbb9O8eXMGDhx4VOckIyODpKQkXnnllcBSzkmTJlFSUqIlhSI/45QLA8GmrKKWF/+7jF37S2jRtAEWYOvuQr7+bi/Nm8Rw8bCMemFATi/t27fnoosuYsKECfzvf/8jIyOD/v37s2rVquM6brNmzXjppZd4/fXXeeyxx/D7/URFRdGzZ89DutLrFBYW8uGHH1JUVITf7yc2NpY777yTSy65JHCxHDhwIHfffTfvvfce//3vf4mNjeWWW26ha9eugUmQa9as4eOPP6a6upro6GhGjhzJNddcE9j9sba2lpkzZ7J9+3b8fj+JiYk899xzDB06NPA+W7ZsYcKECYwYMSIQBkJCQhg4cCDvvfceu3btomHDhrz44ouBSZY/Jzk5mQcffJBnn32We+65h2bNmtGuXTtSUlJwOA7dg0NEvmcxfuNBNcMwyNqyiaXTX+Lis+ODfjObymo3H83ewAcz1rHzQAnVNR7iY8IY1jeNmy7qRusWcYFVA2eK/fnlTP7GxjW3PhSYDHa6cbvdlJaWEh0djdPpxDAMysvLAxfluu5ywzCoqamhoqICn89HSEgITqczcCG12WxUVFTg9XqJjo4OFCIqLS3FYrEECur4/X5KSkpwOp2Bsr9+v5/Kykqqq6vx+/3YbDZCQ0MJCws7bOGh6upqqqqq8HrNpaMOh4OIiIjAxL8ffrby8nI8Hg8Oh4PIyEgcDkegHdXV1VRWVuL3+7Hb7URERNQr6FNXDKlugqTT6SQqKqpeb0hVVRUVFRXExMTgdDqZPn06N998M3PnzqVx48Z4PB5cLlfgnACUlJTg9/tp0KBB4L3Kysrwer2Bx3w+H+Xl5dTU1GC321m9ejX3338/77//Ph07dlQPgcgRqGfgJAsLcfCHMV34w4+6/evoj9epyel01psMV3fh/jGLxUJoaOgh5YrDwr6fiFl3R/3D18TExNR7zGq1Ehsbe8hjkZGRh7z+SA7XjsNxOp2B5Yo/ZrVaCQ8Pr1fC+HDP+XH7fywsLKzeOahjt9uP+N6HO+aPz3lOTk6gSmFFRQXz5s2jQYMGh5w7EalPYeAk08Ve5MT59NNPmTdvHjExMeTm5lJQUMBdd90VWG4oIoenMCAiJ12HDh14+umnSUhIOK7jDB8+nEaNGlFUVITdbqdNmzZ06dIFlyu4hyNFfo7CgIicdC1atOCGG2447uOkpqYGllqKyNE7OWHAArUeP/vyKwkrr/3558sZpaCkGohSt62IyCniqMPAihUrTtib5uXmsGZbOas25pywY8rpw4KFBgkpfPfdd4GNekRE5NfRq1evn33OUS8t1F2ciIjI6edoLvNn1gJ2EREROWYKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcvaT3QARETk9hUREkZTRGWdIKIV7dlCwJxu/13uymyW/gMKAiIgcs4SWbRl0459IbNUOu8NJRVEBq6Z+wOqZk/B53Ce7eXKMFAZEROSYhEREcc4N99B+8AVYrDYAGjRpRsOUNA5szWRv5pqT3EI5VpozICIix6Rx6/YkpmdgsdqwWCxYLBYAXOERdB99Jc7QMCwWXV5OJ+oZEBGRY+JwhWJ3uuo9ZrFYwGqlVd9BVJUWk7t9MyU5e6kozKO8MA93VeURj2d3uohp3IyQ8EiqSospzd2Hz+v5RW2zOV00aNyUkIgo81g5v/xYwURhQEREjprN4SSqUWOcIWEAGIaBxWLBMAwMwyBz3mdYbTYyzjkfZ2g4AGV5ByjcnU3+rm3k79xG8f5d+DzmBToitiFdR/yeVn0HE94gltK8HDLnf8b6L6dSU1F2TG0Lj42n6wWX0uqsIUQ0iKMsP5fM+Z+x7stPqSk/tmMFG4UBERE5KjaHk+6jr6DrqMvZsWY5LXv2xxURieXg9zd8NZOF416mtrKc0OhYwmMaEBGfQONW7Uls3Z6255yPw+mioqiA/VvWs3/zehqnt6PPZTcQEh4JFgsJaW1o0qY9lcUFbFo4G8PvP7q22R10GDKKc264h5CIqMCxGrduT1VpEZnzPsfw+369k3OaUxgQEZGf5QyL4Ly7HiG1Rz8WjXuFjQtm0SApha4XXEJoVAzZ3y5jy5K5VBYXAODJ209Z3n7Ymkn2yiXYHU7sISHENW1OSudepHTqSefzfkd4gzgcIaGBeQcGEN4gnu5jrqS6rBR39ZGHF34oIrYhHYeNwRURhcVq/cGx4mh3zgVsW7GImvLSX+PUnBEshmEYR/VEi+XnnyQiImcUm91BQsu2DLvjz7jCwvn8n0+wZ/2qE3LshLQ2/P7pf5uTEX9wjTEMg9qqCioK83+yZ8BisWB3hRASHokzLDwQAn54LL/fT/aqpXz00E1UFheekHafbo7mMq+eAREROSxnaDht+g+jx5grKdq/h3lvv0hpzr4TdvzKkiLysreSmJ4ReKxu7sG6Lz5lyf/+jaem+kevshAaFUNsUgqxTZuTkNqK6MQkHK5QwhvEE9eseb15DAB52zfjqa09Ye0+EykMiIjIIUKjYuh35a2kdO7FxgWzWPPZJKrLSk7oe9gcDkIiIgHw+3xgsYBhkLNtE9/OmEj+zm1w8IIeFhNHk9btScroTONW7QiPiaWmsoKCXdvIWr6Agt3ZNExpyeBbHyA2KQUAw+8nd/tm1s+djucohxuClYYJRESkntimzRl+z5OExTRg/jsvsXP113hqf3yHfnwcIaGMHvs8Lbr35dtpHxIR24jYpGRytm9mw9zpHNi6AbvTRWr3s0jvfQ5JGZ1whoSRt3MbO9d8zd7MNZQX5FJZXISnpgoAuyuEphmdOf//HieqUSLrvpjK+jnTOLA1M6irIh7NZV5hQEREALDabKT26Me5dz1KWd4Bpv9tLGV5BzCMo5vR//PHt2O127FarVxw39NkDDiP+e+9xIpJ/8HmcGB3huAMC6dZh2606TeU5l16YbFa2b1uFZsXfUH2t8uoLivB5/Hg9x1hDwSLhYsfexmvp5YZz//54BLGo7rMnbE0Z0BERA7LYrUSGhlDSGQUPq8Hn8dDu3MuoPvoK9i6dC4L3v0nntqaE/VuxCYlkzFwOM279iY2KYWGzVuycur/2DjvcxJbtaNpRmdadOtLoxbp+Dwe9m1ex+cvPc72lYuPbRWAYeCKiKQ0e39Q9wYcK4UBEZEgY7U7aNG1D53OvZCGLVrhrqqgoqiA2KQUlk54i8x5M09gEDCX94184BlanTUEMHuavW434Q3iGP6nJwmNjDarFm7bxOoZH7F/83oqigsC8wWOVWhElJYRHiOFARGRINOweToj73+aRi1aBR7zG37WfzmNzYu+OMwM/uPT5uxhpPcdjLVu/b9hYHc6SetxNis//YCN82dRuHcnVSUnZulfSGQ01WUKA8dCO0mIiAQTi4VOw8bQsHk6FqvVXJtvsWC12oht2iIwE/9ESu7QlR/OOqubg+bzuMnZupE9G749YUHA7grB7nRSdYJXPpzpFAZERIKIxWKhYfOWhzwGEBYdQ1hM7Al9P6vNhiPULAj044lsnpoaqkqLTuj7ucIisNrs1JSXnNDjnukUBkREgohxcB1/3f/+4b+VxYVUFOWfsPeyO11kDBxOcsfuFO/fEygoVPd+7upKSnL3n7D3A3CFh2O12dQzcIw0Z0BEJJgYBuvmTKNN/2E0adMxUK2vpqKcTYu+oGDX9hPyNnani7YDz6Pflbfx9cR3yd+1je4jLyeuWQu8Hje52zcTEduQflfeysJxL1O0d+cJeV9nWAQWq+2EF0g60ykMiIgEmcLd2cx4/iE6DB1N4/R2RMQ3wmKxsn7ONLzu4y/ba7XZSe89kL6/v5G1s6aw8tPx+DxuDmxeT1TDRPw+L0X7dhPbNIUB197FsDse5stX/0rRvl3H/d7mMIFNqwmOlXGUMKs26Etf+tKXvs6EL4vFcIVFGBFxjYxGqa2N/5u82Og+5soTcGyLkdK5l3HH+DlG/2vvNJxh4Ud8rsViNeKS04wrnn/PuOntaUZ0QtJxv3+rvoOMP01dbtidrpN/jk+Rr6OhOQMiIsEosDNgHvk7s1g++T90HHYhccmpv/iQFouFpLaduOiRf5D19Xy+nvgu7qoj7wlgGH4Kd29n2t8epLK4gCtf/A+NW7XDYrX94ja4wiOoraw4qqp78j2FARGRIGf4/WTO/xx3TRXtBg7H7nQd8zEsVhvJnXoy5uEX2bJ0DvPf++dR1yuoLMrn4yfv4cDWTC74019J7d4Xm8NxzG0Ac85AbWUl5k2xHC2FARERobIon3WzP6Vl74E0/EExoqNhsVpp3qUXw25/iG3fLOSrt17EU111TMeorShj1r+eYNe6lQy49i5a9R2M1X7s09pcYRHUVlX80uKFQUthQERE8Pt8bPtmEWX5B+g28rKj7x2wWEhq05FBN97LrnXfsPi/r1JbWfGL2lBTVsKSD15n+8olDLjubjoMGXXMx3CFR1BbVY56Bo6NwoCIiABQVVLI2s+nkN57IEltOx3Va2KTkjn/nsfJ25HF0g/fpqq0+LjaUF1WwrKP3mbdl1MZdvuf6T7mymPaNdcZGm4OEygLHBOFARERCdj2zSKyVizg3Dsfxhka9pPPbdAkmYufeJWS/XuZ987fqTxBBYs8NdUsm/AWc/79HAOuu5t+V92GMzT8qF4bmECoNHBMFAZEROR7hsHS8f8mJDKabqOuwGI5/GWiUWprRv/5BUpz9vHFq3+lsqjghDdl7awpfPnq07QdcD5nXXEzYdENfvoFFguusHDcVeVo0sCxURgQEZF6ig/sYcn/3qDLiEtJaNnmkO8npLVh2B1/pqIgl1kvP0lZfs6v0xDDIHPBLBaOe5nmXfsw4Lq7CY2KOeLT7Q4ndmcI1eVlv057zmAKAyIicoiN82dRvH83XS64FEdIaODxBo2bMfjm+6kuK+Grt1+k7ATvLfBjfq+HrOULWPDuSzRt35UL/vQUIRFRh31u3Y6F1eWl6hk4RhbjKCszHMsEDhEROd1ZaNGtD8PveYLd363EarNRWVpM4/R2GH4fs/71JIV7sn+71litxKe05JInXqE0bz8znnvokB6JyPgELn78ZZZP/g+bFn2hQHDQ0Vzm1TMgIiKHYVBZXAhY6P37G+j5u2s554Z7SO7YjY0LZ5+wjYWOujV+P/k7tjL+vutwhUUw4v5naNiiFRbr95cxhysEu9OlnoFfQGFAREQOYW42dA5N2nTAarVitdmwWCyExcTRuu9gwmPjT0q7yvIOMPXp+/C6axl88300ad0BDvZc210hWO12aivKT0rbTmcKAyIicgir3U6Lrr3rPWaxWLBYLMQlpxLVMPEktQyK9u1i7ht/o6aijGF3/JmUTj0BcLhcGH4/Xs/x77wYbBQGRETkUIaBp7bmsN3tPq8Hv897Ehr1vaJ9u5j77+fI25nF6LHP0ebsYSS0zCAyPoGOQ8cQ1ajxSW3f6UYTCEVE5BAWi5V2g0dw6VOv1StN7Pf5+Obj/zL7lb/irvplZYdPJJvDyaCb/kS/K2/FMAzsrhB8bjeVxQV8+sx9ZC2bT7CXI9QEQhER+UUMw8+2FQtZOO4VCnZtp6Iwn+L9e8ic9xnLJr5zSgQBAJ/HTfaqZdhdIThDw7BarThCQohJTGLwTfcRndjkZDfxtHDsW0KJiEhQqCkvZeG4l9m6bB7xyalUlRSx67tvqKk4tYr6ZAw4Fwyj3soCA3OpYeP0dpTm7Dt5jTtNKAyIiMgReWtr2LN+FXvWrzrZTTkiwzjSTgTBPTxwLDRMICIip7WN8z8HDoaCg19ggDMXe+J67KE//XpRGBARkdPcrvWrmPfWC1SVFuP1VmJYK/A7d+Lq+hwXvHuAIc9DSMzJbuWpTasJRETktGdzOEjv35khj3Qnrm0VvqgvwJmDYYDhh0+vhE1TTnYrT46jucxrzoCIiJz2fB4P1b6VeBuuxBsXKEqIxWLOHGg5HDZ/YgYDOZTCgIiInN4sENcaWo2CiCPUGjJ8v22TTjcKAyIicvqxgD0EUgZCh6ugSXeoKoCaYnBG1n+qYcDmqeoV+CkKAyIiclqw2MwLfWRjaD3G/AqNhZ0LYOaNsO8bSOwCI94yewrcFeCtgTXvwK6FJ7nxpzhNIBQROQPYQiA6GRwhUFUIFTlnTte4KwpiWkCjjpA6BGJbQcV+2PEVbJ0BZXvqP3/gU9BqJKx5F3LWwP6V4AvivYs0gVBEJAhENoWO10CLQeaFs2QHbPgIts0CX83Jbt0vZDEDQLO+kNQLGqSBpwIOrDYv8rnfQW3poS+zOc3nb5gAK1/57Zt9ulIYEBE5jdlDoevN0OtucIQBFkjsDIldoXw/7F9xslt4bOyh0LS3ORmwcTezm3/vMtgyFYqyoGzfT/d4xLWGmOaQ9dlv1eIzg8KAiMhpxGIFLOa/EYmQfgG0+z04wr9fTmdgDhm0vwwOrDo1hgssNvNfw88hVYItNnPsP+NSyLgYIpNg/ypY9oIZZmrLzVBwNNWFk3qbQyTF2070JzizKQyIiJyKrGB3gSPUvFt2RkBsOiR0gvgMiG9tXkANA8Li67/UYsHsIehifq8q/+TNpHeEQ9M+5oXeGQ475sO2z6CmBEIbQMN20OZ30Hwg1JTC5k9h02RzqONY22x1mEMEe5aCz/NrfJozlyYQioicAuwhEBpnXrxD4827/tiWEJ0CYQ3NcrreaqjMgaJsKNwKhZvBaoNBz0JKf8weA4sZEDCgZCfsW2F2se9bCeU/08V+otmc0ONO6P+4GWzqbPoECjKhSS8z5ORnQvaX5oRAT+Uvf7/YdDj/dfj6Bcieg/YpOkgTCEVETkEWq3nRj04xx7ejm0N0M4hoYoYCvxfclVC+Fw58a17Ey/eZcwAq88D/g7teq9Mss9uw3cGegoOP7/sGvnkZ4tKh8x8g4/fmxTZrpnms30LDdtDxWrN3IzCEYUDG72B/c/j2DXM4oHgb+NzH/35xrcHwmnMLFASOjcKAiMgvYHNBkx6Q1NMc0946w7xrPxx7qDkbvmE7aNQe4ttCZBNzwl9VPpTugeJsc718+X6zC7221PzyVPOTFza/G9Z/aB4j42KzF+HAatj8sXnHbbGaXe8p55hd9R2uMrvhN0ww3/vXFNfKHAr4IYsF/H7I3wDr3j9x72V1mOe1ZKd5/uTYKAyIiBwjeyic9SB0u80MBfih1x9h9t3mzPewRpDYyZwNn9DZvCg6I8y7/fwNkLsOvvsv5K03L/h+jznG7ff8srF9dxlsnwW7FpgXf5/n4Lr6gyGiYBMUbTNDQJsLofvt5lLE1W/Dpo+hpujXmVNQW3bo+v66IYwf1wY4XqGxkNDRLC5UW3Zijx0MNGdAROQYtRgKl888OLP/B6qLoWwvOMPAWwulu8wLf+5ac118cfapMbPfGQmdroP2l4PfB+s/gO1fQEXuia1L4IqBUe+ZmwRZbd8/XlUA4/pB8fYT916NOsDg52Dpc7Bb1Qbr0ZwBEZFfQZvR5r8/vEcyDMBv3qFvnmqOg9cUn4zW/Tx3uVmQZ8un0Gq0uaa/zYWQPRd2zjOHF07EGH5tCSz4i9kjkj7cnBzo95oBqTLv+I9fx2I1Jw/63FC688QdN5goDIiIHKsjdJTWlMDuRXBg5W/aml+sbC+ses2c75AyAFKHQuowyPkWNn1q1ig43ol4+Rtgzp8gKsnsIdmzFPo+aA5TrHrtRHwKc75As35QtBXKD5yYYwYb688/RUREfmjrTPPfut7Xun8r88wlf6ebst2w4X/w1QPmCoTo5jDqXTjvFXM/gCOFn6PlLjMLAZXtMXtNvv67OccidegJaDzmEsbGXSHnO3NCpRw7hQERkWO0eyF8/aI5Uc1TZXZ/VxdDeII5Pm5z/fwxTjWG37xgb/scZtwAn99u3s1f8jGc+09zc6Bf+rkMw+zCtzrNORObpkDmRDj7L+Zxj1d8W7MOw4HVx3+sYKVhAhGRY+SpgkVPmpPumvYxlxZmzTBL4fa+1wwHGyacpjvlGWZxoz1LzN3+UgZA15vg4slmYaDMiQfnQ5RyTEMIPo95Bw9mIFj2glkXoPc9MP9RqC745U1Ov8CsWFh0GvbKnCoUBkREfgFfrTk/YPei7x+ryjcL7HS92ZzUtu59c8Lc6cpXawaAPUvNUNDmQhjyHORtMIPQnmXmJMGfZZjd93VhAMxJjEufhXOeNlc1rHn74P4Dx8hqhxaDzd6GU2GlxulKYUBE5ATx1sDGyWa3eO97zYlta989vQMBmD0d2z6H3YvNQkupQ6HPfdD+gFncKPtLcFf89DF8PwoDGGaoWPc+dLvFrIWw4yuOecJiXBtzU6bsucf6qeSHFAZERE4gbzVsnGSu1x/wFGDAmnfPjLtWdznsnG8OH8S0MCsaDnzKLHf87b9hx9zD390bRv1hgjp+D2yZbtYIGPikuaSx4hhXA6QOMasvFm7+5Z9LNIFQROSE89Wam/EsfMys9tf+ikMvhKctwwwFeetg0ePw4XmQlwlDXoCLp5hLE11R329ZDAcLDhlm+eUfnwdvFSx7zhxiOe9Vc5fDo2WxQYsh5qZEp3vvy8mmMCAi8iswfOZugd+8bHaDt77QHDY4k/i95nLBeWNh8kVQsBEGPQMj3jHnF0QlQ3gjaHOxGRJSBkKvew+uIPjBcsXaMvjyXohqag6vOMKO7v3jWpkbPG37/Nf4dMFF5YhFRH5FzgizwE77K82qf5kTOXN31LNAQiezomHTXgf3JvBAm4vA7jS/b/jN8f3p1x26UVL6BXDWWFjxT9gy7efv9jtcA11vhAkXmL0VcngqRywicpK5Kw6uKvDBWQ+Zs9/X/48zMxAYZpXB/EyzPHDn6835BHbXD0o3WyF1sBkY1r5b/+XZc83XdbkJCrPMoYgjsTqgSVezSuJpuYTzFKNhAhGRX5m7wtylcMW/oN/D0O4yzui/vn6POWSQ+505ofKH6kJBk26Hvs5XCxs+NDd46n2vudHRkUQ2MYcJdi4wex/k+JzBv44iIqcOX425O+Dyl8wLXevRZi/BGcliTiIMizerDkL90s0Wm3mhD40Fy4/OQWUerHwVGqSa9RqONM+iQRpghaIszsxelt/YmfqrKCJyyvF7zD0AHKHQ624wvJD1mTmOfqYIi4fG3aDN76BhW7MyoCvCDD6GYV63i7ZCTHMY8S5smmzWLyjf9/15yFsPy/8Bg56Gwi1mdccfniOr3axeWL7f3A5Zjp/CgIjIb8hTCd+NA5vD3L3PYjUny53uQmIgeQC0HmnWINi7AuY+YJYt7niNWbbZ7oSCLeaQSWWuuY9Du8vM+QPZX5rBqDLXPN7WGWZgOPsR87F9y79/L1c0JHQ25xTUlPz2n/VMpNUEIiIngSsKOt8Ana6FhU/Alk9Pdot+GasDmp9jfo7o5mbhoa3ToGAreA5WJXSEm0sALXbzwl5VCPjNIYTYNLOiYZuLzIJF68fD1unmSgRnpFmuOLKJuQ1y6S7zeA1awvmvmHMwts8+WZ/89HE0l3mFARGRk8QeAl1vhS5/gHl/Nu+MT5fxb4sNGraDfn+GxM7mRXn121CcfeikwZ9jc0JonNmD0PFqKNsLy/8OuxaZQeD8V2HfN+ZOkZ4qs2ZBnz+ZOysWb/tVPt4ZRWFAROQUZ3NBz7ug9RhY9ATsmHdqly52hEN8a+h0PaQNMy/Sy/8BOWs5/iBjMQsP9bgTWo2E/A2w4mUIawhnPWiGgT3LzP/tCIdZd2hZ4dFQGBAROQ24os1AkDzALM37Szbs+bU5wiGxC7Q8H5r1hZKdZr2EnfN+hQmQVmjcBTpcbW6MVLjFnJgY3RxKd0JSL8hZDUv+Bvu+NjdBkiNTGBAROU2ExkOPO8yNdxY9adbbPxXYXNCkJ7QZA427Qv5GyJppbmtcW/brvrfVDkm9zV6CludDbMuDyzEt5sqE/EyYebNZeOhUC0+nElUgFBE5TVQXmPsYGAYMfg6wmDPsTxqLuTSw223mBTlnNcx/1CwmVF302zTB74U9S8xSw83OMicr/vC+tGEGZFxsFjfyq3fguCgMiIicImqK4evnzeWG5zxt1iXYuYDf9K7XYoOIBOhxt3mhzfnO3EQoZ833qwN+azaXucdDvXZazNPSsK25K+IZVKrhpFAYEBE5hXhrzEBgtZmli30e2Lvs1y9MZHOZ6/pbjzbX/lcVwhd/hO1fmqHkZKopObip0cGiRRbL9xUNi7af2hMuTxcKAyIipxhPlTlkYHWYmxstfcYco/81WO3mEsEWQ6HFEPCUm6sDNn9qFkg6FZTugqzPzR0RQ2J+UMlwO2ycpL0JTgRNIBQROUVFJELvP5kz6uf92ewhOFEsVohrA21/B80HQnmOWfZ31yKoOMApNyEvrKG5/DL9AgiLM3c13DgZds03e1PkyLSaQETkNBcaZxb2adYPvvw/2Pv1CThmPHS72by4lu+HNe+YM/Ir807tfRKsDghvZA5puMugulhDBEdDYUBE5AxgD4XBfzMr/c25H/av5Jjv3C02swRyxqVmTYOaUljxT3PFQm3ZsR9PTh8KAyIiZwhXNAx8ypzkt+hJOPAtR3UBt9jMqn4pA81Sv45wWPc+bPgQakt/5UbLKUFhQETkDBKZZA4ZRDaBRU+Za/9/SkwLaDHYLNhjc5qVDTdOgfK9v0175dSgMCAicoaJamouOYxtCfMeAq/bLBPsq4GdC6EyByIam7sAthoBfp+5HfDO+VCSbRbykeCiMCAicgYKjYchz0FKf/D7zbkAhg8qcmHbLEg52xwe+O6/5m6CFTknv1aAnDwKAyIiZ6jGPeH6xeYSwQDDnGH/7b9h1RtQdYqvDpDfhvYmEBE5Q7UZDRj1a/UbmAWLclabwwUiR8v6808REZFTjd0FHKbD1mIx1+OLHAuFARGR09C2LzBr9R/sAa77t7oIctedtGbJaUphQETkNLRnCXzzqjkx0OcxVwnUlsGyF6B428lunZxuNIFQROQ0ZQ+BpmdB6mBzrkDmRCjahqoJSj1aTSAiIhLkjuYyr2ECERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuTsR/vEvXv3/prtEBERkZPEYhiGcbIbISIiIiePhglERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKcwoCIiEiQUxgQEREJcgoDIiIiQU5hQEREJMgpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkHu/wG8Tf4gsYfHYwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -42845,7 +42883,7 @@ " stop_frame=5100,\n", " annotation_sequence=annotation_sequence)\n", "\n", - "# Display the animaion on colab\n", + "# Display the animation on colab\n", "ani" ] }, @@ -42867,7 +42905,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAABnCAYAAABIFcDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2I0lEQVR4nO3dd1gU194H8O9SlyJFKTaqBRvYJVZAScCSiIk1KMEYOybcREVzo0IaamLXoDdR0URjiUZvFE2MSozGHrEiQQU1EcUGiEjd8/7BZV4Glr7Aot/P8/Dozpw5bX57dnbOzoxCCCFARERERERERERERESk5XRquwJERERERERERERERETlwUkNIiIiIiIiIiIiIiKqEzipQUREREREREREREREdQInNYiIiIiIiIiIiIiIqE7gpAYREREREREREREREdUJnNQgIiIiIiIiIiIiIqI6gZMaRERERERERERERERUJ3BSg4iIiIiIiIiIiIiI6gS92q4AERERERERERERET2/hBDIzc1FXl5ebVeFtJSuri709PSgUCjKTMtJDSIiIiIiIiIiIiKqFtnZ2UhKSkJGRkZtV4W0nLGxMRo1agQDA4NS0ymEEKKG6kRERERERERERERELwiVSoX4+Hjo6urC2toaBgYG5folPr1YhBDIzs7G/fv3kZeXhxYtWkBHp+QnZ/BKDSIiIiIiIiIiIiLSuOzsbKhUKtjZ2cHY2Li2q0NazMjICPr6+rh58yays7OhVCpLTMsHhRMRERERERERERFRtSntV/dEBcobJ4wmIiIiIiIiIiIiIiKqE3j7KSIiIiLSKo6OjmjXrh327NlTo+VGR0fDy8sLhw8fhqenZ42WXRWJiYlwcnLCF198genTp2skz7raF0RERERUd9xKvYUHGQ9qpCwrYyvYm9vXSFlU/TipQURERESVEhkZibFjx8qWWVtbo23btpg5cyb69+9fSzXTfgV9d/r0aXTp0qW2q0NEREREVKNupd6Cy0oXZOZm1kh5Sj0l4oLiOLHxnOCkBhERERFVyccffwwnJycIIXDv3j1ERkZiwIAB+OmnnzBo0KDarl659enTB8+ePYOBgUFtV4WIiIiI6Ln2IONBjU1oAEBmbiYeZDx4LiY1Cq6qfvz4MSwsLGq7OrWCkxpEREREVCX9+/eXXW0wbtw42Nra4vvvv69Tkxo6OjpQKpUay+/p06cwMTHRWH5ERERERETEB4UTERERkYZZWFjAyMgIenry38+oVCosXboUbdu2hVKphK2tLSZOnIjHjx+rzefo0aPo1q0blEolnJ2dsXHjRtn6R48eYfr06XB1dYWpqSnMzMzQv39/nD9/Xkpz79496OnpISwsrFj+cXFxUCgUWLlyJYD8XzwpFApER0fL0m3fvh2dO3eGkZERrKysMHr0aPzzzz+yNIGBgTA1NcX169cxYMAA1KtXD/7+/uXuM3Wys7Mxd+5cdO7cGebm5jAxMUHv3r1x+PDhErdZsmQJHBwcYGRkBA8PD1y6dKlYmqtXr2Lo0KGoX78+lEolunTpgv/+979l1ic+Ph5vvPEGGjZsCKVSiaZNm2LkyJFITU2tUjuJiIiIiLSRp6cnpk2bhuDgYFhaWsLW1hZff/01nj59irFjx6JevXpo3rw59u3bJ23z22+/oVu3bjA0NESjRo0wa9Ys5ObmSusdHR2xdOlSWTkdOnRAaGio9FqhUOCbb77BkCFDYGxsjBYtWkjH64mJifDy8gIAWFpaQqFQIDAwsNr6QFtxUoOIiIiIqiQ1NRUPHjzA/fv3cfnyZUyePBnp6ekYPXq0LN3EiRMxY8YM9OzZE8uWLcPYsWOxadMm+Pj4ICcnR5b22rVrGDp0KF5++WUsWrQIlpaWCAwMxOXLl6U0N27cwK5duzBo0CAsXrwYM2bMwMWLF+Hh4YE7d+4AAGxtbeHh4YFt27YVq/fWrVuhq6uLYcOGldi2yMhIDB8+HLq6uggPD8f48eOxc+dO9OrVCykpKbK0ubm58PHxgY2NDb788ku88cYbFe1KmbS0NHzzzTfw9PTEggULEBoaivv378PHxwcxMTHF0m/cuBHLly/H1KlTMXv2bFy6dAl9+/bFvXv3pDSXL1/GSy+9hNjYWMyaNQuLFi2CiYkJ/Pz88OOPP5ZYl+zsbPj4+ODEiROYNm0aVq1ahQkTJuDGjRvF+oGIiIiI6HmxYcMGWFlZ4dSpU5g2bRomT56MYcOGoUePHvjzzz/xyiuvYMyYMcjIyMA///yDAQMGoGvXrjh//jwiIiKwdu1afPrppxUuNywsDMOHD8eFCxcwYMAA+Pv749GjR7Czs8OOHTsA5P9IKykpCcuWLdN0s7Uebz9FRERERFXi7e0te21oaIh169bh5ZdflpYdPXoU33zzDTZt2oQ333xTWu7l5QVfX19s375dtjwuLg5HjhxB7969AQDDhw+HnZ0d1q9fjy+//BIA4Orqir/++gs6Ov//O50xY8agVatWWLt2LebMmQMAGDFiBCZOnIhLly6hXbt2UtqtW7fCw8MDtra2atuVk5ODkJAQtGvXDkeOHJFuTdWrVy8MGjQIS5YskV0BkpWVhWHDhiE8PLxiHVgCS0tLJCYmyp7xMX78eLRq1QorVqzA2rVrZemvXbuG+Ph4NGnSBADg6+sLd3d3LFiwAIsXLwYAvPfee7C3t8fp06dhaGgIAJgyZQp69eqFkJAQDBkyRG1drly5goSEBGzfvh1Dhw6Vls+dO1cjbSUiIiIi0kbt27fHRx99BACYPXs25s+fDysrK4wfPx5A/vFwREQELly4gJ9++gl2dnZYuXIlFAoFWrVqhTt37iAkJARz586VfW8pS2BgIEaNGgUA+Pzzz7F8+XKcOnUKvr6+qF+/PgDAxsbmhX2mBq/UICIiIqIqWbVqFQ4cOIADBw7gu+++g5eXF9555x3s3LlTSrN9+3aYm5vj5ZdfxoMHD6S/zp07w9TUtNgtldq0aSNNaACAtbU1XFxccOPGDWmZoaGh9MUgLy8PDx8+hKmpKVxcXPDnn39K6V5//XXo6elh69at0rJLly7hypUrGDFiRIntOnPmDJKTkzFlyhTZszYGDhyIVq1aYe/evcW2mTx5cnm6rFx0dXWlCQ2VSoVHjx4hNzcXXbp0kbWvgJ+fnzShAQDdunWDu7s7oqKiAOTfruvQoUMYPnw4njx5Iu2Dhw8fwsfHB/Hx8cVuq1XA3NwcAPDzzz8jIyNDY20kIiIiItJmbm5u0v91dXXRoEEDuLq6SssKfiCVnJyM2NhYdO/eHQqFQlrfs2dPpKen4++//650uSYmJjAzM0NycnJlm/Hc4aQGEREREVVJt27d4O3tDW9vb/j7+2Pv3r1o06YNgoKCkJ2dDSD/eQypqamwsbGBtbW17C89Pb3YAbq9vX2xciwtLWXP31CpVFiyZAlatGgBQ0NDWFlZwdraGhcuXJA958HKygr9+vWT3YJq69at0NPTw+uvv15iu27evAkAcHFxKbauVatW0voCenp6aNq0aWldVWEbNmyAm5sblEolGjRoAGtra+zdu1ftcyxatGhRbFnLli2RmJgIIP9KDiEE5syZU2wfzJs3DwBK/KLk5OSE999/H9988w2srKzg4+ODVatW8XkaRERERPRc09fXl71WKBSyZQUTGCqVqlz56ejoQAghW1b0VrwllVveMl4EvP0UEREREWmUjo4OvLy8sGzZMsTHx6Nt27ZQqVSwsbHBpk2b1G5jbW0te62rq6s2XeEvAJ9//jnmzJmDt99+G5988gnq168PHR0dBAcHFzvgHzlyJMaOHYuYmBh06NAB27ZtQ79+/WBlZVXF1v6/wleOaMJ3332HwMBA+Pn5YcaMGbCxsZGe7XH9+vUK51fQJ9OnT4ePj4/aNM2bNy9x+0WLFiEwMBC7d+/GL7/8gnfffRfh4eE4ceKExidziIiIiIjqmtatW2PHjh0QQkiTHceOHUO9evWk42Vra2skJSVJ26SlpSEhIaFC5RRczZ2Xl6ehmtc9nNQgIiIiIo3Lzc0FAKSnpwMAmjVrhl9//RU9e/aEkZGRRsr44Ycf4OXlVezZEikpKcUmK/z8/DBx4kTpFlR//fUXZs+eXWr+Dg4OAPKf79G3b1/Zuri4OGl9dfnhhx/g7OyMnTt3yi5hL7iqoqj4+Phiy/766y84OjoCAJydnQHk/+qr6HNQysvV1RWurq746KOP8Mcff6Bnz55YvXp1pR5+SERERET0PJkyZQqWLl2KadOmISgoCHFxcZg3bx7ef/996cdPffv2RWRkJF599VVYWFhg7ty5Jf6gqyQODg5QKBTYs2cPBgwYACMjI5iamlZHk7QWbz9FRERERBqVk5ODX375BQYGBmjdujWA/Ad95+Xl4ZNPPimWPjc3FykpKRUuR1dXt9il29u3b1f7XAgLCwv4+Phg27Zt2LJlCwwMDODn51dq/l26dIGNjQ1Wr16NrKwsafm+ffsQGxuLgQMHVrjOFVHw5aZwG0+ePInjx4+rTb9r1y5Z20+dOoWTJ0+if//+APIfJOjp6Yk1a9bIfh1W4P79+yXWJS0tTZqoKuDq6godHR1Z3xARERERlYeVsRWUesqyE2qIUk8JK2PNXaWtTpMmTRAVFYVTp06hffv2mDRpEsaNGyc9aBzIf9i4h4cHBg0ahIEDB8LPzw/NmjWrcDlhYWGYNWsWbG1tERQUpOmmaD1eqUFEREREVbJv3z5cvXoVQP4zGTZv3oz4+HjMmjULZmZmAAAPDw9MnDgR4eHhiImJwSuvvAJ9fX3Ex8dj+/btWLZsGYYOHVqhcgcNGoSPP/4YY8eORY8ePXDx4kVs2rRJuiKhqBEjRmD06NH46quv4OPjAwsLi1Lz19fXx4IFCzB27Fh4eHhg1KhRuHfvHpYtWwZHR0f861//qlB91Vm3bh32799fbPl7772HQYMGYefOnRgyZAgGDhyIhIQErF69Gm3atJGugCmsefPm6NWrFyZPnoysrCwsXboUDRo0wMyZM6U0q1atQq9eveDq6orx48fD2dkZ9+7dw/Hjx/H333/j/Pnzaut56NAhBAUFYdiwYWjZsiVyc3Px7bffQldXF2+88UaV+4GIiIiIXiz25vaIC4rDg4wHNVKelbEV7M2LP7evNNHR0cWWFTyvrrDCP0Ly8PDAqVOnSszTzMwMW7ZskS176623SsyvQNEfgc2ZMwdz5swpsZznHSc1iIiIiKhK5s6dK/1fqVSiVatWiIiIwMSJE2XpVq9ejc6dO2PNmjX48MMPoaenB0dHR4wePRo9e/ascLkffvghnj59is2bN2Pr1q3o1KkT9u7di1mzZqlN/9prr8HIyAhPnjzBiBEjylVGYGAgjI2NMX/+fISEhMDExARDhgzBggULypwUKY+IiIgSyw0MDMTdu3exZs0a/Pzzz2jTpg2+++47bN++Xe0XrICAAOjo6GDp0qVITk5Gt27dsHLlSjRq1EhK06ZNG5w5cwZhYWGIjIzEw4cPYWNjg44dO8r2Y1Ht27eHj48PfvrpJ/zzzz8wNjZG+/btsW/fPrz00ktV7gciIiIievHYm9tXeKKBCAAUQt3UDxERERERERERERFRFWRmZiIhIQFOTk5QKmvudlNUN5U3XvhMDSIiIiIiIiIiIiIiqhM4qUFERERERERERERERHUCJzWIiIiIiIiIiIiIiKhO4KQGERERERERERERERHVCZzUICIiIiIiIiIiIiKiOkGvMhupVCrcuXMH9erVg0Kh0HSdiIiIiIiIiIiIiKgOEELgyZMnaNy4MXR0+Bt6qn6VmtS4c+cO7OzsNF0XIiIiIiIiIiIiIqqDbt++jaZNm9Z2NegFUKlJjXr16gEAbi8HzIxKSDQ8FdhmXtl6ac7w1Px/C9dF3bLy5lPadoXTFFVWWSVtW3S7oumq0scVzatgn5bRTvPr5a9C6mw1eZWzTerKUZtfRRSUXcn4rUjbtUGV+6s0pfVfof7Vhj6r1n4AyoylsvqgxPqVNq6V9j6tiEJlaGJflbuv1bWtphXZbzURqxqPxcr0YwXHcU2r9vcjoB3xVVXleG+mNoN8bCirrXV131d13CspHv7XH6nNivdxajM16UmuHJ/z5drnZcSltC/+V5Ys7iuiEp93svoXaa/auCnaXk1/ZmtKCcct1XLsrSnVOa5r0TFrVWnN/iqgre+BkmgwFkrdFxUop9b2aTW9L4q2xzzcXO3yaqXuHIyGvxNVlrp+KOgjTeRVI8pzTFqbNHA8rHVjLVAzMZwFYMn/nzN+kXl6eqJDhw5YunRpbVfluVapSY2CW06ZGQFmxiUkMjMDSlpXk8zM8v81LmNZefMpbbvCaYoqq6ySti26XdF0VenjiuZVsE/LaqeyIlVQk1d526SmHLX5VURB2ZWN3wq0XRtUub9KU1r/Fe5fLeizau0HoOxYKqMPSqxfaeOaptpUuAwN7Kty97W6ttW0ovutBmJV47FYmX6s4DiuadX+fgS0I76qqhzvTbPCn9llfX4XpKmL+76q415J8fC//jBT0y9mmh5rn0fl+Jwv1z4vIy7NirwXzMoT6yWVUyif8jBT9/1AWaheReOmpGNvbYujko5bquPYW1Oqc1zXomPWqtKa/VVAW98DJdFgLJS6LypQTq3t02p6XxRrj7KE5dVJ3TkYDX8nqiy1/VDJ+tRq7Gjze14Dx8NaN9YCNRrDL9JjCqKjo+Hl5YXHjx/DwsKitqvzwuFNzoiIiIiIiIiIiIiItFB2dnZtV0HrcFKDiIiIiIiIiIiIiKiQrKwsvPvuu7CxsYFSqUSvXr1w+vRpJCYmwsvLCwBgaWkJhUKBwMBAaTuVSoWZM2eifv36aNiwIUJDQ2X5pqSk4J133oG1tTXMzMzQt29fnD9/XlofGhqKDh064JtvvoGTkxOUyufgklEN46QGEREREREREREREVEhM2fOxI4dO7Bhwwb8+eefaN68OXx8fFCvXj3s2LEDABAXF4ekpCQsW7ZM2m7Dhg0wMTHByZMnsXDhQnz88cc4cOCAtH7YsGFITk7Gvn37cPbsWXTq1An9+vXDo0ePpDTXrl3Djh07sHPnTsTExNRYm+uKSj1Tg4iIiIiIiIiIiIjoefT06VNEREQgMjIS/fv3BwB8/fXXOHDgANatW4euXbsCAGxsbIo9U8PNzQ3z5s0DALRo0QIrV67EwYMH8fLLL+Po0aM4deoUkpOTYWhoCAD48ssvsWvXLvzwww+YMGECgPxbTm3cuBHW1tY11OK6hZMaRERERERERERERET/c/36deTk5KBnz57SMn19fXTr1g2xsbHSpIY6bm5usteNGjVCcnIyAOD8+fNIT09HgwYNZGmePXuG69evS68dHBw4oVEKTmoQEREREREREREREWmAvr6+7LVCoYBKpQIApKeno1GjRoiOji62XeErPkxMTKqzinUeJzWIiIiIiIiIiIiIiP6nWbNmMDAwwLFjx+Dg4AAAyMnJwenTpxEcHAwDAwMAQF5eXoXy7dSpE+7evQs9PT04OjpqutovDD4onIiIiIiIiIiIiIjof0xMTDB58mTMmDED+/fvx5UrVzB+/HhkZGRg3LhxcHBwgEKhwJ49e3D//n2kp6eXK19vb290794dfn5++OWXX5CYmIg//vgD//73v3HmzJlqbtXzg5MaRERERERERERERESFzJ8/H2+88QbGjBmDTp064dq1a/j5559haWmJJk2aICwsDLNmzYKtrS2CgoLKladCoUBUVBT69OmDsWPHomXLlhg5ciRu3rwJW1vbam7R84O3nyIiIiIiIiIiIiIiKkSpVGL58uVYvny52vVz5szBnDlzZMvUPStj165dstf16tUrNd/Q0FCEhoZWpsovjEpNagghAABpz0pJlJYGZFQmdw1LS8v/N6OMZeXNp7TtCqcpqqyyStq26HZF01WljyuaV8E+LaudmRWpgpq8ytsmNeWoza8iCsqubPxWoO3aoMr9VZrS+q9w/2pBn1VrPwBlx1IZfVBi/Uob1zTVpsJlaGBflbuv1bWtphXdbzUQqxqPxcr0YwXHcU2r9vcjoB3xVVXleG+mFf7MLuvzuyBNXdz3VR33SoqH//VHmpp+SdP0WPs8KsfnfLn2eRlxmVbkvZBWnlgvqZxC+ZRHmrrvB5mF6lU0bko69ta2OCrpuKU6jr01pTrHdS06Zq0qrdlfBbT1PVASDcZCqfuiAuXU2j6tpvdFsfZklrC8Oqk7B6Ph70SVpbYfKlmfWo0dbX7Pa+B4WOvGWqBmYjgr/5+Cc8ZE1U0hKhFtN27cQLNmzaqjPkRERERERERERERUx9y+fRtNmzaVLcvMzERCQgKcnJygVCprqWZUV5Q3Xip1pUb9+vUBALdu3YK5uXnlakikYWlpabCzs8Pt27dhZmZW29UhAsC4JO3EuCRtxLgkbcS4JG3EuCRtxLgkbcXYrBlCCDx58gSNGzeu7arQC6JSkxo6OvnPFzc3N+eAQFrHzMyMcUlah3FJ2ohxSdqIcUnaiHFJ2ohxSdqIcUnairFZ/fjDd6pJOrVdASIiIiIiIiIiIiIiovLgpAYREREREREREREREdUJlZrUMDQ0xLx582BoaKjp+hBVGuOStBHjkrQR45K0EeOStBHjkrQR45K0EeOStBVjk+j5pBBCiNquBBERERERERERERE9XzIzM5GQkAAnJycolcrarg5pufLGS6UeFE5EREREREREREREVGlPbwFZD2qmLEMrwMS+Qpt4enqiQ4cOWLp0afXUSQNqso6Ojo4IDg5GcHBwtZdVFk5qEBEREREREREREVHNeXoL+MkFUGXWTHk6SuDVuApNbOzcuRP6+vrVWKnyi46OhpeXFx4/fgwLCwtpeXXUMTIyEsHBwUhJSZEtP336NExMTDRaVmVxUoOIiIiIiIiIiIiIak7Wg5qb0ADyy8p6UKFJjfr161djhTSjJutobW1dY2WVpVIPCiciIiIiIiIiIiIiel55enpKt1pydHTE559/jrfffhv16tWDvb09/vOf/0hpe/TogZCQENn29+/fh76+Po4cOQIAyMrKwvTp09GkSROYmJjA3d0d0dHRUvqbN2/i1VdfhaWlJUxMTNC2bVtERUUhMTERXl5eAABLS0soFAoEBgYWqyMAJCUlYeDAgTAyMoKTkxM2b94MR0dH2e2pFi9eDFdXV5iYmMDOzg5TpkxBeno6gPwrQsaOHYvU1FQoFAooFAqEhoZKfVA4n1u3bmHw4MEwNTWFmZkZhg8fjnv37knrQ0ND0aFDB3z77bdwdHSEubk5Ro4ciSdPnlRmd8hUalJj1apVcHR0hFKphLu7O06dOlXlihABQHh4OLp27Yp69erBxsYGfn5+iIuLk6Xx9PSU3lQFf5MmTZKluXXrFgYOHAhjY2PY2NhgxowZyM3NlaWJjo5Gp06dYGhoiObNmyMyMrK6m0d1VGhoaLGYa9WqlbQ+MzMTU6dORYMGDWBqaoo33nhDNogDjEnSPEdHx2JxqVAoMHXqVAAcK6lmHDlyBK+++ioaN24MhUKBXbt2ydYLITB37lw0atQIRkZG8Pb2Rnx8vCzNo0eP4O/vDzMzM1hYWGDcuHHSAXWBCxcuoHfv3lAqlbCzs8PChQuL1WX79u1o1aoVlEolXF1dERUVpfH2Ut1QWlzm5OQgJCRE+hLXuHFjBAQE4M6dO7I81I2x8+fPl6VhXFJFlDVeBgYGFos5X19fWRqOl6RpZcWlumNNhUKBL774QkrD8ZI0rTznhWryOzjPgVJhixYtQpcuXXDu3DlMmTIFkydPluLT398fW7ZsgRBCSr9161Y0btwYvXv3BgAEBQXh+PHj2LJlCy5cuIBhw4bB19dX+o40depUZGVl4ciRI7h48SIWLFgAU1NT2NnZYceOHQCAuLg4JCUlYdmyZWrrWHBsGx0djR07duA///kPkpOTZWl0dHSwfPlyXL58GRs2bMChQ4cwc+ZMAPmTM0uXLoWZmRmSkpKQlJSE6dOnFytHpVJh8ODBePToEX777TccOHAAN27cwIgRI2Tprl+/jl27dmHPnj3Ys2cPfvvtt2KfE5UiKmjLli3CwMBArFu3Tly+fFmMHz9eWFhYiHv37lU0K6JifHx8xPr168WlS5dETEyMGDBggLC3txfp6elSGg8PDzF+/HiRlJQk/aWmpkrrc3NzRbt27YS3t7c4d+6ciIqKElZWVmL27NlSmhs3bghjY2Px/vvviytXrogVK1YIXV1dsX///hptL9UN8+bNE23btpXF3P3796X1kyZNEnZ2duLgwYPizJkz4qWXXhI9evSQ1jMmqTokJyfLYvLAgQMCgDh8+LAQgmMl1YyoqCjx73//W+zcuVMAED/++KNs/fz584W5ubnYtWuXOH/+vHjttdeEk5OTePbsmZTG19dXtG/fXpw4cUL8/vvvonnz5mLUqFHS+tTUVGFrayv8/f3FpUuXxPfffy+MjIzEmjVrpDTHjh0Turq6YuHCheLKlSvio48+Evr6+uLixYvV3gekfUqLy5SUFOHt7S22bt0qrl69Ko4fPy66desmOnfuLMvDwcFBfPzxx7IxtPDxKOOSKqqs8fKtt94Svr6+sph79OiRLA3HS9K0suKycDwmJSWJdevWCYVCIa5fvy6l4XhJmlae80I19R2c50A149mzZ+LKlSuy7wBCCCEenhViE2r27+HZCtXdw8NDvPfee0KI/PFu9OjR0jqVSiVsbGxERESEECL/O7qenp44cuSIlKZ79+4iJCRECCHEzZs3ha6urvjnn39kZfTr10+KTVdXVxEaGqq2LocPHxYAxOPHj0usY2xsrAAgTp8+La2Pj48XAMSSJUtKbOf27dtFgwYNpNfr168X5ubmxdI5ODhI+fzyyy9CV1dX3Lp1S1p/+fJlAUCcOnVKCJF/Ps3Y2FikpaVJaWbMmCHc3d1LrEuJ8VJEhSc1unXrJqZOnSq9zsvLE40bNxbh4eEVzYqoTMnJyQKA+O2336Rlhd+s6kRFRQkdHR1x9+5daVlERIQwMzMTWVlZQgghZs6cKdq2bSvbbsSIEcLHx0ezDaDnwrx580T79u3VrktJSRH6+vpi+/bt0rKCD5Hjx48LIRiTVDPee+890axZM6FSqYQQHCup5hU9GaJSqUTDhg3FF198IS1LSUkRhoaG4vvvvxdCCHHlypViB9379u0TCoVCOtj/6quvhKWlpRSXQggREhIiXFxcpNfDhw8XAwcOlNXH3d1dTJw4UaNtpLpH3Um6ok6dOiUAiJs3b0rLCn9hU4dxSVVR0qTG4MGDS9yG4yVVt/KMl4MHDxZ9+/aVLeN4SdWt6HmhmvwOznOgmvE8TWosXLhQtt7NzU2EhYVJrwcMGCCNXTdu3BAAxIULF4QQQuzZs0cAECYmJrI/PT09MXz4cCGEEF9//bXQ09MTPXr0EHPnzhXnz5+X8i7PpMauXbuEnp6eyMvLk6WxtLSUjdUHDhwQffv2FY0bNxampqZCqVQKAOLp06dCiPJNaixbtkw4OjoWS2NhYSE2bNgghMg/n9amTRvZ+sWLFwsnJ6di2xUo76RGhW4/lZ2djbNnz8Lb21tapqOjA29vbxw/frzSV4sQlSQ1NRVA8YfebNq0CVZWVmjXrh1mz56NjIwMad3x48fh6uoKW1tbaZmPjw/S0tJw+fJlKU3hOC5IwzimksTHx6Nx48ZwdnaGv78/bt26BQA4e/YscnJyZPHUqlUr2NvbS/HEmKTqlp2dje+++w5vv/02FAqFtJxjJdWmhIQE3L17VxZD5ubmcHd3l42PFhYW6NKli5TG29sbOjo6OHnypJSmT58+MDAwkNL4+PggLi4Ojx8/ltIwVqmyCu4XbGFhIVs+f/58NGjQAB07dsQXX3whu2UF45KqQ3R0NGxsbODi4oLJkyfj4cOH0jqOl1Tb7t27h71792LcuHHF1nG8pOpU9LxQTX0H5zlQUkdfX1/2WqFQQKVSSa/9/f3xww8/ICcnB5s3b4arqytcXV0BAOnp6dDV1cXZs2cRExMj/cXGxkq3knrnnXdw48YNjBkzBhcvXkSXLl2wYsUKjbYhMTERgwYNgpubG3bs2IGzZ89i1apVAPLjXtPK6rPK0qtI4gcPHiAvL082KACAra0trl69WuXKEBWmUqkQHByMnj17ol27dtLyN998Ew4ODmjcuDEuXLiAkJAQxMXFYefOnQCAu3fvqo3RgnWlpUlLS8OzZ89gZGRUnU2jOsbd3R2RkZFwcXFBUlISwsLC0Lt3b1y6dAl3796FgYFBsRMhtra2ZcZbwbrS0jAmqTx27dqFlJQU6UFhAMdKqn0FcaQuhgrHmI2NjWy9np4e6tevL0vj5ORULI+CdZaWliXGakEeRCXJzMxESEgIRo0aBTMzM2n5u+++i06dOqF+/fr4448/MHv2bCQlJWHx4sUAGJekeb6+vnj99dfh5OSE69ev48MPP0T//v1x/Phx6OrqcrykWrdhwwbUq1cPr7/+umw5x0uqTurOC9XUd/DHjx/zHChV2ODBgzFhwgTs378fmzdvRkBAgLSuY8eOyMvLQ3JysvSMDXXs7OwwadIkTJo0CbNnz8bXX3+NadOmSZPDeXl5JW7r4uKC3NxcnDt3Dp07dwYAXLt2TZpEBvInBlUqFRYtWgQdnfzrHbZt2ybLx8DAoNRyAKB169a4ffs2bt++DTs7OwDAlStXkJKSgjZt2pS6rSZUaFKDqCZNnToVly5dwtGjR2XLJ0yYIP3f1dUVjRo1Qr9+/XD9+nU0a9aspqtJL4D+/ftL/3dzc4O7uzscHBywbds2ntQlrbB27Vr0798fjRs3lpZxrCQiKl1OTg6GDx8OIQQiIiJk695//33p/25ubjAwMMDEiRMRHh4OQ0PDmq4qvQBGjhwp/d/V1RVubm5o1qwZoqOj0a9fv1qsGVG+devWwd/fH0qlUrac4yVVp5LOCxFpKxMTE/j5+WHOnDmIjY3FqFGjpHUtW7aEv78/AgICsGjRInTs2BH379/HwYMH4ebmhoEDByI4OBj9+/dHy5Yt8fjxYxw+fBitW7cGADg4OEChUGDPnj0YMGAAjIyMYGpqKiu/VatW8Pb2xoQJExAREQF9fX188MEHMDIyku7q0Lx5c+Tk5GDFihV49dVXcezYMaxevVqWj6OjI9LT03Hw4EG0b98exsbGMDY2lqXx9vaGq6sr/P39sXTpUuTm5mLKlCnw8PCQXVlaXSp0+ykrKyvo6uri3r17suX37t1Dw4YNNVoxerEFBQVhz549OHz4MJo2bVpqWnd3dwD5M48A0LBhQ7UxWrCutDRmZmY8SU1lsrCwQMuWLXHt2jU0bNgQ2dnZSElJkaUpPC4yJqk63bx5E7/++iveeeedUtNxrKSaVhBHpR03NmzYEMnJybL1ubm5ePTokUbGUB6fUkkKJjRu3ryJAwcOyK7SUMfd3R25ublITEwEwLik6ufs7AwrKyvZ5zbHS6otv//+O+Li4so83gQ4XpLmlHReqKa+g/McKFWWv78/zp8/j969e8Pe3l62bv369QgICMAHH3wAFxcX+Pn54fTp01K6vLw8TJ06Fa1bt4avry9atmyJr776CgDQpEkThIWFYdasWbC1tUVQUJDa8jdu3AhbW1v06dMHQ4YMwfjx41GvXj1pUrp9+/ZYvHgxFixYgHbt2mHTpk0IDw+X5dGjRw9MmjQJI0aMgLW1NRYuXFisHIVCgd27d8PS0hJ9+vSBt7c3nJ2dsXXr1ir3YXlUaFLDwMAAnTt3xsGDB6VlKpUKBw8eRPfu3TVeOXrxCCEQFBSEH3/8EYcOHSp2mao6MTExAIBGjRoBALp3746LFy/KDvoLvqwWXP7UvXt3WRwXpGEcU3mkp6fj+vXraNSoETp37gx9fX1ZPMXFxeHWrVtSPDEmqTqtX78eNjY2GDhwYKnpOFZSTXNyckLDhg1lMZSWloaTJ0/KxseUlBScPXtWSnPo0CGoVCppIq579+44cuQIcnJypDQHDhyAi4sLLC0tpTSMVSqvggmN+Ph4/Prrr2jQoEGZ28TExEBHR0e6/Q/jkqrb33//jYcPH8o+tzleUm1Zu3YtOnfujPbt25eZluMlVVVZ54Vq6js4z4HWAEMrQEdZdjpN0VHml1kB0dHRWLp0KYD8Z1EEBwfL1sfExCA0NFS2rH///hBC4LfffiuWn76+PsLCwpCQkIDs7GzcuXMHO3fulJ67sWLFCly7dg2ZmZlITk7Gxo0bZceqc+bMQVJSElQqFSIjI4vVEcj/zh8VFYXMzEwkJiaid+/eSE5ORvPmzaU0//rXv3Dnzh1kZGRg//79GDNmDIQQstu6RURE4MGDBxBCSG0s2gf29vbYvXs30tPTkZaWhm3btslu2RYaGiqdiygQHBwsTXxXSamPEVdjy5YtwtDQUERGRoorV66ICRMmCAsLC3H37t2KZkVUzOTJk4W5ubmIjo4WSUlJ0l9GRoYQQohr166Jjz/+WJw5c0YkJCSI3bt3C2dnZ9GnTx8pj9zcXNGuXTvxyiuviJiYGLF//35hbW0tZs+eLaW5ceOGMDY2FjNmzBCxsbFi1apVQldXV+zfv7/G20za74MPPhDR0dEiISFBHDt2THh7ewsrKyuRnJwshBBi0qRJwt7eXhw6dEicOXNGdO/eXXTv3l3anjFJ1SUvL0/Y29uLkJAQ2XKOlVRTnjx5Is6dOyfOnTsnAIjFixeLc+fOiZs3bwohhJg/f76wsLAQu3fvFhcuXBCDBw8WTk5O4tmzZ1Ievr6+omPHjuLkyZPi6NGjokWLFmLUqFHS+pSUFGFrayvGjBkjLl26JLZs2SKMjY3FmjVrpDTHjh0Tenp64ssvvxSxsbFi3rx5Ql9fX1y8eLHmOoO0RmlxmZ2dLV577TXRtGlTERMTIzvezMrKEkII8ccff4glS5aImJgYcf36dfHdd98Ja2trERAQIJXBuKSKKi0unzx5IqZPny6OHz8uEhISxK+//io6deokWrRoITIzM6U8OF6SppX1OS6EEKmpqcLY2FhEREQU257jJVWHss4LCVFz38F5DlQznj17Jq5cuSL7DiBJvynEw7M185d+s3j5z6GDBw+K3bt3ixs3bohjx46Jnj17CkdHR5GdnV3bVSuXUuOlkApPagghxIoVK4S9vb0wMDAQ3bp1EydOnKhUJYmKAqD2b/369UIIIW7duiX69Okj6tevLwwNDUXz5s3FjBkzRGpqqiyfxMRE0b9/f2FkZCSsrKzEBx98IHJycmRpDh8+LDp06CAMDAyEs7OzVAZRUSNGjBCNGjUSBgYGokmTJmLEiBHi2rVr0vpnz56JKVOmCEtLS2FsbCyGDBkikpKSZHkwJqk6/PzzzwKAiIuLky3nWEk15fDhw2o/t9966y0hhBAqlUrMmTNH2NraCkNDQ9GvX79i8frw4UMxatQoYWpqKszMzMTYsWPFkydPZGnOnz8vevXqJQwNDUWTJk3E/Pnzi9Vl27ZtomXLlsLAwEC0bdtW7N27t9raTdqttLhMSEgo8Xjz8OHDQgghzp49K9zd3YW5ublQKpWidevW4vPPP5edXBaCcUkVU1pcZmRkiFdeeUVYW1sLfX194eDgIMaPH1/spBnHS9K0sj7HhRBizZo1wsjISKSkpBTbnuMlVYeyzgsJUbPfwXkOtOrKe5KaNGP//v2ibdu2wsjISNjY2Ag/Pz+RmJhY29Uqt/LGi0IIIap+vQcRERERERERERER0f/LzMxEQkICnJycpOc6EJWkvPFSoWdqEBERERERERERERER1RZOahARERERERERERERUZ3ASQ0iIiIiIiIiIiIiqjZ8AgKVR3njhJMaRERERERERERERKRx+vr6AICMjIxargnVBQVxUhA3JdGricoQERERERERERER0YtFV1cXFhYWSE5OBgAYGxtDoVDUcq1I2wghkJGRgeTkZFhYWEBXV7fU9ArBa3+IiIiIiIiIiIiIqBoIIXD37l2kpKTUdlVIy1lYWKBhw4ZlTnxxUoOIiIiIiIiIiIiIqlVeXh5ycnJquxqkpfT19cu8QqMAJzWIiIiIiOqYyMhIBAcH89duRERERET0wuGDwomIiIioxgUGBkKhUBT7u3btWm1XrVwcHR2hUChw4sQJ2fLg4GB4enrWTqWIiIiIiIheAJzUICIiIqJa4evri6SkJNmfk5NTsXTZ2dm1ULuyKZVKhISE1HY1NIq3AyAiIiIiIm3HSQ0iIiIiqhWGhoZo2LCh7E9XVxeenp4ICgpCcHAwrKys4OPjAwBYvHgxXF1dYWJiAjs7O0yZMgXp6elSfpGRkbCwsMCePXvg4uICY2NjDB06FBkZGdiwYQMcHR1haWmJd999F3l5edJ2WVlZmD59Opo0aQITExO4u7sjOjq6zPpPmDABJ06cQFRUVIlpPD09ERwcLFvm5+eHwMBA6bWjoyM+/fRTBAQEwNTUFA4ODvjvf/+L+/fvY/DgwTA1NYWbmxvOnDlTLP9du3ahRYsWUCqV8PHxwe3bt2Xrd+/ejU6dOkGpVMLZ2RlhYWHIzc2V1isUCkREROC1116DiYkJPvvsszLbTUREREREVJs4qUFEREREWmfDhg0wMDDAsWPHsHr1agCAjo4Oli9fjsuXL2PDhg04dOgQZs6cKdsuIyMDy5cvx5YtW7B//35ER0djyJAhiIqKQlRUFL799lusWbMGP/zwg7RNUFAQjh8/ji1btuDChQsYNmwYfH19ER8fX2odnZycMGnSJMyePRsqlapK7V2yZAl69uyJc+fOYeDAgRgzZgwCAgIwevRo/Pnnn2jWrBkCAgJQ+HF4GRkZ+Oyzz7Bx40YcO3YMKSkpGDlypLT+999/R0BAAN577z1cuXIFa9asQWRkZLGJi9DQUAwZMgQXL17E22+/XaV2EBERERERVTdOahARERFRrdizZw9MTU2lv2HDhknrWrRogYULF8LFxQUuLi4A8p9X4eXlBUdHR/Tt2xeffvoptm3bJsszJycHERER6NixI/r06YOhQ4fi6NGjWLt2Ldq0aYNBgwbBy8sLhw8fBgDcunUL69evx/bt29G7d280a9YM06dPR69evbB+/foy2/DRRx8hISEBmzZtqlJfDBgwABMnTkSLFi0wd+5cpKWloWvXrhg2bBhatmyJkJAQxMbG4t69e7K2rly5Et27d0fnzp2xYcMG/PHHHzh16hQAICwsDLNmzcJbb70FZ2dnvPzyy/jkk0+wZs0aWdlvvvkmxo4dC2dnZ9jb21epHURERERERNVNr7YrQEREREQvJi8vL0REREivTUxMpP937ty5WPpff/0V4eHhuHr1KtLS0pCbm4vMzExkZGTA2NgYAGBsbIxmzZpJ29ja2sLR0RGmpqayZcnJyQCAixcvIi8vDy1btpSVlZWVhQYNGpTZBmtra0yfPh1z587FiBEjytny4tzc3GT1AwBXV9diy5KTk9GwYUMAgJ6eHrp27SqladWqFSwsLBAbG4tu3brh/PnzOHbsmOzKjLy8vGJ91qVLl0rXm4iIiIiIqKZxUoOIiIiIaoWJiQmaN29e4rrCEhMTMWjQIEyePBmfffYZ6tevj6NHj2LcuHHIzs6WTtDr6+vLtlMoFGqXFdwuKj09Hbq6ujh79ix0dXVl6QpPhJTm/fffx1dffYWvvvqq2DodHR3ZLaMA9Q/jLlxHhUJR4rKK3OYqPT0dYWFheP3114utUyqV0v+L9jUREREREZE246QGEREREWm9s2fPQqVSYdGiRdDRyb+DatFbT1VGx44dkZeXh+TkZPTu3btSeZiammLOnDkIDQ3Fa6+9JltnbW2NpKQk6XVeXh4uXboELy+vKtUbAHJzc3HmzBl069YNABAXF4eUlBS0bt0aANCpUyfExcWVOHFERERERERUF/GZGkRERESk9Zo3b46cnBysWLECN27cwLfffis9QLwqWrZsCX9/fwQEBGDnzp1ISEjAqVOnEB4ejr1795Y7nwkTJsDc3BybN2+WLe/bty/27t2LvXv34urVq5g8eTJSUlKqXG8g/0qOadOm4eTJkzh79iwCAwPx0ksvSZMcc+fOxcaNGxEWFobLly8jNjYWW7ZswUcffaSR8omIiIiIiGoDJzWIiIiISOu1b98eixcvxoIFC9CuXTts2rQJ4eHhGsl7/fr1CAgIwAcffAAXFxf4+fnh9OnTFXpotr6+Pj755BNkZmbKlr/99tt46623EBAQAA8PDzg7O2vkKg0g//khISEhePPNN9GzZ0+Ymppi69at0nofHx/s2bMHv/zyC7p27YqXXnoJS5YsgYODg0bKJyIiIiIiqg0KUfQmv0RERERERERERERERFqIV2oQEREREREREREREVGdwEkNIiIiIiIiIiIiIiKqEzipQUREREREREREREREdQInNYiIiIiIiIiIiIiIqE7gpAYREREREREREREREdUJnNQgIiIiIiIiIiIiIqI6gZMaRERERERERERERERUJ3BSg4iIiIiIiIiIiIiI6gROahARERERERERERERUZ3ASQ0iIiIiIiIiIiIiIqoTOKlBRERERERERERERER1Aic1iIiIiIiIiIiIiIioTvg/4NG5elx1J5cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAABnCAYAAABIFcDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2NElEQVR4nO3dd1gU194H8O9Sl16kqaEj2LD3higJWKIYe4gEYuwmIbGg940KaaiJPYreqxGNGks0eqOosRGjUbFhRYIKYiKKDZAg0s77By/zMtJhgSV+P8+zD+yZM3PK/Pbs7pydGYUQQoCIiIiIiIiIiIiIiEjNadR1BYiIiIiIiIiIiIiIiCqCkxpERERERERERERERFQvcFKDiIiIiIiIiIiIiIjqBU5qEBERERERERERERFRvcBJDSIiIiIiIiIiIiIiqhc4qUFERERERERERERERPUCJzWIiIiIiIiIiIiIiKhe4KQGERERERERERERERHVC1p1XQEiIiIiIiIiIiIi+ucSQiA3Nxd5eXl1XRVSU5qamtDS0oJCoSg3Lyc1iIiIiIiIiIiIiKhGZGdnIzk5GZmZmXVdFVJz+vr6aNiwIXR0dMrMpxBCiFqqExERERERERERERG9IvLz8xEfHw9NTU1YWlpCR0enQr/Ep1eLEALZ2dl4+PAh8vLy0KRJE2holH7nDJ6pQUREREREREREREQql52djfz8fNja2kJfX7+uq0NqTE9PD9ra2rhz5w6ys7OhVCpLzcsbhRMRERERERERERFRjSnrV/dEhSoaJ4wmIiIiIiIiIiIiIiKqF3j5KSIiIiJSKw4ODmjZsiX27t1bq+VGRUXB09MTx44dQ+/evWu17OpITEyEo6Mjvv76a0yfPl0l26yvfUFERERE9UdSWhIeZT6qlbIs9C1gZ2JXK2VRzeOkBhERERFVSUREBAIDA2VplpaWaNGiBWbOnIl+/frVUc3UX2HfnT17Fh06dKjr6hARERER1aqktCS4feuGrNysWilPqaVE3NQ4Tmz8Q3BSg4iIiIiq5bPPPoOjoyOEEHjw4AEiIiLQv39//Pzzzxg4cGBdV6/CevXqhefPn0NHR6euq0JERERE9I/2KPNRrU1oAEBWbhYeZT76R0xqFJ5V/fTpU5iamtZ1deoEJzWIiIiIqFr69esnO9tg7NixsLa2xg8//FCvJjU0NDSgVCpVtr2///4bBgYGKtseERERERER8UbhRERERKRipqam0NPTg5aW/Pcz+fn5WLp0KVq0aAGlUglra2tMmDABT58+LXE7J06cQKdOnaBUKuHk5ISNGzfKlj958gTTp0+Hu7s7DA0NYWxsjH79+uHSpUtSngcPHkBLSwuhoaHFth8XFweFQoFvv/0WQMEvnhQKBaKiomT5duzYgfbt20NPTw8WFhZ455138Ndff8nyBAQEwNDQELdu3UL//v1hZGQEPz+/CvdZSbKzszF37ly0b98eJiYmMDAwQM+ePXHs2LFS11myZAns7e2hp6cHDw8PXL16tVieGzduYNiwYTA3N4dSqUSHDh3w3//+t9z6xMfHY+jQobCxsYFSqcRrr72GUaNGIS0trVrtJCIiIiJSR71798YHH3yAoKAgmJmZwdraGv/5z3/w999/IzAwEEZGRnBxccH+/fuldX799Vd06tQJurq6aNiwIWbNmoXc3FxpuYODA5YuXSorp02bNggJCZGeKxQKrF27FkOGDIG+vj6aNGkifV5PTEyEp6cnAMDMzAwKhQIBAQE11gfqipMaRERERFQtaWlpePToER4+fIhr165h0qRJyMjIwDvvvCPLN2HCBMyYMQPdu3fHsmXLEBgYiM2bN8Pb2xs5OTmyvDdv3sSwYcPw+uuvY9GiRTAzM0NAQACuXbsm5bl9+zZ2796NgQMHYvHixZgxYwauXLkCDw8P3Lt3DwBgbW0NDw8PbN++vVi9t23bBk1NTQwfPrzUtkVERGDEiBHQ1NREWFgYxo0bh127dqFHjx5ITU2V5c3NzYW3tzesrKzwzTffYOjQoZXtSpn09HSsXbsWvXv3xoIFCxASEoKHDx/C29sbMTExxfJv3LgRy5cvx5QpUzB79mxcvXoVffr0wYMHD6Q8165dQ5cuXRAbG4tZs2Zh0aJFMDAwgK+vL3766adS65KdnQ1vb2+cPn0aH3zwAVauXInx48fj9u3bxfqBiIiIiOifYsOGDbCwsEB0dDQ++OADTJo0CcOHD0e3bt1w4cIFvPHGGxgzZgwyMzPx119/oX///ujYsSMuXbqE8PBwrFu3Dl988UWlyw0NDcWIESNw+fJl9O/fH35+fnjy5AlsbW2xc+dOAAU/0kpOTsayZctU3Wy1x8tPEREREVG1eHl5yZ7r6uriu+++w+uvvy6lnThxAmvXrsXmzZvx9ttvS+menp7w8fHBjh07ZOlxcXE4fvw4evbsCQAYMWIEbG1tsX79enzzzTcAAHd3d/zxxx/Q0Pj/3+mMGTMGTZs2xbp16zBnzhwAwMiRIzFhwgRcvXoVLVu2lPJu27YNHh4esLa2LrFdOTk5CA4ORsuWLXH8+HHp0lQ9evTAwIEDsWTJEtkZIC9evMDw4cMRFhZWuQ4shZmZGRITE2X3+Bg3bhyaNm2KFStWYN26dbL8N2/eRHx8PBo3bgwA8PHxQefOnbFgwQIsXrwYAPDRRx/Bzs4OZ8+eha6uLgBg8uTJ6NGjB4KDgzFkyJAS63L9+nUkJCRgx44dGDZsmJQ+d+5clbSViIiIiEgdtW7dGp9++ikAYPbs2Zg/fz4sLCwwbtw4AAWfh8PDw3H58mX8/PPPsLW1xbfffguFQoGmTZvi3r17CA4Oxty5c2XfW8oTEBCA0aNHAwC++uorLF++HNHR0fDx8YG5uTkAwMrK6pW9pwbP1CAiIiKialm5ciUOHTqEQ4cOYdOmTfD09MT777+PXbt2SXl27NgBExMTvP7663j06JH0aN++PQwNDYtdUql58+bShAYAWFpaws3NDbdv35bSdHV1pS8GeXl5ePz4MQwNDeHm5oYLFy5I+d566y1oaWlh27ZtUtrVq1dx/fp1jBw5stR2nTt3DikpKZg8ebLsXhsDBgxA06ZNsW/fvmLrTJo0qSJdViGamprShEZ+fj6ePHmC3NxcdOjQQda+Qr6+vtKEBgB06tQJnTt3RmRkJICCy3UdPXoUI0aMwLNnz6R98PjxY3h7eyM+Pr7YZbUKmZiYAAAOHjyIzMxMlbWRiIiIiEidtWrVSvpfU1MTDRo0gLu7u5RW+AOplJQUxMbGomvXrlAoFNLy7t27IyMjA3/++WeVyzUwMICxsTFSUlKq2ox/HE5qEBEREVG1dOrUCV5eXvDy8oKfnx/27duH5s2bY+rUqcjOzgZQcD+GtLQ0WFlZwdLSUvbIyMgo9gHdzs6uWDlmZmay+2/k5+djyZIlaNKkCXR1dWFhYQFLS0tcvnxZdp8HCwsL9O3bV3YJqm3btkFLSwtvvfVWqe26c+cOAMDNza3YsqZNm0rLC2lpaeG1114rq6sqbcOGDWjVqhWUSiUaNGgAS0tL7Nu3r8T7WDRp0qRYmqurKxITEwEUnMkhhMCcOXOK7YN58+YBQKlflBwdHfHJJ59g7dq1sLCwgLe3N1auXMn7aRARERHRP5q2trbsuUKhkKUVTmDk5+dXaHsaGhoQQsjSXr4Ub2nlVrSMVwEvP0VEREREKqWhoQFPT08sW7YM8fHxaNGiBfLz82FlZYXNmzeXuI6lpaXsuaamZon5in4B+OqrrzBnzhy89957+Pzzz2Fubg4NDQ0EBQUV+8A/atQoBAYGIiYmBm3atMH27dvRt29fWFhYVLO1/6/omSOqsGnTJgQEBMDX1xczZsyAlZWVdG+PW7duVXp7hX0yffp0eHt7l5jHxcWl1PUXLVqEgIAA7NmzB7/88gs+/PBDhIWF4fTp0yqfzCEiIiIiqm+aNWuGnTt3QgghTXacPHkSRkZG0udlS0tLJCcnS+ukp6cjISGhUuUUns2dl5enoprXP5zUICIiIiKVy83NBQBkZGQAAJydnXH48GF0794denp6Kinjxx9/hKenZ7F7S6SmphabrPD19cWECROkS1D98ccfmD17dpnbt7e3B1Bwf48+ffrIlsXFxUnLa8qPP/4IJycn7Nq1S3YKe+FZFS+Lj48vlvbHH3/AwcEBAODk5ASg4FdfL98HpaLc3d3h7u6OTz/9FL///ju6d++O1atXV+nmh0RERERE/ySTJ0/G0qVL8cEHH2Dq1KmIi4vDvHnz8Mknn0g/furTpw8iIiLw5ptvwtTUFHPnzi31B12lsbe3h0KhwN69e9G/f3/o6enB0NCwJpqktnj5KSIiIiJSqZycHPzyyy/Q0dFBs2bNABTc6DsvLw+ff/55sfy5ublITU2tdDmamprFTt3esWNHifeFMDU1hbe3N7Zv346tW7dCR0cHvr6+ZW6/Q4cOsLKywurVq/HixQspff/+/YiNjcWAAQMqXefKKPxyU7SNZ86cwalTp0rMv3v3blnbo6OjcebMGfTr1w9AwY0Ee/fujTVr1sh+HVbo4cOHpdYlPT1dmqgq5O7uDg0NDVnfEBERERFVhIW+BZRayvIzqohSSwkLfdWdpV2Sxo0bIzIyEtHR0WjdujUmTpyIsWPHSjcaBwpuNu7h4YGBAwdiwIAB8PX1hbOzc6XLCQ0NxaxZs2BtbY2pU6equilqj2dqEBEREVG17N+/Hzdu3ABQcE+GLVu2ID4+HrNmzYKxsTEAwMPDAxMmTEBYWBhiYmLwxhtvQFtbG/Hx8dixYweWLVuGYcOGVarcgQMH4rPPPkNgYCC6deuGK1euYPPmzdIZCS8bOXIk3nnnHaxatQre3t4wNTUtc/va2tpYsGABAgMD4eHhgdGjR+PBgwdYtmwZHBwc8PHHH1eqviX57rvvcODAgWLpH330EQYOHIhdu3ZhyJAhGDBgABISErB69Wo0b95cOgOmKBcXF/To0QOTJk3CixcvsHTpUjRo0AAzZ86U8qxcuRI9evSAu7s7xo0bBycnJzx48ACnTp3Cn3/+iUuXLpVYz6NHj2Lq1KkYPnw4XF1dkZubi++//x6ampoYOnRotfuBiIiIiF4tdiZ2iJsah0eZj2qlPAt9C9iZFL9vX1mioqKKpRXer66ooj9C8vDwQHR0dKnbNDY2xtatW2Vp7777bqnbK/Tyj8DmzJmDOXPmlFrOPx0nNYiIiIioWubOnSv9r1Qq0bRpU4SHh2PChAmyfKtXr0b79u2xZs0a/Otf/4KWlhYcHBzwzjvvoHv37pUu91//+hf+/vtvbNmyBdu2bUO7du2wb98+zJo1q8T8gwYNgp6eHp49e4aRI0dWqIyAgADo6+tj/vz5CA4OhoGBAYYMGYIFCxaUOylSEeHh4aWWGxAQgPv372PNmjU4ePAgmjdvjk2bNmHHjh0lfsHy9/eHhoYGli5dipSUFHTq1AnffvstGjZsKOVp3rw5zp07h9DQUERERODx48ewsrJC27ZtZfvxZa1bt4a3tzd+/vln/PXXX9DX10fr1q2xf/9+dOnSpdr9QERERESvHjsTu0pPNBABgEKUNPVDRERERERERERERFQNWVlZSEhIgKOjI5TK2rvcFNVPFY0X3lODiIiIiIiIiIiIiIjqBU5qEBERERERERERERFRvcBJDSIiIiIiIiIiIiIiqhc4qUFERERERERERERERPUCJzWIiIiIiIiIiIiIiKhe0KrKSvn5+bh37x6MjIygUChUXSciIiIiIiIiIiIiqgeEEHj27BkaNWoEDQ3+hp5qXpUmNe7duwdbW1tV14WIiIiIiIiIiIiI6qG7d+/itddeq/gKfycBLx7VXIWK0rUADOxqpyyqcVWa1DAyMgIA3F0OGOuVkmlEGrDdpKr1Up0RaQV/i9alpLSKbqes9YrmeVl5ZZW27svrvZyvOn1c2W0V7tNy2mlyq+JVSJtdwrYq2KaSyilxe5VRWHYV47cybVcH1e6vspTVf0X6Vx36rEb7ASg3lsrrg1LrV9a4VtbrtDKKlKGKfVXhvi6pbbXtpf1WG7Gq8lisSj9WchxXtRp/PQLqEV/VVYHXZpoz5GNDeW2tr/u+uuNeafHwf/2R5ly8j9OcS8hPchV4n6/QPi8nLqV98X9lyeK+Mqrwfier/0vtLTFuXm6vqt+zVaWUzy018tlbVWpyXFejz6zVpTb7q5C6vgZKo8JYKHNfVKKcOtunNfS6eLk9JmEmJabXqJKOwaj4O1FVldQPhX2kim3Viop8Jq1LKvg8rHZjLVA7MfwCwJL/P2ZcIX8nAT+7AflZNVSpl2gogTfjKjWx0bt3b7Rp0wZLly6tuXpVU23W0cHBAUFBQQgKCqrxsspTpUmNwktOGesBxvqlZDI2BkpbVpuMjQv+6peTVtHtlLVe0TwvK6+s0tZ9eb2X81Wnjyu7rcJ9Wl47lZWpQgnbqmibSiinxO1VRmHZVY3fSrRdHVS7v8pSVv8V7V816LMa7Qeg/Fgqpw9KrV9Z45qq2lS0DBXsqwr3dUltq20v77daiFWVx2JV+rGS47iq1fjrEVCP+KquCrw2jYu+Z5f3/l2Ypz7u++qOe6XFw//1h3EJ/WKs6rH2n6gC7/MV2uflxKXxS68F44rEemnlFNlORRiX9P1AWaReL8dNaZ+91S2OSvvcUhOfvVWlJsd1NfrMWl1qs78KqetroDQqjIUy90UlyqmzfVpDr4ti7VGWkl6TSjoGo+LvRFVVYj9UsT51Gjvq/JpXwedhtRtrgVqN4UrdpuDFo9qb0AAKynrxqFKTGrt27YK2tnYNVqrioqKi4OnpiadPn8LU1FRKr4k6RkREICgoCKmpqbL0s2fPwsDAQKVlVVWVJjWIiIiIiIiIiIiIiP6pzM3N67oK5arNOlpaWtZaWeXhnVuIiIiIiIiIiIiIiIro3bu3dKklBwcHfPXVV3jvvfdgZGQEOzs7/Pvf/5byduvWDcHBwbL1Hz58CG1tbRw/fhwA8OLFC0yfPh2NGzeGgYEBOnfujKioKCn/nTt38Oabb8LMzAwGBgZo0aIFIiMjkZiYCE9PTwCAmZkZFAoFAgICitURAJKTkzFgwADo6enB0dERW7ZsgYODg+zyVIsXL4a7uzsMDAxga2uLyZMnIyMjA0DBGSGBgYFIS0uDQqGAQqFASEiI1AdFt5OUlITBgwfD0NAQxsbGGDFiBB48eCAtDwkJQZs2bfD999/DwcEBJiYmGDVqFJ49e1aV3SHDSQ0iIiIiIiIiIiIiojIsWrQIHTp0wMWLFzF58mRMmjQJcXFxAAA/Pz9s3boVQggp/7Zt29CoUSP07NkTADB16lScOnUKW7duxeXLlzF8+HD4+PggPj4eADBlyhS8ePECx48fx5UrV7BgwQIYGhrC1tYWO3fuBADExcUhOTkZy5YtK7GO/v7+uHfvHqKiorBz5078+9//RkpKiiyPhoYGli9fjmvXrmHDhg04evQoZs6cCaBgcmbp0qUwNjZGcnIykpOTMX369GLl5OfnY/DgwXjy5Al+/fVXHDp0CLdv38bIkSNl+W7duoXdu3dj79692Lt3L3799VfMnz+/Kt0vw8tPERERERERERERERGVoX///pg8eTIAIDg4GEuWLMGxY8fg5uaGESNGICgoCCdOnJAmMbZs2YLRo0dDoVAgKSkJ69evR1JSEho1agQAmD59Og4cOID169fjq6++QlJSEoYOHQp3d3cAgJOTk1R24WWmrKysZPfUKOrGjRs4fPgwzp49iw4dOgAA1q5diyZNmsjyFT2zw8HBAV988QUmTpyIVatWQUdHByYmJlAoFLCxsSm1L44cOYIrV64gISEBtra2AICNGzeiRYsWOHv2LDp27AigYPIjIiJCuon8mDFjcOTIEXz55Zfld3gZeKYGEREREREREREREVEZWrVqJf1feNC/8CwIS0tLvPHGG9i8eTMAICEhAadOnYKfnx8A4MqVK8jLy4OrqysMDQ2lx6+//opbt24BAD788EN88cUX6N69O+bNm4fLly9Xqn5xcXHQ0tJCu3btpDQXFxeYmZnJ8h0+fBh9+/ZF48aNYWRkhDFjxuDx48fIzMyscFmxsbGwtbWVJjQAoHnz5jA1NUVsbKyU5uDgIE1oAEDDhg2LnTlSFZzUICIiIiIiIiIiIiIqg7a2tuy5QqFAfn6+9NzPzw8//vgjcnJysGXLFri7u0tnXWRkZEBTUxPnz59HTEyM9IiNjZUuJfX+++/j9u3bGDNmDK5cuYIOHTpgxYoVKm1DYmIiBg4ciFatWmHnzp04f/48Vq5cCQDIzs5WaVlA+X1WVZzUICIiIiIiIiIiIiKqhsGDByMrKwsHDhzAli1bpLM0AKBt27bIy8tDSkoKXFxcZI+il3mytbXFxIkTsWvXLkybNg3/+c9/AAA6OjoAgLy8vFLLd3NzQ25uLi5evCil3bx5E0+fPpWenz9/Hvn5+Vi0aBG6dOkCV1dX3Lt3T7YdHR2dMssBgGbNmuHu3bu4e/eulHb9+nWkpqaiefPmZa6rCpzUICIiIiIiIiIiIiKqBgMDA/j6+mLOnDmIjY3F6NGjpWWurq7w8/ODv78/du3ahYSEBERHRyMsLAz79u0DUHCvi4MHDyIhIQEXLlzAsWPH0KxZMwCAvb09FAoF9u7di4cPHyIjI6NY+U2bNoWXlxfGjx+P6OhoXLx4EePHj4eenh4UCgWAgstR5eTkYMWKFbh9+za+//57rF69WrYdBwcHZGRk4MiRI3j06FGJl6Xy8vKCu7s7/Pz8cOHCBURHR8Pf3x8eHh7S/TxqEic1iIiIiIiIiIiIiKj26FoAGsraK09DWVBmDfPz88OlS5fQs2dP2NnZyZatX78e/v7+mDZtGtzc3ODr64uzZ89K+fLy8jBlyhQ0a9YMPj4+cHV1xapVqwAAjRs3RmhoKGbNmgVra2tMnTq1xPI3btwIa2tr9OrVC0OGDMG4ceNgZGQEpbKgr1u3bo3FixdjwYIFaNmyJTZv3oywsDDZNrp164aJEydi5MiRsLS0xMKFC4uVo1AosGfPHpiZmaFXr17w8vKCk5MTtm3bVu0+rAitWimFiIiIiIiIiIiIiAgADOyAN+OAF49qpzxdi4IyKyEqKkr6PzExsdjymJiYYmn9+vWDEKLE7WlrayM0NBShoaElLi/v/hlz5szBnDlzSq0jUHAj7sjISOn5n3/+KV3yqtDHH3+Mjz/+WLbemDFjZM/Dw8MRHh4uS3u5D+zs7LBnz55S6xsSEoKQkBBZWlBQEIKCgkpdp6KqNKlRuGPSn5eRKT0dqPgN02tOenrB38xy0iq6nbLWK5rnZeWVVdq6L6/3cr7q9HFlt1W4T8trZ1ZlqlDCtiraphLKKXF7lVFYdlXjtxJtVwfV7q+ylNV/RftXDfqsRvsBKD+WyumDUutX1rimqjYVLUMF+6rCfV1S22rby/utFmJV5bFYlX6s5DiuajX+egTUI76qqwKvzfSi79nlvX8X5qmP+766415p8fB//ZFeQr+kq3qs/SeqwPt8hfZ5OXGZ/tJrIb0isV5aOUW2UxHpJX0/yCpSr5fjprTP3uoWR6V9bqmJz96qUpPjuhp9Zq0utdlfhdT1NVAaFcZCmfuiEuXU2T6toddFsfZklZJek0o6BqPi70RVVWI/VLE+dRo76vyaV8HnYbUba4HaieEXBX9KO5hfKgO7Sk80UNmOHj2KjIwMuLu7Izk5GTNnzoSDgwN69epV11VTKYWodLQBt2/fhrOzc03Uh4iIiIiIiIiIiIjqmbt37+K1116TpWVlZSEhIQGOjo7SJZCo5hw8eBDTpk3D7du3YWRkhG7dumHp0qWwt7ev66pVSEXjpUpnapibmwMAkpKSYGJiUrUaEqlYeno6bG1tcffuXRgbG9d1dYgAMC5JPTEuSR0xLkkdMS5JHTEuSR0xLkldMTZrhxACz549Q6NGjeq6Kq88b29veHt713U1alyVJjU0NAruL25iYsIBgdSOsbEx45LUDuOS1BHjktQR45LUEeOS1BHjktQR45LUFWOz5vGH71SbNOq6AkRERERERERERERERBXBSQ0iIiIiIiIiIiIiIqoXqjSpoauri3nz5kFXV1fV9SGqMsYlqSPGJakjxiWpI8YlqSPGJakjxiWpI8YlqSvGJtE/k0IIIeq6EkRERERERERERET0z5KVlYWEhAQ4OjpCqVTWdXVIzVU0Xnj5KSIiIiIiIiIiIiKiaurduzeCgoLquhr/eJzUICIiIiIiIiIiIiKqoKioKCgUCqSmptZ1VV5JnNQgIiIiIiIiIiIiIlJD2dnZdV0FtcNJDSIiIiIiIiIiIiKiIl68eIEPP/wQVlZWUCqV6NGjB86ePYvExER4enoCAMzMzKBQKBAQECCtl5+fj5kzZ8Lc3Bw2NjYICQmRbTc1NRXvv/8+LC0tYWxsjD59+uDSpUvS8pCQELRp0wZr167lvUhKUaVJjZUrV8LBwQFKpRKdO3dGdHS0qutFr6iwsDB07NgRRkZGsLKygq+vL+Li4mR5evfuDYVCIXtMnDhRlicpKQkDBgyAvr4+rKysMGPGDOTm5sryREVFoV27dtDV1YWLiwsiIiJqunlUT4WEhBSLuaZNm0rLs7KyMGXKFDRo0ACGhoYYOnQoHjx4INsGY5JUzcHBoVhcKhQKTJkyBQDHSqodx48fx5tvvolGjRpBoVBg9+7dsuVCCMydOxcNGzaEnp4evLy8EB8fL8vz5MkT+Pn5wdjYGKamphg7diwyMjJkeS5fvoyePXtCqVTC1tYWCxcuLFaXHTt2oGnTplAqlXB3d0dkZKTK20v1Q1lxmZOTg+DgYLi7u8PAwACNGjWCv78/7t27J9tGSWPs/PnzZXkYl1QZ5Y2XAQEBxWLOx8dHlofjJalaeXFZ0mdNhUKBr7/+WsrD8ZJUrSLHhWrzOziPgb7aZs6ciZ07d2LDhg24cOECXFxc4O3tDSMjI+zcuRMAEBcXh+TkZCxbtkxab8OGDTAwMMCZM2ewcOFCfPbZZzh06JC0fPjw4UhJScH+/ftx/vx5tGvXDn379sWTJ0+kPDdv3sTOnTuxa9cuxMTE1Fqb6w1RSVu3bhU6Ojriu+++E9euXRPjxo0Tpqam4sGDB5XdFFEx3t7eYv369eLq1asiJiZG9O/fX9jZ2YmMjAwpj4eHhxg3bpxITk6WHmlpadLy3Nxc0bJlS+Hl5SUuXrwoIiMjhYWFhZg9e7aU5/bt20JfX1988skn4vr162LFihVCU1NTHDhwoFbbS/XDvHnzRIsWLWQx9/DhQ2n5xIkTha2trThy5Ig4d+6c6NKli+jWrZu0nDFJNSElJUUWk4cOHRIAxLFjx4QQHCupdkRGRor/+Z//Ebt27RIAxE8//SRbPn/+fGFiYiJ2794tLl26JAYNGiQcHR3F8+fPpTw+Pj6idevW4vTp0+K3334TLi4uYvTo0dLytLQ0YW1tLfz8/MTVq1fFDz/8IPT09MSaNWukPCdPnhSamppi4cKF4vr16+LTTz8V2tra4sqVKzXeB6R+yorL1NRU4eXlJbZt2yZu3LghTp06JTp16iTat28v24a9vb347LPPZGNo0c+jjEuqrPLGy3fffVf4+PjIYu7JkyeyPBwvSdXKi8ui8ZicnCy+++47oVAoxK1bt6Q8HC9J1SpyXKi2voPzGKhqPH/+XFy/fl32HaA+yMjIENra2mLz5s1SWnZ2tmjUqJFYuHChOHbsmAAgnj59KlvPw8ND9OjRQ5bWsWNHERwcLIQQ4rfffhPGxsYiKytLlsfZ2VkaG+fNmye0tbVFSkpKDbRMvVU0Xio9qdGpUycxZcoU6XleXp5o1KiRCAsLq3wticqRkpIiAIhff/1VSvPw8BAfffRRqetERkYKDQ0Ncf/+fSktPDxcGBsbixcvXgghhJg5c6Zo0aKFbL2RI0cKb29v1TaA/hHmzZsnWrduXeKy1NRUoa2tLXbs2CGlxcbGCgDi1KlTQgjGJNWOjz76SDg7O4v8/HwhBMdKqn0vHwzJz88XNjY24uuvv5bSUlNTha6urvjhhx+EEEJcv35dABBnz56V8uzfv18oFArx119/CSGEWLVqlTAzM5PiUgghgoODhZubm/R8xIgRYsCAAbL6dO7cWUyYMEGlbaT6p6SDdC+Ljo4WAMSdO3ekNHt7e7FkyZJS12FcUnWUNqkxePDgUtfheEk1rSLj5eDBg0WfPn1kaRwvqaa9fFyoNr+D8xioatTXSY1Lly4JACIxMVGW7uvrKwIDA8uc1Jg8ebIsbdCgQSIwMFAIIcS3334rNDQ0hIGBgeyhoaEhZs6cKYQoOA7l4uJSc41TYxWNl0pdfio7Oxvnz5+Hl5eXlKahoQEvLy+cOnWqeqeMEJUgLS0NAGBubi5L37x5MywsLNCyZUvMnj0bmZmZ0rJTp07B3d0d1tbWUpq3tzfS09Nx7do1KU/ROC7Mwzim0sTHx6NRo0ZwcnKCn58fkpKSAADnz59HTk6OLJ6aNm0KOzs7KZ4Yk1TTsrOzsWnTJrz33ntQKBRSOsdKqksJCQm4f/++LIZMTEzQuXNn2fhoamqKDh06SHm8vLygoaGBM2fOSHl69eoFHR0dKY+3tzfi4uLw9OlTKQ9jlaoqLS0NCoUCpqamsvT58+ejQYMGaNu2Lb7++mvZJSsYl1QToqKiYGVlBTc3N0yaNAmPHz+WlnG8pLr24MED7Nu3D2PHji22jOMl1aSXjwvV1ndwHgOl6tDW1pY9VygUyM/PBwBkZGSgYcOGiImJkT3i4uIwY8YMaR0DA4NarXN9o1WZzI8ePUJeXp5sUAAAa2tr3LhxQ6UVI8rPz0dQUBC6d++Oli1bSulvv/027O3t0ahRI1y+fBnBwcGIi4vDrl27AAD3798vMUYLl5WVJz09Hc+fP4eenl5NNo3qmc6dOyMiIgJubm5ITk5GaGgoevbsiatXr+L+/fvQ0dEpdiDE2tq63HgrXFZWHsYkVcTu3buRmpoquzEZx0qqa4VxVFIMFY0xKysr2XItLS2Ym5vL8jg6OhbbRuEyMzOzUmO1cBtEpcnKykJwcDBGjx4NY2NjKf3DDz9Eu3btYG5ujt9//x2zZ89GcnIyFi9eDIBxSarn4+ODt956C46Ojrh16xb+9a9/oV+/fjh16hQ0NTU5XlKd27BhA4yMjPDWW2/J0jleUk0q6bhQbX0Hf/r0KY+BvuKcnZ2ho6ODkydPwt7eHkDB/dnOnj2LoKAgabI2Ly+vUttt164d7t+/Dy0tLTg4OKi62q+MSk1qENWmKVOm4OrVqzhx4oQsffz48dL/7u7uaNiwIfr27Ytbt27B2dm5tqtJr4B+/fpJ/7dq1QqdO3eGvb09tm/fzoO6pBbWrVuHfv36oVGjRlIax0oiorLl5ORgxIgREEIgPDxctuyTTz6R/m/VqhV0dHQwYcIEhIWFQVdXt7arSq+AUaNGSf+7u7ujVatWcHZ2RlRUFPr27VuHNSMq8N1338HPzw9KpVKWzvGSalJpx4WIaoOBgQEmTZqEGTNmwNzcHHZ2dli4cCEyMzMxduxYZGZmQqFQYO/evejfvz/09PRgaGhY7na9vLzQtWtX+Pr6YuHChXB1dcW9e/ewb98+DBkyRHZWJpWuUpefsrCwgKamJh48eCBLf/DgAWxsbFRaMXq1TZ06FXv37sWxY8fw2muvlZm3c+fOAICbN28CAGxsbEqM0cJlZeUxNjbmQWoql6mpKVxdXXHz5k3Y2NggOzsbqampsjxFx0XGJNWkO3fu4PDhw3j//ffLzMexkmpbYRyV9bnRxsYGKSkpsuW5ubl48uSJSsZQfj6l0hROaNy5cweHDh2SnaVRks6dOyM3NxeJiYkAGJdU85ycnGBhYSF73+Z4SXXlt99+Q1xcXLmfNwGOl6Q6pR0Xqq3v4DwGSkDB5fWGDh2KMWPGoF27drh58yYOHjwIMzMzNG7cGKGhoZg1axasra0xderUCm1ToVAgMjISvXr1QmBgIFxdXTFq1CjcuXOn2JlBVLpKTWro6Oigffv2OHLkiJSWn5+PI0eOoGvXriqvHL16hBCYOnUqfvrpJxw9erTYaaoliYmJAQA0bNgQANC1a1dcuXJF9qG/8Mtq8+bNpTxF47gwD+OYKiIjIwO3bt1Cw4YN0b59e2hra8viKS4uDklJSVI8MSapJq1fvx5WVlYYMGBAmfk4VlJtc3R0hI2NjSyG0tPTcebMGdn4mJqaivPnz0t5jh49ivz8fGkirmvXrjh+/DhycnKkPIcOHYKbmxvMzMykPIxVqqjCCY34+HgcPnwYDRo0KHedmJgYaGhoSJf/YVxSTfvzzz/x+PFj2fs2x0uqK+vWrUP79u3RunXrcvNyvKTqKu+4UG19B+cxUAIApVKJ5cuX4+HDh8jKysKJEyfQsWNHafmcOXOQnJyM/Px8REREACi4R9bSpUtl29m9e7e0HACMjIywfPly/PXXX8jOzkZSUhI2bdoEW1tbAEBISIj0HZ5KUdk7kG/dulXo6uqKiIgIcf36dTF+/Hhhamoq7t+/X7VbmhMVMWnSJGFiYiKioqJEcnKy9MjMzBRCCHHz5k3x2WefiXPnzomEhASxZ88e4eTkJHr16iVtIzc3V7Rs2VK88cYbIiYmRhw4cEBYWlqK2bNnS3lu374t9PX1xYwZM0RsbKxYuXKl0NTUFAcOHKj1NpP6mzZtmoiKihIJCQni5MmTwsvLS1hYWIiUlBQhhBATJ04UdnZ24ujRo+LcuXOia9euomvXrtL6jEmqKXl5ecLOzk4EBwfL0jlWUm159uyZuHjxorh48aIAIBYvXiwuXrwo7ty5I4QQYv78+cLU1FTs2bNHXL58WQwePFg4OjqK58+fS9vw8fERbdu2FWfOnBEnTpwQTZo0EaNHj5aWp6amCmtrazFmzBhx9epVsXXrVqGvry/WrFkj5Tl58qTQ0tIS33zzjYiNjRXz5s0T2tra4sqVK7XXGaQ2yorL7OxsMWjQIPHaa6+JmJgY2efNFy9eCCGE+P3338WSJUtETEyMuHXrlti0aZOwtLQU/v7+UhmMS6qssuLy2bNnYvr06eLUqVMiISFBHD58WLRr1040adJEZGVlSdvgeEmqVt77uBBCpKWlCX19fREeHl5sfY6XVBPKOy4kRO19B+cxUNV4/vy5uH79uuw7AFFpKhovlZ7UEEKIFStWCDs7O6GjoyM6deokTp8+XaVKEr0MQImP9evXCyGESEpKEr169RLm5uZCV1dXuLi4iBkzZoi0tDTZdhITE0W/fv2Enp6esLCwENOmTRM5OTmyPMeOHRNt2rQROjo6wsnJSSqD6GUjR44UDRs2FDo6OqJx48Zi5MiR4ubNm9Ly58+fi8mTJwszMzOhr68vhgwZIpKTk2XbYExSTTh48KAAIOLi4mTpHCupthw7dqzE9+13331XCCFEfn6+mDNnjrC2tha6urqib9++xeL18ePHYvTo0cLQ0FAYGxuLwMBA8ezZM1meS5cuiR49eghdXV3RuHFjMX/+/GJ12b59u3B1dRU6OjqiRYsWYt++fTXWblJvZcVlQkJCqZ83jx07JoQQ4vz586Jz587CxMREKJVK0axZM/HVV1/JDi4LwbikyikrLjMzM8Ubb7whLC0thba2trC3txfjxo0rdtCM4yWpWnnv40IIsWbNGqGnpydSU1OLrc/xkmpCeceFhKjd7+A8Blp9nNSgyqhovCiEEKKGTgIhIiIiIiIiIiIioldUVlYWEhIS4OjoCKVSWdfVITVX0Xip1D01iIiIiIiIiIiIiIiI6gonNYiIiIiIiIiIiIiIqF7gpAYRERERERERERER1RjeAYEqoqJxwkkNIiIiIiIiIiIiIlI5bW1tAEBmZmYd14Tqg8I4KYyb0mjVRmWIiIiIiIiIiIiI6NWiqakJU1NTpKSkAAD09fWhUCjquFakboQQyMzMREpKCkxNTaGpqVlmfoXguT9EREREREREREREVAOEELh//z5SU1Pruiqk5kxNTWFjY1PuxBcnNYiIiIiIiIiIiIioRuXl5SEnJ6euq0FqSltbu9wzNApxUoOIiIiIqJ6JiIhAUFAQf+1GRERERESvHN4onIiIiIhqXUBAABQKRbHHzZs367pqFeLg4ACFQoHTp0/L0oOCgtC7d++6qRQREREREdErgJMaRERERFQnfHx8kJycLHs4OjoWy5ednV0HtSufUqlEcHBwXVdDpXg5ACIiIiIiUnec1CAiIiKiOqGrqwsbGxvZQ1NTE71798bUqVMRFBQECwsLeHt7AwAWL14Md3d3GBgYwNbWFpMnT0ZGRoa0vYiICJiammLv3r1wc3ODvr4+hg0bhszMTGzYsAEODg4wMzPDhx9+iLy8PGm9Fy9eYPr06WjcuDEMDAzQuXNnREVFlVv/8ePH4/Tp04iMjCw1T+/evREUFCRL8/X1RUBAgPTcwcEBX3zxBfz9/WFoaAh7e3v897//xcOHDzF48GAYGhqiVatWOHfuXLHt7969G02aNIFSqYS3tzfu3r0rW75nzx60a9cOSqUSTk5OCA0NRW5urrRcoVAgPDwcgwYNgoGBAb788sty201ERERERFSXOKlBRERERGpnw4YN0NHRwcmTJ7F69WoAgIaGBpYvX45r165hw4YNOHr0KGbOnClbLzMzE8uXL8fWrVtx4MABREVFYciQIYiMjERkZCS+//57rFmzBj/++KO0ztSpU3Hq1Cls3boVly9fxvDhw+Hj44P4+Pgy6+jo6IiJEydi9uzZyM/Pr1Z7lyxZgu7du+PixYsYMGAAxowZA39/f7zzzju4cOECnJ2d4e/vj6K3w8vMzMSXX36JjRs34uTJk0hNTcWoUaOk5b/99hv8/f3x0Ucf4fr161izZg0iIiKKTVyEhIRgyJAhuHLlCt57771qtYOIiIiIiKimcVKDiIiIiOrE3r17YWhoKD2GDx8uLWvSpAkWLlwINzc3uLm5ASi4X4WnpyccHBzQp08ffPHFF9i+fbtsmzk5OQgPD0fbtm3Rq1cvDBs2DCdOnMC6devQvHlzDBw4EJ6enjh27BgAICkpCevXr8eOHTvQs2dPODs7Y/r06ejRowfWr19fbhs+/fRTJCQkYPPmzdXqi/79+2PChAlo0qQJ5s6di/T0dHTs2BHDhw+Hq6srgoODERsbiwcPHsja+u2336Jr165o3749NmzYgN9//x3R0dEAgNDQUMyaNQvvvvsunJyc8Prrr+Pzzz/HmjVrZGW//fbbCAwMhJOTE+zs7KrVDiIiIiIiopqmVdcVICIiIqJXk6enJ8LDw6XnBgYG0v/t27cvlv/w4cMICwvDjRs3kJ6ejtzcXGRlZSEzMxP6+voAAH19fTg7O0vrWFtbw8HBAYaGhrK0lJQUAMCVK1eQl5cHV1dXWVkvXrxAgwYNym2DpaUlpk+fjrlz52LkyJEVbHlxrVq1ktUPANzd3YulpaSkwMbGBgCgpaWFjh07SnmaNm0KU1NTxMbGolOnTrh06RJOnjwpOzMjLy+vWJ916NChyvUmIiIiIiKqbZzUICIiIqI6YWBgABcXl1KXFZWYmIiBAwdi0qRJ+PLLL2Fubo4TJ05g7NixyM7Olg7Qa2try9ZTKBQlphVeLiojIwOampo4f/48NDU1ZfmKToSU5ZNPPsGqVauwatWqYss0NDRkl4wCSr4Zd9E6KhSKUtMqc5mrjIwMhIaG4q233iq2TKlUSv+/3NdERERERETqjJMaRERERKT2zp8/j/z8fCxatAgaGgVXUH350lNV0bZtW+Tl5SElJQU9e/as0jYMDQ0xZ84chISEYNCgQbJllpaWSE5Olp7n5eXh6tWr8PT0rFa9ASA3Nxfnzp1Dp06dAABxcXFITU1Fs2bNAADt2rVDXFxcqRNHRERERERE9RHvqUFEREREas/FxQU5OTlYsWIFbt++je+//166gXh1uLq6ws/PD/7+/ti1axcSEhIQHR2NsLAw7Nu3r8LbGT9+PExMTLBlyxZZep8+fbBv3z7s27cPN27cwKRJk5CamlrtegMFZ3J88MEHOHPmDM6fP4+AgAB06dJFmuSYO3cuNm7ciNDQUFy7dg2xsbHYunUrPv30U5WUT0REREREVBc4qUFEREREaq9169ZYvHgxFixYgJYtW2Lz5s0ICwtTybbXr18Pf39/TJs2DW5ubvD19cXZs2crddNsbW1tfP7558jKypKlv/fee3j33Xfh7+8PDw8PODk5qeQsDaDg/iHBwcF4++230b17dxgaGmLbtm3Scm9vb+zduxe//PILOnbsiC5dumDJkiWwt7dXSflERERERER1QSFevsgvERERERERERERERGRGuKZGkREREREREREREREVC9wUoOIiIiIiIiIiIiIiOoFTmoQEREREREREREREVG9wEkNIiIiIiIiIiIiIiKqFzipQURERERERERERERE9QInNYiIiIiIiIiIiIiIqF7gpAYREREREREREREREdULnNQgIiIiIiIiIiIiIqJ6gZMaRERERERERERERERUL3BSg4iIiIiIiIiIiIiI6gVOahARERERERERERERUb3ASQ0iIiIiIiIiIiIiIqoX/heIL9FNyXR4xAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -42914,11 +42952,7 @@ { "data": { "text/html": [ - "\n", - "\n", - "
\n", - "
\n", - "
\n", + "
\n", "\n", - "\n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n" + "
" ], "text/plain": [ " attack investigation mount \\\n", @@ -43178,11 +43070,7 @@ { "data": { "text/html": [ - "\n", - "\n", - "
\n", - "
\n", - "
\n", + "
\n", "\n", - "\n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n" + "
" ], "text/plain": [ " Behavior Percentage Frames\n", @@ -43569,7 +43315,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.13" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/projects/behavior/behavior_videos.ipynb b/projects/behavior/behavior_videos.ipynb index a2d5505d15..e59372b336 100644 --- a/projects/behavior/behavior_videos.ipynb +++ b/projects/behavior/behavior_videos.ipynb @@ -1,1084 +1,286 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "execution": {}, - "pycharm": { - "name": "#%% md\n" - }, - "id": "L5lTvcqYUEbw" - }, - "source": [ - "# Overview videos\n", - "\n" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "execution": {}, + "id": "view-in-github" + }, + "source": [ + "\"Open   \"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {}, + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "# Overview videos\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {}, + "pycharm": { + "name": "#%%\n" }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "cellView": "form", - "execution": {}, - "pycharm": { - "name": "#%%\n" - }, - "tags": [ - "remove-input" - ], - "id": "fq2-1jFuUEbz", - "outputId": "874c2352-40b2-4a75-a5d2-ed67fcf63845", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 583, - "referenced_widgets": [ - "ea116c5d75504bf6bfc8456c3c235632", - "0d6d99dcb7aa411c81ab9a3cfbcf9545", - "0abe74cad1f948ce9b3e45155e3a1df4", - "65a7fb73ede0482eb9de1f64812b24ed", - "20836d7c6d764c61acf33919f2302f65", - "7f9e41c0dc0a409caf6c8eaafb2be07f" - ] - } + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "285bdada3efd4136aa003116d4e41c29", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'})" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "ea116c5d75504bf6bfc8456c3c235632" - } - }, - "metadata": {} - } - ], - "source": [ - "# @title Video: IBL Behavior\n", - "from ipywidgets import widgets\n", - "from IPython.display import YouTubeVideo\n", - "from IPython.display import IFrame\n", - "from IPython.display import display\n", - "\n", - "\n", - "class PlayVideo(IFrame):\n", - " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", - " self.id = id\n", - " if source == 'Bilibili':\n", - " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", - " elif source == 'Osf':\n", - " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", - " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", - "\n", - "\n", - "def display_videos(video_ids, W=400, H=300, fs=1):\n", - " tab_contents = []\n", - " for i, video_id in enumerate(video_ids):\n", - " out = widgets.Output()\n", - " with out:\n", - " if video_ids[i][0] == 'Youtube':\n", - " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", - " height=H, fs=fs, rel=0)\n", - " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", - " else:\n", - " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", - " height=H, fs=fs, autoplay=False)\n", - " if video_ids[i][0] == 'Bilibili':\n", - " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", - " elif video_ids[i][0] == 'Osf':\n", - " print(f'Video available at https://osf.io/{video.id}')\n", - " display(video)\n", - " tab_contents.append(out)\n", - " return tab_contents\n", - "\n", - "\n", - "video_ids = [('Youtube', 'NofrFH8FRZU'), ('Bilibili', 'BV1oj411o7U6')]\n", - "tab_contents = display_videos(video_ids, W=854, H=480)\n", - "tabs = widgets.Tab()\n", - "tabs.children = tab_contents\n", - "for i in range(len(tab_contents)):\n", - " tabs.set_title(i, video_ids[i][0])\n", - "display(tabs)" + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Video: IBL Behavior\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == 'Bilibili':\n", + " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", + " elif source == 'Osf':\n", + " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == 'Youtube':\n", + " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", + " height=H, fs=fs, rel=0)\n", + " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", + " else:\n", + " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", + " height=H, fs=fs, autoplay=False)\n", + " if video_ids[i][0] == 'Bilibili':\n", + " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", + " elif video_ids[i][0] == 'Osf':\n", + " print(f'Video available at https://osf.io/{video.id}')\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', 'NofrFH8FRZU'), ('Bilibili', 'BV1oj411o7U6')]\n", + "tab_contents = display_videos(video_ids, W=854, H=480)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {}, + "pycharm": { + "name": "#%%\n" }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "cellView": "form", - "execution": {}, - "pycharm": { - "name": "#%%\n" - }, - "tags": [ - "remove-input" - ], - "id": "0tdl5NMSUEb3", - "outputId": "c365a0b9-3a51-46c5-cc03-670a24cc6abe", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 583, - "referenced_widgets": [ - "f2e9ddd8656a436a82514203d0922b37", - "aea235525bd64fc391250c9a55f87359", - "f118b3318a104b6997c2c431e4fe1d59", - "6881a1932e2d4c4c9ebecd90276e6d0d", - "bd40292dd2b34696b901c96aef0d928c", - "24b62d38fc6d466a8a44fb63daae9481" - ] - } + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d554571a98348cda3c3555c9cbd24d8", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'})" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "f2e9ddd8656a436a82514203d0922b37" - } - }, - "metadata": {} - } - ], - "source": [ - "# @title Video: Caltech Mouse Social Behavior\n", - "from ipywidgets import widgets\n", - "from IPython.display import YouTubeVideo\n", - "from IPython.display import IFrame\n", - "from IPython.display import display\n", - "\n", - "\n", - "class PlayVideo(IFrame):\n", - " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", - " self.id = id\n", - " if source == 'Bilibili':\n", - " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", - " elif source == 'Osf':\n", - " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", - " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", - "\n", - "\n", - "def display_videos(video_ids, W=400, H=300, fs=1):\n", - " tab_contents = []\n", - " for i, video_id in enumerate(video_ids):\n", - " out = widgets.Output()\n", - " with out:\n", - " if video_ids[i][0] == 'Youtube':\n", - " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", - " height=H, fs=fs, rel=0)\n", - " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", - " else:\n", - " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", - " height=H, fs=fs, autoplay=False)\n", - " if video_ids[i][0] == 'Bilibili':\n", - " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", - " elif video_ids[i][0] == 'Osf':\n", - " print(f'Video available at https://osf.io/{video.id}')\n", - " display(video)\n", - " tab_contents.append(out)\n", - " return tab_contents\n", - "\n", - "\n", - "video_ids = [('Youtube', 'tDmhmasjPeM'), ('Bilibili', 'BV1bv411J7Y2')]\n", - "tab_contents = display_videos(video_ids, W=854, H=480)\n", - "tabs = widgets.Tab()\n", - "tabs.children = tab_contents\n", - "for i in range(len(tab_contents)):\n", - " tabs.set_title(i, video_ids[i][0])\n", - "display(tabs)" + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Video: Caltech Mouse Social Behavior\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == 'Bilibili':\n", + " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", + " elif source == 'Osf':\n", + " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == 'Youtube':\n", + " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", + " height=H, fs=fs, rel=0)\n", + " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", + " else:\n", + " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", + " height=H, fs=fs, autoplay=False)\n", + " if video_ids[i][0] == 'Bilibili':\n", + " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", + " elif video_ids[i][0] == 'Osf':\n", + " print(f'Video available at https://osf.io/{video.id}')\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', 'tDmhmasjPeM'), ('Bilibili', 'BV1bv411J7Y2')]\n", + "tab_contents = display_videos(video_ids, W=854, H=480)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "cellView": "form", - "execution": {}, - "id": "qBrWnQ1VUEb4", - "outputId": "ac28a645-9c01-4e7e-b92b-6f0210cde797", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 583, - "referenced_widgets": [ - "65f0a4d4bf514e47af861253f29da995", - "bc868c47cf454c7f808f055fe1e93853", - "03aad6c4b73a4093ad0a4705c10b18b7", - "195ccb998a3e4be1b2067fd5a9692b2a", - "26e7fe6ad7984163a724806c3e9e3052", - "c2146b4385fe4c288ec03ba3b855d475" - ] - } + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5a99d4492f114325acf18540f13918a7", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'})" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "65f0a4d4bf514e47af861253f29da995" - } - }, - "metadata": {} - } - ], - "source": [ - "# @title Video: Bayes heuristics\n", - "from ipywidgets import widgets\n", - "from IPython.display import YouTubeVideo\n", - "from IPython.display import IFrame\n", - "from IPython.display import display\n", - "\n", - "\n", - "class PlayVideo(IFrame):\n", - " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", - " self.id = id\n", - " if source == 'Bilibili':\n", - " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", - " elif source == 'Osf':\n", - " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", - " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", - "\n", - "\n", - "def display_videos(video_ids, W=400, H=300, fs=1):\n", - " tab_contents = []\n", - " for i, video_id in enumerate(video_ids):\n", - " out = widgets.Output()\n", - " with out:\n", - " if video_ids[i][0] == 'Youtube':\n", - " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", - " height=H, fs=fs, rel=0)\n", - " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", - " else:\n", - " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", - " height=H, fs=fs, autoplay=False)\n", - " if video_ids[i][0] == 'Bilibili':\n", - " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", - " elif video_ids[i][0] == 'Osf':\n", - " print(f'Video available at https://osf.io/{video.id}')\n", - " display(video)\n", - " tab_contents.append(out)\n", - " return tab_contents\n", - "\n", - "\n", - "video_ids = [('Youtube', 'NYzgpUtBhPM'), ('Bilibili', 'BV1RV4y187G5')]\n", - "tab_contents = display_videos(video_ids, W=854, H=480)\n", - "tabs = widgets.Tab()\n", - "tabs.children = tab_contents\n", - "for i in range(len(tab_contents)):\n", - " tabs.set_title(i, video_ids[i][0])\n", - "display(tabs)" + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "colab": { - "name": "behavior_videos", - "provenance": [], - "toc_visible": true, - "include_colab_link": true - }, - "kernel": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.17" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "ea116c5d75504bf6bfc8456c3c235632": { - "model_module": "@jupyter-widgets/controls", - "model_name": "TabModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "TabModel", - "_titles": { - "0": "Youtube", - "1": "Bilibili" - }, - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TabView", - "box_style": "", - "children": [ - "IPY_MODEL_0d6d99dcb7aa411c81ab9a3cfbcf9545", - "IPY_MODEL_0abe74cad1f948ce9b3e45155e3a1df4" - ], - "layout": "IPY_MODEL_65a7fb73ede0482eb9de1f64812b24ed", - "selected_index": 0 - } - }, - "0d6d99dcb7aa411c81ab9a3cfbcf9545": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_20836d7c6d764c61acf33919f2302f65", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://youtube.com/watch?v=NofrFH8FRZU\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "\n \n ", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAoICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIChALCAgOCggIDRUNDhERExMTCAsWGBYSGBASExIBBQUFCAcIDQgIDxINDw0SEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISHhISEhISEv/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAEAAgIDAQEAAAAAAAAAAAAABgcFCAIDBAEJ/8QAVxAAAQMDAQMGCQYKBQoEBwAAAQACAwQFERIGITEHExZBktIIFBUiUVJhcZMyU1SBsdEXGDZVcpGVodPUI0K1w/AJJDNDYnSCtMHhdXaEsyU0N2VzpPH/xAAaAQEBAAMBAQAAAAAAAAAAAAAAAQIDBAUG/8QAKBEBAAMAAQQABgIDAQAAAAAAAAECEQMEEiExEyIyQVFhFHFCgbEF/9oADAMBAAIRAxEAPwDTJERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQYBFn+ik/rw9p/cTopP68Paf3EGARZ/opP68Paf3E6KT+vD2n9xBgEWf6KT+vD2n9xOik/rw9p/cQTNERZMRERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHVPUsjxzkjGZzjW9rc4441HfxC6vKMH0iD4sfeUf2940/ul/u1F1NVZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZHlGD6RB8WPvJ5Rg+kQfFj7yrdE0xZAuEJ/wBfD8WP716lWNN8tn6TftCs4oCIiqCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgiu3vGn90v92oupRt7xp/dL/dqLrFkIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOym+Wz9Jv2hWcVWNN8tn6TftCs4qwkiIiqCIiAiLqmkxuBGfb1fVlSZxYjXKSQN4n/usXV3fBw0fWVwuUTn5LX+Z1ucdx9xG76gsZoY3iHPOd+Dj7crXN99Nnbnt6Jb0/Po9g61zp7y7VvJx6D1e7cvHNC3dpAAdvGsf9R1ryyxEb2gOA46Tn/qpsmJRT3RjjpJxngeo+/0FZBV9z+PSPd/3Xvor3JGMag4dWoZws4t+WEwmSLEW6+MkOl/mO9P9U/csuFkgiIqgiIgIiICIiAiIgiu3vGn90v92oupRt7xp/dL/dqLrFkIiICIiAiIgIiIN7OUim2X2V2esFxrNkqC4vuFPSRPLI4YpOddQsnfK9z2HWXEHPtKgdh5Q+Tu8Sx0Vx2VNnbO4MbWRkRwQuPyXTT0U0csbM4GrQ5oz52G5IzvhufkXsf/AOj/ALJWmSC8vCq5CTsnPBV0Uz6qy1ziynlk0mamqNJk8WmewBkocxrnskAGQx4I8zU6jVultHVOuPIhT1FUA+WkjpIoHY+Q2iv7bXARnO8Uo0Z9pVEcjvLlUbK26amtlrtj6+orHzyXWsiM07aZ0EMUdJG2PQ8NY+OSQF0jm/07xoBJcQqqrpZISGyxyROIDg2RjmEtPBwDgCQcHf7FneTTZOS+3ahtMEscEtdNzLJZQ4xsOhz8uDAXEYYeHpC3N5E9tanlDsG0du2loaYinpo30lXFTui31MVXomiEpc1s8MlOxzZGHfzgBG7zqJ8CLbiptu0lPbYI6Z8F7nghq3zRvfNGymjqpGGme2RojcTI7JcHcBwQVnyw7DybN3qsss07KmSjFNrnjY5jHmppKerw1riSA0Thu/jpzuURW33hc8vdzobvtBsvFTWt1A+kiozNJTTureauFqp5JnCUVAZzgNS/SdG7Dcg430xyL8tUuylHVR0Fqt09xqagSNudbGZZIIBG1ni8bIwyTGoF+ed05d8k8UFXVVJJFpEsUkeoam84xzNTfWbqG8e0LpW+ng38oNVyg0l7s+1FBST0vi0T4Zo6V8QIldLG/SXuc3no3CJ7JI9LmEE5JwRqV4O1jpLltTZKG5aTRVFa1srHuDWTOax8kNO4ni2WZkcWOJ53A3lBBo6WRzHSNjkdGw4fI1jixp9DnAYafeulbweEbyybT7JXZ9NQWmhptnoWU7LdMbfK+kmYYWF8bp4ZWxxStlEzeZbzZa1rNxBD3ajbS3ao2kvclUYYY6271kY5mAOZB4xUOZEGxh7nOawvI3EkjPEoI5TwPkc1kbHSPccNYxpc5x9DWtGSVwe0gkEEEEggjBBG4gg8Ct4+Umvq+Tujtlj2Pspq6yalFTdbsbbUVbpna3Rt1PhGDI+SOd2hziI2BgDfOBWD5Ybe7bDYKXaa5WnydtJZZuaqHillo3VVMyWESNLaga5KbmKpkzcl2mSGQNIDntIUT4P/ACM1G177g2nraeibbo4JJTPHJIXifng0Rtj3buYdnJHygqtW8v8Ak+Nuamrtlws8kdM2mskEb6SRkbxUSGuqrhUy+MvMhbIA84aGtbgcc8Vrfyy8u1y2qpKeiuFNbIIqap8aY6hp54ZDJzUkWHulqJAWaZHbgBvA3oKqREQEREBERAREQdlN8tn6TftCs4qsab5bP0m/aFZxVhJERFUEREHVUTBjSScADiovVVmtxJDtx3Z3Z+obgFla+J87iGBxHDd6fQuyk2aLhqldpA4NaQ4uPt3LRa/lvpScYAvkkIDiSBncXHSPbuXF0DmnV+rH+MqRVLea8yJjgQDk+bn0bzjgV4zTPccuaG9eRuP6gsNZdjH0zm5Ikc4Z4e0+jC+z0W7U1wOPRuz7Ny76ylf1sDurUWgEj9IY1fWvLFrjOBkD1T5w92PR7FYnys1yHinZvwQRj07jn0b10uZx6lII6cyNHmjB4ccgj0fcuiezuAyQdOcdad/lPhTmsRE4E4/es/s7dMEQyHdwYTxB9HuWEmpdOHD9X+OK+EecHcM8PYtkS1TCfovJaqjnYmuPyh5rveOtetbGAiIqgiIgIiICIiCK7e8af3S/3ai6lG3vGn90v92ousWQiIgIiICIiAiIg3N8Nz8i9j//AEf9lBaq7B7D3G+1LKW1UNRVyPe1hdHG7mYdX9eonI5uCMDeXPICuey+GDtBSU1NSRUlkMdLBDTxl9LWl5ZDG2NpeRXAFxDRnAG/qC6NoPC/2mqonRROttA527nqOicZQMjIb45LMwZGRnTkZ3YOCgsfws7nTbMbG2fYemmjlrHx0z60RgACGCQ1M1Q5mcxGor/PaDncyXPAE9Oy1HDsRye0W1FttlLcL5cnwc5camDxhluiqny6HAAgwxMbHHDuc3VNMwu1ABi1HvN0nrZ5aqrnmqamd2uaeeR0ssj8AanyPJc44AG/qAVuci/hHXbZmhNrjho7hbgZHRU1ayQmnMznPlbDJE9v9E573OLHBwy52NOTkNk/A82/v+0lJtDUXuaaqp2w07LdIaKCmgMrm1wqo6eSngYJ3N004cMuLctzjVv1U8FF4btns8XEAePacn0uhla0e8kgfWpXSeFhtEy6x3Fz6N0EcDqYWlkMkVsEUjonPc2NsvOeMAxN0yve4ty4DzXOaaz272+nul6dfY6ektdXz0E8TbbG6COGam0GGdoc5x8Yyxji/dlwzgcEE+8OOjki24uz5GOYyojts0DiMCWJtspKcvZ6W87BMz3xuVn8jtrptmOTx22lLa4LlfKmWXRPVxc+y3xsuMtua6No3xxNETpHObpc50wDnaQAIDtd4U90utqnttdbLNNNUUk1G64GmlFQyKoiMMskTee0xVBBJ1Nw3OPMwMLA8iHhCXbZWnkoYGUtfbpHukFHXNkcIHvBEhppI3tdG150lzHamZDiGtLnOIbM+BPyl3/aSpu096qJKmhiiiFK8UVPT0zKh0jjJFHLBC0yPbHp81znEAgnjk6K2y3VT6lsFNBUvrGOeWw08cj6lr6cOkkLWRAvDo2xvcSPkhhO7Cut/hXbQm6Utwa6jipqVksTbPBDJFbZI5gA8zMEnOyTDSwteX+YWnSA18jXxW88tdbLtNBtTTUVtoK6ma5scNNTu8WkMjKiOWSoY5+Zp3tqZA5+Wk+adxGUFveDt4S11q66g2evdPHfKS4TRW/nXwh1a1s7mxB9RgGOsga0kv5xustDnF5wQYh4Ruz1Bsjt7Ry2+Pm6KKa13l9JGctp3NqzJNBCCfNYfF9bWcGiYAYAAGWd4Yl20ukZZrBHXvBa6tbS1OrSc8GGo1asY+U8jI4Y3LX7avaCqutbUXC4VD6qsqn85PPJpDnuDQxoDWANYxrWta1jQGta1oAAACDeLwwOUPaOyi23jZ24DyBW0kYkkioqKrijqHPdLDUOnmhe4RVEM0Ibv05gPW7frPtD4Qm1N3oqy31Nw8ZpKinkZVxsttA3/NzgSOc+GmD4mDI84EYyN658kXhF3vZyl8nwupbhbhuZRXGJ8zIGuJMjKeSORkkbHZ+Q4uYDkhoJdnKcoXhOXO626rtUVts1toa6PmqhtHTSid7SQXf0jpdAzjjoyMnegsf/ACbe+XaZgxrdS27S3O8+dXA/Vlzf1haj1ELo3vjkY6OSNzmSMe0tex7SWuY9rhlrgQQQeBClfJLyi1+zFxbcrXJG2Xm3QyxTsMlPUwOLXOhnY1zXFmpjHZa5rgWDBClPLly4VO1cMENRbLXQiKfxl8tHFKKiebm3xEyzPkOqPS/5JGcged1IKnREQEREBERAREQdlN8tn6TftCs4qsab5bP0m/aFZxVhJERFUF9AzuPDrXxcmwuc1xbwbjPt1HGB+9Y2nIZUjZiHuoYGPAiY4N6nFoyck5IxxJ3rLTWdkXn/ANI4DcdOkgj0EAEKS8m+w3OQxzSAN163+c3iM4bx39WcqYVezDSNEbHOcBvwNw6gTnc37V5l+by9zj6XY1R93pGHcwTNOctDj5pGOrdkH6157ZRTZDHNLmHix4G8HrBAyXfWrsi5PnF3OysLyN4b/V9hcOJH6Rx7FkbLsa4PL3MawA8HAZwN+RqO7rSOXwznpFOT7MuIBIc2Mf7OSOIxpHE+4Lo6Fl7dxGd3HfuJ3buoq9X2kjVpZrydIOc5ONwBHAYxvXmptmy3MhHytxaMZbj5OPRv4j3rH4uNn8aJUnT2N0AIeM78jcB1YXbLRAswRjdwO/j171Y9/shBJO73jqOf1KFXSAROxvAO7OT5p6jv6vvV+Jspbh7YV9tDadLXOAGk4/7nCi7WEbsAjO44VoXCnyA1wBD93szvA9xUIuFLzRIII3kfWM4x6T9y6+Kzyeo48nXr2ak81zfRg/8ARZhYewMwXcdw4+wrMLpr6cdhERZMRERAREQEREEV2940/ul/u1F1KNveNP7pf7tRdYshERAREQEREBFsf4JNOx+zfKS58bHuZs65zHOa1xYfEL2csJGWncOHoCzHgeXI0Gyu3Fyiip5Kmggp6mn8YhbMwSRU1Y9upruLcgZGQg1YRbe0G08O2mw+1Fy2htFrpKiyx4tt3pKZtLzlU+LXFSte5zn87z/i7HMDg14rYRp1DJimwNMw8j+1MpjYZG7QU7WyFjS9o53Z3c1+Mgec7tH0oNbVkdn7DV3GUwW+iq66ZsbpXQ0dPNUytiaWtdIY4GucIwXtBdjA1D0rHLZD/J5flTWf+A1v/N29BreivKx+CvtHV0TKtsVDDNJT+Mx2yprBDc3xOGY9UDmc3A52R5ssjC0nDtJBAqW17L1tVcW2iCjnkuT6h1IKPQWztqI3ObLHI1+OaLCx+ouwGBji4gAkBh1krHYKyu57xGiq6zxeMzVHitNNUcxCOMs3MtPNRjHynYCtfaXwab5RUdVVtktVc+gj52uobfXipr6RgaXPM0HNtGWhriWtc4nScAqWeAu0npeACSdnZwAASSTzgAAG8n2INakV5R+CvtI6hdWcxRCdkHjBtRqwbpzZGR/m7WGMSEbwwyB3VjV5qrfkv2Arto611DbGROljp31c75546eGCmifHG+eSSQ/JD5ohhocfP4YBICKord298Hy72m2S3jnrXc6CneGVM1prfG/Fsua3VKHRsy0OewHRqLdQJAGSIptHyb11DZLbtBIaeS23WR8NPLBKZHRzM5zVDUMLRzcmYZxgE74X/WENRS7ZHk9rbnbLtd4OYioLLHG+rmqZDEHum183BT+aRNOS1rdGRvli9cKZ8tLbsNm9jjcqa0w280dR5JloRMK2eLm6PnHXEyPLTJjmSNAG8v8AYgp5FbGwPIBeLvQMuhdb7Xb5iBTVV4rBRR1OdQBgaGPeWnScOcGh3FpKjXKvyZXPZioigusDWNqWGSkqoJGzUlXG3TrdBM3iW62Za4NcNbCRhzSQhiK4NnvByv1fFaainipDTXajlr46l9QWQUlNEKcl9dIWYhc7xmMNY3W52mQgYY4it9tdnpbTcKu21D4ZZqOZ0EklO90kD3N/rRPc1pcw53EgIMOiIgIiICIiDspvls/Sb9oVnFVjTfLZ+k37QrOKsJIiIqgpHsbb+fyPTMxn62uO728VHFLeT2bTzxyAWOifv44JLHY9u9a+X6ZbuH64X/Z6ZsbGMY3AbG1rcjhjAycKVWugDm4B+VjUcDeR9SimylSJo2FuN40593FTyyNx5v8A0Xh/5eX1XFnb/p6xZw7DABjGSMDq4DcuQswkOjGWAecSBp3Y83HBx9PUsvSRAjGSRjHHBx7wu+qaGs0t3YHAbl11rGOa953ENuls44A0DcGtGBu3Hf8AdhYiqoNI3AYB+3/H71M67c0+4e7CjtzkxrzjG7dncSfux+9abN9JmYVztbSjDtw4kk/VuCqDahp5zBGBkD6juVv7XTbyPTv3/wCOCrK70+XPcd+kZBWFZZcsbCI1LcdZ3ZweHDB/Xv8A3LA7SQ6y0gZcckEcADv/AF5OFla6pxuHAOcT6cuIB/cP3rzUrBI52d+7U32AfK3f44r0KPD6ifOMRZ4y0PJG7IH1ZGB7lkF2zU4YW4xh4c4jOOoObu9i6l2V9POtAiIsmAiIgIiICIiCK7e8af3S/wB2oupRt7xp/dL/AHai6xZCIiAiIgIiINlPBD/JnlM/8uO/s+9rLeB7dXUOyO3lYyKCZ9LTQTthqohPTyOjpqxwZNCSBJGcb29apvkm5Un2C27SW5tEyqG0VuNvfK6cxGlBgrYOdawRuEx/zwnSS3/Rjfv3ZbkK5Z27M0V2t81ngu9Nd+ZFRFPUugZzcTJmOjc0RP5xrhLv4cOvKC5dlr0OU/Z6522spm2q5WGn8doHWyWop7POXNn5tlRbnPdEx2qPSX+c4CV5YWjUx0V5P/8A6N7Vf+Yab/3dm1gr94SD22ystez2z9r2biuDHRVk9ENdTJG5pY4MkEcYa/Q57Q9wcWh7tOk4cMZyP8uEVisVZs/WWGlvVHW17q+ZtVUuiYXc3RsZG6IQvDg19FG8HPE8NyCmFsj/AJPA42qrCOqxVp//AG7eortbyvWasoaulp9hbRQT1EL4oq2GculpnuGBNG3xcZc33hR7wfeVF2yNznucdG2ufLQT0TYnTmnDDNLTyibWIn6tJgA04GdXEYQcuRO/V0+2lirjUVE9fU3uh5+d73STTMqKiOGqEjzkljqd8rXdQYTwAW1nJ7T034XdrnsGZYrOySnbG1hPPPprMKt8Zf5oqNT5G7+POSZ61Rdl8IWgopnXSk2LtFPtE6JzfKkdTO2kZO9rmyVEVpEeiF7tb8lkjXEOILiCqq2b5Q7lQXobQQVTjdDUS1Ms0gDm1D5y41DJ4xhropA9wLRjAPm6SAQF5clfKTsZsxdpLrSN26mrHxVFPUR3BtjlZM2dzXSidrJWSOfzjGu3u+U3flejwHK9sNbtjVUQdEyKz1E9GJAHOjbHLJJTh7SXAuaAzIJI3cSotdOXOx1dQbjV8n9qmukhc+eo8oTso553nVJNLbRBzUj3Py4l5c46jlxySYhyQ8rTtnpb3JHb4ZxeqKejMbZjTx0jZnPdmJrY3amt14Dd24DegsHwFrrPVbcOqameWeoqqC4PqJpXufJM53NPJke45cdTWnf6o9CiPJtyYeX6/aOonuDbTZrMZ6m7VYjfO9sBnnljhipYyDM53ikjgN+DE3Ac7S0xzkH5SHbK3hl2ZSNrXNp56fmHTGAETBoLucDHYI08MLN8jXLRJs9V3h8ltprnbr61zLjbZ36Gyt1VBY1sxjeAA2qnYQ5jg4SHIzggLm5JRYm7I8ocWz017nYy1RGqdd2UccTnGC5iGWijpXFzQ4Mk1c5g4bD6CBFfB3PSTY7ajZB/9JV0kYvtmbkOkMsRbz0MQdujaZY4WZ/+5ScOK8Vk8JGlo21tBT7IWyDZ+4Uc1LVWqmqpYKqofMNBmqLsITLIRG6RgAY0t15DgQFWfJTyjP2c2gZe6ClAiY+qHk8zyaHUtQ2RopX1BaXvDA6Mh7gSXQtJCC0OWZ3RrYbZ3Zdh0V16PSK8tHmSCOTHicE0ZyR8mJp4edbD6SF2eE3+RXJv/wCHVn/s21VHy08oM+095qbvURiAzNijipmyGVlNDDG1jImPcBkZD3k4GXSOON6yPKTyoOvVm2dtDqNtO3Z+nmp2ztnMhqhKymZqdGYwISPF+ALvlexBav8AlBy6K8WOihy210tgg8QiYMU7C+pqIpDFgYzzVPRtIHARx8Mrsvh8Y5HKCSuJdJS3wstb5HHUWieojMbCTlzBG+sGngBCN3mDEPsnLrBPaqK07T7O0u0kVsaI7dUvrZ7dW08IDQIXVNPG90kYbHG3A06hEzVqIyo7yz8r9RtFHR0MdHTWmzW0YoLVRZ5qJxbpMs0hA5+bBeA7S0APduy57nBaHhLXuph2G5PaGKeSOkrbZLLVwNOGVD6OG2+Lc7je5rDUSkNzpyWkglrSNZFYXKbymuvdp2btTqNtONnaSelZM2YyGqEzKNut0ZjbzJHig3Au+X7N9eoCIiAiIgIiIOym+Wz9Jv2hWcVWNN8tn6TftCs4qwkiIiqCmHkJ9LavH43lxmZiZoG6OMkPYRuzq3Df/tKHq/dhqKO5bPsjDWvcKWogLesTQRu0HAPp5p3/ABLR1Fpivh39Bx1va3d9qzMf2y3Ja4+I0jy7VraHA/pf/wBVqWzqI9AVN8klQG2y384QBzejsveFcNtr4mtyHtG7iT+v3LyrU+bXu8doikaklA044b+vqXdUvDRv69yxNFtHScPGYdRPDnGZz+teqprWFhc1zXYPUR963xkQ1fVbXCaPnW4xgHduUX2hgxuG4AY9G8KTsrGtizkezeoRtZfoI9TpZmNGf6xA6uC12rEujjtnmUE2hh1Odlx3Z/WoPf3FjJCd2W4Axx6lIrxtdR86WidjsnGQd2T7RxKiu2d5g0YLmnOMYcM7+O4/UpXj8tXLzxP3QN0Iky0neATw4rxQMdDIWE4JaSP0t+72jCyUT2uaHsO8Ow4A9R3ArG37InZjg4Ajf6BnA967qPF5o15ru9zgNBIzxPo8wasZ9y66CdpAjGouaMl7iDqyeoY3YS71jciIDBDRl2NznAb8fZ9S6rdAWuJ6tO72hxyPsKzpae4nij4czPt70RF0vPEREBERAREQRXb3jT+6X+7UXUo2940/ul/u1F1iyEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREHZTfLZ+k37QrOKrGm+Wz9Jv2hWcVYSRERVBW94Mt001lTRvcAyWF0zAeAkY3Dse0jT+oKoVIOTq7mhulHUZ0tbM1jz6I5Dzbz9Qdn6lr5a91Zh0dNydnJWf3/1dmy1lLqOKANIMXOgYOCHCaTO7ryvRZNmpqqoeyse+CBrHczGx4Y6QkENdK/e5rAcZDcKRWdghqpowSRq15//ACASfa5Z2vphJpPBw3g9W/j8nfv3Ly6WmL7+H0v8fup42P3Cj7ZyfVwrHieOop6dkMYMjn6y6obr5yeOQDBY5xZpaCcBu871ZOydhqYSwPqnPGSHDJIIbj5Q9OCd4UkktL5ANcj8DecOdpA97iTu9i9MEDWFrIuAdgvJyXE8SS7eVlzWi07mNfB000rm7/aM8s1ymt9vkfT5D2tGl2/+t1+9azU8Vbc6nm5pJXtOHOaNRznfk4BLW8eGc8Fs1yzxiWilY525rTxJ4gZ6upUds7VtErHA6XANaXtJacdW/wB6lJzV5OCZyderlF5LWQx0L7WOcOlr6uUTkSF3NuBZzTiGsZrIIOSRoAKry+Wyam5tsjmyyZDTH/pHbhvJI3Dj+5X5PbJpY/Ml3EHznNa/Pt87isE3YeON3jNS90zgdQG5rRxIw1nV7FtnqPGY0x0HmbRMyp+K2SxNZLhwDs7sdX/XishdLW54ppxjSA7V72hzhj9Sk21tXEA8RgN37mf1WnrLR1LHTSkUUbsjSWzZHVkRv6+o7gtnHbfLk6jj7JiFcXN/nsjABcOJ9rt/1cVmRjSwDfpYAT6TvP7iSPqWMpoA9xyRrcc6uoBu8/u3LJNbgADgBgfUt/FH3c3VXyIr+X1ERb3niIiAiIgIiIMRtDaDVGPDwzRq4tJzq0+g/wCysV0Sd8+3sH71LEUVE+iTvn29g/enRJ3z7ewfvUsRDUT6JO+fb2D96dEnfPt7B+9WZyebJz3y5U9rpXwxz1ImLH1DnthHMwyTu1GNjnDLY3AYad5Ctv8AFTvX06zfGrf5NBqx0Sd8+3sH706JO+fb2D962n/FTvX06zfGrf5NPxU719Os3xq3+TQasdEnfPt7B+9OiTvn29g/etp/xU719Os3xq3+TT8VO9fTrN8at/k0GrHRJ3z7ewfvTok759vYP3raf8VO9fTrN8at/k0/FTvX06zfGrf5NBqx0Sd8+3sH706JO+fb2D962n/FTvX06zfGrf5NPxU719Os3xq3+TQasdEnfPt7B+9OiTvn29g/etp/xU719Os3xq3+TT8VO9fTrN8at/k0GrHRJ3z7ewfvTok759vYP3raf8VO9fTrN8at/k0/FTvX06zfGrf5NBqx0Sd8+3sH706JO+fb2D962n/FTvX06zfGrf5NPxU719Os3xq3+TQasdEnfPt7B+9OiTvn29g/etp/xU719Os3xq3+TT8VO9fTrN8at/k0GrHRJ3z7ewfvTok759vYP3raf8VO9fTrN8at/k0/FTvX06zfGrf5NBqx0Sd8+3sH706JO+fb2D962n/FTvX06zfGrf5NPxU719Os3xq3+TQasdEnfPt7B+9OiTvn29g/etp/xU719Os3xq3+TT8VO9fTrN8at/k0GrHRJ3z7ewfvTok759vYP3raf8VO9fTrN8at/k0/FTvX06zfGrf5NBqx0Sd8+3sH706JO+fb2D962D5S+Qa5WC3S3OsqrdLBFJDG5lNLVOlLp5WQsLRLTsbgOeCcu4A8VVCCJ9EnfPt7B+9OiTvn29g/epYiGorFso5rmnnm7iD8g9Rz6VKkRAREVQQHG8biN4PtREGw/JbfjcGc/INMmGRP9BfExrCR14IwfeSratOnSMu/XvwteeQaq/oqmPrbI149zm+n0+arahuT2HTvJ6iOAC8vkyt5h9b0XU93FG/hNK+4QxDD5AM7sf1iTwAHWsTNWtHyAeojfv47shYGgqoI5jJKTLMScat7WDd8kcMn0rtorrAazmpHgDVkE/JOcEgH+seC07FpdfHMTPlHOWOscICCQA5h1Z3HB6gqWtz3MgE2gc2yXBcflYzvcPYArh5crnRuo5HmRrXRuIZhwJJ3aW4C1tvG2BlZzEQwwkknhnrOAt9aNXVc9IyfXj02g2IusEkLAyQO83gRv9PXwTa6Vpa4A4GDuHoA+xUzye7QtZFGJTvxhrgcOGAB+rdwUs2iu3OR6GOySBvBycEege9are8Y8fUxNdQK/OEkzmjhq446vT+4rrlk/wDh7h1se9jRn1maQce/KwtwqiyZ4ccEcB7j6PQcrIXGbNKwDGHSZPpzjP6l2cUfZ4nVcuzMo/SU2jed7sY9g9OF6ERdcRjy7Xm07IiIqxEREBERAREQEREBERBangm/lfav0a/+zqpb5LQ3wTfyvtX6Nf8A2dVLfJSVgREUUREQEWrfIKzaHaqkuda/bG4UIpL3W22OGKgt0zeagjppmPL5IgdX+cFuP9gK9LbONnbS6W/Xs1bIJNU10rYoabDZ5mxwxvZANDQHPYwEDfkIJgijFs5QbVVXJ1oprjTz3JkDqh9LEXSPjibzeoyOa0sjeOdj8xxDvO4LDcglY+e0a5NoYtp3eNTjynFTspmEAMxTiOMluWenO/WgsBFXV95c9mqKpdSVN+oGVEbjHIxj3zNjkadLmSSwMdHG9pBBa5wIIIKnjqlr6czRODmPhMkb27w5rmamPb6QQQUHpRat8gFDtJtRYIbu7bavop5ZamJsQtltqImGCUxtcQ5jHPBxkjIUj2M2/vdi2lpNltq54LnDdWPdZr7BTx0jpZGBxNPVwR4jDjpazDQXNdJFkvEmpobAooxt9ygWqwxxyXe401CJdXMtlcTLNoxrMUEYdLK1upuS1pA1NzjIWG2r2nbeNmLpX7MXFk87aKqfRVNG6KRzaymi59kBbKCI5XEMaWSAECUcMgoLARU3slyoPl5O27SyS85VwWSofLI8NYZblRslpSXta3S0yVUQOAMf0gwMYXg8Dbb6uvVlrhe5nSXO2XOopKl0zY4pWxiOKRnPMY1rWOa8zx8P9SgvNFrvshtbXXTZK+X2o2j8iQV96qH2a5z00UsdstMVxhpqeEwFrA9z3MnhJcSf6RpzkKX8tfLHT7J263yyGG4VdWaZkcL6g0jpoHNAnr2kQyZjadBLcD/SDeOsLZRVlthy32ejsdZfKSupLhFTPfTQxx1HNtqq8QGoZQsm5t2iZ0bS4eadyyPJByp2/aSlp5KSppzWuoqerraCKYzSULpmNL4ZH6G6iyRxZnAyW8AgniIiAiIgp7wxfySrP96t3/PQLRpby+GL+SVZ/vVu/wCegWjSsJIiIqgiIgIiICIiCR8nt7dRVjCHYZKRG/rG8+aSOvB/cSr3oK/ndUIeNYYHcN7m8PNP1LWVWNsntQ58ceX4qYXRs/TjAwHOPE4AxhcPVcHd80PS6HqO35JWjHa6iSR74+b5lo3tcTzrjgHDSBhvo3roqnMkDo5KKpYW8HMbG/B3AY0u37t3BZfZS4a3De3ErGluHbg7rLt3X6FnLg3mhr5rVgk5G8g+jHWVxccUjxZ73Fes/UoXaLZZg1OfUTEPdnmHwylzSet2453YCrm82OKJ5cGSkAnDeac3OPaeC2Fv20khcQ+INB3glri4+gDqUHvsUsznAQkuOQCAA0ZPDPHO5b4vSvrWPNxcVonN1V9mt9RVTNigaYGAjJfvLWn3bwfvVmTWOOhhdVSSOkEURByeLy3G4fqXyw2vxVpMnmuySevG7fnrUO5R747Hi7XlzXO1HB3b8cPZuCn1TkOG2cVdn2jTqk1FRLJguD3Ae3iDn2BZmsZiFhHAu3bsb9PH2rBWOHnHMa3IaX+cfS3dk59hb9ikd0/0LN2BzjtIHDGkY927C7KRkw8vkt3RMsWiIulxiIiAiIgIiICIiAiIgIiILU8E38r7V+jX/wBnVS3yWhvgm/lfav0a/wDs6qW+SkrAiIooiIg0/wDBR2Dqrpb71UU20d5s7GbS3KE01vdTCGRzYKJ5ncJonO50iRrTvxiJu7jmyPC9oHUvJ3caaSpmrJII7TE+qqC0z1DmXSgaZpi0BpkdjJwAMlebZHkFvNmZVQ2jbaagpqutnr5IG2GhnHP1AY1ztdRO5/yIom8QPMzgZKku0/JPcLtsxctn7ttI+vqK6qgmjuj7VTwOpoIJqKdtN4nTTsZMNdLKdetp/wA44HSMhK+SfYygtFsooqCkhhPi0T5J+bYamomliYZp6io065pnneXE9QAwAANcORG5T0nJLfqikc9lQw3cMkjJbJGJOajklY5u9j2Me9wcN4LQepbcWym5iCGHVq5mKOLVjGrm2BmrGTjOM4UA5GOSiHZ6wzWGeobdKaolrHTmWmEDJYaxoZLBJDzrw5hZlpOd+o7ggxXgsbJW+l2Rs/i9NTv8eoIKutkMcb3VFTUMD5hM4jMmhzjGAfkiMDqVqVUYbA9rWhrWxOa1rQA1rQwgNaBuAA6lR1g5DLvZxJR7P7a1lssz5nyx2+e1UdykphK7VJHTVdS/MTCS4jS1uC4uIc4uJu2io3MpY6d8r5nsgZC6eTfJK5sYY6aTHF7iC4+0lBSfgG/kVRf75cP+ZesJ4ToFdtpydW2m0PrKe5yXOZmrz4qOGooalzyBnzXMt1WRnrp/esjsFyDXuyUcdut+3VRTUUbnv5iKw0BOqVxdKWyzzSPaS4k7ycKd8lnJBR2Oqqrm+prbtea0aam7XOUTVJjwwcxAGtDYIPMZ5oycNaM6WtaApqmr7pNyj7U1FFaaG71dupbdR0rLhXijNBRSwMlc6ka6GTVzj3Oc5wALefO/EhCn/IBsbdrfetpbhcbfR2yivTqOoioKKrbVQxVcLHx1MgAYwNdKXukcdIyXAHOkLNcpvJCbhc4b9Z7tUbP36KDxV9dTwRVcFXTZBENdQzEMqdOBpJO7SzIdzcejO8m+zN2oZKiW9bRPvjpWsbDG22Utsp6UAlzi2Onc4yvJONTjwAGPSGp9F/Q0t25NyHHn9vKCliiLyHssNVMa8zR9ZYxlujkdg5HjY371m+VnabontDygU7P6N20lhoaq2tj3SPrJXNthEI4ulElXXz7uqndxIV51PInTv21j2y8aIkZT82aHxcEPqRSPoRVOqed6oHMaGc3xjB1L5ytciNPtDfrFfJarxd1nfG6WAUzZTXxwVTKuCB8xkHMxtfzwPmvyJ3Y08SEL8InZoWbkqmtfml1DRWOCVzRhr52XK3+MSAZONcpkdxPyk8L2Bh2PszyxheLjY2hxaC4Ncx2pocRkNOOCtnlu2E6S2KtsvjXiXjhpj4zzHjPN+L1cFV/oedj16uY0/KGNWd+MHy8rPJjBtFs+6xVE74cMp+Yq42BzoailAEUxhc7D2HDg5moZa9wDmnDgHh8I+3Qs2P2iDIIWgWyrkAbExoEghLRIABufjdq4r3eD1RxM2X2dkZFGyR9itet7I2te/NFCTqcBl2/fvXyxbCVstkuFn2jvT754/HPTmqZQ09tkhpZqdkHNsbCXtkla4Pl51+TqkwQQ3f5uRHYC47PQmiq9oHXe3QQsgttM+2wUklHEx3mtdUskdJUAMwwB24AbsDAAWQiIgIiIKe8MX8kqz/erd/z0C0aW8vhi/klWf71bv+egWjSsJIiIqgiIgIiICIiAstsjReMVccQe6MuDy17d+HNaXNyP6zcjeFiVKeS2AvuURA3MbI93sGkt+0ha+WcpM/pu4I3krH7WNsBeZKeWShqQYZ4n5iBblsg6nhx81wd5x9g4q1hfCWNGlpzgknA/Vu9I4+xQu92JlU1jsujlZviljOHxuHX7QRuIPFYeuvU9CQaqEgM82OSMF8To+GtxxlrsDgeteVMRPmHvxM8c5PpN7tURH5TWa3YI6skt1NIOMAe9QTai8inGsFpjznSWjVxOfOHo4grE3Hbine1sjJyQW6dHB0enHpHXjJ9irfbPas1L3CPVzLjg4b1YG4D9e/2pHH3TjO/VVpWZjyzm1G1GRqYXNc7zsDGk7nbsj9E/qVY1knPPLuLnOyQc7h9fpzldtZNI4NY0ODG6gHHIOC524D6/tXnpxp9/X/2K7KViv7ePzctuSdZ224jxp+UePoG7GPduWZuLCaRjuoTH9Tm7v3hRe3zHVvO844/44qcUDGy0z4jwLRg9YcN4I9v3rZWfOsZrtZhF0WMFwfHUup6gMaN5jkaSGuAPAg8D9yyTTngc+7euiJ1xTGPqIiqCIiAiIgIiICIiAiIgtTwTfyvtX6Nf/Z1Ut8l+YdquM9JK2opKielnZq0T000kEzNbSx2iWJwc3LXOBwd4JCzn4Q71+fr3+1q/+Mor9IEX5v8A4Q71+fr3+1q/+Mn4Q71+fr3+1q/+MmGv0gRfm/8AhDvX5+vf7Wr/AOMn4Q71+fr3+1q/+MmGv0gRfm/+EO9fn69/tav/AIyfhDvX5+vf7Wr/AOMmGv0gRfm/+EO9fn69/tav/jJ+EO9fn69/tav/AIyYa/SBF+b/AOEO9fn69/tav/jJ+EO9fn69/tav/jJhr9IEX5v/AIQ71+fr3+1q/wDjJ+EO9fn69/tav/jJhr9IEX5v/hDvX5+vf7Wr/wCMn4Q71+fr3+1q/wDjJhr9IEX5v/hDvX5+vf7Wr/4yfhDvX5+vf7Wr/wCMmGv0gRfm/wDhDvX5+vf7Wr/4yfhDvX5+vf7Wr/4yYa/SBF+b/wCEO9fn69/tav8A4yfhDvX5+vf7Wr/4yYa/SBF+b/4Q71+fr3+1q/8AjJ+EO9fn69/tav8A4yYa/SBF+b/4Q71+fr3+1q/+Mn4Q71+fr3+1q/8AjJhrb/wxfySrP96t3/PQLRpZu77X3KsidBWXa51cDi0ugqq+rqIXFjg9hdFLIWkhwBBI3EBYRAREVQREQEREBEWOul2ZB5vy5DwYDw9rj/VCg9NdVCJoJDnFzgxjGjLnvduDWjrKvTka2UfT0xqKmMMqZ2hxZnJiZkFsZPW7rOFrzZrzzVdR1UzQWU9RFI5gGQGB4L8ek6crd61UrHwNfC4PjlY2SN4OQWvAcCD15G9cPW3mIisepep/53HWZm8+49MZzGCPeMf49C51EYc05bw3YO8fX6QvZXwFo3D3rlSsDmgHjnj171x0mHr2jujUEvOzMModmGIE8cMb9W/CiF22SY3I0Nb7MdX1dSt+spt+Nx93WPao9daMEb8+jcSAfbuWzucluLVBbTWrm3ENGBvz/wBlGJqQgj7ferj2ltDTqOnees5J/eVC6m1784x6Bjrwt1bNFuHyhbG6XBZuG5820b8dSxN48yUjhheF8u4knzQCStseWi8xWWJ2sq+cn3cG5x9ZWMp6p8ZzG9zP0Tu7PAr5VSc49zvSd3uG5cAxdFYyHDe221naDahwwJmB49dnmu+tvAqQUNzim/0cgJ9U+a4f8JUC0JpWesFkooPRXiaLcH6m+q/zv3/KH61l6Tadp3Sxlv8AtMOofqO/7UEhReOkuUMvyJGk+gnS7su3r2KoIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC4yyBoLnENaN5JOAFjLpfI4ctH9JJ6reAP+07gPcotcbhJO7z3ebncwbmj6us+0qDL3baAuyyDLW8DJjziP8AYB4D2rCN9J695zvJPpJ9K4kYAC7D1fqUV6In5HuWyHgr8pjWhthr5AAM+TpnHdjdmleerGctPvHoWtY9i7I5C0tc0lr2kOY5pw5rgchwI4EHrCnLSL1yW3h5Z47a/RK50ZIPsBwVh4mFjsEKvPB15Xxc42Wy5SNbXRsAilduFUxowDk/630hXDW0B1am/wCP1Ly78XZOPd4eeLRrB1W7gN/uxhYK4t1Z47j1+5S+elyMEYOPQo3cIt5B34/d7VrmMb4mJQu70mrIIJ9vBRy523RG4gdXHG9WKKLnHEYP2rH7XWcsgJAOSD9mFnEsZxrLfIiZn8flH/GFGdoJtP8AQtOTu146vYp1ygzMoW6Tg1MuSxnEsBJzI/HAej04KrRrS4lzjkneT6Su/hrM+XidTbLTEOsMwEAXaQuLVvcb5hcSF2FfEHDSuOldoC+lqDpLV66S4yxfIkcB6CdQx6MO4Bed4XEhNFjIiLJBFzgidI9kcbXPkke2ONjAXPe97g1jGNG9zi4gADiSF6LxbZqOolpauGSnqYHaJoZW6ZI3YDgHD2tc0g8CHAjcUHkREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERARcJ5WxtL3kNaN5JUTvF/fJlkOY2cC7g93cH70Vn7ld4oNznan9TG73fX1N+tRi53yWbcDzbPVYd5/Sdx/Usbgk5/Wu6NgUTXSAu1jesrnoC+6VFcOJXMdS+tavuFUiXJnBB7VxC5qq7aWdzHtfG9zHscHRvaS1zHNOQ5rhvafaFslyQeESGNjor6Nww1lewZ93jDG7weHngY9OFrThfCcLC1It7bOLmnj9P0ktlfTVsLZqWaKZj25a9jg5pHscOvgsBdKbS927O/AK0T2S2ur7VJzlvrJqYk6nMY7VFJv8A68LwWO9+Mq29nPCLqMtFzpGy4wDPSkMf7SYpDpx7GuHuXHydNOvU4espP1TjZe30TdzskOOB/wAPp9CgvhAba01low14bLWTBwpKXOS8jcZpcfIgacb+s7gsDdPCBttPb3VFK51XWPbogpHMfE5jsZ11BcMMiGeIJ1YwFq9tRf6m6VctdXTOmqJj5zjuaxo+RHGzhHE0bg0f9Srw8E/dep6uKxlJ8y8l1rZKqaSed5kllcXPcd3uAHANA3AdQXmdwXwlfBwXd9sh40+Z0K+L65cQFEETCFUfF9CYQKKELgRldi+BBYKIiqJjycUdvq9dFU016kuVRU0zbfVWjRK6kbrAkkkpnOaX4cWOLgcgAkFhGXX1ymbEWs3GGoozaLrebsA5jL5d5oqJ/isLaeSrhp6FgbWSPMR1sfKACx5a3cQKN5COcffaWkjuNRa/KLJ7fJVUscEkpZPEXNpwKhpYwSSxQt1AagdOMHzhgrnfzLaqCzvo4IxbaiskZUGN7KstqpDJJTStc4tjYJMksHWxnWHFxUibtNa6p7qe72Ojomh7oxcdnTPTy0pB0mU0cs81PcYgRkgaXFuSwk4zGttNnJLVVupZZIp2mOKopqqA5graOobzlNWQE/6uRnVk4c17cnTlc9hNmZLxWtoKeelgmfFPKw1croo3mCJ0piYWMc50rmtJDQODXHqWd2rnFVs3s3UNpq4GjNwtstdPHEKSbXUyVtLS08jXGSQxRumGHAAaZANWk4IwFi2Tr6+Ln6KgqauI1TaLXTxmT/Onx86IdLfOzzfnl2NLQQSRldm1+xlxtBjFzoKij57PNOlDXMk041BssTnMLwCCW5yMjcrF2MuU1Lye3x9NNJA+TaKCF0kT3Ryc1JS2vnGB7SHNDgNJwd4LhwJXpsE7arYekFykM1NTbbUcLnVDy8Q0LoKd1SwOefNi0VNUT1f0jkFf2vk1vNVRivp7PXTUjmGRkrIt8keMiSGEkTTsI3hzGuBGMZWDprJUyUk9fHTyOoqWSKGoqQBzUUs5DYmOJOdTiWjcDjU3ONQze3LNd6Gi2w5+rO1LbjTT0UlvjopLc2kkhjjgcyG3xvbzr6SQhzJGN+U507TxXjvVWKvZnb2eKiqKLXf7fWyUM8RZU0jH1FFJM+phAzF5zJ5HZGGgOzuaSiqUbZqg0UlyEEhoIahtLLVADmo6hzBK2JxzkO0OaeGPObvyRnNz8nF4Y2sc+01jGUEPP1j3RhscEXMioLnSF2l7hCQ8sYXOAIyAphT0UkXJpcpJI3MjqtoYp6dzhgTQilo4edj9aPnIpW56zG5Sbwj7y9+11uoaupkFpZ5HFRSmVzKQwT1LXVj54gQyTVHqBc4HzWAcAiKttvJje6mkFdBZq6WlcznGSNiAdJHjIfFA5wmmYRvBY0hwIIzlYay7OVlaKl1HR1FT4pzXjIhjc98RmkMMTTGPPc90gLQ1oJy127cVaPLDcrozbt0UMtYyqFdRNtcLHzNa6m005YKeNpDX0rsSc5pBacTB/B2J/eKttJceVGa3SGF8dvtbuchOh0VU+kqhUvieze2XnXyEuG8SF54hBQ125NLzSSUsNRaK1ktbJzVKwRCUzSBpkMYMLnBjwxr3lrsENje7g1xGO2v2RuFnfHHc6GeidK1zoueDSyQMwH6JY3OY4t1NyAcjU3IGQrO2MvtXFsBtE5lXUNe270UTH89IZI4ql1A2oZE8nMbZGl4cG4zzj+txK91nlZPsrsf4+8ywN24gp5XTuMgbRuNW6WJzpCcQY4jgGj0BBWZ5Nrz4mLh5Hr/Ey0PEohyebdjEnMA88I8EHWWacb843qU8l3I1WXK4VlJcaWvooaKKdk00TYSY7g2CnqKake54ewl8VTHJhvFrm4IyCspyiXK6t5QDGyWtFX5VpG0ULXzBrqAvh0CKIea6jdEHGQgaP9Pq3h6n1lmf+EvaOFr36ZLY8tia92l8vkmzBjhGDh0ukHBxnAKDXmTYi6MrYrbJbKxtxlibOyj5kumMLi5vO4bkCEOY8F5OkFpyQpNstycVtHfbJTXy1TwUtZcaaFwnaHQTgv1OhM0LiwuLWnLNWSA7djKzvIzVVD9l9r56KWeS9sht8L5GySvroreJMVIidnnWODBWZ0kOBjb1hqwXIfX10t0sg52ultXl2jcSXVElvFYC/T55zC2pLHSeaDqIBODjcHLbDksuj668TW6zVbrbT3K4xwOij8zmIKqZjW08bnc7OxrWaQWB3ycbyFWwKvSyX+rl5SfPq6ght9raNrOel5sUsPjNOynEerQIgxjfNxjUNXyt6qflBYG3m8taAGtvF1a0DcA1tfUNaAOoAAD6kGEREQEREBERAREQEREBfCcb19WI2jq9LRG0+c/e72MH3/eisBtDcTPIWjIjYcNHpPrn056ljmgr11UerfwI4+0LqDUlNfGNXIL6QvoCMdfcJhEKD4F9XEFcgiC5NXFfQUZa5Li5fcr45AdvXDf6dy+lAoo52Mri05X14XwKj6j0C+uKDi7giP4IEBEQIC+daZ3r6gLiTv8AqTO9fJ+oqCw0RFR2UtQ+KSOaJ7o5YZGSxSMxrjlieJI5GEjAe17WuHtAVgXaO3bQvdWx1tHYrvMTJX0dfzsNqq6kkGWuoq6JjxRmUlz3QTN+W92l2MuNdogvvYS826zG2yXuq2UqYbQJHUT7EK24Xl9RI57+dqJ6J7aZ0bdRP9M12dIwA/efJ4QFTapqqupWVNytrrbT03kq0so4xZKt8w581FFHTO0UutlRI50sjGF2sYc7BjFHOGRg8DuKye0d+qrjM2or6mSqmbDHTtkl06hDCCI4/NAGBqdv4kuJOSSUCG/1TKGW2MqHNoJ6ltZNTBseiSpYxsbJS8s5wENYwaQ4NOlpIJAKMv1UKB1rFQ4W99UK11Lpj0OqxEIRMX6OczzbWjTq07gcZ3rGogm9m5XL9R08dJTXipZTxN0RMdHSTvjZjAZHPUQPmY0DAADxgAAYACxWzW3VzttVPW0VxqYaqq/+amcWVDqk6i/VUNqmPZM8Oc4hzgSNbsEajmOogku0u311ucE9NcLlPVU9TNHUTRSiEMdLFGIoywMjHMxho/0celmcu06jlY3ajaCqulQau4VDqqpdHHEZXsiYTHE3RG3TCxrMAezJySckkrGIgnFt5Xb/AE1MyjhvNUynjZzbGllLJKyMDAYyqlhdUMAGAMPGNIxjCjds2iq6aKvggqpGRXNjY7g0hkhq2te+Qc7JK1zw7XJIS5pDjrdknJWLRBkqa/1UVDUW2Ooc2gqpoqiopg2Islmh0mKQvLOcaW6G7muAOkZBwMfJ79UvoI7W+dzrfFUuq46Uti0MqXxvifKH6OcJLJHjSXFvnOOMklSHkwtr5fKM8URmfSU0BEUFoivtx/p6yGMy2+3VEggLm4w+aRsnNskdpbqcHNm+1mz76d1fJabU2W5Pfs6/xU2mirXwUNXZTJWVNPbmwyUgbLcmPhlkhYWMc1zGlgeUEL/CzffFBQ+WavxZsYiDcQc9zYAGg1nNeMubgAEGQ5G45Cx1LtBdK28C4xVM8t6leZW1MQihnc6Cm0OIbG1sQaKaEtLQ3SWtIIOTm1Nh9mWuraNktvpX0lfeLjDVwW60UlzoacRVMdO+lr79XSOdQwMdkwRUrWOIeHB73PZjw8m9tqIZLF4tbonUTrLWy3Otkt0LpYbuKa5w1sVRcZIufoqyGYQwNpw9nmuxodzjiSq/n5SbvJcI7s65z+UY4BTMqo46aFxpw5zxDJFDC2GePU8uxIx2TpJzpbjuvfKjeq2WlnqrtUSyUM7KmlxHSxRQ1EZyybxeCFsMjxkjL2O3OcODiDKLraqWK1ymKkqZbeNmIqmGsFjtsdL5UfRRO8bdtI+sbVvrhcHPhdRhmdLXRNiIaHn07ZVTKUbUCnobVD5L8hm3kWe1vNLJVBjKqUGWmdz75A45E2trTpLQ0tbgKyptoquO4eVWVL23Hxl9Z41oiL/GZHufJLzbmGI5c93m6dO/GMbl4a6qfPLLPM8yTTyyTzSEAGSaZ7pJXkNAALnucdwA3q56rZ6gmuVyidTUtPDY7jS3yqbHDDFz1lktcNTcKJrGNGuJtZDTtZHvDPKbw0AHCpapmMj3yFkcZke+QxxNEcUZkcXmOKNowyJucBo3AABEdaIiAiIgIiICIiAiIg+E43ngFDK+q52R7/Sd3saPk/u+1SLaSp5qnf6X4YP+Lj+7KhvOIS9DnrhldBkXAyb1Ex6wUyvPzq+c57U1MeguXwv3Lz84uJf1Jq472nd71ya5ecOXLWhj0ak1rzaiVyLkTHcXL5qXQ56+B6GPRqTUugOQORlDv1LiHLr1oHqDuDsIXLo1JqRXc87k1Lq1I0qjsympdeVx1IO7KBy6tS+alB2OKPPmrr1LjnciLLRQzpXP6kPZf306Vz+pD2X99VcTNFDOlc/qQ9l/fTpXP6kPZf30MTNFDOlc/qQ9l/fTpXP6kPZf30MTNFDOlc/qQ9l/fTpXP6kPZf30MTNFDOlc/qQ9l/fTpXP6kPZf30MTNFDOlc/qQ9l/fTpXP6kPZf30MTNFDOlc/qQ9l/fTpXP6kPZf30MTP/v+8EH9YJH1lfMcPYC0expyC0egEE7vaVDelc/qQ9l/fTpXP6kPZf30MTLH2g/W3Ok+8ZOPeUc0HiM5Icc78uGQHHPE4J3+1Q3pXP6kPZf306Vz+pD2X99DEyx9ur/ixjV78bsr4GjduG7hu4Z449Ch3Suf1Iey/vp0rn9SHsv76GLDoLu+CkqaSKOBjavS2ecRnxp0DJIpvFWy6tLKYywRSFoblxYMuI81Y9QzpXP6kPZf306Vz+pD2X99DEzRQzpXP6kPZf306Vz+pD2X99DEzRQzpXP6kPZf306Vz+pD2X99DEzRQzpXP6kPZf306Vz+pD2X99DEzRQzpXP6kPZf306Vz+pD2X99DEzRQzpXP6kPZf306Vz+pD2X99DHo23qPPii6mtLz7zuH2FR3K7blXOqJDI8NDiAMNBAwPeSvNlRcdmUyuvKZQc8plcMplBz1JqXDKZQcyUDlwymUHZlMrrymUHZqQFdeUyg56k1LhlMoOzK+alwymUHPKalwymUHYHJldeUyg7NSal15TKDnqX3K68plBz1IXLhlMoPiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIP//Z\n" - }, - "metadata": {} - } - ] - } - }, - "0abe74cad1f948ce9b3e45155e3a1df4": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_7f9e41c0dc0a409caf6c8eaafb2be07f", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://www.bilibili.com/video/BV1oj411o7U6\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "<__main__.PlayVideo at 0x7fa7201c3160>", - "text/html": "\n \n " - }, - "metadata": {} - } - ] - } - }, - "65a7fb73ede0482eb9de1f64812b24ed": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "20836d7c6d764c61acf33919f2302f65": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f9e41c0dc0a409caf6c8eaafb2be07f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f2e9ddd8656a436a82514203d0922b37": { - "model_module": "@jupyter-widgets/controls", - "model_name": "TabModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "TabModel", - "_titles": { - "0": "Youtube", - "1": "Bilibili" - }, - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TabView", - "box_style": "", - "children": [ - "IPY_MODEL_aea235525bd64fc391250c9a55f87359", - "IPY_MODEL_f118b3318a104b6997c2c431e4fe1d59" - ], - "layout": "IPY_MODEL_6881a1932e2d4c4c9ebecd90276e6d0d", - "selected_index": 0 - } - }, - "aea235525bd64fc391250c9a55f87359": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_bd40292dd2b34696b901c96aef0d928c", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://youtube.com/watch?v=tDmhmasjPeM\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "\n \n ", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAkICAoICAgICAgKCAgICAgKCwgICAgKCAgICAgICAgIChALCggOCggIDRUNDhERExMTCgsWGBYSGBASExIBBQUFCAcIDwkJDhIVDw8SFRISFRIVEhISFRYSEhISEhUSEhISEhISEhIVEhISEhISEhIVEhISEhISEhISEhISEv/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAEAAwADAQEBAAAAAAAAAAAABQYHAwQIAgEJ/8QAXhAAAgEDAgMCBwoJCAUKAgsAAQIDAAQRBRIGEyEHMRQWIkFSkdIIFRgyUVVhcYHUI0JUk5ShpLHiJDM2csHD0fBigrS14Rc0N0N0doSFkrJT0wkmNUZjZXN1orPC/8QAGgEBAAIDAQAAAAAAAAAAAAAAAAEFAgMEBv/EACwRAQACAQQBAQgBBQEAAAAAAAABAhEDBBIhMUEFEyJRYXGBwTIkkaGx8CP/2gAMAwEAAhEDEQA/APGVKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQQFKn/FSf04fW/sU8VJ/Th9b+xQXOlKVkxKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKVFa9rHgpT8HzN+78bbjbt/0Tn41RnjcPyc/nP4KhK0Uqr+Nw/Jz+c/gp43D8nP5z+ChhaKVV/G4fk5/OfwU8bh+Tn85/BQwtFKq/jcPyc/nP4KeNw/Jz+c/goYWilVfxuH5Ofzn8FPG4fk5/OfwUMLRSqv43D8nP5z+CnjcPyc/nP4KGFopVX8bh+Tn85/BTxuH5Ofzn8FDC0Uqr+Nw/Jz+c/gp43D8nP5z+ChhaKVV/G4fk5/OfwU8bh+Tn85/BQwtFKq/jcPyc/nP4KeNw/Jz+c/goYWilVfxuH5Ofzn8FPG4fk5/OfwUMLRSqv43D8nP5z+CnjcPyc/nP4KGFopVX8bh+Tn85/BTxuH5Ofzn8FDC0Uqr+Nw/Jz+c/gp43D8nP5z+ChhaKVV/G4fk5/OfwU8bh+Tn85/BQwtFKq/jcPyc/nP4KeNw/Jz+c/goYWilVfxuH5Ofzn8FPG4fk5/OfwUMLRSqzFxYGYDwc9SB/OfKcehVmoFKUqUFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoKrx73w/VL/d1V6tHHvfD9Uv93VXrFkUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSg5Lb46/1l/eK041mNt8df6y/vFacamESUpSpQUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgqvHvfD9Uv93VXq0ce98P1S/wB3VXrFkUpSgUpSgUpSgUpSg9pcbdm/APDeh6Vqes6RqU5v4LVS1rcXLtzns1uJHdJLyNVQnd8XPUjoBVc0DROynXZEsbaXVdFupmVIHmknjBc/FTnXBntlJ7vLKg5wDkip73bn9C+Gf/B/7prxlQav7o7sUvOD71EeTwvTbncbG/C7NxTBe2uY8nl3KZB6Eq6kMpyHVMor2v2g37a52MW+o32Zbq1Fny5XJkkMlnrHvKJ2kbyjK9uzlm7yXbJPU1gvY12l6JoGnS+FcL2muay968kVze8tra2thDAIVRJEkzMJluGO1UOHXyzgABkVTXA/DNzrOoW+mWQRrq6k5UIdhGm7aznc57hhTXsPs21HSO0rRNZtrvh7TdM1Gwt0a3vLWONWQ3Edy1tJFIqLKoSS1O+MsVcFfpxjnuIuJ7ay4jhsptKtL6a/ngjtr2YRmfS2gjuneW1LxMweQOFO1k+IOpoMo7SeDbrh/VJ9Iv8Akm7tuRzeSxki/lFtDdJtcqpPkTJnp357++q5Xr/3XHatplrq+s6HLwjpF1fNaR2412RbY36vd6VbtDchms2k5sAmRV/CZxEmCvTGL9i/aHomg2dw19w1ba9qslypt5Lwxm0trdYh3JKkgabm7jgRqcEeX0AoMopXuHsX1rR+0u11PS9S4b0zTrm3tke2vbNI1miFwZEEkMnKEkUkckcLY3MkmcMuAQ3lfsD4Tg1ziTTdKu3KWtxckT4O1njiiknaJW71aQRcsEdRvyKCjUr2X219qdlwfq0mgwcC6MdNijh2STwIh1FJII2eaNzbsrqGZoizGUkxtuIOVHlbi+/j1jWJp9P06OwS8uh4LpsGwxwGYqiW8OyONMbjgYRR17hQV2lew+OZdE7LrSw0+LRdP1ziK6t/C769vVWRYV3GPMKshZIWkWZERNnSElizd8N2s6Bo/FnBTcZ6Rpdvo+p2NyYNVtLVVEEw50aTbljRFMoW6t7kS7Q2xpFbfhWAYn2P9kuqcVNdLpYtv5GkUlw08vJVRNzeXtwrFieS/cOmB8tUGvcv/wBHxxRbT6Ze6dHpVpb3FhBG9zqSCPwnVBdXWoTRJdFYQxWFPwa7nfp3Y7q84ds3anpuvWkNtYcJ6ToEkVzz3ubJbdZZk5UkfIfk2kR5eXDdSeqjp56DKaUpQKUpQKUpQKUpQclt8df6y/vFacazG2+Ov9Zf3itONTCJKUpUoKUpQKUpQKUpQKUr6ijZ2CIrMzEKqqCzMT0Cqo6kn5KD5pV/0Ps9G1X1GfkE9RbJtaYjGSHbqEPUdwOO76rHbcKaRCueS8veC07kr9AVUxk/WB+7OPKE4Y7StffQ9Jc4NsidMApI4boO8K7EMftqvcRcBnypbKVJVHUxECORR5/jYXpkVHOE8VBpXNd2zRMVYdxx5v7DXDWSClKVKClKUClKUClKUFV4974fql/u6q9Wjj3vh+qX+7qr1iyKUpQKUpQKUpQKUpQezfduf0L4Z/8AB/7prx/oWk3F9cxWdnBLc3UziOGCJS8kjHuCqPoBJPcACTgCvSbe6utJ9PtNP1Hg3TdUis4IIovC54rlN0MCwc5Ip7BxG7BT3eY4ya4vhatZQtHoPCmh6NIw28xFDqB5/wAFaw24J84ySM94PdQXX3S8kXCnZ3pfCDPG2oXS2/hMaMWCCG498r+dTjrF4cURd23cGYj4hFVvhHhDReEuCLbi3VNHh4g1TUZI47S2ufwlharc854OZEymMjk25kZmRm3ssalQSx828acVX+tXkmoapdy3l3JgPLJtGAvxUjjQBI4hk4RAFGTgVsnZH7pBtK0Txe1jRLXiHS1z4PFPIsZjUymcQyrNbzJNGs2GQlQyeYkKoUN69yD2l3PEdvron0zR9PS2trQRDTbRrNX56X+UlzK+/aIl2jzbm+WvLHuTjjjTRc/lp/XBMBWkcNe63udPv08D0DTbLQEimjTQ7TZbAPM0b+FtdpBhrkMjDpEqssjgruw4xvinjiJ9fXXND06PQOVPbXNtZxSeERQTW+w71JiRdjum4x7AvlEYINBdPduxsvHWqkqQGGmMhIIDKNJsE3KT3jcrDI86kear32Q8F6JoXBDccatpia9dzyvFZWE4BsrcLeyaevNjZWR2aSKR2d1YbeUqqp3M0N2l+6P07iGwlTUeD9Pk1h7GWyj1bnqzWxkjcLPAj2hlAjkkZ0iaU7SThskmovsQ90XJoOkyaDqWkW2u6QzSGK2mdYjCszmWaFxJBLHNA0haQKyghnc7iMAB6A9xV2o3HEF5qML6ToumQW1rbtENNtDZ45krosUj8xgyhU6Dp3GvCOnXk1rPHcQSPBcQSxzQyoSkkMsLh45EYdVdXUEHzECvRuje6zuNPvoTpnD+mabocazc3RbXlwm5klVcTyXsduNsyMowViAIZwwYlWSiXXa9bQ8WQ8T6VoFrYJEs3M0wytNBcvcxXUFzM7pFGEZ0uj5KrtBQd4yKDZuyX3ScPEUlrw5xjo9pqK3c0NnFfLGjBp52SGB7izZdqSNI+TNAybCRtQd4zLto4MsuCuOrNIHc6ZHdaXrCRuTLJbQeGbpbct8aQIbeXaTlipQEscsbRYe6Y0O1n8Psuz7SbXU13GK6SaBRE7LgzIsenqQ5JbO0qcE+V1NYL2j8Z3vEGpT6rqUokup2GQo2Qwog2xQQR5OyFFAABJJ6lizFmIe4fdddr2s8LXVlNYado17pd3a4S7u4Lm5kW5jkdnh5sFzGgiMLwugIy34bvC1524z91Treq6Zd6TNp2gw2t5C8Ext7e9jlUOAC8Za+ZBIMDBKnuHSnZl7pO40/ShoWt6RZ8S6VGqJbW92VjkhSPHKhMkkEqSQxlV2bk3JgANgKF+ON+3PR7jTrvT9H4J0nSHu4Gtnv1aKa6SN2RnEbR2kbLnYOm8joOlBo3/0bgzJxAB1JtdOwPOfKvx0H2ivIVaH2C9q95wjqZv7WNLmKWI293ZyMyR3Ee5XXDqDy5lZQVfa2MuMEMQZft27UtK4hjTwDhez0O6N011d3kUscst0zoweNxHaxYUu+8tk7iMkZoMlpSlApSlApSlApSlByW3x1/rL+8VpxrMbb46/1l/eK041MIkpSlSgpSlApSlApSlB9RoWYKoLMSAqjqST0AA+Wr5o9munAbTuvGUcyUY/ABwMxwnzMO4v58kDpURwrAIE8Kf8AnGykA9EY8uT68HA+gn6K7YmLEec57+uPo83f9WfsrXNss4hIreFmzkkk95ycnuHf3n6+tdzW9UMThAwAVQBkOB8pYjA7yT3/AC1K8B8O3FxMkpT8ChDYYYViucYB6scgHrTi3g+6RnkMbTLksWRst5+pUr19dYe8rnDZ7m2M4VX34LH47d3mPT7RnJ+2uzZa06N0bcO7Bx+ph3H6P1VBXNrtPT7QfJI+jH2Cuss5HRuqnp9K/aazxEtKxa7psV5E08MarKuWkRfJLgDytoBwJAAWwQQeuD34oUybSR8lW3S71o2BBOPl7z9HWozi2zCzGRAOXIN4x3K2Muoz1A65APmOPNSs4nCfMZQdKUrYxKUpQKUpQKUpQVXj3vh+qX+7qr1aOPe+H6pf7uqvWLIpXovss4K0XQeFhxpxNZHVZLq4a10LR2ZkgmZTKomuvJ7mNvcN5YZBGinDtIgWOsO3zS2kZb7gDhOW1JwqWltHY3KJ3dbnlyb3+kKn2UGC0q5cJcB6lxJe3KaBpc9wiSNKY0KLHaxTSOYI5biZ1jVtqsAGbLbGxnBx9dpHZVrnDgibWdNls45mKRS77e4hZwNxj51rI8ayYydpIJAYgdDQUulei+O0H/JHw+20bjxBdgtgZPl633nv8wri4n9yprdvpFhd2ltc3epzmY6jp/8AJIl09U/mxzTcESlvlU/YKDzzSrR2edn+rcQzvb6NYTX0kah5dhjjiiDEhObPOyxRlirYDMCdrYzg4donZ/q3D06W2s2EtjLIheLcY5IpVUgMYp4HaKQqSuQrEjcucZFBV6VfOz3se4h4ghNxpOkz3VuGK+EM0FrAzAkMsc13JGkjAjBCE48+KvfYNwPqOhdoGi2GsWZtLlpHnELNDMGie2vFRw8DuhUtG47/AMU0GEUrc+OexbiPXNe16+0rR57izHEOtqs5e2to5OXqVyri38KlQzBWDKeWGAZWHeCKxK9tZIJXhmjkhmikeKWKRWjlikjYpJHJG4DJIrAgqQCCCKDhpXszsv7JdJ1vs2h2WFr4xXNhrN1Z3axqLyaTTdXnEac0j4rfyaA5/Fk+jp5s7BeCzxBxFp2llS0Mtysl33gC1twZ7rLD4pMUbqD6ToPPQUalejPdzcN6Tp99pLaLZ2lpa3Wlm6/kyLFHOHmJjlIXvyhGD8lZ/wAJ9gnFOq2aX9jolxJaSIJIZXktLUyowyskUd1MkjxsCCGVSGBBGRQZnSpa+4bvYL/3rntZoNQ58dsbSVTFMJZSoiQrJjG7ehB7iGBzg5r94x4avNHvZdO1K3a1vYeXzoGaNynOiSePLRMyHMciN0J7/loIilWHjjgrUtEulstUs3tLp4o50hZopGaOVnSNwYXYdWjcYznpVxuPc9cWR2TahLoc8VqkD3MjSTWUc0cSRmV2ktXuBcIwUElSgYYxjNBltKl+EeGb7V7tLHTbSa8u5M7IYl3NgfGdycKkYyMuxCjzkVYO0fsm17h2OOXWdLms4Zm5cc2+3uIC+0sImmtJJESUqGIRiCQrkA7TgKRStZ9ydwFZ8R8TQWGoktZpDcXc0AZo2uhAo224kRgyqWdWYr12o4GCdwtnE3bJpkF5e6dednnD1vbxtNapCtvHZ6taMm+PdPeLEweZTtOFVeoPlHOaDz1Spng7he/1i7Wx0y0mvbpwWEMS7iFUgNJIxwscQLLl2IUZGT1q08fdivEmhW3hmqaRPb2oKq9wr211FEXIVOc1nLIIgWIUF8DLKO8gUGe0qc4K4S1DWroWWlWc99clS/KiXOxFIDSSuxCRRAso3uQMsozkirL2g9i3EWgWovtW0trS1MiRc7n2U6h5ASikW07sCdp7x5qDPqVpvbNbNHp+gFuHItDD6PCy3iTQTnXQYLUjUZEijUwu2d+xyx/DHr0NdnS/c58X3Nut1FoNwImQSKJJbK3mKkbh/JridZg2PxSmfooMppWue5Ts3i460qC4ieOWO9uYpoZVKSRyR2t0rxyxuAVkVgQVIyCDVW7dRjinXgOg9/8AWcD/AMxuaCoW3x1/rL+8VpxrMbb46/1l/eK041MIkpSlSgpSlApSlArltIuZIqD8ZgPsz1/VmuKpnhLR7i9laK0jEk2whQWSNRu6MzO5AGBkD5WKDz1jacRllWs2nEO5LccxxGhwvRF6E4UdBgDp1rauAezy3jhSe5QyzkByWbcF84UjuzWT8F8OzS30cDRuHDtzF6FgYmYOhwcDBU5+rz9M+loYCqKhOAFAPd3jvri1746h3bXR5TymHFtROiKFA7gP3/vrhZt3Rv8AP119TyxjI3DPm/4V15JB8tcsSua0jCrcVcGwXYZl/BSeZgPP/pA94rE+KtFmsZTHcIRnOyUfEkHyg+Y/RXpMtmoriTRoL6BredcowxuGNykfFdD5mB6/ZXRp6sx5cG52cTHKPLzZaXAB2knHcOgGCft7ql7kiW3dCfKTyvr256+ok+qorijR5tPuXtperL1RwMLKhPkuufN0PTzfrr70y8DMAeuUII+rB/cCPtrpnxmFRGaziUQaV93C4dh8hP76+K3sSlKVKClKUClKUFV4974fql/u6q9Wjj3vh+qX+7qr1iyepe3iJr3sx4UvbXdJbWrC1utoJEcoilti0gHxVE1vKm49MyKPxhny1Wt9iXbhccPWtxpV3YW+t6Hdbmn0u5bYquwAZ4ZTG4QNtQsrIwyikbTkmxL2mcDWbC40/gNp7oElUv7+4uLKMkHqbeVpUmXOPJdR9YoK52Mdn95qOl6lqM+ueL3DcLRQandsbmVLqVRmK3FhbOpupEFyvksf+vULuLEDVePLayXsoEVjqc2s2tvxBGtvdz2z2LRHyt0UNvLNIyRqJXwdwzzH6Cs57Le2u2sdP1LRdb0OHVdH1O+fUZLaGV7J7a4flk8hlBblZt7cKAyFNhO5skVLXfbzpVxoV7w5JwpBa6U5WXSoLS7mSW0nVek95dSoz3c3Mw3MIGVAQqfjUHe48/6IeHv+8N5/79crv9uWrXKdn3CEqXNwksnh3MkWWRZJOp+O4bLfbWVa92oeFcIafwp4Dy/ANQmv/D+fu5/Na+PK8F5A5ePDfjcxv5vu8rpZ+GO2fTX4bt+HeI+HzrEWnyTTaXPFeTWEsZk5jCKZo1LFQZZF3AkbeWNhKBiGn8E6fpMPZXZ++GqXmjWuo6vc++V1ZwNdS3UiS3sMVpcKgJWBorSBvkzGo/HOaZ2zcYcOTcGWXD+maxeatd6fqQntJrm1mt5EtpI7hJLbmSLtEK81MKD3JGAMLVK7H+2E6PYXWianpsOucP3rcyfTpZGt5IZfIBntblFLRt5CHGM7o0ZWjO4t1O0ji7hu5szaaFwu2lStPFK+oT39zfTlI1kBt44ZgUiQlwSytk7RkdBgNi93BqE2nWHD2g6e8kGijSEkEcbMsV28fLjXnEH8KUQK/lZy07Mck5rM/cp6hPccb6I1xPNOyTSRIZXeUpGtpdFY0Lk7UBZiFHTqflqW4W7dLGfRbbQeLNATXrWxUJpt1HcSWV7bRoqpHBzIhuKBFRMq6ArHGGVyM1X7DtR06w4m07XdI4dj06z0+LljTFvJZWuXxdhria+mhZ+aRcqOqt0iUZ+QL9rvaTrF52nwQSahcR21txdFpUFrDJJDbLbR6uLJ0MKttZ5Y93MY5Ll282AKD7rlAvGushQAPCojgdOrWluzH6yST9tVzx6/+tXjN4L/APeD398C5v8A+Y++HgvhPK/1OZs+nb5q4O1/jHxg1u81jwbwTwuRJPBuZ4RytkMUOOdy0355efijvx5s0HpXs+4094OGez/UHcJb++2u2t4S2xBbXeoXsE7yHzrGHE2D54lrscZcHjgY8Za+q8pr110jhw7uWR79Kt7fNbqOn8nVsIcZ/kco7iSfOvFHaP4dwxpHDngfK96p7+bwznb/AAnw24nn2+D8kcrZztud7Z256ZwOftT7ZtX4ksbDT9SeAwaeoEZiR0kuXEMcAuLstIyvOFRuqhBmWTp1GA3D3QenQ3evcAWlyivbT2OhW86N8V4Zry1ilRs/ilGYVQPdpcTX541vIvCriKPTzZJp0aO0Qs1axtZy8HLI2O0krPvHleUBnCqBVO2btYfiFtJeOzbTpNK0+CxjkS4MzyNAVKXKMsMZhfKggDdg461dNT7c9D1kw3nFHCMeqaxBBHF4bb3s9hFfcosU8Mtok2jzZPl5yQAqgJQXP3QTC7n7PNZnCnUtQtNOa+mwA03Lk0meORgvTq95ckf1seYVmvu2ELceaqqgsx96wqgElidIsAAAO8k1V+1ztYv+ItWi1SUR2fgoij0y0g/mLCKB+ZCsYYYeTdhmcgbiAMKqqq6fxN7o/TbuZNaHCVoOK1t44V1WW4kntLeSIYivIdPdeW86Hqhfy0wg3sFGQkvdsaydN480vUBEJms7HR7wQsdqym11C6n5THBwG5e0nB7+6pjjPhTT+0G6ute4R4huIddktA13oF6z28xjSKKB4LWZWGyEqMEDnRF5QC8QOBjva/2wR8R8R2OvTaRGkVolhHNpss4u4r1LO6kuJI5ZTbIBHKshjK7GwM9+cVa9B7c9A0VptQ4c4PGm61NBLbpczahc31rZiYqzvDbSrtc5VemEx3A7SVIWv3IdlZ2/CfFF/cXVxp034Kyub+3iae+sbTZl3gjT8IhLSy5YYxyg3/VjEcvFPCOncJa3oFpxBqWrC+ijmsLW5sp4I7W8gYyq8L7MLzJFgLZIH4L/AEjnJexbtWu+Gru4lWCHUbK+hNvqum3PlQX8TbwRISGxJiWUbmVhiWQFWDEVN8WcecJSWlwml8Fm0vbiCSNbqbU7u5jsXkAzJbWzqUkI64LbcYGMd1BmfDGvXemXkOoWFxJa3lvIJYJ4yAyMAQQQQVZGUsrIwKsrMrAgkH1hwRxRovalnR9e06PTuJhau9nrVmqjneDjdtdWO8gKWYwSF0KiUq8TFa83dkfFNhpF88+qaNBrtpLayWr2czrFsMjxMLmGUxOUnQRsAVCnDt5QzWraV23cOaAZrrhPhV7LVZoHgS9vbya8SyWTaWMEEjPvPQdSyn5SQSpCe7JrWfh/gHjG9tWEWtQanHo81zCWMkUMU9lbStA4w6AeGXjCQYOQrfiDHR9wNqE11rWoaNcO9zpd9o9619aSEvA7cy3iMzo3TeUmkjJ84k65wMZn2O9r11oE16txbx6xpuqRvHq+m3LsovN2/wDDLcbWaO4zJIC+GBDtkEhGS2Tdt+l6VZXlrwhw37yXF/B4PdanPeT313HC24PDaCUfgehBDh+/BK5VWAXDsZvX0jsv4k1XSpCmovqqWL3sQaO4jt86ZCpRx5alY765dWBBRpiRgrXmSTVblo3ha5naGSTnSxGSQxySZJ5siFtrSZZjuIz1NaH2FdsNxwwbu3ezh1XSL+LlahpVwxSKbyGQPG5RxHIVcq2UYOuARlUK/XaLxnwzcWUlpoXCfvXNLJC7ahNf3N9PGsTMzQwwzhhGrZwWDgkd46Cgv/uo7KW50rgO2gQyzzcNWEEMa43SSS22mxxouem5mYD7anOF+DE0Xi3SPf3jeeXiYX+mrJp0FvfakQLqaFY7C41WW4VI0mjkCMNh2pJnaQVLZLx32wy6inDZt7IWc/DllZ20MzTeErdSWQtOVcNFyU5Q3WoOzL/Gxnpk3nij3RGlXN7Hr0HB1iOJhyGfULm5uLm0jktjGsc8VioRHuAkY2SthoisfWTbQT1sgXtqIUAD32kbA6DLaWzMfrLEn6yawnt2/pVr3/eDWf8AeNzV+4h7bbCTi+z4tstClgmiJmv7V70ut5ObZrYNHL4ORCqoV6hDuxnapJrKOO9d99NVv9T5XI8O1C8vuRu5vJ8LuZLjlczau/bzNu7aucZwO6gibb46/wBZf3itONZjbfHX+sv7xWnGphElKUqUFKUoFKUoFXXshaJr1opusZs7iRx37gklu+CO4/zf6zVKq59iNxCmtKlycRXFtPZgk4AeTlvGM+bcYmQfKXUDvrTuIzSXVs5iNWsz827dm+mQDwjUULlpndRvA3IqN5fxTgszLn7RVM7WOJFEnKE95KW+LbQN4NGo7t08m3dk9OhP2VqmglesaKAiBFwBhfIQR5VfMMJ3fT9tdLirSIZgQIxnz4A65Hn89Vtb95lce45RMVebtPv7hCZYnu0VMNJh2dUDEBd4OR1Pyitk4avJZbZZXYOSO8AjOPlHmNdG64GikJUczB/E8kD6sqo6ebvq3W2m+C2+xRjyWOPV5/t7qy1JrbwnbaV9PMWlnvFXHhtHEcaiR8+UCxXb8n4p+jvxXDofaVvO2e0l29A0kTCXaPl2YB6fJ8grr61wU80kkqKHL9GB27s7t4ZCwOD/AGdKhbTgi/imWW3zE6tklmA3KcZUhSQOn+citla1iHPq215v9HJ23RrJHb3sXlRsfjfQ4GM/WEH/AKRWZ2UwWVSOn+QK2LtPtGGliJlCvzIiFXBGfK7ugx9WPlrGZFCuqfjKPKP1noD9P+NdOnOaq3cVmLy7d18ckdxwfWK4qZz30rfXw558lKUrJBSlKBSlKCq8e98P1S/3dVerRx73w/VL/d1V6xZFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoOS2+Ov9Zf3itONZjbfHX+sv7xWnGphElKUqUFKUoFKUoFfk52pnuLNn7Af+FfcQyQPprr6s43hR3BQPXWu/nDOrdfc8cQ3UtvfyXVzLcCN7OOESEOyeRcF/KxvbOU+MT3D6c2/XuLlhyzN5RPRfOT8ir061kvudtWVJ72yY+VNHBcwj5fBndJhnuLbZ0OPkRj5qvXE3D8srPNbFBOq74943KxBJMZGRgNk9R58VU6/Wrhf7O8+6i0dykdG4g5haW7keBDgRKAeWM5yZZE/G7sA4X6zip+91mFkLc5dmM7s9O4+f5aqPDMV/dW25YLZnXcskKmSOVNhUblBGCG3rt69cn7OpqmiTQEibTroAMyso2SplFLsOg64XJ6UxMOz3vXeMpq11pIrhY3lSZJBmORSPJbrmNyBjPnH/DrZzdIV6Nj6/qrHpLqGeQ29ukyvEfLAjZVhZT+M4GxWBHdn5atGnSzhUE/kZClsnoOgJLE92BnPyVEzMThq97GEL2rXasd8jhYodp2+ZnJyAPl6N+4eesRD75Cx72bcftJP9tdnifiCW/uZZWkdoWmleCMk7Y4y55QCeY8vb9PU10LdvOastPT4x2oNfW5z0kfMD8tK/Ij+DH9Zv3LX7W+vhzSUpSskFKUoFKUoPl0B7wD9YB/fXzyU9BfUP8ACuSlQlx8lPQX1D/CnJT0F9Q/wrkpQXv3PXC9lqvEdnYahbLcWkq3ZlizJFu5VlcSp5cLK4w6KehHdXrX4OvCXzKn6VqX3qvMfuTf6X6d/Vv/APd11XvKkkMp+Drwl8yp+lal96p8HXhL5lT9K1L71WrUqEsp+Drwl8yp+lal96p8HXhL5lT9K1L71Wm6rfw2sElzcyxwW8MbzTTSMEjijjUs8ju3QKACc1w8Pa1a6jbJeWFzDd2su/lXELrLDJy3aJ9joSDtdHU/IVIoM4+Drwl8yp+lal96p8HXhL5lT9K1L71WrUoMp+Drwl8yp+lal96p8HXhL5lT9K1L71WrUoMp+Drwl8yp+lal96p8HXhL5lT9K1L71WjcRa3a6dbSXl/cw2lpFs5txM6xQx8yRIk3uxwMu6KPpYVzTalAlubt5oktVhNy9wzKsKQqnNaZpGO1YggLFicAdaDM/g68JfMqfpWpfeqfB14S+ZU/StS+9VovDmuWupWyXlhcw3drIXEVxCwkhk5btG+yRejYdGU486keapGgyn4OvCXzKn6VqX3qnwdeEvmVP0rUvvVatSgyn4OvCXzKn6VqX3qnwdeEvmVP0rUvvVatSgyn4OvCXzKn6VqX3qnwdeEvmVP0rUvvVatSgyn4OvCXzKn6VqX3qnwdeEvmVP0rUvvVatVa0LjixvdVv9GgeQ32mi2a9VkZY1F3GJYdkh6PlT5u6gp3wdeEvmVP0rUvvVPg68JfMqfpWpfeq1alBlPwdeEvmVP0rUvvVPg68JfMqfpWpfeq1alB5h90n2O8P6Pw9PfadpiW90k9kiS868l2rLdRRyDZPOyHKMw6jz9K8p8lPQX1D/CvdPuxf6JXX/atO/26CvDVTCJcfJT0F9Q/wpyU9BfUP8K5KUHHyV9BfUP8K5KUqQpSlEFKUoFKUoPuHv8AWfVUbeNmQn7PV0qRU4Bb5BUReHBI89abfybI8J3s2nK6zYsGwfC0TPd0l3RMD9BWQj7a9V6Xb7wflA9eeuc15O7N7dpdWswoztuFmP0CAGXr9ZRV/wBYV6p08ujhk6jbhx8v1fT31wbyI5R9lp7OzFZ+/wCkFq1vLbzGaDKsTnoWRgQwOBIpHkblB2kEfuro32r390ojkeTG5vKLj8dWRukaAnyWYYyB1q2XuoRZ9LLHySOoPUkYNdOa8hHXaq4z0wB1/trTFpW9sTGekVp9lHaxbiAOpbHQFmPXJx/kY9ef9snEckFssMYKNdiVWkyQwhUIJFjHyvzAM+iW85yNBjlFxKCR5A7h0x8vqrLfdE2zCSycA7Nl2rHzBi1qRn6xn1GtmhWJ1Myq95qzGnOGVoMjNcqtXHnAA+3/AD+uv2JssBVnKmSlvnb3dM9PUM/2VyVzLH+AUjzMQR58MBg/qNcNTScwm0YkpSlZsClKUClKUClKUClKUGqe5N/pfp39W/8A93XVe8q8G+5N/pfp39W//wB3XVe8qiUwUpSoSwv3W99Lew6XwjZuy3XEGpRQ3BT48OnWbpcX8+c9NoEbYPxkSYYPUVCe5MmbQ9X1/gi4ZiLG8bUtJ3sXaSxutnTJAA2rJZuQPx55vkyYbStC1XjLi3V+IdJ1z3lt9JlHDmm3QsrfUzPyVZ9QKLcShEHNl3iQAlkuFHTB3Q/arw5rHB2u6NxnqmvPrsS3cek6lKLGLT2gsp0m+PFZuyzqFkuWBYAh0gGTldoa72x9ss+ga7p2kQ6U+peH2lxLGkLMLt7hBKltbxLtKBHlWINIxARDI3Xbg9ThrtV1234isND4l0WzsF1aG5l02ezuTdCKS1iaaW2u93RnCqAWQAZePG4ElYrtIYN2o8JsCCDpesFSMEEGx1Egg+cYrt9t39PeCf6+v/7FDQd7tR7bLnR+JYuHbbR31Se60pLuxihfZPcXclxcRJbuzjlwWqx28krzt0RUckdK/eBe1PWRxLHw1xJpNlY3F3YSX+n3FlPJcQuIi2+3k5i9ZAsU5LAjBjXySJAwjr7/AKWoP+5jf7yuK/O0D/pR4a//AGbVv/6b2glfdtf0E1f/AMs/3xp9UlNSk49mtuG9PlK8L6ba6e/EeoxPj3zuFijaLRrSRDkw7kJeRfQbqu2Pm3b3bX9BNX/8s/3xp9UfjjhK+4Z8F444Zi5mdPszxNoykrBqVstvGZL2NVB5dygyzOoOCOZg5mEobnx1xLYcLaJLfTRiGwsLeKOK2gRV6Apb2tpbxjCrlmjjHcqg5OACRl+p9rnEekW9rrPEGhada6DczW0c4trqefU9JS7IEU16jxLFIBuUFY8HJx0PSut7oq7TjLs+mvtAL3ik216IEA8IxbTKbu2kiBOLiJC7FBknl+Tu3LmraVonAmtaRHcXfFeoLbTQwyXGn3+vsJIJMb+RPZ3MmTKkiMB5JDFMoWGDQax2/wDa03CzaS3gfhkN/f8Ags+ze1xHGOWWa1ijB505V2CocAttGRnNVi77YeItNv8ASzr3DtrYaRq9/Fp0Biu/CNQsZrlgLfw0ACNsjLFUAwFfruAVun7qZVGp8DBDlBxVp4QnqSonsgpJ+XGKkPdi/wA3wz/300b/ANtxQTnbv2xtwvqOj2ngEl9HqZvkKw73vObbi3W2gtYFGJZZprlIwCRgkVC2va5xBYa3pVhxHoNlp9nrUslvZyW1213PZzgLsgvGC8qSQvJCnkbB5bMpbYVrj7d/6dcD/wD6+u/7La18+6j/APtzgr/vPF/77WgtvaZ2k3dtq1tw5oVjDqGuXNs99J4TI9vYafZozRi5u5Y0Z3LSKUEade4nGVDfnZZ2jXt3qt5w7rtjb2OtWdtFfIbWWSexv7SVljNzbNKokQJI6IVfrlvoIGQ9uGi2tp2gwX+uXeo6do2p6QtjBqtpdS6fHbXsEgbwa6uoSCkJSIHDeTmZGJxG5XRuybhbha21s3mk68+r6u2nyQkSaquryizMkEhJAdmSMOYiCSB5fTvoPn/lS1rWNUv7LhTS9PuLPSrg2d7qWpT3FvDcXaEia1skt42YlCpHMOVPQ9AyFqd2E6pqFxxdxncvpwstVNlpBGmzzJLGlzFYskcTXUAw1u7opEij4jqcZ6V1vcucbabw54w6Lrt/b6ZfwcR394ReOtt4RDPFbxxyQNNjm7vBy4C5JWWNhkMDUl7mviODV+NuLdRtBN4LcQ6I9u00bwPLEtqY47gRSgOIZVQSoWAJSRDgZxQah2B9pS8TaIupyQpZ3Ec91a39ruZhaTWznKM0iqRmFoZCGAxvI82a/ewrtAm4msrjVDaLbWB1G6ttKfLmS9tbZ+Wt5IrAcss4dNmMgxv39K819sV3fcLa7r3D+mQu0fGMdnJpRy3Lt7zULvwPUFBJAVpBNeDKHKbrTpju9c8AcNQ6Npdnpdv1hs7WG2ViAGkMaAPM4UY5kj7nOPOxoJylKUGPe7F/oldf9q07/boK8NV7l92L/RK6/wC1ad/t0FeGqmESUpSpQUpSgUpSgUpSgUrsWFlLOxWGNpCoBcgErGCcBpG7kXPnbArmewCDLSK5AyVTJHXuHM+L++oynDrlCI+4kk9Bgnd0bACjq3QMSB5hX5pPCN5dbXERCyDeN2Q5jLMiy4xjazJIAfPsY92C1svbaxi0t0uJ5l1JnjSKGPAiVRKgn5i4yQIuZ5Tn420Dd1ra+yqPwrSobySOJHnMjCNF2xxRQubS1hjBJIVLe3gXv6kE95NaNaLadeXzdO3pXVtj0iFI7LOz5dP3XMo33DoYlJ68tSys235CxVfVWkwMYxnvwcfrrvi3IYsfqAFcbxDB9dVtsz3K4pWK1418K3xBFHM+/wCIw6ZXofkz089dC3tEHTynPmzk/q7qlbyLL/F+g4rs2FmMZx16VhhPfh8adaAY/srj4p4cW8iCMoJB3LkA+Ygr9vSpe3iwe6pKCPOOlZ1nEtd4z1LAOIux55MyWuISMnYc8s/RjzH6RWc61wte2JcXFrKiIAWlALxYOcHmAYAO1u/B6H5K9ux2yhCThQASScAADqSSfNgZrzPxDx5qOratPb6NKy28zwRWxA+LHaTCUXgbuTe+WZiD+DYLjqc2G3zbz4hWbqtaxmvlnOh3KyK8ZYdUJUnuyg3jH0nDY+ulbw/YfFdWyFdTkTUVO4zvHHLbuWOTG0a7ZgveAd7YyfJOcVTNd7F9atIpJ3js3gj6tKl3bIhGM7l8KaJiOhGCAx+St1bVz05pzjtnVK+pIyveCP3euvmtkxhgUpSgUpSgUpSgUpSg1T3Jv9L9O/q3/wDu66r3lX8+Pc9cRWmlcR2d/fzeD2kS3Yll2Sy7ebZXESeRCjOcu6joD3161+EJwr87/smqfdaiUw1KlZb8IThX53/ZNU+60+EJwr87/smqfdahLQ9A0S00+EW1haWtjbhmYW9tDFbQhnOWYRQqqhie8461+67o9rfwNa31rbXts5Uvb3MUVxA5Rg6F4plKMQyqRkdCAazv4QnCvzv+yap91p8IThX53/ZNU+60F/8AF6x58F14DZ+E2sRgs7jkQc+0iZDG0NtLs3wxFCV2oQMEiuS+0W0nuILue0tprq25nglzJFFJcWvNULL4PM6l4t6gA7CMgDNZ58IThX53/ZNU+60+EJwr87/smqfdaDQ20W0N2NQNpam/EPgwveVF4WINxfkC528wQ7iW2Zxkk4pcaLaSXUd9JaWz3sKPHBeNFE11AkgIkjhuGXmRowZsqpAOT8tZ58IThX53/ZNU+60+EJwr87/smqfdaDRdb0m2voHtb22t7y1k2822uIo7iCTY6yJzIZVKNtdEYZHQqD3iu1DEqKERVRFUIqKAqqqjCqqjoFAAGBWYfCE4V+d/2TVPutPhCcK/O/7Jqn3WgvvDnDdhpqPHp1hZafHI/MkS0ggtUkfAXe6wIoZ8ADJ61FXXZtoMtwbuXQdGkumcSNcPY2TzNIDuErSNFuMuQDuPXp31V/hCcK/O/wCyap91p8IThX53/ZNU+60GhapodndPBJdWdrcvayrPaPNDFM9rKpBWa2aRSYpQVXDJgjAr91jRbS95QvLS2uxBOlzbieKKfkTx55dxDzVPLnXJw64IycGs8+EJwr87/smqfdafCE4V+d/2TVPutBod/otpcTwXU9pazXNqZDaXEkUUk9qZQFlNtM6l4iwVQdhGQBmmqaLaXUkEt1aWtzLbS8+0kmiimktZRjE1u8ikxS+SPKTB6Cs8+EJwr87/ALJqn3WnwhOFfnf9k1T7rQaNrOlW17C1teW0F3bv0kgnjjnhfHUb4pVKt1+UVG8McFaTpbM+m6Vp2nu67ZHtba2tndc5Cu8KBmXPmJql/CE4V+d/2TVPutPhCcK/O/7Jqn3WgufEHBOk6hOlzf6Tpt7cRgLHPc2ttcTIFJZVWSWMsFBJIGcAnNd+y0S0guJruGztYbq4EYurmOGKO4uRCuyETzIoeUIoCruJwOgrPfhCcK/O/wCyap91p8IThX53/ZNU+60HX1Xgm/1Lji11e9hjTRdH06ZNK/CRvJPf3gRZ7hoVG5I1jZlG8jDQRsB5RI1qst+EJwr87/smqfdafCE4V+d/2TVPutBqVKy34QnCvzv+yap91p8IThX53/ZNU+60HQ92L/RK6/7Vp3+3QV4ar1X7pPtc0HWOHrix07UPCLp57J0i8HvodyxXUUkh3zwKgwisep81eVKmESUpSpQUpSgUpSgVI6Ikayo88SzoD0t2aRFmJB2h2hdXEfnO1lOBgHrXLwbpK32oWtnJIIopriNJpWIRY4twMzlyQFxGHOSQM4qV4rsVlN7qlmALN9YvLeFIoyIrS0dnlsZGZekYlj8lQcfzbdQTgzHZLQrTtE0+y0/m200fhaIVbS4oPBdPLzyAOIdsQdlhjPV2dyxiOGJbc2L3Gou7mUMyOXZyyswwzk7trZ3ZwSMk5OTnNdB5cnPm+L5u4HPTp0yRWo8A9iOpapbxXjzWthbTQrNC8u+aV1c4iPIi+IHG1gWYeSwOD1FZxSI8mfkziGCSUSuu3Eah5Czxx4DNkleYy75D1wi5Y4OAcGvVvYVBzOHbE5x+Dl6f+IlrzNq3C99b2pv1t55NMNzcwxX5j/AyqshtEmZSW5PML4Ut5/isSM16i7A+UeH7Mwlimxx5WCyvzXMyEgDIWXmKOgyAPrrTu4zWHXsZxefssMtr169K6DW5U9Rkd1WKQjz11LqPcQABjPU/b3VXXplcUlV5LHcxK13Y7PycD9VScVl3qB5yc+fv7s13IrcAYx1rXGmmbRCIt7Eg9RUjaWuO4efvrsoorocU69DpllPfXDbYYIy7YxuY5CxxpnvkdyqAecsK2xpxnpx2lQPdCaxdixfTdOjd5JUja/lUxoILedzFDb5kYZnupFeMIMkok3cDkRHZTweum2+5tr3UoVp5epwOhEaf/hjJ7+85J81VjguxnvrqbWdRH8qupGkWMnK28eNscaqQMFYwEGRkIBnBL50+2l6YBOf8MfqrLUvEfBX8uGfinlLt6jrsNhDJczNy4IULu3U5PcFVVBZmJwMDJJOKoPHdzBfxTagNctXjbTpriwhnngjEYREY8mzZxyrnd5J3bpcuUZsErWf9u/FclzcLYRh47WDbI2QyeETPkiTBADwqjAKwyCWc+YVnem7BNFzVVojNFzlYuqNHzF5gkaIGRY9m7JTLAZ29cVYbOOEcpjuf8OXXxbrv8LDw1DPe3UVhFAZLiedLdYiJMh2YITKAC0aJ1ZiR5Cq5OAvSb7TOAL3QZ44rxIwJkkkgeKTnRSrEyrIY3Kq3k74yQyhgJEJHWrt2KcZWtrxFqN/ql/pCzXkDFryLnJbwkPE8kNo00SAtKuCcE5NuWJYnD9ftd7SrOXTRp9jNHqpvpW1K5uZeaz6ZK80cqRWqyIvJmYc1GTpsTptG/FdE25zi392uMx3DI6V+K4bqOmRnH6v3g1+1zzGJw2FKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoO1pOrPZymaLbzBDIo3AOuJhyXBQ9CDG8vf06dxqy6bxNz9B1TLQ29zLd2cUlrboltAbYyLNE0cEZAxzY7hDgHAwGPlqKrfAWix6rfPbzTvbwCGeeWdUM3KitomkeRkB+Jhep82RUZeaS0N7fQIeclqJC0wxhoBd29vBcHacbZPCLYjGf55e/qa2UhjZwQgM+GbapZQWxu2KSMuFB8rAJOB31v+icepezWOgaZqc1vGtjFptvftbLb2zSW0S8qQwz3BmiV0iZCeuXEQC4LMPPyHIJOARnr5vl6/R9NTF3aT6dcrJG53K+IpwAuH5SM8bI2dk6Cfay9cMG2swAat1YnzDC8xPl6T7X+0PTbHSLzSINSguLmS0hgtbZbeWe2FrPYQrAgkixHhoTzFk3soMkRKkHDdz3MFwr8ORAAApcXiHqTk89nB6noSJAftrzNw/wAGajq83K0+3eTq8SzMeXbiSKAyCI3D/gxMUTyVJ69O4ZI9a9mWnxWscqQWkdjbTJZ3UNtGdwjLWkVrc7seTzTcWkzNtJyW3E7mYDk3Ffhn7uzZfyn6rSy18In+f8K5WP8An66+VNcMSuZh9Kv0UC/RXKDRKx9WE2fCw1ifaxfHV9RXTEJ979PkWW9YZ23V7tzHanrhoYI33MOoLyAfiVpXaVxI1hZkW5Xw2fMNoGG5Ebb+EuZFHfFCp3EHAZjEmQXBrH9MthDGI48kAkszEs7u53yyyO3V5HcszMerFiT31NrcY+rl1reiesoVQADyvWT9J69/Q/qrq69xLZ20ngtzcJATazXc+GIkEEI6xQbVObqQEhFxltr469R19b1yLT7SS8nBO0fg0HxpHY4jjU/KWI6+YZJwAa856tfy3M0lxO2+WVy7HzDPcqjzIAAo+gDv7zlttDnOZ8ObVvxjHq0nsu4bPFWs3NzeZSygVZ7uGNijLG4eCwsrd0XyERIvjAZK25AG5wRYe1nhrhzSOetrY3UlzHbuoBubie1jkuAbaJ5S0jGNkkYOm4gOQwwfJxHdiXBGsXFhNqGn61a6Razb1kyqTTTratNFIbhSo2W64uMBnOcOdoBDV1e2/SLjRLhWfUk1WLUrCWOVp1iDnYYy0nLtm2COOTweSJ9xAeLqG2ZNrGP8OG2fRlAau3olhJd3CW8SszNuZtoL7I4xummYDuRUycnpnA7yK613byRBTJFLGH3lC6PGH2MFfllwA+1iAcZwehxXd4Y4lutNd5LKXkvIqJIxSKQuivzOUeYpxGzAbgMbgoByOlY5j1ZWyt/EfDk9tGZLhTCUh09YYSSd0ZF3BM6565WSK3L9er3LN03VXK7mocU32pM0t5cvM2xYCNsaIsW9ZkjWOJQoXmoGyBnPeTk106jVxyzBSMRiSlKVrZFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFcF7LsQnz9wrnrhu4d64zg94NIEl2Q2N5caoBp80MV5DbXNzFzwTbzBFWCW1nVQTypIriRScH7PjLJatew3esaqLGze2iudLmto7eYxRlXsJrC6YRFWKECHT02KpOTtxnIJ7XDWmycPQ2/E1vd2epJHd+CT2EbSxSxQ3VtIokuWby4WMwaMDlsu4RMGcNgQuvcSJc6tDd29xcR2zRXPg8Mxjkk06aWO6jVBCv4JQLjkyBlyWXYWywK1si3xMJh8cARIt0t5c2V3fafaPHNfpbqW2o25LbmuRsRWuOWMORuAcDJzVq7Qu0iPUoRY2NgtlYl4ppjLy5buWSAl42V0GIFBeUEIWLhjkgFlO2dj+s6bp/Dtndafc2NlYxRJNr8k3NuZotUeG3hiieEhWaR5T5jgrHEIxgg1gvuf7S3uNetPDoY3t447q6ktiIuVJJBZTyQwhJDyiOeI9qthSVQVvraYj6NeI7mY8f90v8A7nnUUuNB1WyGq2WmzpPczc13VZ7eE21u0t2V3q5iXbON6Ebcdc9KsHZNxvbajxPexWjE2baVaJbOVkh57WTb7iY28oBiYyX8i7cDIhDdc9Kn7pHjaz1SygSDDTi8tZHLwBXWAWV0+xJnHMKLPLGhGf5yGXp0wM07Htc97tdsbkkhPCRBN9MV0Dbtn/RUyK/+pWvXp8M1b9teIvFoe35I/PXGornkfp9FceRVNlf8n1uPSq72gcUrpFss7IsrSXMFtHE0nJ3tM+CQ+xs7UDuQBkhSO+rBJcRxI8kjqiIpd3bAVFHUsSe4YrE+0DVI9alVzGfA4GkW0LZV2kb8HJdMB1RsKyIp7gZcjJwIi3zaNS/yc+tXo1OUT8zbMEKLG2eSE3btox1U56luueme4Yj4xyyVkHLKjc+e7GM5BHQrgHqMjoarstvPbdUJlTvyB+EUf6ajvHf5S/aFqLftJt4b+BLtJJrOFZpJVi2vJcTIj8uHJYbYuYiqeuCWwcqppWs3thyWviMyi+31p1urSKaKSKJrNbyAF4njljuXZI5UWPqr4iYEOcjuAAyXzJvpqe4/4uutbv3v7wrzWRIo406RwQxbjFAmepALuxY9WZ3Y4zgSXBXZpq2s25urC2SSBbhbUyPLHEA5MQZtpJflIJlZmAPQNgMRirjTpxriHDac+Vn0ftfVtJbTNWsjexwwxx2CQbLWFiisp98MSYI/m8FIyBh/IPTNc4040i1TVLK8TT0gjto7GDwVpDcLcC1uXnCuxRQI25mzZg9M9TuwI3tC4IvdDuDBeJlDsEV0izi2mLxrLy45JokJlVSdyYyCp+Sq7pk5S4hdWVXSeGRWYF1VklR1ZkHVlBAJUd+MeepmMIxHo3btU0hdeezQTpHrIifwiGRpNkJnSEwW8hPxAX5z7wGJCMAvlKKxninh660u6NneIiTCOOXCMJVZJQdjKyjrnaw6gHyT07s3TgjjuyjuZL6/NxLcGMuTLHDPLcOinEaTKAqOUSCJcoqqoYHOc1Tr3Wxe6r74XcSmOW+t5ri3Hlp4PHJCrW3lkbwLaMR5ON2CTjJrVXOUwveh9k2ppZyX98ILC3FtLIkc0m27lkjjaaCJLdVIVmZFBDspAbuLeTVQrX+KeM34gkay4fsp9QjhnW4aeSOOOElGV2hkM2WZGKrtRgjFS46DpWS3gIlkBi5DLJIjwZLch0dklh3EknY6svUk+T3nvrK0dQiucy4qUpWDIpX3BE0jrHGrPI7rHGigs7u7BURFHVmLEAAd5Irsaxps9ncSWt3DJb3MTbJoZBtkjbAYBh9KspB7iCCOhoOpSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKDQ+xWEy++Vv5JjuLHwWVXVZEInEqKzI4KkqTuGfOBVVvez8adYyz6hIxveekdtFbiR3hMUjnnkFgs0Eq8tgduV2gZRi2L57n+H/nsnm/kyernsf3irlxoFaGQMQq7G3McgKu0ksSBnaB1P1VwTurU1pr6dfpa02VdTbxeOrd/7lj3aZwVNoFtYqNR8Lg1SB7uSOFXitVezMQiUkykXDIl8cMyLt3NjO7pTtO1e5tOb4LcS2xnha2naJjHJJA8kcrw8xfLVC8UZO0jO3ByCQbt2zcQzXXvfYTWVxZpptk0Ns05Ie8hufB+XdLGYwEjZbVAAGk7mBIZWFWHsC7GW11I9UvHU6Yl89u9mDJDPepHEollhuYnBSOOaWNSF6typlBUgZu5tiqmiJZtFxBv0qawuCZXW6tZ7B33ySQALLHeQxyM2IoWXwchAO9Wxjc1Reg29vLdRR3k72tq7Mk1yi814A0bhJOWOrKJOXux12lj5q3jts7N9F0nh+6l0zl3My6zbyGZpIpLjTY5kELae048uWAEDEbksGl3HJQsfPBPm61rx80xjHT3pwhq8N3ZxywzpOoRUeRXSYFlRCTzE6MSCGyOhBBHQiuLVdYWL4zAY6k5AwBkkk+YAdc1gXuW+IRDHqFpLchFDWklrBK8aRvLKl5z0hLkNz3S2j8kdDy+7JJqT7ROIDKpCucSMV7/AMRMF+o8xYoufkEg8+KqtfT4W68ei1prRbTzPmHf424sk1SUW0LOlqG8hRkcwr33Eo8+Ou1T0HTznp8KvLAyqoo7wvWPpjaNp6gADH1KO+oLhOIIvOf4zfFGDkKfigfqb1fJVthmjWJp5SIoY1eSV2xtAUZdz5u7H+Fck27wZ6yrPGmtpp9m9xjM5YQ2sZ6b5mHRumMxouXJ6ZAx0JFYM7MzF5GaSVyWeRjlnZiSSfrJJ+01OcccRtqN005Ux28e5baHH81FnJJAHWV/jN39TgZAGdA0TsPvpLRL2eSCRZIXkit7SaOcqRt2rdXMYaJXGXzHFzD5BG5TgG52m3mIx6yrtfV8z6QyAHrW2cAcX8P2/Dkdhdz39vd+GyT3McHhJad2dcSM0S7PBuSsabQyt5B85wc57SNMksLsWUltHa7IoX5axKmSybGl5z7riVXZGI5skmOoXAxX52X8FXOv6ithbMsQ5bzXFww3JbwoUVnK7gXctIiqgIyW7wASOmc1n7NXV6/SUx209oI1mWK3s/CIdKth/J7eUpuaUcxWuCAWYDY+1Qzkjc5ON2BnKysmWU4OGTPnAkRkbHyHazdfNW1cadgFzYWXhi30bLBa3k9+86iCGKW2w0MMJ3FikyrLh2zhlQH+cAGSaVZ81gCAymQqQxOzOwhcKpDdNzHdkfi4znpotMRDOsZ6hGJ3CpTheyFze20DlRG9xDzt3N28oSAzb+SpkClAy5UZBPm7xfOEezK3lAe5uZJR/wDDQCFG+hiCz/8ApIrStF4ftLUBLeCOJfPgdWPQZdj1Y/S2a4tTd1jqO5WOj7PveMz1Cb1XWZbTlnS3igsrKGWZoYoRBBdPHA7LEI+9LUNg47y2eu3Arz1M5d3kb40kskznqcvK7SOfKJPVmNeg9RhHg0y+Y28y+brmNvlrzyvdTba1tSJz6NO529dLEV9X7SlK6nKuPZxZ6dd7rK5ttak1Ke5tVsLrTNkrWi7wJJHtmZS+GKMWByACQUIy29dpfBGknUYrizOkarrOpAMiavqM0Vk/gkK28l3Db2KAXUjmI70eUAFHKL0IGG9hHMfXbe0j1G40vw1J9PkurdIJJSk8RZbcC4BRRJLFCu4DcDtxg+UILU9fMulWejvZwRiwuLyRLgo6XZF1IZJLaVWYrGgkySg86p5wxYLEvE2kXTm31fQ7OyXe0Y1HRDPBLa4O0ymzlnmt72IEZIG1iudhJxmtcacOS6XdtayyRzqY4ri1uousF7a3C8y2vID/APDkTzZOGDrk7c198CcMy6xerYW89rBM0U8qNcyNFG5giMpiQojM0rKpIUDuVj5qneK5xdcN6FcLbXwNsdQ02W+lSIWk2+5kvbW1t5FYyOYo2mGGAAxIBnacBAaFwnqN/Fz7KwubuLwpbLfChk/lDx80Q7V8rPL8stjaoIJIzXJxfwZqekFBqdhcWfNzymkCskm3G4LLEzIXAIJXORkdK0XgzUp7Xs91d7aaSB34ighaSNmjk5clrpfMQOpDAMBtOD1BYdxNdjQJ0uuB7calIZraDjazhZpmLiG0aC3a5UM5ysWy5uiR3YdqCgaX2a65dWYv7fR76a0KGRJVj6yJjPMhhJE0qEdQyKwYYxmoO20S6ks5r+O3kayt5Iobi5GOVFJOQIkYk53MSo6A43LnG4Z3btl1fT7LjDn3R4pXUYJ7KTT47V9OWzkijjgZIdPjdea9pIQySIvxmadT3109auxd8M8YzxWVxZb9f0+9lsZUKXNor3FlJO9zCBmPyknkbIwoDE9FJoMUXRrk2T6kIJDYRXC2st105Uc7IJViY5yG2Mp7seUvXJGZufs41tFuWfSbxEs4efeOyBY4I+SLgs0hbazCEhyiFmAIyBVwt7KWLs0v5JI2SO44hint2IwJoha2cPNj+WPmRSrnzlGqze6P1mR+LrKxu7mQaSnvOLi2MjJaGGe5Vrx54gQj7o9wLMD5KgdwoMt03sx165tBfQaNfS2rJzEkEYDSJjIeKFmE0ikdQUUhhgjOahtF4cvr0TtZ2dxc+DcrwkRIXeIzSGGJTGPLLtICoVQTkHp0ONR7YdS1dOO2ihlvEuhfWS6XCjTKrQbbcoLeNTta1bEnMwCp/Db+5sX/AFm7W01HtBm06Qwumn6W3MiOxo7iS0uhcvE6dVl5jyEsOokLnvFBg2rdmmuWklvDcaRepLdScq1QIJTNIEMhjBhZgrhFdyrYIVHbuViI7i/hHUdHdI9TsZ7JpFZouYFKSBMB9ksbMjFdy5AORuXIGRnTuDNdvIuANbaO7uFcavZRI/MkMkcdy1gtwkTk5RZFLhguM7387E13tHlSfhXhnw9zLAvHEEErSsZAtsxu2liZpCcQY7x3BR8goMzPZtrngY1D3nv/AAMqHEvLydjYxJyAecI8EHeU2465x1q09l3Y1e6lqF1aaja39lDaxTpNNGIcx3qwW9xbWjs4dCXiuY5ML3qy4IyDUp2ialq69oBjSW9F3762i2UKtMFazLw7RFEPJNm0QYyEDZ/Pluoer9o0z/8AKXrkKvJtfTHKxBm2vJ706MEYRg4Mu0HBxnGaDzzJwRqyXsemyaXeLqMkSzpZ8stMY2LLzcLkCEMjguSFG05Iqz8LdnF/Z67pNtrmlXEFrdajbQsJQGgnBfc0JmhYoWKqSU3ZIDdMZqc7Gbq4fhbiaeylnk1tYdPheQPK99FZCTFyImzzUYILwnaQwKL3ELUF2H3+oS6ppI5t9LpXv7ZsSWuJNPF0C+3yzmFbko0h2g7iMnBx0D64w7LNWe+1ObTtGu20yHUtRjgaNPI5MF1Mirbxu3NmRVXaDGrfFx1IrNga3TRNfvJe0ny7u4IGu3tmqc2Xli3h8Jt0txHu2CIIi+TjG7yvjdayftBQLrOqKoAVdY1VVA6AKt/cKoA+QAAUEJSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKDZPc/ri0um+W5RT/qwqR/7jU/xxFzIJUJwHikiJ7sb0KH99QnYWNmmyt6V5J8nXbDAP35qU4snyrDHd/bVNqz/7TP1el20f00R9J/aje6n1pLq+soheRXkltaTmV4VC2wS8uPCrHlMB5bNaPAzEFlGUKkbmzF9jnaxc6OvgdxqV9b6SrNceC2ltZXM88hIMkCT3n/NYpceU4zgkkBSS1U6XRGku5rdFYhY35cmDsjIjaS2WR/iqJDF4ONxxmToCVAqrNID3H6D9Y7/qNegi3WXmOOOlx1zX4b/T5Ayi3uYtU58EKyTOslveQzq6ctgUMsBt7ZeedhKyKoXymqqGQA7c9SM4z/ZXU5nXGevfjIz6vkrd+yHTX8WbjbaaXqLXV6ZFin8GeSEJyIdk8kjHYTyAwj78SKfxsFbUzOZRiKx9GJWxJlj2sqvzU2Odu1SHBVjnpgMoP+rWw8QO0l5slKlowgmx3F1G6bGO8NO0vXzgk1z8Y8JB9a0qYwwRE73uYoEENso07ZPAyK6h5VkaSOMy42kAKBkNUTqkuL24PeTczdfoEjAdfq/fVdudXOKw6dGPVadJk3MqjuBGM9encKrHbBxSG26ZA+I0ZTdHIHMlzmK3z59pG4gfjYH4pzL6SLh4p2s4xJNDaXF1gsqKkdtHukmcuQu1enTzsVHnqQ7IOLItGs9OuZrbTree5utRb3xmSIahJC0kE8k8k02DFA4lijWQuNyxeShwzlsttzty+XhO41uNcMf1fQb2zSOW8sbyzjmLCB7m3ntlmKjcwjMyLuIHXp5uvdXa4f4v1PTkaKw1G8tYmbcYY5XEOcltwhbKKxYkkgDJ7816C7fe1rQdT0a809LyO8vXWKS0aKK6khSSOaGYsLrYEVjy5EwGK4IByCRXlSSU/LVjEubx2leI9budQuGur25lurl8BppW3uQowqr5ljA7kUBR1wKnuyPiH3tvmuffVtLHK2SMLM6kt3FvDyWphPkK55a7XbpnplQTmkBv8/8AGuzp989u5dBESVaNllit7mNlbaWUxXMbp+KPKA3DzEZNSZiW9aZeycRXM1vqV1eyWepwQT246ubSZ7wiBeXEPB+bFbwBuoAJuomIYBCck4gihs72O0trhLqKGS83TKNvMdruSJNwyfK8HtbV+/AMjDHyy2h9ptzbtNM8UHMFpPFZGFFt47J3ihiVliXyXjVIIVG7L4VRuIAFR3EHDiWPg4BLS+CRSzdSdrOzDCZPTAUjB8301o3E5hOjGJabwTPuC5znGfr+UVeoF/xrMOBpcgde8A58/wBH6q0yybyQe/I+3r8v01RakYs9Ttp+CHJqB/ASgn/qpR//AAavO69w+qvQt6PwMmPPG/8A7Grz0vcPqrt2M9T+FZ7Uj4q/n9P2lKV3qpyWtw8UiTRO0csciSxSLjfHJE4kjkQkYDq6qw+kCtA1aPTOIXa9jvbPQtXlJe/s7zmw6VeTkgy31lfRI4tjKSztBMvx2ba2ASc7pQb3wJrOmaMbGTW7rhS5h03mNZPpAvdQ1l5pHd+bcT2TrbGNd5J5ytnAwA2Cen7oC50ea6vLVLnUtNawgtverSVtoxol20w55uLKO2bZb70uJGaWRULbhhmwYxh7DIwe49DUnxHr13qMwuL+5kuplhjt1kk27hFCCI4/JAGBubr3kkk5JJol+w6/dpYyaYlwy2Etyt5NbBY9kk6IkaSlynMBCog2hgp2qSCQDX4mvXYsG0sXDDT2uheta7Y9jXAiEImL7OZnlqo27tvQHGetRtKIXfRu1ziGzt0tLbWLlLeNdkSMlpO8aYwEjnuIHmRQMAAOMAADGKiuGuOtW026mvbLUbmG6uP+dTEpcNcncX3XC3SOkrhmYhmBI3Ngjcc12lBZeJePtX1OCa21DUp7q3nmjuJopBCEaSKMRRlAkY5SBR/Nx7Uzltu45qN4o4gu9UuDd6hcNdXJjjiMrLEhKRLsjXbCipgD6MnqTkkmoylBeNN7XeIra2Wzh1m6S3ROWilbWSVEAwES6lha4UAYAw4xgYxiq3pnEV7bRXkEF1IkWoIseoKdkhu1V3kHNklVn3b5JCWUhjubJIJqLpQSVtr93FYzabHcMthcTRXFxbbYikssO0xSFynMUrsXorAHaMg4GPyfXrp7BNLedm0+O5a7jtSsWxJ3jaJ5Q+zmElHcbSxXymOMkmrD2Yaa8vh1xFEZnt7aAiKHTotd1H8PdwxmXT9OuJBAWXGHmkWTlo7bV3MGW78V8PyW73j6TpSy6kz8Ov4KdPsr14LO70UyXdzb6csMloFl1JGhlkgRkRgyKUDGgpf/ACs8Q+CCx9+bvwYRiILiDnbAANhvOV4Sy4ABzIcjocio614g1a91cajFczy61I5lW5j5UM7NBbFGIWNViCi2hKlQu0qpBByQdU4H4ZVr21SXT7Z7S81jUYbuCx0601SxtxFcR272t/r19IzWcKNkwRWyoxDBg7s8eOj2b6bcwyaR4Np0TWR0W9l1O9ezhaWHUxbanDexXGoyRc+1vIZhFAtuHTyWxsbmEkln8/aTrUmoJqzanP74pALZLpEtoWMAZnEMkUMKwyx7nLYkRskKTnauObW+1HXb2W3nutWuJZLSdLm18i1iihmj6pN4PBCsLuMnq6N0Zh3MQbTqulWkelyGK0uZdO8WIrmG8Gl6bHa++EllE3hbcSPeLdtfDUGeFrMJnaGiWIhQ57HGV0lqOIBb2OlRe9/vGdPI07S3Nq91sS6lBltm5ryBjkTb1B2lQpVcEMytuIryO/8AfWO5ddR8Je88K2xF+fI7PJLy2QxHLO3k7dvXGMdK6N9dSTyyTzOZJppZJ5pDgGSSZ2klkIUAAs7MegA61s91w9p02pX0TW1rbw6TqNrrl0qRwxc7SpNLhudQslRFBeIXkNuqR9Qnvg4UAHFYtczGR3kKRxl3eQxxqI4ozIxcxxRqMJEucBR0AAA7qDjpSlApSlApSlApSlApSlApSlApSlApSlApSlBt3ZMmzSYjjq8lxIfslaMY+xP1V+8TN5J+3P0/5Ga7nCcRg0q0j7j4NHIR8hmzMQf/AF1FcQHKH5cHA83U+cVQ2nOpP3n/AG9Tpxx0ax9IUzh6a3W+EN27paXbpbXjrLNAOQ0dwAsnLcKYxcS27lnBCqkh6d9djt94VtI4ILpLhobyO2a32zZC34smAlXmHyUvQkquq5zIoYDdhWNb1npLkd4bIPQ9x+Q9CPNg9CMiqNr8sodonllZFbcqM8jRrtRYkKK7EDbEkcYx3Kir3LirfQvM1xnw89uaRF+XzcOm6w9tj8Hb3EQcyNbXMaT2zts2FnU+UDtAG5GU9B181W21QWsUxjv9WsNNmjimMUbmJ3Z02unkqIpAJI5I96kFlQbsbSBQniZejKyn5CGUjPUd4z58+qtAsLXUL2xi1OWNrsR35lWa6mSOx2RII2WO0ikV3dpxlnVQTywOpZt27lEeXPxlf+C7cNPLfDnhGt4razhnOZYLbCOJJySSbu42xXLnP/WoPkArXErlb2cY/wCs3f8ArRH/AP8AVXTg7f4JzZ23SyySzSOemWLFVABJO1Y0jUAknCjJJ61n3arc8id5AcNIkZTuPXby8j6hGf1VWzPvNScOvHGiT0vjOGzguIZcPBcRSxybEWZrkwpuOnM3NXweJmmgZ3IcENsKkGs21zXLm+mNxeTNPcFI42lKoh2RII4olWNVVIkQBVQABR0FRguGMfLz5Acuo6HyioVmBPUbgq5+XavyCr9wXwZay2nvheSSXMTI6i2s9xngfPkvIVPlY6DaMYZvxsVaRMUrDknvtRC1C3+NXDjHhiytNNhureTUHnknVHE8aRRojJI2WXlqyE7F2nJBy30VSN301MW6Q7EaO4YxxvIVRpCqKzkKuAXbaDtTLKNx6DI+WvQ3D/CmlcPc1rvkahLJaI6JeQxBxLC0pdLZJwEW3dth3sRtEYLMVGRgnDmv3Onz+EWU7QS7GQsArZUkMQVcFT5Sqflyoq16dxil5qEU+qrCsMawcpkjZuS1oPwAZcktAX8p1AOdqgBck05H2QfE+jS2mxpo1hFys1xFCAyMkPNZIyY2AaNGw2wN12qM4OQJm/uOeWbDDIZOpLE7SV3jPcDjIXzZxUNxZrnvhdeEbZekKRkysJJZWVnkklfaAqs8k0h2LkDpgmpO3GEUf6K/uFRacso6W7gWTAXvz0P9g/XWqaa2UH+fqz9NZJwe2Mfr+jz4/XWp6LL5A694/wA91Uer5ek2k5q7s3VW/qP0/wBU4+3urz0vdXogjPT5QR+r/GvPLrtJX5CR6jiuvYz/AC/H7cPtWO6/n9PylUzxrn9CH1P7dPGuf0IfU/t13qnC50qmeNc/oQ+p/bp41z+hD6n9uhhc6VTPGuf0IfU/t08a5/Qh9T+3QwudKpnjXP6EPqf26eNc/oQ+p/boYXOlUzxrn9CH1P7dPGuf0IfU/t0MLnSqZ41z+hD6n9unjXP6EPqf26GFzpVM8a5/Qh9T+3Txrn9CH1P7dDC5/wDH9YIPrBI+01+fJ9AKj6AQQVH0EE9PpNU3xrn9CH1P7dPGuf0IfU/t0MLlgfrB+1c7T9YycfWaMoPeM5O4565IBAY58+Cev01TfGuf0IfU/t08a5/Qh9T+3QwuWP37vtxjd9eOma/Ao6dB07undnvxVO8a5/Qh9T+3Txrn9CH1P7dDDQ7DV3gtJ7SKOBFudqzzhD4U0SSRTeCiXdtW2MsEUhULlmQZYjyaj6pnjXP6EPqf26eNc/oQ+p/boYXOlUzxrn9CH1P7dPGuf0IfU/t0MLnSqZ41z+hD6n9unjXP6EPqf26GFzpVM8a5/Qh9T+3Txrn9CH1P7dDC50qmeNc/oQ+p/bp41z+hD6n9uhhc6VTPGuf0IfU/t08a5/Qh9T+3QwudKpnjXP6EPqf26eNc/oQ+p/boYXOlUzxrn9CH1P7dPGuf0IfU/t0MLnSqZ41z+hD6n9unjXP6EPqf26GFzrktbdpZEiX40jpGv1yMEH6zVI8a5/Qh9T+3Xa0fjm5tbiK4SK2d4pFkRXWUoWU5XcFlBwDg9CO6omeukxEZ7ettWURqI18lUVYwfoRQo+3Aqp6mSVbJz3kfv6eqsguu3TVJM7rbThn5I7r9Wbmo5u13UCMGGx/9Fx/8+qmmz1I76X2p7Q0ZjEZ/stWvrhz9Z/4fb1qq8RQozq0gcrvKMExvO4ZUDPTGR6s/LUPe8d3Uxy0dsD9Cyj98pqPvOJZ5RhliHXPkhx5iPT7utWGjSa+VTr6lb+EpeQXd4xKw3M0aIFjVEuJ0iiUiKNFbB6dAvfkkdcmtA0q6vbqGOO/hSHwYLDEmxopG5aKiyzgk7pMdMnz5PTpVJh7UL5LWC1SK0C28C28UpWd5gi5xhpJiqnJzhAq93SuNO0m8AxybQ/SUmJJ+Unnd9Rr1taMVaaTEN6051jtIlxjEYP0knJ/fWe9sFtA1utxM7iRcxQIoG1pJPLUydPihI5/OPjZ64xVRPaxf7FTk2W1QAPIn647s/h++oziDjy6vYGgmitQjFG3IsocFGDAqWlI8xHd3Ma0aOhet4mW7U1ItXEIdDWg9lEepXaXFvZ6rLYwQR86SPaJkInZkblo7DY5I7xjqc5BxnMfCW+j9f+NSGgcR3NjMLi1dY5ACvVVdSD18qOQFTggEZHQgEYIruntzRDUOL9LvmlSK5kudSghhZlgQRwoz9FhWZYFCMHmMSABi53HZ1BrNbm75p6RxRJncscSBEHTHQnMjDHndmNfWqcZajdPvnvbh2B3DDvEqn5UjhKoh6n4oHea+NL4gWBAp0+wnYNu5s63MjHrkKY/CBDtAwMBOuBnJ60gw4YmHmru6ZZS3LbIo2cgAsQGZUUsqb5CB5KbmUZPeSAMkgVxcTcUS39x4RJBaxERpHy4IzDFhO4kBtxbzZJ7gAMAV3eHOO7nT4p4rWG2TnriRz4S7BgCI5FVp+WZEyxXcpALE4rKsx6mOukjqkcdvb+Dct1laW1nLMCCVS2uEcHJwDzrhxgdNsUZ79xMlbNlFPyqp9YFUiXiO6eHkPIZIuebkhyzkymMQ7y7MWJCDA6+c/LXOnFM4AASHAAA6P5v9eptMZ6IzjtqXCD+Vj/S/twP3VpuhygADHX/PSvNencc3UBykdueufKWU+fPmlFTMPa7qCYxDZdP9Cf8A+fVZq7a1pzC20N3p0riXpSBt3XA7+mOvTJxn6cYrDOJrflXtzH3bbmYAfRzGK/qIqMi7b9TUYFvp35u5+81Wtb47uru4kuZIrZXkYMyosoQEKq+SGlJ67c9/fmtm10badpz8mre7imrWOPmJVSlKV2K8pSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlB/9k=\n" - }, - "metadata": {} - } - ] - } - }, - "f118b3318a104b6997c2c431e4fe1d59": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_24b62d38fc6d466a8a44fb63daae9481", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://www.bilibili.com/video/BV1bv411J7Y2\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "<__main__.PlayVideo at 0x7fa7200e7cd0>", - "text/html": "\n \n " - }, - "metadata": {} - } - ] - } - }, - "6881a1932e2d4c4c9ebecd90276e6d0d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bd40292dd2b34696b901c96aef0d928c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "24b62d38fc6d466a8a44fb63daae9481": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "65f0a4d4bf514e47af861253f29da995": { - "model_module": "@jupyter-widgets/controls", - "model_name": "TabModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "TabModel", - "_titles": { - "0": "Youtube", - "1": "Bilibili" - }, - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TabView", - "box_style": "", - "children": [ - "IPY_MODEL_bc868c47cf454c7f808f055fe1e93853", - "IPY_MODEL_03aad6c4b73a4093ad0a4705c10b18b7" - ], - "layout": "IPY_MODEL_195ccb998a3e4be1b2067fd5a9692b2a", - "selected_index": 0 - } - }, - "bc868c47cf454c7f808f055fe1e93853": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_26e7fe6ad7984163a724806c3e9e3052", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://youtube.com/watch?v=NYzgpUtBhPM\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "\n \n ", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRoeHRsfIiciISIiJDEtKSgxNy41Mi0tMjE0SFBCODlLOTItRWFFS1NWW11bMkFlbWRYbVBZW1cBERISGRYZLxsbLV1CNj9XV1hdWldXV1dXYFdXX1ddV1dXV1dXV1ddV1dXV1dfV1ddV2BXXVdXV1dXV1dXXVdXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAUCAwYHAf/EAEoQAAIBAgMDCQUECQIEBQUBAAABAgMRBBIhEzFRBRciQVNhgZLSBjJScZEjobHRFBUzQmKCk8HwVHIHFrLhQ3OUovE1Y4SjwjT/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQIDBAX/xAAlEQEBAAICAgAFBQAAAAAAAAAAAQIRAyESMQQTQVGBMmGxwfD/2gAMAwEAAhEDEQA/APPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdhzcY3tcP5p+kc3GN7XD+afpA48HYc3GN7XD+afpHNxje1w/mn6QOPB2HNxje1w/mn6RzcY3tcP5p+kDjwdNP2Fxcb9Oi7cJS9JAj7O1nU2eaGbX4vyAqAdNS9hsXJXzUo/OUvSbF7A4vtKHml6QOVB1f/ACBi+0oeaXpHN/i+0w/ml6QOUB1X/IOL7TD+aXpM4/8ADzGPdUw/mn6QOSB1s/8Ah5jIq7q4fzT9JrfsHi+0oeaXpGxywOml7D4pf+JQ80vSaKXsjiJuSU6KcXZ3cvSNj2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOV6FXPNqdO2Z70+PzNf6NVvfNRvx6VyVUXTlr+89PE308JmJtVfs8Qv3qfmkv7H1fpP8AD/Uf5EyrhXE0qD6xtG/DYm6Sk1mWjN0pXT4EDktJubtq5MsJK28mxpxGLjSg5zenVbrfBFBiuUq9b/xHTh1Rg7fV72a+XMVnxDV+jTVu6+9v8F4EJYyktM2vyOeVrvhjNbqVSxtajJSVSU11xm7p/XcdXBwqU4zg7xkro4itVi98kkW/szi3edO94tZlbqei/v8AcMaZ4z6Lioisp9HESXxJP+xZyKzGdGtTl35fqbcXWgA2gDRjcXChSnVqNqEFeTSvp8iJQ5bp1JxgqWITk7JyoVIrxbVkBZAAAAAABoxWKhRjGU20pTjBaX1k7L72BvAAAAAAaaOKhOdSEXeVNqM1ZqzaTW/fo1uNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUs6MnOWX4m3c34Wg6nSk2uDT18DTUpKUpRWrlJ3W7rLHSlT6tEZVonJ0+jJuafHevzI9fRSfA1ypt9OT6TPmKnahN/wsCNyPPS5YYvEKNOc2szjFtK++y3FXyW+iy0lSjUg726SauQjjcSnWlOaeXO27cLldUwU83vadxaYqnsqjptp5dLrcaakuj0bXW65jdj0SSoOOwk4qNnfTUsvZeFSMpuELztFKN9Hd63+4hurUnJKaVuJb+zemJum7KLb/AA/uWVnKTW3WSpK26xT8sQ6F1vi0y0rTZAxsc0JLuNOLogAbRUe1v/03Ff8Als24aGOzx2k8M6f7yjCalbublYmYzCQr0p0qivCatJXtdfNEOhyHRpzjOMq94u6vXqNeKbswKd4ip+lfoG3nsXUzbbNLOtM36Pn+Lrve+XvN+PTr1q6h+lSVK0W6dbZxhLKnaMU1neqbzcbFr+p6GwdDI8jln955s182fNe+a/Xc+VeSKMqkqn2kXO2dRqSip2VlmSertoBT4erVxL5OU61SKq4ac6mzk4539nvtu3vVWZHqUKiweNqfpOIzYWdVUftHoopSWb499ulfQ6ShyZSpui4Ra2MHTp6vSLtdd/uoPk2k6dam4vJXcnUV3q5Kz+XgBVypSxGPnTnWqxprDUp5ITcE25T1utVu6t/WQa1WapToyqSqqhj8PCE5O8nFypys31tXauWdfkRVcZOrLNGGxpwhOFSUJpqU3JXi07Wa7voTKfI9CNKNKMOhGaq+87ualmzN727rrApalWpiMRiVKGLlGlU2cFQqxpqPRTzPpxbk731urW7y75HlWeHh+kJqqrp3tdpNqLeW6u1Zu3WY4nkilUqOr9pCckoylTqSg5Jbs2Vq9iXh6MacIwgrRirJXb+96gUGEwMsQsTKeJxEXGvWjBxquKgk9NFv+TujThcRVxb5Pz1qlPa4erKps5Zc7Tgr93G6110sS8P7Ownt9spx2lapJqFWUVOLemZRaT08S1jgaSnTnGKTpQdOFtFGLtdW3fur6AUWKxtWnHHKFSSaxFClCUnfZqcaabV/9zfzZIrUHg6+F2datNVamyqQq1JTzdGTzrNuaa6tNS0lydRarKUFJV3eonqpdFR8NEjThORaNGoqi2k5xTUHUqSnkT3qOZuwFVgsPiKuHxNSGIqOttMRTpKU+hG1RpacdNG726jfyNNQr7OSxVKo4N7OtUdSE7NXlGTb1V+prfuLNcm0tlOjleznKUpLM98pZm771rroY4TkqlSntE6k55cqlUqSm0uCzPTcgJoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvC1acKk8z1zPf8zCvic89NYrvMa2H6Un3v8TQ421S1Mq2Tebra8TTj+jh5d9l958Unfd95hypP7FLjJAa+TWW9LcUOCxVOOa84rKulqtDfL2kwsIX2mbuinf7wiv9p6ajXUl+/FPxWn4WKNR3u8r8Eyxx3KixrbUcqhpG71+bKqpUlDqujF9u2N6Yyk96lL5SdzqPZah0Z1Wt/Rj38f7HLxqOelrIsn7SzoSpwioOnGKTglbxvxLEyrs5TRqqaplNhvajDVPfbpvhJXX1RZ0MVTqr7OpGfydzTm6IAGkAAAAAAAAAAAAI2MrTg6WXLaUmpXvuySa1W7VLUCSCowfKdSo6WkXCd7yUWrrpa6voWsm07+8tz0LH9IT9xOfevd+r3+FwNxV8o8o1KVaMIwUouDe67Wkm5PXcrRW7XNvJ1qj64R7rOX36fgJU52/aPwSt96AYOq504yla7vu3PW113Pf4m407OfVU80U/wsL1FvUZf7dH9H+YG4GiWJVnZPOk2ovRvTcuPgV+D5RrTlTU4x6Td2oys9/uu+mXS997dtALcAAAAAAAAAAAAAAAAAj4qpOOzyWs5pSum9Nd3DW2oEgFPheUqs9m2llk5XezlG6T36voWV3rvVtzuiy29/ci5d+6P1e/wuBuKvlLlCtSqqEIKUXBvdd6KTbdnuVo6W1zb0TrVHvlGPck397t+BX8uYyWFw8qzqSbTikrRtq9erhdhZLbqJ+DqynTjKSV3fcrJ6tJpPcmtfE3miMJWuqrd9VdRf4JH29Rb1Ga7ui/o7p/VBG4Eepi0lJJfaKLag9G+CXHwIODx1eU6UZwVpXzNQkk/ed03utaK1WuYC2AAAAAAABV1anSku9kWoyZPk2TlJqa1be4x/Vk7e9G/wAmTSqrGcoU6CUqkrXWiW9/I5vlT2hlW6MFkinp1y+pcY32MxNabnLE07v+F2XctSLzfV/9TT8j/MukcnORipaHXP8A4fVv9TT8j/Mc31f/AFNPyP8AMo5GnXlCV4uxL/WUZK0otP6o6F/8PK3+pp+R/mfObqt/qafkf5mbJVmVjm6uP0tBeLIafE7Dm6rf6mn5H+Z95u63+pp+R/mJJC3bkEzOlVlFpxbTW5rRnW83lb/U0/I/zHN5W/1NPyP8yo9AAAAAAAAAAAAAADCpUtotZPcv86hVnbRaye5f51CnTt3t73x/7AYKjfWbzPqX7q8Ov5v7jcAAMZ7voZGM9wGQAAxnBSVmk1wZrtKG68o8H7y+T6/HX8DcAMYSTV07oyNU4uLzR/mXHv8An+JsjJNJrVPVAfQAAAAAAAAAAAPlwPprqVlFqO+UvdjfV8X8j7VqW0WsnuX+dRXctcmyrYaSpt7eLU6ck7PMupPqurrxC4zd1U5Ubu83mfUv3V4db739xuIHI9Wq6ShiGnXh7+lvk+DvxXfwJ4LNXQV3LmCp1qKVWOZKcGldrfJRe7ubLEi8o/sv56f/AFxJVxtlliRSpqEVGOiikl8kfZtpNq17dbsj6ROUHmUaK31XZ90VrN/TT5yRUnas9nKNaf6RXxUdazjlTs1kSbjZcOl1lxllDdeUeD1kvk+v5P8A7G1IqPaHHV6UIwwsVOtO+lryS+JLda+l3xJ6jffJl0t4TUldO6PpUUqsMJCnGrWzVptZ025SnJ73GK1/tZFtGSaTT0e4rFmn0ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8lG6ae56FH+p5xiruneNKnCTbfSyZW4PTSLyvXhLWOhemmvq4w+LV/Jb/vsvEDXydRcKUM7cpZIxu99kvx638yUAAAAAxnu+hkYz3AZAAAAABXco4WU0oRslKakpN+41q7aPfrw69VdFiYVoZotLfvXzWq+8CNgMLKm6jk080rq3Xq3mfe7pfyomGNKeaKlxSZkAAAAAAAAAaKZ8i2ytOCy0lTbs9Yq7ytbsuvz6usuSv5crZMPJa9JNNpSdlbVtR1t1XW69wsm23k6g404332SXVZdSS6v/hdRLPO+Q+VsW6141KlWnDWUZSbTW73mtPG27qOzwPLdCs1HNkm90J6N/wC17peDZmZSu3LwZcd17ScVh3K04WVSPut7muuL7n92j6jLC4lVI3Wkk8sovfF9af3fNNPrNxExVGUZbakrzStKHaLh/uXU/DrNOPvpLIvKP7L+en/1xN1CvGpBTg7xf+NPg+408o/sv56f/XEE9pRDwn2lSpW6r7OHyT6T8ZX8Ioz5QrONO0P2k2oQ+b6/BXfgY1ascNShCKzPSFOCesnbRa92rfBNkWTp9xuM2doxjnqz0hBdfFt9UV1v8W0iJB7BuMftsXUSlLq42bf7sFqkvxdzXQdSU5qm1KtLSrWt0Kdv3ILravu8XwLLC4SFKLUU7t3lJu8pPi31hrqRWcm+z0KOJniZSz1Za7rKLfvOO/5LgiVjsJnlCPRSc1NNrWLTzPL87P7ywNdeDlFpb96+a1X3iTTOWVyu60cnYN0VNNp5pX0VupK74ye9slmNOalFSW5pMyKyAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJOyuB9NNPWpN8LR+7M/xX0IkeWabyrLO8qcaiWn7zSUd+/Vd3eb8FXjOLqLRTebXfuSQEoHzMuKGdcV9QPoPmdcUMy4oD6Yz3fQZ1xX1NdbEQjZSnGLk0ldpXfBAbgfM64r6nzOuK+oGQMc64r6jOuK+oGQMc64r6n3OuK+oGqho5x4SdvFKX4tm4iyrxhKrJu8YwjJ21+Jf2N1CsqkVJXs7qz3pp2a+qYGwAAAAAAAA0x1qyfwxSXjdv8ACJBfLUU4p05puLlbTRrN0b7r9CXX9dbScFXU9pKzXTtbg0kmvrcDCPI+HU5zVKMZTd243TvxTW7wImO5AjUTs0771NX/APcuvvlmLjMu/wCjGb5/Rk1G5nlLvbl3+n4L3E61P4JXl4RktV82ku4n8n+0+HqtRm3RqcJ7n8pbmXGZd/0ZExvJuHxCaq0lK/XZqX1WpNWem/PHL9U/MY14ujN1qacoS1qwiv8A9i4tLeutLitdmOmpUVKLTi5U2mtzWeOpWU+SKuG1wmIkoLXZVk5Q+Se+JW4rll4ZSpzhFXakoQmpRUlJS6NtVGVno1o+N9G9e1mHlZ43a7xWMhCrKrNvJR6EF8U5K7tfhGyvuV5X3Mj4PD1cTJ1ZtxjJWzJ2bjvyU/hhxlvl3KxX8kSw9VwqYnEUXJJuNLOsqbeaTl8Um9eC8Do3yjQW+tTX86G9mUuHUjfSpRhFQhFRjFWSW5IzIv6zw/b0v6kfzM4Y6jL3atN9Wk0zTj23g1LE03uqQf8AMjXWx9GnKMalWEJSvlUmle3/AMoGmeH0zx+Gb++0v/6t4G4iSxCg6kveXQsl1t9FJfPQ30KqqQjNXSkr2e9BGwAAAAAAAAAAAAAAAAAAAAAAAAAAAABG/QKW7ItIqK+S3ePfvMsLFRzwirKMrJLdbKmvxN5BxmOp4ZylVbUZJNJJtt7mkl3ZQsm+onA5/k72m/SFVtTVPJJL7SairPdfe73T0S8TDlDlfZq9Wq4p7kk6d/ktaj/9q7zPlG/lZS+Nna+r4qnTttJxjfdd6v5LrKjlD2oo0U8sZSa49Hws9V4o5HF8rzkm6Ucie+bVnLw1b6/ecinnNyd27sxlyfZ7OL4PfeS9x3tdi6rahJUo/wAK1t3t3+6xh7MUZYjHwlUlKeS9RuTu9NFv72iow2HdWajFPi7dS6ztfY3AqEK9W3vSjBfJa3XzujOO8r29HN4cPHZjO3VAA7vjgAAAACO6SnOopK8XGMWvq/7m2lSjCKjFWS8fve995hh9c0vik39Oivwv4m4AAAAAAAADS8JSbu6cG7Ne6tzvdeN39WQ63KGHwmdVJxpq6cY9dsqWkV8iyKP2h5JeKcYxUbtaOcpJRt3R3u0nv4ErWExuU8vTdhvaGhUpKolNJtpJxtub630eriY1+XcqvGk+5zkop+KuiNyH7PPDxlCrUTu7rZvK++7SUuHXYsKVSjGT/R6SqT3OUVp/NUf5t9xJv6umUwmV8e4gvlHG1f2NGMVxkn+LaT6iPWpYyUstTGtS37KhBSn9bLL827F28NUqftamVfBTbS8Z734ZSBPEtv8AR8DGMeuVRLoxT3tcX39ffrYY5faRU4rk6Kmqc3UrVpaxpSqZ5tcZfuQXg+4ylyHTw8W8sHUhTlWm1pGOX3Iq+u+7vveXwOi5N5Mhh4u15VJazqS96b73w7jVQhtadepr9reMf9ivGNvnrL+YaavLfUvSHyn7M0qrdSio06j1acbwl81vXzViDQUqUlTqurQn1dKUqT42cWpfW9us6bB1M9GnL4oRf1RlWoxqRcZxUovqY0x82+slXDbpKSk5xe5wyVI247ov6Nn2OLu0n+jynutUUqUvBSTbMavJ1Si3OjKbW92az+N9Kn83S/iN9PGqcWqsFUhulKMW7d06b6UX9SlZStunhHbrsoSX43+4o+V58muvShXpyp9FtWg4R1a96yT6t+7eX1LCUnFSoTcIvc6Uuj4Rd4/cVVbBY5YuVVRoVqVlFKpZSaXfbR3v3dxMmuOze96/OllyZhsPs5xoKDouySi7p6J3v4/cT4QUYqMUkkrJLcjTgl0M1lHO81lw3L7kiQacbd0AAQAAAAAAAAAAAAAAAAAAAAAAAAAAAicpwlspSg5RlFN3glmtbVK+l/7pG7FyapTcc11F2yrNLwXWyu2mJ2ad5XdOF7QV08/TautZZb9VtN3UCPO6ONnCrKdKcqbndZm7ySb65WvfvWpKqQp028zdeu999Vfrvf8Avd90SR7R8k1KLp1HBRjKEXK1lafXG3z4FRSvK1ONlfe91/m+Hd+LPNerp9zG48mMyjOrOdWdm8z7ty/zj+JjVouLtfXW/db/ABlo8NGjG1nm3N3tJO17d0rav4V/EzLkrAKtXkp/sqPTrtLfbdBLw3fPgi+NPmyTr1G/k3BOlRu1apVy69cVJ9D6JSqPhkidnyXQVPC04pWulKz6ru9vC9vApalJ1K+SSSkrKf8A5lVapf7KMWvE6ae464zT5fPncvbIAG3nAAANdebUdPefRj831+G/wNhVYqpVlWhKm57PLK7jFPTK+nG6fSvZdenU7uwWcIKMVFbkkkZFZgJ4lzhtb22azaLLey1vvzXvpw6kWYAAAAAAAAA04qMsl4K849KKfW+Hirozr3ySy3vldstr3t1X0v8APQq6cMU4QbzpunPNByjdPPFxSfXLLmSlfqvpcCPQ5AnUxKxOIxG20doZLQs1us29Nz8EXdWrCnG8mlFaL+ySW99yKzEV6+Hw2kc1WS6F2rRdm3me6ySv9UUnstOviLqttXDVqtrub1im91771r1aaGdyXTv45Z4+VvUXNV1cXJwXQpp2l12+fVJ/w7l133FphsPGlHLBWW98W+LfWzOnTjCKjFKMUrJJWSRkacrfoi8o1HGk1F2nNqEe5ydr+Cu/A3U6ShTjCKtGKUUu5aIjT+0xUV+7Rjm/mldL6RzeZEue4JfSPyb+wgvhThr/AAtx/sSiJydpGceFWp983L+5LBfYaK+EjN5tYzW6cdJL813O6N4COd5bxDwtKVSSyVZdGFWlopS6s8Xw1fXu0sfeQq+K2MadZqrGatTrxmpXXXm67pX17rMvMRh6dSNqsIzjvtJJr7ynhye6VRvD05wpOMrxi+NrZU5KzbV3otLapqzmrt188fDWu14lbRH0rOT4YlVFtndbNXd1Zyyw6l15lUv1Wa39VmVyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR8dgoYilKlUV4yXiu9d55zy1yJUwc76uO9SV9ysk2+ptvd1HpxoxVKnUShUUXd9FO17rW670Zyx278PPlxX9nl1PlBqLurzStB8Nb3+e9342fUdpybhKeGw9OGZOMI/pNeSaabWsVfhdXX+zvIj9lqNPE7SUtpS1lGlFatx6mlrJfJfPvqcRyZXpKjSpzvUxbk6kIvoKzVk7aaXld9xzkuPt7M8uPl6xuv8Af06jkSlJuE5rpyUsRNcJVHaC8IJou57voUfsrjK9eNWrWjFJySjKN1eys7Lhp9Wy8nu+h1x9PByyzKysgAVzAaq+JhTXTkkapTUr55xila8MyvruzPv4L7wNje00Xudb+LuXcbgAAAAAAAAAAAAAADCrSjOLjJXi96ZjCWVqEv5X1P8AJ93+Laaq9SmrRqOKzuyTe993jb7gNp8k0k29Et5EWLjGSiqkZ3bildZrx0ku+31+ZV+1O0rUaVLDylnnVUXZuLSyyvmW+1uJL01jj5XS05Ljem6jVpVZOo777PSK8IqK8CXLcYUIOMIxlJyaSTk0lfvstDKe4qX2jYTSpiF/9xPdxhH+6ZLKPD8pzfKdXDulZZVLNm6ktJJW67peBeEi5Y2ewN2I9fGQpptu9t9ur5vcvE0yxVK72tWn0WrxzaK+qvx634dxWUj9p/sXH97/ALf589wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHjcE6s6bUoxjB3kst5Pc0lK6y6pP5pcNZgAq8JyMqUoOM21GUpWa11lNqz6vfd+PcTqmFhKWZxtL4lpL6o3ACNQwrpQjCnJKEVZKUb/hY11caop5qtFWllbc7We+z4O3UTSBHk55qrlNNVJRdlG3RTbyb9U23fjmlx0DfCpKd8s6ejcXa8rNb09VZ9xlsZP3pt90eivu1+8wwWD2Sks2a9rabklZL/uSQI2IwilSnThlhmVm7Px3NO/fcg1eQ1JNbSytZdHqccsr666PTdbvLcAEAAAAAAAAAAAAAAAARsXhNq6d5yioSzNK1pcE7q9r2enWkSQBXYfkenSccjmoxbeVyunrdK7u7JrqZOqUoytmSdt3FfJ9RmANOwa92pNLg7P73r95Fq41RU/toWg7S+zlK2/fZ7tHru0fAsCHHk5ZqkpVKktpOMmnlssruoqyTy9z7+LuGujQjUrSrRqRdRR2TcY20vfrb+pK/R0/elKfzen0Vk/E+YXCRpZsrbu+u2i6krdS+pvBtoxOFVSlKlfLGSs7JbutWaaIlbkWnO6c52d7K60Ti4yW6+qk9/hYsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABE5Tx8cNRlVknK26K3yfUl/mmr6iFS5fjKtTp7OSU8kXO6spzpuoo23vorf3om8o8nUsTDJVjdK9mm002mrrwbItD2fo06lOcZVLU8toNpxcoxcIzel75W1vt3AZ4vlqlSrQo6ynKcYS0do5k5K8rWvZXte9tRHl7CuOZVG1dRSyTzO6bTUbXaaTd1pZMxr8h06lbaudRJzjUlTTWRyUcl3pf3dLXsQZ+zOxpw/RZfaQnFxlNqDUVFxspRg+qT1abd3rfUC1nytQjRp1nN7OrZU2oybk2m0kkr3sn1EfE+0OHjByhPO1S2qSUrZddXJJ5fda14Gl8iT/RcFQjVyvDyhKU479ISj0bpre1vW42R9naKpVKSlUy1KSoyd1eycpOW73m5yb6u4DfPlvDRlUi6tnTUnLoyt0ffs7Wk11pXaJeGxEasFOF8r3Xi4vfbc7MrK3s5RntM06uWe1tC6tB1E9pKOl7u73tpXZbpWSQH05CXK0v10lm+zX2Furd6zrpSSTb3JXZ5Q8S3V2372faeN8xnKvZ8Jx+flv7fy9YBjTmpRUluaTXiZGnjAAAAAAAAAAAAAFZV5eoQqVYSclsozlKWXo9FRlJLvSlH66EnCcoU6tOU1eCg3Gamsrg1q83DRp+JVYn2ZVWtXqSq6Vo1Iu0On0oqNnO+sVlTUbbyQuRHLC4ijUq3niJSnOcY2V2klaLb0SjHS+uoEijy1hpqUlWgoxqKmpOUVGUnFSWV310kvvJCxtF1HSVWntVvhmWbdf3d+7UocT7Kyq5pTrxzznOUrQlGFpwhCStGaf7nHrd0z7g+SK0MdF5bUKdSrUUnlbeeNrXvmevU0rJb3oBefp9HO6e2p54puUc6zJLVtrejVHlag3K1WGSMFN1M8ciWZx334plV+oalStXlOcYQdadSCUbyd6KppuV92sujbq3m2t7O3cHCoouFOhCCyXjelJyTavqnfd94FqsfRbglWpt1FeCzq81xjx69xIKnk3kRUKiqOanJQmn0bazqOpJrXRXdrfeWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgVntHidlgq0r2bjkXzl0f7nmp1PtnyrGo4UKclJReabWqvuS8Lv7jljnle31/g8PHDd+r0n2ZxG0wNF9cY5H/Lp+CRaHE+xvKsaUp0KslGM2pQb0Wbc1fv0+h2ydzcvT5/xGHhyUABXAAAAAAAAAAAAAj18bCnLK1Ubsn0KcpaO9vdT4MCQCH+s4fBX/AKFT0j9Zw+Cv/QqekCYCH+s4fBX/AKFT0kavjlNtQniYW0eXDydtP4oPiBalXyj7Q4XDaVKqc/gh0peKW7xsVOL5OVf9pi+UmuCpSin81GCTIC9k8H2mN/ov0AfcX7fSvajh0l1OpK78sfzI9D28xKf2lGjJfw5o/i5Ej/lTCdpjv6L9B8Xstg3e1TG6aP7F+gC25P8AbTCVbKpmoS/j1j5lu8bHQ06kZxUoyUovc07p+JxP/KmE7THf0X6DbhvZ6hRd6WI5Rpvf0Kclf52hr4gdmCkoVJQ34jGT/wB+G/KmiRDlFPc6z3r/APz1Op2fUBZgr/1iuFb/ANPU/IfrFcK3/p6n5AWAIMeUo9caz/8Ax6i/sS6NVTipRvZ8U0/FPVAZgAAAAAAAAAAAAAAAAAACv20viY20/iYFgCv20viY20viYFgCv20viY20viYFgCv20viY20viYFgacTRz5U75c15WbWlnw77EXbS+JjbS+Jgbv1fT/j/qT/Mfq+n/AB/1J/madtL4mNtL4mBm+ToZk+nls7/aT36W6/mZ/q6l/H/Un+Zp20viY20viYG39W0uEv6k/wAzFcm08zfSy2VvtJ79b9fyMNtL4mNtL4mBu/V1LhL+pP8AMfq+lwn/AFJ/madtL4mNtL4mBsjydC8r57X0+0nwXfxuZfq+n/H/AFJ/madtL4mNtL4mBu/V9P8Aj/qT/M24elki462u7XbenzZE20viY20viYFgCv20viY20viYFgCv20viY20viYFgCv20viY20viYFgYKmlNy62kvpf8AMhbaXxM0YrlB00ulq913ZLcrt8LtLxQFuDmuUuUsTTpNxzVW1rs45bKTspJyvdqz071uLKliKjV5NLhZ306neyAszCFNJyfxO7+iX9iFt5fExt5fEwLAFft5fExt5fEwLAwhTUXJ/E7v6Jf2IW3l8TG3l8TAsAV+3l8TG3l8TAsDClTUVZcZP6tt/iQtvL4mNvL4mBYAr9vL4mNvL4mBYGFKmoqy4t/V3/uQtvL4mNvL4mBYAr9vL4mNvL4mBYAr9vL4mNvL4mBYAr9vL4mNvL4mBYAr9vL4mNvL4mBYAr9vL4mNvL4mBYAr9vL4mY1MW4q8p2V0tXbVuyXiwLIFZTxua6jUUraOzTt/mpnt5fEwMDn8fyTWnXrTpqK2kJRzuSuvs7Ryu2aPStdXatd7zqNlHgNlHgBzUsLj+nlqpLo5Yuz0vHS9/espK+l7791sp4XHWtGsvcTzO18+kXGy6rXd7+8zo9lHgNlHgBQzw2IyYaTtVqUqkpyu1G6cZxS69VmX0NUqGOdSbz9BzTyqSTy3lopO9tHC+nU13vo9lHgNlHgBysKGOq0FGf78E3naT1opOMotdpdm2ng8ZGSSn9mqk27yvmjKbfh0WuOt93X0uyjwGyjwA5qngcbGmlGqk1DKo3WVWjTWito7qp9SbDD4h0aUdso1FNSnJwTzRu+hv0drK/cXGyjwGyjwA5nGclVZY3bwjGylTabaVlFNNbs3gnbifKVPHRdOE6jbnO0mldRhlg5O+5O6lFXf7/dp0+yjwGyjwA5qnhseoRzVU5qaclok1bXXfZ/LS24343B4l1alShUyOVkrtZf2c0m1b43D6F9so8Bso8AOep0MalBOea/vXaTj04Pvv0VNb+s0zwOMSUo1L1HCmpNtatOo5K9l0elH/vqn0+yjwGyjwA5mOAxUZTab9+bvnWZxlUUrRbXR6P4dW8kco4XEVFTjFvLljnWdLpKUXd6dLRS3W1+6+2UeA2UeAHM/omObUpSTlGeZRU7LWE1v1uszh4X0RlSw2OTp3qJ2lK92rWaVm7Xd076a+G86TZR4DZR4Ac7gMHilVpTr1HPLnUkmkleMbP8AiV1L69W4uiRso8Bso8AI4JGyjwGyjwAjgkbKPAbKPACOCRso8Bso8AI5VcqYyNOdNZZSzSVOVoZlG7jLW+lsqf3PqL3ZR4GE8NCTTava9tXbVWem5gUlsk4tdOTbeznJOUPey5Ut2stX1LTqRZUKeSEY3vlio3+SsSoYeEfdil8tDLZR4ARwSNlHgNlHgBHBI2UeA2UeAEcEjZR4DZR4ARwSNlHgNlHgBHBI2UeA2UeAEcEjZR4DZR4ARwSNlHgNlHgBHBI2UeA2UeAEcEjZR4DZR4ARwSNlHgNlHgBHBI2UeA2UeAEcEjZR4DZR4ARzViKOeNuEoyT+TT/tbxJuyjwGyjwArcJhXT3yTShGnGytpG9r8Xr/AJclEjZR4DZR4AZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1Aelg805wsZ2eH8s/UOcLGdnh/LP1AcmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/2Q==\n" - }, - "metadata": {} - } - ] - } - }, - "03aad6c4b73a4093ad0a4705c10b18b7": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_c2146b4385fe4c288ec03ba3b855d475", - "msg_id": "", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Video available at https://www.bilibili.com/video/BV1RV4y187G5\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "<__main__.PlayVideo at 0x7fa709f345b0>", - "text/html": "\n \n " - }, - "metadata": {} - } - ] - } - }, - "195ccb998a3e4be1b2067fd5a9692b2a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "26e7fe6ad7984163a724806c3e9e3052": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c2146b4385fe4c288ec03ba3b855d475": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - } - } + ], + "source": [ + "# @title Video: Bayes heuristics\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == 'Bilibili':\n", + " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", + " elif source == 'Osf':\n", + " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == 'Youtube':\n", + " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", + " height=H, fs=fs, rel=0)\n", + " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", + " else:\n", + " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", + " height=H, fs=fs, autoplay=False)\n", + " if video_ids[i][0] == 'Bilibili':\n", + " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", + " elif video_ids[i][0] == 'Osf':\n", + " print(f'Video available at https://osf.io/{video.id}')\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', 'NYzgpUtBhPM'), ('Bilibili', 'BV1RV4y187G5')]\n", + "tab_contents = display_videos(video_ids, W=854, H=480)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "behavior_videos", + "provenance": [], + "toc_visible": true + }, + "kernel": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.21" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/projects/behavior/laquitaine_human_errors.ipynb b/projects/behavior/laquitaine_human_errors.ipynb index 9bf57cadd7..05d90d6173 100644 --- a/projects/behavior/laquitaine_human_errors.ipynb +++ b/projects/behavior/laquitaine_human_errors.ipynb @@ -775,7 +775,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAGDCAYAAABp6D4kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWP0lEQVR4nO3deXyM5/7/8fcEmUQkQWwpIYLYiV3aagSljsbSWrtqnWgOh6J6ShdJiiY9ltKjjp5WtXWOSsVXG0pbHOtRqnRRS1FLY98zDZIg9+8PMj9TITMxmTHxej4e83iY677v6/O5Z7knH9d935fJMAxDAAAAAIC7npe7EwAAAAAA3BkoEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkCSVdHcCrmQYhn7//Xf5+/vLZDK5Ox0AAAAARSwrK0s5OTmF3t7b21s+Pj5OzOjOdlcViL///rsCAwOl+WOk0uYij5fWPbHIY+SJiXdRINftkha7LpRLdU9z1ZslGVtc+Ia5KJQrPxcu+15JLv1umVz4GXTlcdCVXPXZWFw8Xz7FuDCWKz/vRkyCy2IBsE9WVpbu8fXV2dvoIyAgQMHBwfLy8tLQoUM1dOhQp+V3J7qrCkQAAAAAd4+cnBydlTRHUulCbH9B0jMWi9LT0xUQEODc5O5QFIgAAAAAirXSKlyBeDfiJjUAAAAAAEkUiAAAAACAaygQAQAAAACSKBABAAAAANd4TIG4d+9excXFKSIiQiVLllSjRo3cnRIAAAAAFCsecxfT7du364svvlCbNm2Um5ur3Nxcd6cEAAAAAMWKx4wgxsTEKD09XampqWrevLm70wEAAACAYsdjCkQvL49JFQAAAAA8ElUXAAAAAEBSMS8Qs7OzZbFYbB4AAAAAUFTS0tLUpk0b+fv7Kzg4WH379tW+fftuWG/27NkKDw+Xj4+PmjZtqiVLlrgh2xsV6wIxKSlJgYGB1kdISIi7UwIAAABQTK1evVq9evVSgwYNtGjRIk2bNk0//vijOnfurIsXL1rXmz9/vmJjY9WvXz8tW7ZMkZGR6tWrlzZu3OjG7K/ymLuYFsbYsWM1atQo63OLxUKRCAAAAKBIzJ8/XzVq1NAHH3wgk8kkSapUqZI6dOig7777Tu3atZMkxcfHq3///ho/frwkKTo6Wj/99JNef/11LV261G35S8V8BNFsNisgIMDmAQAAAABF4dKlS/L397cWh5IUGBgoSTIMQ5K0b98+7d69W3379rXZtn///lq5cqWys7Ndl3A+inWBCAAAAACuMnDgQO3YsUMzZ85URkaG9u3bp5dfflnNmjXTfffdJ0natWuXJKlevXo229avX185OTnav3+/y/O+nsecYnrhwgXrcOvBgwdlsViUmpoqSYqKilLFihXdmR4AAACAYuqPN7s0m80ym803rNeuXTstWrRIjz32mIYOHSpJioiI0JdffqkSJUpIks6ePStJKlu2rM225cqVkySdOXPG2ek7xGNGEE+cOKE+ffqoT58+Wr16tdLT063Pt2/f7u70AAAAABRTISEhNje/TEpKyne9DRs26Mknn1RsbKz++9//asGCBcrNzVW3bt1sblJzJ/OYEcTQ0FDrebsAAAAA4Crp6ek29zPJb/RQkoYPH64OHTpoypQp1ra2bduqevXqmjt3rgYPHmwdKczIyFCVKlWs6+WNLJYvX74odsFuHjOCCAAAAADu8McbX96sQNyxY4ciIiJs2qpVq6YKFSro119/lfT/rz3MuxYxz65du+Tt7a2wsDDn74ADKBABAAAAwAlq1KihrVu32rQdPHhQp06dUmhoqCQpLCxM4eHhWrBggc16KSkp6tixo7y9vV2Vbr485hRTAAAAALiTxcXFacSIEXr++ecVExOj06dPa8KECapUqZLNtBYJCQl6/PHHVatWLUVHRyslJUWbNm3S2rVr3Zj9VRSIAAAAAOAEw4cPl9ls1j//+U/Nnj1b/v7+ioyM1IIFCxQUFGRdb8CAAbpw4YKSk5OVnJysunXratGiRYqMjHRj9ldRIAIAAACAE5hMJsXFxSkuLq7AdQcNGqRBgwa5ICvHcA0iAAAAAEASBSIAAAAA4BpOMQWAm0l0Yax4F8bCbTO1cM0bZsS77kO42JWfdxcyYhLcnQIAeBRGEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFzjEQXiggUL1KNHD1WrVk1+fn6KiIjQBx98IMMw3J0aAAAAABQbHjEP4tSpUxUaGqopU6aoYsWKWr58uWJjY5Wenq74eCYPAwAAAABn8IgCcfHixapQoYL1eYcOHXT69GlNnTpVr732mry8PGIgFAAAAADuaB5RWV1fHOZp1qyZLBaLzp8/74aMAAAAAKD48YgCMT/r169X1apV5e/v7+5UAAAAAKBY8IhTTP9o/fr1mj9/vqZMmXLL9bKzs5WdnW19brFYijo1AAAAAPBYHjeCeOjQIfXr10/R0dEaPnz4LddNSkpSYGCg9RESEuKiLAEAAADA83hUgXju3Dl17dpVQUFBWrhwYYE3pxk7dqwyMjKsj/T0dBdlCgAAAACex2NOMb148aIefvhhZWRk6JtvvlFgYGCB25jNZpnNZhdkBwAAAACezyMKxMuXL6tv377auXOn1q1bp6pVq7o7JQAAAAAodjyiQBwyZIiWLFmiKVOmyGKxaOPGjdZlzZo1Y5QQAAAAAJzAIwrEr7/+WpL0wgsv3LBs//79Cg0NdXFGAAAAAFD8eESBeODAAXenAAAAAADFnkfdxRQAAAAAUHQoEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFzjEfMgOltG/2QFuCDOYhfEyGNqEe+SOEZ8okviSJJcGCrGdaGU1t11O+bKz2D3NBd9Bre48PVz4Wewu4u+w5JrX0NXcuXn3WWvYfF8q2Ry0fFCktJMJpfFctVxUHLtb0lxFOO6t0pKMFwYDLh9jCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkESBCAAAAAC4xiMKxKVLlyoqKkoVK1aU2WxWWFiYRo0apYyMDHenBgAAAADFhkfMg3jmzBm1adNGw4cPV1BQkH7++WclJCTo559/1tdff+3u9AAAAACgWPCIAvGJJ56wed6+fXuZzWYNHjxYR44c0T333OOmzAAAAACg+PCIU0zzExQUJEnKyclxcyYAAAAAUDx4xAhinitXrujSpUvasWOHXn/9dXXv3l2hoaHuTgsAAAAAigWPKhBr1Kihw4cPS5IeeughzZs375brZ2dnKzs72/rcYrEUaX4AAAAA4Mk86hTTpUuXasOGDXrvvfe0c+dOxcTE6MqVKzddPykpSYGBgdZHSEiIC7MFAAAAAM/iUQVikyZNFBkZqT//+c/6/PPPtWrVKi1atOim648dO1YZGRnWR3p6uguzBQAAAADP4lGnmF6vSZMmKlWqlPbu3XvTdcxms8xmswuzAgAAAADP5VEjiNfbtGmTLl26pLCwMHenAgAAAADFgkeMID7yyCNq2bKlmjRpIl9fX/3444+aNGmSmjRpop49e7o7PQAAAAAoFjyiQGzdurVSUlKUnJys3NxchYaGKjY2VqNHj5a3t7e70wMAAACAYsEjCsQxY8ZozJgx7k4DAAAAAIo1j70GEQAAAADgXBSIAAAAAABJFIgAAAAAgGsoEAEAAAAAkigQAQAAAADXUCACAAAAACRJJsMwDHcn4SoWi0WBgYHKGCMFmF0QMNEFMa5Z7LpQLhPjwljF8fWTpO5p8S6LZWxxzQd+sQu/Vy59/bq7bsdc+XmPuXt+YgAAdyDr3/+SAgqzvaRASeHh4SpRooSGDh2qoUOHOjfJO4xHzIMIAAAAAO6yefNmBQQUpsT0PJxiCgAAAACQRIEIAAAAALiGAhEAAAAAIIkCEQAAAABwDQUiAAAAAEASBSIAAAAA4BqPLBAzMzNVrVo1mUwmfffdd+5OBwAAAACKBY8sEMePH6/Lly+7Ow0AAAAAKFY8rkDctWuX3nnnHSUmJro7FQAAAAAoVjyuQBw2bJji4uJUt25dd6cCAAAAAMWKRxWIqamp2rZtm8aNG+fuVAAAAACg2Cnp7gTsdeHCBY0aNUpvvPGGAgIC7NomOztb2dnZ1ucWi6Wo0gMAAAAAj+cxI4gTJkxQ5cqV9cwzz9i9TVJSkgIDA62PkJCQIswQAAAAADybRxSIBw8e1JQpU5SYmKiMjAydO3dOmZmZkq5OeZH37z8aO3asMjIyrI/09HRXpg0AAADgLnar6flmz56t8PBw+fj4qGnTplqyZImbsrTlEQXi/v37lZOTo27duqlcuXIqV66cYmJiJEnR0dHq1KlTvtuZzWYFBATYPAAAAADAFW42Pd/8+fMVGxurfv36admyZYqMjFSvXr20ceNGN2RpyyOuQYyIiNCqVats2n744QeNHDlSs2bNUqtWrdyUGQAAAADcKG96vilTpiguLs5mWXx8vPr376/x48dLujro9dNPP+n111/X0qVL3ZGulUcUiGXLllX79u3zXdaiRQs1b97ctQkBAAAAwC3cbHq+ffv2affu3XrzzTdt2vv3768XX3xR2dnZMpvNrkzVhkecYgoAAAAAnuJW0/Pt2rVLklSvXj2b9vr16ysnJ0f79+93SY434xEjiPlp3769DMNwdxoAAAAAirk/TpdnNptvOspX0PR8Z8+elXT1LMnrlStXTpJ05swZJ2RceIwgAgAAAMAthISE2Eyfl5SUdNN1CzM9353EY0cQAQAAAMAV0tPTbUYDbzZ6mDc936JFi5SRkSFJN0zPlzdSmJGRoSpVqli3zRtZLF++fJHsg70oEAEAAADgFuydMu/66fn+KDo6Wm3atNG8efMkXb0W8fob2OzatUve3t4KCwtzXuKFQIEIAAAAAE5gz/R8YWFhCg8P14IFC9SjRw/reikpKerYsaO8vb1dnbYNCkQAAAAAcAJ7p+dLSEjQ448/rlq1aik6OlopKSnatGmT1q5d68Js80eBCAAAAAAuNGDAAF24cEHJyclKTk5W3bp1tWjRIkVGRro7NZmMu2iuCIvFosDAQM2XVNoF8WLiXRAkT6JrwpjSXLlTrpPW3UUvoKQYl0WSFrswlsv2y4UfwcWu+1i4VHcXfo+NmASXxQIA4I/y/v7PkFTwFYT5bC8pUFdvKGPPNYjFASOIAAAAAOAhHJk+wzAMffjhhw71T4EIAAAAAB5i69atuv4k0CNHjujs2bMKDAxUxYoVdfLkSWVkZKhcuXIKDg52uH8vZyYLAAAAACg6P/74o3766Sf99NNPevPNNxUYGKiVK1fqzJkz+uWXX3TmzBn997//VWBgoCZNmuRw/xSIAAAAAOCBRo8erYSEhBvunBoVFaXExES9+OKLDvdJgQgAAAAAHmjfvn0KDAzMd1nZsmW1d+9eh/ukQAQAAAAAD9SoUSMlJycrIyPDpt1isSg5OVkNGzZ0uE9uUgMAAAAAHmjGjBnq3Lmzqlevrk6dOqly5co6fvy4VqxYIS8vL3355ZcO9+kRI4gffvihTCbTDY8xY8a4OzUAAAAAcIs2bdpo7969GjZsmDIyMrRmzRplZGTor3/9q/bs2aM2bdo43KdHjSB++eWXNufYVq1a1Y3ZAAAAAIB7VaxYURMmTHBafx5VILZo0UIVKlRwdxoAAAAAUCx5VIEIAAAAALgqLCxMhmHccp39+/c71KdHFYgNGzbUqVOnVKNGDcXGxupvf/ubSpQo4e60AAAAAMDlYmJibApEwzB0/PhxrV69WiVLltSjjz7qcJ8OFYhXrlzR0qVLtXz5cm3atElHjx7VxYsXFRQUpLp166pdu3Z69NFHVbNmTYcTuZXg4GAlJiaqTZs2MplMSktL06uvvqrDhw9rxowZN90uOztb2dnZ1ucWi8WpeQEAAACAu0yfPj3f9qysLD300EOqXr26w33adRfTzMxMJSYmqmrVqurdu7fWr1+vBg0aqF+/fnruuefUqVMnXblyRZMnT1adOnXUqVMn/e9//3M4mZvp0qWLxo0bpy5duqhz586aMWOGRo0apVmzZuno0aM33S4pKUmBgYHWR0hIiNNyAgAAAIA7kY+Pj0aNGqV33nnH4W3tGkGsWbOmGjVqpEmTJqlnz57y9/e/6bpbt27VJ598opiYGE2YMEFDhgxxOCl79O3bV5MnT9YPP/yg4ODgfNcZO3asRo0aZX1usVgoEgEAAAAUeyVKlNChQ4eUk5Mjb29vu7ezq0D8/PPPde+999rVYfPmzdW8eXONGzdOv/32m92JFAWz2Syz2ezWHAAAAADA1Tp16qQTJ06oVKlSDm1nV4Fob3F4PX9/fzVs2NDh7ew1f/58lShRQs2aNSuyGAAAAABwp0pMTLzlcsMwlJCQoCNHjui9995TfHx8gX16xF1Mu3Tpog4dOqhx48aSpLS0NP3rX//S888/rypVqrg5OwAAAABwvalTp95ymou8AvHo0aOaMmWK8wpELy8vmUwmuxO9cuWK3evao169epo9e7YOHTqk3NxchYeHa9q0aRo2bJhT4wAAAACAp8jIyLBrvRYtWtg9o4NdBeLUqVOtBeLly5c1bdo0eXt7q2fPnqpcubKOHTumzz77TJcuXdLIkSPtCuyI6dOn3/QWrgAAAAAA57CrQBwxYoT13y+99JKaNWumzz77TF5e/3+WjMmTJ6tHjx63nHYCAAAAAOA8mZmZmjNnjtavX68zZ86oXLlyuv/++/Xss8+qTJkyDvdn1zyI1/vwww81ZMgQm+JQunoa6pAhQ/TRRx85nAQAAAAAwDHp6elq0qSJRo4cqd27d8vLy0u7d+/WqFGj1Lhx40LNKuFwgXjx4kUdOHAg32UHDhxQVlaWw0kAAAAAABwzatQolSxZUjt37tT333+vr776Sj/88IN27NihkiVL2swJby+H72Las2dPvfTSS/L19VXPnj0VGBiojIwMLVq0SGPHjlXPnj0dTgIAAAAA4Jjly5fr3XffVZ06dWzaw8PDNXHiRA0ePNjhPh0uEN955x1duHBBzz77rJ599lmVKlVKly5dkmEY6tWrl2bMmOFwEgAAAAAAx1y5ckVmsznfZWazWZcvX3a4T4cLRH9/f6Wmpmrnzp3avHmzjh49quDgYLVq1Ur169d3OAEAAAAAgOPuv/9+TZw4UVFRUSpXrpy1/ezZs5owYYLuv/9+h/s0GbeaWbGYsVgsV0+JHSMF5F9oO5WpRcETUTpLWvdEl8SJcUmUqxa7MFaM696qYvm5kFz32XDl56K46p7mus+gscV1n0G5MJTLuPDYtNiFr58rP4MuPQ7ePX9SAR7D+ve/pIDCbC8pUFfnGwwIKEwPRWv79u164IEHdOnSJXXq1EmVK1fW8ePHtXz5cpUqVUpr165Vo0aNHOrTrhHErVu3qn79+vL19dXWrVsLXL958+YOJQEAAAAAcEzDhg31008/afr06Vq3bp22b9+u8uXLKy4uTiNGjFDVqlUd7tOuArFly5bauHGjWrdurZYtW8pkMuW7nmEYMplMunLlisOJAAAAAAAcU7VqVf397393Wn92FYirVq1SgwYNrP8GAAAAABQ/dhWIUVFR+f4bAAAAAOAeYWFhKuiWMvv373eoT7sKxMuXL6tkSYdveFro7QAAAAAAtxYTE2NTIBqGoePHj2v16tUqWbKkHn30UYf7tKt6q1mzpl544QU9+eSTCgoKKnD99evXa9q0aYqIiNCrr77qcFIAAAAAgFubPn16vu1ZWVl66KGHVL16dYf79LJnpVmzZumjjz5ScHCwHnzwQSUkJOj//u//tG7dOn377bf6+uuv9e6772rw4MGqUaOGOnfurBo1aiguLs7hhG7lo48+UrNmzeTj46MKFSqoa9euunjxolNjAAAAAIAn8/Hx0ahRo/TOO+84vK1dI4jdunVTt27dtGrVKn388ceaPXu2Dh8+LEkymUwyDEPe3t5q0aKFRowYoSeffFIVKlRwOJlbmThxot588029/PLLioyM1KlTp7Ry5UrumAoAAAAAf1CiRAkdOnRIOTk58vb2tns7hy4QjI6OVnR0tCTp2LFjOnr0qLKyslS+fHmFhobKbC6a2ed/+eUXJSQkKC0tTV27drW2F+acWgAAAAAo7jp16qQTJ06oVKlSDm1X6DvIVKlSRVWqVCns5g6ZM2eOatasaVMcAgAAAADyZzabCzWAZ9c1iO62ceNGNW7cWBMmTFClSpXk7e2t++67T5s2bXJ3agAAAABQbHjEHBTHjh3Tli1btG3bNs2cOVOlS5fWG2+8oc6dO2vPnj2qVKlSvttlZ2crOzvb+txisbgqZQAAAADwOB4xgpibm6vMzEylpqaqd+/e+tOf/qS0tDQZhqEZM2bcdLukpCQFBgZaHyEhIS7MGgAAAAA8i0cUiOXKlVNQUJCaNGlibStfvryaNWum7du333S7sWPHKiMjw/pIT093RboAAAAAUOROnjypbdu23dB++vTpQvfpcIG4du1aZWZm5rssMzNTa9euLXQyN9OwYcObLsvKyrrpMrPZrICAAJsHAAAAABQHo0eP1gsvvGB9vnfvXtWsWVMVK1ZUWFiYduzY4XCfDheI0dHRNw30yy+/WKfBcKaHH35Yp0+f1g8//GBtO336tLZu3aoWLVo4PR4AAAAA3Ok2bNigfv36WZ+/8sorKlOmjBYvXqzg4GCNHj3a4T4dvkmNYRg3XXb+/Hn5+vo6nERBevbsqVatWql3796aOHGifH19lZSUJLPZrCFDhjg9HgAAAADc6Q4fPqxatWpJkq5cuaJly5ZpxowZ6tatm3Jzc/XMM8843KddBeLGjRu1YcMG6/N58+Zp/fr1NutkZWXp888/V/369R1OoiBeXl5aunSpRo4cqeeee045OTlq166d1q5d67K5GAEAAADgThIYGKhz585JujqamJmZqY4dO0qSAgICdPHiRYf7tKtA/Oqrr5SYmChJMplMevvtt29Yp1SpUqpfv75mzpzpcBL2qFChgubOnVskfQMAAACAp3nggQeUnJyskiVLKjk5WS1atFDVqlUlXb0esTCzONh1DWJ8fLxyc3OVm5srwzD0zTffWJ/nPbKzs/XDDz/o3nvvdTgJAAAAAIBj3njjDZ06dUo9evTQ9u3bNXXqVOuyQ4cO6c9//rPDfTp8DWJubq7DQQAAAAAAzlWrVi3t2bNHv/76q+655x6VLl3auiw+Pr5QfTp8F9OUlBRNmjQp32WTJ0/WggULCpUIAAAAAMAxJpNJtWvXtikOJWnfvn1Fd5Oa6yUlJenZZ5/Nd5mvr6+Sk5PVp08fhxMBAAAAANjv999/1+zZs7Vz507l5OTYLDt58qSWLl1qfd6zZ0/16NGjwD4dLhD37NmjRo0a5busQYMG2r17t6NdAgAAAAAcFBcXpwULFig0NFQ+Pj42yy5evCiTyaQtW7ZIklq3bm1Xnw4XiD4+Pjp+/Hi+y44ePaqSJR3uEgAAAADgoOXLl+vjjz9W//79b1i2efNmtWnTRj/99JNDfTp8DWJUVJSSk5N1/vx5m/bz58/r73//u9q3b+9olwAAAAAAB50+fVp16tTJd5lhGIXq0+HhvjfeeEORkZGqVauWevfurXvuuUdHjhxRamqqcnJyNH/+/EIlUhwZ3RNdFsuUVri7FDkqzYX71N1F+yS5dr/S5LpYMa57CWVqUfw+g658/Ra7brdcemxSIX+cCiXBdaGKo5gE18Vy4adCMhJcGQ3AnWqMJJ8C17pRlqRkqVWrVipRooSGDh2qoUOHOjm5wnv66adVoUKFfJdVrFhRAwcOdLhPhwvEevXqafPmzYqPj9fChQt1+vRpBQUF6cEHH1R8fLxq167tcBIAAAAAcKfavHmzAgIC3J3GDT744APrv3Nzc3Xy5ElVrFhRXl5eqlmzps1yezl8iqkk1a5dW//5z3909OhR5eTk6OjRo5o7dy7FIQAAAAC40OLFi9W2bVv5+PgoODhYPj4+ioyM1JIlSwrVX6EKxDzp6enasGHDDdcjAgAAAACK1nvvvacePXrIx8dHkyZN0n/+8x9NmjRJPj4+6t69u9577z2H+yxUgfivf/1LVatWVY0aNdSuXTv98ssvkqRevXpp+vTphekSAAAAAOCAiRMnauDAgVq9erWef/55DRgwQM8//7xWrVqlZ599Vm+88YbDfTpcIE6bNk3Dhg3TU089pa+//trm7jjt27fXggULHE4CAAAAAOCYkydP5jvFhST169dPJ06ccLhPhwvEf/zjH3rttdeUlJSk6Ohom2V169a1jiYCAAAAAIpO27ZttWXLlnyXbdmyRffee6/DfTp8F9PDhw/fNFCpUqWUmZnpcBIFad++vdasWZPvsk8++eSmVTMAAAAAFFdvvvmm+vbtq4sXL6pPnz6qXLmyjh8/rtTUVM2dO1cLFixQRkaGdf3AwMAC+3S4QKxRo4a+/fZbdejQ4YZlmzZtUnh4uKNdFmjmzJmyWCw2bdOmTdPChQvVqVMnp8cDAAAAgDtdmzZtJF29FnHChAnWdpPJJOnq/I3Xy83NLbBPhwvE2NhYJSQkqGLFinrkkUckSZcuXdIXX3yhSZMmaeLEiY52WaAGDRrc0Pbtt9+qc+fON50YEgAAAACKszlz5ji9T4cLxNGjR+u3337T4MGD9dxzz0mS7rvvPknSkCFDNGTIEOdmmI8NGzZo//79NlUyAAAAANxNnnrqKaf36XCBKElvv/22RowYoeXLl+v06dMqX768OnbsqDp16jg7v3zNmzdPfn5+6tGjh0viAQAAAMDdoFAFoiSFhYVZRxBd6fLly/r000/VvXt3+fn53XLd7OxsZWdnW5//8TpGAAAAAMD/Z1eBuHXrVtWvX1++vr7aunXrLdc1mUwqX768QkJC5OXl8CwaBVq+fLlOnjypxx57rMB1k5KSlJiY6PQcAAAAAKA4sqtAbNmypTZu3KjWrVurZcuW1rvi3EqVKlX08ccfq2PHjred5PXmzZunoKAgdenSpcB1x44dq1GjRlmfWywWhYSEODUfAAAAACgu7CoQV61aZb2T6KpVqwpc32Kx6N1339Xw4cO1ffv228vwOhcvXtRnn32mJ554QqVKlSpwfbPZLLPZ7LT4AAAAAFCc2VUgRkVF5fvvWwkKCnL6TWTS0tKUmZlp1+mlAAAAAHC3yM7O1pkzZ+Tj46Ny5coVup9C36Rm9+7d+vbbb3X06FEFBwerVatWqlu3rnX5vffeq5MnTxY6sfzMmzdP1atX1/333+/UfgEAAADAk1y+fFmLFy9Wamqq/ve//+m3336zLjObzWrZsqU6duyop556SmFhYXb363CBmJmZqcGDB+vTTz9Vbm6ufHx8lJWVJS8vL/Xp00fvvfeeypQp42i3BTp79qy+/PJLjRgxwq5rIAEAAACguMnJydGsWbP05ptv6ty5c7rvvvs0YMAA1axZU2XLllV2drZOnjypn376SfPmzdP48eMVExOj8ePHq3HjxgX273CBOGzYMC1ZskTvvfeeevfuLX9/f/3+++9asGCBRowYoWHDhmnOnDmF2tlbKVeunM2UFQAAAABwt5k0aZI+++wzvfnmm+rVq1eBU//99NNP+uCDD3TffffZNe2fw/NQLFy4UG+++aaeeeYZ+fv7S5L8/f317LPPKjk5Wf/3f//naJcAAAAAADv85S9/0ebNm/XEE08UWBxKUpMmTTRt2jTt37/frv4dLhB9fHxUs2bNfJeFhYXZdXdRAAAAAIDjypcvX6jtgoKC7FrP4VNMn3nmGf3zn/9Uly5dbK4FNAxDM2fO1DPPPONolwAAAACAQvryyy9tbiDaunVrPfTQQ4Xqy64CcerUqdZ/BwUFacuWLapTp45iYmJUqVIlnThxQosXL1Z2drbatWtXqEQAAAAAAPY7cuSIunfvru+//16BgYGqWLGiTp48qYyMDDVv3lxpaWkKDg52qE+7CsTRo0fn2z59+vQb2saMGaMXX3zRoSQAAAAAAI6Ji4vT0aNHtXLlSrVv397avmbNGj322GN67rnnlJaW5lCfdhWIubm5DnUKAAAAAChaK1eu1KxZs2yKQ0mKiorSm2++qeeee87hPh2+SQ0AAAAAwP3KlSunwMDAfJcFBgYW6oY2Dt+kZu3atQWu88ADDziciEsluyhOvIviSErrnuiSON3TXLdThov2SZIWuyySFOPCz8Vi172EkmNnLxRajGvCSHLt61dcPxeufL8AALjbDBs2TMnJyYqKirIpFC0Wi5KSkjR8+HCH+3S4QGzfvr1MJpMMw7C2XX83U0m6cuWKw4kAAAAAAOx3/PhxHTp0SNWrV1enTp1UuXJlHT9+XCtWrFBAQICOHDmikSNHSro668S0adMK7NPhAvH777+/oe3s2bP66quvtHDhQr377ruOdgkAAAAAcNBnn32mkiVLKigoyKZOy5vz8PPPP7e2FVmB2LRp03zb27dvr9KlS+vdd99VdHS0o90CAAAAABywb98+p/fp1JvU3HvvvVq6dKkzuwQAAAAAuIjDI4i38tlnnxXqTjkAAAAAAMedOXNGU6dO1YoVK3TmzBlVqFBBDz74oEaOHKmyZcs63J/DBWL37t1vaMvJydEvv/yi3377TX//+98dTgIAAAAA4JgTJ06obdu2MgxDDRo00ObNm9W4cWP94x//0EcffaT//e9/qlq1qkN9OnyKqcVi0e+//27zMJlM6tSpk5YuXaoXXnjB0S7tkpaWpjZt2sjf31/BwcHq27dvkZxzCwAAAACFsWDBAvXo0UPVqlWTn5+fIiIi9MEHH9jMACFJs2fPVnh4uHx8fNS0aVMtWbKkUPFeffVVBQUFaceOHZowYYIMw9Cnn36qPXv2KCAgQC+99JLDfTo8grh69WqHg9yu1atXq1evXnrqqac0ceJEnT59WuPGjVPnzp21bds2+fr6ujwnAAAAALje1KlTFRoaqilTpqhixYpavny5YmNjlZ6ervj4q5Mez58/X7GxsXrllVfUoUMHpaSkqFevXlq3bp3atm3rULylS5cqOTlZvr6+NkVoUFCQXn31VQ0dOtThfXDKNYgXLlzQkSNHVKtWrRvmRHSG+fPnq0aNGvrggw+s/VeqVEkdOnTQd999p3bt2jk9JgAAAAA4YvHixapQoYL1eYcOHXT69GlNnTpVr732mry8vBQfH6/+/ftr/PjxkqTo6Gj99NNPev311x2+4efp06dVvXr1fJcFBATo/PnzDu+Dw6eYTp48WYmJidbn69atU9WqVVW3bl3VqVNHv/76q8NJFOTSpUvy9/e3KT4DAwMl6YbhWgAAAABwh+uLwzzNmjWTxWLR+fPntW/fPu3evVt9+/a1Wad///5auXKlsrOzHYpXqVIlnTx50qbNMAxdunRJb7/9tlq1auXwPjhcIL7//vuqVq2a9fmoUaPUsGFDff7556pQoYJefvllh5MoyMCBA7Vjxw7NnDlTGRkZ2rdvn15++WU1a9ZM9913n9PjAQAAAIAzrF+/XlWrVpW/v7927dolSapXr57NOvXr11dOTo7279/vUN9t27bVpk2brM9NJpMGDRqkOnXq6JtvvtFbb73lcL4On2Kanp6u2rVrS5IOHz6sLVu2aM2aNWrXrp0uX76sv/zlLw4nUZB27dpp0aJFeuyxx6zn0UZEROjLL79UiRIlbrpddna2TRVusVicnhsAAACA4u2PdYTZbJbZbC5wu/Xr12v+/PmaMmWKJOns2bOSdMP0E+XKlZN0dcoKR4wcOdJaIJrNZtWuXVuHDh1S//79NXr06HxHNAvi8Aiir6+v9QVauXKlypQpo3vvvVfS1R3NyMhwOImCbNiwQU8++aRiY2P13//+VwsWLFBubq66deumixcv3nS7pKQkBQYGWh8hISFOzw0AAABA8RYSEmJTVyQlJRW4zaFDh9SvXz9FR0dr+PDhRZJX27Zt9fzzz0uSGjZsqF9++UUrV65UcnJyoYpDqRAjiK1bt1ZycrK8vLw0adIkde3a1TqK9+uvvzo8z4Y9hg8frg4dOlgrb+nqi1G9enXNnTtXgwcPzne7sWPHatSoUdbnFouFIhEAAACAQ9LT0xUQEGB9XtDo4blz59S1a1cFBQVp4cKF8vK6Oi6XN1KYkZGhKlWqWNfPG1ksX758ofI7c+aMfv75Zx09elRVqlRRkyZNrLEcVaib1Bw9elQxMTHKzMzUxIkTrctSUlKso4nOtGPHDkVERNi0VatWTRUqVLjlTXHMZrMCAgJsHgAAAADgiD/WFLcqEC9evKiHH35YGRkZWrZsmfXmmtL/v/Yw71rEPLt27ZK3t7fCwsIKzGXr1q1au3atJOny5ct64YUXVK1aNUVHR+uxxx5Thw4dVLVqVY0aNUqXLl1yeF8dHkFs0KCB9u3bp9OnTysoKMhm2ZQpU2wqYWepUaOGtm7datN28OBBnTp1SqGhoU6PBwAAAACOunz5svr27audO3daZ3u4XlhYmMLDw7VgwQL16NHD2p6SkqKOHTvK29u7wBjDhg3Tww8/rAceeEAvvPCC3n33Xb366qvq0aOHKlasqJMnT2rx4sUaP368Ll++rLffftuhfSj0PIh/LA4lqXHjxoXt7pbi4uI0YsQIPf/884qJidHp06c1YcIEVapU6YZbxAIAAACAOwwZMkRLlizRlClTZLFYtHHjRuuyZs2ayWw2KyEhQY8//rhq1aql6OhopaSkaNOmTdZRwYLs2LFD8fHxkqR///vfGj9+vF588UXr8ipVqqhx48by9vZWUlKS6wpEVxo+fLjMZrP++c9/avbs2fL391dkZKQWLFiQb6EKAAAAAK729ddfS5JeeOGFG5bt379foaGhGjBggC5cuKDk5GQlJyerbt26WrRokSIjI+2KcfHiRV25ckWSlJube8OleHmaNm2q3Nxch/fBIwpEk8mkuLg4xcXFuTsVAAAAAMjXgQMH7Fpv0KBBGjRoUKFi1KxZU0uWLFHXrl31yCOPaMGCBXrwwQdvWC81NVX9+/d3uH+PKBABAAAAAFdPYx05cqQsFosiIyOVnJysjh07qlevXqpUqZJOnDihzz//XLt377ZrOo4/okAEAAAAAA8xbNgwSdK0adM0b948SdLhw4e1evXqG9Z94okn9NhjjznUPwUiAAAAAHiQYcOGadiwYfr999+VkZFRqGsNb4YCEQAAAAA8kL+/v/z9/Z3ap5dTewMAAAAAFJnDhw/LMAyHtzt48KBd61EgAgAAAICHmDt3rurVq6d33nlHJ0+evOW6hmFo3bp1euaZZ9SwYUO7+ucUUwAAAADwEGPGjFFISIgSExM1YsQItWjRQi1btlRoaKjKli2r7OxsnTp1Sj/++KM2btyoM2fOqH///tqxY4dd/ZuMwoxPeiiLxaLAwEBp/hiptLnI4xlbEos8Rp7FrgvlMjEujGVKi3dZrLTuxfDNkgvfL9e9VS7lyu9w92L6eXflMWOxi+IU2/fKld9jVx5y754/qQCPkff3f8YYKcCnENtnSYHJUkZGhgICApyf4G1as2aNFixYoHXr1mn37t3KycmRJFWoUEFt2rTRgw8+qMcee0xBQUF298kIIgAAAAB4oKioKEVFRVmfnz9/Xj4+PipRokSh+6RABAAAAIBiwM/P77b74CY1AAAAAABJFIgAAAAAgGsoEAEAAAAAkigQAQAAAADXeEyBuGTJEjVv3lxms1khISGKj4/XlStX3J0WAAAAABQbHlEgbty4UT169FCDBg2UlpamkSNHatKkSXrppZfcnRoAAAAAFBseMc1FQkKCIiIi9O9//1uS1KVLFxmGobFjx+rFF19U5cqV3ZwhAAAAAHg+jxhB/P7779W5c2ebti5duujSpUv66quv3JQVAAAAABQvHlEgZmVlyWw227TlPd+5c6c7UgIAAACAYscjTjGtU6eOvv32W5u2jRs3SpLOnDlz0+2ys7OVnZ1tfW6xWIomQQAAAAAoBjxiBHHIkCFatmyZpk+frjNnzmj9+vV65ZVXVKJECZlMpptul5SUpMDAQOsjJCTEhVkDAAAAgGfxiAJx4MCBGjFihEaPHq2goCB17NhRcXFxKl++vIKDg2+63dixY5WRkWF9pKenuzBrAAAAAPAsHlEgenl56a233tKpU6f0448/6vjx44qNjdXJkyfVtm3bm25nNpsVEBBg8wAAAAAA5M8jCsQ8gYGBatKkicqWLat//OMfqlmzpjp16uTutAAAAACgWPCIm9R8++23WrNmjSIiInTx4kWlpaVp7ty5WrZsmUqUKOHu9AAAAACgWPCIAtHb21sLFy7U66+/Lklq06aNVq9ercjISDdnBgAAAADFh0cUiBEREdZpLQAAAAAARcOjrkEEAAAAABQdCkQAAAAAgCQKRAAAAADANRSIAAAAAABJFIgAAAAAgGsoEAEAAAAAkiSTYRiGu5NwFYvFosDAQM2XVNoF8WJcECOPKS3eJXGMLYkuiSNJi10XyqViXPNWSZJMLVwXLK27a94wV36vxHvlUVz62bh7fjoBwKPl/f2vlDFSaR/HO7iQJfVLVnh4uEqUKKGhQ4dq6NChzk/0DuIR8yACAAAAgLts3rxZAQEB7k7DJTjFFAAAAAAgiQIRAAAAAHANBSIAAAAAQBIFIgAAAADgGgpEAAAAAIAkCkQAAAAAwDVuLxD37t2ruLg4RUREqGTJkmrUqFG+682ePVvh4eHy8fFR06ZNtWTJEhdnCgAAAADFm9sLxO3bt+uLL75Q7dq11aBBg3zXmT9/vmJjY9WvXz8tW7ZMkZGR6tWrlzZu3OjibAEAAACg+HJ7gRgTE6P09HSlpqaqefPm+a4THx+v/v37a/z48YqOjtasWbPUqlUrvf766y7OFgAAAACKL7cXiF5et05h37592r17t/r27WvT3r9/f61cuVLZ2dlFmR4AAAAA3DXcXiAWZNeuXZKkevXq2bTXr19fOTk52r9/vzvSAgAAAIBip6S7EyjI2bNnJUlly5a1aS9Xrpwk6cyZMzfdNjs722aE0WKxOD9BAAAAACgm7vgRxNuRlJSkwMBA6yMkJMTdKQEAAADAHeuOLxDzRgozMjJs2vNGFsuXL3/TbceOHauMjAzrIz09vegSBQAAAAAPd8efYpp37eGuXbtUt25da/uuXbvk7e2tsLCwm25rNptlNpuLPEcAAAAAKA7u+BHEsLAwhYeHa8GCBTbtKSkp6tixo7y9vd2UGQAAAAAUL24fQbxw4YKWLl0qSTp48KAsFotSU1MlSVFRUapYsaISEhL0+OOPq1atWoqOjlZKSoo2bdqktWvXujN1AAAAAChW3F4gnjhxQn369LFpy3u+atUqtW/fXgMGDNCFCxeUnJys5ORk1a1bV4sWLVJkZKQ7UgYAAACAYsntBWJoaKgMwyhwvUGDBmnQoEEuyAgAAAAA7k53/DWIAAAAAADXoEAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALiGAhEAAAAAIOkOmObCHfrPHyOVNhd5nLTuiUUeI4+xxUWxXLdLxZcLX8M0Fwbrnhbvkjgu+6xLvFdO4MrjoFy3WwAAFFuMIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALiGAhEAAAAAIOkOKBD37t2ruLg4RUREqGTJkmrUqNEN66SkpOjRRx9VtWrVZDKZNHnyZDdkCgAAAAC3Zk99I0mzZ89WeHi4fHx81LRpUy1ZssTFmebP7QXi9u3b9cUXX6h27dpq0KBBvuukpqZq3759evjhh12cHQAAAADYz576Zv78+YqNjVW/fv20bNkyRUZGqlevXtq4caOLs72R2wvEmJgYpaenKzU1Vc2bN893nZSUFH3//feaNWuWi7MDAAAAAPvZU9/Ex8erf//+Gj9+vKKjozVr1iy1atVKr7/+uouzvZHbC0Qvr4JTsGcdAAAAAHC3gmqXffv2affu3erbt69Ne//+/bVy5UplZ2cXZXoFovICAAAAABfZtWuXJKlevXo27fXr11dOTo7279/vjrSsSro1ehHLzs62qcAtFosbswEAAADgif5YR5jNZpnN5kL1dfbsWUlS2bJlbdrLlSsnSTpz5kyh+nWWYj2CmJSUpMDAQOsjJCTE3SkBAAAA8DAhISE2dUVSUpK7UyoyxXoEcezYsRo1apT1ucVioUgEAAAA4JD09HQFBARYnxd29FD6/yOFGRkZqlKlirU9b2SxfPnyhe7bGYp1gXg7Q78AAAAAIEkBAQE2BeLtyLv2cNeuXapbt661fdeuXfL29lZYWJhT4hRWsT7FFAAAAADuJGFhYQoPD9eCBQts2lNSUtSxY0d5e3u7KbOr3D6CeOHCBS1dulSSdPDgQVksFqWmpkqSoqKiVLFiRe3YsUM7duywbrNt2zalpqbKz89PXbt2dUveAAAAAPBH9tQ3CQkJevzxx1WrVi1FR0crJSVFmzZt0tq1a92ZuqQ7oEA8ceKE+vTpY9OW93zVqlVq3769Pv30UyUmJlqXf/zxx/r4449Vo0YNHThwwJXpAgAAAMBN2VPfDBgwQBcuXFBycrKSk5NVt25dLVq0SJGRke5I2YbbC8TQ0FAZhnHLdRISEpSQkOCahAAAAACgkOypbyRp0KBBGjRokAsycgzXIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALjG7dNcuEPGD8kKMBd9HFNafNEHuSate2LBK3mYGFcGc91bpcXF762SJBku+gy69Hsl171Z3V24X8aW4vkhdOV3KybBdbEAAHAlRhABAAAAAJIoEAEAAAAA11AgAgAAAAAkUSACAAAAAK6hQAQAAAAASKJABAAAAABc4/YCce/evYqLi1NERIRKliypRo0a2Sy3WCxKSEhQ69atVbZsWVWuXFkxMTHatm2bmzIGAAAAgOLJ7QXi9u3b9cUXX6h27dpq0KDBDct/++03vfvuu+rcubM+/fRTvffee8rIyFDbtm21c+dON2QMAAAAAMVTSXcnEBMTox49ekiSBg4cqO+++85mec2aNfXrr7+qdOnS1rYOHTqoRo0amjlzpv7xj3+4NF8AAAAAKK7cXiB6ed16ENPPz++GtjJlyqh27do6cuRIUaUFAAAAAHcdt59iWhjnzp3Tzz//rPr167s7FQAAAAAoNtw+glgYf/vb32QymRQXF3fL9bKzs5WdnW19brFYijo1AAAAAPBYHjeCOGfOHL333nt65513VK1atVuum5SUpMDAQOsjJCTERVkCAAAAgOfxqAJx2bJlGjx4sF577TU9/fTTBa4/duxYZWRkWB/p6ekuyBIAAAAAPJPHnGK6ceNG9e7dW08//bRef/11u7Yxm80ym81FnBkAAAAAFA8eMYK4Y8cOdevWTR06dNCsWbPcnQ4AAAAAFEtuH0G8cOGCli5dKkk6ePCgLBaLUlNTJUlRUVEyDENdunSRr6+vRo4caTNPYkBAgBo0aOCWvAEAAACguHF7gXjixAn16dPHpi3v+apVqyRJhw4dkiR17NjRZr2oqCitXr266JMEAAAAgLuA2wvE0NBQGYZxy3UKWg4AAAAAuH0ecQ0iAAAAAKDoUSACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkHQHTHPhSnnTZViyXRTwgqsCSRdcFsl1LK4M5rq3qli+V5IL36/i+r1y4X657BjoYq58vywWlx6hAHgwf39/mUwmd6eBwv7OuvD3+U5hMu6iSQYPHTqkkJAQd6cBAACAu0RGRoYCAgLcncZdKysrSzVr1tSxY8cK3UdAQICCg4Pl5eWloUOHaujQoU7M8M5zVxWIubm5OnLkyB37PzkWi0UhISFKT08v8gOJq2IVx30ilufEIZZnxSqO+0Qsz4pVHPeJWO6Pc6f+3Xk3ycrKUk5OTqG39/b2lo+PjxMzurPdVaeYenl5qVq1au5Oo0ABAQEu+58mV8UqjvtELM+JQyzPilUc94lYnhWrOO4TsTwnDpzPx8fnrirwbhc3qQEAAAAASKJABAAAAABcQ4F4BzGbzYqPj5fZbC42sYrjPhHLc+IQy7NiFcd9IpZnxSqO+0Qsz4kD3CnuqpvUAAAAAABujhFEAAAAAIAkCkQAAAAAwDUUiHeAvXv3Ki4uThERESpZsqQaNWpUJHEWLFigHj16qFq1avLz81NERIQ++OADFcVZxkuXLlVUVJQqVqwos9mssLAwjRo1ShkZGU6Pdb3MzExVq1ZNJpNJ3333nVP7/vDDD2UymW54jBkzxqlxrvfRRx+pWbNm8vHxUYUKFdS1a1ddvHjRqTHat2+f736ZTCbNnz/fqbEkKS0tTW3atJG/v7+Cg4PVt29f7du3z+lxlixZoubNm8tsNiskJETx8fG6cuXKbfdr7/d19uzZCg8Pl4+Pj5o2baolS5YUSayUlBQ9+uij1s/95MmTHY5jTyyLxaKEhAS1bt1aZcuWVeXKlRUTE6Nt27Y5fZ9Gjx6thg0byt/fXwEBAWrVqlWhPouOHls/++wzmUymQh2D7Yl1s+/arl27nB5Lks6dO6fhw4frnnvukY+Pj2rVqqUpU6Y4NdaBAwduevxw9Jby9uzXhQsXNHbsWIWFhal06dIKDw/XG2+8ocuXLzs1Tk5Ojl566SXdc8898vX1VevWrbVy5UqH9key/3f3do8X9sRx1rGioFjOOlbYu1/OOl44+jfS7RwvgDvdXTUP4p1q+/bt+uKLL9SmTRvl5uYqNze3SOJMnTpVoaGhmjJliipWrKjly5crNjZW6enpio+Pd2qsM2fOqE2bNho+fLiCgoL0888/KyEhQT///LO+/vprp8a63vjx4x36Q6EwvvzySwUGBlqfV61atUjiTJw4UW+++aZefvllRUZG6tSpU1q5cqVTipzrzZw5UxaLxaZt2rRpWrhwoTp16uTUWKtXr1avXr301FNPaeLEiTp9+rTGjRunzp07a9u2bfL19XVKnI0bN6pHjx4aMGCAkpKStH37dr366qs6f/58of8oymPP93X+/PmKjY3VK6+8og4dOiglJUW9evXSunXr1LZtW6fGSk1N1b59+/Twww/r3XffLbL9+u233/Tuu+9q0KBBmjBhgrKysjR58mS1bdtW3333nerXr++0fcrMzFRsbKzq1asnk8mk1NRUDRgwQLm5uXrsscectk/Xu3jxokaOHKnKlSvb3X9hYt133303fAZDQ0OdHuv8+fNq3769SpYsqbfeekuVK1fW7t27b/iu326s4OBgffPNNzZthmHooYceUocOHZy+X3/961+1cOFCvfHGG2rQoIG++eYbjRs3TufPn9fEiROdFmfEiBH6+OOPNXHiRNWtW1dz5szRn/70J33zzTdq3ry53ftkz++uM44X9sRx1rGioFjOOlbYu1/OOl448jfS7R4vgDueAbe7cuWK9d9PP/200bBhwyKJc/LkyRvaYmNjjYCAAJscisq//vUvQ5Jx+PDhIul/586dhp+fnzFr1ixDkrF582an9j9nzhxDUr6vo7Pt2rXLKFmypLF06dIij5WfmjVrGn/605+c3u9zzz1n1KxZ08jNzbW2/fe//zUkGWvXrnVanC5duhjNmze3aZs8ebJRqlQp49ixY7fVtz3f1/DwcGPAgAE2bZGRkUbXrl2dHuv6dSQZkyZNciiGvbEyMzON8+fP27T9/vvvRvny5Y2//vWvTotzM/fee6/x4IMP2h3H0Vivvfaa8cADDxT6GGxPrKioKKNbt24O912YWK+++qoRFhZmZGZmFnmsP1q1apUhyfj000+dGuvKlStG6dKljfj4eJv2p556yggLC3NanEOHDhklSpQw3n77bWtbbm6u0bhxY6N79+52xzEM+353nXG8sCeOs44VBcVy1rHCnlg3U5jjhSOxbvd4AdzpOMX0DuDl5Zq3oUKFCje0NWvWTBaLRefPny/y+EFBQZKunrpTFIYNG6a4uDjVrVu3SPp3pTlz5qhmzZrq2rWry2Nv2LBB+/fv1+OPP+70vi9duiR/f3+ZTCZrW95orOHEU52///57de7c2aatS5cuunTpkr766qvb6rug7+u+ffu0e/du9e3b16a9f//+WrlypbKzs50Wy951nBHLz89PpUuXtmkrU6aMateurSNHjjgtzs0EBQU5fOywN9avv/6qKVOm6O233y5Mag7FcgZ7Yr3//vt69tln5efnV+Sx/mjevHkKCAhQTEyMU2MZhqHLly/bnMEhXT2GOHL8KCjOTz/9pCtXrtgcQ0wmkzp37qyvvvrKoc9hQb+7zjpe2PP77qzPaEGxnHWssCfWzRTmeGFvLGccL4A7HQXiXW79+vWqWrWq/P39i6T/K1euKCsrS1u3btXrr7+u7t27O3w6lT1SU1O1bds2jRs3zul9/1HDhg1VokQJhYWFKSkpyemnfEpXT5Fs3LixJkyYoEqVKsnb21v33XefNm3a5PRYfzRv3jz5+fmpR48eTu974MCB2rFjh2bOnKmMjAzt27dPL7/8spo1a6b77rvPaXGysrJumK8q7/nOnTudFic/edeT1atXz6a9fv36ysnJ0f79+4s0viudO3dOP//8s0OnjNkrrxg4d+6c5s6dq6+//lp//etfnR5Hkp5//nk99dRTatq0aZH0f701a9bIz89PPj4+ioqK0tq1a50e48CBAzp27JgqVKig7t27y2w2q3z58oqNjVVmZqbT413v0qVLWrhwoXr16uXwNYgFKVGihAYOHKgZM2Zo8+bNyszM1IoVKzR37lynfjaysrIkKd9jSHZ29m1/h6//3S3K40VR/747EsuZx4r8YhXV8SK/WK48XgDuwjWId7H169dr/vz5Dt+0wBE1atTQ4cOHJUkPPfSQ5s2b5/QYFy5c0KhRo/TGG28oICDA6f3nCQ4OVmJiotq0aSOTyaS0tDS9+uqrOnz4sGbMmOHUWMeOHdOWLVu0bds2zZw5U6VLl9Ybb7yhzp07a8+ePapUqZJT4+W5fPmyPv30U3Xv3v22Rx7y065dOy1atEiPPfaYhg4dKkmKiIjQl19+qRIlSjgtTp06dfTtt9/atG3cuFHS1etji9LZs2clSWXLlrVpL1eunEviu9Lf/vY3mUwmxcXFOb3vlStX6sEHH5QklSxZUjNmzFDv3r2dHmfx4sXasGGDdu/e7fS+/ygqKkpPPfWU6tSpoyNHjmjy5Mnq1KmT1qxZo8jISKfFOXbsmKSrN+945JFHtHTpUu3Zs0djxoxRZmamPvnkE6fF+qNly5bpzJkzDl375YiZM2cqLi5OrVu3traNHTtWo0aNclqMOnXqSJK+/fZbm//QdMYx5I+/u0V1vHDF77sjsZx1rLhZrKI4XuQXy5XHC8CdKBDvUocOHVK/fv0UHR2t4cOHF1mcpUuX6vz589q+fbsmTJigmJgYLV++3KnFwIQJE1S5cmU988wzTuszP126dFGXLl2szzt37ixfX1+99dZbeuWVVxQcHOy0WLm5ucrMzFRqaqqaNGkiSWrbtq1CQ0M1Y8YMvf76606Ldb3ly5fr5MmTRfbH3YYNG/Tkk08qNjZWDz/8sE6fPq3x48erW7duWrdundNuUjNkyBANGjRI06dP15NPPqkdO3bolVdeUYkSJWxOb0XhzZkzR++9954+/PBDVatWzen9t2nTRps3b1ZGRoa+/PJLDRs2TCVLltSgQYOcFiMrK0sjRoxQYmJivqeXOVtiYqLN84cfflgNGzbU+PHjtXTpUqfFybvpSnh4uD766CNJUseOHVWyZEnFxsZq4sSJCgsLc1q86/3nP/9R5cqV1bFjxyLpf8yYMfriiy/0/vvvq06dOtq4caMSExNVrlw5vfjii06J0ahRI7Vr104vvfSSQkJCFB4erjlz5mjNmjWSVOhjiKt+d10Vx95YzjpW3CqWs48X+cVy9fECcCcKxLvQuXPn1LVrVwUFBWnhwoVFeu1MXnETGRmpVq1aKSIiQosWLXLaSMDBgwc1ZcoULVq0yDqFRt4pVJmZmcrMzFSZMmWcEis/ffv21eTJk/XDDz84tUAsV66cgoKCrK+fJJUvX17NmjXT9u3bnRbnj+bNm6egoCCbQtiZhg8frg4dOtj8j2zbtm1VvXp1zZ07V4MHD3ZKnIEDB2rbtm0aPXq0RowYIW9vb8XHx2vatGlOfZ/yk/c//xkZGapSpYq1PW+koHz58kUa3xWWLVumwYMH67XXXtPTTz9dJDH8/f3VsmVLSVeLm8uXL2vUqFEaOHCg0/6Dadq0afLy8tKAAQN07tw5SVevkc7NzdW5c+dUunRpeXt7OyVWfvz8/NStWzelpqY6td+8z2B0dLRNe17Rtn379iIpEDMzM7V48WLFxsY69T8B8/z888+aPHmy0tLSrNc3PvDAA7p06ZJee+01xcXFOe10yo8++kh9+/bVvffeK+nq2TDjxo1TfHx8oY4hN/vddfbxwpW/7/bEctaxoqBYzjxe3CyWu48XgCtxDeJd5uLFi3r44YeVkZGhZcuW3XCxf1Fq0qSJSpUqpb179zqtz/379ysnJ0fdunVTuXLlVK5cOesfDtHR0U6fpsFVGjZseNNledfHONvFixf12WefqU+fPipVqlSRxNixY4ciIiJs2qpVq6YKFSro119/dVocLy8vvfXWWzp16pR+/PFHHT9+XLGxsTp58qRD00wURt61RH+c227Xrl3y9vYuspEbV9m4caN69+6tp59+ushGsvPTokULWSwWnTx50ml97tq1S3v37lXFihWtx49PPvlEO3fuVLly5fTBBx84LZYr1apV64br565XVMeQRYsW6eLFi0V2BsKOHTsk6YZjSLNmzZSdna1Dhw45LVbNmjW1efNm7d+/X9u3b9evv/4qX19fBQcHq0aNGg71davfXWceL1z5+25PLGcdKwqzX4U9XtwqVnE9XgD5YQTxLnL58mX17dtXO3fu1Lp164ps/r6b2bRpky5duuTUP5AjIiK0atUqm7YffvhBI0eO1KxZs9SqVSunxcrP/PnzVaJECTVr1syp/T788MOaM2eOfvjhB+sfQ6dPn9bWrVs1cuRIp8bKk5aWpszMzCL74066+r/wW7dutWk7ePCgTp06VSQ3LwoMDLSOwo4bN041a9Ys8v80CAsLU3h4uHXS5TwpKSnq2LGjR/8P844dO9StWzd16NBBs2bNcmns9evXKyAgwKmndo0ZM0YDBw60aUtOTtYvv/yiOXPmKDw83Gmx8nP+/HktWbLE6ccpb29vde7c+YaJ3ZcvXy5JDs3j54h58+apVq1aatOmTZH0n1eYbd26VSEhIdb2LVu2yGQyOVy42SPvuHTx4kXNnj1bf/7znx3avqDfXWcdL1z5+25PLGcdKwq7X4U5XhQUy93HC8CVKBDvABcuXLBef3Lw4EFZLBbrKUdRUVGqWLGiU+IMGTJES5Ys0ZQpU2SxWKwX3EtX/wf2Vv/j7KhHHnlELVu2VJMmTeTr66sff/xRkyZNUpMmTdSzZ0+nxSlbtqzat2+f77IWLVo49Q+hLl26qEOHDmrcuLGkqwXVv/71Lz3//PM2pwY5Q8+ePdWqVSv17t1bEydOlK+vr5KSkmQ2mzVkyBCnxsozb948Va9eXffff3+R9C9JcXFxGjFihJ5//nnFxMTo9OnT1ju1/vE277fj22+/1Zo1axQREaGLFy8qLS1Nc+fO1bJly2771Dd7vq8JCQl6/PHHVatWLUVHRyslJUWbNm1y+I6V9sTasWOHdWRFkrZt26bU1FT5+fk5NE1KQbEMw1CXLl3k6+urkSNH6rvvvrNuGxAQoAYNGjglztGjR/XSSy+pT58+Cg0NVWZmppYsWaL3339fSUlJKlnS/p+tgmLVq1fvhrtHfvjhhzp06NBNjyuFjbVr1y5NmjRJvXr1UmhoqI4cOaIpU6bo2LFjWrBggVNjVaxYUfHx8br33nv1+OOP6+mnn9aePXs0duxY6+fSmbEk6eTJk1qxYoXGjBnj0L44Eqtly5Zq2bKlnnvuOR0/fly1a9fWpk2blJSUpGefffaGqRVuZ59mzJihwMBAhYSE6MCBA5o6dap8fHz00ksvObRP9vzuOuN4YU8cZx0rCoqVkZHhlGOFPbF++eUXpx0vCorlzOMFcMdz5ySMuGr//v2GpHwfq1atclqcGjVq3DTO/v37nRbHMAwjKSnJiIiIMPz9/Q0/Pz+jYcOGxmuvvWZkZGQ4NU5+8iZp3rx5s1P7HT58uFGnTh3D19fXMJvNRuPGjY3p06fbTPruTCdPnjSeeOIJIzAw0PD19TU6d+5sbN++vUhinTlzxvD29jb+9re/FUn/eXJzc41//vOfRpMmTQw/Pz+jSpUqRq9evYydO3c6Nc73339vtGnTxihTpoxRpkwZo2PHjsaGDRuc0re939f333/fqF27tuHt7W00btzYWLx4cZHEio+Pz3d5jRo1nBor73uV3yMqKsppcY4dO2b079/fqFGjhmE2m41KlSoZDzzwgPHZZ585tD/2xMpPYSe+LijWnj17jC5duhhVqlQxSpUqZZQtW9b405/+ZGzatKnI9mvFihVGy5YtDbPZbFSpUsV44YUXjKysrCKJNWPGDEOSsWPHDof3x5FYR48eNf785z8bNWrUMHx9fY3w8HAjPj7euHDhglPjTJ482QgLCzO8vb2N4OBgY+jQocaZM2cc3id7f3dv93hhTxxnHSsKiuWsY4U9sZx5vCjM30iFPV4AdzqTYThxdmoAAAAAgMfiJjUAAAAAAEkUiAAAAACAaygQAQAAAACSKBABAAAAANdQIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAulJCQoDJlyrg7jSL1xRdfqFq1asrJySmyGD/88INMJpNWr17tlP4OHDggPz8/HThwwCn9AQDgqSgQAcCF/vznP2vVqlXuTqPIGIahV155RSNHjpS3t7e707FbaGioevfurfj4eHenAgCAW1EgAoALZGdnKzc3V9WqVVOrVq2c1p89DMNQdnb2bce0x+rVq/Xzzz/rqaeeuu2+HNnH23Hx4kVJ0qBBg/TJJ5/o5MmTRR4TAIA7FQUiADhg4MCBatSokZYtW6ZGjRrJx8dHLVq00MaNG23WCw0N1V//+lf9/e9/V40aNeTr66szZ87ke4rpwYMH1bt3bwUGBsrPz09dunTRtm3b7OrvVjkuXbpUTZs2ldls1uLFi/Xhhx/KZDLp1KlTNutHRERo4MCBN2y/evVqNWvWTH5+fmrdurW2bNlS4Ovz0UcfKSoqShUrVnTqPk6YMEFVqlRRmTJl9Mgjj+jEiRM3xDYMQ5MnT1Z4eLjMZrPCwsL01ltv2ayT9/p/++23ioyMlI+Pj9555x1J0v3336+goCDNmzevwP0EAKC4okAEAAcdPXpUQ4YM0YsvvqhPP/1UZrNZXbp0uaFoWbhwoZYsWaLp06fr888/l5+f3w19/f7772rfvr2+//57zZo1S//+9791+vRpPfDAA0pPT3e4vzxHjhzR8OHDNXLkSH355ZeKiIhwaB+PHTum4cOHW/cxKytLvXr10qVLl2653YoVK3Tfffc5dR9nzJih1157TU8++aQWLlyosLAwDRo06IbYzz//vMaNG6enn35aX3zxhQYOHKiXXnpJs2bNslkvJydHjz32mJ544gktW7ZMnTt3liR5eXmpbdu2Wr58uUOvFQAAxUlJdycAAJ7mzJkzWrBggTp06CBJioqKUkhIiN566y0lJSVZ17t06ZKWLVt2y0Juzpw5OnjwoLZv36769etb+6tevbqmTZumKVOmONRfnrNnz2rZsmVq06aNtW39+vUO7eOaNWvUsGFDSZKfn5+io6O1adMm3X///fluc/ToUR0+fFhNmjRx2j5euXJFSUlJevLJJzVp0iRJshbjc+fOtW7366+/asaMGZo1a5YGDx4sSerUqZMuXLigxMREDR48WF5eXtYYEydOVL9+/W7Yh6ZNm1pHFAEAuBsxgggADgoMDLQWh3nPO3XqpE2bNtms1759+wKLuXXr1qlRo0bWwkmSypcvrwcffPCGgs6e/vIEBQXZFIeOuueee6zFoSQ1aNBAknTo0KGbbnP06FFJuuH00tvZx0OHDunIkSPq1auXzXq9e/e2eb5ixQpJ0qOPPqrLly9bH506ddKxY8duGKns1q1bvvtQoUIFnTp1qsCRUgAAiisKRABw0B8LIEmqXLmytUC6vq0gZ8+ezXe9ypUr33CNoT39FWbd/JQtW9bmed4dSbOysm66Td4ys9ls0347+5j3mlaqVOmW6506dUqGYahChQoqVaqU9fHggw9Kkk2BWLp06ZtONZKX+632EwCA4oxTTAHAQfnd5fL48eMKDg62aTOZTAX2Vb58ef3yyy/59le+fHmH+7vVuj4+PpJ0w/yEZ8+etbvfW8nL99y5cze0F3Yf817TP17fefz48RtimEwmrV+/Pt/pNerWrXvTGNc7d+6cvL295e/vf9N1AAAozhhBBAAHZWRk6L///a/N8xUrVhTqlM77779f27Ztsymgzp49qxUrVtz0Wr/CqlatmiRp586d1radO3fecPplYYWGhsrb21v79++3ab+dfaxWrZqCg4O1aNEim/bU1FSb5x07dpQknT59Wi1btrzhYW/Bd+DAAYWHh9u1LgAAxREFIgA4qHz58ho0aJA+/vhjpaWlqWvXrjIMQyNGjHC4r2eeeUY1atRQt27dNH/+fH322Wfq3LmzSpYsWaj+bqVNmzYKCQnRyJEj9cUXX+iTTz5R//79FRQU5JT+86b8+ON0GLezjyVKlNCYMWM0d+5cvfjii/r66681evRorVq1yma98PBwDR06VE8++aQmTpyoFStWaNmyZZo+fbp69uxp9z589913ateund3rAwBQ3FAgAoCDgoODNWPGDCUnJ6tPnz7KysrSV199Vajr/vz9/bV69Wo1bdpUgwcP1uOPP65y5cpp7dq1CgkJcWrepUqV0qJFi+Tj46M+ffooKSlJU6dOVdWqVZ0Wo3fv3vrqq69kGIa17Xb3cdiwYUpMTNTHH3+sXr16ac+ePXr//fdvWO/tt9/WhAkTNH/+fHXr1k1PPPGEUlJSFBUVZVfuJ06c0JYtW264AQ4AAHcTk3H9rzgA4JYGDhyo7777Tj///LO7U7kjnTx5UiEhIfr666/1wAMPuDsdh7zzzjt66623tGfPHoeu9wQAoDhhBBEA4DQVK1bUX/7yF02bNs3dqTgkNzdX06dP17hx4ygOAQB3NQpEAIBTvfzyy4qIiLjhbql3siNHjmjgwIF64okn3J0KAABuxSmmAAAAAABJjCACAAAAAK6hQAQAAAAASKJABAAAAABcQ4EIAAAAAJBEgQgAAAAAuIYCEQAAAAAgiQIRAAAAAHANBSIAAAAAQBIFIgAAAADgmv8H684bIQ+UB9UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAGDCAYAAABp6D4kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWP0lEQVR4nO3deXyM5/7/8fcEmUQkQWwpIYLYiV3aagSljsbSWrtqnWgOh6J6ShdJiiY9ltKjjp5WtXWOSsVXG0pbHOtRqnRRS1FLY98zDZIg9+8PMj9TITMxmTHxej4e83iY677v6/O5Z7knH9d935fJMAxDAAAAAIC7npe7EwAAAAAA3BkoEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkCSVdHcCrmQYhn7//Xf5+/vLZDK5Ox0AAAAARSwrK0s5OTmF3t7b21s+Pj5OzOjOdlcViL///rsCAwOl+WOk0uYij5fWPbHIY+SJiXdRINftkha7LpRLdU9z1ZslGVtc+Ia5KJQrPxcu+15JLv1umVz4GXTlcdCVXPXZWFw8Xz7FuDCWKz/vRkyCy2IBsE9WVpbu8fXV2dvoIyAgQMHBwfLy8tLQoUM1dOhQp+V3J7qrCkQAAAAAd4+cnBydlTRHUulCbH9B0jMWi9LT0xUQEODc5O5QFIgAAAAAirXSKlyBeDfiJjUAAAAAAEkUiAAAAACAaygQAQAAAACSKBABAAAAANd4TIG4d+9excXFKSIiQiVLllSjRo3cnRIAAAAAFCsecxfT7du364svvlCbNm2Um5ur3Nxcd6cEAAAAAMWKx4wgxsTEKD09XampqWrevLm70wEAAACAYsdjCkQvL49JFQAAAAA8ElUXAAAAAEBSMS8Qs7OzZbFYbB4AAAAAUFTS0tLUpk0b+fv7Kzg4WH379tW+fftuWG/27NkKDw+Xj4+PmjZtqiVLlrgh2xsV6wIxKSlJgYGB1kdISIi7UwIAAABQTK1evVq9evVSgwYNtGjRIk2bNk0//vijOnfurIsXL1rXmz9/vmJjY9WvXz8tW7ZMkZGR6tWrlzZu3OjG7K/ymLuYFsbYsWM1atQo63OLxUKRCAAAAKBIzJ8/XzVq1NAHH3wgk8kkSapUqZI6dOig7777Tu3atZMkxcfHq3///ho/frwkKTo6Wj/99JNef/11LV261G35S8V8BNFsNisgIMDmAQAAAABF4dKlS/L397cWh5IUGBgoSTIMQ5K0b98+7d69W3379rXZtn///lq5cqWys7Ndl3A+inWBCAAAAACuMnDgQO3YsUMzZ85URkaG9u3bp5dfflnNmjXTfffdJ0natWuXJKlevXo229avX185OTnav3+/y/O+nsecYnrhwgXrcOvBgwdlsViUmpoqSYqKilLFihXdmR4AAACAYuqPN7s0m80ym803rNeuXTstWrRIjz32mIYOHSpJioiI0JdffqkSJUpIks6ePStJKlu2rM225cqVkySdOXPG2ek7xGNGEE+cOKE+ffqoT58+Wr16tdLT063Pt2/f7u70AAAAABRTISEhNje/TEpKyne9DRs26Mknn1RsbKz++9//asGCBcrNzVW3bt1sblJzJ/OYEcTQ0FDrebsAAAAA4Crp6ek29zPJb/RQkoYPH64OHTpoypQp1ra2bduqevXqmjt3rgYPHmwdKczIyFCVKlWs6+WNLJYvX74odsFuHjOCCAAAAADu8McbX96sQNyxY4ciIiJs2qpVq6YKFSro119/lfT/rz3MuxYxz65du+Tt7a2wsDDn74ADKBABAAAAwAlq1KihrVu32rQdPHhQp06dUmhoqCQpLCxM4eHhWrBggc16KSkp6tixo7y9vV2Vbr485hRTAAAAALiTxcXFacSIEXr++ecVExOj06dPa8KECapUqZLNtBYJCQl6/PHHVatWLUVHRyslJUWbNm3S2rVr3Zj9VRSIAAAAAOAEw4cPl9ls1j//+U/Nnj1b/v7+ioyM1IIFCxQUFGRdb8CAAbpw4YKSk5OVnJysunXratGiRYqMjHRj9ldRIAIAAACAE5hMJsXFxSkuLq7AdQcNGqRBgwa5ICvHcA0iAAAAAEASBSIAAAAA4BpOMQWAm0l0Yax4F8bCbTO1cM0bZsS77kO42JWfdxcyYhLcnQIAeBRGEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFzjEQXiggUL1KNHD1WrVk1+fn6KiIjQBx98IMMw3J0aAAAAABQbHjEP4tSpUxUaGqopU6aoYsWKWr58uWJjY5Wenq74eCYPAwAAAABn8IgCcfHixapQoYL1eYcOHXT69GlNnTpVr732mry8PGIgFAAAAADuaB5RWV1fHOZp1qyZLBaLzp8/74aMAAAAAKD48YgCMT/r169X1apV5e/v7+5UAAAAAKBY8IhTTP9o/fr1mj9/vqZMmXLL9bKzs5WdnW19brFYijo1AAAAAPBYHjeCeOjQIfXr10/R0dEaPnz4LddNSkpSYGCg9RESEuKiLAEAAADA83hUgXju3Dl17dpVQUFBWrhwYYE3pxk7dqwyMjKsj/T0dBdlCgAAAACex2NOMb148aIefvhhZWRk6JtvvlFgYGCB25jNZpnNZhdkBwAAAACezyMKxMuXL6tv377auXOn1q1bp6pVq7o7JQAAAAAodjyiQBwyZIiWLFmiKVOmyGKxaOPGjdZlzZo1Y5QQAAAAAJzAIwrEr7/+WpL0wgsv3LBs//79Cg0NdXFGAAAAAFD8eESBeODAAXenAAAAAADFnkfdxRQAAAAAUHQoEAEAAAAAkigQAQAAAADXUCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFzjEfMgOltG/2QFuCDOYhfEyGNqEe+SOEZ8okviSJJcGCrGdaGU1t11O+bKz2D3NBd9Bre48PVz4Wewu4u+w5JrX0NXcuXn3WWvYfF8q2Ry0fFCktJMJpfFctVxUHLtb0lxFOO6t0pKMFwYDLh9jCACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkESBCAAAAAC4xiMKxKVLlyoqKkoVK1aU2WxWWFiYRo0apYyMDHenBgAAAADFhkfMg3jmzBm1adNGw4cPV1BQkH7++WclJCTo559/1tdff+3u9AAAAACgWPCIAvGJJ56wed6+fXuZzWYNHjxYR44c0T333OOmzAAAAACg+PCIU0zzExQUJEnKyclxcyYAAAAAUDx4xAhinitXrujSpUvasWOHXn/9dXXv3l2hoaHuTgsAAAAAigWPKhBr1Kihw4cPS5IeeughzZs375brZ2dnKzs72/rcYrEUaX4AAAAA4Mk86hTTpUuXasOGDXrvvfe0c+dOxcTE6MqVKzddPykpSYGBgdZHSEiIC7MFAAAAAM/iUQVikyZNFBkZqT//+c/6/PPPtWrVKi1atOim648dO1YZGRnWR3p6uguzBQAAAADP4lGnmF6vSZMmKlWqlPbu3XvTdcxms8xmswuzAgAAAADP5VEjiNfbtGmTLl26pLCwMHenAgAAAADFgkeMID7yyCNq2bKlmjRpIl9fX/3444+aNGmSmjRpop49e7o7PQAAAAAoFjyiQGzdurVSUlKUnJys3NxchYaGKjY2VqNHj5a3t7e70wMAAACAYsEjCsQxY8ZozJgx7k4DAAAAAIo1j70GEQAAAADgXBSIAAAAAABJFIgAAAAAgGsoEAEAAAAAkigQAQAAAADXUCACAAAAACRJJsMwDHcn4SoWi0WBgYHKGCMFmF0QMNEFMa5Z7LpQLhPjwljF8fWTpO5p8S6LZWxxzQd+sQu/Vy59/bq7bsdc+XmPuXt+YgAAdyDr3/+SAgqzvaRASeHh4SpRooSGDh2qoUOHOjfJO4xHzIMIAAAAAO6yefNmBQQUpsT0PJxiCgAAAACQRIEIAAAAALiGAhEAAAAAIIkCEQAAAABwDQUiAAAAAEASBSIAAAAA4BqPLBAzMzNVrVo1mUwmfffdd+5OBwAAAACKBY8sEMePH6/Lly+7Ow0AAAAAKFY8rkDctWuX3nnnHSUmJro7FQAAAAAoVjyuQBw2bJji4uJUt25dd6cCAAAAAMWKRxWIqamp2rZtm8aNG+fuVAAAAACg2Cnp7gTsdeHCBY0aNUpvvPGGAgIC7NomOztb2dnZ1ucWi6Wo0gMAAAAAj+cxI4gTJkxQ5cqV9cwzz9i9TVJSkgIDA62PkJCQIswQAAAAADybRxSIBw8e1JQpU5SYmKiMjAydO3dOmZmZkq5OeZH37z8aO3asMjIyrI/09HRXpg0AAADgLnar6flmz56t8PBw+fj4qGnTplqyZImbsrTlEQXi/v37lZOTo27duqlcuXIqV66cYmJiJEnR0dHq1KlTvtuZzWYFBATYPAAAAADAFW42Pd/8+fMVGxurfv36admyZYqMjFSvXr20ceNGN2RpyyOuQYyIiNCqVats2n744QeNHDlSs2bNUqtWrdyUGQAAAADcKG96vilTpiguLs5mWXx8vPr376/x48dLujro9dNPP+n111/X0qVL3ZGulUcUiGXLllX79u3zXdaiRQs1b97ctQkBAAAAwC3cbHq+ffv2affu3XrzzTdt2vv3768XX3xR2dnZMpvNrkzVhkecYgoAAAAAnuJW0/Pt2rVLklSvXj2b9vr16ysnJ0f79+93SY434xEjiPlp3769DMNwdxoAAAAAirk/TpdnNptvOspX0PR8Z8+elXT1LMnrlStXTpJ05swZJ2RceIwgAgAAAMAthISE2Eyfl5SUdNN1CzM9353EY0cQAQAAAMAV0tPTbUYDbzZ6mDc936JFi5SRkSFJN0zPlzdSmJGRoSpVqli3zRtZLF++fJHsg70oEAEAAADgFuydMu/66fn+KDo6Wm3atNG8efMkXb0W8fob2OzatUve3t4KCwtzXuKFQIEIAAAAAE5gz/R8YWFhCg8P14IFC9SjRw/reikpKerYsaO8vb1dnbYNCkQAAAAAcAJ7p+dLSEjQ448/rlq1aik6OlopKSnatGmT1q5d68Js80eBCAAAAAAuNGDAAF24cEHJyclKTk5W3bp1tWjRIkVGRro7NZmMu2iuCIvFosDAQM2XVNoF8WLiXRAkT6JrwpjSXLlTrpPW3UUvoKQYl0WSFrswlsv2y4UfwcWu+1i4VHcXfo+NmASXxQIA4I/y/v7PkFTwFYT5bC8pUFdvKGPPNYjFASOIAAAAAOAhHJk+wzAMffjhhw71T4EIAAAAAB5i69atuv4k0CNHjujs2bMKDAxUxYoVdfLkSWVkZKhcuXIKDg52uH8vZyYLAAAAACg6P/74o3766Sf99NNPevPNNxUYGKiVK1fqzJkz+uWXX3TmzBn997//VWBgoCZNmuRw/xSIAAAAAOCBRo8erYSEhBvunBoVFaXExES9+OKLDvdJgQgAAAAAHmjfvn0KDAzMd1nZsmW1d+9eh/ukQAQAAAAAD9SoUSMlJycrIyPDpt1isSg5OVkNGzZ0uE9uUgMAAAAAHmjGjBnq3Lmzqlevrk6dOqly5co6fvy4VqxYIS8vL3355ZcO9+kRI4gffvihTCbTDY8xY8a4OzUAAAAAcIs2bdpo7969GjZsmDIyMrRmzRplZGTor3/9q/bs2aM2bdo43KdHjSB++eWXNufYVq1a1Y3ZAAAAAIB7VaxYURMmTHBafx5VILZo0UIVKlRwdxoAAAAAUCx5VIEIAAAAALgqLCxMhmHccp39+/c71KdHFYgNGzbUqVOnVKNGDcXGxupvf/ubSpQo4e60AAAAAMDlYmJibApEwzB0/PhxrV69WiVLltSjjz7qcJ8OFYhXrlzR0qVLtXz5cm3atElHjx7VxYsXFRQUpLp166pdu3Z69NFHVbNmTYcTuZXg4GAlJiaqTZs2MplMSktL06uvvqrDhw9rxowZN90uOztb2dnZ1ucWi8WpeQEAAACAu0yfPj3f9qysLD300EOqXr26w33adRfTzMxMJSYmqmrVqurdu7fWr1+vBg0aqF+/fnruuefUqVMnXblyRZMnT1adOnXUqVMn/e9//3M4mZvp0qWLxo0bpy5duqhz586aMWOGRo0apVmzZuno0aM33S4pKUmBgYHWR0hIiNNyAgAAAIA7kY+Pj0aNGqV33nnH4W3tGkGsWbOmGjVqpEmTJqlnz57y9/e/6bpbt27VJ598opiYGE2YMEFDhgxxOCl79O3bV5MnT9YPP/yg4ODgfNcZO3asRo0aZX1usVgoEgEAAAAUeyVKlNChQ4eUk5Mjb29vu7ezq0D8/PPPde+999rVYfPmzdW8eXONGzdOv/32m92JFAWz2Syz2ezWHAAAAADA1Tp16qQTJ06oVKlSDm1nV4Fob3F4PX9/fzVs2NDh7ew1f/58lShRQs2aNSuyGAAAAABwp0pMTLzlcsMwlJCQoCNHjui9995TfHx8gX16xF1Mu3Tpog4dOqhx48aSpLS0NP3rX//S888/rypVqrg5OwAAAABwvalTp95ymou8AvHo0aOaMmWK8wpELy8vmUwmuxO9cuWK3evao169epo9e7YOHTqk3NxchYeHa9q0aRo2bJhT4wAAAACAp8jIyLBrvRYtWtg9o4NdBeLUqVOtBeLly5c1bdo0eXt7q2fPnqpcubKOHTumzz77TJcuXdLIkSPtCuyI6dOn3/QWrgAAAAAA57CrQBwxYoT13y+99JKaNWumzz77TF5e/3+WjMmTJ6tHjx63nHYCAAAAAOA8mZmZmjNnjtavX68zZ86oXLlyuv/++/Xss8+qTJkyDvdn1zyI1/vwww81ZMgQm+JQunoa6pAhQ/TRRx85nAQAAAAAwDHp6elq0qSJRo4cqd27d8vLy0u7d+/WqFGj1Lhx40LNKuFwgXjx4kUdOHAg32UHDhxQVlaWw0kAAAAAABwzatQolSxZUjt37tT333+vr776Sj/88IN27NihkiVL2swJby+H72Las2dPvfTSS/L19VXPnj0VGBiojIwMLVq0SGPHjlXPnj0dTgIAAAAA4Jjly5fr3XffVZ06dWzaw8PDNXHiRA0ePNjhPh0uEN955x1duHBBzz77rJ599lmVKlVKly5dkmEY6tWrl2bMmOFwEgAAAAAAx1y5ckVmsznfZWazWZcvX3a4T4cLRH9/f6Wmpmrnzp3avHmzjh49quDgYLVq1Ur169d3OAEAAAAAgOPuv/9+TZw4UVFRUSpXrpy1/ezZs5owYYLuv/9+h/s0GbeaWbGYsVgsV0+JHSMF5F9oO5WpRcETUTpLWvdEl8SJcUmUqxa7MFaM696qYvm5kFz32XDl56K46p7mus+gscV1n0G5MJTLuPDYtNiFr58rP4MuPQ7ePX9SAR7D+ve/pIDCbC8pUFfnGwwIKEwPRWv79u164IEHdOnSJXXq1EmVK1fW8ePHtXz5cpUqVUpr165Vo0aNHOrTrhHErVu3qn79+vL19dXWrVsLXL958+YOJQEAAAAAcEzDhg31008/afr06Vq3bp22b9+u8uXLKy4uTiNGjFDVqlUd7tOuArFly5bauHGjWrdurZYtW8pkMuW7nmEYMplMunLlisOJAAAAAAAcU7VqVf397393Wn92FYirVq1SgwYNrP8GAAAAABQ/dhWIUVFR+f4bAAAAAOAeYWFhKuiWMvv373eoT7sKxMuXL6tkSYdveFro7QAAAAAAtxYTE2NTIBqGoePHj2v16tUqWbKkHn30UYf7tKt6q1mzpl544QU9+eSTCgoKKnD99evXa9q0aYqIiNCrr77qcFIAAAAAgFubPn16vu1ZWVl66KGHVL16dYf79LJnpVmzZumjjz5ScHCwHnzwQSUkJOj//u//tG7dOn377bf6+uuv9e6772rw4MGqUaOGOnfurBo1aiguLs7hhG7lo48+UrNmzeTj46MKFSqoa9euunjxolNjAAAAAIAn8/Hx0ahRo/TOO+84vK1dI4jdunVTt27dtGrVKn388ceaPXu2Dh8+LEkymUwyDEPe3t5q0aKFRowYoSeffFIVKlRwOJlbmThxot588029/PLLioyM1KlTp7Ry5UrumAoAAAAAf1CiRAkdOnRIOTk58vb2tns7hy4QjI6OVnR0tCTp2LFjOnr0qLKyslS+fHmFhobKbC6a2ed/+eUXJSQkKC0tTV27drW2F+acWgAAAAAo7jp16qQTJ06oVKlSDm1X6DvIVKlSRVWqVCns5g6ZM2eOatasaVMcAgAAAADyZzabCzWAZ9c1iO62ceNGNW7cWBMmTFClSpXk7e2t++67T5s2bXJ3agAAAABQbHjEHBTHjh3Tli1btG3bNs2cOVOlS5fWG2+8oc6dO2vPnj2qVKlSvttlZ2crOzvb+txisbgqZQAAAADwOB4xgpibm6vMzEylpqaqd+/e+tOf/qS0tDQZhqEZM2bcdLukpCQFBgZaHyEhIS7MGgAAAAA8i0cUiOXKlVNQUJCaNGlibStfvryaNWum7du333S7sWPHKiMjw/pIT093RboAAAAAUOROnjypbdu23dB++vTpQvfpcIG4du1aZWZm5rssMzNTa9euLXQyN9OwYcObLsvKyrrpMrPZrICAAJsHAAAAABQHo0eP1gsvvGB9vnfvXtWsWVMVK1ZUWFiYduzY4XCfDheI0dHRNw30yy+/WKfBcKaHH35Yp0+f1g8//GBtO336tLZu3aoWLVo4PR4AAAAA3Ok2bNigfv36WZ+/8sorKlOmjBYvXqzg4GCNHj3a4T4dvkmNYRg3XXb+/Hn5+vo6nERBevbsqVatWql3796aOHGifH19lZSUJLPZrCFDhjg9HgAAAADc6Q4fPqxatWpJkq5cuaJly5ZpxowZ6tatm3Jzc/XMM8843KddBeLGjRu1YcMG6/N58+Zp/fr1NutkZWXp888/V/369R1OoiBeXl5aunSpRo4cqeeee045OTlq166d1q5d67K5GAEAAADgThIYGKhz585JujqamJmZqY4dO0qSAgICdPHiRYf7tKtA/Oqrr5SYmChJMplMevvtt29Yp1SpUqpfv75mzpzpcBL2qFChgubOnVskfQMAAACAp3nggQeUnJyskiVLKjk5WS1atFDVqlUlXb0esTCzONh1DWJ8fLxyc3OVm5srwzD0zTffWJ/nPbKzs/XDDz/o3nvvdTgJAAAAAIBj3njjDZ06dUo9evTQ9u3bNXXqVOuyQ4cO6c9//rPDfTp8DWJubq7DQQAAAAAAzlWrVi3t2bNHv/76q+655x6VLl3auiw+Pr5QfTp8F9OUlBRNmjQp32WTJ0/WggULCpUIAAAAAMAxJpNJtWvXtikOJWnfvn1Fd5Oa6yUlJenZZ5/Nd5mvr6+Sk5PVp08fhxMBAAAAANjv999/1+zZs7Vz507l5OTYLDt58qSWLl1qfd6zZ0/16NGjwD4dLhD37NmjRo0a5busQYMG2r17t6NdAgAAAAAcFBcXpwULFig0NFQ+Pj42yy5evCiTyaQtW7ZIklq3bm1Xnw4XiD4+Pjp+/Hi+y44ePaqSJR3uEgAAAADgoOXLl+vjjz9W//79b1i2efNmtWnTRj/99JNDfTp8DWJUVJSSk5N1/vx5m/bz58/r73//u9q3b+9olwAAAAAAB50+fVp16tTJd5lhGIXq0+HhvjfeeEORkZGqVauWevfurXvuuUdHjhxRamqqcnJyNH/+/EIlUhwZ3RNdFsuUVri7FDkqzYX71N1F+yS5dr/S5LpYMa57CWVqUfw+g658/Ra7brdcemxSIX+cCiXBdaGKo5gE18Vy4adCMhJcGQ3AnWqMJJ8C17pRlqRkqVWrVipRooSGDh2qoUOHOjm5wnv66adVoUKFfJdVrFhRAwcOdLhPhwvEevXqafPmzYqPj9fChQt1+vRpBQUF6cEHH1R8fLxq167tcBIAAAAAcKfavHmzAgIC3J3GDT744APrv3Nzc3Xy5ElVrFhRXl5eqlmzps1yezl8iqkk1a5dW//5z3909OhR5eTk6OjRo5o7dy7FIQAAAAC40OLFi9W2bVv5+PgoODhYPj4+ioyM1JIlSwrVX6EKxDzp6enasGHDDdcjAgAAAACK1nvvvacePXrIx8dHkyZN0n/+8x9NmjRJPj4+6t69u9577z2H+yxUgfivf/1LVatWVY0aNdSuXTv98ssvkqRevXpp+vTphekSAAAAAOCAiRMnauDAgVq9erWef/55DRgwQM8//7xWrVqlZ599Vm+88YbDfTpcIE6bNk3Dhg3TU089pa+//trm7jjt27fXggULHE4CAAAAAOCYkydP5jvFhST169dPJ06ccLhPhwvEf/zjH3rttdeUlJSk6Ohom2V169a1jiYCAAAAAIpO27ZttWXLlnyXbdmyRffee6/DfTp8F9PDhw/fNFCpUqWUmZnpcBIFad++vdasWZPvsk8++eSmVTMAAAAAFFdvvvmm+vbtq4sXL6pPnz6qXLmyjh8/rtTUVM2dO1cLFixQRkaGdf3AwMAC+3S4QKxRo4a+/fZbdejQ4YZlmzZtUnh4uKNdFmjmzJmyWCw2bdOmTdPChQvVqVMnp8cDAAAAgDtdmzZtJF29FnHChAnWdpPJJOnq/I3Xy83NLbBPhwvE2NhYJSQkqGLFinrkkUckSZcuXdIXX3yhSZMmaeLEiY52WaAGDRrc0Pbtt9+qc+fON50YEgAAAACKszlz5ji9T4cLxNGjR+u3337T4MGD9dxzz0mS7rvvPknSkCFDNGTIEOdmmI8NGzZo//79NlUyAAAAANxNnnrqKaf36XCBKElvv/22RowYoeXLl+v06dMqX768OnbsqDp16jg7v3zNmzdPfn5+6tGjh0viAQAAAMDdoFAFoiSFhYVZRxBd6fLly/r000/VvXt3+fn53XLd7OxsZWdnW5//8TpGAAAAAMD/Z1eBuHXrVtWvX1++vr7aunXrLdc1mUwqX768QkJC5OXl8CwaBVq+fLlOnjypxx57rMB1k5KSlJiY6PQcAAAAAKA4sqtAbNmypTZu3KjWrVurZcuW1rvi3EqVKlX08ccfq2PHjred5PXmzZunoKAgdenSpcB1x44dq1GjRlmfWywWhYSEODUfAAAAACgu7CoQV61aZb2T6KpVqwpc32Kx6N1339Xw4cO1ffv228vwOhcvXtRnn32mJ554QqVKlSpwfbPZLLPZ7LT4AAAAAFCc2VUgRkVF5fvvWwkKCnL6TWTS0tKUmZlp1+mlAAAAAHC3yM7O1pkzZ+Tj46Ny5coVup9C36Rm9+7d+vbbb3X06FEFBwerVatWqlu3rnX5vffeq5MnTxY6sfzMmzdP1atX1/333+/UfgEAAADAk1y+fFmLFy9Wamqq/ve//+m3336zLjObzWrZsqU6duyop556SmFhYXb363CBmJmZqcGDB+vTTz9Vbm6ufHx8lJWVJS8vL/Xp00fvvfeeypQp42i3BTp79qy+/PJLjRgxwq5rIAEAAACguMnJydGsWbP05ptv6ty5c7rvvvs0YMAA1axZU2XLllV2drZOnjypn376SfPmzdP48eMVExOj8ePHq3HjxgX273CBOGzYMC1ZskTvvfeeevfuLX9/f/3+++9asGCBRowYoWHDhmnOnDmF2tlbKVeunM2UFQAAAABwt5k0aZI+++wzvfnmm+rVq1eBU//99NNP+uCDD3TffffZNe2fw/NQLFy4UG+++aaeeeYZ+fv7S5L8/f317LPPKjk5Wf/3f//naJcAAAAAADv85S9/0ebNm/XEE08UWBxKUpMmTTRt2jTt37/frv4dLhB9fHxUs2bNfJeFhYXZdXdRAAAAAIDjypcvX6jtgoKC7FrP4VNMn3nmGf3zn/9Uly5dbK4FNAxDM2fO1DPPPONolwAAAACAQvryyy9tbiDaunVrPfTQQ4Xqy64CcerUqdZ/BwUFacuWLapTp45iYmJUqVIlnThxQosXL1Z2drbatWtXqEQAAAAAAPY7cuSIunfvru+//16BgYGqWLGiTp48qYyMDDVv3lxpaWkKDg52qE+7CsTRo0fn2z59+vQb2saMGaMXX3zRoSQAAAAAAI6Ji4vT0aNHtXLlSrVv397avmbNGj322GN67rnnlJaW5lCfdhWIubm5DnUKAAAAAChaK1eu1KxZs2yKQ0mKiorSm2++qeeee87hPh2+SQ0AAAAAwP3KlSunwMDAfJcFBgYW6oY2Dt+kZu3atQWu88ADDziciEsluyhOvIviSErrnuiSON3TXLdThov2SZIWuyySFOPCz8Vi172EkmNnLxRajGvCSHLt61dcPxeufL8AALjbDBs2TMnJyYqKirIpFC0Wi5KSkjR8+HCH+3S4QGzfvr1MJpMMw7C2XX83U0m6cuWKw4kAAAAAAOx3/PhxHTp0SNWrV1enTp1UuXJlHT9+XCtWrFBAQICOHDmikSNHSro668S0adMK7NPhAvH777+/oe3s2bP66quvtHDhQr377ruOdgkAAAAAcNBnn32mkiVLKigoyKZOy5vz8PPPP7e2FVmB2LRp03zb27dvr9KlS+vdd99VdHS0o90CAAAAABywb98+p/fp1JvU3HvvvVq6dKkzuwQAAAAAuIjDI4i38tlnnxXqTjkAAAAAAMedOXNGU6dO1YoVK3TmzBlVqFBBDz74oEaOHKmyZcs63J/DBWL37t1vaMvJydEvv/yi3377TX//+98dTgIAAAAA4JgTJ06obdu2MgxDDRo00ObNm9W4cWP94x//0EcffaT//e9/qlq1qkN9OnyKqcVi0e+//27zMJlM6tSpk5YuXaoXXnjB0S7tkpaWpjZt2sjf31/BwcHq27dvkZxzCwAAAACFsWDBAvXo0UPVqlWTn5+fIiIi9MEHH9jMACFJs2fPVnh4uHx8fNS0aVMtWbKkUPFeffVVBQUFaceOHZowYYIMw9Cnn36qPXv2KCAgQC+99JLDfTo8grh69WqHg9yu1atXq1evXnrqqac0ceJEnT59WuPGjVPnzp21bds2+fr6ujwnAAAAALje1KlTFRoaqilTpqhixYpavny5YmNjlZ6ervj4q5Mez58/X7GxsXrllVfUoUMHpaSkqFevXlq3bp3atm3rULylS5cqOTlZvr6+NkVoUFCQXn31VQ0dOtThfXDKNYgXLlzQkSNHVKtWrRvmRHSG+fPnq0aNGvrggw+s/VeqVEkdOnTQd999p3bt2jk9JgAAAAA4YvHixapQoYL1eYcOHXT69GlNnTpVr732mry8vBQfH6/+/ftr/PjxkqTo6Gj99NNPev311x2+4efp06dVvXr1fJcFBATo/PnzDu+Dw6eYTp48WYmJidbn69atU9WqVVW3bl3VqVNHv/76q8NJFOTSpUvy9/e3KT4DAwMl6YbhWgAAAABwh+uLwzzNmjWTxWLR+fPntW/fPu3evVt9+/a1Wad///5auXKlsrOzHYpXqVIlnTx50qbNMAxdunRJb7/9tlq1auXwPjhcIL7//vuqVq2a9fmoUaPUsGFDff7556pQoYJefvllh5MoyMCBA7Vjxw7NnDlTGRkZ2rdvn15++WU1a9ZM9913n9PjAQAAAIAzrF+/XlWrVpW/v7927dolSapXr57NOvXr11dOTo7279/vUN9t27bVpk2brM9NJpMGDRqkOnXq6JtvvtFbb73lcL4On2Kanp6u2rVrS5IOHz6sLVu2aM2aNWrXrp0uX76sv/zlLw4nUZB27dpp0aJFeuyxx6zn0UZEROjLL79UiRIlbrpddna2TRVusVicnhsAAACA4u2PdYTZbJbZbC5wu/Xr12v+/PmaMmWKJOns2bOSdMP0E+XKlZN0dcoKR4wcOdJaIJrNZtWuXVuHDh1S//79NXr06HxHNAvi8Aiir6+v9QVauXKlypQpo3vvvVfS1R3NyMhwOImCbNiwQU8++aRiY2P13//+VwsWLFBubq66deumixcv3nS7pKQkBQYGWh8hISFOzw0AAABA8RYSEmJTVyQlJRW4zaFDh9SvXz9FR0dr+PDhRZJX27Zt9fzzz0uSGjZsqF9++UUrV65UcnJyoYpDqRAjiK1bt1ZycrK8vLw0adIkde3a1TqK9+uvvzo8z4Y9hg8frg4dOlgrb+nqi1G9enXNnTtXgwcPzne7sWPHatSoUdbnFouFIhEAAACAQ9LT0xUQEGB9XtDo4blz59S1a1cFBQVp4cKF8vK6Oi6XN1KYkZGhKlWqWNfPG1ksX758ofI7c+aMfv75Zx09elRVqlRRkyZNrLEcVaib1Bw9elQxMTHKzMzUxIkTrctSUlKso4nOtGPHDkVERNi0VatWTRUqVLjlTXHMZrMCAgJsHgAAAADgiD/WFLcqEC9evKiHH35YGRkZWrZsmfXmmtL/v/Yw71rEPLt27ZK3t7fCwsIKzGXr1q1au3atJOny5ct64YUXVK1aNUVHR+uxxx5Thw4dVLVqVY0aNUqXLl1yeF8dHkFs0KCB9u3bp9OnTysoKMhm2ZQpU2wqYWepUaOGtm7datN28OBBnTp1SqGhoU6PBwAAAACOunz5svr27audO3daZ3u4XlhYmMLDw7VgwQL16NHD2p6SkqKOHTvK29u7wBjDhg3Tww8/rAceeEAvvPCC3n33Xb366qvq0aOHKlasqJMnT2rx4sUaP368Ll++rLffftuhfSj0PIh/LA4lqXHjxoXt7pbi4uI0YsQIPf/884qJidHp06c1YcIEVapU6YZbxAIAAACAOwwZMkRLlizRlClTZLFYtHHjRuuyZs2ayWw2KyEhQY8//rhq1aql6OhopaSkaNOmTdZRwYLs2LFD8fHxkqR///vfGj9+vF588UXr8ipVqqhx48by9vZWUlKS6wpEVxo+fLjMZrP++c9/avbs2fL391dkZKQWLFiQb6EKAAAAAK729ddfS5JeeOGFG5bt379foaGhGjBggC5cuKDk5GQlJyerbt26WrRokSIjI+2KcfHiRV25ckWSlJube8OleHmaNm2q3Nxch/fBIwpEk8mkuLg4xcXFuTsVAAAAAMjXgQMH7Fpv0KBBGjRoUKFi1KxZU0uWLFHXrl31yCOPaMGCBXrwwQdvWC81NVX9+/d3uH+PKBABAAAAAFdPYx05cqQsFosiIyOVnJysjh07qlevXqpUqZJOnDihzz//XLt377ZrOo4/okAEAAAAAA8xbNgwSdK0adM0b948SdLhw4e1evXqG9Z94okn9NhjjznUPwUiAAAAAHiQYcOGadiwYfr999+VkZFRqGsNb4YCEQAAAAA8kL+/v/z9/Z3ap5dTewMAAAAAFJnDhw/LMAyHtzt48KBd61EgAgAAAICHmDt3rurVq6d33nlHJ0+evOW6hmFo3bp1euaZZ9SwYUO7+ucUUwAAAADwEGPGjFFISIgSExM1YsQItWjRQi1btlRoaKjKli2r7OxsnTp1Sj/++KM2btyoM2fOqH///tqxY4dd/ZuMwoxPeiiLxaLAwEBp/hiptLnI4xlbEos8Rp7FrgvlMjEujGVKi3dZrLTuxfDNkgvfL9e9VS7lyu9w92L6eXflMWOxi+IU2/fKld9jVx5y754/qQCPkff3f8YYKcCnENtnSYHJUkZGhgICApyf4G1as2aNFixYoHXr1mn37t3KycmRJFWoUEFt2rTRgw8+qMcee0xBQUF298kIIgAAAAB4oKioKEVFRVmfnz9/Xj4+PipRokSh+6RABAAAAIBiwM/P77b74CY1AAAAAABJFIgAAAAAgGsoEAEAAAAAkigQAQAAAADXeEyBuGTJEjVv3lxms1khISGKj4/XlStX3J0WAAAAABQbHlEgbty4UT169FCDBg2UlpamkSNHatKkSXrppZfcnRoAAAAAFBseMc1FQkKCIiIi9O9//1uS1KVLFxmGobFjx+rFF19U5cqV3ZwhAAAAAHg+jxhB/P7779W5c2ebti5duujSpUv66quv3JQVAAAAABQvHlEgZmVlyWw227TlPd+5c6c7UgIAAACAYscjTjGtU6eOvv32W5u2jRs3SpLOnDlz0+2ys7OVnZ1tfW6xWIomQQAAAAAoBjxiBHHIkCFatmyZpk+frjNnzmj9+vV65ZVXVKJECZlMpptul5SUpMDAQOsjJCTEhVkDAAAAgGfxiAJx4MCBGjFihEaPHq2goCB17NhRcXFxKl++vIKDg2+63dixY5WRkWF9pKenuzBrAAAAAPAsHlEgenl56a233tKpU6f0448/6vjx44qNjdXJkyfVtm3bm25nNpsVEBBg8wAAAAAA5M8jCsQ8gYGBatKkicqWLat//OMfqlmzpjp16uTutAAAAACgWPCIm9R8++23WrNmjSIiInTx4kWlpaVp7ty5WrZsmUqUKOHu9AAAAACgWPCIAtHb21sLFy7U66+/Lklq06aNVq9ercjISDdnBgAAAADFh0cUiBEREdZpLQAAAAAARcOjrkEEAAAAABQdCkQAAAAAgCQKRAAAAADANRSIAAAAAABJFIgAAAAAgGsoEAEAAAAAkiSTYRiGu5NwFYvFosDAQM2XVNoF8WJcECOPKS3eJXGMLYkuiSNJi10XyqViXPNWSZJMLVwXLK27a94wV36vxHvlUVz62bh7fjoBwKPl/f2vlDFSaR/HO7iQJfVLVnh4uEqUKKGhQ4dq6NChzk/0DuIR8yACAAAAgLts3rxZAQEB7k7DJTjFFAAAAAAgiQIRAAAAAHANBSIAAAAAQBIFIgAAAADgGgpEAAAAAIAkCkQAAAAAwDVuLxD37t2ruLg4RUREqGTJkmrUqFG+682ePVvh4eHy8fFR06ZNtWTJEhdnCgAAAADFm9sLxO3bt+uLL75Q7dq11aBBg3zXmT9/vmJjY9WvXz8tW7ZMkZGR6tWrlzZu3OjibAEAAACg+HJ7gRgTE6P09HSlpqaqefPm+a4THx+v/v37a/z48YqOjtasWbPUqlUrvf766y7OFgAAAACKL7cXiF5et05h37592r17t/r27WvT3r9/f61cuVLZ2dlFmR4AAAAA3DXcXiAWZNeuXZKkevXq2bTXr19fOTk52r9/vzvSAgAAAIBip6S7EyjI2bNnJUlly5a1aS9Xrpwk6cyZMzfdNjs722aE0WKxOD9BAAAAACgm7vgRxNuRlJSkwMBA6yMkJMTdKQEAAADAHeuOLxDzRgozMjJs2vNGFsuXL3/TbceOHauMjAzrIz09vegSBQAAAAAPd8efYpp37eGuXbtUt25da/uuXbvk7e2tsLCwm25rNptlNpuLPEcAAAAAKA7u+BHEsLAwhYeHa8GCBTbtKSkp6tixo7y9vd2UGQAAAAAUL24fQbxw4YKWLl0qSTp48KAsFotSU1MlSVFRUapYsaISEhL0+OOPq1atWoqOjlZKSoo2bdqktWvXujN1AAAAAChW3F4gnjhxQn369LFpy3u+atUqtW/fXgMGDNCFCxeUnJys5ORk1a1bV4sWLVJkZKQ7UgYAAACAYsntBWJoaKgMwyhwvUGDBmnQoEEuyAgAAAAA7k53/DWIAAAAAADXoEAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALiGAhEAAAAAIOkOmObCHfrPHyOVNhd5nLTuiUUeI4+xxUWxXLdLxZcLX8M0Fwbrnhbvkjgu+6xLvFdO4MrjoFy3WwAAFFuMIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALiGAhEAAAAAIOkOKBD37t2ruLg4RUREqGTJkmrUqNEN66SkpOjRRx9VtWrVZDKZNHnyZDdkCgAAAAC3Zk99I0mzZ89WeHi4fHx81LRpUy1ZssTFmebP7QXi9u3b9cUXX6h27dpq0KBBvuukpqZq3759evjhh12cHQAAAADYz576Zv78+YqNjVW/fv20bNkyRUZGqlevXtq4caOLs72R2wvEmJgYpaenKzU1Vc2bN893nZSUFH3//feaNWuWi7MDAAAAAPvZU9/Ex8erf//+Gj9+vKKjozVr1iy1atVKr7/+uouzvZHbC0Qvr4JTsGcdAAAAAHC3gmqXffv2affu3erbt69Ne//+/bVy5UplZ2cXZXoFovICAAAAABfZtWuXJKlevXo27fXr11dOTo7279/vjrSsSro1ehHLzs62qcAtFosbswEAAADgif5YR5jNZpnN5kL1dfbsWUlS2bJlbdrLlSsnSTpz5kyh+nWWYj2CmJSUpMDAQOsjJCTE3SkBAAAA8DAhISE2dUVSUpK7UyoyxXoEcezYsRo1apT1ucVioUgEAAAA4JD09HQFBARYnxd29FD6/yOFGRkZqlKlirU9b2SxfPnyhe7bGYp1gXg7Q78AAAAAIEkBAQE2BeLtyLv2cNeuXapbt661fdeuXfL29lZYWJhT4hRWsT7FFAAAAADuJGFhYQoPD9eCBQts2lNSUtSxY0d5e3u7KbOr3D6CeOHCBS1dulSSdPDgQVksFqWmpkqSoqKiVLFiRe3YsUM7duywbrNt2zalpqbKz89PXbt2dUveAAAAAPBH9tQ3CQkJevzxx1WrVi1FR0crJSVFmzZt0tq1a92ZuqQ7oEA8ceKE+vTpY9OW93zVqlVq3769Pv30UyUmJlqXf/zxx/r4449Vo0YNHThwwJXpAgAAAMBN2VPfDBgwQBcuXFBycrKSk5NVt25dLVq0SJGRke5I2YbbC8TQ0FAZhnHLdRISEpSQkOCahAAAAACgkOypbyRp0KBBGjRokAsycgzXIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAAAACQRIEIAAAAALjG7dNcuEPGD8kKMBd9HFNafNEHuSate2LBK3mYGFcGc91bpcXF762SJBku+gy69Hsl171Z3V24X8aW4vkhdOV3KybBdbEAAHAlRhABAAAAAJIoEAEAAAAA11AgAgAAAAAkUSACAAAAAK6hQAQAAAAASKJABAAAAABc4/YCce/evYqLi1NERIRKliypRo0a2Sy3WCxKSEhQ69atVbZsWVWuXFkxMTHatm2bmzIGAAAAgOLJ7QXi9u3b9cUXX6h27dpq0KDBDct/++03vfvuu+rcubM+/fRTvffee8rIyFDbtm21c+dON2QMAAAAAMVTSXcnEBMTox49ekiSBg4cqO+++85mec2aNfXrr7+qdOnS1rYOHTqoRo0amjlzpv7xj3+4NF8AAAAAKK7cXiB6ed16ENPPz++GtjJlyqh27do6cuRIUaUFAAAAAHcdt59iWhjnzp3Tzz//rPr167s7FQAAAAAoNtw+glgYf/vb32QymRQXF3fL9bKzs5WdnW19brFYijo1AAAAAPBYHjeCOGfOHL333nt65513VK1atVuum5SUpMDAQOsjJCTERVkCAAAAgOfxqAJx2bJlGjx4sF577TU9/fTTBa4/duxYZWRkWB/p6ekuyBIAAAAAPJPHnGK6ceNG9e7dW08//bRef/11u7Yxm80ym81FnBkAAAAAFA8eMYK4Y8cOdevWTR06dNCsWbPcnQ4AAAAAFEtuH0G8cOGCli5dKkk6ePCgLBaLUlNTJUlRUVEyDENdunSRr6+vRo4caTNPYkBAgBo0aOCWvAEAAACguHF7gXjixAn16dPHpi3v+apVqyRJhw4dkiR17NjRZr2oqCitXr266JMEAAAAgLuA2wvE0NBQGYZxy3UKWg4AAAAAuH0ecQ0iAAAAAKDoUSACAAAAACRRIAIAAAAArqFABAAAAABIokAEAAAAAFxDgQgAAAAAkHQHTHPhSnnTZViyXRTwgqsCSRdcFsl1LK4M5rq3qli+V5IL36/i+r1y4X657BjoYq58vywWlx6hAHgwf39/mUwmd6eBwv7OuvD3+U5hMu6iSQYPHTqkkJAQd6cBAACAu0RGRoYCAgLcncZdKysrSzVr1tSxY8cK3UdAQICCg4Pl5eWloUOHaujQoU7M8M5zVxWIubm5OnLkyB37PzkWi0UhISFKT08v8gOJq2IVx30ilufEIZZnxSqO+0Qsz4pVHPeJWO6Pc6f+3Xk3ycrKUk5OTqG39/b2lo+PjxMzurPdVaeYenl5qVq1au5Oo0ABAQEu+58mV8UqjvtELM+JQyzPilUc94lYnhWrOO4TsTwnDpzPx8fnrirwbhc3qQEAAAAASKJABAAAAABcQ4F4BzGbzYqPj5fZbC42sYrjPhHLc+IQy7NiFcd9IpZnxSqO+0Qsz4kD3CnuqpvUAAAAAABujhFEAAAAAIAkCkQAAAAAwDUUiHeAvXv3Ki4uThERESpZsqQaNWpUJHEWLFigHj16qFq1avLz81NERIQ++OADFcVZxkuXLlVUVJQqVqwos9mssLAwjRo1ShkZGU6Pdb3MzExVq1ZNJpNJ3333nVP7/vDDD2UymW54jBkzxqlxrvfRRx+pWbNm8vHxUYUKFdS1a1ddvHjRqTHat2+f736ZTCbNnz/fqbEkKS0tTW3atJG/v7+Cg4PVt29f7du3z+lxlixZoubNm8tsNiskJETx8fG6cuXKbfdr7/d19uzZCg8Pl4+Pj5o2baolS5YUSayUlBQ9+uij1s/95MmTHY5jTyyLxaKEhAS1bt1aZcuWVeXKlRUTE6Nt27Y5fZ9Gjx6thg0byt/fXwEBAWrVqlWhPouOHls/++wzmUymQh2D7Yl1s+/arl27nB5Lks6dO6fhw4frnnvukY+Pj2rVqqUpU6Y4NdaBAwduevxw9Jby9uzXhQsXNHbsWIWFhal06dIKDw/XG2+8ocuXLzs1Tk5Ojl566SXdc8898vX1VevWrbVy5UqH9key/3f3do8X9sRx1rGioFjOOlbYu1/OOl44+jfS7RwvgDvdXTUP4p1q+/bt+uKLL9SmTRvl5uYqNze3SOJMnTpVoaGhmjJliipWrKjly5crNjZW6enpio+Pd2qsM2fOqE2bNho+fLiCgoL0888/KyEhQT///LO+/vprp8a63vjx4x36Q6EwvvzySwUGBlqfV61atUjiTJw4UW+++aZefvllRUZG6tSpU1q5cqVTipzrzZw5UxaLxaZt2rRpWrhwoTp16uTUWKtXr1avXr301FNPaeLEiTp9+rTGjRunzp07a9u2bfL19XVKnI0bN6pHjx4aMGCAkpKStH37dr366qs6f/58of8oymPP93X+/PmKjY3VK6+8og4dOiglJUW9evXSunXr1LZtW6fGSk1N1b59+/Twww/r3XffLbL9+u233/Tuu+9q0KBBmjBhgrKysjR58mS1bdtW3333nerXr++0fcrMzFRsbKzq1asnk8mk1NRUDRgwQLm5uXrsscectk/Xu3jxokaOHKnKlSvb3X9hYt133303fAZDQ0OdHuv8+fNq3769SpYsqbfeekuVK1fW7t27b/iu326s4OBgffPNNzZthmHooYceUocOHZy+X3/961+1cOFCvfHGG2rQoIG++eYbjRs3TufPn9fEiROdFmfEiBH6+OOPNXHiRNWtW1dz5szRn/70J33zzTdq3ry53ftkz++uM44X9sRx1rGioFjOOlbYu1/OOl448jfS7R4vgDueAbe7cuWK9d9PP/200bBhwyKJc/LkyRvaYmNjjYCAAJscisq//vUvQ5Jx+PDhIul/586dhp+fnzFr1ixDkrF582an9j9nzhxDUr6vo7Pt2rXLKFmypLF06dIij5WfmjVrGn/605+c3u9zzz1n1KxZ08jNzbW2/fe//zUkGWvXrnVanC5duhjNmze3aZs8ebJRqlQp49ixY7fVtz3f1/DwcGPAgAE2bZGRkUbXrl2dHuv6dSQZkyZNciiGvbEyMzON8+fP27T9/vvvRvny5Y2//vWvTotzM/fee6/x4IMP2h3H0Vivvfaa8cADDxT6GGxPrKioKKNbt24O912YWK+++qoRFhZmZGZmFnmsP1q1apUhyfj000+dGuvKlStG6dKljfj4eJv2p556yggLC3NanEOHDhklSpQw3n77bWtbbm6u0bhxY6N79+52xzEM+353nXG8sCeOs44VBcVy1rHCnlg3U5jjhSOxbvd4AdzpOMX0DuDl5Zq3oUKFCje0NWvWTBaLRefPny/y+EFBQZKunrpTFIYNG6a4uDjVrVu3SPp3pTlz5qhmzZrq2rWry2Nv2LBB+/fv1+OPP+70vi9duiR/f3+ZTCZrW95orOHEU52///57de7c2aatS5cuunTpkr766qvb6rug7+u+ffu0e/du9e3b16a9f//+WrlypbKzs50Wy951nBHLz89PpUuXtmkrU6aMateurSNHjjgtzs0EBQU5fOywN9avv/6qKVOm6O233y5Mag7FcgZ7Yr3//vt69tln5efnV+Sx/mjevHkKCAhQTEyMU2MZhqHLly/bnMEhXT2GOHL8KCjOTz/9pCtXrtgcQ0wmkzp37qyvvvrKoc9hQb+7zjpe2PP77qzPaEGxnHWssCfWzRTmeGFvLGccL4A7HQXiXW79+vWqWrWq/P39i6T/K1euKCsrS1u3btXrr7+u7t27O3w6lT1SU1O1bds2jRs3zul9/1HDhg1VokQJhYWFKSkpyemnfEpXT5Fs3LixJkyYoEqVKsnb21v33XefNm3a5PRYfzRv3jz5+fmpR48eTu974MCB2rFjh2bOnKmMjAzt27dPL7/8spo1a6b77rvPaXGysrJumK8q7/nOnTudFic/edeT1atXz6a9fv36ysnJ0f79+4s0viudO3dOP//8s0OnjNkrrxg4d+6c5s6dq6+//lp//etfnR5Hkp5//nk99dRTatq0aZH0f701a9bIz89PPj4+ioqK0tq1a50e48CBAzp27JgqVKig7t27y2w2q3z58oqNjVVmZqbT413v0qVLWrhwoXr16uXwNYgFKVGihAYOHKgZM2Zo8+bNyszM1IoVKzR37lynfjaysrIkKd9jSHZ29m1/h6//3S3K40VR/747EsuZx4r8YhXV8SK/WK48XgDuwjWId7H169dr/vz5Dt+0wBE1atTQ4cOHJUkPPfSQ5s2b5/QYFy5c0KhRo/TGG28oICDA6f3nCQ4OVmJiotq0aSOTyaS0tDS9+uqrOnz4sGbMmOHUWMeOHdOWLVu0bds2zZw5U6VLl9Ybb7yhzp07a8+ePapUqZJT4+W5fPmyPv30U3Xv3v22Rx7y065dOy1atEiPPfaYhg4dKkmKiIjQl19+qRIlSjgtTp06dfTtt9/atG3cuFHS1etji9LZs2clSWXLlrVpL1eunEviu9Lf/vY3mUwmxcXFOb3vlStX6sEHH5QklSxZUjNmzFDv3r2dHmfx4sXasGGDdu/e7fS+/ygqKkpPPfWU6tSpoyNHjmjy5Mnq1KmT1qxZo8jISKfFOXbsmKSrN+945JFHtHTpUu3Zs0djxoxRZmamPvnkE6fF+qNly5bpzJkzDl375YiZM2cqLi5OrVu3traNHTtWo0aNclqMOnXqSJK+/fZbm//QdMYx5I+/u0V1vHDF77sjsZx1rLhZrKI4XuQXy5XHC8CdKBDvUocOHVK/fv0UHR2t4cOHF1mcpUuX6vz589q+fbsmTJigmJgYLV++3KnFwIQJE1S5cmU988wzTuszP126dFGXLl2szzt37ixfX1+99dZbeuWVVxQcHOy0WLm5ucrMzFRqaqqaNGkiSWrbtq1CQ0M1Y8YMvf76606Ldb3ly5fr5MmTRfbH3YYNG/Tkk08qNjZWDz/8sE6fPq3x48erW7duWrdundNuUjNkyBANGjRI06dP15NPPqkdO3bolVdeUYkSJWxOb0XhzZkzR++9954+/PBDVatWzen9t2nTRps3b1ZGRoa+/PJLDRs2TCVLltSgQYOcFiMrK0sjRoxQYmJivqeXOVtiYqLN84cfflgNGzbU+PHjtXTpUqfFybvpSnh4uD766CNJUseOHVWyZEnFxsZq4sSJCgsLc1q86/3nP/9R5cqV1bFjxyLpf8yYMfriiy/0/vvvq06dOtq4caMSExNVrlw5vfjii06J0ahRI7Vr104vvfSSQkJCFB4erjlz5mjNmjWSVOhjiKt+d10Vx95YzjpW3CqWs48X+cVy9fECcCcKxLvQuXPn1LVrVwUFBWnhwoVFeu1MXnETGRmpVq1aKSIiQosWLXLaSMDBgwc1ZcoULVq0yDqFRt4pVJmZmcrMzFSZMmWcEis/ffv21eTJk/XDDz84tUAsV66cgoKCrK+fJJUvX17NmjXT9u3bnRbnj+bNm6egoCCbQtiZhg8frg4dOtj8j2zbtm1VvXp1zZ07V4MHD3ZKnIEDB2rbtm0aPXq0RowYIW9vb8XHx2vatGlOfZ/yk/c//xkZGapSpYq1PW+koHz58kUa3xWWLVumwYMH67XXXtPTTz9dJDH8/f3VsmVLSVeLm8uXL2vUqFEaOHCg0/6Dadq0afLy8tKAAQN07tw5SVevkc7NzdW5c+dUunRpeXt7OyVWfvz8/NStWzelpqY6td+8z2B0dLRNe17Rtn379iIpEDMzM7V48WLFxsY69T8B8/z888+aPHmy0tLSrNc3PvDAA7p06ZJee+01xcXFOe10yo8++kh9+/bVvffeK+nq2TDjxo1TfHx8oY4hN/vddfbxwpW/7/bEctaxoqBYzjxe3CyWu48XgCtxDeJd5uLFi3r44YeVkZGhZcuW3XCxf1Fq0qSJSpUqpb179zqtz/379ysnJ0fdunVTuXLlVK5cOesfDtHR0U6fpsFVGjZseNNledfHONvFixf12WefqU+fPipVqlSRxNixY4ciIiJs2qpVq6YKFSro119/dVocLy8vvfXWWzp16pR+/PFHHT9+XLGxsTp58qRD00wURt61RH+c227Xrl3y9vYuspEbV9m4caN69+6tp59+ushGsvPTokULWSwWnTx50ml97tq1S3v37lXFihWtx49PPvlEO3fuVLly5fTBBx84LZYr1apV64br565XVMeQRYsW6eLFi0V2BsKOHTsk6YZjSLNmzZSdna1Dhw45LVbNmjW1efNm7d+/X9u3b9evv/4qX19fBQcHq0aNGg71davfXWceL1z5+25PLGcdKwqzX4U9XtwqVnE9XgD5YQTxLnL58mX17dtXO3fu1Lp164ps/r6b2bRpky5duuTUP5AjIiK0atUqm7YffvhBI0eO1KxZs9SqVSunxcrP/PnzVaJECTVr1syp/T788MOaM2eOfvjhB+sfQ6dPn9bWrVs1cuRIp8bKk5aWpszMzCL74066+r/wW7dutWk7ePCgTp06VSQ3LwoMDLSOwo4bN041a9Ys8v80CAsLU3h4uHXS5TwpKSnq2LGjR/8P844dO9StWzd16NBBs2bNcmns9evXKyAgwKmndo0ZM0YDBw60aUtOTtYvv/yiOXPmKDw83Gmx8nP+/HktWbLE6ccpb29vde7c+YaJ3ZcvXy5JDs3j54h58+apVq1aatOmTZH0n1eYbd26VSEhIdb2LVu2yGQyOVy42SPvuHTx4kXNnj1bf/7znx3avqDfXWcdL1z5+25PLGcdKwq7X4U5XhQUy93HC8CVKBDvABcuXLBef3Lw4EFZLBbrKUdRUVGqWLGiU+IMGTJES5Ys0ZQpU2SxWKwX3EtX/wf2Vv/j7KhHHnlELVu2VJMmTeTr66sff/xRkyZNUpMmTdSzZ0+nxSlbtqzat2+f77IWLVo49Q+hLl26qEOHDmrcuLGkqwXVv/71Lz3//PM2pwY5Q8+ePdWqVSv17t1bEydOlK+vr5KSkmQ2mzVkyBCnxsozb948Va9eXffff3+R9C9JcXFxGjFihJ5//nnFxMTo9OnT1ju1/vE277fj22+/1Zo1axQREaGLFy8qLS1Nc+fO1bJly2771Dd7vq8JCQl6/PHHVatWLUVHRyslJUWbNm1y+I6V9sTasWOHdWRFkrZt26bU1FT5+fk5NE1KQbEMw1CXLl3k6+urkSNH6rvvvrNuGxAQoAYNGjglztGjR/XSSy+pT58+Cg0NVWZmppYsWaL3339fSUlJKlnS/p+tgmLVq1fvhrtHfvjhhzp06NBNjyuFjbVr1y5NmjRJvXr1UmhoqI4cOaIpU6bo2LFjWrBggVNjVaxYUfHx8br33nv1+OOP6+mnn9aePXs0duxY6+fSmbEk6eTJk1qxYoXGjBnj0L44Eqtly5Zq2bKlnnvuOR0/fly1a9fWpk2blJSUpGefffaGqRVuZ59mzJihwMBAhYSE6MCBA5o6dap8fHz00ksvObRP9vzuOuN4YU8cZx0rCoqVkZHhlGOFPbF++eUXpx0vCorlzOMFcMdz5ySMuGr//v2GpHwfq1atclqcGjVq3DTO/v37nRbHMAwjKSnJiIiIMPz9/Q0/Pz+jYcOGxmuvvWZkZGQ4NU5+8iZp3rx5s1P7HT58uFGnTh3D19fXMJvNRuPGjY3p06fbTPruTCdPnjSeeOIJIzAw0PD19TU6d+5sbN++vUhinTlzxvD29jb+9re/FUn/eXJzc41//vOfRpMmTQw/Pz+jSpUqRq9evYydO3c6Nc73339vtGnTxihTpoxRpkwZo2PHjsaGDRuc0re939f333/fqF27tuHt7W00btzYWLx4cZHEio+Pz3d5jRo1nBor73uV3yMqKsppcY4dO2b079/fqFGjhmE2m41KlSoZDzzwgPHZZ585tD/2xMpPYSe+LijWnj17jC5duhhVqlQxSpUqZZQtW9b405/+ZGzatKnI9mvFihVGy5YtDbPZbFSpUsV44YUXjKysrCKJNWPGDEOSsWPHDof3x5FYR48eNf785z8bNWrUMHx9fY3w8HAjPj7euHDhglPjTJ482QgLCzO8vb2N4OBgY+jQocaZM2cc3id7f3dv93hhTxxnHSsKiuWsY4U9sZx5vCjM30iFPV4AdzqTYThxdmoAAAAAgMfiJjUAAAAAAEkUiAAAAACAaygQAQAAAACSKBABAAAAANdQIAIAAAAAJFEgAgAAAACuoUAEAAAAAEiiQAQAAAAAXEOBCAAulJCQoDJlyrg7jSL1xRdfqFq1asrJySmyGD/88INMJpNWr17tlP4OHDggPz8/HThwwCn9AQDgqSgQAcCF/vznP2vVqlXuTqPIGIahV155RSNHjpS3t7e707FbaGioevfurfj4eHenAgCAW1EgAoALZGdnKzc3V9WqVVOrVq2c1p89DMNQdnb2bce0x+rVq/Xzzz/rqaeeuu2+HNnH23Hx4kVJ0qBBg/TJJ5/o5MmTRR4TAIA7FQUiADhg4MCBatSokZYtW6ZGjRrJx8dHLVq00MaNG23WCw0N1V//+lf9/e9/V40aNeTr66szZ87ke4rpwYMH1bt3bwUGBsrPz09dunTRtm3b7OrvVjkuXbpUTZs2ldls1uLFi/Xhhx/KZDLp1KlTNutHRERo4MCBN2y/evVqNWvWTH5+fmrdurW2bNlS4Ovz0UcfKSoqShUrVnTqPk6YMEFVqlRRmTJl9Mgjj+jEiRM3xDYMQ5MnT1Z4eLjMZrPCwsL01ltv2ayT9/p/++23ioyMlI+Pj9555x1J0v3336+goCDNmzevwP0EAKC4okAEAAcdPXpUQ4YM0YsvvqhPP/1UZrNZXbp0uaFoWbhwoZYsWaLp06fr888/l5+f3w19/f7772rfvr2+//57zZo1S//+9791+vRpPfDAA0pPT3e4vzxHjhzR8OHDNXLkSH355ZeKiIhwaB+PHTum4cOHW/cxKytLvXr10qVLl2653YoVK3Tfffc5dR9nzJih1157TU8++aQWLlyosLAwDRo06IbYzz//vMaNG6enn35aX3zxhQYOHKiXXnpJs2bNslkvJydHjz32mJ544gktW7ZMnTt3liR5eXmpbdu2Wr58uUOvFQAAxUlJdycAAJ7mzJkzWrBggTp06CBJioqKUkhIiN566y0lJSVZ17t06ZKWLVt2y0Juzpw5OnjwoLZv36769etb+6tevbqmTZumKVOmONRfnrNnz2rZsmVq06aNtW39+vUO7eOaNWvUsGFDSZKfn5+io6O1adMm3X///fluc/ToUR0+fFhNmjRx2j5euXJFSUlJevLJJzVp0iRJshbjc+fOtW7366+/asaMGZo1a5YGDx4sSerUqZMuXLigxMREDR48WF5eXtYYEydOVL9+/W7Yh6ZNm1pHFAEAuBsxgggADgoMDLQWh3nPO3XqpE2bNtms1759+wKLuXXr1qlRo0bWwkmSypcvrwcffPCGgs6e/vIEBQXZFIeOuueee6zFoSQ1aNBAknTo0KGbbnP06FFJuuH00tvZx0OHDunIkSPq1auXzXq9e/e2eb5ixQpJ0qOPPqrLly9bH506ddKxY8duGKns1q1bvvtQoUIFnTp1qsCRUgAAiisKRABw0B8LIEmqXLmytUC6vq0gZ8+ezXe9ypUr33CNoT39FWbd/JQtW9bmed4dSbOysm66Td4ys9ls0347+5j3mlaqVOmW6506dUqGYahChQoqVaqU9fHggw9Kkk2BWLp06ZtONZKX+632EwCA4oxTTAHAQfnd5fL48eMKDg62aTOZTAX2Vb58ef3yyy/59le+fHmH+7vVuj4+PpJ0w/yEZ8+etbvfW8nL99y5cze0F3Yf817TP17fefz48RtimEwmrV+/Pt/pNerWrXvTGNc7d+6cvL295e/vf9N1AAAozhhBBAAHZWRk6L///a/N8xUrVhTqlM77779f27Ztsymgzp49qxUrVtz0Wr/CqlatmiRp586d1radO3fecPplYYWGhsrb21v79++3ab+dfaxWrZqCg4O1aNEim/bU1FSb5x07dpQknT59Wi1btrzhYW/Bd+DAAYWHh9u1LgAAxREFIgA4qHz58ho0aJA+/vhjpaWlqWvXrjIMQyNGjHC4r2eeeUY1atRQt27dNH/+fH322Wfq3LmzSpYsWaj+bqVNmzYKCQnRyJEj9cUXX+iTTz5R//79FRQU5JT+86b8+ON0GLezjyVKlNCYMWM0d+5cvfjii/r66681evRorVq1yma98PBwDR06VE8++aQmTpyoFStWaNmyZZo+fbp69uxp9z589913ateund3rAwBQ3FAgAoCDgoODNWPGDCUnJ6tPnz7KysrSV199Vajr/vz9/bV69Wo1bdpUgwcP1uOPP65y5cpp7dq1CgkJcWrepUqV0qJFi+Tj46M+ffooKSlJU6dOVdWqVZ0Wo3fv3vrqq69kGIa17Xb3cdiwYUpMTNTHH3+sXr16ac+ePXr//fdvWO/tt9/WhAkTNH/+fHXr1k1PPPGEUlJSFBUVZVfuJ06c0JYtW264AQ4AAHcTk3H9rzgA4JYGDhyo7777Tj///LO7U7kjnTx5UiEhIfr666/1wAMPuDsdh7zzzjt66623tGfPHoeu9wQAoDhhBBEA4DQVK1bUX/7yF02bNs3dqTgkNzdX06dP17hx4ygOAQB3NQpEAIBTvfzyy4qIiLjhbql3siNHjmjgwIF64okn3J0KAABuxSmmAAAAAABJjCACAAAAAK6hQAQAAAAASKJABAAAAABcQ4EIAAAAAJBEgQgAAAAAuIYCEQAAAAAgiQIRAAAAAHANBSIAAAAAQBIFIgAAAADgmv8H684bIQ+UB9UAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1388,13 +1388,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADU3klEQVR4nOydeViUVdvAf88w7CCLIIK4gfuCKWVfluKeS7mnpqaZa5taaW+ugJpalkurmlpqbqlZtvhqWS69lWYbLrmk4gKIoKDIPjPn+2OYkWEWZhBU4Pyua65hznOe85yHmbnn3OfeFCGEQCKRSCQSiUQikUgkEkmpobrbE5BIJBKJRCKRSCQSiaSiIZVtiUQikUgkEolEIpFIShmpbEskEolEIpFIJBKJRFLKSGVbIpFIJBKJRCKRSCSSUkYq2xKJRCKRSCQSiUQikZQyUtmWSCQSiUQikUgkEomklJHKtkQikUgkEolEIpFIJKWMVLYlEolEIpFIJBKJRCIpZaSyLZFIJBKJRCKRSCQSSSkjlW2J5B5m7969KIrC1q1b7/ZUJBKJ5LaJj49HURTeeuutuz0ViUQicZg6derw2GOP3e1pSMoRUtmWlBt+++03XnjhBZo2bYqnpye1atVi4MCBnDp1yuZ5+fn5NGnSxOICLz09naFDh+Ln50dYWBirVq0yO//w4cN4eHhw7ty5Ur0fiURSubl58ybR0dF069YNf39/FEXhk08+Meun0+n45JNP6NWrFzVr1sTT05NmzZoxd+5ccnJyTPrm5uby4osvEhgYSGhoKHPnzjUb79KlS3h5efG///2vrG5NIpFIzPjjjz/o1asX/v7+eHh40KxZM9555x2TPsuXL6du3br4+/vz1FNPcePGDZPjOp2Oli1bMm/evDs5dYmkxKjv9gQkEnt54403+N///scTTzxBREQEly9f5r333qNVq1b8+uuvNGvWzOJ57777LhcuXLB4bPLkyezdu5fY2Fj+/fdfxowZQ+PGjWnTpg0AQggmTJjApEmTqFu3bpndm0QiqXykpqYye/ZsatWqRYsWLdi7d6/FfllZWYwcOZL/+7//Y/z48VSrVo1ffvmF6Oho9uzZww8//ICiKAAsXLiQtWvXMn36dDIyMpg9ezbh4eE8+eSTxvGmTJlCr169ePjhh+/EbUokEgm7d+/m8ccfp2XLlsycORMvLy/OnDnDpUuXjH1++uknnn32WSZMmEBYWBjz589nypQpLF++3Njno48+4vr167zyyit34zYkEscREkk54X//+5/Izc01aTt16pRwdXUVQ4cOtXhOcnKy8PHxEbNnzxaAWLhwocnxoKAgsWbNGuPrqKgo8dprrxlfr1u3ToSEhIiMjIxSvBP7+fHHHwUgtmzZUqbXuXnzZpmOL5FIzMnJyRFJSUlCCCF+++03AYiPP/7YrF9ubq743//+Z9YeGxsrAPHdd98Z2x588EERGxtrfD1ixAgxePBg4+sDBw4IT09PcfHixVK8E/s5d+6cRVlc2kiZJpHcO1y/fl0EBQWJvn37Cq1Wa7Xff/7zH9GhQwfj648//lhUr17d+DotLU0EBASIbdu2lel8bVG7dm3Rs2fPMr1Gfn6+2XpXUn6RbuSSckObNm1wcXExaatfvz5Nmzbln3/+sXjOa6+9RsOGDRk2bJjF49nZ2fj5+Rlf+/v7k5WVBUBmZiavvfYa8+fPx8vLy6G5JiQkMGrUKEJCQnB1daVu3bo8++yz5OXlGfucPXuWJ554wuhO9X//93988803FsfT6XS8/vrrhIaG4ubmRqdOnfj333/N+h08eJBu3brh4+ODh4cHUVFRZq6iMTExKIrC8ePHGTJkCH5+fjzyyCPG459++imRkZG4u7vj7+/P4MGDuXjxoskY7du3p1mzZhw/fpwOHTrg4eFBjRo1ePPNN83mlJOTQ0xMDA0aNMDNzY3g4GD69evHmTNnTO5vyZIlNG3aFDc3N4KCghg3bhxpaWn2/cMlknKIq6sr1atXL7afi4uL0dumMH379gUwkX+2ZJpOp2PixIm8+uqrhIaGOjTX9PR0XnrpJerUqYOrqyuhoaEMHz6c1NRUY58rV64watQogoKCcHNzo0WLFqxZs8bqmCtWrCA8PBxXV1ceeOABfvvtN7M+J06cYMCAAfj7++Pm5sb999/Pjh07TPp88sknKIrCvn37eO6556hWrZrJ/e3cuZO2bdvi6emJt7c3PXv25NixYyZjPP3003h5eZGQkECfPn3w8vIiMDCQyZMno9VqTfrqdDqWLl1K8+bNcXNzIzAwkG7dunH48GGTfvbIUomkMrBhwwaSk5N5/fXXUalUZGZmotPpzPrZkl+gX780b96cfv36OXR9e76zGo2GOXPmGGVSnTp1mDZtGrm5uRbH/Omnn2jdujVubm6EhYWxdu1asz7p6elMmjSJmjVr4urqSr169XjjjTdM7r1wHoslS5YYr3/8+HHAMRn4v//9j5dffpnAwEA8PT3p27cvKSkpZvPauXMnUVFReHt7U6VKFR544AE2bNhg0see9aTETu62ti+R3A46nU7UqFFDdO3a1ezYwYMHhUqlEj///LNVa0qnTp1E+/btxalTp8R///tf4e7uLj799FMhhBDTpk0TrVu3FjqdzqE5JSQkiJCQEOHh4SEmTZokli1bJmbOnCkaN24s0tLShBBCXL58WQQFBQlvb28xffp0sWjRItGiRQuhUqnE559/bhzLYNlu2bKliIyMFIsXLxYxMTHCw8NDtG7d2uS6e/bsES4uLuKhhx4Sb7/9tli8eLGIiIgQLi4u4uDBg8Z+0dHRAhBNmjQRvXv3Fh988IF4//33hRBCzJ07VyiKIgYNGiQ++OADERsbKwICAkSdOnWMcxdC7wEQEhIiatasKSZOnCg++OAD0bFjRwGIb7/91thPo9GITp06CUAMHjxYvPfee2L+/PmiY8eO4osvvjD2Gz16tFCr1WLMmDFi2bJl4j//+Y/w9PQUDzzwgMjLy3Po/y+RlEdsWbatsXv3bgGIDRs2GNtGjRolmjVrJuLi4sTPP/8sqlevLubOnSuEEGLFihWiVq1aIisry6G5ZWRkiGbNmgknJycxZswY8eGHH4o5c+aIBx54QPz5559CCCGysrJE48aNhbOzs3jppZfEO++8I9q2bSsAsWTJEuNYBlncsmVLUa9ePfHGG2+IN998UwQEBIjQ0FCT7/vRo0eFj4+PaNKkiXjjjTfEe++9J9q1aycURTGRkx9//LFRpkVFRYl3331XLFiwQAghxNq1a4WiKKJbt27i3XffFW+88YaoU6eO8PX1FefOnTOOMWLECOHm5iaaNm0qnnnmGfHhhx+K/v37C0B88MEHJv+Pp59+WgCie/fuYsmSJeKtt94SvXv3Fu+++66xj72yVCKpDPTv319UqVJFfPfdd6JBgwYCEJ6enmL8+PEiOzvb2G/dunXCw8ND7Nq1S5w6dUq0a9dOdO7cWQghxLFjx4Srq6v4+++/Hb6+Pd/ZESNGCEAMGDBAvP/++2L48OECEH369DEZq3bt2qJhw4YiKChITJs2Tbz33nuiVatWQlEUcfToUWO/zMxMERERIapWrSqmTZsmli1bJoYPHy4URRETJ0409jPIxCZNmoiwsDCxYMECsXjxYnH+/HmHZWDLli1Fx44dxbvvviteeeUV4eTkJAYOHGgy/48//lgoiiKaNWsmXn/9dfH++++L0aNHi6eeesrYx971pMQ+pLItKdesW7dOAGLVqlUm7TqdTrRu3Vo8+eSTQgjrrotxcXEiNDRUAAIQ/fv3F1qtVpw9e1a4u7uLX375xeE5DR8+XKhUKvHbb7+ZHTMo7pMmTRKAOHDggPFYRkaGqFu3rqhTp47RzcqgbDdu3NjEpWjp0qUCEEeOHDGOW79+ffHoo4+abA5kZWWJunXrii5duhjbDMq24X9jID4+Xjg5OYnXX3/dpP3IkSNCrVabtEdFRQlArF271tiWm5srqlevLvr3729sW716tQDEokWLrP4vDhw4IACxfv16k+P//e9/LbZLJBWRkijbnTt3FlWqVDFR3i5evCiaNm1qlGlt27YVGRkZIj09XQQGBopNmzY5PLdZs2YJwGRxZ8DwPV6yZIkAjJuVQgiRl5cnHnroIeHl5SVu3LghhLgli6tWrSquXbtm7Pvll18KQHz11VfGtk6dOonmzZuLnJwck+u1adNG1K9f39hmWGg+8sgjQqPRGNszMjKEr6+vGDNmjMmcL1++LHx8fEzaDQvt2bNnm/Q1bHQa+OGHHwQgJkyYYPV/4YgslUgqAxEREcLDw0N4eHiIF198UWzbtk28+OKLxo14AxqNRvTr188ov2rWrCni4uKEEEJ07dpVjB8/3uFr2/Od/euvvwQgRo8ebXJ88uTJAhA//PCDsa127doCEPv37ze2XblyRbi6uopXXnnF2DZnzhzh6ekpTp06ZTLma6+9JpycnMSFCxeEELdkYpUqVcSVK1dM+joqAzt37myyBnzppZeEk5OTSE9PF0IIkZ6eLry9vcWDDz5osslR+H/hyHpSYh93XdlOTk4W58+fN3tIJMXxzz//iCpVqoiHHnrIZIElhF7Jc3d3NxNmluIEs7OzxW+//SZOnz5tbOvbt68YNmyYEEKIbdu2iYiICFGnTh0RGxtr09Kt1WpFlSpVRO/evW3OvUGDBmaWaSGEmD9/vokSbVC233zzTZN+f/zxhwDEl19+afJ6zZo1IiUlxeQxevRo4erqalTgDcr2vn37TMZctGiRUBRFnD592myMxo0bG3eXhdAr215eXmb/i169eomWLVsaX/fs2VMEBASI/Px8q/+LCRMmCB8fH3HlyhWz63p5eZn9+EkkFRFHle3XX3/dotVVCL2S++eff4pjx44Zv/cvvfSSeOSRR4QQ+g2u1q1bi9DQUPHiiy8WGxvYtGlT0aJFC5t9unbtKqpXr24Wj7lx40YTJdogi5977jmTfteuXROAWLp0qRBCiKtXrwpFUcScOXPM5IIhVv3SpUtCiFsLzcL5N4QQ4vPPPzculIuO0bVrV1GvXj1jX4OyXXSxO2HCBOHn52d8/fzzzwtFUcTVq1et/i8ckaUSSWUgLCxMAGbK8rhx4wRgppCePn1aHD582KgQfvnll8LX11ekpKSIS5cuiccee0wEBweLxx57TCQkJNi8tj3f2Xnz5glAHD9+3KQ9KSlJACZKdO3atUWTJk3MxoiIiBB9+/Y1ed2tWzczGfD999+bbEwaZOLIkSNNxiuJDPzss89MxjDIQIM3wJYtWwQgtm/fbvV/4ch6UmIfdyUb+dWrV3nxxRf5/PPPyc/PNzkmhEBRFLMYKYmkMJcvX6Znz574+PiwdetWnJycjMdu3LjB1KlTmTJlCjVr1ix2LEMMjIEffviB3bt3c/LkSU6ePMngwYNZvnw5derU4cknn6RmzZqMHDnS4lgpKSncuHHDamZ0A+fPn+fBBx80a2/cuLHxeOExatWqZdLPENNkiGk+ffo0ACNGjLB6zevXr5vEQhXNrn769GmEENSvX9/i+c7OziavQ0NDjRmQC88rLi7O+PrMmTM0bNgQtdq6qDl9+jTXr1+nWrVqFo9fuXLF6rkSSWVk8+bNzJgxg1GjRvHss8+aHXd2dua+++4zvj5x4gQffPABP//8M9euXaNnz5689tprdOjQgZEjR/L6668TGxtr9Xpnzpyhf//+Nud0/vx56tevj0plmgqmsEwrTHEy7d9//0UIwcyZM5k5c6bFa165coUaNWoYX1uSaQAdO3a0eH6VKlVMXhtiOYvOq3DuiDNnzhASEoK/v7/FMQ3XdUSWSiQVHXd3dwCTqggAQ4YMYfny5fzyyy8m35d69eoZ/87Ly+OVV14hOjqagIAA2rZtS3BwMF999RULFixgyJAhVis5gH3f2fPnz6NSqUyuC1C9enV8fX2LlV9gLitOnz5NXFycmUwxUHRtU1R+lUQGFidXDblybK1RS7KelNjmrijbo0ePZt++fUydOpUmTZqYJb2SSGxx/fp1unfvTnp6OgcOHCAkJMTk+FtvvUVeXh6DBg0iPj4ewFhaIi0tjfj4eEJCQix+7rRaLRMnTuS1116jRo0azJkzhzZt2hiV63HjxrF+/XqrynZZUXgzoTBCCABjso2FCxeaLLILUzTJm+HHz4BOp0NRFHbu3GnxekXPL25O9qLT6ahWrRrr16+3eNzaD5VEUhn57rvvGD58OD179mTZsmV2nfPSSy8xbNgwWrVqxbp16/D392fq1KkAvPrqq8Uq22WBvTJt8uTJPProoxb7Fl0YW5JpAOvWrbOYiK7oJqC1OTmKo7JUIqnohISEcOzYMYKCgkzaDZvstpKhLl68GLVazQsvvMDFixf56aefOHfuHHXq1OHNN98kLCyMS5cuOZz00RJFDQjWsGf9o9Pp6NKlC6+++qrFvg0aNDB5bU1+OSIDS2NdVpL1pMQ2d0XZ/vHHH3nnnXcYPnz43bi8pByTk5PD448/zqlTp/j+++9p0qSJWZ8LFy6QlpZG06ZNzY7NmzePefPm8eeff1oUIh9++CEZGRlMnjwZgMTERBNlPiQkhISEBKvzCwwMpEqVKhw9etTmfdSuXZuTJ0+atZ84ccJ43BHCw8MBvaWmc+fODp1beAwhBHXr1jX7ESgp4eHhHDx4kPz8fKvWnPDwcL7//nsefvhhsx8biURyi4MHD9K3b1/uv/9+PvvsM5seIwa+/vprfv75Z6O1IjExkeDgYOPx4mQa6L+j9si0uLg4dDqdiXW7pDItLCwM0FuBb0emgX5BX9IxLI25a9curl27ZtVSVhayVCIpz0RGRvLdd9+RkJBAw4YNje2JiYmA9U31pKQk5s6dy5YtW1Cr1cb+hnWZ4TkhIcGqsm3Pd7Z27drodDpOnz5t9MYBSE5OJj093WH5ZbjuzZs3Syx7SkMGWpoTwNGjR80U9aJ9bmc9KTGlRKW/jh07xuDBg43p6f/44w8Apk+fzs6dO4s939fXl4CAgJJcWlKJ0Wq1DBo0iF9++YUtW7bw0EMPWew3YcIEtm/fbvJYvnw5oC/vsn37djN3HYBr164RHR3NwoULcXNzAyAoKMi4WAR9iR1bpXpUKhV9+vThq6++MisDA7d2F3v06MGhQ4f45ZdfjMcyMzNZsWIFderUsbiJYIvIyEjCw8N56623uHnzptlxS6UfitKvXz+cnJyIjY012wUVQnD16lWH5gTQv39/UlNTee+998yOGa4xcOBAtFotc+bMMeuj0WhIT093+LoSSUXjn3/+oWfPntSpU4evv/7aro2pvLw8Xn75ZWbMmGG0IAUFBfHvv/+i0WiM4xZXfqx///78/fffbN++3exYYZl2+fJlNm/ebDym0Wh499138fLyIioqyu57Bb2C3L59e5YvX05SUpLZcXtk2qOPPkqVKlWYN2+eWciavWMUpX///gghLHoCGP4XZSFLJZLyzMCBAwFYtWqVSfvKlStRq9W0b9/e4nmvvfYa7dq1o1u3bgBGy7hhXWYoe2hLhtnzne3RowcAS5YsMTm+aNEiAHr27Gl1fGsMHDiQX375hV27dpkdS09PN8pga5SGDCxK165d8fb2Zv78+eTk5JgcM/wvSmM9KTHFYcv2d999R8+ePYmMjGTo0KHMnTvXeMzZ2ZkPPviA7t272xzj1Vdf5d1336Vr16527cxLJACvvPIKO3bs4PHHH+fatWt8+umnJscNtbRbtWpFq1atTI4Z3MmbNm1Knz59LI4/c+ZMmjdvzhNPPGFs69+/P7Nnz+bZZ5+ldu3aLF++3Ch8rTFv3jx2795NVFQUY8eOpXHjxiQlJbFlyxZ++uknfH19ee2119i4cSPdu3dnwoQJ+Pv7s2bNGs6dO8e2bdvM4h6LQ6VSsXLlSrp3707Tpk0ZOXIkNWrUICEhgR9//JEqVarw1Vdf2RwjPDycuXPnMnXqVOLj4+nTpw/e3t6cO3eO7du3M3bsWKPF316GDx/O2rVrefnllzl06BBt27YlMzOT77//nueee47evXsTFRXFuHHjmD9/Pn/99Rddu3bF2dmZ06dPs2XLFpYuXcqAAQMcuq5EUl547733SE9PN1psvvrqK2PYy4svvoiPjw8ZGRk8+uijpKWlMWXKFL755huTMcLDwy1uPi5duhSAiRMnGtt69OjB888/z5AhQ2jTpg1z5sxh9OjRNuc4ZcoUtm7dyhNPPMEzzzxDZGQk165dY8eOHSxbtowWLVowduxYli9fztNPP83vv/9OnTp12Lp1K//73/9YsmQJ3t7eDv9v3n//fR555BGaN2/OmDFjCAsLIzk5mV9++YVLly7x999/2zy/SpUqfPjhhzz11FO0atWKwYMHExgYyIULF/jmm294+OGHLW4E2qJDhw489dRTvPPOO5w+fZpu3bqh0+k4cOAAHTp04IUXXigTWSqRlGdatmzJM888w+rVq9FoNERFRbF37162bNnC1KlTzcIBAQ4dOsTmzZtN8sDUqVOH+++/n6effppRo0axcuVKHnzwQZuWZ3u+sy1atGDEiBGsWLGC9PR0oqKiOHToEGvWrKFPnz506NDB4XueMmUKO3bs4LHHHuPpp58mMjKSzMxMjhw5wtatW4mPjy/W8Hi7MrAoVapUYfHixYwePZoHHniAIUOG4Ofnx99//01WVhZr1qwplfWkpAiOZlSLjIw01mLLz88XiqKI33//XQghxBdffCFq1KhR7BgvvPCCqFWrlqhVq5Z46qmnxIsvvmjysJSeXyIxlJuy9rCFrWzkQuhLgLm4uBhrxhbmk08+EXXq1BFVq1YVL7/8slnmc0ucP39eDB8+XAQGBgpXV1cRFhYmnn/+eZOsv2fOnBEDBgwQvr6+ws3NTbRu3Vp8/fXXJuMYspFv2bLF4v0UzVz8559/in79+omqVasKV1dXUbt2bTFw4ECxZ88eYx9DNvKUlBSLc9+2bZt45JFHhKenp/D09BSNGjUSzz//vDh58qSxT1RUlGjatKnZuSNGjBC1a9c2acvKyhLTp08XdevWFc7OzqJ69epiwIAB4syZMyb9VqxYISIjI4W7u7vw9vYWzZs3F6+++qpITEy0OE+JpCJgKCNj6WGoA234vlt7jBgxwmzcy5cvC29vb7Fjxw6zYzt37hSNGjUSvr6+Yvjw4SIzM7PYeV69elW88MILokaNGsLFxUWEhoaKESNGiNTUVGOf5ORkMXLkSBEQECBcXFxE8+bNzWSULVkMiOjoaJO2M2fOiOHDh4vq1asLZ2dnUaNGDfHYY4+JrVu3GvsYMvFaKrcohF6OPvroo8LHx0e4ubmJ8PBw8fTTT4vDhw8b+4wYMUJ4enqanWuQl4XRaDRi4cKFolGjRsLFxUUEBgaK7t27G9dCBuyRpRJJZSEvL0/ExMSI2rVrC2dnZ1GvXj2xePFii311Op148MEHxcsvv2x27N9//xXt2rUTXl5eol27dmZrCUvY853Nz88XsbGxxrVKzZo1xdSpU03Kbgmhl9k9e/Y0u0ZUVJSIiooyacvIyBBTp04V9erVEy4uLiIgIEC0adNGvPXWWyIvL08IUfz69HZkoGEN+eOPP5q079ixQ7Rp00a4u7uLKlWqiNatW4uNGzea9LFnPSmxD0UIx7IZubm58dVXX9GlSxe0Wi3Ozs4cPnyYVq1asW/fPh599FEz14SiWHLhLYyiKJw9e9aRaUkkEolEIpFIJBKJRHLP4LAPt7+/v9HdrSinTp0ySbxijXPnzjl6WYlEIpFIJBKJRCKRSMoNDidI69OnD9HR0SaZlBVF4fLly7z11lvF1uIsj/z777+MHz+e++67D7VabbU+XXp6OhMmTCAkJAQ3NzfCw8N5++23Tfrk5eUxZcoUqlevjqenJ126dLGYlVoikUjKCinTJBJJRULKNIlEcq/isGV7/vz5/Pbbb0RERNC8eXMAnnnmGc6ePUvDhg2JiYmxe6x///2XU6dOWXQ779evn6NTKzOOHTvGN998w4MPPohOpzPWoCtMZmYm7du3R61Ws3jxYoKCgjh16hQ3btww6TdhwgQ2bdrEokWLqFGjBq+//jqdOnXi2LFj+Pj43KlbkkgklRgp0yQSSUVCyjSJRHLPUpJA77y8PLF69Wrx5JNPii5duohBgwaJjz76yCT5ky2uX78uOnbsKFQqlVCpVEJRFKEoivG1SqUqybTKDK1Wa/x7xIgRFhNDzZgxQ4SFhYmbN29aHefixYvCyclJLF++3Nh29epV4enpKd54443SnbREIpFYQco0iURSkZAyTSKR3KuUqM62s7MzI0eOZMOGDezevZtNmzYxevRoXFxc7Dr/P//5D5cvX+bAgQMIIdi+fTt79+5l1KhR1K1bl19//bUk0yoz7CnDtHLlSp555hk8PT2t9tm9ezc6nc6ktJS/vz9du3bl22+/LZW5SiQSSXFImSaRSCoSUqZJJJJ7FYeV7b///tuqwPn2229N6uFZ47///S/Tp0/nwQcfBCAkJIR27dqxYsUKevfubRY/c68THx/P5cuXCQgIoFevXri6uuLv78+YMWNMCsKfOHGCatWq4efnZ3J+48aNOXHixJ2etkQikVhEyjSJRFKRkDJNIpHcLRxWtl966SV++eUXi8cOHTrEK6+8UuwYV65coWbNmjg5OeHp6cnVq1eNx3r06MF///tfR6d1V7l8+TIAkydPxs/Pj2+//ZZ58+axZcsWxowZY+yXlpaGr6+v2fl+fn5cu3bN6vi5ubncuHHD+Lh+/TopKSkIx6q2SSQSiV1ImSaRSCoSUqZJJJK7hcPK9l9//cXDDz9s8dhDDz3EH3/8UewYNWvWJDU1FYD69euzY8cO47FffvkFNzc3R6d1VzEk4mjQoAFr1qyhU6dOjB8/nrfeeotNmzbdds3w+fPn4+PjY3z4+vpSrVo1MjIySmP6EolEYoKUaRLJvUPSH38QqygkFVlfWWuXmCNlmkRy53FUdlVUmeawsp2bm0teXp7VY5YyixelS5cufP/994DeUr5s2TIiIyN56KGHiI6OZvjw4Y5O665icDfq0KGDSXunTp0AfZZMQ7/r16+bnZ+Wloa/v7/V8adOncr169eNj4sXL5bW1CWSSkNGUhJ7Y2LISEq621O555EyTSKRVCSkTJNIJHcLh0t/tWzZkrVr19KrVy+zY2vXrqVFixbFjvHGG2+QlZUFwFNPPYWXlxdbt24lOzub9957j3Hjxjk6rbtKeHg4rq6uVo8bNiAaNWpEcnIyaWlpJvFAJ06coFGjRlbPd3V1tTm+RCIpnptJSeyLjaVhr154Bwff7enc00iZJpFIKhJSpkkkkruFw5btqVOnsn37dnr27MnWrVv5+eef2bp1Kz179uSLL75g+vTpxY7h4eFBQECA8XXfvn1Zv349n3/+Oc8++6xdWSXvJVxcXOjatSt79uwxaf/uu+8AaNWqFQBdu3ZFpVKxbds2Y5+0tDR2795Njx497tyEJRKJxAZSpkkkkoqElGkSieRu4bBlu2fPnmzYsIEpU6YwcOBAFEVBCEFoaCgbNmygZ8+edo/1zz//cPjwYS5evMgzzzxD9erV+ffffwkKCsLb29vRqZUZWVlZxgzs58+f58aNG2zduhWAqKgoAgMDiY6Opk2bNgwdOpQRI0Zw+vRppk6dytChQwkPDwcgNDSU0aNHM2XKFJycnKhRowbz5s3Dx8en3FnzJRJJ+UXKNInk3iIjKYnfly8nctw46XlTAqRMk0jKFmsySsouO7idIt0nTpwQ//vf/8SJEyccOi8zM1M8+eSTwsnJSajVaqFSqcTvv/8uhBBiwIABYsqUKbczrVLn3LlzArD4+PHHH439vv/+e3H//fcLV1dXUb16dfHKK6+InJwck7FycnLEK6+8IqpVqybc3d1F586dxT///OPQfK5fvy4Acf369dK4PYmkwnAjMVH8GB0tbiQmmh1L/P13EQMisUDWVGakTJNI7i1sySdrx6RMu4WUaRJJ2VISOeToORVVpjls2S5Mw4YNS3Te5MmT+eGHH/j2229p27Ytnp6exmM9evRg8eLFvPnmm7cztVKlTp06dpVv6NSpE7/99pvNPq6urrz11lu89dZbpTU9iURSQHFx2c4eHndhVvceUqZJJJKKhJRpEonkXqVEyvbJkyfZtm0bly5dMss+rigKq1atsnn+1q1bWbhwIV27dkWr1Zocq1OnDvHx8SWZlkQikVhECEFQRATTMjPRaTQIIVAU5W5PSyKRVDKky6VEIpFULhxWttetW8fIkSNxc3Ojdu3auLi4mBy3ZwF78+ZNgq38yGRmZjo6JYlEIrGK0OnISEzk9+XLuXbmDP7h4fqFbkgISjlLxiiRSMo3siqCRCKRVC4cVrbnzJnDgAEDWL16NR4ldMmMiIhg27ZtdO3a1ezYN998w/3331+icSUSSeXAXuuQ0OmI+/RTdowahU6jMbb/tGABvVatImLYMKlwSySScosMjZFIJBWJiijTHFa2ExMT+fDDD0usaAPMnDmT3r17k5WVxRNPPIGiKBw6dIiNGzeyevVqY0ZJiUQisYQ91iEhBBmJiWaKNoBOo2HHqFHU7dRJb+GWLuUSiaQcIUNjJBJJRaIiyzSHTTrt2rXj6NGjt3XRnj17smnTJn766Sf69OmDEILnnnuOzZs3s379ejp16nRb40skEonQ6fh9+XIzRduATqPh92XLEDrdHZ6ZRCKRlByh05GRkMC+2Fi2DRnCvthYMhISpCyTSCTlkoou0xy2bM+bN49hw4bh5uZGly5d8PX1Nevj7+9f7DgDBgxgwIABnDp1itTUVPz9/WnUqJGj05FIJBITnD08UFQqVE5OXDtzxmbftLNnUTk53aGZSSSSykJZJEJTu7vL0BiJRFJhqCwyzWFlu1WrVgA8++yzVs37RTOM26JBgwY0aNDA0WlIJBKJCUVdkHRaLf7h4TbP8QsLQ6fVSoVbIpGUCGtKdVkkQvMMDJShMRKJpMJQWWSaw8r26tWrS+WGL168yBdffMHFixctlg9bunTpbV9DIpFUDixlHH/4tdeIHDeOnxYssOhKrlKriRw/vtzvmEokkrvHncou7uzpiZuvL/tiY4sNjYmKiUGRG4gSieReRlEqjUxzWNl++umnb/uin332GU899RQ6nY5q1apZLB8mlW2JRFIctlyQTn/7LaMPHaLXqlVmx1RqNb1Wr8Y7OLhc75ZKJJKKjdFj5+ZNABkaI5FIKgTO7u6o1OpKIdMcVrZLg2nTptGnTx9WrFiBj4/P3ZiCRCIpBxQX92jLBSnpjz/4YsQI+q5dS91Onfh92TLSzp7FLyyMyPHj9Yq2tGpLJJJ7FBOPnbNn6b16tQyNkUgkFYL87Gx0Gk2lkGklUrb379/PihUrOHXqlJkLOEBcXJzN81NSUhg7dqxUtCUSiU1suWja41Z5ZP16Qh96iPuffZao6GhUajU6jQbFyUlatCUSyT2LJY+dsM6daTlqlAyNkUgk5R8hyElPrxThfg7PfteuXXTs2JHU1FQOHz5MzZo1CQgI4OTJk2RmZnL//fcXO0a3bt349ddfSzRhiURSuSnsVmmPC9Kln39GpVKRfOQI8zw9SY6Lk4q2RCKxm4ykJPbGxJCRlHRHrieEsOixc3DJErxr1ODxlStRqU1tJTI0RiKROMKdlmuWyExJwTskhF6rVlVomeawZTs6OppJkybxxhtv4OzszJw5c2jVqhXnz5/n0UcfpWPHjsWOsWzZMgYNGkRWVhadOnWyWD7MkPVcIpFUbBwpkXM7bpUIQX5WVmlOXSKRVALuWBI0Dw9AL+d+X77czNKTHBfHF8OH02ftWup27MgfK1bI0BiJRGIVW+urOyXXbKHJzkZRqYgYNqxCh/s5rGz/888/vP7666hUKhRFITMzE4DatWsTExNDTEwMw4YNszlGRkYGWVlZzJ8/nwULFpgcE0KgKIpD5cMkEkn5xR6Bby0RmnSrlEgk5Z2iZQtVTk5WPXaObtpEyvHjdFu6lKiYGFROTjI0RiKRWOReUKitYdhcBFBUKrxDQipsuJ/Dyrabmxs6nQ5FUQgODubMmTO0bdsWAG9vby5evFjsGMOHD+fChQu8++67NGjQwCwbuUQikRhw9vCwmgjt4JIlRAwbxuMrV/LV6NEy47hEIrknUKWnEBWsf7aFWdnCevWImjXLpsdOclwc5/bsodYjjzDP05ORBw4QLL0BJRJJOaDo5qLByKooCpfj4vi4bdsKJ9McVrZbtGjByZMn6dKlC506deL1118nICAAZ2dnZsyYQfPmzYsd49ChQ2zYsIE+ffqUZM4SiaQSYCKQtVr2xcRIt0qJRFIuUF1PpX0IpFxPtXjcVtlCv7AwWo0ZU6zHTk56ugyNkUgk9zSFLdhmm4vh4XoX95AQ41qtIso0h1ehkyZNMlqJ5s2bh7e3N7169aJ79+5cvXqV999/v9gx6tevj8ZK9mCJRFIxcSQZh9DpyEhIYF9sLF+MHFmsW+VH999P2pkzRMXE0G/9eqKio02EN4BXcDBR0dF43WOuVBKJ5N7gTiYMslW28NfFi/EKDi42aVBmim2ruUQikThMahIsj9E/3waFDSZBERHGzcWldeuyf+5cjm7cyP65c1laty5xn36K0OlQu7uXzj3cYzhs2e7Ro4fx7xo1avD777/z77//kp2dTaNGjexyCV+0aBGTJ0+mWbNmNGrUyNEpSCSScoi9sUNm1h5Foef779+2W6V3cDDtY2JK63YkEkkFoyTxjfa6ixemuLKFBo+dvuvW2UwapMnOtvuaEolEYhepSfBRLET1goCSGSeKWrDbTJ6MZ7VqFjcXdRoNO0aNom6nTngGBpbGHdxzOKxsz549m9GjRxMSEgKAoijUr18fgKSkJD766CNmzZplc4xJkyZx+fJlmjVrRkhIiFk2ckVR+Pvvvx2dmkQiKacYs/BaKnkjBEc3b7YrEZp0q5RIJHeS4tzFC1O4bCFgs2zh0U2b8K1Th47z5lXYpEESiaTiYclg0mvlSn6aP9/i+g30Cvfvy5YRFR19h2d7Z3BY2Y6NjaVbt25GZbswiYmJxMbGFqtsR0ZGyh8LiURinijDSskbexOhpZ48eadvQSKRSCzjZiVW0c6yhSq1GqHTkVxBkwZJJJKKhSWDibO7O84eHjY3FwHSzp5FpVZXSFdyh5VtQ9Y4SyQlJVmsmV2UTz75xNHLSiSScoK9dbOLuhkFNGpE1KxZFgWySSK0Dh3446OPpFulRCK5JxFCUPWxJ6DvUKrm55dK2ULpsSORSO4m9oTMWDKY5Gdnk5+VVezmol9YGDqNpkKu4+xKkLZx40Z69epFr169UBSFV155xfja8OjatSvDhw+nTZs2ZT3ne5YdO3bw4IMP4u3tTXBwMAMHDuTs2bNm/VatWkWDBg1wc3OjRYsWfP3113dhthJJ2ZD1TxysiNU/F8HZw8MkC2/hRBl7Y2JsCmRDIrTMlBSbidAkpYeUaZKKSFkmQjMmd5w9h21DhpB85IjVsoXeNWrw+MqVNpOgSS/A0kXKNImkZBhCZlQWQmacPTxQVCrLyWwLhQIWlXXGsQuFAlZE7Fqh5uXlkZGRQUZGBkIIMjMzja8ND0VRGD58OMuXLy/rOd+T7N27l759+9KkSRO2b9/OkiVL+Pvvv+natSvZhXZpNm3axJgxYxg0aBA7d+7koYceom/fvvz66693cfYSSelhSSAXdhev2rCh5Sy8dgjklOPH8apenZy0NOZ5epIcFycXo2WElGmSioohEdrNUlS2nar4mm8ibtpEQKNGFkNjDN46zYcMYcLZs7SbMYPmQ4bQbsYMJsbHEzF0qNxELGWkTJOUd0pzo7AkyR2LUnhtV61ZM3RarUWDib2bixW1woJdbuQjRoxgxIgRAHTo0IEPP/xQZhEvwqZNm6hduzarV682Lv6rVatGx44dOXz4MG3btgUgOjqawYMHM2fOHED//4yLi2P27Nl8++23d23+EomjlMhdvCBW0dLiExyLzZZulWWLlGkSiZ5iF6VuHrjXa+RwrOLRTZtIOX6cbkuXEhUTg8rJSSZBK0OkTJOUd0pSMcEajiR3NGItD0VBzeyHX3uNyHHjzMJjCocChnXuXOkqLDgcs/3jjz9abM/Ly7Or7FdFJT8/H29vb5MfSB8fH0C/8wNw9uxZTp06xRtvvGFy7uDBg5kyZQq5ubm4urreuUlLJLdBcUK/sKXHsAB19vBAvX691cVn4ZI3JRHIspZ26SFlmkSix9qitHBstqtWy68xMQ7HKtpTtlBSOkiZJpGUDHvyUACc/vZbRh86RK9Vq8yOHd+6lWZDh9KgR49KV2HBYR+ldevW8e677xpfHz16lPr16+Ph4UH79u25cuWKzfOFEFy7do3c3FzHZ3sP8/TTT3P8+HE++OADrl+/ztmzZ5k2bRotW7bk4YcfBuDEiRMAZl4BjRs3Ji8vj3Pnzt3xeUskZYUlS489i8+jmzZxePlyo+LsSGy2oZb27e74SqRMk1Q+HHGrLByb/cXIkeaxioqCs7u7Q7GK0lunbJEyTVLZKBVXcTvzUAAk/fEHX4wYQcSwYUyMjzcLj2nQoweKSkVyXFylCgV0WNleuHAhqkIL3hdffBEXFxeWLFlCUlIS06ZNs3l+fn4+1apV4/vvv3d8tvcwbdu2Zfv27bz22mv4+voSHh5OcnIyO3fuxMnJCYC0tDQAs4ztfn5+AFy7ds3i2Lm5udy4ccPkIZHc07h74hpS09xd3M5EGY369EFRlEonkO8lpEyTlGdKEttoKwFQYYrGZv+9Zo1xEzEoIoJeq1cz/eZNpmVm0nzwYKrUrMkT27ZVyljFewkp0ySVDXtlmkVcLSSztZGHwsCR9ev57cMPizWYVKbNRYeV7fj4eJo0aQJAamoqBw4c4O233+aFF15g9uzZ7Nq1y+b5Li4uhIaGotVqSzbje5Sff/6Zp556ijFjxvDDDz+wZcsWdDodPXv2NEm8URLmz5+Pj4+P8VGzZs1SmrVEYhtbC1ZLO6ZGV6MDN1E5u1h0F3c0C29lEsj3ElKmScozpZ4ErSBW0VIdWcMmYusJExh7+DARXTugXjMfpg9B/ck8uHKJho89xivJyVYToVXUWMV7CSnTJOWFsqyYYC/CL7DENbMv/fwzKpWK5CNHpMGEEsRsq1Qq8vLyAH38trOzMx06dAAgODiYq1evFjvG888/z6JFi+jatStubm6OTuGeZMKECXTs2JG3337b2PZ///d/1KpVi3Xr1jF27Fjjzuj169epXr26sZ9hJ9Xf39/i2FOnTuXll182vr5x44YU5JI7grGMV7uHzFyzVddTaR/mYYxjFDod+dnZqJ31YkVotbSZPJmUY8dIjrtVBsykZnbHjvyxYoXFuGzJ3UXKNImkaKxinnkd2QJ38X937uS+ESPg23Wo5owGbaHkjp8sQMxchXuPYZUuVvFeQso0SXmhNBOhlQhFQXj58vvbsSWvma3VghDSYEIJlO0WLVrwwQcfEBoayjvvvEPHjh2NySIuXLhAtWrVih3jwoULnDp1ilq1atG+fXuCgoJMfnAURWHp0qWOTu2ucvz4cXr37m3SFhoaSkBAAGcKdoAMMUAnTpygYcOGxn4nTpzAxcWFsLAwi2O7urrKhBySu4I9iYEMyTIQAqf0FFQ7VsGlMyih4VTvN46xhw+zffhwjm7aZDz/6KZNXD11iqf375eLz3sUKdMklZ2i2XYDGjUiatYsrp05Q1BEBA9OmkTzQYNQe3igy8+HKwkoRRRtALQalDmjoHUnslWuLKldWyZCuwtImSaR2ImrOyq12mbN7KIZxw0Y8lBIo8ktHP5PzJs3j/379xMREcGRI0eIjY01Htu+fTutW7cudoyvv/4aV1dXPD09+e233/j666/56quvTB7ljdq1a/PHH3+YtJ0/f57U1FTq1KkDQFhYGA0aNGDLli0m/TZv3kynTp0qdTZ3SflB6HT6ncqC7K1G5Xjnpzj1qw+r5sKujbBqLkqvuii7NtB37VqCIiKMY6jUah6cNAlnd3eunj5t1c3IWnZxmXW87JEyTVJRKS5pkMWa2Rs3sjcmhvysLBr16WPqLj5jKCqhQ9m+wlzRNqDVwLZluPv6lpqlR8pBx5AyTXIvcS+4ilslNxudRnNbNbOl4eQWDlu2H374YaNlOjw83CSJxKhRo6hXr16xY1TEbI7jx49n0qRJTJw4kccff5yrV68yd+5cqlWrxsCBA439YmJiGDp0KOHh4XTo0IHNmzdz8OBB9u/ffxdnL6nsOFIz28yCPWwywr+aDYvOaGjdmd6rV/PLokUWy3hZW3wasovb2y4pPaRMk1RUbNaXtVIzGwAhOLN7N00G9IdvP73lLu7mAXPXwyXbcYwknEVRq1G7u5fKfUg56BhSpknuJUrVVTw1CbYth/7jIKAUNt+EQLmZfls1syW3cFjZBvD29iYyMtKsvUePHrc9ofLKhAkTcHV15cMPP2TVqlV4e3vz0EMPsWXLFqpWrWrs9+STT5KVlcWCBQtYsGABDRs2ZPv27Tz00EN3cfaSyo49Qt9Qh5Sdn+JkWGQqCsxcifLxfJsWHWXbMqqPjaHf+vXSXbycIGWapDJRXM1sIwqQkmS6uZibDTlZEGo7jpEaYQiNRiZDu0tImSa5G9hrzLAHq145qUnwUSxE9SodZRtQ0lLwrt1Q1swuBexSthctWsTQoUMJCgpi0aJFNvsqisJLL71U7JgJCQksWbKEn376iWvXruHv70/btm2ZOHEiNWrUsG/29xCKojB+/HjGjx9fbN9Ro0YxatSoOzAriaQUEQKRfMk0+Y+ru96qY49Fx8mJNwMCeGr3bhmrWA6QMk1SHrC2kHW4ZnZBbPb1S5fo8/HHlrPtKgr1unRFWVNkc1EI2L0Zeo+CTxZY3nh0UkP/8WSnp5fgLiWlgZRpkrtBaVqwbXrllISCKgsWyc1GUamIGDaMup06WbVgX/7rLz5u21bmobCBXcr25MmTeeSRRwgKCmLy5Mk2+9qjbB89epR27dqRn59Ply5duO+++0hOTmbZsmWsWrWK/fv307RpU/vvQiKRlB1uHuDkhIJA+eIj04WkIxYdrZZsO6oVSCQSib1YW8jaWpSqtGkQCc5eKmNsttFyoyj0fP99i7GKzu7uqD2sbC5uXAI9hsHMlVA0pMZJDdGrISCYzJMnS+O2JRKJpMSYVVkQwqpFWlGp8A4JIWrWTFTOLujy81DUzib9ZcZx29ilbOt0Oot/l5TJkycTHh7O7t27jWUWQF9aoWvXrkyePJmdO3fe9nUkEol92KyZXSCMUTmZLzLttOiI/uPJuXGjjO9CIpFIikelS4dIcK/X2GrNbJNsuwXlvfJzctBkZaG2tLl4Og6ih0PsWnigI3y+AhLOQo0w6D9e79op62lLJBI7cMQzx1GKVlnwDw/XewaFhNyKtS5i8VYUhdSvtxD49liuvrKCwL5DS31eFZm7EsH+008/MWPGDBNFG8DPz4/p06fz008/3Y1pSSSVFoMVSFW4ZnahjOMIgdBqLVuwNy6BajX0Fh2nIvt3TmpE9GqUgGBuXr5s8doyo65EIimOUs/cq/bEObSxac3sAgzZdp/Yto3en3zM9Js3mZaZyfSMDK4nJCD6jjWXdQC7NsHT/wdV/BFjo2HuesTomRAYAjJhkERSoSlNGVV0TVYsuSkQWfBclEKKs6UqC/vnzmVp3bqc+uYbfRLc+hHwUybUi7i1BjSQIy3YJcEuy7ajGRjbtWtn+6JqNbm5uRaP5ebm4uTk5ND1JBJJ6WAoeVM047gqNBwx/FVE/3EoRS3YhSw6onVnlG3LjBYd0X88SjEWHZlRVyKRFIdVd3EHLUBCCHz6TgHnGajAYmx2clwch5cto/Xzz0NKoj5G+9IZ1KHh+A98AfwCYdYqmD3K3F18yCRwdSftx534Rw8kVVqBJJIKg61kZ6WaXdxR8lL1ynbeLeXckqu4xSoLQJMBA6jfrRukJMLny/VejKHhBdnN5Wbh7WKXst2+fXsURTFmIy7sp2/Jz1+r1docr3PnzkyfPp377ruPBg0aGNtPnz7NzJkz6dKli903IJFI7Ke4rJgejQtqYRfOOF6A8r9vEWsOIWatQim6yPx+K6LbUJSHeyDGzEJROyMK4nookA/Sgi2RSEobRxIGmbhPnj1L79WrTWOzC9zF/evX54Hx4+HbdWYlDZVPFsCyPdB9GDzQCQptLhZ2F9feSHfICmRLPkrZKZHcG5RqsrM76Sperx5Rs2ZZ9OQJioig79q1KLs2mJdw/WSBfmOx+zCcqvjaTqgmsYpdyvaff/5p/PvKlSuMGjWKDh06MGDAAIKCgkhOTmbLli3s3buXVatWFTveokWLiIqKokmTJjRr1oygoCCuXLnCkSNHqFWrVrEZzyUSScmwah3SpkH7QFyDQswzjhs48QdKzAhE7FrEA52sWrBTv9xI4NtjzSw60oItkUiKozSyi1vCLBEaENa5My1HjeL0t9/ywAsv0HzQINQeHujy81GuJpkvPEH/enwn2HkJAkMQo2eiOLuYbS46ii35KGWnRFJ+sSa7Sj2zOIC7r0VZ5+zhQYfZsy168jw4aRLiSoLldZ9WAxuXQsf++LV/FH7KJCA/T+9eLkt82Y1dfgEtWrQwPpYvX87gwYNZs2YNjz/+OK1bt+bxxx9n7dq1DBo0iA8//LDY8WrVqsWRI0dYtGgRDRo0QKfT0aBBAxYvXkxcXBw1a9a87RuTSCTmWEuE5t/3WXjrCgqgKppxvDA716Ns/RAlIFgfi1gQk6gUjUmUcT0SiaQEGDYEbxaJe3Q0hlGlTYOHPFBp06y6Tx5csoQqoaGMOXSIiK4dUK+ZDzOGohI6lO025KBWA5vfA6Ej9est8Iin/lkuPiWSCk1JNv0cjr++DURQI4uyLj87m/ysLPMqC4pC80GDcNqxyrK8e3QwfPIrXL+KsiIWpg9BWTkHUhKgFBJmVxYcdsLftWuXVTfvrl278t1339k1jpeXFxMmTOCzzz7ju+++Y/Pmzbz44ot4eXk5OiWJRGIn6munaf+4/hn01h6uJOiF6OvjwMlCxvGixP2st2Dv/FwuMiUSyT2HEAK/3mPg3Uz8eo9B6HSm7pOKgrOHxy259d/1OPWrD6vmwt4vwMW1eDmYcFZfocHJSW4uSiQVDGvJzmwpzmXpFm4fCsK3pkVX8cJVFlTqAqdmRcGjalXr5QzrR+irK/x3A/QO18vHXRv1z4/XhZ2fgk6H2t297G+tnGOXG3lhvLy82LNnj0WF+7vvvpPKskRyD2MoeeMaUl2vaB/4GiXjGox8TR+Lo9PCU5Ph7DF94jNL1AhD6LSg1cpFpkQiuasYamartGmAeaxiQKNGRM2axbUzZwiKiODBSZNM3cVTE01zUORm6+WapcoLhakRppeXxeSokUgk5Y+SxGaXplt4UblmF2p3VM4upq7ihrKF2dkcXLKEiGHDeGLbNnLSrtHsiYGoPTwQWi2KJXn35CS4kgDW3Mtnj4IHOuEZGFiie6xMOKxsP//888yaNYvk5GT69OlDtWrVuHLlCtu3b2fdunXExsZaPK9KlSr8+OOPREZG4u3tbbV4OugTsF2/ft3RqUkkEntQe+DevANkpKE83B0yE+DIfLhxBqqEQ+NxsO6wPsP4rk2m5xbUzFYUFTqfAPYmQmOfAJMuHgEBJs8SiURSmOISNTqCYQPR2dvFYqwiikKbyZNp1KcPfdesQVxJwGnNArhyCdXUD6Gou7gQsHsz9B6lTw5kybXSSa1PhqbIDL0SSXmmNGWRo9hSqA1yTaVLNz+nIDzGDE02uvw8/MPDzTYWNVlZHNm8meNbttBs8GCTKgvKsMmIfkUqzSgKdB0EH8+3HU6zbRnuY6Jv7x9RCXBY2Z4xYwa+vr4sWLCANWvWGLOUBwcHs2TJEl588UWL573yyisEF3yQX3nlFZvKtkQiKQOEwNdQ8karRUHAv+th/2gQhYTpXwsgaqXefejs8VsW7kI1s1EUfebysdG3MpgXYNjllLudEonEEmVRIse1QWvTWMVCFp0zu3fTZEB/OPANqsKePEILrTvB/h2mnjwbl0CPYTBzpblVx0kN0av1WcflOkYisY/UJNi2vKCU1J3Pqm9Nqb6b5bqsKdTWMIbHDHgBv/xcC9WgBEr6RR6cNImoWbMKNhZvlS2M6DceVWAw7PzU1Jvn7DGUdYdN5Z2ru15G2hFOo6jVpeZKXlErLzisbAO88MILPPfcc1y6dImkpCSCg4MJDQ1FZaMOW3S0fudDCMGECRPw9PTE1dW1ZLOWSCRWuXnsL1LnTiJgxhK8mt6nb9TpIDURZdsKuJaMMm0ZZFwwV7RB/3rfaKjRGWathvWLzDKOg8yQK5FISh+rmXttuVWqPXEObczPs+cS2KSJmUXnZkoKZKRb9uRpNMbck+d0nP517Fp4oCN8vsJieS9bWPPwqaiLSYnEJqlJ8FEsRPW6K8q21Uos1uTNXY+/NsWslFd4uH7jICQExSCL1B4o1xNwD6sL364zyy7uFBqOeKCjeenWwvKudWd9OcPEc5CXa1c4jdBo0GRnl8p9VtR1ZYmUbQCVSkWtWrWoVauWQ+fl5+dTrVo1vvzyS3r27FnSy0skEitknzpGndP7SDl1TK9s63Tw0zdw46ppbPbJleaKtgGhgePLEJExKHPXO1bWJiAYxkTflR9UiURy72NrIWst7tGSFUgIgY/BWwfwqFaNsYcP33IVT76IOqgWPmNnooB1T552Fjx5dm2C86fgo/2IsdEoTmqH5KA1D5+KupiUSMojVuWNtfYSxFKXKP66ACefapbDY4CfFixg4Oef06BnT5SWA+GBoaDToqQmmnvkKAp0GYhizS181ya9/Ju1GsbG6BM/6nR6T4Riwmmy09Mdvq/Kxh0POHJxcSE0NBStTCoikZQ9QkBGGrTpBm3b6y06P47UZ9G9UYx7UMZZFJUTdApwLON4QDCMi5HKtkQisYjNjL52LkyFTkdGQgL75rzOF888gyYvj9bPPovy806c/tyr31iM+Rie+Y9ejmUlWvfk2T8aMhPhyYm32p3UMGQSuLqTtneXrLwgkdwrpCbB8hj9s52UlqXaUddvW+fkqzI4V1X/bA2z8JhCNBkwgPrdukFKInw0G2YMBY1G765fVDm2xy38dJzek9FJv+7j/EkICIFZq/TysDCFwmkyU+4N6/+9TIkt27fD888/z6JFi+jatStubm53YwoSSYVFq4snfpQHbrp4EDrw8ili0VGg7ft6F0pbeIchtPko16/eiWlLJBJJsYtZg6Xn1DffkH3tKm1fe82YUZebllzF60HkLDjxkW1PnlMrofsMOLTHzF1ceyPd8coL0sNHIikbSuCSXpqWakcxKNWeIsOs/bw/1L9mRdkuFB5jUrbQ3R3/+vXpu3Ytyq4NKAYrtpsHzF1vWaF2pMqCRgPXr+rPUamg+zB4oJPevdxCOE1puZBXZO6Ksn3hwgVOnTpFrVq1aN++PUFBQSZB/oqisHTp0rsxNYmk3GAx4YcQBPWajOI8HZGfq8+We7NobLaAM5uh0Si9C6WlBaiihibjybl4HllBUSKRlARrSYlsLXCtL0xvEl/Ng6AGrchOS6N+t263EgAlnEWJ/tjCxiKg9oAHZtvlyYOzKzgaNmMNg4ePRCK5I2T++R35n43BeeBHeLY0L09sCWube1pdPOdGgLsu3u7r5ytpnOsKroqpXCtWqS5C0fAYq2ULrybdUrQVRf+wplA7UmXhZrppu0oFgSGI0TNRnF1KRz5WMu5K3Yqvv/4aV1dXPD09+e233/j666/56quvTB4SicQ2hoQfN5MKXKl0OkROFgbxpwBC6CzHZh9ZAp419FnHlSJ7booa2q8Gj2Cyz5ws47uQSCTlHitunVn/xMGKWP1zIWxZr/NVGZwv4lophKBq71jq9MnEtVZL3H18UHZtwKlffVj9Ovy6G9TOeot2UVdxTTZosuz25JHu4hJJ+STv9EF8654n7/RBs2OOWrC1SgLnm+ufC2PL9VujSud8V/1zSTGGx8yey7ahQ9Hk5tKoTx/GHj5MRNcOqNfMhxlDUQkdyvaPIKyJPs76wE39Q62G4a9Co1bmg29cAtVqFOsWTpoFt3BF0ctFKR9LRKlYtrOyskhMTCQ8PNyukl7nzp0rjctKJJUabfoJol4AleayXtFGgEqHUBUo2ir0lm1dvvnJ1+Lgx+HQYS2EdIB/PtJbdrzDoMl48AgGpcB9UiKRSGxhxa1Tfe007R+Hq9dOA48a261Zry0hdDrys7NRO+uXKypFQaQkomx6B6av0NeCtZn00UFPHkfdxSUSyT1PSWKtLeGoldo2CiqVBxSYSEwSoWm1OLu78+8TT+jLFn776a3s4gZ3cf9q+koKRSssNB4Haw9B9AjYuf7W5c4ehyO/FusWTq4Nt3ApH0uEw8r2W2+9RWZmprGU14EDB+jVqxc3btygbt267Nq1i/DwYnaQJRLJ7XP9b+gPPnUaIAr2uPJ0V0m8sIrs7DO4u4cTEjIOlwfmotw8D2c2mZ5/ZhOkHYeo1fqs4yonhCYXxcnFuGtprXyNRCKRGMhMScHT8NzoVruWi5zrCp7iokl/2wtW/QJU7ROK0OlACNToUBn38QWKVgNrfoWbBYvMm5egw8fWXcWPLIH6w/SePPuKWL5NPHl2Ohw2o/MJYG8iNPaRMlIiuRNYkzflCSEE1R9fRA3n99EW1MzOSEzk4NKlPLZixS13cY0GUi24i+dmw4BnrVdYiFoFs9dC84cg7mdzhfouu4VXthKIDruRr1y5ktDQUOPrl19+maZNm/Lll18SEBDAtGnT7BonNTWV6dOn07lzZ5o2bUrnzp2ZMWMGKTKrnURiihUXTUVkolYH4hpQF4Dky5/y66H6nD8/lytXNnL+/Fx+/bUuyVc2IDqsBf8I87HTjiM8qqO7mQ6rPUn/fKGJwPVsHAFjovXPEolEYoGc5NMQWfBcCEsu4bYwLEDbtcsksP2r+kYFVJqr8Ndc2DMEji+DkFpwZiN8Vh/+nAun19h2FTd48tQbCkPioeUMqDdE/zwkXt9eQk8ej8YRMDZa/yyRSBzDRmbxm8f+Iv7J9tw89pdJe1ZqqsnzvY+5BTsjIYH9c17ni5Ej2T93HkKr5eLPPzP6119pMXAAamcnAFQqBeXaFWjfx9Rd3NkFsi9br7CwbxRkJSEGPKvPQzF6JgSG6BVtuGNu4daUakMJRO9Komw7bNm+ePEi9erVAyAhIYHff/+dffv20bZtWzQaDc8++2yxYxw8eJBu3bqh0+no3LkzDRo0IDk5mXfffZd3332X3bt38+CDDzp+NxJJRcSCi6YQgpC+S6mhvIcQOvJyEzh5ajSiiNAVQsPJk6Pw8+2IS/NJKPueuXVQUSOi9BadzF93UeVgFrouvqbXlkl+JBJJMVizYDuC0OnQabWoCmIJFUUBBZRTnxYsKLWgdofQLnDzon4x6UjSx7Nboc0S8AhBtJyBonY18+QpCbJutkRyG9jILJ596hh1Tu8j5dQxvJred3fmd5uYWrDzLFZS0GRloXJyokn//nqZp7kKx1fdcgtvOgEWbIaMiwXu4mf13jj/LLddYeH4Mmg1Cx7xJvWVFQT2HWrer4zdwqV81OOwZdvd3Z0bN24AsGfPHry8vGjTpg0Avr6+XL9+vdgxnn/+eZo2bcrFixfZtm0bH3zwAdu2bePChQs0bdqUF154wdFplRtOnDhBly5d8PT0pHr16rz66qvk5eXd7WlJ7mHSrpzgXFf9M2BUruPjYzh+fChC5JOYtMJM0TYghIbEpOXQ4CkTi454Mh7qD0VRVGRnq9j7FWj869/BO5NUFKRcqwRkJcHhGP1zERy1YFuy9KCAijxTBVqTDRd3ItqtQDxzE57JRDQYjsi5Bn5NTIe0J+mjWyAoit6Dx4InjzVkOE3lQ8o0iWVMZVdR9Mf0CJ0OnUZj3EBUOTkhdDrqd+9GxID+Ruu12tkJodGASkE5/ektj50zG+H8DnDzhdPrYHM9ffv5L8DJ1a4KC4qTsz4TueSu4rBlu3Xr1ixYsACVSsXChQvp3r07Tk76D8yZM2eoUaNGsWMcO3aMLVu2UKVKFZN2Hx8fXnvtNQYNGuTotMoFaWlpdOzYkfr16/P555+TkJDAyy+/TFZWFu+9997dnp7kHiXz6lGSHqtFFSeBEDqSk9dx8qTeiq1SeaBSrSc727bQzc4+i6Kob8Vm67SgqIwJDXW+gexLgoa+gXfiliQVCCnXKhhZSXB8OTQZp0+UaGg+shePv2PJ0jbE48EnSz6+EIT0WkQN9fsIjT5WUb9uFeRpUki8fCvnRGiNiag7bSAv5yKJF+ffykVRfTQu/Q6j/Dj8Vi4KO5M+GtHYb9HxDAw0eZZUbKRMu3OUq/hrIQgpsFKL/Fy9EmvYrBOCmt2nUMt5BkKTV2QDUQ04gdCgIMDJBZwxTWYLKNkp5m7hzSfpE6AVzjXhSIUFTR6KrYRnkjtCiRKkPfbYYzz++OPUrl2b119/3Xhs8+bNRiu3LerVq0d6errFY9evXycsLMzRaZULli1bxo0bN9i+fTv+/v4AaDQannvuOaZNm0ZISMhdnqHkbnLz3F+kfj6JgH5L8Kp7H6B3QarRZw6hyjy9RTsv0ahoA+h02Wi1Wbi72xa67u5hCKElfet8/HKWku42Eb+BM8r6liSVACnXyilWlGqykuCPWKjTy6Q99/wZPAzPdkd5FbECCR1Ckw0qteEw6DSgciL58qcmoTCenhHUrj3LZHPRwIULC2jYYCVBHdaipB3XK9pgV9JHiaQ4pEwrORlJSfy+fDmR48bZFY+blZqKZ6Hnu4Law0JjEdml00FuNoq6IMwF9C7YrvqUiiI3G5wLyTVrG4ihk1DjQp72GokJK02T2bpVRwkbUCiZrQLhg+DP+UXcxR2osHDpgsNJHx2lsiU7KwkOu5E3adKEs2fPkpKSwrlz54zx2wBvv/02b731VrFjLFy4kOjoaPbt22fSvnfvXmJiYuwaozyyc+dOOnfubBTeAAMHDkSn07F79+67ODPJvcDNf75B1NnHzX++Aay4iycuL+IuLrhyZTPBwaNQirpOFqAoakJCxmP8uueYJxWRwlJSUqRcK6cYlGoLbuGlQoEFu127TEJ6LdYr2gWLz/gLczl+fAjxF+aiFXn6TcQiOSdCQyeRl5dgpmjrh9Zw8tRo8nITEc0nml437Th4VCcv/ohDruI2CQiGMdFmMaWSiomUacWTkZTE3pgYMpJM5cfNpCT2xcZyM6mM5EppIgS+/abAM5n6Z4O7dWHZ1XuRXtFGIApKq4LeGi2c9NZrgSBPl0L8Rb1cS7z8EQDJyetNktampu7AyakKycnr+PVQPfNktsnrTZPZqt31GwGW3MXtCZvxCCb7zMky+dcVprIlOysJJa6zXbVqVYQQJCUlUa1aNdRqNc2bN7fr3ClTpnD9+nU6duyIj48PgYGBpKSkcP36dfz8/PjPf/7Df/7zH0CfJOXvv/+2Od7Vq1c5dOgQSUlJZGdnU7VqVRo2bMh9991nV93vO8WJEyd45plnTNp8fX0JDg7mxIkTd2lWknsFbU4SCUEBNPNp5JC7+KVLSwgKGkbDhivNFqaKoqZhw9W4uASjKAo6L19IR/9cCJnEQlJSpFyrWJi4ddodolyMBVulQoCZ9RoUatWaamETUaFatUFcuDDfdi6KyyupEz5VnywNTBaZuae/wdUBV3GwEZstE0VWKqRMKx6DUt2wVy+7lKw75i5u0UptAaGDrESU48vhxhmUKuF6l21XvyLeN4rV0qo1gsfjjCfJV9Zz8uQoo6zy8+tCbu4FkzawbwPRz7c9Ls0nouwbZdtd3CRspiP8s8Ji2ExJKixISp8SKdu7du0iOjqaP//8E61Wy6FDh2jVqhVjx44lKiqKoUMtZLwrRGRk5G0rwdevX2fNmjWsWbOGv/76Sx/3VQhFUfDy8qJv376MGTOGhx9++LauVxqkpaXh6+tr1u7n58e1a9esnpebm0tubq7xtSFBnb2cuqzvHxbggbrABebK9RzSs/PwdnMm2NfdrG8tXw/c3PR9U2/mcO1mHu4uKmr6e5Wo75krN9HqdIT4euBV0Dc9M4crGXm4qFXUCShZ3/jUm+RpdFTzdsHX0w2AmzkaEtOzHOrrpFIRXu1W34vXbpKdp8Pfy4UAL8f75uRouJCuX+g1qH4rN8GFK2dJSlpNaMgoagTqS3bl5WkQimKaXdwBd/HMzDhOnBhOo0Zr8fXtSFLSCrKzz+LuHkZIyHhcXILR6QROTqDz9uOmzo1zig956dnFvvel8Tmx9H6WxufE8H7e7uek6Pt5u58Ta+99RaUkck3KtHtApqWlkKdTc/FcEuhuGvvmnDuNRuPBmWP/UqtmlPFznauDVE0VEnLU+BV6L7JyNVQviMHWaXMRQm8FKuw+WbPmZJydq5lZr1Uqd5ycPMw2Ea21FyU7+yyK2gMaPA2eoYgm41EMi8zrV4zzdc/RmMi0pBw1ap2byVinLt9AUVehNk7G2Gwp06RMK0xZyjQof3It3TeYs+n5eOdojH1v5GhI86vBxQwNhVXw0xdTqeoSSO7lVAz+sDdzNJzLFGhd/HAq1NfweVVpILBQX8PntfAn8OK1m2h1UN3HTW+dVs/AV5PL9aw8buRoqOl/S/m+TgBX3EPwFTp9IrLCFQ38IyAy2uh9Y5BdPj4PExLyLMnJ682UZze3cPz8OhZpt7ZRWJINxGLcxc9sgvRT0Gs/IjIaRaVGaPNQVLdqZp/LFOS4BKJob51meO9zc279f6HQe5+jwatIX3cXFW6W+kq5ZhcOK9sbN25k2LBhDBw4kDFjxjBmzBjjsfDwcD7++ONile1PPvnE4YkWZt68ebz11lv4+fnxxBNPEB0dTYsWLQgICMDV1ZX09HTi4+M5fPgwO3fupFOnTjzyyCO88847NGnSpPgL3GPMnz+f2NjYEp/fdckBAFYNj6RTk+oFbftIz9bgrFI4Pa+HWd/YXo0Z0UYfO999yQFSbubhpFI4Y6Hvc+3DeLVbYwD6vv8zF9OyURQ4N7+nsW+nRfqQgUH3h/LGgBYAPLH8IKev3EQBzi0w79ulcTU+GvEAACM/+Z0/L6YDEF+ob/u39H0frOvH5nH6fAHPrf+d/adTrfZtFlKFrye0BWDq53F8FZdk1rfdm/sQQN2qHvw4pQMAC3f/w5qfL5j1jVq4D52A6j6u/Dq1MwCrf4nnzV0nzfr2eu9X0vMeIqzKXn6Yple2nZ1V5OUmEn9pOdnZZ2nUaLVNd/ELFxaYCesrVzaRlXWK++7bT506MSiKEzpNLlv/Subj//1EbO+mtK5TFZ1zAD3iF3Mh3h+Xn/Zy6vXuxjEM7+eiJyLoF1kTgG7v7OdaZj5qlcK/Ft77Vx9tyHMd9D+dj737E5ev56JS4KyF935Em1rE9tJ7vzzx4S+cu5pl9b1/PCKYd4e0AmDYqt84mnjD7H9peD/b1Q9g7Sh9EOm4T//g4Lk0q31b1vRl+/P6jbeXNv/Jd/9cMevb4S39e1+/mhffvRwFwJyvj7H58CWzvu0W7kMIqOnnzoH/dATgnb2n+WDvWbO+kltImXYPyLT0VP6b+X9M2Aawz9hXdTOdRxM+4PKFAKqf/sko07644s2CxA2AIL5gTCF0KOIyFy4ut7EwVWjYcKXFRaa1TURHc1Eo7T8mNz+fr+IuMyDyVnTc/RfWAwqLjiUVkWnNqa1+hy/8k419De/9wurteaKgTco0KdPs5XZlGpQ/ubZ97Aq2706ly8U/jXLt5Z/SODZ2OV/sTCE+6ta99YnzgXYf0/pENp8VtOnlmh9K2zUc4tbmhFGuubvxdUFbYbn2W6GcEQt3nWbxwAhEZiLKyRVGK7Vnw7F4+RTE1he4iyvqGXhptfq+JqUDgftjEYpi5n1jzUqtV54Hmsm1UttAdHIHbbbeXbz+ML27eOEkaaD35ImYBGp3Rn34Hb8kCRRNNsfn9zV2GXjEF9p9zMSkDF4qaDPINSeqUHg2hvd+dANnDBl9Csu1oz1vef48IOWaQzisbM+ZM4dJkybx9ttvo9VqTZTtpk2bsnjx4lKdoCX27t3L559/Tvv27S0eDwgIICAggPvvv5/x48eTlpbGe++9x969e++qsu3n52exNFpaWppJbFBRpk6dyssvv2x8fePGDWrWrFkmc5SULWpFi7uzE85a/Q54abqLh4ZOxMnJHU3OTX75LZiqV6by6uGWJmPoXAJJykkHNySSUqEkck3KtLtPdlqaw+e4OzuRo9HLHb3s+rRY90nbi0xrm4i2NxfhVi6KvPgjjFm/h/03G+HipGJA5O19jjIf6iljsys5UqaVD5yq+LK4VwTKv+tx2m+qPKv/WoCu5x4IfqSQu/hZnCzWp1YQtXqSl5tgFuZizRptTa6VzgaiBiXiFaNbuC4vA1X9p6BGZ33tbEN74/GoPPWePP8mp5Od74VHGUbOmlZlKAcx+fcQiijqf10Mbm5ufPPNN3Tq1AmtVouzszOHDx+mVatW/Pjjj/To0YPsbJlm3hLt2rWjatWqbN++3dhmiFNfvXo1Tz/9tF3j3LhxAx8fH65fv25WPs0S5c016Z50uXSwb865w1z9eiZZbWOof59+J08IgdDmoVK7oivIkJuXm8CvB+uaCPe2bW9y4cJ8zp+fa/ZeVqs2mEaN1pKXd9miuzgCUn//nGOZT1A7bQ75D00wee8zkpLY8/4qag96kuo1Q6QbeTl3TboXKA25JmXanZdpaZ/NxfNaLP94zMGr2wvGvmmfzUWVOp94r5nU6DdJ/7kukF2K2hWdJg/FyZm8vAR+/dUe2WVbpnl6RhAZeZgrVzaYbCJaa4dbuSiCgoaSsXslqnMTOeMRTbVeE43v/dWt75H3/SwS28yl6cCxJjLt6p6VhF6ZgjpsIe5dXyiV917KtIrD3ZBpUL7kWtIff/Bmp8cYsG07LdpEGvue/PkQHz7WjyHbP6d1VGvjuH9tWE/V914i96XF1HtC7/16M0fD8a2bqPXBBJymvEtgX3270Y38wFfUe2MYKdM/xb37oFtu5P/7ksDXh5Gz7V9cq7qibKxr7mLtHwH9DsO/G2+5i6s94JlM2DNEX8PagNoTMfI68fExJjJKpfKgXbtMjh8fwpUrG03HtyHXGjZcjZ9fBw4erG8it6y1G0dU1Pzf/8Xj4hICheRtjlaFh6vaTA7rUKNW6z15Uvevg6MvoGvyLtXaDzeOeejTTwn+4GWUlxcTOmCoyXuf++NXNH9b//8N7Dv01nt/+QReox+ET38nNbTJrc/JlVMwLBI+/Z0z/g2kXHMAhy3b1atX58SJE3Tq1MnsWFxcHLVr1y6ViVVEunfvzrx580hPTzfGA23ZsgWVSkXXrl3L7LqWPkTVfNyo5mNu3rTUN8DLzfjhLGnfwh96A76ebsYvSEn7Fv6SGvByU1ucmyN9C//4lKSvW+pJarj+F/KHAQ8a47ATE5cXJNeoR506s0hMun13cSG0oNWBAEWlIjcjD7aDc98w6haZr3dwMH3mzsASZfU5sfR+lsbnxNL7eS98Ttys9K2o3A25VmllWmoSLH8L+o+DgODb/qy6uLhQy02DX5H5+bihb/dyM0skpKpSD3F/tFmoi3ULtm2Zps85MZLGjdfi59eZxMRlxk1ErTaDoKCnzNoNm4tKQWx2FVWOfr6FlBGdkx/Bh9NQP+pjVDCg4HPSvD78mAN16xvbpUzTI2WaXKsVxdpn0Dc9iTBfZ6MCBVDFTY1fWgI1vU3VixruEKjKJKVQs5ebmrqeCoF5aaQU6mv4vBbta7iPFABFwbVGTZQ/51gufWWsT13I4m0j4ZiiONltpdZjXa5Z80J0JJlt2ucL8bs5n+teU2+VaVUU0i21AwHuKlDfAM/C0e8U/H9TSCnUbHjvU4q8pcb3Pl1t1heAKxb6FkLKNes4rGwPGTKEmJgYGjVqZHTjVhSFo0eP8uabb/Lss8+W9hxtMnv2bKvHVCoVPj4+3HfffbRt2/YOzsoy48eP591336VPnz5MmzaNhIQEpkyZwvjx42XdxgpGdloa7kBOvgpXC+6WKpUHdevOvi13cXQCnAAd4KQ2Jh108m3Evveg4ciyTPkpkeiRcu0OkpoEH8VCVC9TV+fUJNi23KiEF8Zi3VtDyZuCZEIIoU+oY9Kep1e0iyYSUnuiPGAuu2wtTIuTaf7+jwLg4hJC7ZozTLx/FEWx2l5iakRAq2j9s0RSBCnTShkhCHjsCeg7lID8vFvy5nZwdUdRu1gui+VofWpNFkKXZ0F22d4ovCXXVpms725tIK4p0QaiEWvVFByssuAwstRhqeOwsh0TE8OxY8fo0qULVatWBfS7gCkpKTz22GO89tprpT5JWyxevJi8vDyj67qbmxs5OTkAuLu7k5+fj1arpVWrVnz77bcEBgbaGq5M8fPzY8+ePbz44ov06dMHb29vRo8ezeuvv37X5iS5TbKS4PhyaDJOX2qhgJz0dNzVHqhqtyrILG6aXON2s4sj4OqPq8k8Nw1X/0lU7z/deL6smS25k0i5dg9gTQkHsv6JgxWxZLV7SK9s2yh5Y9IeMRncq5kq2gUIoXVoYVpYphW3yEzc8TJnAj4hPHUENfp9AOg39C21lxiPYLg/5vbGkFRYpEwrRXQ6SE1E2bYcLp1BCQ0v2BQMAZWq+POtoSgITZ5efhWluPrUZgnHBFz4lpCQcXZbqQGyso5z48avBAUNw9enI0mXlxvlWnD1sQitDpWoSp3as1BUzmW7gViayFKHpY7DyraLiwtffvklP/74I9999x2pqan4+/vTuXNnOnfu7PAELl68yMWLF2nRogWenp4On//DDz8waNAgoqOj6d27N15eXty8eZPt27cze/Zs1q5dS1ZWFsOGDWPKlCm3nQn9dmncuDHff//9XZ2DpBTJSoI/YqFOr1vKdiHrkLPQEh8fYyE+p2Tu4gVVdVBUKkSGB7WXp5IyvY7JubJmtuROI+VaKWPDUu0oquuptA+Ba0Jj2VLtHwGRs+D0ukKLT0W/GDWzDKG3qggdIcFjHFqYpqRspVq1oVSt2sM0BAZVkUWmQKezZLmx1m4ZqzWzJRI7kDLt9lC7u+sV7Z2fwuxRoC0kRz5ZALNWQfdhOFXxdWzgQlZytFq9oaNoWawS1KdWbibg4tLLISt1cPVxuLqFkPTHn1w5EkfTQVNxdvcgPzuLY5s34x4QSIMePbjy43xOOs8r2w3EEuCwjJQW7xLjsLJ94cIFgoOD6dChAx06dDA5ptFoSExMpFatWsWOs2LFCmJjY7l8+TIAv/32G61ataJv3760b9+eiRMn2jWf559/nldeecWk3JiXlxdPPfUUmZmZTJo0iYMHDzJjxgybLucSSalQ2Gp0MwGlw2qrpR7sdhcXAhQQGg2K+tbup84ngL2J0NhHLiYlkgqFDUt1SfGo1wiyEs0t1cbYxkJlZWxZhhAoF77BpfbjNGyw0iR7r62FaUjwWH3iHwE5SUf483xval/ueduLTJ2XL6QXPBfCs3EEjInWP0skkjuKZ2AgpCaaK9qgfz17FDzQCffwhvYPWtRKPmom1G0I7VbC/sJlsQSc+Qwaj7Fdn/qxvdByJqhdQJOHkptLUOAQ/Hw6kHi5kEdh9bGg0+FCVWrXikblpEabn4s2TwMCglu2xKt6dX6av4Ably5RpUYNIsePxzs4GEWlQnM9AZ3/7W8gljam2cXtQFq8S4zDynbdunX55ZdfaN26tdmxv//+m9atW6PVai2ceYslS5bwn//8h5dffplOnTqZJJxo3749W7ZssVvZ/vPPP5k1a5bFY3Xq1OHIkSMANGvWzGIpB4nkdshMScETyL6Rg3vVIlYjtSei/UdWSz0YXCsbN15n1bUSARkHd1NlwwDSot6g6oAXjOfrfAPZlwQNfe9eaIREIikHFCQTwiyZkJXYRluWIYDD0Si1HiOo+jD8fNuTeHlloYXpaABcXIKpU3MmitoFoclF5OaB0F/yxolvyHO64NAtCMXb5NmAztvP5NmIXBhKJHcHRcHd11e/YVhU0Tag1cC2ZbiNnml7LDcPvfW7qJVcUWDmSvh+K3QYAtXbw6mVxrJY1OoOboEWFHH09ambTwQnNxj+AFw4DTXrwbrD8NO3uNy4Sp2uU1FcPRC5WbB7M1QJgLY9QafXbxTA2cPDaPzwDgmh3czpODm7os3PRaW+h9zCJXcdh5VtW5XCcnNzcXV1LXaMd999l5kzZzJjxgwzxbxhw4acPHnS7vnUrl2blStX0q1bN7NjK1asMGZHv3r1KgHSnUxSymSlpuIJKB5B5lYjG+6WBlJStlIvfDEuzsFWs4tnZ6v4Y1sWjfvWNztfIpFUHgybe5kpKXg2Kr7diLVkQlYt2FYSCRm4Fgd7n4YOa3FRV6VOrRkoTq4IbS5oCpRq9I4+SsGzBhXOimK09GC5XLFVdE7eJs8G3EObEn8oioDQpo4NKJFIygRnd3cUtRouWfbqM5JwFsXZBVzdzY8Vchf302rNreSu7uDmAXu/gNWvw5MToetUfVtuFjg5w6/fwwMWFPFGY8ArFG6kQdvHIeEs1AhDZGZA28cQyZdQrV4AVy6hVKuBtvdoVEGhAKTse9PMJRz0buEJOxcS7zufOulTqdXLctUXSeXELmX7xIkTHD9+3Ph67969XLp0yaRPTk4OGzduJCwsrNjxEhISaNOmjcVjzs7O3Lx5055pATB//nwGDhxIw4YNeeyxxwgMDCQlJYWvv/6as2fPsmXLFgD27NlDu3bt7B5XIrEHVUYaoOAaWBP+KGo1su5uCYZSD6twdqmmX5zqsJhd3KNxBIyN1j8XQiZCk0gqF4bNPcNzce1GcrMtJxOyZcG2mEioAEUNoV31irRWhQLgBIoOdBpApeP6xYv4GEqBKqZWoJKg1vlSezeoW/uatHvVvQ+vV/aWeFyJRGIZi5UM7CA/O1sf9hZqxTPGQI0wRH4eSm62aXthd/GEsyizVutzWBS2kudmQ04WhIbDro16RXzOaL0SnpMFs1bD/R3g6f+Dgc/fUsRzsmD3Jvh1N7rpH8HomaicXdBkZXHp4EFqPvIIWm9/1KOmo3JxRZeXizZfg6rQRqFll3DD1O+SW7hvgOlzAe4NmhJfP4qABnIz8m5il7K9efNmYmNjAf3ujbWM476+vnYlIKtduzaHDh2iY8eOZscOHjxIgwYN7JkWAH379uXQoUPMnz+f7du3k5SURHBwMA888ACbN2/mvvvuA+D999+3e0yJxAwrCYtUN9PBrSqKk5USFMW4W7q4hRq7pmyfQbbrStxzn6HagDeM7dYSnslEaBKJxC6EIDfhIm5myYRsWLALJxKq0RmOL7tlGWowGjxDYPdnKF0HocnORu0MmnwtRzZv4bf332fwjh1kXzzI7xe6OJQAyEnUoPYRcAqpYdLuLPwI2Q0pD/hZOVMikZQEa0r1zaQk9sXG0rBXL4eUbYQgOz0dj/7j9MnQLLmSO6mh/3hyEi5gYtcu6i7u5gFz15tbyYXQu3f3HnXrGkLolWmAjUugxzDEkxNRiiriTmrEzFXg4saKBx7g2unT5Gfpzwtu1Yqn9++/lSm9FDYK7wh+gabPBXg1vQ+vjXstnyMTnt0x7FK2J02axNNPP40QgrCwMD7//HNatmxp0sfFxYXq1avb9YEcM2YMMTExBAYG0q9fPwDy8/P55ptvWLhwocPlFVq2bMlnn33m0DkSiUNYSlhUKOu40Gktl6C4Fgc/PoVSjLslioJSpTnik1SUp1vcsduSSCSVg6x/T+BWqztErTINd7FlwT67FcKHQK0e0GIauLjfsgxtXArteqHJzuZ1Ly+c3d3Jz8pCpVbTa/VqvIODufLjJ+iczC091hRqAMXvfs6/CI0/vd+kXSaElEjKhhIr1TbITEnBo2FDfdbxoknSnNQQvRoCgsn+cectZVsIc3fxwhbsohQo1MxcqVemC1/j7HHEkV+g+zB0raJQfbHylrt4//FQtTpfjBhB8t9/G09RqdU8OGkSzu7uFjOI3wvoVL7wO+i6+N7+YDKvxR3DLmXbx8cHHx8fAM6dO0dwcDAuLi4lvujkyZO5cOECY8eOZdy4cQA8/PDDADz33HM899xzJRr3dsuISSTWMIuJLFqrNmIyNLZQggKMmS+VXvvR+4nfcrdU1ICi9xjRBDRizUYYO9lS0KVEIpGUHO2NdFBUesW6RidTS3VeBtR/CoI7wImPbrU3Hg9u1WDmML0VyWAZAr11aOm36ISg3fTppJ09i19YmFkWXkux2U6qOtRdg1nZQrCe+NFaOI1EIrn30GRn663D3YfBA51g2zKjskv/8XpFT6XSyyU3D/1JQmfuLm7Jgm3gdBxED4fYtYjWnVEKXUP0Hw/+QeyZOpWqDRvSfMRU1B4ehdzFq9Fp/nz86ta1KrtsuYs7grPOm9pXwVl429UO1pVqnZOfvr2b9PApTzicIM2QcAwgKyuLnJwcsz7+/sVnPnnnnXeYNGkS3333HVevXsXf359OnTpRv77jSaAMZcSSkpJQFKXEZcQkEmsYYiFz8zR4WqpVm3YM+h22Ht9YkPmyoIoXOmGaMAhkDLZEIik7jBl9f/oGrqdCl4IYRp0WTv6lX8g+3P1WbGNetr4kzoFv9Bl/C7toGtwwq1ZHrSi0mzUDJ2dXdPm5JuUJbVmwHUWGzUgk5RCVCgJDEKNnoji76GO01c76bOKFkqAF5OeByslyUjVbFuzvtyK6DoFHeqB5ehpqd3c0WVlcv3QJ5/xkflm0CJ1Gw47Ro43eN3DLXTwqOhqVWm0mu6xhS0G2llfCiZrU3Q1Xu9Q0G6tuOqT5WlC2HVWqPYKhVbT+WXLPoXL0BCEEc+bMITQ0FG9vbwIDA80e9hIWFsa4ceOYNm0a48ePL5GivWTJEl588UWGDx/O7t27TbKlG8qISSSlhWfjCMu1ag3xjfWGwJB4aDlD/3fLGTDwXwh7EpGRrv+BgVtxQKpbX0HDYrK03LgkEsm9S0ZSEntjYshISjI7lpmSYvJcGnjUa6R30ZzSD2KfgbZe0DlQv8D99G3Ys1XvvtnWCx7xhDYeeov2w93hyzMwagZ0GwKjZqDd/i/i0SfJvn4dRVG4+mU08V94kvrlLJPFqsGC7aSqU2r3IZFIyhmKQurXW+ART/2zoug3/lISUFbOgelDUFbO1SvRltzFDRbsbkNgx1kTWaT78iyiTTc+HzaM1z09mefpyeuenmx54gk8q1Xj8ZUrUanVIIRR0S7sLn5zz2pY7cn17QvtCoN11nlT96r+2eyY8KPubv1zYYyKs1ORdoP1WuVr97/SEE6jKxpO4xEM98dIZfsexWHL9uLFi1m0aBGvvvoq06dPZ8aMGTg5ObFp0yby8vKYPn26XeNotVoOHjzIpUuXLFrHhw8fbtc4pVlGTCKxiaLgUj0Yfo81dxUHvbt42nGIWg2RMfpFbE4WfLcZUVCjMSfpFMk7InGrNo3q/e37rkgkkoqHrTjJYrOLO4qi4BpSE1bOuWUVEgKuXzWPhyxswd61Cc4eh1mrEWNjUJyc0GRlcfSzzbgHBNKgRw8URcFZ50WdK1kWLTSWsBV/LT18JJIKSk6W5ZrZBkLDoO8Yy0nVdm2C86fQLd9rzCCOTsuF/Qf478THSI6LAzAq1MlxcXwxfDh9160jrHNnfl+2zKK7eH5GHhzMMnPXFoq3yXNZUBKXcBlOUz5xWNletWoVsbGxPP/880yfPp0+ffrQqlUrZs6cSa9evfj333+LHeOPP/6gX79+XLx40WLdbkVR7Fa2S7OMmKSSYCWzeLH4BqCo1Jazjhu4FgdHFkHH9TBvHPhVM6nRmJVwjfg5WWbJfyQSieS2MMQ9WsKnqr6erT0ZfYty9jiianUu//UXh95/nyo1apgsVkuCtbhskO7iEklFxuhhU1TRBtiwGLoPRcxapc8gXiSpmhg88VYG8X//ZcqVK5zbs8eoaBfl6KZN1HzkEe5/9lmiZs1AZSHUxZrCq1JqUns3qFqbun6XaoKyEiDlY/nE4V/K+Ph47rvvPpycnHB2diY9PV0/kErFc889Z1fpr2effRYfHx9++OEHkpOTSUtLM3lcu3bN7vkYyohZwtEyYpJKgiGzeKqp++bNY38R/2R7bh77y7S/Ia7ouysgtJZr0hbGO0wfBzltObpRM9D6BOizjatU5Knd2JekX2xKJJKKjy138RJRVKk2yKefMvXPhTewDce+T0FotdYz+laroY+HdCqy/14oNjvovvvovXo1UbNm4B0SYqJol8QdUiKRVDIMHjZFk6AZKHAXV7oNQXwVb+4u/uiTbB8+nOS//yY/M5OjmzfTctQovZu4BVRqNY369EFRFK5vX+iYu7iDLuGljVV3cUm5xGFlu2rVqkZrca1atfjjjz+Mx1JTU8nKKj5737Fjx1iwYAFRUVEEBgYas50XftjLmDFjmDt3LqtWreLGjRuAaRkxQ7ZziaQ4sk8do87pfWSfOnarUadDGOKKZgzVZzZrNKYgjbgFFDU0GovAcmy2dJGUSCoXBnfxm7erbFtSqs3iHudASoK+veixU39Dv3HmCnWheMiiC1xDbPbxbdv0G4gvepL25Udmi1WrMYlywSiRSAy4ulv2sCnMrk3w4UyUwBA0I6bqa2yPi+HCiTOsuP9+jm7aZOx6cMkSvGvUuBWXXYjCJQiN8kpTOtnFHcWaHLQlHw3eP9IwUzFw2I384Ycf5rfffqNHjx4MGTKEmJgYLl++jLOzMx999BGdOnUqdowGDRoYFePbpazKiEkk6HSInZ+aujN1fgKiHod2K2G/hazj7VYhvGqgoMDLAaS1iaHqgBeMXaQLkEQicRidDlITUbYth0tnUFo8DAOetRz3+L9vYc0h+O9602Nnj8G6w4iZK1HszOh7ZNMmfnv/fQbv2EFuwgXcf8lC19F+i441d3G56SiR3HkykpL4fflyIseNuzuJWHOz9dnILXnYFMZJjSY7m9e9vHD28LDqLm6Iy+6zdi11O3bkjxUrLMZl322syUFb4TRSRlYsHFa2Y2JiSEhIAGDatGmkp6ezceNGsrOz6dKlC++++26xYyxevJiJEyfSokULGjW6/ZrCpVlGTCIBQAhEaqJ53NDyaGj7mL5WbfX2cGrlrZq0DUYjvENBJ9DptKj2X0XXVtZClEgkJcDNw3oyoQe7wOULluMeB74AyRfNjxlcNK3VpK1ane0jRnBkwwZjiZzC1qG0H3fiXkq3JjcdJZI7j62kjHcEIchNvIhb/3HWc0Q4qdH2Hs2RTZv0GcQLuYv/tGABOo3pOUc3beLqqVNFynjpy4sV9sAprVhrW8kdbR1zFCkjKxYOK9sNGzakYcOGALi6urJ06VKWLl1a7HnNmzc3+eAnJSXRrFkzQkJC8PX1NemrKAp///23Q/MylBGTSIojMyUFT8Nz0b2egnhIIXR6K1LRH4PTcTDrKYhdC85V4b4Z4OwK+bno8vJAqyMnIwPlxrVSW5hKJJJKRKHas35arXkyIUWBroPg4/nm8snWMTBmF1eKZBe/dPAgNR+pRqf58/GrW9eidUh7I93hW5HWGYlEUpjcywm4PvAIWPKwcVIjolejBIZwsJBecXDJEiKGDePxlSv5avRoE4W7cBmvtB934h89kKuvrCCw71CT65Yk87clbFmjbR2TVG4cVrZLSmRkpF1JCexh//79DvVv165dqVxXUjGwWFan0AI3ID8PReVkPa7IUA5n8lJo2RYATb6Wo1u2GsvhpP35i1S2JRKJYxR2F084izJrtXkyIVd3/aagJflk65iB03GwfhHK3PW8GRBA9tWrAARFRNBt6VKiYmJQOTlZtA5ZnbYVi460zkgklQ9nD+uVEVyq1yA7LQ23R4ega9Uepy9XGj1sdH1GowTV5OJPP5Fy/LjxnOS4OL4cOZI+a9bYLOOlvZF+q2xhOUBuRlYeSqRsb9q0iS1btnDx4kWzGtnWrNL2ZCm3l/bt26MoirFsWOHFgBDCbHFQtP62RGKS0bdoPGRoPRg7y3LmXgOn4+DQHnTNH+Kr8WPMyuGUxAokkUgqMUXdxd089MmBiirOudnmtbHtOVaYGmFosrKMijboF7Tn9uyh1sNtIKqKReuQ1alLi45EUukoqlQLIQiKiGBaZiY6jcZ8PV6QjXzf7Dmc3LGDBydOpPmIqag9PIw5Iq6ePEnH119nYny8mVKtKAreISFEzdLX2XZkQ/BeRG5GVh4cVranTZvGggULiIyMpEGDBri4uDh80WeeeYaZM2dSt25ds2Pnz58nNjaW1atXWz3/zz//NP595coVRo0aRYcOHRgwYABBQUEkJyezZcsW9u7dy6pVqxyen6QCY2LBzrccDwkQGoboOwbFRlyR6D8ORe1M79WrzWo3ujdoSnz9KAIaNL1DNyaRSO4EZZJkSAhzd3FrirOt2tj21M0uHBNZCJVaTeT48fpEaOXIOiSRSO4slpRqhCAjMZHfly/n2pkz+IeH62Vk4TKBPlVRObtw7cwZkuPi2DFqFDtGjzbmiDCgqFR0nDfPqlKd+vUWAt8e69CG4N1EWrAlDqfpW716NbNnz+a3335j/fr1fPzxx2aP4vjkk09ISUmxeCw1NZU1a9bYPL9FixbGx/Llyxk8eDBr1qzh8ccfp3Xr1jz++OOsXbuWQYMG8eGHHzp6i5KKStFSOP8egZREy0mGNixGCQhGzFplvfZsQAh5V87Bak/SvjMth+PV9D7qbNyLV9P7yv6+JBLJHaPUSnkVRujM3cULK85FZZCt2tifvYcIqmldds1aZRYTWTgRWvaZk6V3XxKJpEIhdDoyEhLYFxvLtiFDOLx8OQhB3KefsrRuXfbPncvRjRvZP3cuS+vW5dQ33yB0Oqo+NhC+T0Gn1eIfXmgDUQgTRRv08kjodFz9egs84snVr7eYW69LaUOwJGW5HMVgwb4rSekk9wQlciN/8MEHb/vC1tw+Tp8+TdWqVe0eZ9euXXz++ecWj3Xt2pV+/fqVaH6SCkZRC7ai6Beq1hIJGTL3zl6HeKCTSeZebe/RqIJCAchMPIGrJgudt8w6LpFUZkpq8VZUKrCWI2LjEugxTC+rCicTOh0HsSMRMWugaGbxfmNBURCPDkHXMqpITOQYlKBQctLTadirF9WaNbM7EZqtTLvSciORVHyETkfcp5+yY9QoY5KysC5duH7hgkmbgSYDBlCvWzcTi3ebyZOJHDfOYmZxuOVhY7SGl7GXTUnKckkkjuKwZXv06NFs2LDB4Qt9+OGHREREEBERgaIoDBkyxPja8GjQoAHDhw+nS5cudo/r5eXFnj17LB777rvv8PLycniuJeHq1auMHz+eWrVq4enpSbNmzVi2bJlZv8TERPr374+3tzf+/v6MHj261GqOV2QykpLYGxNDhgPWJMM5+VlZ5i6a9iQS2rUJPpyJEhiCbtQMmLse3agZaH0CQFFQVCry89Ts/Qp0zre/+ymR3EtImeYYJbV4C50OdFrLcdYFm350GwI7zsKoGfq/R81AvPgGQqfj/LFTaEZMhbnr0YyYyslfDqPTajm9cydHdv9gcixu1x7OHziAu68vUbNm0W/9eqJmzTR19bSCYfGps7D4lJYbSXlByrWSIQrcxE2UakWh2aBB/LlqlZniHBQRQZ+1azmyYYOJxfvLkSPxDAri8ZUrUalN7X2FPWzKaxy2RGIJhy3bc+bMYeLEiTz88MN06tTJYtmul156yey8kJAQIiMjATh69CgNGzYkMND0R9vFxYXGjRszatQou+fz/PPPM2vWLJKTk+nTpw/VqlXjypUrbN++nXXr1hEbG+voLZaIJ554ghMnTjBv3jxq1arFt99+y7PPPouTkxNjxowBID8/n0cffRSADRs2kJWVxeTJkxkyZAhff/31HZlnecVafUhb1qSbSUnsmz2bqBkzzF007U0k5KRGCJ3eEg6gKDh7eBh/CHQugez7GhrGyt1PScVCyrQ7iKICa7Vnd22C86cQH+2HMdEoajVCq+XyX3/xZZceJMfF6eVSobjHZoMH03fdOm4mJ3NgwQJuXLpklsQx9cuN5SruUSIpDaRcKxlCp+P35ctNlGpnd3ecPTy4dsbcaPHgpElkJCSYlepKjovji+HD6bN2rc3M4hJJRcJhZfuHH35gzZo1ZGRk8Msvv5gdt6Zs9+7dm969extfz5o1y2KCNEeZMWMGvr6+LFiwgDVr1hizlAcHB7NkyRJefPHF275GcVy+fJkff/yRjz/+mKeffhqAjh078ttvv7Fp0yajAN+6dSvHjh3jn3/+MdYq9/Pz49FHH+XQoUO0bt26zOda0bCmhBtwdndHUavNLdh2JhLS9RmDSlGRunMLgW+OkgtTSaVAyrQ7jKJAQAjMWmWeQ8JJjXhyIkLtwor77ycjIYEpKSn8/PbbekUbzOIej27ahG+dOvokQzNnWM/cKxOhSSoRUq6VDEWlQuXkZKZU52dnk5+VZRqDDUaL90/z51t0FT+6aRMpx4/Ta/XqEpUatIatUBdbxxzBVsiMDKeRWMPh7aPnn3+e+++/nyNHjpCbm4tOpzN52FNm6+OPPy4VRdvACy+8wIULF4iPj+fnn38mPj6eixcv3hFFG/S7oAA+Pj4m7T4+PsbyZAA7d+4kIiLCKLwBunTpgr+/P99+++0dmWtlIz87G6HRWLZg20oyVJAETQkMQafTgVZrcWEqhaukIlLZZVpJwlZuG5UKug+Dr+JN3cW/ikd0fZLtw4eT/PffZF29anmBW3Q4e5IMWcBaYiAp6yTlnYok1+6kjBI6nXliMwAhOLp5My1HjTJxCbdl8TaQHBfHr4sWoXJygk4BdssnW9gKdbF1zBFshczIcBqJNRxWti9evMhrr71G06ZNcXZ2Los5FcuHH35Ibm6uSZtKpaJWrVo8+OCD1KpVC1URN5QjR47www8/lMl8atasSdeuXZk3bx7Hjx8nIyODzz77jN27d/P8888b+504cYJGjRqZnKsoCo0aNeLEiRNlMrfKjrO7O1qNBtFvnLlCXSgeUhRZ4Gq3/4t49Emyb9yw6dIkhaukIlLZZVqZZBy3B5UKERiCGBsDc9cjxsZw+eJlVtx/P0cNpbqsLHBNhrmNJEPWFqVS1knKOxVJrt1pGaWoVESOG2cmcw4uWYJ3jRomMdhWLd5F8AsLQ5efB9evltm8S4rcXJSUJg4r24888ggnT97d0iCffPIJtWvX5qWXXuLnn3827lYWJTExkVWrVtG5c2fatGlDWlpamc3p888/JygoiKZNm1KlShWGDBnC4sWL6d+/v7FPWlqaWYw76N2Trl27ZnXs3Nxcbty4YfIo75T1rmzhOpAqZ2eoWh1hyYL9/VbEz/+FqtXRPD3NmEjoyO4fOL1rF+6+vjJRh6RSImVa2ePs4WHy2lBWZ29sLF+NG4fi5GTqLl6ApQWuAZlkSCKxTlnJtXtFppXV2kpRFLxDQui1apWJzEmOi+PLkSOJGDaMifHxtJsxg+ZPPknqiRMWlXMDhg3B3IQLpTrP0kJuLlZOyur743DM9rx58xgxYgQuLi507tzZokDy9/cvjblZ5eDBg2zfvp2lS5fyzjvv4OzsTIMGDQgMDMTV1ZX09HTOnTvHlStX8Pf3Z8SIEXz66adUr179tq8thDBxlVcUBZVKxciRIzl9+jQbNmwgODiY7777jkmTJuHn58fgwYNv65rz58+/Y4ne7hQlSXhmDYsL1oJSE9cvXaLPxx9z8N13eWD8eHSt2lsshZN97RoH33nHYiIhiaQiI2XanafwZqBOo9G7sBbUqjVm+1UUui1ebNE6VDjJUN2OHfljxQqZZEgiKcSdlmv3ikwrLo/N7aCoVEQMG0bdTp3MEpsZlPGo6GhUajU6jQZFpaLXqlVmZcEKbwim/bgT91KdpURScsrq++Owsv3AAw8AML7gy2UJe+K2b5e+ffvSt29f4uPj+f777zl8+DBJSUnk5ORQu3ZtunbtysMPP0z79u1L1d193759dOjQwfg6KiqKyZMns2XLFuLi4mjevDkA7du358qVK7zyyitGAe7n58f169fNxkxLS6NmzZpWrzl16lRefvll4+sbN27Y7F+eceSDbu+Ctef775N15Qor7r+fBydOpPmIqag9PNBkZXFk0yb+3bmTh197Tf8jYSVRR2kl15BI7jWkTLuzFN4MvHbmDP7h4Tz82mvkpKWZLkoLuYtbqkl7dNMmrp46xdP7999a4DqQZEjKNElF5k7Ltcoi0xSVylypdnIyypzLcXF83LYtIw8cILhVK6vKuWFDUHsj3eE5SNklKW84rGyvXr261FzThBCcOnWKa9eu4e/vT4MGDRweu06dOowePZrRo0eXypyKIzIykt9++8342tvbmy+//BInJyeaNWtm0rdly5asXLmSrKwsPDw8aNSoEUeOHDHpI4Tg5MmTNmuLu7q64urqWro3Us4p6YJ1x6hR7Bg92qRMjkqt5tElS8i9eA73YS0sZhz3aBwBY6P1zxJJBULKtDuD2t0dodOZbgYCKAqPTJ1qVlYH9O7iEcOG8fjKlWYldFRqNQ9OmoSzuztpP+7EP3qgQ9USDLHZDW8zYZBEci9yp+VaZZJpiqKYKdWFKVwZoTjl3BbWlGopuyTlDYeVbUO5hNvlgw8+YPbs2aSkpBjbqlWrxqxZs3j22WdL5Rplgbe3N/fff79JW+3atdFqtcTFxdGiRQtj+++//061atXwKHBz7t69O59++imnT5+mfv36AOzZs4erV6/So0ePO3cT5ZjSWrAWVrRN3JmsJBIyxO9IJBUNKdPuDJ6BgWQkJpq5VNrK3GviLt6hA3989JF165As4yWRGJFyrewprFTbojjl3Bp3QqmWidAkdwKHle3SYMWKFbzwwgs8+eSTDBo0iKCgIJKTk9m8eTMvvPACzs7Od8xSXRr06NGDWrVqMWDAAKKjowkODmb37t188sknJjE8AwYMYN68efTv35958+aRlZXF5MmT6dmzZ6Wr21gSnD08ynTBmq+opWuSRELlkWklyRFREpw9PXHz9WVfbKzZZmBxmXvLqiatNeTiU1JRqSxyrTQpmhPndrBXOb+TSEOK5E5gl7IdERHBhg0baNasGc2bN7f5A68oCn///bfN8RYvXsyECRNYsmSJSXuvXr0IDAzkrbfeKlfKtre3N3v27GH69On85z//IT09nbp167Jo0SJeeOEFYz9nZ2f++9//MmHCBJ588knUajX9+vVj8eLFd3H29z4msdlaLftiYspkwSpdkyQSPZVFppVlMiEoJLtu3gSwXHe2mNhsgJTjx/GqXt1mqEtpIRefkopKZZFrpYGlnDiyuoFEUjLsUrYjIyPx9PQ0/n27X7hz587x2GOPWTzWs2dPli1bdlvj3w3q1avH5s2bi+1Xo0YNtm3bdgdmVDGwlFm8PCxYJZLyjpRpt4dJXomzZ+m9erXVzcDiYrPtCXWxhkwmJJHcQso1yxS2YFvKiRM5bhzeISHltsqB9NiR3E3sUrY//vhj49+ffPLJbV80ODiYX375hc6dO5sd+/XXXwmWX4ZKj8XY7ILM4ndjwSqRSCT2YC2vRFjnzlY3Aw21avuuXUtY586lm7lXeuxIJOWWsg51MbNgW8qJA/y0YAG9Vq0iYtiwcqlwS48dyd3E4W/MM888w7lz5yweO3/+PM8880yxY4waNYo5c+YwY8YM/vrrL5KSkvj777+ZMWMGc+fOLVcu5JLSx2psdiHrtUptvk9kWLC2eOopJsbH027GDJoPGUK7GTOYGB9PxNChNhescudTIpHcLtbyShxcsgTvGjV4fOVKM/mlUqsJf/RRAH3m3lkz6bd+PVGzZtplTTJYr3XSei2RVCgMoS43k5JKfWyh05GRkMC+2Fi2DRlCclycRdkFoNNo2DFqFBlJSfoyqxKJxG4cVrY/+eQTkwzihUlNTWXNmjXFjjF9+nRefPFFFi5cSGRkJKGhobRq1YqFCxfy4osvMm3aNEenJbkHyUhKYm9MDBl2/kgU3mF18/Ozmlnc7gVrdLR+wRodbdeC1bDzWZaJkiQSSQVGUXDz9bUouwyJGpsPGcKEs2etbgYqisLVr7fAI55c/XqLfSVyCqzXOmm9lkgkxVDY+2Zp3brsnzuXo5s2EdCokUXZZUCn0fD7smUIne4Oz1giKd+UKBu5tR//06dPU7VqVbvOf/vtt5k2bRoHDx4kLS0Nf39/Wrdubdf5kvJBccmHrMUI2YrNtjezOGC11ISMYZRIKhd3LOu4uzsqtdpyXgluJWrstnTprUSN1urOlnGoi/TkkUgqJ5a8b2xVdClM2tmzqJycQCZLk0jsxi5l+8MPP+TDDz8E9IrykCFDcHd3N+mTk5NDfHw8TzzxRLHjrV27lp49e1K1alWzmoXXrl3j66+/Zvjw4fbeg6ScUWyMUDGx2RYzi1tZsFoqNSFjGCWSykVZZx03kJ+djU6jsSq7QL9heG7PHmo98gjzPD0dqjtbmsgYRomkElLgfVO0DGFxFV0M+IWFodNq4R50JZcbiBJ7uFOb74Wxy408JCSEyMhIIiMjEULQsGFD42vDo0OHDrz55pt2ZRIfOXIkZ6zsnp07d46RI0c6dheScoNdMULFxGbDrcziOWlpzPP0JDkuzu4s+VIgSySSMkEIctLTiRw3zqrsUqnVRI4fT056usN1Z2VstkQiuR2set/Yse4yyK7STJBWmjJNhgJK7KEs8yBYwy7Ldu/evendu7fx9cyZMwkLCyvxRW0lV0hLS8Pb27vEY0vuXSxZsHutXMlP8+dbjM22J7N46smTDi9YpUVHIpGUBc4eHmSmpBDQsCG9Vq0ySzRUVHY5Skm8cuTmokQiMWDL+8bedVdp1tuWnoaSyoDDMduFy4AZyMrKIjExkfDwcKtfwp07d7Jz507j67fffpugoCCTPjk5Ofzwww/cd999jk5LchexxyVDCOFQjJC9sdma7Gyr85KLTIlEcicoGhqDohAxbBh1O3WyWsbLluwqTeTmokQiMVLI+6ZoGcLC6y5bJQjvFNbWcHJtJ7GHu+Eubg2Hle233nqLzMxMoqOjAThw4AC9evXixo0b1K1bl127dhFuYcfs1KlTfPXVV4A+7vvAgQO4urqa9HFxcaFZs2bMmzevJPciuUvYEw8pdDqzLJfFxQg5EpttCbnIlEgkZU3h5I7XzpzBPzxc/+MeEmKsiqBSqx2SXTKJo0QiKStsed8c37qVZkOH0qBHjxLJrtLE2hpOru0k9nCncrXYg8NbVCtXriQ0NNT4+uWXX6Zp06Z8+eWXBAQEWC3bNXHiRM6dO8e5c+eoVasWO3fuNL42PE6ePMkXX3xBkyZNSn5HknsORaVC5eRUohih24nNlkgkkrLA2cPDcvmcjRvZP3cuS+vWJe7TT0EIrp4+7bDskqW8JBJJWaHJzkZRqYgYNoyJ8fFmZQgb9OiBolKRHBcn110SSSngsGX74sWL1KtXD4CEhAR+//139u3bR9u2bdFoNDz77LPFjnHu3DnHZyoplzh7eCB0OnRa7W3FCJUkNlsikUhKExN38QKLdlHLEOjr0e4YNYq6nTrhGRhY5rJLulVKJBJHUVSqYr1v5LpLIrl9HLZsu7u7c+PGDQD27NmDl5cXbdq0AcDX15fr16+X7gwl5ZLCi9KgiAgUlcpihl5DjFDzIUMs7rBGDB1qM75RLjIlEsmdwKSSwtCh6PLzzUJjCqPTaPh92TLcfH3LfG4yC69EIikJiqJIC7ZEUsY4bNlu3bo1CxYsQKVSsXDhQrp3746TkxMAZ86coUaNGqU+SUn5wlIM4wMvvIB3SEipxwjJ2B2JRGKgrBKiFK2k4OzhgXr9eovJHQuTdvYsKrUatbt7qc1FIpFISoqzh4fFdmnBlpRX7qVEaNYoUYK0xx57jMcff5zatWvz+uuvG49t3rzZaOWWVD4KxzAWVah/WrCA4Xv2FJuh9/Jff/Fx27aMPHCA4Fat7uLdSCSS8kZpJkQxLEotVVIoLrmjAb+wMHQazR3LPC6RSCSWKFoxQQhxT1ixpXei5Ha5lxKhWcNhZbtJkyacPXuWq1evUrVqVZNjb7/9NtWrVy+1yUnKF56BgTZjGNd26sRLly7JGCGJRHLPYrYotVBJoXByx6Llcwyo1Goix48nJz39zk1eIrlDlAdrkkSPrYoJd7KUlyWkd6KkMlDib1nVqlURQpCYmIimYKHRvHlzAgNl9tTKiLOnJ26+vsXGMP723nsInU7GCEkkknsOk7jsIUM4MG+e5UoK6JM7eteoweMrV5rloiic3DEzJeVOTV8iuWMYrEk3k5Lu9lQkNiiuYoLQ6WSYi0RSxpRI2d61axf/93//h5ubG7Vq1SIuLg6AsWPHsn79ervGOHbsGIMHDyY8PBxXV1f++OMPAKZPn87OnTtLMi1JGZORlMTemBgyCv24Gq1AN2+iUqvti2F0cgJFkRZsiURyT2CtjNfemBir7uKFkztOOHvW4eSOJUG6XEokEnuxFAJjwFAxISMpCU9pJJNIyhSHle2NGzfSo0cP6tatywcffIBOpzMeCw8P5+OPPy52jO+++46WLVty/vx5hg4dSn5+vvGYs7MzH3zwgaPTktwBiu5kF83Oq8nNtS+GUasFIe7ElCUSiaRYrIbAFHIXL2q9Bji6aROr/u//cPf3Jyo6mn7r1xMVHV1m7pky67jkdrC0YS6puFgMgSnEnayYIJFUZhxeDcyZM4dJkyaxceNGnn76aZNjTZs25ejRo8WOMXXqVAYPHswvv/zCrFmzTI61bNmSP//809FpSe4gFq1AGzZwZMMGq4tSuBXDWJJFqLToSCSSMkFRbIbAFOcu/uCkSTi7u3P19OlSC42R8k5SFkjX78qDolJZDYEpjKyYIJGUPQ4nSDt79iw9evSweMzT09OuOttHjx5l/vz5AGaLEl9fX1JTUx2dluQOYs0KdHDJEiKGDePxlSv5avRok2OFYxhLshCVSTQkEklZ4OzubjMExuAu3nfdOsI6d7ZaSUFTkKG8NJDyTiKR3A5Cp0On1cqKCRLJPYDDynb16tU5ceIEnTp1MjsWFxdH7dq1ix3D39+fxMREi8dOnTpFsNzNv2cxJELbFxtrZgUyLEr7rF1L3Y4d+WPFCouLUolEIrlnUBR0Go3NRenRTZuo+cgj3P/sszYrKUgkFQ2Zdbz8oqhURI4bJysmSCoE5VkWOaz5DBkyhJiYGPbs2WNsUxSFo0eP8uabbzJs2LBix+jTpw/R0dGcPHnSZIzLly/z1ltv0b9/f0enVWZ88MEHPPbYYwQGBqIoCv/f3p2HRVW2fwD/HmCGZVhH9kBcAQUxl0RIRRTMpUxFySX3Msssy9z6lWCaS5pZpklvqGgqivueorgFllq+LihaiUFuoIAr69y/P3w5Mc7CDDAwwP25Lq7LOXPOc54zI1/OM/Msmzdv1rjvnj17EBwcDJlMBgcHB4SGhiIzM1Npn+TkZAQFBcHS0hJeXl5YsGABqBaMX9Z1IrQL8fH4T/v2yPnzT4RER+s9hpG7TzJmWJxpT5XNNPzvplTbEBjffv0gCAKvpMDqldrS9ZxzTZUgCLBxd0ff2NhqWzGB7+GYodSWLFJH78Z2dHQ0goODER4eLq6p3atXL7Ru3Rrt27fH9OnTyy1j3rx5cHJyQkBAAAIDAwEAY8aMgY+PD+zs7BBtRN3n1qxZg+zsbI1d50v9+OOPGDBgALp27Yrdu3cjLi4O7du3R35+vrjPH3/8gZdeeglubm7YvXs3Jk2ahJkzZ+LLL7809GVUir4Tod0+dw7XDh0CiPS+KeUJgBgzLM401SW+Tn/3nU43paU5xispMGZcONfUE0xMEPD663g/Pb1KV0zQ1KjWdA/HjXBWn+ndjVwqlWLHjh1ISkrCwYMHkZ2dDblcjrCwMISFhelUhp2dHZKTk/Hjjz/i4MGDkMvlkMvlmDBhAkaMGAGpVKr3hRhKcnIyTExMkJ6ejjVr1qjd5969e5gwYQKWLFmCt99+W9zet29fpf0WLlyIBg0aID4+HlKpFN27d0dWVhY+//xzTJw4Eebm5ga9looonQit7PjsJmFhaDN2rE5dk/imlDHjUl8zTWJlpTS5Y9lMu7BhAzJTUtAvLg6Nu3fXOC67KvHNJzMmtbmLJlB/c00XgokJbNzdq3QIjL7zSvA8FKy2kFhZVXmZeje2S4WGhiI0NLTCJ5ZIJBg9ejRGjx5d4TKqg4kON1ibNm1CSUkJxo4dq3W/ffv2YcCAAUofJgwePBjz5s1DSkoKunbtWtnqVilNazTqOhFadplhAowx41DfMk3sLv7oERQKhcZ1Z8+vW4fsS5cw6tixahmXzTefzJiUdtH06du3Vja261uu6UsQBNw6dw6rOnfG6OPH4da2bU1XiTGjonSvUFwMIqqyv/01MlvViy++iOXLlyOrCseJ1KSTJ0/C19cXcXFx8PLygpmZGZ5//nns27dP3OfRo0fIyMiAr6+v0rG+vr4QBAGXL1+u7mqXS9MajaUTobUaOhTv/fVXlXZNYozVvLqSac8OgVEUFWldd/bmb7/h5/nzAYDHZTNWx9SVXKsM7m3ImKpnh5YdnTULD/75B6RQVEn5Ff5muzLc3Nzw0UcfYdKkSQgNDcWwYcPQv39/2NjY1ER1Ku3WrVtIS0vDp59+ii+++AJubm5YtmwZ+vbti7Nnz8LPzw+5/5vt0d7eXulYqVQKKysr3Lt3T2P5BQUFKCgoEB/fv3/fEJehQtsajRfi45GVmoqeX3+NkOhomJia6vUtEHehZMx41fZMU9ddXGJlBbN163Red7a2TYbEGNPOkLlWE/dphujuylh9o25oGQCcmD8ffWNjEfD665UeRlYj32xv3rwZd+7cwQ8//AAzMzO88cYbcHFxQUREBLZs2aIUWNWFiFBcXCz+lJSU6HysQqHAw4cP8f3332PEiBEIDw9HQkICPDw8sGDBgkrXbd68ebCzsxN/PD09K12mLspbo5EnQmPMeNXnTJM5Oal0Fy/63zrYvO4sY7WXseZadd6nle3u6hIQwB8MMlZBmobLAoCiuBg7x47Fg5s3K/07VmOLHltbW2PEiBHYs2cPbt68ia+++gr37t3D4MGD4eLiUu31OXr0KCQSifijbh1xTRwcHAAA3bp1E7dJJBJ06dIFFy9eBPDvp6R5eXlKxxYWFuLx48eQy+Uay58xYwby8vLEn4yMDJ3rVhmCDsvh8ERojBmneptpggALe3vV7uJEuLBxI9qMHatTpjHGjI+x5lp13afp0t2Vv/FmTDeahsuWUhQX48yKFZXuTl4j3cif1aBBA7z44ou4fv060tLScPv27WqvQ7t27XDq1CnxsT5d2v38/DQ+V7qchEwmg6enp8p4n7S0NBCRyvigsszNzWtk9suyazQ++6kPT4TGmHGrr5kmsbSEiZmZ2u7iNTG5Iw+ZYazqGGuuGfo+TdNKCsDT7q6RW7fCu08fg03wxFhdI5iYaB0uWyrnr79gYmpaqXNVqLFdUlKCX375BZmZmUprE5YaMWKETuX8+eefiI+PR3x8PFJTU+Hi4oLIyEgMGTKkItWqFBsbG7Rv375Cx7788suIiopCYmIi+vXrB+Dpp6BHjx5Fly5dxP169eqFHTt24IsvvoBEIgEAbNy4Efb29ggODq70NRhC6RqN2pbD4e6WjBmfeptpggBFcbHa7uKlkzv2W7MGjbt1w2/ff2/wTONZxxmrOvU119QNjSnVcuBANOvZEw9u3MCZmBjc+/NPyJs2fbqMm7t7lS9byFhdQApFucNlgf8NLSspqVSDW+/G9m+//YYBAwYgIyNDbR92QRDKbWwvXrwY8fHxOHPmDOzs7BAREYGvv/4aXbt21Wn5hup0+vRppKenizOnnzx5EgDg5OSEkJAQAEDbtm0RERGBcePG4d69e+KkG7dv38aUKVPEsqZMmYJ169ZhyJAheOedd3D+/HksXLgQn3/+uVGtLf6siq7RyN/oMGZ86mqmieMYHz6EQqFAu7fewon581VuTC/Ex+PulSvVtsQXY8zw6mquARCHxhydNUslz1wCAtBvzRqcX79epbdOVU7wxFhdUjrUonS4rLp7BeDfoWWV/f3Ru7H99ttvw87ODnFxcWjZsmWFgmfmzJno27cvPv30U/Ts2VP85NAYffvtt4iLixMff/nllwCAkJAQHDlyRNweFxeHGTNmYPr06bh//z7atWuHxMREtGrVStynWbNmOHDgAD788EP07t0bTk5OmDVrFiZPnlxt11NRFVmjkb/RYbXZg5s3cSYm5um3A3XoA6O6mGn0v/WzS7/V8XzxRbzw9tsah8AETpoEiaUlstPS8J/27XndWcYqwJjGBtfFXCulbWhM4KRJePDPPyoNbeDfCZ4ad+8OG3f36qouY0br2bW0Aeg0XLayH8Tr3di+ePEiEhISxE8KK+LOnTuwMqKQ1mb16tVYvXp1ufvJZDJ88803+Oabb7TuFxwcLH7iWhvxRGisvnh48yaOzpoFn75961Rju65lmrpxjBc2bEBmSgr6xcWVOwSGM40x/Tx7w2oMY4PrWq4p0TQ0RhDg/9prODFvXrkTPIXwFx+snnv2Q/myQy3KGy5bWXo3tr29vSu9fmBtaWgz3XB3ccZYTdC2bMf5deuQfekSdxdn9Y4he+Vou2HlrspVq7yhMRJLS0isrHSf4Ilzj9VD5U0uWDrUoiLDZXWldzJ+9dVXmDdvnspMjeWxtbXFmTNnADyd4MLW1lbjj52dnb7VYjWI18xmjNWE8pbtuPnbb/h5/nwAwFyZDLfPneOGNqvzSnvlPLx5s8rKLHvD+nXjxjg2Zw4ubNiAY3Pm4OvGjXHuxx8rvTwO+9ezS3yd/u47sbtr6dKFRf/rmaPrBE/g9bhZPSOxstI6uWDZtbSBp5OoGuJeQe9vtt99913cunUL/v7+cHd3F9ckLCUIAv773/+qHDd58mS4/a8xNnnyZL7hqYX4G2zGmDHRedkOMzO1E3oyxsqn6w1r6dhgvr+rHH2GxmRfvlwtEzwxVpsoDXUpKcHR6Gidh1oYYmiZ3o3tdu3aVShIo6KixH9H89iRWoknPGOMGROdl+0oLjb4EoX8YSSr7Z6d8KyiN6xCJdekrc8qNDTGxMTgEzwxVluUHeqSl5mJfqtW1fhQC70b27pMQFGebt26Yfny5fD19VV57sqVKxg/fjwOHz5c6fMwxlh56uqs4/WBrst25OfmGrwu/GEkqw3UzSCubsIz/K/RV6EbVlZhug6NCYmKwlyZTFxJwRATPPEHiKw2UTs2WxDQZ9myGh9qoXdjuyocOXJE4yRr9+/fx7Fjx6q5Royx+qquzjpeHwiCoNOyHdlpaTVYS8ZqnqYZxDUtm1eZG1ZucFdcRYfGCCYmVT7BE3+AyGoTtUNdiHBh40a0GTu2RodaVKixnZubi82bN+PKlSvIz89Xeb68JRUAaAyA5ORkODs7V6RajDFWpYxpHVmmnmBiUu63OobuQs6YMVM3g/gL774LmZOTytjgJuHhyPv7b6O8Ya0PKjM0RhAE3Dp3Dqs6dxa/8WasXhAEWNjb4+isWSr59MuSJQh4/XW88sMPKuvRV9dQC70b21evXkVwcDAKCgrw6NEjODk54d69eyguLoaDgwPs7OzUNrbnzZuHefPmAXgaCKGhoTB5JpQLCgpQXFyMd955p4KXwxhjlWeM68gyzQzxrQ5jtZ22JW8cmjZF427dlLdrWbfZGG5Y64OqGBqj7wRP3F2c1XYSS0uYmJmp7RVy+9w5bB8xAv3WrEHj0FD89p//GGQtbW30bmx/+OGHCAwMREJCAmQyGfbu3YvWrVtj48aN+Pjjj5GQkKD2uODgYEyePBlEhM8++wxDhgyBh4eH0j5SqRQtWrTAK6+8UrGrYYyxSuJ1ZGsn/laHMWUaZxAXBPhFRqo0qrWt22wMN6z1QU0MjeHu4qzWEwQoios19gq5EB+PrNRU9F25EiHR0TAxNa3WD+X1bmz/+uuviI2Nhbm5OQCgsLAQpqamGDp0KLKzs/Hee+/h559/VjkuJCQEISEhAJ6GyZtvvgl3d/dKVp8xxqqGtm+BTsyfj76xsQh4/XW+oTRyhli2g7FaR0u3Sk2N6vLWba7pG9b6gofGMKYbsRfiw4dQKBRae4VkpabC2tUV+Tk5WOLlVa0fyut911hQUABbW1uYmJhALpfjxo0b4nP+/v44e/ZsuWVERUVxQ5sxZlR0WUf2wc2bvF4zY8zoaetWqbFRXWZstomZ+u9iyt6wzpXJcPvcOW5oG0DZoTED1q1DSFQU965irAxSKPDgn39wdNYsbBk6FKe/+07sFfJsfpXtFfIoK6vaP5TX+5ttb29vXL9+HQDQpk0bLF++HOHh4TAzM0NMTIzOjeg//vgDq1ev1jjJ2s6dO/WtGmOMVYyWb4FK8TqyjLHaoujJE83dKrVMeKbr2OzstDTuRWJgPDSGMVWaeiFe2LABmSkp6BcXZ3S9QvRubA8ePBhnz57F8OHDMXv2bLz00ktwcHB4uoQEEeLi4sot49SpUwgJCYGXlxeuXLmCgIAA5OXlIT09HR4eHmjWrFmFLoYxxipC27dAZfE6sownE2K1AhHyc3M1dqssbVQ/Ozb49rlz2DF6NPrFxaFJWJhR3bDWV/yhBmP/0tYL8fy6dci+dAmjjh0zqglTKzRBWqmOHTviwoUL2LdvH/Lz89GtWzf4+/uXW8bUqVMRGRmJ2NhYSCQSxMbGom3btkhOTsaQIUMwbdo0favFGGMVV87kGqV4Hdn6QVuDmicTYrXFo6wsOPr4qJ1sKys1FZknT2ocG1w6UZcx3bAyxuo3iUxWbi/Em7/9hp/nz0dIVBTmymRG0SukQutsl+Xp6Ylx48bpdcx///tfTJ8+XVz6q7QbeXBwMKKjozF9+nS89NJLla0aY4xppc/kGryObP3BDWpWFxQ/eaLTZFvaGtXcjZkxVtPK3qsB0K0XopmZ0cyxU6G7xqKiIqxYsQJjx45Fjx49cPXqVQDAxo0bcenSpXKPFwQBUqkUgiDA2dlZHAMOAB4eHrhy5UpFqsUYYzqr6OQa/M0OY8zYSaysxH+XN9mWIAi4fe6cxgnPuBszY6ymKN2rDRuG4oIC3XohFhcbzXAXvb/Z/uuvvxAWFobs7Gy0adMGJ06cwIMHDwAAx44dw/79+7Fq1SqtZbRs2RJ//vknQkNDERQUhC+//BKtWrWCRCLB/Pnz0bScF5ExxiqjMpNrMMaYsRK/AXr0CIriYhARBEHQabItblQzxoyJunu1JmFhaid3LFXaCzE/N7eaa6uZ3o3t9957D05OTvj1119hb28PqVQqPhcSEoIZM2aUW8a4cePEb7Pnzp2LHj16oHXr1gAAmUyGzZs361stxhjTCRHVusk1GGOsPKRQ4MGNGzgTE4N7f/4JedOmaPfWW0rfYnODmjFWG2i6V9NnxQRjoXdj+8iRI9iwYQMcHR1RUlKi9Jyrqytu3rxZbhnDhw8X/92iRQtcunQJKSkpePLkCTp27AhnZ2d9q8UYYzohhQJnYmJq1eQajDGmjbpvgADgxPz56Bsbi4DXX4eZpWUN1pAxxnSn6V7t9rlz2D5iBPqtWYPG3brht++/N/oVE/RubJtpGXB++/ZtWFtb610Ja2trhIeH630cY4zpy8TUtNZNrsEYY5po662jKC7GzrFj0bh7d8icnGqohowxph9t92oX4uORlZqKnl9/jZDoaJiYmhp1L0S9G9shISH48ssv0atXL3E28dI1tr///nt0795d7XFbt27V6zwDBgzQt2qMMVYuRUlJrZtcgzHGNCmvt46iuBhnVqxASFRUNdeMMcYqprx7tdvnzuHaoUNo2KmT0fdC1LuxvWDBAgQHB6Nly5bo27cvBEHAsmXLcOHCBVy9ehW//vqr2uMGDhyo8zkEQVDpos7+Vfpt2/3792u4JozVPkSE5kOHInHePCjU5IyJqSmaDxuGOxkZyAfw4OFDyGrgd83GxsYoP6E1hKrKtAcPH6p9zxTW1mg/fToU1tZK59C0P2O1Tebly8jX8vw/aWl4+Pgxii0s1P5/1/S7oO/28tSXXDN0plXkfeG8Y7WJPvdqDx4/rrHfEV0yTaAK9JO8du0aoqOjcfDgQWRnZ0MulyMsLAyzZs3SOJN42eW9dOHl5aVvteqNzMxMeHp61nQ1GGMGlJeXB1tb25quRrXgTGOsfqgvucaZxlj9oEumVaixzWqWQqHAjRs3DPIJ8f379+Hp6YmMjIxa/wexrlwLX4dxqa7rqC/fAAGGzTSA/+8Zm7pyHUDduRbOtarFmaabunIdQN25Fr4O/ejyO653N/KqtH//fpw6dQoZGRn45JNP0LBhQxw7dgzNmjWDu7t7TVbNqJmYmMDDw8Og57C1ta3Vv2Rl1ZVr4eswLnXlOoxBdWQaUHfeM74O41NXrqWuXEdN40zTT125DqDuXAtfR9XRqbE9ZswYnQsUBAGxsbFa98nKykK/fv1w8uRJ8VOH8ePHo2HDhli5ciVkMhmWLVum8zkZY4wxxhhjjDFjolNje/Xq1bCxsUHTpk3LXQpHl+4ykyZNQlZWFi5cuIDmzZtDKpWKz4WFhWHOnDm6VIsxxhhjjDHGGDNKOjW2g4KCcPLkSZSUlGDo0KEYPHhwpSYw27NnD/7zn/+gRYsWKrOOe3p6IjMzs8Jls8oxNzdHVFQUzM3Na7oqlVZXroWvw7jUleuoT+rKe8bXYXzqyrXUleuoL+rK+1VXrgOoO9fC11H1dJ4g7e+//0Z8fDzWr1+P8+fPIygoCEOHDkVkZCQcHR31Oqm1tTU2bdqE3r17o6SkBBKJBKdPn0bbtm2xfft2jBkzBvfu3avQBTHGGGOMMcYYYzXNRNcdGzZsiKlTp+Ls2bM4f/48QkNDsWTJEri7u6NXr17Yt2+fzicNDAzEypUr1T4XHx+PF198UeeyGGOMMcYYY4wxY1Oppb/y8/Mxc+ZMLF68GH379sXWrVt1Oi4lJQWhoaHo0KEDBg4ciA8++AD/93//h0uXLmHPnj04ceIE2rZtW9FqMcYYY4wxxhhjNUrvxnZJSQkOHDiA+Ph47NixA2ZmZoiIiMAbb7yBF154QedyUlJSMH36dCQnJ6OkpASCICAoKAgLFy5EUFCQ3hfCGGOMMcYYY4wZC527kR87dgxvv/02XFxcEBkZiZKSEqxbtw63bt1CTEyMzg3twsJCbN26FS4uLjh69Cju37+PzMxMPHjwACdOnOCGtgEtX74cL7/8MpycnCAIAjZv3qxx3z179iA4OBgymQwODg4IDQ1VmbguOTkZQUFBsLS0hJeXFxYsWFDubPWGcvfuXXH5OJlMBn9/f6xYsUJlvxs3biAiIgI2NjaQy+V44403cP/+/RqocfkuX76M8PBwyGQyuLq6YurUqSgsLKzpapVr586dCAwMhI2NDdzc3BAZGYm//vpLZb/Y2Fh4e3vDwsICrVu3xu7du2ugtk/98ccfGD9+PJ5//nmYmZnB399f7X65ubl477334O7uDgsLCzRt2hRffvml0j6FhYWYMmUKXF1dIZPJEB4ejrS0tOq4jHqHM40zrTpwpnGmVSfONc41Q+NMq+ZMIx14eHiQhYUF9e/fnzZt2kRPnjzR5TCNzM3NKSkpqVJlMP0FBgZSYGAgjRgxggBQQkKC2v3Wrl1LUqmUZsyYQYcPH6YdO3bQRx99RFevXhX3uXr1KllbW1P//v0pMTGRFi9eTFKplBYuXFhdl6MkNDSU3NzcaNWqVXTo0CGaPHkyAaDvv/9e3KewsJD8/f3J39+fdu7cSfHx8eTh4UF9+vSpkTprc+/ePXJzc6MuXbrQ/v37KTY2luzs7GjChAk1XTWtkpKSyMTEhEaNGkUHDx6k+Ph48vb2pqZNm9Ljx4/F/TZs2ECCINAnn3xChw8fprfeeovMzMwoJSWlRuq9fft28vDwoIiICGrVqhX5+fmp7PPw4UNq3bo1tWvXjuLj4ykpKYliYmJU/s+/9dZbZGdnR7GxsbR//37q3LkzPffcc5Sbm1tdl1NvcKZxphkaZxpnWnXjXONcMyTOtOrPNJ0a24IgkFQqJWtra7KxsdH6Y2trW255rVu3pri4uEpXnumnpKSEiIiuXbumMcDv3r1Ltra2tHz5cq1ljRs3jry8vKigoEDcNmPGDLK3t6f8/PyqrXg5bt68SQBo1apVStu7dOlC3bp1Ex+vX7+eBEGgy5cvi9t++uknAkC//PJLdVVXJ3PnziWZTEZ3794Vt8XExJCpqSn9888/NVgz7d566y1q3LgxKRQKcdvhw4cJAB07dkzc5u3tTUOGDFE6NigoiHr16lVtdS2r9HeDiGjkyJFqQ/yTTz6hJk2a0MOHDzWWk5GRQaamphQTEyNuu3v3LslkMlqwYEHVVppxpnGmGRxnGmdadeNc41wzJM606s80nbqRR0VF4eOPP8ZHH32EyZMna/358MMPyy1v3rx5mDNnDk6fPq3n9/CsMkxMyn+7N23ahJKSEowdO1brfvv27UO/fv0glUrFbYMHD0Zubi5SUlIqXVd9FBUVAQDs7OyUttvZ2Sl1ldq3bx8CAgLg4+MjbgsPD4dcLsfevXurp7I62rdvH8LCwiCXy8VtkZGRUCgUOHDgQA3WTLuioiLY2NhAEARxW+n7Uvpe/PXXX7hy5QoiIyOVjh08eDAOHTqEgoKC6qvw/+jyu/HDDz9gzJgxkMlkGvc5cOAAFAoFBg0aJG6Ty+Xo0aOH0f0fqws40zjTDI0zjTOtunGuca4ZEmda9Weazo1tfX7KM3XqVNy9exeBgYFwdnZGq1atEBAQIP60bt260hfGKubkyZPw9fVFXFwcvLy8YGZmhueff15pabdHjx4hIyMDvr6+Ssf6+vpCEARcvny5Wuvs6emJHj16YO7cuUhNTcWDBw+wadMmHDhwABMmTBD3u3z5skqdBUGAr69vtde5POrqam9vDzc3N6Ora1mjRo1Camoqli9fjry8PPz111/4+OOP0aZNG3FJv9L6P3t9LVq0QGFhIa5du1bt9S5Peno6bt26BUdHR/Tt2xfm5uaQy+V488038fDhQ3G/y5cvw9nZGQ4ODkrHt2jRwqjft7qMM804cKYZF8602o1zzTjUxlzjTKv+TDMzSKnlaNeuHdq3b18Tp2bluHXrFtLS0vDpp5/iiy++gJubG5YtW4a+ffvi7Nmz8PPzQ25uLoCngVKWVCqFlZUV7t27V+313rp1K1577TX4+fkBAExNTbF06VJERESI++Tk5KjUGQAcHBxqpM7a1Ka6ltW5c2ds27YNQ4cOFf94Pv/889i/fz9MTU0BPL02QPX/T2nwGeP13bp1CwDw0UcfYcCAAdi7dy+uXr2K6dOn4+HDh9iwYQOA2vu+1WWcacahNtW1LM602vm+1XWca8ahNtW1FGda9b9nNdLYXr16dU2ctt4gIpSUlIiPBUEQf4HKo1Ao8PDhQ6xbtw59+/YFAHTt2hXe3t5YsGAB1qxZY5A660rdtZmYmGD06NG4evUq1q9fDzc3Nxw8eBCTJk2Cg4MDBg8eXIM1rl+Sk5MxfPhwvPnmm3j55Zdx9+5dzJ49G3369MHx48dhaWlZ01WsEIVCAQDw9vZGXFwcAKB79+4wMzPDm2++ic8//xxNmjSpySrWaZxpnGk1hTONGQrnGudaTeBMq3410thmhnX06FGEhoaKj0NCQnDkyBGdji391Kpbt27iNolEgi5duuDChQsA/v2kKy8vT+nYwsJCPH78WGnsSlVTd20fffQREhIScO7cObRq1QrA0z86d+7cweTJk8UAd3BwUKkz8PRTLk9PT4PVuSK01dWQr29lvffee+jWrZvSMgsdO3ZEw4YNsXbtWowbN078P5aXlwdXV1dxv9JPUo3x+krrXPb/HvA0yAHg4sWLaNKkSa1934wdZxpnWk3hTKud71ttwLnGuVYTONOq/z3jxnYd1K5dO5w6dUp8bGNjo/OxpV171MnPzwcAyGQyeHp6qoxtSEtLAxGpjPGoSuqubceOHTA1NVVZc69Nmzb44Ycf8PjxY1hZWcHX1xfnz59X2oeIkJaWhvDwcIPVuSLUjU3Ky8vDzZs3Dfr6VlZqaipeffVVpW0eHh5wdHTEn3/+CeDfMUCXL19WmgDl8uXLkEqlRvltStOmTWFubq7x+dLfDV9fX9y+fRs5OTlK44HUjetiuuNMe4ozrfpxpnGmGQrn2lOca9WLM636M02nCdJY7WJjY4P27duLP2V/Ucrz8ssvAwASExPFbYWFhTh69CjatWsnbuvVqxd27Nghzi4JABs3boS9vT2Cg4Or4CrUU3dtXl5eKCkpwblz55T2PXPmDJydnWFlZSXW+b///S+uXr0q7nPo0CHcvXsXvXv3NlidK6JXr15ITEwUx1wBQEJCAkxMTNCjR4+aq1g5vLy88Ntvvyltu379OrKzs9GoUSMAQJMmTeDt7Y2EhASl/TZu3Iju3bsrzZpqLKRSKXr06IFDhw4pbT948CAAoG3btgCAHj16wMTEBFu2bBH3ycnJwYEDB4zu/1htwpn2FGda9eNM40wzFM61pzjXqhdnWg1kmkEWFGNG6dSpU5SQkEDLly8nADR58mRKSEigI0eOKO0XERFBTk5OFBsbS3v37qU+ffqQhYUFnTt3Ttzn6tWrJJPJKCIigg4dOkRLliwhqVSqsnB8dbh//z41bNiQmjVrRmvXrqXExESaOnUqmZiY0OzZs8X9CgsLyd/fn1q1akW7du2ijRs3kqenJ/Xp06fa61yee/fukZubG4WEhNBPP/1EK1euJHt7e5owYUJNV02rJUuWEAB677336ODBgxQfH0/+/v7k4uJC2dnZ4n6l62jOnDmTkpKSaPz48WRmZkbJyck1Uu9Hjx5RQkICJSQkUNeuXcnT01N8fOfOHSIiOn36NEmlUho6dCj99NNP9O2335KNjQ0NGzZMqay33nqL7O3taeXKlfTTTz9RSEgIPffcc5Sbm1sTl1ancaZxphkaZxpnWnXjXONcMyTOtOrPNG5s1yMjR44kACo/ISEhSvs9fPiQJk6cSE5OTmRubk7BwcF04sQJlfJ+/vlnCgwMJHNzc/Lw8KB58+aRQqGopqtRdvXqVYqMjCR3d3eysrIiPz8/WrJkCRUXFyvtl5mZSQMGDCBra2uyt7enMWPGUF5eXo3UuTypqanUvXt3srS0JGdnZ/roo4+ooKCgpqullUKhoO+++44CAgJIJpORq6sr9e/fny5duqSy7w8//EDNmjUjqVQq/lGtKdeuXVP7uwGAkpKSxP0SExOpffv2ZG5uTq6urjR58mTKz89XKis/P58mT55Mzs7OZGlpSWFhYWqvn1UeZxpnmqFxpnGmVTfONc41Q+JMq/5ME4jKrCTPGGOMMcYYY4yxSuMx24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM8YYY4wxxhhjVYwb24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM51ER0dDEAQ899xzUCgUKs+/+OKLEAQBo0aN0qvc3NxcREdHIzU1VWl7eno6BEHA5s2bK1PtSluyZAkEQRAfHzlyBIIg4PTp09VWh+joaCQnJ6tsFwQBixYtqrZ6qLN9+3YIgoD09HQAFXvflixZgr179xqohoypx5n2FGeaMs40Vptxrj3FuaaMc61mcWOb6UwikSA7OxvHjh1T2n79+nWkpKTA2tpa7zJzc3Mxa9YslQB3c3NDSkoKunXrVqk6V7W2bdsiJSUFLVq0qLZzzpo1S22Ap6SkYNiwYdVWD11U5H3jAGc1hTONM608nGmstuFc41wrD+da9TKr6Qqw2kMqlSIsLAwbNmxA165dxe3x8fHw8/ODqalplZ3L3NwcHTt2rLLyqoqtrW259Xry5AksLS0NXhdjfH2M9X1jTB3ONM608hjr+8aYJpxrnGvlMdb3ra7ib7aZXoYMGYLNmzejqKhI3LZ+/XoMHTpU7f7Hjh1DcHAwLC0t4ejoiDFjxuDevXsAnnZjady4MQBg0KBBEARB7OairouLQqHAnDlz0KhRI5ibm8PX1xcxMTFK54uOjoa1tTXOnz+PTp06wcrKCv7+/vjpp5/Kvbb79+9jxIgRsLGxgZOTE6ZOnYri4mKlfdR1TRIEAfPnz8e0adPg6uoKZ2dnAAARYdGiRfD29oa5uTmaNGmCr776SuW8ly5dwoABAyCXy2FlZYXWrVtjw4YNYtkAMGXKFPH1OXLkiPjcs12TYmJi4OPjA3NzczRq1Ahz5sxR6kq2evVqCIKA33//Hb169YJMJkPz5s2xZs2acl+foqIiTJo0CXK5HHZ2dhg7diwePnyotI+6923nzp1o3749rK2tYW9vj/bt24ufjjZq1AjXr1/HsmXLxOtbvXo1AGDNmjXo1KkT5HI5HBwc0LVrV/z6669K59Pn/V6zZg3atGkDCwsLODo6onfv3rh+/br4fGZmJl5//XU4OjrC0tISXbp0wZkzZ8p9XVjtxpnGmcaZxuoazjXONc4148GNbaaXV155BQUFBThw4AAAIDU1FefOncPgwYNV9j1z5gzCw8NhY2ODhIQELFiwALt27UKvXr1QUlICNzc3bN26FQAwd+5cpKSkICUlBW5ubmrPPWXKFERHR2PUqFHYtWsXevTogfHjx+Pbb79V2q+oqAjDhg3DqFGjsG3bNjg7OyMiIgJ3797Vem1jxozBtm3bMH/+fMTFxSE1NRVLlizR6XX5+uuvceXKFcTGxuLHH38EALz//vuYOXMmRo4ciT179mDUqFGYNm0aVqxYIR539epVBAUF4erVq/jmm2+wc+dOjB49Gn///TeAp92PAGDixIni69O2bVu1dVi6dCnGjx+Pl156Cbt27cKoUaMQHR2NqVOnquw7bNgw9OjRA9u3b0ebNm0watQoXLp0Ses1zpgxA8uXL8eUKVOwadMmlJSUYPr06VqP+fPPPzFw4ED4+flh27Zt2LhxIyIjI5GTkwMA2LZtG1xdXTFw4EDx+vr06QPg6R+DESNGICEhAevXr0fDhg3RpUsXXLlyRekcurzfCxcuxMiRI9GuXTts3boVsbGxaN68ObKysgAAOTk56NSpE86ePYulS5diy5YtkMlk6NatG+7cuaP1GlntxpmmHmeaepxprDbgXFOPc009zjUDI8Z0EBUVRTKZjIiIhg4dSq+//joREX3yyScUFBREREStW7emkSNHisf079+fGjZsSIWFheK2n376iQDQzp07iYjo2rVrBIASEhKUzvfs9qysLJJIJDR9+nSl/YYMGUJOTk5UXFws1hMA7dmzR6WstWvXary+ixcvkiAIFBsbK24rLi6mxo0bU9lfk6SkJAJAp06dErcBoJYtW5JCoRC3/fHHHyQIAsXExCidZ9q0aeTq6kolJSXia+nk5ER5eXka6waAFi5cqHV7cXExOTo60uDBg5X2mTFjBkmlUsrOziYiolWrVhEAWrZsmbjPw4cPycrKimbPnq2xDnfv3iVLS0v69NNPlbZ36dKFANC1a9eISPV9S0hIIAB0//59jWV7eXnRhAkTND5PRFRSUkJFRUXk4+NDM2bMELfr8n7n5uaSlZUVjRs3TmP5M2fOJDs7O7p9+7a4LT8/nxo2bEhTpkzRWjdWO3GmPcWZxpnG6g7Otac41zjXjAl/s830NmTIEOzYsQNPnjxBfHw8hgwZona/48eP49VXX4VEIhG39ejRA/b29jhx4oRe5/zll19QVFSEQYMGKW1/7bXXkJWVpfQJmomJCcLCwsTHjRo1gqWlJTIzMzWWf+rUKRAR+vfvL24zNTVFv379dKpfr169lGbCTExMBABERESguLhY/AkLC8OtW7eQkZEBADh06BAGDhwIW1tbnc6jyeXLl5Gdna329SksLFTp0tOjRw/x3zKZDF5eXlpfn/Pnz+PJkydKr0/p9WkTEBAAU1NTDB06FLt27UJeXp6ul4RLly6hf//+cHFxgampKSQSCdLS0lQ+LS3v/U5JScHjx48xduxYjec6cOAAQkNDIZfLxffK1NQUISEhOHXqlM51ZrUTZ5oqzjT1ONNYbcG5popzTT3ONcPiCdKY3l566SVIJBLMnDkT165dQ2RkpNr9cnJy4OLiorLdxcVFHAukq9KuLM+WV/q4bHmWlpaQSqVK+0mlUuTn52ss/+bNm5BIJHBwcFBbfnme3S87OxtEBEdHR7X7Z2RkwMvLC3fv3oW7u7tO59BGn9cHAOzt7ZUe6/L6ABDHOD1bvibe3t7YvXs35s6di/79+8PExAQ9e/bEt99+i4YNG2o87sGDB+jRowecnJywePFieHl5wcLCAm+88YZKPct7v0u7KGl7nbOzs3Hy5Emlm41STZs21XqNrPbjTFPFmaYeZxqrLTjXVHGuqce5Zljc2GZ6k0gkiIiIwOLFi9G9e3eNv8RyuVztGIrbt29DLpfrdc7S/e/cuYPnnntOqayyz1eUm5sbioqKkJOToxTipeWXp+wnpaX1EQQBJ06cUAkXAPDx8QEANGjQADdu3KhEzf89HwCV17sqX5/S8tW9/tr07NkTPXv2xP3797F//3588MEHGD16NA4dOqTxmJSUFGRmZmL37t1o3bq1uD0vLw8eHh561b1BgwYAgBs3bmg8Vi6Xo2fPnpg9e7bKc+bm5nqdj9U+nGmqONM040xjtQHnmirONc041wyHu5GzCnnjjTfwyiuv4P3339e4T6dOnbB9+3alWSIPHjyI3NxcdOrUCQDEcNP2SR0AdOjQARKJBAkJCUrbN23aBGdnZ3h7e1f0UgAAL7zwAoCnk0CUKikpwfbt2ytUXvfu3QE8/aSuffv2Kj82NjYAgLCwMGzevBkPHjzQWJZEIin39fHx8YGTk5Pa10cqlaJDhw4Vuo5SrVq1gqWlpdLrAwBbtmzRuQxbW1tERkZi8ODBShN8qPuk9smTJ+JzpZKTk5Genq533YOCgmBlZYVVq1Zp3CcsLAypqalo0aKFynvVqlUrvc/Jah/ONO0401RxpjFjx7mmHeeaKs61qsffbLMK6dChQ7nh9n//938IDg7Gyy+/jIkTJ+L27duYPn06OnTogN69ewMAXF1dYW9vjw0bNqBx48YwNzdHQECASlmOjo6YOHEiFi5cCAsLC3Ts2BF79+7F+vXrsXTp0kqvG9myZUv0798fkyZNQn5+Pho1aoTly5ejsLCwQuV5e3tjwoQJGD58OKZMmYLAwEAUFRXhypUrSEpKEl+7qKgo7N69G506dcLUqVPh5uaG1NRUPH78WJyZskWLFtixYwc6d+4MmUwGHx8f8Q9AKVNTU3z66ad477334OzsjN69e+PkyZNYsGABJk2aJH5iWFFyuRzjx4/H/PnzYWlpibZt22LDhg34888/tR4XExODlJQU9OzZE25ubrh27Rp+/PFHpXFILVq0wOHDh3Hw4EE4ODigcePG6NixI6ytrTFhwgRMnz4d//zzD6KiopQ+qdWVnZ0doqKiMG3aNCgUCrz66qtQKBRISkrCkCFD0L59e3z44YdYt24dQkJC8P7776Nhw4bIysrCL7/8And3d3zwwQd6n5fVLpxp2nGmPcWZxmoTzjXtONee4lwzsJqcnY3VHmVnuNTk2RkuiYiOHDlCQUFBZG5uTnK5nEaNGkV3795V2mfbtm3UokULMjc3F2dLVDfzZUlJCX322WfUsGFDkkgk1Lx5c1qxYoVO9bSzs6OoqCit9c/JyaFhw4aRTCajBg0a0IcffkgLFy7UaYZLdTNQKhQKWrp0Kfn7+5NUKiW5XE5BQUG0ePFipf0uXrxIffv2JVtbW7KysqLnn3+e4uPjxeePHz9Obdu2JUtLSwJASUlJGs/73XffUfPmzUkikVDDhg1p9uzZ4myaRP/OcJmVlaV0nLr37lkFBQU0ceJEsre3J1tbWxo5ciStXbtW6wyXycnJ1KdPH3JzcyOpVEoNGzak999/X2nGywsXLlDnzp3JxsaGANCqVauIiGjfvn3k5+dHFhYWFBAQQHv37qWQkBDq06ePeKw+7/fKlSupVatWJJVKqUGDBvTyyy/T9evXxedv3rxJY8eOFevq4eFBAwcOpJ9//lnr68JqJ860pzjTONNY3cG59hTnGueaMRGIiAzeomeMMcYYY4wxxuoRHrPNGGOMMcYYY4xVMW5sM8YYY4wxxhhjVYwb24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM4NJT0+HIAjYvHmzXscdOXIEc+fOVdkeHR0Na2vrqqpeuZYsWYK9e/dWWXnbt2/H8uXLVbaPGjUK/v7+VXaeqlbdrztjxoxzTRnnGmO1G2eaMs40VtW4sc2MjqYAf+ONN5CUlFRt9aiuADd21f26M1YXca4ZF841xiqHM824cKYZL7OargCrXYgIhYWFMDc3r/Zze3h4wMPDo9rPW18VFBRAIpFU2eteWp6JCX/Gx4wL51r9wbnG6gPOtPqDM8348SvJtCrtNrN37160bt0a5ubm2LVrFwAgJSUF3bp1g0wmg52dHYYOHYo7d+5oLW/NmjXo1KkT5HI5HBwc0LVrV/z666/i89HR0Zg1axYePXoEQRAgCAK6du0qPlfaRebRo0eQyWRYtGiRyjkGDhyIoKAg8XFubi7eeecduLm5wdzcHO3atcOBAwe01rNRo0a4fv06li1bJtZj9erVAACFQoE5c+agUaNGMDc3h6+vL2JiYsp9HePi4nDx4kWxvFGjRintc+TIEbRp0wYymQwdOnTAmTNnlJ4nIixatAje3t4wNzdHkyZN8NVXX2k9b+m5/f39sW/fPvj7+8PCwgLt2rXDyZMnVa753XffxRdffAEvLy9YWlri3r17arsmXb9+HQMHDoSdnR1kMhleeuklnD9/XqfytNUxMTERAQEBsLS0REhICNLT03Hv3j1ERkbC1tYWTZs2xcaNG1WO37NnDwIDA2FpaQknJye8/fbbePTokfj8o0eP8O6778LHxwdWVlZo1KgRxo8fj7y8PLV1XrZsGby8vGBnZ4d+/fohKyur3NeZ1R6ca5xrnGuca3UJZxpnGmeaEWcaMabFyJEjycHBgZo2bUqrVq2iQ4cO0dWrVyk5OZmkUin169ePdu3aRfHx8dSsWTPq2LGjeOy1a9cIACUkJIjbZs2aRTExMZSYmEh79+6l4cOHk7m5OaWlpRERUUZGBo0dO5YsLS0pJSWFUlJS6OLFi0REFBUVRTKZTCxr8ODB1K5dO6X63r9/nywsLOibb74hIqKCggJq3749eXp6UmxsLO3fv59ef/11MjMzo3Pnzmm87t9++41cXV1p4MCBYj3u3LlDREQffvghmZqaUlRUFP300080ceJEAkBLly7VWN4ff/xBvXv3piZNmojl/fHHH+Jr3KBBA2rVqhWtW7eOdu/eTa1atSJPT08qLCwUy5g4cSJZWlrSnDlz6ODBgzRr1iySSCT03XfflfseyuVyatSoEa1evZp27NhBQUFBZGtrS7dv3xb38/LyIldXV+rcuTNt27aNdu7cSY8fP1Z53e/fv0+NGjWiJk2a0Pr162nr1q3Url07sre3p7///rvc8jTVsUGDBhQQEEDx8fG0ZcsWeu655yg4OJjCwsLos88+owMHDtCgQYPIzMyM0tPTxWMTEhLIxMSExo4dS/v27aOVK1eSs7Mzvfbaa+I+d+7cofHjx1NCQgIdOXKE1q5dS76+vtS1a1elenh5eZGnpyf16NGDdu3aRatWrSJ7e3ulsljtx7nGuca5xrlWl3CmcaZxphlvpnFjm2k1cuRIAkAnT55U2t6lSxcKDg4mhUIhbrt48SIJgkB79uwhIvUBXlZJSQkVFRWRj48PzZgxQ9z+bGBo2r5jxw4CQFeuXBG3xcXFkampKd26dYuIiFauXElmZmbiH4FSgYGBNGjQIK3X7uXlRRMmTFDalpWVRRKJhKZPn660fciQIeTk5ETFxcUayxs5ciT5+fmp3S4IAl24cEHclpSURADo+PHjRPT0D4AgCBQTE6N07LRp08jV1ZVKSkq0nhcAHTp0SNyWm5tLNjY2Stfh5eVFDRo0oIcPHyod/+zr/vXXX5MgCJSamipuu3v3LslkMvrwww/LLU9THZ99DZYuXUoAaNq0aeK2nJwcMjU1pSVLlhARkUKhIC8vLxoyZIhSefv27VMpr6yioiI6ceIEARBvHkrr7OHhQfn5+UrXL5FItL7GrHbhXONc41zjXKtLONM40zjTjDfTuBs5K1eDBg0QGBgoPn78+DF+/vlnDBo0CCUlJSguLkZxcTG8vb3h6emJU6dOaSzr0qVL6N+/P1xcXGBqagqJRIK0tDRcuXJF73r17NkT9vb2iI+PF7fFx8cjNDQULi4uAIADBw6gVatW8Pb2FutZXFyM8PBwrfXU5JdffkFRUREGDRqktP21115DVlZWha4DANzd3eHn5yc+btmyJQAgMzMTAJCYmAgAiIiIULqOsLAw3Lp1CxkZGVrLt7OzQ7du3ZQeh4WF4ZdfflHar2vXrpDJZFrLOn78OPz9/dGiRQtxm1wuR3h4OE6cOKF3eaWefQ28vb0BAGFhYeI2e3t7ODs7i9d75coVXL9+HZGRkUqvS0hICExMTHD69Gnx2LVr16JNmzawtraGRCJBp06dxDLKCgkJURrn1rJlSxQVFZXb7Y7VLpxr/+Jc41xjtR9n2r840zjTjAk3tlm5SsOwVE5ODkpKSvDBBx9AIpEo/fz9998aw+TBgwfo0aMHrl+/jsWLF+P48eM4deoUWrdujfz8fL3rJZVKERERIQb43bt3cfDgQQwdOlTcJzs7G7///rtKPefMmVNu6KmTk5MDQPU1KX2saZxLeezt7ZUeS6VSABBfl+zsbBARHB0dla4jPDwcAMq9FicnJ5VtLi4uuHnzptrr0CYnJ0ftfi4uLirXr0t5pTS9Buq2l31dAKB///5Kr4uVlRVKSkrE12Xbtm0YMWIEOnTogE2bNuHkyZPYtm0bAKj83yvvvWB1A+ea8rUDnGuca6w240xTvnaAM40zzTjwbOSsXIIgKD22t7eHIAj4+OOP0a9fP5X9HR0d1ZaTkpKCzMxM7N69G61btxa35+XlVXgGxSFDhiA2Nhbnzp1DSkoKTE1NMWDAAPF5uVyOgIAAxMbGVqj8Z8nlcgDAnTt38Nxzz4nbb9++rfR8VZPL5RAEASdOnBADpSwfHx+tx6ubNOL27dtwc3NT2vbse62pLmlpaWrLe/b6dSmvMkrP9+233yp9ol/K3d0dAJCQkIDnn39eaXKUo0ePGrRuzLhxrv2Lc41zjdV+nGn/4kzjTDMm3NhmepPJZAgKCsKlS5cwZ84cnY978uQJACgFUHJyMtLT05W6pEilUhQUFOhUZteuXeHq6ooNGzYgJSUFvXr1gp2dnfh8WFgY9u7dC3d3d/GXWVdlP5Ur1aFDB0gkEiQkJKBNmzbi9k2bNsHZ2VnsTqNrebrq3r07gKefCL/yyit6H5+Xl4fDhw+L3ZPy8vKQmJiICRMm6F1Wp06dsHnzZqSlpYl/OHJycpCYmIhx48bpXV5l+Pr6wsPDA3/99ZfWa3ny5InKH75169YZunqsFuFc41zjXGN1CWcaZxpnmnHgxjarkIULF6Jbt2547bXXMHjwYDg4OCAzMxMHDx7E6NGjxSUgyurYsSOsra0xYcIETJ8+Hf/88w+ioqKUPnUEgBYtWqC4uBhff/01goODYWtrq/HTQFNTU0RGRmL16tW4c+eO0pggABgxYgRiYmLQtWtXfPTRR/D29kZubi5+//13FBYWYt68eRqvsUWLFjh8+DAOHjwIBwcHNG7cGI6Ojpg4cSIWLlwICwsLdOzYEXv37sX69euxdOlSmJqaai1v5cqV2LBhA5o3bw5HR0c0atRI84tchre3NyZMmIDhw4djypQpCAwMRFFREa5cuYKkpCRs375d6/FyuRxjx47FrFmzYG9vj/nz54OIMGnSJJ3OX9bo0aPx1VdfoU+fPpgzZw4sLCzw+eefw8zMrELlVYYgCFi8eDGGDh2KR48eoU+fPpDJZLh+/Tr27NmDuXPnwtvbG+Hh4ZgwYQJmz56NoKAg7N27F4cOHarWujLjx7nGuca5xuoSzjTONM40I1CTs7Mx46dpVkYiolOnTlHv3r3Jzs6OLC0tqXnz5jR+/HjKyMggIvUzXO7bt4/8/PzIwsKCAgICaO/evRQSEkJ9+vQR9ykqKqJ33nmHXFxcSBAECgkJISLNM1+mpKQQALK2tla7XEFeXh598MEH1LBhQ5JIJOTm5ka9e/em3bt3a732CxcuUOfOncnGxoYA0KpVq4jo6cycn332mVhe8+bNacWKFVrLKq3H4MGDqUGDBgSARo4cSUTqX+OcnBylcxI9nc1x6dKl5O/vT1KplORyOQUFBdHixYu1nre0/N27d1OLFi1IKpVSmzZt6Oeff1baT92MnkTqX/f09HQaMGAA2djYkJWVFYWHh6ssz6GpPG11LKt0ls9Tp06VW+6BAwcoJCSEZDIZyWQy8vPzo8mTJ1Nubi4RERUXF9PkyZPJycmJbGxsaODAgXTy5EmV/5/qyt62bRsBoGvXrul0Lcz4ca5xrnGuca7VJZxpnGmcacabaQIRUfU17Rlj1W3UqFE4ffo0Lly4UNNVYYyxKsG5xhirSzjT6i6ejZwxxhhjjDHGGKti3NhmjDHGGGOMMcaqGHcjZ4wxxhhjjDHGqhh/s80YY4wxxhhjjFUxbmwzZmAdOnTAsmXLND5/9uxZCIKAI0eOGOT84eHh+Pzzzw1SNmOs/uFMY4zVNZxrzFC4sc2YAW3btg3p6ekYM2ZMjdXh448/xqJFi5CTk1NjdWCM1Q2caYyxuoZzjRkSN7YZM6AlS5ZgyJAhsLS0rLE6hIaGwsHBAXFxcTVWB8ZY3cCZxhirazjXmCFxY5sxA7l27RqOHz+OgQMHKm2fM2cOXF1dYW1tjQEDBuDOnTsqxxIRFi1aBG9vb5ibm6NJkyb46quvVPbbtm0bfHx8YGFhgY4dO+K3336Dvb09oqOjlfYbNGgQBzhjrFI40xhjdQ3nGjM0bmwzZiCHDh2CmZkZOnToIG779ttv8emnn2L48OHYsmULmjRpgrFjx6oc+/7772PmzJkYOXIk9uzZg1GjRmHatGlYsWKFuM/vv/+OQYMGoWXLlti6dStGjhyJ1157DQUFBSrlBQcH4+zZs8jKyjLMxTLG6jzONMZYXcO5xgyOGGMGMW7cOPLz8xMfFxcXk7u7Ow0fPlxpv+HDhxMASkpKIiKiP/74gwRBoJiYGKX9pk2bRq6urlRSUkJERIMGDaJmzZqJj4mI1q5dSwAoKipK6dhr164RANq9e3cVXiFjrD7hTGOM1TWca8zQ+Jttxgzk5s2bcHJyEh9nZmbixo0b6N+/v9J+z3ZdSkxMBABERESguLhY/AkLC8OtW7eQkZEBADh16hRefvllmJj8+2v86quvqq2Lo6OjWCfGGKsIzjTGWF3DucYMzaymK8BYXZWfnw9zc3PxcWl4Ojs7K+3n4uKi9Dg7OxtEJIbuszIyMuDl5aXyBwIAbGxsYGFhoXJMaT2ePHmi/4Uwxhg40xhjdQ/nGjM0bmwzZiByuRzp6eniYzc3NwBQmWTj9u3bKscJgoATJ05AKpWqlOvj4yOW9+y4ngcPHiA/P1/lmNzcXABAgwYN9L4OxhgDONMYY3UP5xozNO5GzpiB+Pj44Nq1a+JjDw8PuLm5Ydu2bUr7bd68Welx9+7dAQB3795F+/btVX5sbGwAAC+88AJ2794NhUIhHrt9+3a1dSn9Q1Ia/owxpi/ONMZYXcO5xgyNv9lmzEBefPFFfPbZZ8jMzISHhwdMTU0xffp0vP/++3BxcUF4eDgOHDiApKQkpeO8vb0xYcIEDB8+HFOmTEFgYCCKiopw5coVJCUliSE9Y8YMvPDCC4iIiMC4ceNw/fp1LFq0CBYWFkpjgwDg9OnTsLa2xvPPP19NV88Yq2s40xhjdQ3nGjO4Gp6gjbE6q6CggBo0aEDff/+9uE2hUNCsWbPI2dmZrKysqG/fvrR//36lGS5L91u6dCn5+/uTVColuVxOQUFBtHjxYqVzbNmyhby9vcnc3JzatWtHJ06cIDMzM1qyZInSfq+88orKzJqMMaYPzjTGWF3DucYMTSAiquH2PmN11uTJk/H777/j8OHD1XK+Q4cOISwsDEeOHEFISAgAICcnB66urjh48CC6dOlSLfVgjNVNnGmMsbqGc40ZEje2GTOgmzdvolmzZkhOTkbr1q2rvPx33nkH3bt3R4MGDXDx4kXMnj0b7u7uOH36tNg96bPPPsORI0eq7Y8IY6zu4kxjjNU1nGvMkHjMNmMG5ObmhtWrV6vMRFlVcnJyMHHiRGRnZ8POzg49e/bEokWLlMYByeVyfPPNNwY5P2OsfuFMY4zVNZxrzJD4m23GGGOMMcYYY6yK8dJfjDHGGGOMMcZYFePGNmOMMcYYY4wxVsW4sc0YY4wxxhhjjFUxbmwzxhhjjDHGGGNVjBvbjDHGGGOMMcZYFePGNmOMMcYYY4wxVsW4sc0YY4wxxhhjjFUxbmwzxhhjjDHGGGNVjBvbjDHGGGOMMcZYFft/rkSRqDoj7U8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADU3klEQVR4nOydeViUVdvAf88w7CCLIIK4gfuCKWVfluKeS7mnpqaZa5taaW+ugJpalkurmlpqbqlZtvhqWS69lWYbLrmk4gKIoKDIPjPn+2OYkWEWZhBU4Pyua65hznOe85yHmbnn3OfeFCGEQCKRSCQSiUQikUgkEkmpobrbE5BIJBKJRCKRSCQSiaSiIZVtiUQikUgkEolEIpFIShmpbEskEolEIpFIJBKJRFLKSGVbIpFIJBKJRCKRSCSSUkYq2xKJRCKRSCQSiUQikZQyUtmWSCQSiUQikUgkEomklJHKtkQikUgkEolEIpFIJKWMVLYlEolEIpFIJBKJRCIpZaSyLZFIJBKJRCKRSCQSSSkjlW2J5B5m7969KIrC1q1b7/ZUJBKJ5LaJj49HURTeeuutuz0ViUQicZg6derw2GOP3e1pSMoRUtmWlBt+++03XnjhBZo2bYqnpye1atVi4MCBnDp1yuZ5+fn5NGnSxOICLz09naFDh+Ln50dYWBirVq0yO//w4cN4eHhw7ty5Ur0fiURSubl58ybR0dF069YNf39/FEXhk08+Meun0+n45JNP6NWrFzVr1sTT05NmzZoxd+5ccnJyTPrm5uby4osvEhgYSGhoKHPnzjUb79KlS3h5efG///2vrG5NIpFIzPjjjz/o1asX/v7+eHh40KxZM9555x2TPsuXL6du3br4+/vz1FNPcePGDZPjOp2Oli1bMm/evDs5dYmkxKjv9gQkEnt54403+N///scTTzxBREQEly9f5r333qNVq1b8+uuvNGvWzOJ57777LhcuXLB4bPLkyezdu5fY2Fj+/fdfxowZQ+PGjWnTpg0AQggmTJjApEmTqFu3bpndm0QiqXykpqYye/ZsatWqRYsWLdi7d6/FfllZWYwcOZL/+7//Y/z48VSrVo1ffvmF6Oho9uzZww8//ICiKAAsXLiQtWvXMn36dDIyMpg9ezbh4eE8+eSTxvGmTJlCr169ePjhh+/EbUokEgm7d+/m8ccfp2XLlsycORMvLy/OnDnDpUuXjH1++uknnn32WSZMmEBYWBjz589nypQpLF++3Njno48+4vr167zyyit34zYkEscREkk54X//+5/Izc01aTt16pRwdXUVQ4cOtXhOcnKy8PHxEbNnzxaAWLhwocnxoKAgsWbNGuPrqKgo8dprrxlfr1u3ToSEhIiMjIxSvBP7+fHHHwUgtmzZUqbXuXnzZpmOL5FIzMnJyRFJSUlCCCF+++03AYiPP/7YrF9ubq743//+Z9YeGxsrAPHdd98Z2x588EERGxtrfD1ixAgxePBg4+sDBw4IT09PcfHixVK8E/s5d+6cRVlc2kiZJpHcO1y/fl0EBQWJvn37Cq1Wa7Xff/7zH9GhQwfj648//lhUr17d+DotLU0EBASIbdu2lel8bVG7dm3Rs2fPMr1Gfn6+2XpXUn6RbuSSckObNm1wcXExaatfvz5Nmzbln3/+sXjOa6+9RsOGDRk2bJjF49nZ2fj5+Rlf+/v7k5WVBUBmZiavvfYa8+fPx8vLy6G5JiQkMGrUKEJCQnB1daVu3bo8++yz5OXlGfucPXuWJ554wuhO9X//93988803FsfT6XS8/vrrhIaG4ubmRqdOnfj333/N+h08eJBu3brh4+ODh4cHUVFRZq6iMTExKIrC8ePHGTJkCH5+fjzyyCPG459++imRkZG4u7vj7+/P4MGDuXjxoskY7du3p1mzZhw/fpwOHTrg4eFBjRo1ePPNN83mlJOTQ0xMDA0aNMDNzY3g4GD69evHmTNnTO5vyZIlNG3aFDc3N4KCghg3bhxpaWn2/cMlknKIq6sr1atXL7afi4uL0dumMH379gUwkX+2ZJpOp2PixIm8+uqrhIaGOjTX9PR0XnrpJerUqYOrqyuhoaEMHz6c1NRUY58rV64watQogoKCcHNzo0WLFqxZs8bqmCtWrCA8PBxXV1ceeOABfvvtN7M+J06cYMCAAfj7++Pm5sb999/Pjh07TPp88sknKIrCvn37eO6556hWrZrJ/e3cuZO2bdvi6emJt7c3PXv25NixYyZjPP3003h5eZGQkECfPn3w8vIiMDCQyZMno9VqTfrqdDqWLl1K8+bNcXNzIzAwkG7dunH48GGTfvbIUomkMrBhwwaSk5N5/fXXUalUZGZmotPpzPrZkl+gX780b96cfv36OXR9e76zGo2GOXPmGGVSnTp1mDZtGrm5uRbH/Omnn2jdujVubm6EhYWxdu1asz7p6elMmjSJmjVr4urqSr169XjjjTdM7r1wHoslS5YYr3/8+HHAMRn4v//9j5dffpnAwEA8PT3p27cvKSkpZvPauXMnUVFReHt7U6VKFR544AE2bNhg0see9aTETu62ti+R3A46nU7UqFFDdO3a1ezYwYMHhUqlEj///LNVa0qnTp1E+/btxalTp8R///tf4e7uLj799FMhhBDTpk0TrVu3FjqdzqE5JSQkiJCQEOHh4SEmTZokli1bJmbOnCkaN24s0tLShBBCXL58WQQFBQlvb28xffp0sWjRItGiRQuhUqnE559/bhzLYNlu2bKliIyMFIsXLxYxMTHCw8NDtG7d2uS6e/bsES4uLuKhhx4Sb7/9tli8eLGIiIgQLi4u4uDBg8Z+0dHRAhBNmjQRvXv3Fh988IF4//33hRBCzJ07VyiKIgYNGiQ++OADERsbKwICAkSdOnWMcxdC7wEQEhIiatasKSZOnCg++OAD0bFjRwGIb7/91thPo9GITp06CUAMHjxYvPfee2L+/PmiY8eO4osvvjD2Gz16tFCr1WLMmDFi2bJl4j//+Y/w9PQUDzzwgMjLy3Po/y+RlEdsWbatsXv3bgGIDRs2GNtGjRolmjVrJuLi4sTPP/8sqlevLubOnSuEEGLFihWiVq1aIisry6G5ZWRkiGbNmgknJycxZswY8eGHH4o5c+aIBx54QPz5559CCCGysrJE48aNhbOzs3jppZfEO++8I9q2bSsAsWTJEuNYBlncsmVLUa9ePfHGG2+IN998UwQEBIjQ0FCT7/vRo0eFj4+PaNKkiXjjjTfEe++9J9q1aycURTGRkx9//LFRpkVFRYl3331XLFiwQAghxNq1a4WiKKJbt27i3XffFW+88YaoU6eO8PX1FefOnTOOMWLECOHm5iaaNm0qnnnmGfHhhx+K/v37C0B88MEHJv+Pp59+WgCie/fuYsmSJeKtt94SvXv3Fu+++66xj72yVCKpDPTv319UqVJFfPfdd6JBgwYCEJ6enmL8+PEiOzvb2G/dunXCw8ND7Nq1S5w6dUq0a9dOdO7cWQghxLFjx4Srq6v4+++/Hb6+Pd/ZESNGCEAMGDBAvP/++2L48OECEH369DEZq3bt2qJhw4YiKChITJs2Tbz33nuiVatWQlEUcfToUWO/zMxMERERIapWrSqmTZsmli1bJoYPHy4URRETJ0409jPIxCZNmoiwsDCxYMECsXjxYnH+/HmHZWDLli1Fx44dxbvvviteeeUV4eTkJAYOHGgy/48//lgoiiKaNWsmXn/9dfH++++L0aNHi6eeesrYx971pMQ+pLItKdesW7dOAGLVqlUm7TqdTrRu3Vo8+eSTQgjrrotxcXEiNDRUAAIQ/fv3F1qtVpw9e1a4u7uLX375xeE5DR8+XKhUKvHbb7+ZHTMo7pMmTRKAOHDggPFYRkaGqFu3rqhTp47RzcqgbDdu3NjEpWjp0qUCEEeOHDGOW79+ffHoo4+abA5kZWWJunXrii5duhjbDMq24X9jID4+Xjg5OYnXX3/dpP3IkSNCrVabtEdFRQlArF271tiWm5srqlevLvr3729sW716tQDEokWLrP4vDhw4IACxfv16k+P//e9/LbZLJBWRkijbnTt3FlWqVDFR3i5evCiaNm1qlGlt27YVGRkZIj09XQQGBopNmzY5PLdZs2YJwGRxZ8DwPV6yZIkAjJuVQgiRl5cnHnroIeHl5SVu3LghhLgli6tWrSquXbtm7Pvll18KQHz11VfGtk6dOonmzZuLnJwck+u1adNG1K9f39hmWGg+8sgjQqPRGNszMjKEr6+vGDNmjMmcL1++LHx8fEzaDQvt2bNnm/Q1bHQa+OGHHwQgJkyYYPV/4YgslUgqAxEREcLDw0N4eHiIF198UWzbtk28+OKLxo14AxqNRvTr188ov2rWrCni4uKEEEJ07dpVjB8/3uFr2/Od/euvvwQgRo8ebXJ88uTJAhA//PCDsa127doCEPv37ze2XblyRbi6uopXXnnF2DZnzhzh6ekpTp06ZTLma6+9JpycnMSFCxeEELdkYpUqVcSVK1dM+joqAzt37myyBnzppZeEk5OTSE9PF0IIkZ6eLry9vcWDDz5osslR+H/hyHpSYh93XdlOTk4W58+fN3tIJMXxzz//iCpVqoiHHnrIZIElhF7Jc3d3NxNmluIEs7OzxW+//SZOnz5tbOvbt68YNmyYEEKIbdu2iYiICFGnTh0RGxtr09Kt1WpFlSpVRO/evW3OvUGDBmaWaSGEmD9/vokSbVC233zzTZN+f/zxhwDEl19+afJ6zZo1IiUlxeQxevRo4erqalTgDcr2vn37TMZctGiRUBRFnD592myMxo0bG3eXhdAr215eXmb/i169eomWLVsaX/fs2VMEBASI/Px8q/+LCRMmCB8fH3HlyhWz63p5eZn9+EkkFRFHle3XX3/dotVVCL2S++eff4pjx44Zv/cvvfSSeOSRR4QQ+g2u1q1bi9DQUPHiiy8WGxvYtGlT0aJFC5t9unbtKqpXr24Wj7lx40YTJdogi5977jmTfteuXROAWLp0qRBCiKtXrwpFUcScOXPM5IIhVv3SpUtCiFsLzcL5N4QQ4vPPPzculIuO0bVrV1GvXj1jX4OyXXSxO2HCBOHn52d8/fzzzwtFUcTVq1et/i8ckaUSSWUgLCxMAGbK8rhx4wRgppCePn1aHD582KgQfvnll8LX11ekpKSIS5cuiccee0wEBweLxx57TCQkJNi8tj3f2Xnz5glAHD9+3KQ9KSlJACZKdO3atUWTJk3MxoiIiBB9+/Y1ed2tWzczGfD999+bbEwaZOLIkSNNxiuJDPzss89MxjDIQIM3wJYtWwQgtm/fbvV/4ch6UmIfdyUb+dWrV3nxxRf5/PPPyc/PNzkmhEBRFLMYKYmkMJcvX6Znz574+PiwdetWnJycjMdu3LjB1KlTmTJlCjVr1ix2LEMMjIEffviB3bt3c/LkSU6ePMngwYNZvnw5derU4cknn6RmzZqMHDnS4lgpKSncuHHDamZ0A+fPn+fBBx80a2/cuLHxeOExatWqZdLPENNkiGk+ffo0ACNGjLB6zevXr5vEQhXNrn769GmEENSvX9/i+c7OziavQ0NDjRmQC88rLi7O+PrMmTM0bNgQtdq6qDl9+jTXr1+nWrVqFo9fuXLF6rkSSWVk8+bNzJgxg1GjRvHss8+aHXd2dua+++4zvj5x4gQffPABP//8M9euXaNnz5689tprdOjQgZEjR/L6668TGxtr9Xpnzpyhf//+Nud0/vx56tevj0plmgqmsEwrTHEy7d9//0UIwcyZM5k5c6bFa165coUaNWoYX1uSaQAdO3a0eH6VKlVMXhtiOYvOq3DuiDNnzhASEoK/v7/FMQ3XdUSWSiQVHXd3dwCTqggAQ4YMYfny5fzyyy8m35d69eoZ/87Ly+OVV14hOjqagIAA2rZtS3BwMF999RULFixgyJAhVis5gH3f2fPnz6NSqUyuC1C9enV8fX2LlV9gLitOnz5NXFycmUwxUHRtU1R+lUQGFidXDblybK1RS7KelNjmrijbo0ePZt++fUydOpUmTZqYJb2SSGxx/fp1unfvTnp6OgcOHCAkJMTk+FtvvUVeXh6DBg0iPj4ewFhaIi0tjfj4eEJCQix+7rRaLRMnTuS1116jRo0azJkzhzZt2hiV63HjxrF+/XqrynZZUXgzoTBCCABjso2FCxeaLLILUzTJm+HHz4BOp0NRFHbu3GnxekXPL25O9qLT6ahWrRrr16+3eNzaD5VEUhn57rvvGD58OD179mTZsmV2nfPSSy8xbNgwWrVqxbp16/D392fq1KkAvPrqq8Uq22WBvTJt8uTJPProoxb7Fl0YW5JpAOvWrbOYiK7oJqC1OTmKo7JUIqnohISEcOzYMYKCgkzaDZvstpKhLl68GLVazQsvvMDFixf56aefOHfuHHXq1OHNN98kLCyMS5cuOZz00RJFDQjWsGf9o9Pp6NKlC6+++qrFvg0aNDB5bU1+OSIDS2NdVpL1pMQ2d0XZ/vHHH3nnnXcYPnz43bi8pByTk5PD448/zqlTp/j+++9p0qSJWZ8LFy6QlpZG06ZNzY7NmzePefPm8eeff1oUIh9++CEZGRlMnjwZgMTERBNlPiQkhISEBKvzCwwMpEqVKhw9etTmfdSuXZuTJ0+atZ84ccJ43BHCw8MBvaWmc+fODp1beAwhBHXr1jX7ESgp4eHhHDx4kPz8fKvWnPDwcL7//nsefvhhsx8biURyi4MHD9K3b1/uv/9+PvvsM5seIwa+/vprfv75Z6O1IjExkeDgYOPx4mQa6L+j9si0uLg4dDqdiXW7pDItLCwM0FuBb0emgX5BX9IxLI25a9curl27ZtVSVhayVCIpz0RGRvLdd9+RkJBAw4YNje2JiYmA9U31pKQk5s6dy5YtW1Cr1cb+hnWZ4TkhIcGqsm3Pd7Z27drodDpOnz5t9MYBSE5OJj093WH5ZbjuzZs3Syx7SkMGWpoTwNGjR80U9aJ9bmc9KTGlRKW/jh07xuDBg43p6f/44w8Apk+fzs6dO4s939fXl4CAgJJcWlKJ0Wq1DBo0iF9++YUtW7bw0EMPWew3YcIEtm/fbvJYvnw5oC/vsn37djN3HYBr164RHR3NwoULcXNzAyAoKMi4WAR9iR1bpXpUKhV9+vThq6++MisDA7d2F3v06MGhQ4f45ZdfjMcyMzNZsWIFderUsbiJYIvIyEjCw8N56623uHnzptlxS6UfitKvXz+cnJyIjY012wUVQnD16lWH5gTQv39/UlNTee+998yOGa4xcOBAtFotc+bMMeuj0WhIT093+LoSSUXjn3/+oWfPntSpU4evv/7aro2pvLw8Xn75ZWbMmGG0IAUFBfHvv/+i0WiM4xZXfqx///78/fffbN++3exYYZl2+fJlNm/ebDym0Wh499138fLyIioqyu57Bb2C3L59e5YvX05SUpLZcXtk2qOPPkqVKlWYN2+eWciavWMUpX///gghLHoCGP4XZSFLJZLyzMCBAwFYtWqVSfvKlStRq9W0b9/e4nmvvfYa7dq1o1u3bgBGy7hhXWYoe2hLhtnzne3RowcAS5YsMTm+aNEiAHr27Gl1fGsMHDiQX375hV27dpkdS09PN8pga5SGDCxK165d8fb2Zv78+eTk5JgcM/wvSmM9KTHFYcv2d999R8+ePYmMjGTo0KHMnTvXeMzZ2ZkPPviA7t272xzj1Vdf5d1336Vr16527cxLJACvvPIKO3bs4PHHH+fatWt8+umnJscNtbRbtWpFq1atTI4Z3MmbNm1Knz59LI4/c+ZMmjdvzhNPPGFs69+/P7Nnz+bZZ5+ldu3aLF++3Ch8rTFv3jx2795NVFQUY8eOpXHjxiQlJbFlyxZ++uknfH19ee2119i4cSPdu3dnwoQJ+Pv7s2bNGs6dO8e2bdvM4h6LQ6VSsXLlSrp3707Tpk0ZOXIkNWrUICEhgR9//JEqVarw1Vdf2RwjPDycuXPnMnXqVOLj4+nTpw/e3t6cO3eO7du3M3bsWKPF316GDx/O2rVrefnllzl06BBt27YlMzOT77//nueee47evXsTFRXFuHHjmD9/Pn/99Rddu3bF2dmZ06dPs2XLFpYuXcqAAQMcuq5EUl547733SE9PN1psvvrqK2PYy4svvoiPjw8ZGRk8+uijpKWlMWXKFL755huTMcLDwy1uPi5duhSAiRMnGtt69OjB888/z5AhQ2jTpg1z5sxh9OjRNuc4ZcoUtm7dyhNPPMEzzzxDZGQk165dY8eOHSxbtowWLVowduxYli9fztNPP83vv/9OnTp12Lp1K//73/9YsmQJ3t7eDv9v3n//fR555BGaN2/OmDFjCAsLIzk5mV9++YVLly7x999/2zy/SpUqfPjhhzz11FO0atWKwYMHExgYyIULF/jmm294+OGHLW4E2qJDhw489dRTvPPOO5w+fZpu3bqh0+k4cOAAHTp04IUXXigTWSqRlGdatmzJM888w+rVq9FoNERFRbF37162bNnC1KlTzcIBAQ4dOsTmzZtN8sDUqVOH+++/n6effppRo0axcuVKHnzwQZuWZ3u+sy1atGDEiBGsWLGC9PR0oqKiOHToEGvWrKFPnz506NDB4XueMmUKO3bs4LHHHuPpp58mMjKSzMxMjhw5wtatW4mPjy/W8Hi7MrAoVapUYfHixYwePZoHHniAIUOG4Ofnx99//01WVhZr1qwplfWkpAiOZlSLjIw01mLLz88XiqKI33//XQghxBdffCFq1KhR7BgvvPCCqFWrlqhVq5Z46qmnxIsvvmjysJSeXyIxlJuy9rCFrWzkQuhLgLm4uBhrxhbmk08+EXXq1BFVq1YVL7/8slnmc0ucP39eDB8+XAQGBgpXV1cRFhYmnn/+eZOsv2fOnBEDBgwQvr6+ws3NTbRu3Vp8/fXXJuMYspFv2bLF4v0UzVz8559/in79+omqVasKV1dXUbt2bTFw4ECxZ88eYx9DNvKUlBSLc9+2bZt45JFHhKenp/D09BSNGjUSzz//vDh58qSxT1RUlGjatKnZuSNGjBC1a9c2acvKyhLTp08XdevWFc7OzqJ69epiwIAB4syZMyb9VqxYISIjI4W7u7vw9vYWzZs3F6+++qpITEy0OE+JpCJgKCNj6WGoA234vlt7jBgxwmzcy5cvC29vb7Fjxw6zYzt37hSNGjUSvr6+Yvjw4SIzM7PYeV69elW88MILokaNGsLFxUWEhoaKESNGiNTUVGOf5ORkMXLkSBEQECBcXFxE8+bNzWSULVkMiOjoaJO2M2fOiOHDh4vq1asLZ2dnUaNGDfHYY4+JrVu3GvsYMvFaKrcohF6OPvroo8LHx0e4ubmJ8PBw8fTTT4vDhw8b+4wYMUJ4enqanWuQl4XRaDRi4cKFolGjRsLFxUUEBgaK7t27G9dCBuyRpRJJZSEvL0/ExMSI2rVrC2dnZ1GvXj2xePFii311Op148MEHxcsvv2x27N9//xXt2rUTXl5eol27dmZrCUvY853Nz88XsbGxxrVKzZo1xdSpU03Kbgmhl9k9e/Y0u0ZUVJSIiooyacvIyBBTp04V9erVEy4uLiIgIEC0adNGvPXWWyIvL08IUfz69HZkoGEN+eOPP5q079ixQ7Rp00a4u7uLKlWqiNatW4uNGzea9LFnPSmxD0UIx7IZubm58dVXX9GlSxe0Wi3Ozs4cPnyYVq1asW/fPh599FEz14SiWHLhLYyiKJw9e9aRaUkkEolEIpFIJBKJRHLP4LAPt7+/v9HdrSinTp0ySbxijXPnzjl6WYlEIpFIJBKJRCKRSMoNDidI69OnD9HR0SaZlBVF4fLly7z11lvF1uIsj/z777+MHz+e++67D7VabbU+XXp6OhMmTCAkJAQ3NzfCw8N5++23Tfrk5eUxZcoUqlevjqenJ126dLGYlVoikUjKCinTJBJJRULKNIlEcq/isGV7/vz5/Pbbb0RERNC8eXMAnnnmGc6ePUvDhg2JiYmxe6x///2XU6dOWXQ779evn6NTKzOOHTvGN998w4MPPohOpzPWoCtMZmYm7du3R61Ws3jxYoKCgjh16hQ3btww6TdhwgQ2bdrEokWLqFGjBq+//jqdOnXi2LFj+Pj43KlbkkgklRgp0yQSSUVCyjSJRHLPUpJA77y8PLF69Wrx5JNPii5duohBgwaJjz76yCT5ky2uX78uOnbsKFQqlVCpVEJRFKEoivG1SqUqybTKDK1Wa/x7xIgRFhNDzZgxQ4SFhYmbN29aHefixYvCyclJLF++3Nh29epV4enpKd54443SnbREIpFYQco0iURSkZAyTSKR3KuUqM62s7MzI0eOZMOGDezevZtNmzYxevRoXFxc7Dr/P//5D5cvX+bAgQMIIdi+fTt79+5l1KhR1K1bl19//bUk0yoz7CnDtHLlSp555hk8PT2t9tm9ezc6nc6ktJS/vz9du3bl22+/LZW5SiQSSXFImSaRSCoSUqZJJJJ7FYeV7b///tuqwPn2229N6uFZ47///S/Tp0/nwQcfBCAkJIR27dqxYsUKevfubRY/c68THx/P5cuXCQgIoFevXri6uuLv78+YMWNMCsKfOHGCatWq4efnZ3J+48aNOXHixJ2etkQikVhEyjSJRFKRkDJNIpHcLRxWtl966SV++eUXi8cOHTrEK6+8UuwYV65coWbNmjg5OeHp6cnVq1eNx3r06MF///tfR6d1V7l8+TIAkydPxs/Pj2+//ZZ58+axZcsWxowZY+yXlpaGr6+v2fl+fn5cu3bN6vi5ubncuHHD+Lh+/TopKSkIx6q2SSQSiV1ImSaRSCoSUqZJJJK7hcPK9l9//cXDDz9s8dhDDz3EH3/8UewYNWvWJDU1FYD69euzY8cO47FffvkFNzc3R6d1VzEk4mjQoAFr1qyhU6dOjB8/nrfeeotNmzbdds3w+fPn4+PjY3z4+vpSrVo1MjIySmP6EolEYoKUaRLJvUPSH38QqygkFVlfWWuXmCNlmkRy53FUdlVUmeawsp2bm0teXp7VY5YyixelS5cufP/994DeUr5s2TIiIyN56KGHiI6OZvjw4Y5O665icDfq0KGDSXunTp0AfZZMQ7/r16+bnZ+Wloa/v7/V8adOncr169eNj4sXL5bW1CWSSkNGUhJ7Y2LISEq621O555EyTSKRVCSkTJNIJHcLh0t/tWzZkrVr19KrVy+zY2vXrqVFixbFjvHGG2+QlZUFwFNPPYWXlxdbt24lOzub9957j3Hjxjk6rbtKeHg4rq6uVo8bNiAaNWpEcnIyaWlpJvFAJ06coFGjRlbPd3V1tTm+RCIpnptJSeyLjaVhr154Bwff7enc00iZJpFIKhJSpkkkkruFw5btqVOnsn37dnr27MnWrVv5+eef2bp1Kz179uSLL75g+vTpxY7h4eFBQECA8XXfvn1Zv349n3/+Oc8++6xdWSXvJVxcXOjatSt79uwxaf/uu+8AaNWqFQBdu3ZFpVKxbds2Y5+0tDR2795Njx497tyEJRKJxAZSpkkkkoqElGkSieRu4bBlu2fPnmzYsIEpU6YwcOBAFEVBCEFoaCgbNmygZ8+edo/1zz//cPjwYS5evMgzzzxD9erV+ffffwkKCsLb29vRqZUZWVlZxgzs58+f58aNG2zduhWAqKgoAgMDiY6Opk2bNgwdOpQRI0Zw+vRppk6dytChQwkPDwcgNDSU0aNHM2XKFJycnKhRowbz5s3Dx8en3FnzJRJJ+UXKNInk3iIjKYnfly8nctw46XlTAqRMk0jKFmsySsouO7idIt0nTpwQ//vf/8SJEyccOi8zM1M8+eSTwsnJSajVaqFSqcTvv/8uhBBiwIABYsqUKbczrVLn3LlzArD4+PHHH439vv/+e3H//fcLV1dXUb16dfHKK6+InJwck7FycnLEK6+8IqpVqybc3d1F586dxT///OPQfK5fvy4Acf369dK4PYmkwnAjMVH8GB0tbiQmmh1L/P13EQMisUDWVGakTJNI7i1sySdrx6RMu4WUaRJJ2VISOeToORVVpjls2S5Mw4YNS3Te5MmT+eGHH/j2229p27Ytnp6exmM9evRg8eLFvPnmm7cztVKlTp06dpVv6NSpE7/99pvNPq6urrz11lu89dZbpTU9iURSQHFx2c4eHndhVvceUqZJJJKKhJRpEonkXqVEyvbJkyfZtm0bly5dMss+rigKq1atsnn+1q1bWbhwIV27dkWr1Zocq1OnDvHx8SWZlkQikVhECEFQRATTMjPRaTQIIVAU5W5PSyKRVDKky6VEIpFULhxWttetW8fIkSNxc3Ojdu3auLi4mBy3ZwF78+ZNgq38yGRmZjo6JYlEIrGK0OnISEzk9+XLuXbmDP7h4fqFbkgISjlLxiiRSMo3siqCRCKRVC4cVrbnzJnDgAEDWL16NR4ldMmMiIhg27ZtdO3a1ezYN998w/3331+icSUSSeXAXuuQ0OmI+/RTdowahU6jMbb/tGABvVatImLYMKlwSySScosMjZFIJBWJiijTHFa2ExMT+fDDD0usaAPMnDmT3r17k5WVxRNPPIGiKBw6dIiNGzeyevVqY0ZJiUQisYQ91iEhBBmJiWaKNoBOo2HHqFHU7dRJb+GWLuUSiaQcIUNjJBJJRaIiyzSHTTrt2rXj6NGjt3XRnj17smnTJn766Sf69OmDEILnnnuOzZs3s379ejp16nRb40skEonQ6fh9+XIzRduATqPh92XLEDrdHZ6ZRCKRlByh05GRkMC+2Fi2DRnCvthYMhISpCyTSCTlkoou0xy2bM+bN49hw4bh5uZGly5d8PX1Nevj7+9f7DgDBgxgwIABnDp1itTUVPz9/WnUqJGj05FIJBITnD08UFQqVE5OXDtzxmbftLNnUTk53aGZSSSSykJZJEJTu7vL0BiJRFJhqCwyzWFlu1WrVgA8++yzVs37RTOM26JBgwY0aNDA0WlIJBKJCUVdkHRaLf7h4TbP8QsLQ6fVSoVbIpGUCGtKdVkkQvMMDJShMRKJpMJQWWSaw8r26tWrS+WGL168yBdffMHFixctlg9bunTpbV9DIpFUDixlHH/4tdeIHDeOnxYssOhKrlKriRw/vtzvmEokkrvHncou7uzpiZuvL/tiY4sNjYmKiUGRG4gSieReRlEqjUxzWNl++umnb/uin332GU899RQ6nY5q1apZLB8mlW2JRFIctlyQTn/7LaMPHaLXqlVmx1RqNb1Wr8Y7OLhc75ZKJJKKjdFj5+ZNABkaI5FIKgTO7u6o1OpKIdMcVrZLg2nTptGnTx9WrFiBj4/P3ZiCRCIpBxQX92jLBSnpjz/4YsQI+q5dS91Onfh92TLSzp7FLyyMyPHj9Yq2tGpLJJJ7FBOPnbNn6b16tQyNkUgkFYL87Gx0Gk2lkGklUrb379/PihUrOHXqlJkLOEBcXJzN81NSUhg7dqxUtCUSiU1suWja41Z5ZP16Qh96iPuffZao6GhUajU6jQbFyUlatCUSyT2LJY+dsM6daTlqlAyNkUgk5R8hyElPrxThfg7PfteuXXTs2JHU1FQOHz5MzZo1CQgI4OTJk2RmZnL//fcXO0a3bt349ddfSzRhiURSuSnsVmmPC9Kln39GpVKRfOQI8zw9SY6Lk4q2RCKxm4ykJPbGxJCRlHRHrieEsOixc3DJErxr1ODxlStRqU1tJTI0RiKROMKdlmuWyExJwTskhF6rVlVomeawZTs6OppJkybxxhtv4OzszJw5c2jVqhXnz5/n0UcfpWPHjsWOsWzZMgYNGkRWVhadOnWyWD7MkPVcIpFUbBwpkXM7bpUIQX5WVmlOXSKRVALuWBI0Dw9AL+d+X77czNKTHBfHF8OH02ftWup27MgfK1bI0BiJRGIVW+urOyXXbKHJzkZRqYgYNqxCh/s5rGz/888/vP7666hUKhRFITMzE4DatWsTExNDTEwMw4YNszlGRkYGWVlZzJ8/nwULFpgcE0KgKIpD5cMkEkn5xR6Bby0RmnSrlEgk5Z2iZQtVTk5WPXaObtpEyvHjdFu6lKiYGFROTjI0RiKRWOReUKitYdhcBFBUKrxDQipsuJ/Dyrabmxs6nQ5FUQgODubMmTO0bdsWAG9vby5evFjsGMOHD+fChQu8++67NGjQwCwbuUQikRhw9vCwmgjt4JIlRAwbxuMrV/LV6NEy47hEIrknUKWnEBWsf7aFWdnCevWImjXLpsdOclwc5/bsodYjjzDP05ORBw4QLL0BJRJJOaDo5qLByKooCpfj4vi4bdsKJ9McVrZbtGjByZMn6dKlC506deL1118nICAAZ2dnZsyYQfPmzYsd49ChQ2zYsIE+ffqUZM4SiaQSYCKQtVr2xcRIt0qJRFIuUF1PpX0IpFxPtXjcVtlCv7AwWo0ZU6zHTk56ugyNkUgk9zSFLdhmm4vh4XoX95AQ41qtIso0h1ehkyZNMlqJ5s2bh7e3N7169aJ79+5cvXqV999/v9gx6tevj8ZK9mCJRFIxcSQZh9DpyEhIYF9sLF+MHFmsW+VH999P2pkzRMXE0G/9eqKio02EN4BXcDBR0dF43WOuVBKJ5N7gTiYMslW28NfFi/EKDi42aVBmim2ruUQikThMahIsj9E/3waFDSZBERHGzcWldeuyf+5cjm7cyP65c1laty5xn36K0OlQu7uXzj3cYzhs2e7Ro4fx7xo1avD777/z77//kp2dTaNGjexyCV+0aBGTJ0+mWbNmNGrUyNEpSCSScoi9sUNm1h5Foef779+2W6V3cDDtY2JK63YkEkkFoyTxjfa6ixemuLKFBo+dvuvW2UwapMnOtvuaEolEYhepSfBRLET1goCSGSeKWrDbTJ6MZ7VqFjcXdRoNO0aNom6nTngGBpbGHdxzOKxsz549m9GjRxMSEgKAoijUr18fgKSkJD766CNmzZplc4xJkyZx+fJlmjVrRkhIiFk2ckVR+Pvvvx2dmkQiKacYs/BaKnkjBEc3b7YrEZp0q5RIJHeS4tzFC1O4bCFgs2zh0U2b8K1Th47z5lXYpEESiaTiYclg0mvlSn6aP9/i+g30Cvfvy5YRFR19h2d7Z3BY2Y6NjaVbt25GZbswiYmJxMbGFqtsR0ZGyh8LiURinijDSskbexOhpZ48eadvQSKRSCzjZiVW0c6yhSq1GqHTkVxBkwZJJJKKhSWDibO7O84eHjY3FwHSzp5FpVZXSFdyh5VtQ9Y4SyQlJVmsmV2UTz75xNHLSiSScoK9dbOLuhkFNGpE1KxZFgWySSK0Dh3446OPpFulRCK5JxFCUPWxJ6DvUKrm55dK2ULpsSORSO4m9oTMWDKY5Gdnk5+VVezmol9YGDqNpkKu4+xKkLZx40Z69epFr169UBSFV155xfja8OjatSvDhw+nTZs2ZT3ne5YdO3bw4IMP4u3tTXBwMAMHDuTs2bNm/VatWkWDBg1wc3OjRYsWfP3113dhthJJ2ZD1TxysiNU/F8HZw8MkC2/hRBl7Y2JsCmRDIrTMlBSbidAkpYeUaZKKSFkmQjMmd5w9h21DhpB85IjVsoXeNWrw+MqVNpOgSS/A0kXKNImkZBhCZlQWQmacPTxQVCrLyWwLhQIWlXXGsQuFAlZE7Fqh5uXlkZGRQUZGBkIIMjMzja8ND0VRGD58OMuXLy/rOd+T7N27l759+9KkSRO2b9/OkiVL+Pvvv+natSvZhXZpNm3axJgxYxg0aBA7d+7koYceom/fvvz66693cfYSSelhSSAXdhev2rCh5Sy8dgjklOPH8apenZy0NOZ5epIcFycXo2WElGmSioohEdrNUlS2nar4mm8ibtpEQKNGFkNjDN46zYcMYcLZs7SbMYPmQ4bQbsYMJsbHEzF0qNxELGWkTJOUd0pzo7AkyR2LUnhtV61ZM3RarUWDib2bixW1woJdbuQjRoxgxIgRAHTo0IEPP/xQZhEvwqZNm6hduzarV682Lv6rVatGx44dOXz4MG3btgUgOjqawYMHM2fOHED//4yLi2P27Nl8++23d23+EomjlMhdvCBW0dLiExyLzZZulWWLlGkSiZ5iF6VuHrjXa+RwrOLRTZtIOX6cbkuXEhUTg8rJSSZBK0OkTJOUd0pSMcEajiR3NGItD0VBzeyHX3uNyHHjzMJjCocChnXuXOkqLDgcs/3jjz9abM/Ly7Or7FdFJT8/H29vb5MfSB8fH0C/8wNw9uxZTp06xRtvvGFy7uDBg5kyZQq5ubm4urreuUlLJLdBcUK/sKXHsAB19vBAvX691cVn4ZI3JRHIspZ26SFlmkSix9qitHBstqtWy68xMQ7HKtpTtlBSOkiZJpGUDHvyUACc/vZbRh86RK9Vq8yOHd+6lWZDh9KgR49KV2HBYR+ldevW8e677xpfHz16lPr16+Ph4UH79u25cuWKzfOFEFy7do3c3FzHZ3sP8/TTT3P8+HE++OADrl+/ztmzZ5k2bRotW7bk4YcfBuDEiRMAZl4BjRs3Ji8vj3Pnzt3xeUskZYUlS489i8+jmzZxePlyo+LsSGy2oZb27e74SqRMk1Q+HHGrLByb/cXIkeaxioqCs7u7Q7GK0lunbJEyTVLZKBVXcTvzUAAk/fEHX4wYQcSwYUyMjzcLj2nQoweKSkVyXFylCgV0WNleuHAhqkIL3hdffBEXFxeWLFlCUlIS06ZNs3l+fn4+1apV4/vvv3d8tvcwbdu2Zfv27bz22mv4+voSHh5OcnIyO3fuxMnJCYC0tDQAs4ztfn5+AFy7ds3i2Lm5udy4ccPkIZHc07h74hpS09xd3M5EGY369EFRlEonkO8lpEyTlGdKEttoKwFQYYrGZv+9Zo1xEzEoIoJeq1cz/eZNpmVm0nzwYKrUrMkT27ZVyljFewkp0ySVDXtlmkVcLSSztZGHwsCR9ev57cMPizWYVKbNRYeV7fj4eJo0aQJAamoqBw4c4O233+aFF15g9uzZ7Nq1y+b5Li4uhIaGotVqSzbje5Sff/6Zp556ijFjxvDDDz+wZcsWdDodPXv2NEm8URLmz5+Pj4+P8VGzZs1SmrVEYhtbC1ZLO6ZGV6MDN1E5u1h0F3c0C29lEsj3ElKmScozpZ4ErSBW0VIdWcMmYusJExh7+DARXTugXjMfpg9B/ck8uHKJho89xivJyVYToVXUWMV7CSnTJOWFsqyYYC/CL7DENbMv/fwzKpWK5CNHpMGEEsRsq1Qq8vLyAH38trOzMx06dAAgODiYq1evFjvG888/z6JFi+jatStubm6OTuGeZMKECXTs2JG3337b2PZ///d/1KpVi3Xr1jF27Fjjzuj169epXr26sZ9hJ9Xf39/i2FOnTuXll182vr5x44YU5JI7grGMV7uHzFyzVddTaR/mYYxjFDod+dnZqJ31YkVotbSZPJmUY8dIjrtVBsykZnbHjvyxYoXFuGzJ3UXKNImkaKxinnkd2QJ38X937uS+ESPg23Wo5owGbaHkjp8sQMxchXuPYZUuVvFeQso0SXmhNBOhlQhFQXj58vvbsSWvma3VghDSYEIJlO0WLVrwwQcfEBoayjvvvEPHjh2NySIuXLhAtWrVih3jwoULnDp1ilq1atG+fXuCgoJMfnAURWHp0qWOTu2ucvz4cXr37m3SFhoaSkBAAGcKdoAMMUAnTpygYcOGxn4nTpzAxcWFsLAwi2O7urrKhBySu4I9iYEMyTIQAqf0FFQ7VsGlMyih4VTvN46xhw+zffhwjm7aZDz/6KZNXD11iqf375eLz3sUKdMklZ2i2XYDGjUiatYsrp05Q1BEBA9OmkTzQYNQe3igy8+HKwkoRRRtALQalDmjoHUnslWuLKldWyZCuwtImSaR2ImrOyq12mbN7KIZxw0Y8lBIo8ktHP5PzJs3j/379xMREcGRI0eIjY01Htu+fTutW7cudoyvv/4aV1dXPD09+e233/j666/56quvTB7ljdq1a/PHH3+YtJ0/f57U1FTq1KkDQFhYGA0aNGDLli0m/TZv3kynTp0qdTZ3SflB6HT6ncqC7K1G5Xjnpzj1qw+r5sKujbBqLkqvuii7NtB37VqCIiKMY6jUah6cNAlnd3eunj5t1c3IWnZxmXW87JEyTVJRKS5pkMWa2Rs3sjcmhvysLBr16WPqLj5jKCqhQ9m+wlzRNqDVwLZluPv6lpqlR8pBx5AyTXIvcS+4ilslNxudRnNbNbOl4eQWDlu2H374YaNlOjw83CSJxKhRo6hXr16xY1TEbI7jx49n0qRJTJw4kccff5yrV68yd+5cqlWrxsCBA439YmJiGDp0KOHh4XTo0IHNmzdz8OBB9u/ffxdnL6nsOFIz28yCPWwywr+aDYvOaGjdmd6rV/PLokUWy3hZW3wasovb2y4pPaRMk1RUbNaXtVIzGwAhOLN7N00G9IdvP73lLu7mAXPXwyXbcYwknEVRq1G7u5fKfUg56BhSpknuJUrVVTw1CbYth/7jIKAUNt+EQLmZfls1syW3cFjZBvD29iYyMtKsvUePHrc9ofLKhAkTcHV15cMPP2TVqlV4e3vz0EMPsWXLFqpWrWrs9+STT5KVlcWCBQtYsGABDRs2ZPv27Tz00EN3cfaSyo49Qt9Qh5Sdn+JkWGQqCsxcifLxfJsWHWXbMqqPjaHf+vXSXbycIGWapDJRXM1sIwqQkmS6uZibDTlZEGo7jpEaYQiNRiZDu0tImSa5G9hrzLAHq145qUnwUSxE9SodZRtQ0lLwrt1Q1swuBexSthctWsTQoUMJCgpi0aJFNvsqisJLL71U7JgJCQksWbKEn376iWvXruHv70/btm2ZOHEiNWrUsG/29xCKojB+/HjGjx9fbN9Ro0YxatSoOzAriaQUEQKRfMk0+Y+ru96qY49Fx8mJNwMCeGr3bhmrWA6QMk1SHrC2kHW4ZnZBbPb1S5fo8/HHlrPtKgr1unRFWVNkc1EI2L0Zeo+CTxZY3nh0UkP/8WSnp5fgLiWlgZRpkrtBaVqwbXrllISCKgsWyc1GUamIGDaMup06WbVgX/7rLz5u21bmobCBXcr25MmTeeSRRwgKCmLy5Mk2+9qjbB89epR27dqRn59Ply5duO+++0hOTmbZsmWsWrWK/fv307RpU/vvQiKRlB1uHuDkhIJA+eIj04WkIxYdrZZsO6oVSCQSib1YW8jaWpSqtGkQCc5eKmNsttFyoyj0fP99i7GKzu7uqD2sbC5uXAI9hsHMlVA0pMZJDdGrISCYzJMnS+O2JRKJpMSYVVkQwqpFWlGp8A4JIWrWTFTOLujy81DUzib9ZcZx29ilbOt0Oot/l5TJkycTHh7O7t27jWUWQF9aoWvXrkyePJmdO3fe9nUkEol92KyZXSCMUTmZLzLttOiI/uPJuXGjjO9CIpFIikelS4dIcK/X2GrNbJNsuwXlvfJzctBkZaG2tLl4Og6ih0PsWnigI3y+AhLOQo0w6D9e79op62lLJBI7cMQzx1GKVlnwDw/XewaFhNyKtS5i8VYUhdSvtxD49liuvrKCwL5DS31eFZm7EsH+008/MWPGDBNFG8DPz4/p06fz008/3Y1pSSSVFoMVSFW4ZnahjOMIgdBqLVuwNy6BajX0Fh2nIvt3TmpE9GqUgGBuXr5s8doyo65EIimOUs/cq/bEObSxac3sAgzZdp/Yto3en3zM9Js3mZaZyfSMDK4nJCD6jjWXdQC7NsHT/wdV/BFjo2HuesTomRAYAjJhkERSoSlNGVV0TVYsuSkQWfBclEKKs6UqC/vnzmVp3bqc+uYbfRLc+hHwUybUi7i1BjSQIy3YJcEuy7ajGRjbtWtn+6JqNbm5uRaP5ebm4uTk5ND1JBJJ6WAoeVM047gqNBwx/FVE/3EoRS3YhSw6onVnlG3LjBYd0X88SjEWHZlRVyKRFIdVd3EHLUBCCHz6TgHnGajAYmx2clwch5cto/Xzz0NKoj5G+9IZ1KHh+A98AfwCYdYqmD3K3F18yCRwdSftx534Rw8kVVqBJJIKg61kZ6WaXdxR8lL1ynbeLeXckqu4xSoLQJMBA6jfrRukJMLny/VejKHhBdnN5Wbh7WKXst2+fXsURTFmIy7sp2/Jz1+r1docr3PnzkyfPp377ruPBg0aGNtPnz7NzJkz6dKli903IJFI7Ke4rJgejQtqYRfOOF6A8r9vEWsOIWatQim6yPx+K6LbUJSHeyDGzEJROyMK4nookA/Sgi2RSEobRxIGmbhPnj1L79WrTWOzC9zF/evX54Hx4+HbdWYlDZVPFsCyPdB9GDzQCQptLhZ2F9feSHfICmRLPkrZKZHcG5RqsrM76Sperx5Rs2ZZ9OQJioig79q1KLs2mJdw/WSBfmOx+zCcqvjaTqgmsYpdyvaff/5p/PvKlSuMGjWKDh06MGDAAIKCgkhOTmbLli3s3buXVatWFTveokWLiIqKokmTJjRr1oygoCCuXLnCkSNHqFWrVrEZzyUSScmwah3SpkH7QFyDQswzjhs48QdKzAhE7FrEA52sWrBTv9xI4NtjzSw60oItkUiKozSyi1vCLBEaENa5My1HjeL0t9/ywAsv0HzQINQeHujy81GuJpkvPEH/enwn2HkJAkMQo2eiOLuYbS46ii35KGWnRFJ+sSa7Sj2zOIC7r0VZ5+zhQYfZsy168jw4aRLiSoLldZ9WAxuXQsf++LV/FH7KJCA/T+9eLkt82Y1dfgEtWrQwPpYvX87gwYNZs2YNjz/+OK1bt+bxxx9n7dq1DBo0iA8//LDY8WrVqsWRI0dYtGgRDRo0QKfT0aBBAxYvXkxcXBw1a9a87RuTSCTmWEuE5t/3WXjrCgqgKppxvDA716Ns/RAlIFgfi1gQk6gUjUmUcT0SiaQEGDYEbxaJe3Q0hlGlTYOHPFBp06y6Tx5csoQqoaGMOXSIiK4dUK+ZDzOGohI6lO025KBWA5vfA6Ej9est8Iin/lkuPiWSCk1JNv0cjr++DURQI4uyLj87m/ysLPMqC4pC80GDcNqxyrK8e3QwfPIrXL+KsiIWpg9BWTkHUhKgFBJmVxYcdsLftWuXVTfvrl278t1339k1jpeXFxMmTOCzzz7ju+++Y/Pmzbz44ot4eXk5OiWJRGIn6munaf+4/hn01h6uJOiF6OvjwMlCxvGixP2st2Dv/FwuMiUSyT2HEAK/3mPg3Uz8eo9B6HSm7pOKgrOHxy259d/1OPWrD6vmwt4vwMW1eDmYcFZfocHJSW4uSiQVDGvJzmwpzmXpFm4fCsK3pkVX8cJVFlTqAqdmRcGjalXr5QzrR+irK/x3A/QO18vHXRv1z4/XhZ2fgk6H2t297G+tnGOXG3lhvLy82LNnj0WF+7vvvpPKskRyD2MoeeMaUl2vaB/4GiXjGox8TR+Lo9PCU5Ph7DF94jNL1AhD6LSg1cpFpkQiuasYamartGmAeaxiQKNGRM2axbUzZwiKiODBSZNM3cVTE01zUORm6+WapcoLhakRppeXxeSokUgk5Y+SxGaXplt4UblmF2p3VM4upq7ihrKF2dkcXLKEiGHDeGLbNnLSrtHsiYGoPTwQWi2KJXn35CS4kgDW3Mtnj4IHOuEZGFiie6xMOKxsP//888yaNYvk5GT69OlDtWrVuHLlCtu3b2fdunXExsZaPK9KlSr8+OOPREZG4u3tbbV4OugTsF2/ft3RqUkkEntQe+DevANkpKE83B0yE+DIfLhxBqqEQ+NxsO6wPsP4rk2m5xbUzFYUFTqfAPYmQmOfAJMuHgEBJs8SiURSmOISNTqCYQPR2dvFYqwiikKbyZNp1KcPfdesQVxJwGnNArhyCdXUD6Gou7gQsHsz9B6lTw5kybXSSa1PhqbIDL0SSXmmNGWRo9hSqA1yTaVLNz+nIDzGDE02uvw8/MPDzTYWNVlZHNm8meNbttBs8GCTKgvKsMmIfkUqzSgKdB0EH8+3HU6zbRnuY6Jv7x9RCXBY2Z4xYwa+vr4sWLCANWvWGLOUBwcHs2TJEl588UWL573yyisEF3yQX3nlFZvKtkQiKQOEwNdQ8karRUHAv+th/2gQhYTpXwsgaqXefejs8VsW7kI1s1EUfebysdG3MpgXYNjllLudEonEEmVRIse1QWvTWMVCFp0zu3fTZEB/OPANqsKePEILrTvB/h2mnjwbl0CPYTBzpblVx0kN0av1WcflOkYisY/UJNi2vKCU1J3Pqm9Nqb6b5bqsKdTWMIbHDHgBv/xcC9WgBEr6RR6cNImoWbMKNhZvlS2M6DceVWAw7PzU1Jvn7DGUdYdN5Z2ru15G2hFOo6jVpeZKXlErLzisbAO88MILPPfcc1y6dImkpCSCg4MJDQ1FZaMOW3S0fudDCMGECRPw9PTE1dW1ZLOWSCRWuXnsL1LnTiJgxhK8mt6nb9TpIDURZdsKuJaMMm0ZZFwwV7RB/3rfaKjRGWathvWLzDKOg8yQK5FISh+rmXttuVWqPXEObczPs+cS2KSJmUXnZkoKZKRb9uRpNMbck+d0nP517Fp4oCN8vsJieS9bWPPwqaiLSYnEJqlJ8FEsRPW6K8q21Uos1uTNXY+/NsWslFd4uH7jICQExSCL1B4o1xNwD6sL364zyy7uFBqOeKCjeenWwvKudWd9OcPEc5CXa1c4jdBo0GRnl8p9VtR1ZYmUbQCVSkWtWrWoVauWQ+fl5+dTrVo1vvzyS3r27FnSy0skEitknzpGndP7SDl1TK9s63Tw0zdw46ppbPbJleaKtgGhgePLEJExKHPXO1bWJiAYxkTflR9UiURy72NrIWst7tGSFUgIgY/BWwfwqFaNsYcP33IVT76IOqgWPmNnooB1T552Fjx5dm2C86fgo/2IsdEoTmqH5KA1D5+KupiUSMojVuWNtfYSxFKXKP66ACefapbDY4CfFixg4Oef06BnT5SWA+GBoaDToqQmmnvkKAp0GYhizS181ya9/Ju1GsbG6BM/6nR6T4Riwmmy09Mdvq/Kxh0POHJxcSE0NBStTCoikZQ9QkBGGrTpBm3b6y06P47UZ9G9UYx7UMZZFJUTdApwLON4QDCMi5HKtkQisYjNjL52LkyFTkdGQgL75rzOF888gyYvj9bPPovy806c/tyr31iM+Rie+Y9ejmUlWvfk2T8aMhPhyYm32p3UMGQSuLqTtneXrLwgkdwrpCbB8hj9s52UlqXaUddvW+fkqzI4V1X/bA2z8JhCNBkwgPrdukFKInw0G2YMBY1G765fVDm2xy38dJzek9FJv+7j/EkICIFZq/TysDCFwmkyU+4N6/+9TIkt27fD888/z6JFi+jatStubm53YwoSSYVFq4snfpQHbrp4EDrw8ili0VGg7ft6F0pbeIchtPko16/eiWlLJBJJsYtZg6Xn1DffkH3tKm1fe82YUZebllzF60HkLDjxkW1PnlMrofsMOLTHzF1ceyPd8coL0sNHIikbSuCSXpqWakcxKNWeIsOs/bw/1L9mRdkuFB5jUrbQ3R3/+vXpu3Ytyq4NKAYrtpsHzF1vWaF2pMqCRgPXr+rPUamg+zB4oJPevdxCOE1puZBXZO6Ksn3hwgVOnTpFrVq1aN++PUFBQSZB/oqisHTp0rsxNYmk3GAx4YcQBPWajOI8HZGfq8+We7NobLaAM5uh0Si9C6WlBaiihibjybl4HllBUSKRlARrSYlsLXCtL0xvEl/Ng6AGrchOS6N+t263EgAlnEWJ/tjCxiKg9oAHZtvlyYOzKzgaNmMNg4ePRCK5I2T++R35n43BeeBHeLY0L09sCWube1pdPOdGgLsu3u7r5ytpnOsKroqpXCtWqS5C0fAYq2ULrybdUrQVRf+wplA7UmXhZrppu0oFgSGI0TNRnF1KRz5WMu5K3Yqvv/4aV1dXPD09+e233/j666/56quvTB4SicQ2hoQfN5MKXKl0OkROFgbxpwBC6CzHZh9ZAp419FnHlSJ7booa2q8Gj2Cyz5ws47uQSCTlHitunVn/xMGKWP1zIWxZr/NVGZwv4lophKBq71jq9MnEtVZL3H18UHZtwKlffVj9Ovy6G9TOeot2UVdxTTZosuz25JHu4hJJ+STv9EF8654n7/RBs2OOWrC1SgLnm+ufC2PL9VujSud8V/1zSTGGx8yey7ahQ9Hk5tKoTx/GHj5MRNcOqNfMhxlDUQkdyvaPIKyJPs76wE39Q62G4a9Co1bmg29cAtVqFOsWTpoFt3BF0ctFKR9LRKlYtrOyskhMTCQ8PNyukl7nzp0rjctKJJUabfoJol4AleayXtFGgEqHUBUo2ir0lm1dvvnJ1+Lgx+HQYS2EdIB/PtJbdrzDoMl48AgGpcB9UiKRSGxhxa1Tfe007R+Hq9dOA48a261Zry0hdDrys7NRO+uXKypFQaQkomx6B6av0NeCtZn00UFPHkfdxSUSyT1PSWKtLeGoldo2CiqVBxSYSEwSoWm1OLu78+8TT+jLFn776a3s4gZ3cf9q+koKRSssNB4Haw9B9AjYuf7W5c4ehyO/FusWTq4Nt3ApH0uEw8r2W2+9RWZmprGU14EDB+jVqxc3btygbt267Nq1i/DwYnaQJRLJ7XP9b+gPPnUaIAr2uPJ0V0m8sIrs7DO4u4cTEjIOlwfmotw8D2c2mZ5/ZhOkHYeo1fqs4yonhCYXxcnFuGtprXyNRCKRGMhMScHT8NzoVruWi5zrCp7iokl/2wtW/QJU7ROK0OlACNToUBn38QWKVgNrfoWbBYvMm5egw8fWXcWPLIH6w/SePPuKWL5NPHl2Ohw2o/MJYG8iNPaRMlIiuRNYkzflCSEE1R9fRA3n99EW1MzOSEzk4NKlPLZixS13cY0GUi24i+dmw4BnrVdYiFoFs9dC84cg7mdzhfouu4VXthKIDruRr1y5ktDQUOPrl19+maZNm/Lll18SEBDAtGnT7BonNTWV6dOn07lzZ5o2bUrnzp2ZMWMGKTKrnURiihUXTUVkolYH4hpQF4Dky5/y66H6nD8/lytXNnL+/Fx+/bUuyVc2IDqsBf8I87HTjiM8qqO7mQ6rPUn/fKGJwPVsHAFjovXPEolEYoGc5NMQWfBcCEsu4bYwLEDbtcsksP2r+kYFVJqr8Ndc2DMEji+DkFpwZiN8Vh/+nAun19h2FTd48tQbCkPioeUMqDdE/zwkXt9eQk8ej8YRMDZa/yyRSBzDRmbxm8f+Iv7J9tw89pdJe1ZqqsnzvY+5BTsjIYH9c17ni5Ej2T93HkKr5eLPPzP6119pMXAAamcnAFQqBeXaFWjfx9Rd3NkFsi9br7CwbxRkJSEGPKvPQzF6JgSG6BVtuGNu4daUakMJRO9Komw7bNm+ePEi9erVAyAhIYHff/+dffv20bZtWzQaDc8++2yxYxw8eJBu3bqh0+no3LkzDRo0IDk5mXfffZd3332X3bt38+CDDzp+NxJJRcSCi6YQgpC+S6mhvIcQOvJyEzh5ajSiiNAVQsPJk6Pw8+2IS/NJKPueuXVQUSOi9BadzF93UeVgFrouvqbXlkl+JBJJMVizYDuC0OnQabWoCmIJFUUBBZRTnxYsKLWgdofQLnDzon4x6UjSx7Nboc0S8AhBtJyBonY18+QpCbJutkRyG9jILJ596hh1Tu8j5dQxvJred3fmd5uYWrDzLFZS0GRloXJyokn//nqZp7kKx1fdcgtvOgEWbIaMiwXu4mf13jj/LLddYeH4Mmg1Cx7xJvWVFQT2HWrer4zdwqV81OOwZdvd3Z0bN24AsGfPHry8vGjTpg0Avr6+XL9+vdgxnn/+eZo2bcrFixfZtm0bH3zwAdu2bePChQs0bdqUF154wdFplRtOnDhBly5d8PT0pHr16rz66qvk5eXd7WlJ7mHSrpzgXFf9M2BUruPjYzh+fChC5JOYtMJM0TYghIbEpOXQ4CkTi454Mh7qD0VRVGRnq9j7FWj869/BO5NUFKRcqwRkJcHhGP1zERy1YFuy9KCAijxTBVqTDRd3ItqtQDxzE57JRDQYjsi5Bn5NTIe0J+mjWyAoit6Dx4InjzVkOE3lQ8o0iWVMZVdR9Mf0CJ0OnUZj3EBUOTkhdDrqd+9GxID+Ruu12tkJodGASkE5/ektj50zG+H8DnDzhdPrYHM9ffv5L8DJ1a4KC4qTsz4TueSu4rBlu3Xr1ixYsACVSsXChQvp3r07Tk76D8yZM2eoUaNGsWMcO3aMLVu2UKVKFZN2Hx8fXnvtNQYNGuTotMoFaWlpdOzYkfr16/P555+TkJDAyy+/TFZWFu+9997dnp7kHiXz6lGSHqtFFSeBEDqSk9dx8qTeiq1SeaBSrSc727bQzc4+i6Kob8Vm67SgqIwJDXW+gexLgoa+gXfiliQVCCnXKhhZSXB8OTQZp0+UaGg+shePv2PJ0jbE48EnSz6+EIT0WkQN9fsIjT5WUb9uFeRpUki8fCvnRGiNiag7bSAv5yKJF+ffykVRfTQu/Q6j/Dj8Vi4KO5M+GtHYb9HxDAw0eZZUbKRMu3OUq/hrIQgpsFKL/Fy9EmvYrBOCmt2nUMt5BkKTV2QDUQ04gdCgIMDJBZwxTWYLKNkp5m7hzSfpE6AVzjXhSIUFTR6KrYRnkjtCiRKkPfbYYzz++OPUrl2b119/3Xhs8+bNRiu3LerVq0d6errFY9evXycsLMzRaZULli1bxo0bN9i+fTv+/v4AaDQannvuOaZNm0ZISMhdnqHkbnLz3F+kfj6JgH5L8Kp7H6B3QarRZw6hyjy9RTsv0ahoA+h02Wi1Wbi72xa67u5hCKElfet8/HKWku42Eb+BM8r6liSVACnXyilWlGqykuCPWKjTy6Q99/wZPAzPdkd5FbECCR1Ckw0qteEw6DSgciL58qcmoTCenhHUrj3LZHPRwIULC2jYYCVBHdaipB3XK9pgV9JHiaQ4pEwrORlJSfy+fDmR48bZFY+blZqKZ6Hnu4Law0JjEdml00FuNoq6IMwF9C7YrvqUiiI3G5wLyTVrG4ihk1DjQp72GokJK02T2bpVRwkbUCiZrQLhg+DP+UXcxR2osHDpgsNJHx2lsiU7KwkOu5E3adKEs2fPkpKSwrlz54zx2wBvv/02b731VrFjLFy4kOjoaPbt22fSvnfvXmJiYuwaozyyc+dOOnfubBTeAAMHDkSn07F79+67ODPJvcDNf75B1NnHzX++Aay4iycuL+IuLrhyZTPBwaNQirpOFqAoakJCxmP8uueYJxWRwlJSUqRcK6cYlGoLbuGlQoEFu127TEJ6LdYr2gWLz/gLczl+fAjxF+aiFXn6TcQiOSdCQyeRl5dgpmjrh9Zw8tRo8nITEc0nml437Th4VCcv/ohDruI2CQiGMdFmMaWSiomUacWTkZTE3pgYMpJM5cfNpCT2xcZyM6mM5EppIgS+/abAM5n6Z4O7dWHZ1XuRXtFGIApKq4LeGi2c9NZrgSBPl0L8Rb1cS7z8EQDJyetNktampu7AyakKycnr+PVQPfNktsnrTZPZqt31GwGW3MXtCZvxCCb7zMky+dcVprIlOysJJa6zXbVqVYQQJCUlUa1aNdRqNc2bN7fr3ClTpnD9+nU6duyIj48PgYGBpKSkcP36dfz8/PjPf/7Df/7zH0CfJOXvv/+2Od7Vq1c5dOgQSUlJZGdnU7VqVRo2bMh9991nV93vO8WJEyd45plnTNp8fX0JDg7mxIkTd2lWknsFbU4SCUEBNPNp5JC7+KVLSwgKGkbDhivNFqaKoqZhw9W4uASjKAo6L19IR/9cCJnEQlJSpFyrWJi4ddodolyMBVulQoCZ9RoUatWaamETUaFatUFcuDDfdi6KyyupEz5VnywNTBaZuae/wdUBV3GwEZstE0VWKqRMKx6DUt2wVy+7lKw75i5u0UptAaGDrESU48vhxhmUKuF6l21XvyLeN4rV0qo1gsfjjCfJV9Zz8uQoo6zy8+tCbu4FkzawbwPRz7c9Ls0nouwbZdtd3CRspiP8s8Ji2ExJKixISp8SKdu7du0iOjqaP//8E61Wy6FDh2jVqhVjx44lKiqKoUMtZLwrRGRk5G0rwdevX2fNmjWsWbOGv/76Sx/3VQhFUfDy8qJv376MGTOGhx9++LauVxqkpaXh6+tr1u7n58e1a9esnpebm0tubq7xtSFBnb2cuqzvHxbggbrABebK9RzSs/PwdnMm2NfdrG8tXw/c3PR9U2/mcO1mHu4uKmr6e5Wo75krN9HqdIT4euBV0Dc9M4crGXm4qFXUCShZ3/jUm+RpdFTzdsHX0w2AmzkaEtOzHOrrpFIRXu1W34vXbpKdp8Pfy4UAL8f75uRouJCuX+g1qH4rN8GFK2dJSlpNaMgoagTqS3bl5WkQimKaXdwBd/HMzDhOnBhOo0Zr8fXtSFLSCrKzz+LuHkZIyHhcXILR6QROTqDz9uOmzo1zig956dnFvvel8Tmx9H6WxufE8H7e7uek6Pt5u58Ta+99RaUkck3KtHtApqWlkKdTc/FcEuhuGvvmnDuNRuPBmWP/UqtmlPFznauDVE0VEnLU+BV6L7JyNVQviMHWaXMRQm8FKuw+WbPmZJydq5lZr1Uqd5ycPMw2Ea21FyU7+yyK2gMaPA2eoYgm41EMi8zrV4zzdc/RmMi0pBw1ap2byVinLt9AUVehNk7G2Gwp06RMK0xZyjQof3It3TeYs+n5eOdojH1v5GhI86vBxQwNhVXw0xdTqeoSSO7lVAz+sDdzNJzLFGhd/HAq1NfweVVpILBQX8PntfAn8OK1m2h1UN3HTW+dVs/AV5PL9aw8buRoqOl/S/m+TgBX3EPwFTp9IrLCFQ38IyAy2uh9Y5BdPj4PExLyLMnJ682UZze3cPz8OhZpt7ZRWJINxGLcxc9sgvRT0Gs/IjIaRaVGaPNQVLdqZp/LFOS4BKJob51meO9zc279f6HQe5+jwatIX3cXFW6W+kq5ZhcOK9sbN25k2LBhDBw4kDFjxjBmzBjjsfDwcD7++ONile1PPvnE4YkWZt68ebz11lv4+fnxxBNPEB0dTYsWLQgICMDV1ZX09HTi4+M5fPgwO3fupFOnTjzyyCO88847NGnSpPgL3GPMnz+f2NjYEp/fdckBAFYNj6RTk+oFbftIz9bgrFI4Pa+HWd/YXo0Z0UYfO999yQFSbubhpFI4Y6Hvc+3DeLVbYwD6vv8zF9OyURQ4N7+nsW+nRfqQgUH3h/LGgBYAPLH8IKev3EQBzi0w79ulcTU+GvEAACM/+Z0/L6YDEF+ob/u39H0frOvH5nH6fAHPrf+d/adTrfZtFlKFrye0BWDq53F8FZdk1rfdm/sQQN2qHvw4pQMAC3f/w5qfL5j1jVq4D52A6j6u/Dq1MwCrf4nnzV0nzfr2eu9X0vMeIqzKXn6Yple2nZ1V5OUmEn9pOdnZZ2nUaLVNd/ELFxaYCesrVzaRlXWK++7bT506MSiKEzpNLlv/Subj//1EbO+mtK5TFZ1zAD3iF3Mh3h+Xn/Zy6vXuxjEM7+eiJyLoF1kTgG7v7OdaZj5qlcK/Ft77Vx9tyHMd9D+dj737E5ev56JS4KyF935Em1rE9tJ7vzzx4S+cu5pl9b1/PCKYd4e0AmDYqt84mnjD7H9peD/b1Q9g7Sh9EOm4T//g4Lk0q31b1vRl+/P6jbeXNv/Jd/9cMevb4S39e1+/mhffvRwFwJyvj7H58CWzvu0W7kMIqOnnzoH/dATgnb2n+WDvWbO+kltImXYPyLT0VP6b+X9M2Aawz9hXdTOdRxM+4PKFAKqf/sko07644s2CxA2AIL5gTCF0KOIyFy4ut7EwVWjYcKXFRaa1TURHc1Eo7T8mNz+fr+IuMyDyVnTc/RfWAwqLjiUVkWnNqa1+hy/8k419De/9wurteaKgTco0KdPs5XZlGpQ/ubZ97Aq2706ly8U/jXLt5Z/SODZ2OV/sTCE+6ta99YnzgXYf0/pENp8VtOnlmh9K2zUc4tbmhFGuubvxdUFbYbn2W6GcEQt3nWbxwAhEZiLKyRVGK7Vnw7F4+RTE1he4iyvqGXhptfq+JqUDgftjEYpi5n1jzUqtV54Hmsm1UttAdHIHbbbeXbz+ML27eOEkaaD35ImYBGp3Rn34Hb8kCRRNNsfn9zV2GXjEF9p9zMSkDF4qaDPINSeqUHg2hvd+dANnDBl9Csu1oz1vef48IOWaQzisbM+ZM4dJkybx9ttvo9VqTZTtpk2bsnjx4lKdoCX27t3L559/Tvv27S0eDwgIICAggPvvv5/x48eTlpbGe++9x969e++qsu3n52exNFpaWppJbFBRpk6dyssvv2x8fePGDWrWrFkmc5SULWpFi7uzE85a/Q54abqLh4ZOxMnJHU3OTX75LZiqV6by6uGWJmPoXAJJykkHNySSUqEkck3KtLtPdlqaw+e4OzuRo9HLHb3s+rRY90nbi0xrm4i2NxfhVi6KvPgjjFm/h/03G+HipGJA5O19jjIf6iljsys5UqaVD5yq+LK4VwTKv+tx2m+qPKv/WoCu5x4IfqSQu/hZnCzWp1YQtXqSl5tgFuZizRptTa6VzgaiBiXiFaNbuC4vA1X9p6BGZ33tbEN74/GoPPWePP8mp5Od74VHGUbOmlZlKAcx+fcQiijqf10Mbm5ufPPNN3Tq1AmtVouzszOHDx+mVatW/Pjjj/To0YPsbJlm3hLt2rWjatWqbN++3dhmiFNfvXo1Tz/9tF3j3LhxAx8fH65fv25WPs0S5c016Z50uXSwb865w1z9eiZZbWOof59+J08IgdDmoVK7oivIkJuXm8CvB+uaCPe2bW9y4cJ8zp+fa/ZeVqs2mEaN1pKXd9miuzgCUn//nGOZT1A7bQ75D00wee8zkpLY8/4qag96kuo1Q6QbeTl3TboXKA25JmXanZdpaZ/NxfNaLP94zMGr2wvGvmmfzUWVOp94r5nU6DdJ/7kukF2K2hWdJg/FyZm8vAR+/dUe2WVbpnl6RhAZeZgrVzaYbCJaa4dbuSiCgoaSsXslqnMTOeMRTbVeE43v/dWt75H3/SwS28yl6cCxJjLt6p6VhF6ZgjpsIe5dXyiV917KtIrD3ZBpUL7kWtIff/Bmp8cYsG07LdpEGvue/PkQHz7WjyHbP6d1VGvjuH9tWE/V914i96XF1HtC7/16M0fD8a2bqPXBBJymvEtgX3270Y38wFfUe2MYKdM/xb37oFtu5P/7ksDXh5Gz7V9cq7qibKxr7mLtHwH9DsO/G2+5i6s94JlM2DNEX8PagNoTMfI68fExJjJKpfKgXbtMjh8fwpUrG03HtyHXGjZcjZ9fBw4erG8it6y1G0dU1Pzf/8Xj4hICheRtjlaFh6vaTA7rUKNW6z15Uvevg6MvoGvyLtXaDzeOeejTTwn+4GWUlxcTOmCoyXuf++NXNH9b//8N7Dv01nt/+QReox+ET38nNbTJrc/JlVMwLBI+/Z0z/g2kXHMAhy3b1atX58SJE3Tq1MnsWFxcHLVr1y6ViVVEunfvzrx580hPTzfGA23ZsgWVSkXXrl3L7LqWPkTVfNyo5mNu3rTUN8DLzfjhLGnfwh96A76ebsYvSEn7Fv6SGvByU1ucmyN9C//4lKSvW+pJarj+F/KHAQ8a47ATE5cXJNeoR506s0hMun13cSG0oNWBAEWlIjcjD7aDc98w6haZr3dwMH3mzsASZfU5sfR+lsbnxNL7eS98Ttys9K2o3A25VmllWmoSLH8L+o+DgODb/qy6uLhQy02DX5H5+bihb/dyM0skpKpSD3F/tFmoi3ULtm2Zps85MZLGjdfi59eZxMRlxk1ErTaDoKCnzNoNm4tKQWx2FVWOfr6FlBGdkx/Bh9NQP+pjVDCg4HPSvD78mAN16xvbpUzTI2WaXKsVxdpn0Dc9iTBfZ6MCBVDFTY1fWgI1vU3VixruEKjKJKVQs5ebmrqeCoF5aaQU6mv4vBbta7iPFABFwbVGTZQ/51gufWWsT13I4m0j4ZiiONltpdZjXa5Z80J0JJlt2ucL8bs5n+teU2+VaVUU0i21AwHuKlDfAM/C0e8U/H9TSCnUbHjvU4q8pcb3Pl1t1heAKxb6FkLKNes4rGwPGTKEmJgYGjVqZHTjVhSFo0eP8uabb/Lss8+W9hxtMnv2bKvHVCoVPj4+3HfffbRt2/YOzsoy48eP591336VPnz5MmzaNhIQEpkyZwvjx42XdxgpGdloa7kBOvgpXC+6WKpUHdevOvi13cXQCnAAd4KQ2Jh108m3Evveg4ciyTPkpkeiRcu0OkpoEH8VCVC9TV+fUJNi23KiEF8Zi3VtDyZuCZEIIoU+oY9Kep1e0iyYSUnuiPGAuu2wtTIuTaf7+jwLg4hJC7ZozTLx/FEWx2l5iakRAq2j9s0RSBCnTShkhCHjsCeg7lID8vFvy5nZwdUdRu1gui+VofWpNFkKXZ0F22d4ovCXXVpms725tIK4p0QaiEWvVFByssuAwstRhqeOwsh0TE8OxY8fo0qULVatWBfS7gCkpKTz22GO89tprpT5JWyxevJi8vDyj67qbmxs5OTkAuLu7k5+fj1arpVWrVnz77bcEBgbaGq5M8fPzY8+ePbz44ov06dMHb29vRo8ezeuvv37X5iS5TbKS4PhyaDJOX2qhgJz0dNzVHqhqtyrILG6aXON2s4sj4OqPq8k8Nw1X/0lU7z/deL6smS25k0i5dg9gTQkHsv6JgxWxZLV7SK9s2yh5Y9IeMRncq5kq2gUIoXVoYVpYphW3yEzc8TJnAj4hPHUENfp9AOg39C21lxiPYLg/5vbGkFRYpEwrRXQ6SE1E2bYcLp1BCQ0v2BQMAZWq+POtoSgITZ5efhWluPrUZgnHBFz4lpCQcXZbqQGyso5z48avBAUNw9enI0mXlxvlWnD1sQitDpWoSp3as1BUzmW7gViayFKHpY7DyraLiwtffvklP/74I9999x2pqan4+/vTuXNnOnfu7PAELl68yMWLF2nRogWenp4On//DDz8waNAgoqOj6d27N15eXty8eZPt27cze/Zs1q5dS1ZWFsOGDWPKlCm3nQn9dmncuDHff//9XZ2DpBTJSoI/YqFOr1vKdiHrkLPQEh8fYyE+p2Tu4gVVdVBUKkSGB7WXp5IyvY7JubJmtuROI+VaKWPDUu0oquuptA+Ba0Jj2VLtHwGRs+D0ukKLT0W/GDWzDKG3qggdIcFjHFqYpqRspVq1oVSt2sM0BAZVkUWmQKezZLmx1m4ZqzWzJRI7kDLt9lC7u+sV7Z2fwuxRoC0kRz5ZALNWQfdhOFXxdWzgQlZytFq9oaNoWawS1KdWbibg4tLLISt1cPVxuLqFkPTHn1w5EkfTQVNxdvcgPzuLY5s34x4QSIMePbjy43xOOs8r2w3EEuCwjJQW7xLjsLJ94cIFgoOD6dChAx06dDA5ptFoSExMpFatWsWOs2LFCmJjY7l8+TIAv/32G61ataJv3760b9+eiRMn2jWf559/nldeecWk3JiXlxdPPfUUmZmZTJo0iYMHDzJjxgybLucSSalQ2Gp0MwGlw2qrpR7sdhcXAhQQGg2K+tbup84ngL2J0NhHLiYlkgqFDUt1SfGo1wiyEs0t1cbYxkJlZWxZhhAoF77BpfbjNGyw0iR7r62FaUjwWH3iHwE5SUf483xval/ueduLTJ2XL6QXPBfCs3EEjInWP0skkjuKZ2AgpCaaK9qgfz17FDzQCffwhvYPWtRKPmom1G0I7VbC/sJlsQSc+Qwaj7Fdn/qxvdByJqhdQJOHkptLUOAQ/Hw6kHi5kEdh9bGg0+FCVWrXikblpEabn4s2TwMCglu2xKt6dX6av4Ably5RpUYNIsePxzs4GEWlQnM9AZ3/7W8gljam2cXtQFq8S4zDynbdunX55ZdfaN26tdmxv//+m9atW6PVai2ceYslS5bwn//8h5dffplOnTqZJJxo3749W7ZssVvZ/vPPP5k1a5bFY3Xq1OHIkSMANGvWzGIpB4nkdshMScETyL6Rg3vVIlYjtSei/UdWSz0YXCsbN15n1bUSARkHd1NlwwDSot6g6oAXjOfrfAPZlwQNfe9eaIREIikHFCQTwiyZkJXYRluWIYDD0Si1HiOo+jD8fNuTeHlloYXpaABcXIKpU3MmitoFoclF5OaB0F/yxolvyHO64NAtCMXb5NmAztvP5NmIXBhKJHcHRcHd11e/YVhU0Tag1cC2ZbiNnml7LDcPvfW7qJVcUWDmSvh+K3QYAtXbw6mVxrJY1OoOboEWFHH09ambTwQnNxj+AFw4DTXrwbrD8NO3uNy4Sp2uU1FcPRC5WbB7M1QJgLY9QafXbxTA2cPDaPzwDgmh3czpODm7os3PRaW+h9zCJXcdh5VtW5XCcnNzcXV1LXaMd999l5kzZzJjxgwzxbxhw4acPHnS7vnUrl2blStX0q1bN7NjK1asMGZHv3r1KgHSnUxSymSlpuIJKB5B5lYjG+6WBlJStlIvfDEuzsFWs4tnZ6v4Y1sWjfvWNztfIpFUHgybe5kpKXg2Kr7diLVkQlYt2FYSCRm4Fgd7n4YOa3FRV6VOrRkoTq4IbS5oCpRq9I4+SsGzBhXOimK09GC5XLFVdE7eJs8G3EObEn8oioDQpo4NKJFIygRnd3cUtRouWfbqM5JwFsXZBVzdzY8Vchf302rNreSu7uDmAXu/gNWvw5MToetUfVtuFjg5w6/fwwMWFPFGY8ArFG6kQdvHIeEs1AhDZGZA28cQyZdQrV4AVy6hVKuBtvdoVEGhAKTse9PMJRz0buEJOxcS7zufOulTqdXLctUXSeXELmX7xIkTHD9+3Ph67969XLp0yaRPTk4OGzduJCwsrNjxEhISaNOmjcVjzs7O3Lx5055pATB//nwGDhxIw4YNeeyxxwgMDCQlJYWvv/6as2fPsmXLFgD27NlDu3bt7B5XIrEHVUYaoOAaWBP+KGo1su5uCYZSD6twdqmmX5zqsJhd3KNxBIyN1j8XQiZCk0gqF4bNPcNzce1GcrMtJxOyZcG2mEioAEUNoV31irRWhQLgBIoOdBpApeP6xYv4GEqBKqZWoJKg1vlSezeoW/uatHvVvQ+vV/aWeFyJRGIZi5UM7CA/O1sf9hZqxTPGQI0wRH4eSm62aXthd/GEsyizVutzWBS2kudmQ04WhIbDro16RXzOaL0SnpMFs1bD/R3g6f+Dgc/fUsRzsmD3Jvh1N7rpH8HomaicXdBkZXHp4EFqPvIIWm9/1KOmo3JxRZeXizZfg6rQRqFll3DD1O+SW7hvgOlzAe4NmhJfP4qABnIz8m5il7K9efNmYmNjAf3ujbWM476+vnYlIKtduzaHDh2iY8eOZscOHjxIgwYN7JkWAH379uXQoUPMnz+f7du3k5SURHBwMA888ACbN2/mvvvuA+D999+3e0yJxAwrCYtUN9PBrSqKk5USFMW4W7q4hRq7pmyfQbbrStxzn6HagDeM7dYSnslEaBKJxC6EIDfhIm5myYRsWLALJxKq0RmOL7tlGWowGjxDYPdnKF0HocnORu0MmnwtRzZv4bf332fwjh1kXzzI7xe6OJQAyEnUoPYRcAqpYdLuLPwI2Q0pD/hZOVMikZQEa0r1zaQk9sXG0rBXL4eUbYQgOz0dj/7j9MnQLLmSO6mh/3hyEi5gYtcu6i7u5gFz15tbyYXQu3f3HnXrGkLolWmAjUugxzDEkxNRiiriTmrEzFXg4saKBx7g2unT5Gfpzwtu1Yqn9++/lSm9FDYK7wh+gabPBXg1vQ+vjXstnyMTnt0x7FK2J02axNNPP40QgrCwMD7//HNatmxp0sfFxYXq1avb9YEcM2YMMTExBAYG0q9fPwDy8/P55ptvWLhwocPlFVq2bMlnn33m0DkSiUNYSlhUKOu40Gktl6C4Fgc/PoVSjLslioJSpTnik1SUp1vcsduSSCSVg6x/T+BWqztErTINd7FlwT67FcKHQK0e0GIauLjfsgxtXArteqHJzuZ1Ly+c3d3Jz8pCpVbTa/VqvIODufLjJ+iczC091hRqAMXvfs6/CI0/vd+kXSaElEjKhhIr1TbITEnBo2FDfdbxoknSnNQQvRoCgsn+cectZVsIc3fxwhbsohQo1MxcqVemC1/j7HHEkV+g+zB0raJQfbHylrt4//FQtTpfjBhB8t9/G09RqdU8OGkSzu7uFjOI3wvoVL7wO+i6+N7+YDKvxR3DLmXbx8cHHx8fAM6dO0dwcDAuLi4lvujkyZO5cOECY8eOZdy4cQA8/PDDADz33HM899xzJRr3dsuISSTWMIuJLFqrNmIyNLZQggKMmS+VXvvR+4nfcrdU1ICi9xjRBDRizUYYO9lS0KVEIpGUHO2NdFBUesW6RidTS3VeBtR/CoI7wImPbrU3Hg9u1WDmML0VyWAZAr11aOm36ISg3fTppJ09i19YmFkWXkux2U6qOtRdg1nZQrCe+NFaOI1EIrn30GRn663D3YfBA51g2zKjskv/8XpFT6XSyyU3D/1JQmfuLm7Jgm3gdBxED4fYtYjWnVEKXUP0Hw/+QeyZOpWqDRvSfMRU1B4ehdzFq9Fp/nz86ta1KrtsuYs7grPOm9pXwVl429UO1pVqnZOfvr2b9PApTzicIM2QcAwgKyuLnJwcsz7+/sVnPnnnnXeYNGkS3333HVevXsXf359OnTpRv77jSaAMZcSSkpJQFKXEZcQkEmsYYiFz8zR4WqpVm3YM+h22Ht9YkPmyoIoXOmGaMAhkDLZEIik7jBl9f/oGrqdCl4IYRp0WTv6lX8g+3P1WbGNetr4kzoFv9Bl/C7toGtwwq1ZHrSi0mzUDJ2dXdPm5JuUJbVmwHUWGzUgk5RCVCgJDEKNnoji76GO01c76bOKFkqAF5OeByslyUjVbFuzvtyK6DoFHeqB5ehpqd3c0WVlcv3QJ5/xkflm0CJ1Gw47Ro43eN3DLXTwqOhqVWm0mu6xhS0G2llfCiZrU3Q1Xu9Q0G6tuOqT5WlC2HVWqPYKhVbT+WXLPoXL0BCEEc+bMITQ0FG9vbwIDA80e9hIWFsa4ceOYNm0a48ePL5GivWTJEl588UWGDx/O7t27TbKlG8qISSSlhWfjCMu1ag3xjfWGwJB4aDlD/3fLGTDwXwh7EpGRrv+BgVtxQKpbX0HDYrK03LgkEsm9S0ZSEntjYshISjI7lpmSYvJcGnjUa6R30ZzSD2KfgbZe0DlQv8D99G3Ys1XvvtnWCx7xhDYeeov2w93hyzMwagZ0GwKjZqDd/i/i0SfJvn4dRVG4+mU08V94kvrlLJPFqsGC7aSqU2r3IZFIyhmKQurXW+ART/2zoug3/lISUFbOgelDUFbO1SvRltzFDRbsbkNgx1kTWaT78iyiTTc+HzaM1z09mefpyeuenmx54gk8q1Xj8ZUrUanVIIRR0S7sLn5zz2pY7cn17QvtCoN11nlT96r+2eyY8KPubv1zYYyKs1ORdoP1WuVr97/SEE6jKxpO4xEM98dIZfsexWHL9uLFi1m0aBGvvvoq06dPZ8aMGTg5ObFp0yby8vKYPn26XeNotVoOHjzIpUuXLFrHhw8fbtc4pVlGTCKxiaLgUj0Yfo81dxUHvbt42nGIWg2RMfpFbE4WfLcZUVCjMSfpFMk7InGrNo3q/e37rkgkkoqHrTjJYrOLO4qi4BpSE1bOuWUVEgKuXzWPhyxswd61Cc4eh1mrEWNjUJyc0GRlcfSzzbgHBNKgRw8URcFZ50WdK1kWLTSWsBV/LT18JJIKSk6W5ZrZBkLDoO8Yy0nVdm2C86fQLd9rzCCOTsuF/Qf478THSI6LAzAq1MlxcXwxfDh9160jrHNnfl+2zKK7eH5GHhzMMnPXFoq3yXNZUBKXcBlOUz5xWNletWoVsbGxPP/880yfPp0+ffrQqlUrZs6cSa9evfj333+LHeOPP/6gX79+XLx40WLdbkVR7Fa2S7OMmKSSYCWzeLH4BqCo1Jazjhu4FgdHFkHH9TBvHPhVM6nRmJVwjfg5WWbJfyQSieS2MMQ9WsKnqr6erT0ZfYty9jiianUu//UXh95/nyo1apgsVkuCtbhskO7iEklFxuhhU1TRBtiwGLoPRcxapc8gXiSpmhg88VYG8X//ZcqVK5zbs8eoaBfl6KZN1HzkEe5/9lmiZs1AZSHUxZrCq1JqUns3qFqbun6XaoKyEiDlY/nE4V/K+Ph47rvvPpycnHB2diY9PV0/kErFc889Z1fpr2effRYfHx9++OEHkpOTSUtLM3lcu3bN7vkYyohZwtEyYpJKgiGzeKqp++bNY38R/2R7bh77y7S/Ia7ouysgtJZr0hbGO0wfBzltObpRM9D6BOizjatU5Knd2JekX2xKJJKKjy138RJRVKk2yKefMvXPhTewDce+T0FotdYz+laroY+HdCqy/14oNjvovvvovXo1UbNm4B0SYqJol8QdUiKRVDIMHjZFk6AZKHAXV7oNQXwVb+4u/uiTbB8+nOS//yY/M5OjmzfTctQovZu4BVRqNY369EFRFK5vX+iYu7iDLuGljVV3cUm5xGFlu2rVqkZrca1atfjjjz+Mx1JTU8nKKj5737Fjx1iwYAFRUVEEBgYas50XftjLmDFjmDt3LqtWreLGjRuAaRkxQ7ZziaQ4sk8do87pfWSfOnarUadDGOKKZgzVZzZrNKYgjbgFFDU0GovAcmy2dJGUSCoXBnfxm7erbFtSqs3iHudASoK+veixU39Dv3HmCnWheMiiC1xDbPbxbdv0G4gvepL25Udmi1WrMYlywSiRSAy4ulv2sCnMrk3w4UyUwBA0I6bqa2yPi+HCiTOsuP9+jm7aZOx6cMkSvGvUuBWXXYjCJQiN8kpTOtnFHcWaHLQlHw3eP9IwUzFw2I384Ycf5rfffqNHjx4MGTKEmJgYLl++jLOzMx999BGdOnUqdowGDRoYFePbpazKiEkk6HSInZ+aujN1fgKiHod2K2G/hazj7VYhvGqgoMDLAaS1iaHqgBeMXaQLkEQicRidDlITUbYth0tnUFo8DAOetRz3+L9vYc0h+O9602Nnj8G6w4iZK1HszOh7ZNMmfnv/fQbv2EFuwgXcf8lC19F+i441d3G56SiR3HkykpL4fflyIseNuzuJWHOz9dnILXnYFMZJjSY7m9e9vHD28LDqLm6Iy+6zdi11O3bkjxUrLMZl322syUFb4TRSRlYsHFa2Y2JiSEhIAGDatGmkp6ezceNGsrOz6dKlC++++26xYyxevJiJEyfSokULGjW6/ZrCpVlGTCIBQAhEaqJ53NDyaGj7mL5WbfX2cGrlrZq0DUYjvENBJ9DptKj2X0XXVtZClEgkJcDNw3oyoQe7wOULluMeB74AyRfNjxlcNK3VpK1ane0jRnBkwwZjiZzC1qG0H3fiXkq3JjcdJZI7j62kjHcEIchNvIhb/3HWc0Q4qdH2Hs2RTZv0GcQLuYv/tGABOo3pOUc3beLqqVNFynjpy4sV9sAprVhrW8kdbR1zFCkjKxYOK9sNGzakYcOGALi6urJ06VKWLl1a7HnNmzc3+eAnJSXRrFkzQkJC8PX1NemrKAp///23Q/MylBGTSIojMyUFT8Nz0b2egnhIIXR6K1LRH4PTcTDrKYhdC85V4b4Z4OwK+bno8vJAqyMnIwPlxrVSW5hKJJJKRKHas35arXkyIUWBroPg4/nm8snWMTBmF1eKZBe/dPAgNR+pRqf58/GrW9eidUh7I93hW5HWGYlEUpjcywm4PvAIWPKwcVIjolejBIZwsJBecXDJEiKGDePxlSv5avRoE4W7cBmvtB934h89kKuvrCCw71CT65Yk87clbFmjbR2TVG4cVrZLSmRkpF1JCexh//79DvVv165dqVxXUjGwWFan0AI3ID8PReVkPa7IUA5n8lJo2RYATb6Wo1u2GsvhpP35i1S2JRKJYxR2F084izJrtXkyIVd3/aagJflk65iB03GwfhHK3PW8GRBA9tWrAARFRNBt6VKiYmJQOTlZtA5ZnbYVi460zkgklQ9nD+uVEVyq1yA7LQ23R4ega9Uepy9XGj1sdH1GowTV5OJPP5Fy/LjxnOS4OL4cOZI+a9bYLOOlvZF+q2xhOUBuRlYeSqRsb9q0iS1btnDx4kWzGtnWrNL2ZCm3l/bt26MoirFsWOHFgBDCbHFQtP62RGKS0bdoPGRoPRg7y3LmXgOn4+DQHnTNH+Kr8WPMyuGUxAokkUgqMUXdxd089MmBiirOudnmtbHtOVaYGmFosrKMijboF7Tn9uyh1sNtIKqKReuQ1alLi45EUukoqlQLIQiKiGBaZiY6jcZ8PV6QjXzf7Dmc3LGDBydOpPmIqag9PIw5Iq6ePEnH119nYny8mVKtKAreISFEzdLX2XZkQ/BeRG5GVh4cVranTZvGggULiIyMpEGDBri4uDh80WeeeYaZM2dSt25ds2Pnz58nNjaW1atXWz3/zz//NP595coVRo0aRYcOHRgwYABBQUEkJyezZcsW9u7dy6pVqxyen6QCY2LBzrccDwkQGoboOwbFRlyR6D8ORe1M79WrzWo3ujdoSnz9KAIaNL1DNyaRSO4EZZJkSAhzd3FrirOt2tj21M0uHBNZCJVaTeT48fpEaOXIOiSRSO4slpRqhCAjMZHfly/n2pkz+IeH62Vk4TKBPlVRObtw7cwZkuPi2DFqFDtGjzbmiDCgqFR0nDfPqlKd+vUWAt8e69CG4N1EWrAlDqfpW716NbNnz+a3335j/fr1fPzxx2aP4vjkk09ISUmxeCw1NZU1a9bYPL9FixbGx/Llyxk8eDBr1qzh8ccfp3Xr1jz++OOsXbuWQYMG8eGHHzp6i5KKStFSOP8egZREy0mGNixGCQhGzFplvfZsQAh5V87Bak/SvjMth+PV9D7qbNyLV9P7yv6+JBLJHaPUSnkVRujM3cULK85FZZCt2tifvYcIqmldds1aZRYTWTgRWvaZk6V3XxKJpEIhdDoyEhLYFxvLtiFDOLx8OQhB3KefsrRuXfbPncvRjRvZP3cuS+vW5dQ33yB0Oqo+NhC+T0Gn1eIfXmgDUQgTRRv08kjodFz9egs84snVr7eYW69LaUOwJGW5HMVgwb4rSekk9wQlciN/8MEHb/vC1tw+Tp8+TdWqVe0eZ9euXXz++ecWj3Xt2pV+/fqVaH6SCkZRC7ai6Beq1hIJGTL3zl6HeKCTSeZebe/RqIJCAchMPIGrJgudt8w6LpFUZkpq8VZUKrCWI2LjEugxTC+rCicTOh0HsSMRMWugaGbxfmNBURCPDkHXMqpITOQYlKBQctLTadirF9WaNbM7EZqtTLvSciORVHyETkfcp5+yY9QoY5KysC5duH7hgkmbgSYDBlCvWzcTi3ebyZOJHDfOYmZxuOVhY7SGl7GXTUnKckkkjuKwZXv06NFs2LDB4Qt9+OGHREREEBERgaIoDBkyxPja8GjQoAHDhw+nS5cudo/r5eXFnj17LB777rvv8PLycniuJeHq1auMHz+eWrVq4enpSbNmzVi2bJlZv8TERPr374+3tzf+/v6MHj261GqOV2QykpLYGxNDhgPWJMM5+VlZ5i6a9iQS2rUJPpyJEhiCbtQMmLse3agZaH0CQFFQVCry89Ts/Qp0zre/+ymR3EtImeYYJbV4C50OdFrLcdYFm350GwI7zsKoGfq/R81AvPgGQqfj/LFTaEZMhbnr0YyYyslfDqPTajm9cydHdv9gcixu1x7OHziAu68vUbNm0W/9eqJmzTR19bSCYfGps7D4lJYbSXlByrWSIQrcxE2UakWh2aBB/LlqlZniHBQRQZ+1azmyYYOJxfvLkSPxDAri8ZUrUalN7X2FPWzKaxy2RGIJhy3bc+bMYeLEiTz88MN06tTJYtmul156yey8kJAQIiMjATh69CgNGzYkMND0R9vFxYXGjRszatQou+fz/PPPM2vWLJKTk+nTpw/VqlXjypUrbN++nXXr1hEbG+voLZaIJ554ghMnTjBv3jxq1arFt99+y7PPPouTkxNjxowBID8/n0cffRSADRs2kJWVxeTJkxkyZAhff/31HZlnecVafUhb1qSbSUnsmz2bqBkzzF007U0k5KRGCJ3eEg6gKDh7eBh/CHQugez7GhrGyt1PScVCyrQ7iKICa7Vnd22C86cQH+2HMdEoajVCq+XyX3/xZZceJMfF6eVSobjHZoMH03fdOm4mJ3NgwQJuXLpklsQx9cuN5SruUSIpDaRcKxlCp+P35ctNlGpnd3ecPTy4dsbcaPHgpElkJCSYlepKjovji+HD6bN2rc3M4hJJRcJhZfuHH35gzZo1ZGRk8Msvv5gdt6Zs9+7dm969extfz5o1y2KCNEeZMWMGvr6+LFiwgDVr1hizlAcHB7NkyRJefPHF275GcVy+fJkff/yRjz/+mKeffhqAjh078ttvv7Fp0yajAN+6dSvHjh3jn3/+MdYq9/Pz49FHH+XQoUO0bt26zOda0bCmhBtwdndHUavNLdh2JhLS9RmDSlGRunMLgW+OkgtTSaVAyrQ7jKJAQAjMWmWeQ8JJjXhyIkLtwor77ycjIYEpKSn8/PbbekUbzOIej27ahG+dOvokQzNnWM/cKxOhSSoRUq6VDEWlQuXkZKZU52dnk5+VZRqDDUaL90/z51t0FT+6aRMpx4/Ta/XqEpUatIatUBdbxxzBVsiMDKeRWMPh7aPnn3+e+++/nyNHjpCbm4tOpzN52FNm6+OPPy4VRdvACy+8wIULF4iPj+fnn38mPj6eixcv3hFFG/S7oAA+Pj4m7T4+PsbyZAA7d+4kIiLCKLwBunTpgr+/P99+++0dmWtlIz87G6HRWLZg20oyVJAETQkMQafTgVZrcWEqhaukIlLZZVpJwlZuG5UKug+Dr+JN3cW/ikd0fZLtw4eT/PffZF29anmBW3Q4e5IMWcBaYiAp6yTlnYok1+6kjBI6nXliMwAhOLp5My1HjTJxCbdl8TaQHBfHr4sWoXJygk4BdssnW9gKdbF1zBFshczIcBqJNRxWti9evMhrr71G06ZNcXZ2Los5FcuHH35Ibm6uSZtKpaJWrVo8+OCD1KpVC1URN5QjR47www8/lMl8atasSdeuXZk3bx7Hjx8nIyODzz77jN27d/P8888b+504cYJGjRqZnKsoCo0aNeLEiRNlMrfKjrO7O1qNBtFvnLlCXSgeUhRZ4Gq3/4t49Emyb9yw6dIkhaukIlLZZVqZZBy3B5UKERiCGBsDc9cjxsZw+eJlVtx/P0cNpbqsLHBNhrmNJEPWFqVS1knKOxVJrt1pGaWoVESOG2cmcw4uWYJ3jRomMdhWLd5F8AsLQ5efB9evltm8S4rcXJSUJg4r24888ggnT97d0iCffPIJtWvX5qWXXuLnn3827lYWJTExkVWrVtG5c2fatGlDWlpamc3p888/JygoiKZNm1KlShWGDBnC4sWL6d+/v7FPWlqaWYw76N2Trl27ZnXs3Nxcbty4YfIo75T1rmzhOpAqZ2eoWh1hyYL9/VbEz/+FqtXRPD3NmEjoyO4fOL1rF+6+vjJRh6RSImVa2ePs4WHy2lBWZ29sLF+NG4fi5GTqLl6ApQWuAZlkSCKxTlnJtXtFppXV2kpRFLxDQui1apWJzEmOi+PLkSOJGDaMifHxtJsxg+ZPPknqiRMWlXMDhg3B3IQLpTrP0kJuLlZOyur743DM9rx58xgxYgQuLi507tzZokDy9/cvjblZ5eDBg2zfvp2lS5fyzjvv4OzsTIMGDQgMDMTV1ZX09HTOnTvHlStX8Pf3Z8SIEXz66adUr179tq8thDBxlVcUBZVKxciRIzl9+jQbNmwgODiY7777jkmTJuHn58fgwYNv65rz58+/Y4ne7hQlSXhmDYsL1oJSE9cvXaLPxx9z8N13eWD8eHSt2lsshZN97RoH33nHYiIhiaQiI2XanafwZqBOo9G7sBbUqjVm+1UUui1ebNE6VDjJUN2OHfljxQqZZEgiKcSdlmv3ikwrLo/N7aCoVEQMG0bdTp3MEpsZlPGo6GhUajU6jQZFpaLXqlVmZcEKbwim/bgT91KdpURScsrq++Owsv3AAw8AML7gy2UJe+K2b5e+ffvSt29f4uPj+f777zl8+DBJSUnk5ORQu3ZtunbtysMPP0z79u1L1d193759dOjQwfg6KiqKyZMns2XLFuLi4mjevDkA7du358qVK7zyyitGAe7n58f169fNxkxLS6NmzZpWrzl16lRefvll4+sbN27Y7F+eceSDbu+Ctef775N15Qor7r+fBydOpPmIqag9PNBkZXFk0yb+3bmTh197Tf8jYSVRR2kl15BI7jWkTLuzFN4MvHbmDP7h4Tz82mvkpKWZLkoLuYtbqkl7dNMmrp46xdP7999a4DqQZEjKNElF5k7Ltcoi0xSVylypdnIyypzLcXF83LYtIw8cILhVK6vKuWFDUHsj3eE5SNklKW84rGyvXr261FzThBCcOnWKa9eu4e/vT4MGDRweu06dOowePZrRo0eXypyKIzIykt9++8342tvbmy+//BInJyeaNWtm0rdly5asXLmSrKwsPDw8aNSoEUeOHDHpI4Tg5MmTNmuLu7q64urqWro3Us4p6YJ1x6hR7Bg92qRMjkqt5tElS8i9eA73YS0sZhz3aBwBY6P1zxJJBULKtDuD2t0dodOZbgYCKAqPTJ1qVlYH9O7iEcOG8fjKlWYldFRqNQ9OmoSzuztpP+7EP3qgQ9USDLHZDW8zYZBEci9yp+VaZZJpiqKYKdWFKVwZoTjl3BbWlGopuyTlDYeVbUO5hNvlgw8+YPbs2aSkpBjbqlWrxqxZs3j22WdL5Rplgbe3N/fff79JW+3atdFqtcTFxdGiRQtj+++//061atXwKHBz7t69O59++imnT5+mfv36AOzZs4erV6/So0ePO3cT5ZjSWrAWVrRN3JmsJBIyxO9IJBUNKdPuDJ6BgWQkJpq5VNrK3GviLt6hA3989JF165As4yWRGJFyrewprFTbojjl3Bp3QqmWidAkdwKHle3SYMWKFbzwwgs8+eSTDBo0iKCgIJKTk9m8eTMvvPACzs7Od8xSXRr06NGDWrVqMWDAAKKjowkODmb37t188sknJjE8AwYMYN68efTv35958+aRlZXF5MmT6dmzZ6Wr21gSnD08ynTBmq+opWuSRELlkWklyRFREpw9PXHz9WVfbKzZZmBxmXvLqiatNeTiU1JRqSxyrTQpmhPndrBXOb+TSEOK5E5gl7IdERHBhg0baNasGc2bN7f5A68oCn///bfN8RYvXsyECRNYsmSJSXuvXr0IDAzkrbfeKlfKtre3N3v27GH69On85z//IT09nbp167Jo0SJeeOEFYz9nZ2f++9//MmHCBJ588knUajX9+vVj8eLFd3H29z4msdlaLftiYspkwSpdkyQSPZVFppVlMiEoJLtu3gSwXHe2mNhsgJTjx/GqXt1mqEtpIRefkopKZZFrpYGlnDiyuoFEUjLsUrYjIyPx9PQ0/n27X7hz587x2GOPWTzWs2dPli1bdlvj3w3q1avH5s2bi+1Xo0YNtm3bdgdmVDGwlFm8PCxYJZLyjpRpt4dJXomzZ+m9erXVzcDiYrPtCXWxhkwmJJHcQso1yxS2YFvKiRM5bhzeISHltsqB9NiR3E3sUrY//vhj49+ffPLJbV80ODiYX375hc6dO5sd+/XXXwmWX4ZKj8XY7ILM4ndjwSqRSCT2YC2vRFjnzlY3Aw21avuuXUtY586lm7lXeuxIJOWWsg51MbNgW8qJA/y0YAG9Vq0iYtiwcqlwS48dyd3E4W/MM888w7lz5yweO3/+PM8880yxY4waNYo5c+YwY8YM/vrrL5KSkvj777+ZMWMGc+fOLVcu5JLSx2psdiHrtUptvk9kWLC2eOopJsbH027GDJoPGUK7GTOYGB9PxNChNhescudTIpHcLtbyShxcsgTvGjV4fOVKM/mlUqsJf/RRAH3m3lkz6bd+PVGzZtplTTJYr3XSei2RVCgMoS43k5JKfWyh05GRkMC+2Fi2DRlCclycRdkFoNNo2DFqFBlJSfoyqxKJxG4cVrY/+eQTkwzihUlNTWXNmjXFjjF9+nRefPFFFi5cSGRkJKGhobRq1YqFCxfy4osvMm3aNEenJbkHyUhKYm9MDBl2/kgU3mF18/Ozmlnc7gVrdLR+wRodbdeC1bDzWZaJkiQSSQVGUXDz9bUouwyJGpsPGcKEs2etbgYqisLVr7fAI55c/XqLfSVyCqzXOmm9lkgkxVDY+2Zp3brsnzuXo5s2EdCokUXZZUCn0fD7smUIne4Oz1giKd+UKBu5tR//06dPU7VqVbvOf/vtt5k2bRoHDx4kLS0Nf39/Wrdubdf5kvJBccmHrMUI2YrNtjezOGC11ISMYZRIKhd3LOu4uzsqtdpyXgluJWrstnTprUSN1urOlnGoi/TkkUgqJ5a8b2xVdClM2tmzqJycQCZLk0jsxi5l+8MPP+TDDz8E9IrykCFDcHd3N+mTk5NDfHw8TzzxRLHjrV27lp49e1K1alWzmoXXrl3j66+/Zvjw4fbeg6ScUWyMUDGx2RYzi1tZsFoqNSFjGCWSykVZZx03kJ+djU6jsSq7QL9heG7PHmo98gjzPD0dqjtbmsgYRomkElLgfVO0DGFxFV0M+IWFodNq4R50JZcbiBJ7uFOb74Wxy408JCSEyMhIIiMjEULQsGFD42vDo0OHDrz55pt2ZRIfOXIkZ6zsnp07d46RI0c6dheScoNdMULFxGbDrcziOWlpzPP0JDkuzu4s+VIgSySSMkEIctLTiRw3zqrsUqnVRI4fT056usN1Z2VstkQiuR2set/Yse4yyK7STJBWmjJNhgJK7KEs8yBYwy7Ldu/evendu7fx9cyZMwkLCyvxRW0lV0hLS8Pb27vEY0vuXSxZsHutXMlP8+dbjM22J7N46smTDi9YpUVHIpGUBc4eHmSmpBDQsCG9Vq0ySzRUVHY5Skm8cuTmokQiMWDL+8bedVdp1tuWnoaSyoDDMduFy4AZyMrKIjExkfDwcKtfwp07d7Jz507j67fffpugoCCTPjk5Ofzwww/cd999jk5LchexxyVDCOFQjJC9sdma7Gyr85KLTIlEcicoGhqDohAxbBh1O3WyWsbLluwqTeTmokQiMVLI+6ZoGcLC6y5bJQjvFNbWcHJtJ7GHu+Eubg2Hle233nqLzMxMoqOjAThw4AC9evXixo0b1K1bl127dhFuYcfs1KlTfPXVV4A+7vvAgQO4urqa9HFxcaFZs2bMmzevJPciuUvYEw8pdDqzLJfFxQg5EpttCbnIlEgkZU3h5I7XzpzBPzxc/+MeEmKsiqBSqx2SXTKJo0QiKStsed8c37qVZkOH0qBHjxLJrtLE2hpOru0k9nCncrXYg8NbVCtXriQ0NNT4+uWXX6Zp06Z8+eWXBAQEWC3bNXHiRM6dO8e5c+eoVasWO3fuNL42PE6ePMkXX3xBkyZNSn5HknsORaVC5eRUohih24nNlkgkkrLA2cPDcvmcjRvZP3cuS+vWJe7TT0EIrp4+7bDskqW8JBJJWaHJzkZRqYgYNoyJ8fFmZQgb9OiBolKRHBcn110SSSngsGX74sWL1KtXD4CEhAR+//139u3bR9u2bdFoNDz77LPFjnHu3DnHZyoplzh7eCB0OnRa7W3FCJUkNlsikUhKExN38QKLdlHLEOjr0e4YNYq6nTrhGRhY5rJLulVKJBJHUVSqYr1v5LpLIrl9HLZsu7u7c+PGDQD27NmDl5cXbdq0AcDX15fr16+X7gwl5ZLCi9KgiAgUlcpihl5DjFDzIUMs7rBGDB1qM75RLjIlEsmdwKSSwtCh6PLzzUJjCqPTaPh92TLcfH3LfG4yC69EIikJiqJIC7ZEUsY4bNlu3bo1CxYsQKVSsXDhQrp3746TkxMAZ86coUaNGqU+SUn5wlIM4wMvvIB3SEipxwjJ2B2JRGKgrBKiFK2k4OzhgXr9eovJHQuTdvYsKrUatbt7qc1FIpFISoqzh4fFdmnBlpRX7qVEaNYoUYK0xx57jMcff5zatWvz+uuvG49t3rzZaOWWVD4KxzAWVah/WrCA4Xv2FJuh9/Jff/Fx27aMPHCA4Fat7uLdSCSS8kZpJkQxLEotVVIoLrmjAb+wMHQazR3LPC6RSCSWKFoxQQhxT1ixpXei5Ha5lxKhWcNhZbtJkyacPXuWq1evUrVqVZNjb7/9NtWrVy+1yUnKF56BgTZjGNd26sRLly7JGCGJRHLPYrYotVBJoXByx6Llcwyo1Goix48nJz39zk1eIrlDlAdrkkSPrYoJd7KUlyWkd6KkMlDib1nVqlURQpCYmIimYKHRvHlzAgNl9tTKiLOnJ26+vsXGMP723nsInU7GCEkkknsOk7jsIUM4MG+e5UoK6JM7eteoweMrV5rloiic3DEzJeVOTV8iuWMYrEk3k5Lu9lQkNiiuYoLQ6WSYi0RSxpRI2d61axf/93//h5ubG7Vq1SIuLg6AsWPHsn79ervGOHbsGIMHDyY8PBxXV1f++OMPAKZPn87OnTtLMi1JGZORlMTemBgyCv24Gq1AN2+iUqvti2F0cgJFkRZsiURyT2CtjNfemBir7uKFkztOOHvW4eSOJUG6XEokEnuxFAJjwFAxISMpCU9pJJNIyhSHle2NGzfSo0cP6tatywcffIBOpzMeCw8P5+OPPy52jO+++46WLVty/vx5hg4dSn5+vvGYs7MzH3zwgaPTktwBiu5kF83Oq8nNtS+GUasFIe7ElCUSiaRYrIbAFHIXL2q9Bji6aROr/u//cPf3Jyo6mn7r1xMVHV1m7pky67jkdrC0YS6puFgMgSnEnayYIJFUZhxeDcyZM4dJkyaxceNGnn76aZNjTZs25ejRo8WOMXXqVAYPHswvv/zCrFmzTI61bNmSP//809FpSe4gFq1AGzZwZMMGq4tSuBXDWJJFqLToSCSSMkFRbIbAFOcu/uCkSTi7u3P19OlSC42R8k5SFkjX78qDolJZDYEpjKyYIJGUPQ4nSDt79iw9evSweMzT09OuOttHjx5l/vz5AGaLEl9fX1JTUx2dluQOYs0KdHDJEiKGDePxlSv5avRok2OFYxhLshCVSTQkEklZ4OzubjMExuAu3nfdOsI6d7ZaSUFTkKG8NJDyTiKR3A5Cp0On1cqKCRLJPYDDynb16tU5ceIEnTp1MjsWFxdH7dq1ix3D39+fxMREi8dOnTpFsNzNv2cxJELbFxtrZgUyLEr7rF1L3Y4d+WPFCouLUolEIrlnUBR0Go3NRenRTZuo+cgj3P/sszYrKUgkFQ2Zdbz8oqhURI4bJysmSCoE5VkWOaz5DBkyhJiYGPbs2WNsUxSFo0eP8uabbzJs2LBix+jTpw/R0dGcPHnSZIzLly/z1ltv0b9/f0enVWZ88MEHPPbYYwQGBqIoCv/f3p2HRVW2fwD/HmCGZVhH9kBcAQUxl0RIRRTMpUxFySX3Msssy9z6lWCaS5pZpklvqGgqivueorgFllq+LihaiUFuoIAr69y/P3w5Mc7CDDAwwP25Lq7LOXPOc54zI1/OM/Msmzdv1rjvnj17EBwcDJlMBgcHB4SGhiIzM1Npn+TkZAQFBcHS0hJeXl5YsGABqBaMX9Z1IrQL8fH4T/v2yPnzT4RER+s9hpG7TzJmWJxpT5XNNPzvplTbEBjffv0gCAKvpMDqldrS9ZxzTZUgCLBxd0ff2NhqWzGB7+GYodSWLFJH78Z2dHQ0goODER4eLq6p3atXL7Ru3Rrt27fH9OnTyy1j3rx5cHJyQkBAAAIDAwEAY8aMgY+PD+zs7BBtRN3n1qxZg+zsbI1d50v9+OOPGDBgALp27Yrdu3cjLi4O7du3R35+vrjPH3/8gZdeeglubm7YvXs3Jk2ahJkzZ+LLL7809GVUir4Tod0+dw7XDh0CiPS+KeUJgBgzLM401SW+Tn/3nU43paU5xispMGZcONfUE0xMEPD663g/Pb1KV0zQ1KjWdA/HjXBWn+ndjVwqlWLHjh1ISkrCwYMHkZ2dDblcjrCwMISFhelUhp2dHZKTk/Hjjz/i4MGDkMvlkMvlmDBhAkaMGAGpVKr3hRhKcnIyTExMkJ6ejjVr1qjd5969e5gwYQKWLFmCt99+W9zet29fpf0WLlyIBg0aID4+HlKpFN27d0dWVhY+//xzTJw4Eebm5ga9looonQit7PjsJmFhaDN2rE5dk/imlDHjUl8zTWJlpTS5Y9lMu7BhAzJTUtAvLg6Nu3fXOC67KvHNJzMmtbmLJlB/c00XgokJbNzdq3QIjL7zSvA8FKy2kFhZVXmZeje2S4WGhiI0NLTCJ5ZIJBg9ejRGjx5d4TKqg4kON1ibNm1CSUkJxo4dq3W/ffv2YcCAAUofJgwePBjz5s1DSkoKunbtWtnqVilNazTqOhFadplhAowx41DfMk3sLv7oERQKhcZ1Z8+vW4fsS5cw6tixahmXzTefzJiUdtH06du3Vja261uu6UsQBNw6dw6rOnfG6OPH4da2bU1XiTGjonSvUFwMIqqyv/01MlvViy++iOXLlyOrCseJ1KSTJ0/C19cXcXFx8PLygpmZGZ5//nns27dP3OfRo0fIyMiAr6+v0rG+vr4QBAGXL1+u7mqXS9MajaUTobUaOhTv/fVXlXZNYozVvLqSac8OgVEUFWldd/bmb7/h5/nzAYDHZTNWx9SVXKsM7m3ImKpnh5YdnTULD/75B6RQVEn5Ff5muzLc3Nzw0UcfYdKkSQgNDcWwYcPQv39/2NjY1ER1Ku3WrVtIS0vDp59+ii+++AJubm5YtmwZ+vbti7Nnz8LPzw+5/5vt0d7eXulYqVQKKysr3Lt3T2P5BQUFKCgoEB/fv3/fEJehQtsajRfi45GVmoqeX3+NkOhomJia6vUtEHehZMx41fZMU9ddXGJlBbN163Red7a2TYbEGNPOkLlWE/dphujuylh9o25oGQCcmD8ffWNjEfD665UeRlYj32xv3rwZd+7cwQ8//AAzMzO88cYbcHFxQUREBLZs2aIUWNWFiFBcXCz+lJSU6HysQqHAw4cP8f3332PEiBEIDw9HQkICPDw8sGDBgkrXbd68ebCzsxN/PD09K12mLspbo5EnQmPMeNXnTJM5Oal0Fy/63zrYvO4sY7WXseZadd6nle3u6hIQwB8MMlZBmobLAoCiuBg7x47Fg5s3K/07VmOLHltbW2PEiBHYs2cPbt68ia+++gr37t3D4MGD4eLiUu31OXr0KCQSifijbh1xTRwcHAAA3bp1E7dJJBJ06dIFFy9eBPDvp6R5eXlKxxYWFuLx48eQy+Uay58xYwby8vLEn4yMDJ3rVhmCDsvh8ERojBmneptpggALe3vV7uJEuLBxI9qMHatTpjHGjI+x5lp13afp0t2Vv/FmTDeahsuWUhQX48yKFZXuTl4j3cif1aBBA7z44ou4fv060tLScPv27WqvQ7t27XDq1CnxsT5d2v38/DQ+V7qchEwmg6enp8p4n7S0NBCRyvigsszNzWtk9suyazQ++6kPT4TGmHGrr5kmsbSEiZmZ2u7iNTG5Iw+ZYazqGGuuGfo+TdNKCsDT7q6RW7fCu08fg03wxFhdI5iYaB0uWyrnr79gYmpaqXNVqLFdUlKCX375BZmZmUprE5YaMWKETuX8+eefiI+PR3x8PFJTU+Hi4oLIyEgMGTKkItWqFBsbG7Rv375Cx7788suIiopCYmIi+vXrB+Dpp6BHjx5Fly5dxP169eqFHTt24IsvvoBEIgEAbNy4Efb29ggODq70NRhC6RqN2pbD4e6WjBmfeptpggBFcbHa7uKlkzv2W7MGjbt1w2/ff2/wTONZxxmrOvU119QNjSnVcuBANOvZEw9u3MCZmBjc+/NPyJs2fbqMm7t7lS9byFhdQApFucNlgf8NLSspqVSDW+/G9m+//YYBAwYgIyNDbR92QRDKbWwvXrwY8fHxOHPmDOzs7BAREYGvv/4aXbt21Wn5hup0+vRppKenizOnnzx5EgDg5OSEkJAQAEDbtm0RERGBcePG4d69e+KkG7dv38aUKVPEsqZMmYJ169ZhyJAheOedd3D+/HksXLgQn3/+uVGtLf6siq7RyN/oMGZ86mqmieMYHz6EQqFAu7fewon581VuTC/Ex+PulSvVtsQXY8zw6mquARCHxhydNUslz1wCAtBvzRqcX79epbdOVU7wxFhdUjrUonS4rLp7BeDfoWWV/f3Ru7H99ttvw87ODnFxcWjZsmWFgmfmzJno27cvPv30U/Ts2VP85NAYffvtt4iLixMff/nllwCAkJAQHDlyRNweFxeHGTNmYPr06bh//z7atWuHxMREtGrVStynWbNmOHDgAD788EP07t0bTk5OmDVrFiZPnlxt11NRFVmjkb/RYbXZg5s3cSYm5um3A3XoA6O6mGn0v/WzS7/V8XzxRbzw9tsah8AETpoEiaUlstPS8J/27XndWcYqwJjGBtfFXCulbWhM4KRJePDPPyoNbeDfCZ4ad+8OG3f36qouY0br2bW0Aeg0XLayH8Tr3di+ePEiEhISxE8KK+LOnTuwMqKQ1mb16tVYvXp1ufvJZDJ88803+Oabb7TuFxwcLH7iWhvxRGisvnh48yaOzpoFn75961Rju65lmrpxjBc2bEBmSgr6xcWVOwSGM40x/Tx7w2oMY4PrWq4p0TQ0RhDg/9prODFvXrkTPIXwFx+snnv2Q/myQy3KGy5bWXo3tr29vSu9fmBtaWgz3XB3ccZYTdC2bMf5deuQfekSdxdn9Y4he+Vou2HlrspVq7yhMRJLS0isrHSf4Ilzj9VD5U0uWDrUoiLDZXWldzJ+9dVXmDdvnspMjeWxtbXFmTNnADyd4MLW1lbjj52dnb7VYjWI18xmjNWE8pbtuPnbb/h5/nwAwFyZDLfPneOGNqvzSnvlPLx5s8rKLHvD+nXjxjg2Zw4ubNiAY3Pm4OvGjXHuxx8rvTwO+9ezS3yd/u47sbtr6dKFRf/rmaPrBE/g9bhZPSOxstI6uWDZtbSBp5OoGuJeQe9vtt99913cunUL/v7+cHd3F9ckLCUIAv773/+qHDd58mS4/a8xNnnyZL7hqYX4G2zGmDHRedkOMzO1E3oyxsqn6w1r6dhgvr+rHH2GxmRfvlwtEzwxVpsoDXUpKcHR6Gidh1oYYmiZ3o3tdu3aVShIo6KixH9H89iRWoknPGOMGROdl+0oLjb4EoX8YSSr7Z6d8KyiN6xCJdekrc8qNDTGxMTgEzwxVluUHeqSl5mJfqtW1fhQC70b27pMQFGebt26Yfny5fD19VV57sqVKxg/fjwOHz5c6fMwxlh56uqs4/WBrst25OfmGrwu/GEkqw3UzSCubsIz/K/RV6EbVlZhug6NCYmKwlyZTFxJwRATPPEHiKw2UTs2WxDQZ9myGh9qoXdjuyocOXJE4yRr9+/fx7Fjx6q5Royx+qquzjpeHwiCoNOyHdlpaTVYS8ZqnqYZxDUtm1eZG1ZucFdcRYfGCCYmVT7BE3+AyGoTtUNdiHBh40a0GTu2RodaVKixnZubi82bN+PKlSvIz89Xeb68JRUAaAyA5ORkODs7V6RajDFWpYxpHVmmnmBiUu63OobuQs6YMVM3g/gL774LmZOTytjgJuHhyPv7b6O8Ya0PKjM0RhAE3Dp3Dqs6dxa/8WasXhAEWNjb4+isWSr59MuSJQh4/XW88sMPKuvRV9dQC70b21evXkVwcDAKCgrw6NEjODk54d69eyguLoaDgwPs7OzUNrbnzZuHefPmAXgaCKGhoTB5JpQLCgpQXFyMd955p4KXwxhjlWeM68gyzQzxrQ5jtZ22JW8cmjZF427dlLdrWbfZGG5Y64OqGBqj7wRP3F2c1XYSS0uYmJmp7RVy+9w5bB8xAv3WrEHj0FD89p//GGQtbW30bmx/+OGHCAwMREJCAmQyGfbu3YvWrVtj48aN+Pjjj5GQkKD2uODgYEyePBlEhM8++wxDhgyBh4eH0j5SqRQtWrTAK6+8UrGrYYyxSuJ1ZGsn/laHMWUaZxAXBPhFRqo0qrWt22wMN6z1QU0MjeHu4qzWEwQoios19gq5EB+PrNRU9F25EiHR0TAxNa3WD+X1bmz/+uuviI2Nhbm5OQCgsLAQpqamGDp0KLKzs/Hee+/h559/VjkuJCQEISEhAJ6GyZtvvgl3d/dKVp8xxqqGtm+BTsyfj76xsQh4/XW+oTRyhli2g7FaR0u3Sk2N6vLWba7pG9b6gofGMKYbsRfiw4dQKBRae4VkpabC2tUV+Tk5WOLlVa0fyut911hQUABbW1uYmJhALpfjxo0b4nP+/v44e/ZsuWVERUVxQ5sxZlR0WUf2wc2bvF4zY8zoaetWqbFRXWZstomZ+u9iyt6wzpXJcPvcOW5oG0DZoTED1q1DSFQU965irAxSKPDgn39wdNYsbBk6FKe/+07sFfJsfpXtFfIoK6vaP5TX+5ttb29vXL9+HQDQpk0bLF++HOHh4TAzM0NMTIzOjeg//vgDq1ev1jjJ2s6dO/WtGmOMVYyWb4FK8TqyjLHaoujJE83dKrVMeKbr2OzstDTuRWJgPDSGMVWaeiFe2LABmSkp6BcXZ3S9QvRubA8ePBhnz57F8OHDMXv2bLz00ktwcHB4uoQEEeLi4sot49SpUwgJCYGXlxeuXLmCgIAA5OXlIT09HR4eHmjWrFmFLoYxxipC27dAZfE6sownE2K1AhHyc3M1dqssbVQ/Ozb49rlz2DF6NPrFxaFJWJhR3bDWV/yhBmP/0tYL8fy6dci+dAmjjh0zqglTKzRBWqmOHTviwoUL2LdvH/Lz89GtWzf4+/uXW8bUqVMRGRmJ2NhYSCQSxMbGom3btkhOTsaQIUMwbdo0favFGGMVV87kGqV4Hdn6QVuDmicTYrXFo6wsOPr4qJ1sKys1FZknT2ocG1w6UZcx3bAyxuo3iUxWbi/Em7/9hp/nz0dIVBTmymRG0SukQutsl+Xp6Ylx48bpdcx///tfTJ8+XVz6q7QbeXBwMKKjozF9+nS89NJLla0aY4xppc/kGryObP3BDWpWFxQ/eaLTZFvaGtXcjZkxVtPK3qsB0K0XopmZ0cyxU6G7xqKiIqxYsQJjx45Fjx49cPXqVQDAxo0bcenSpXKPFwQBUqkUgiDA2dlZHAMOAB4eHrhy5UpFqsUYYzqr6OQa/M0OY8zYSaysxH+XN9mWIAi4fe6cxgnPuBszY6ymKN2rDRuG4oIC3XohFhcbzXAXvb/Z/uuvvxAWFobs7Gy0adMGJ06cwIMHDwAAx44dw/79+7Fq1SqtZbRs2RJ//vknQkNDERQUhC+//BKtWrWCRCLB/Pnz0bScF5ExxiqjMpNrMMaYsRK/AXr0CIriYhARBEHQabItblQzxoyJunu1JmFhaid3LFXaCzE/N7eaa6uZ3o3t9957D05OTvj1119hb28PqVQqPhcSEoIZM2aUW8a4cePEb7Pnzp2LHj16oHXr1gAAmUyGzZs361stxhjTCRHVusk1GGOsPKRQ4MGNGzgTE4N7f/4JedOmaPfWW0rfYnODmjFWG2i6V9NnxQRjoXdj+8iRI9iwYQMcHR1RUlKi9Jyrqytu3rxZbhnDhw8X/92iRQtcunQJKSkpePLkCTp27AhnZ2d9q8UYYzohhQJnYmJq1eQajDGmjbpvgADgxPz56Bsbi4DXX4eZpWUN1pAxxnSn6V7t9rlz2D5iBPqtWYPG3brht++/N/oVE/RubJtpGXB++/ZtWFtb610Ja2trhIeH630cY4zpy8TUtNZNrsEYY5po662jKC7GzrFj0bh7d8icnGqohowxph9t92oX4uORlZqKnl9/jZDoaJiYmhp1L0S9G9shISH48ssv0atXL3E28dI1tr///nt0795d7XFbt27V6zwDBgzQt2qMMVYuRUlJrZtcgzHGNCmvt46iuBhnVqxASFRUNdeMMcYqprx7tdvnzuHaoUNo2KmT0fdC1LuxvWDBAgQHB6Nly5bo27cvBEHAsmXLcOHCBVy9ehW//vqr2uMGDhyo8zkEQVDpos7+Vfpt2/3792u4JozVPkSE5kOHInHePCjU5IyJqSmaDxuGOxkZyAfw4OFDyGrgd83GxsYoP6E1hKrKtAcPH6p9zxTW1mg/fToU1tZK59C0P2O1Tebly8jX8vw/aWl4+Pgxii0s1P5/1/S7oO/28tSXXDN0plXkfeG8Y7WJPvdqDx4/rrHfEV0yTaAK9JO8du0aoqOjcfDgQWRnZ0MulyMsLAyzZs3SOJN42eW9dOHl5aVvteqNzMxMeHp61nQ1GGMGlJeXB1tb25quRrXgTGOsfqgvucaZxlj9oEumVaixzWqWQqHAjRs3DPIJ8f379+Hp6YmMjIxa/wexrlwLX4dxqa7rqC/fAAGGzTSA/+8Zm7pyHUDduRbOtarFmaabunIdQN25Fr4O/ejyO653N/KqtH//fpw6dQoZGRn45JNP0LBhQxw7dgzNmjWDu7t7TVbNqJmYmMDDw8Og57C1ta3Vv2Rl1ZVr4eswLnXlOoxBdWQaUHfeM74O41NXrqWuXEdN40zTT125DqDuXAtfR9XRqbE9ZswYnQsUBAGxsbFa98nKykK/fv1w8uRJ8VOH8ePHo2HDhli5ciVkMhmWLVum8zkZY4wxxhhjjDFjolNje/Xq1bCxsUHTpk3LXQpHl+4ykyZNQlZWFi5cuIDmzZtDKpWKz4WFhWHOnDm6VIsxxhhjjDHGGDNKOjW2g4KCcPLkSZSUlGDo0KEYPHhwpSYw27NnD/7zn/+gRYsWKrOOe3p6IjMzs8Jls8oxNzdHVFQUzM3Na7oqlVZXroWvw7jUleuoT+rKe8bXYXzqyrXUleuoL+rK+1VXrgOoO9fC11H1dJ4g7e+//0Z8fDzWr1+P8+fPIygoCEOHDkVkZCQcHR31Oqm1tTU2bdqE3r17o6SkBBKJBKdPn0bbtm2xfft2jBkzBvfu3avQBTHGGGOMMcYYYzXNRNcdGzZsiKlTp+Ls2bM4f/48QkNDsWTJEri7u6NXr17Yt2+fzicNDAzEypUr1T4XHx+PF198UeeyGGOMMcYYY4wxY1Oppb/y8/Mxc+ZMLF68GH379sXWrVt1Oi4lJQWhoaHo0KEDBg4ciA8++AD/93//h0uXLmHPnj04ceIE2rZtW9FqMcYYY4wxxhhjNUrvxnZJSQkOHDiA+Ph47NixA2ZmZoiIiMAbb7yBF154QedyUlJSMH36dCQnJ6OkpASCICAoKAgLFy5EUFCQ3hfCGGOMMcYYY4wZC527kR87dgxvv/02XFxcEBkZiZKSEqxbtw63bt1CTEyMzg3twsJCbN26FS4uLjh69Cju37+PzMxMPHjwACdOnOCGtgEtX74cL7/8MpycnCAIAjZv3qxx3z179iA4OBgymQwODg4IDQ1VmbguOTkZQUFBsLS0hJeXFxYsWFDubPWGcvfuXXH5OJlMBn9/f6xYsUJlvxs3biAiIgI2NjaQy+V44403cP/+/RqocfkuX76M8PBwyGQyuLq6YurUqSgsLKzpapVr586dCAwMhI2NDdzc3BAZGYm//vpLZb/Y2Fh4e3vDwsICrVu3xu7du2ugtk/98ccfGD9+PJ5//nmYmZnB399f7X65ubl477334O7uDgsLCzRt2hRffvml0j6FhYWYMmUKXF1dIZPJEB4ejrS0tOq4jHqHM40zrTpwpnGmVSfONc41Q+NMq+ZMIx14eHiQhYUF9e/fnzZt2kRPnjzR5TCNzM3NKSkpqVJlMP0FBgZSYGAgjRgxggBQQkKC2v3Wrl1LUqmUZsyYQYcPH6YdO3bQRx99RFevXhX3uXr1KllbW1P//v0pMTGRFi9eTFKplBYuXFhdl6MkNDSU3NzcaNWqVXTo0CGaPHkyAaDvv/9e3KewsJD8/f3J39+fdu7cSfHx8eTh4UF9+vSpkTprc+/ePXJzc6MuXbrQ/v37KTY2luzs7GjChAk1XTWtkpKSyMTEhEaNGkUHDx6k+Ph48vb2pqZNm9Ljx4/F/TZs2ECCINAnn3xChw8fprfeeovMzMwoJSWlRuq9fft28vDwoIiICGrVqhX5+fmp7PPw4UNq3bo1tWvXjuLj4ykpKYliYmJU/s+/9dZbZGdnR7GxsbR//37q3LkzPffcc5Sbm1tdl1NvcKZxphkaZxpnWnXjXONcMyTOtOrPNJ0a24IgkFQqJWtra7KxsdH6Y2trW255rVu3pri4uEpXnumnpKSEiIiuXbumMcDv3r1Ltra2tHz5cq1ljRs3jry8vKigoEDcNmPGDLK3t6f8/PyqrXg5bt68SQBo1apVStu7dOlC3bp1Ex+vX7+eBEGgy5cvi9t++uknAkC//PJLdVVXJ3PnziWZTEZ3794Vt8XExJCpqSn9888/NVgz7d566y1q3LgxKRQKcdvhw4cJAB07dkzc5u3tTUOGDFE6NigoiHr16lVtdS2r9HeDiGjkyJFqQ/yTTz6hJk2a0MOHDzWWk5GRQaamphQTEyNuu3v3LslkMlqwYEHVVppxpnGmGRxnGmdadeNc41wzJM606s80nbqRR0VF4eOPP8ZHH32EyZMna/358MMPyy1v3rx5mDNnDk6fPq3n9/CsMkxMyn+7N23ahJKSEowdO1brfvv27UO/fv0glUrFbYMHD0Zubi5SUlIqXVd9FBUVAQDs7OyUttvZ2Sl1ldq3bx8CAgLg4+MjbgsPD4dcLsfevXurp7I62rdvH8LCwiCXy8VtkZGRUCgUOHDgQA3WTLuioiLY2NhAEARxW+n7Uvpe/PXXX7hy5QoiIyOVjh08eDAOHTqEgoKC6qvw/+jyu/HDDz9gzJgxkMlkGvc5cOAAFAoFBg0aJG6Ty+Xo0aOH0f0fqws40zjTDI0zjTOtunGuca4ZEmda9Weazo1tfX7KM3XqVNy9exeBgYFwdnZGq1atEBAQIP60bt260hfGKubkyZPw9fVFXFwcvLy8YGZmhueff15pabdHjx4hIyMDvr6+Ssf6+vpCEARcvny5Wuvs6emJHj16YO7cuUhNTcWDBw+wadMmHDhwABMmTBD3u3z5skqdBUGAr69vtde5POrqam9vDzc3N6Ora1mjRo1Camoqli9fjry8PPz111/4+OOP0aZNG3FJv9L6P3t9LVq0QGFhIa5du1bt9S5Peno6bt26BUdHR/Tt2xfm5uaQy+V488038fDhQ3G/y5cvw9nZGQ4ODkrHt2jRwqjft7qMM804cKYZF8602o1zzTjUxlzjTKv+TDMzSKnlaNeuHdq3b18Tp2bluHXrFtLS0vDpp5/iiy++gJubG5YtW4a+ffvi7Nmz8PPzQ25uLoCngVKWVCqFlZUV7t27V+313rp1K1577TX4+fkBAExNTbF06VJERESI++Tk5KjUGQAcHBxqpM7a1Ka6ltW5c2ds27YNQ4cOFf94Pv/889i/fz9MTU0BPL02QPX/T2nwGeP13bp1CwDw0UcfYcCAAdi7dy+uXr2K6dOn4+HDh9iwYQOA2vu+1WWcacahNtW1LM602vm+1XWca8ahNtW1FGda9b9nNdLYXr16dU2ctt4gIpSUlIiPBUEQf4HKo1Ao8PDhQ6xbtw59+/YFAHTt2hXe3t5YsGAB1qxZY5A660rdtZmYmGD06NG4evUq1q9fDzc3Nxw8eBCTJk2Cg4MDBg8eXIM1rl+Sk5MxfPhwvPnmm3j55Zdx9+5dzJ49G3369MHx48dhaWlZ01WsEIVCAQDw9vZGXFwcAKB79+4wMzPDm2++ic8//xxNmjSpySrWaZxpnGk1hTONGQrnGudaTeBMq3410thmhnX06FGEhoaKj0NCQnDkyBGdji391Kpbt27iNolEgi5duuDChQsA/v2kKy8vT+nYwsJCPH78WGnsSlVTd20fffQREhIScO7cObRq1QrA0z86d+7cweTJk8UAd3BwUKkz8PRTLk9PT4PVuSK01dWQr29lvffee+jWrZvSMgsdO3ZEw4YNsXbtWowbN078P5aXlwdXV1dxv9JPUo3x+krrXPb/HvA0yAHg4sWLaNKkSa1934wdZxpnWk3hTKud71ttwLnGuVYTONOq/z3jxnYd1K5dO5w6dUp8bGNjo/OxpV171MnPzwcAyGQyeHp6qoxtSEtLAxGpjPGoSuqubceOHTA1NVVZc69Nmzb44Ycf8PjxY1hZWcHX1xfnz59X2oeIkJaWhvDwcIPVuSLUjU3Ky8vDzZs3Dfr6VlZqaipeffVVpW0eHh5wdHTEn3/+CeDfMUCXL19WmgDl8uXLkEqlRvltStOmTWFubq7x+dLfDV9fX9y+fRs5OTlK44HUjetiuuNMe4ozrfpxpnGmGQrn2lOca9WLM636M02nCdJY7WJjY4P27duLP2V/Ucrz8ssvAwASExPFbYWFhTh69CjatWsnbuvVqxd27Nghzi4JABs3boS9vT2Cg4Or4CrUU3dtXl5eKCkpwblz55T2PXPmDJydnWFlZSXW+b///S+uXr0q7nPo0CHcvXsXvXv3NlidK6JXr15ITEwUx1wBQEJCAkxMTNCjR4+aq1g5vLy88Ntvvyltu379OrKzs9GoUSMAQJMmTeDt7Y2EhASl/TZu3Iju3bsrzZpqLKRSKXr06IFDhw4pbT948CAAoG3btgCAHj16wMTEBFu2bBH3ycnJwYEDB4zu/1htwpn2FGda9eNM40wzFM61pzjXqhdnWg1kmkEWFGNG6dSpU5SQkEDLly8nADR58mRKSEigI0eOKO0XERFBTk5OFBsbS3v37qU+ffqQhYUFnTt3Ttzn6tWrJJPJKCIigg4dOkRLliwhqVSqsnB8dbh//z41bNiQmjVrRmvXrqXExESaOnUqmZiY0OzZs8X9CgsLyd/fn1q1akW7du2ijRs3kqenJ/Xp06fa61yee/fukZubG4WEhNBPP/1EK1euJHt7e5owYUJNV02rJUuWEAB677336ODBgxQfH0/+/v7k4uJC2dnZ4n6l62jOnDmTkpKSaPz48WRmZkbJyck1Uu9Hjx5RQkICJSQkUNeuXcnT01N8fOfOHSIiOn36NEmlUho6dCj99NNP9O2335KNjQ0NGzZMqay33nqL7O3taeXKlfTTTz9RSEgIPffcc5Sbm1sTl1ancaZxphkaZxpnWnXjXONcMyTOtOrPNG5s1yMjR44kACo/ISEhSvs9fPiQJk6cSE5OTmRubk7BwcF04sQJlfJ+/vlnCgwMJHNzc/Lw8KB58+aRQqGopqtRdvXqVYqMjCR3d3eysrIiPz8/WrJkCRUXFyvtl5mZSQMGDCBra2uyt7enMWPGUF5eXo3UuTypqanUvXt3srS0JGdnZ/roo4+ooKCgpqullUKhoO+++44CAgJIJpORq6sr9e/fny5duqSy7w8//EDNmjUjqVQq/lGtKdeuXVP7uwGAkpKSxP0SExOpffv2ZG5uTq6urjR58mTKz89XKis/P58mT55Mzs7OZGlpSWFhYWqvn1UeZxpnmqFxpnGmVTfONc41Q+JMq/5ME4jKrCTPGGOMMcYYY4yxSuMx24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM8YYY4wxxhhjVYwb24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM51ER0dDEAQ899xzUCgUKs+/+OKLEAQBo0aN0qvc3NxcREdHIzU1VWl7eno6BEHA5s2bK1PtSluyZAkEQRAfHzlyBIIg4PTp09VWh+joaCQnJ6tsFwQBixYtqrZ6qLN9+3YIgoD09HQAFXvflixZgr179xqohoypx5n2FGeaMs40Vptxrj3FuaaMc61mcWOb6UwikSA7OxvHjh1T2n79+nWkpKTA2tpa7zJzc3Mxa9YslQB3c3NDSkoKunXrVqk6V7W2bdsiJSUFLVq0qLZzzpo1S22Ap6SkYNiwYdVWD11U5H3jAGc1hTONM608nGmstuFc41wrD+da9TKr6Qqw2kMqlSIsLAwbNmxA165dxe3x8fHw8/ODqalplZ3L3NwcHTt2rLLyqoqtrW259Xry5AksLS0NXhdjfH2M9X1jTB3ONM608hjr+8aYJpxrnGvlMdb3ra7ib7aZXoYMGYLNmzejqKhI3LZ+/XoMHTpU7f7Hjh1DcHAwLC0t4ejoiDFjxuDevXsAnnZjady4MQBg0KBBEARB7OairouLQqHAnDlz0KhRI5ibm8PX1xcxMTFK54uOjoa1tTXOnz+PTp06wcrKCv7+/vjpp5/Kvbb79+9jxIgRsLGxgZOTE6ZOnYri4mKlfdR1TRIEAfPnz8e0adPg6uoKZ2dnAAARYdGiRfD29oa5uTmaNGmCr776SuW8ly5dwoABAyCXy2FlZYXWrVtjw4YNYtkAMGXKFPH1OXLkiPjcs12TYmJi4OPjA3NzczRq1Ahz5sxR6kq2evVqCIKA33//Hb169YJMJkPz5s2xZs2acl+foqIiTJo0CXK5HHZ2dhg7diwePnyotI+6923nzp1o3749rK2tYW9vj/bt24ufjjZq1AjXr1/HsmXLxOtbvXo1AGDNmjXo1KkT5HI5HBwc0LVrV/z6669K59Pn/V6zZg3atGkDCwsLODo6onfv3rh+/br4fGZmJl5//XU4OjrC0tISXbp0wZkzZ8p9XVjtxpnGmcaZxuoazjXONc4148GNbaaXV155BQUFBThw4AAAIDU1FefOncPgwYNV9j1z5gzCw8NhY2ODhIQELFiwALt27UKvXr1QUlICNzc3bN26FQAwd+5cpKSkICUlBW5ubmrPPWXKFERHR2PUqFHYtWsXevTogfHjx+Pbb79V2q+oqAjDhg3DqFGjsG3bNjg7OyMiIgJ3797Vem1jxozBtm3bMH/+fMTFxSE1NRVLlizR6XX5+uuvceXKFcTGxuLHH38EALz//vuYOXMmRo4ciT179mDUqFGYNm0aVqxYIR539epVBAUF4erVq/jmm2+wc+dOjB49Gn///TeAp92PAGDixIni69O2bVu1dVi6dCnGjx+Pl156Cbt27cKoUaMQHR2NqVOnquw7bNgw9OjRA9u3b0ebNm0watQoXLp0Ses1zpgxA8uXL8eUKVOwadMmlJSUYPr06VqP+fPPPzFw4ED4+flh27Zt2LhxIyIjI5GTkwMA2LZtG1xdXTFw4EDx+vr06QPg6R+DESNGICEhAevXr0fDhg3RpUsXXLlyRekcurzfCxcuxMiRI9GuXTts3boVsbGxaN68ObKysgAAOTk56NSpE86ePYulS5diy5YtkMlk6NatG+7cuaP1GlntxpmmHmeaepxprDbgXFOPc009zjUDI8Z0EBUVRTKZjIiIhg4dSq+//joREX3yyScUFBREREStW7emkSNHisf079+fGjZsSIWFheK2n376iQDQzp07iYjo2rVrBIASEhKUzvfs9qysLJJIJDR9+nSl/YYMGUJOTk5UXFws1hMA7dmzR6WstWvXary+ixcvkiAIFBsbK24rLi6mxo0bU9lfk6SkJAJAp06dErcBoJYtW5JCoRC3/fHHHyQIAsXExCidZ9q0aeTq6kolJSXia+nk5ER5eXka6waAFi5cqHV7cXExOTo60uDBg5X2mTFjBkmlUsrOziYiolWrVhEAWrZsmbjPw4cPycrKimbPnq2xDnfv3iVLS0v69NNPlbZ36dKFANC1a9eISPV9S0hIIAB0//59jWV7eXnRhAkTND5PRFRSUkJFRUXk4+NDM2bMELfr8n7n5uaSlZUVjRs3TmP5M2fOJDs7O7p9+7a4LT8/nxo2bEhTpkzRWjdWO3GmPcWZxpnG6g7Otac41zjXjAl/s830NmTIEOzYsQNPnjxBfHw8hgwZona/48eP49VXX4VEIhG39ejRA/b29jhx4oRe5/zll19QVFSEQYMGKW1/7bXXkJWVpfQJmomJCcLCwsTHjRo1gqWlJTIzMzWWf+rUKRAR+vfvL24zNTVFv379dKpfr169lGbCTExMBABERESguLhY/AkLC8OtW7eQkZEBADh06BAGDhwIW1tbnc6jyeXLl5Gdna329SksLFTp0tOjRw/x3zKZDF5eXlpfn/Pnz+PJkydKr0/p9WkTEBAAU1NTDB06FLt27UJeXp6ul4RLly6hf//+cHFxgampKSQSCdLS0lQ+LS3v/U5JScHjx48xduxYjec6cOAAQkNDIZfLxffK1NQUISEhOHXqlM51ZrUTZ5oqzjT1ONNYbcG5popzTT3ONcPiCdKY3l566SVIJBLMnDkT165dQ2RkpNr9cnJy4OLiorLdxcVFHAukq9KuLM+WV/q4bHmWlpaQSqVK+0mlUuTn52ss/+bNm5BIJHBwcFBbfnme3S87OxtEBEdHR7X7Z2RkwMvLC3fv3oW7u7tO59BGn9cHAOzt7ZUe6/L6ABDHOD1bvibe3t7YvXs35s6di/79+8PExAQ9e/bEt99+i4YNG2o87sGDB+jRowecnJywePFieHl5wcLCAm+88YZKPct7v0u7KGl7nbOzs3Hy5Emlm41STZs21XqNrPbjTFPFmaYeZxqrLTjXVHGuqce5Zljc2GZ6k0gkiIiIwOLFi9G9e3eNv8RyuVztGIrbt29DLpfrdc7S/e/cuYPnnntOqayyz1eUm5sbioqKkJOToxTipeWXp+wnpaX1EQQBJ06cUAkXAPDx8QEANGjQADdu3KhEzf89HwCV17sqX5/S8tW9/tr07NkTPXv2xP3797F//3588MEHGD16NA4dOqTxmJSUFGRmZmL37t1o3bq1uD0vLw8eHh561b1BgwYAgBs3bmg8Vi6Xo2fPnpg9e7bKc+bm5nqdj9U+nGmqONM040xjtQHnmirONc041wyHu5GzCnnjjTfwyiuv4P3339e4T6dOnbB9+3alWSIPHjyI3NxcdOrUCQDEcNP2SR0AdOjQARKJBAkJCUrbN23aBGdnZ3h7e1f0UgAAL7zwAoCnk0CUKikpwfbt2ytUXvfu3QE8/aSuffv2Kj82NjYAgLCwMGzevBkPHjzQWJZEIin39fHx8YGTk5Pa10cqlaJDhw4Vuo5SrVq1gqWlpdLrAwBbtmzRuQxbW1tERkZi8ODBShN8qPuk9smTJ+JzpZKTk5Genq533YOCgmBlZYVVq1Zp3CcsLAypqalo0aKFynvVqlUrvc/Jah/ONO0401RxpjFjx7mmHeeaKs61qsffbLMK6dChQ7nh9n//938IDg7Gyy+/jIkTJ+L27duYPn06OnTogN69ewMAXF1dYW9vjw0bNqBx48YwNzdHQECASlmOjo6YOHEiFi5cCAsLC3Ts2BF79+7F+vXrsXTp0kqvG9myZUv0798fkyZNQn5+Pho1aoTly5ejsLCwQuV5e3tjwoQJGD58OKZMmYLAwEAUFRXhypUrSEpKEl+7qKgo7N69G506dcLUqVPh5uaG1NRUPH78WJyZskWLFtixYwc6d+4MmUwGHx8f8Q9AKVNTU3z66ad477334OzsjN69e+PkyZNYsGABJk2aJH5iWFFyuRzjx4/H/PnzYWlpibZt22LDhg34888/tR4XExODlJQU9OzZE25ubrh27Rp+/PFHpXFILVq0wOHDh3Hw4EE4ODigcePG6NixI6ytrTFhwgRMnz4d//zzD6KiopQ+qdWVnZ0doqKiMG3aNCgUCrz66qtQKBRISkrCkCFD0L59e3z44YdYt24dQkJC8P7776Nhw4bIysrCL7/8And3d3zwwQd6n5fVLpxp2nGmPcWZxmoTzjXtONee4lwzsJqcnY3VHmVnuNTk2RkuiYiOHDlCQUFBZG5uTnK5nEaNGkV3795V2mfbtm3UokULMjc3F2dLVDfzZUlJCX322WfUsGFDkkgk1Lx5c1qxYoVO9bSzs6OoqCit9c/JyaFhw4aRTCajBg0a0IcffkgLFy7UaYZLdTNQKhQKWrp0Kfn7+5NUKiW5XE5BQUG0ePFipf0uXrxIffv2JVtbW7KysqLnn3+e4uPjxeePHz9Obdu2JUtLSwJASUlJGs/73XffUfPmzUkikVDDhg1p9uzZ4myaRP/OcJmVlaV0nLr37lkFBQU0ceJEsre3J1tbWxo5ciStXbtW6wyXycnJ1KdPH3JzcyOpVEoNGzak999/X2nGywsXLlDnzp3JxsaGANCqVauIiGjfvn3k5+dHFhYWFBAQQHv37qWQkBDq06ePeKw+7/fKlSupVatWJJVKqUGDBvTyyy/T9evXxedv3rxJY8eOFevq4eFBAwcOpJ9//lnr68JqJ860pzjTONNY3cG59hTnGueaMRGIiAzeomeMMcYYY4wxxuoRHrPNGGOMMcYYY4xVMW5sM8YYY4wxxhhjVYwb24wxxhhjjDHGWBXjxjZjjDHGGGOMMVbFuLHNGGOMMcYYY4xVMW5sM4NJT0+HIAjYvHmzXscdOXIEc+fOVdkeHR0Na2vrqqpeuZYsWYK9e/dWWXnbt2/H8uXLVbaPGjUK/v7+VXaeqlbdrztjxoxzTRnnGmO1G2eaMs40VtW4sc2MjqYAf+ONN5CUlFRt9aiuADd21f26M1YXca4ZF841xiqHM824cKYZL7OargCrXYgIhYWFMDc3r/Zze3h4wMPDo9rPW18VFBRAIpFU2eteWp6JCX/Gx4wL51r9wbnG6gPOtPqDM8348SvJtCrtNrN37160bt0a5ubm2LVrFwAgJSUF3bp1g0wmg52dHYYOHYo7d+5oLW/NmjXo1KkT5HI5HBwc0LVrV/z666/i89HR0Zg1axYePXoEQRAgCAK6du0qPlfaRebRo0eQyWRYtGiRyjkGDhyIoKAg8XFubi7eeecduLm5wdzcHO3atcOBAwe01rNRo0a4fv06li1bJtZj9erVAACFQoE5c+agUaNGMDc3h6+vL2JiYsp9HePi4nDx4kWxvFGjRintc+TIEbRp0wYymQwdOnTAmTNnlJ4nIixatAje3t4wNzdHkyZN8NVXX2k9b+m5/f39sW/fPvj7+8PCwgLt2rXDyZMnVa753XffxRdffAEvLy9YWlri3r17arsmXb9+HQMHDoSdnR1kMhleeuklnD9/XqfytNUxMTERAQEBsLS0REhICNLT03Hv3j1ERkbC1tYWTZs2xcaNG1WO37NnDwIDA2FpaQknJye8/fbbePTokfj8o0eP8O6778LHxwdWVlZo1KgRxo8fj7y8PLV1XrZsGby8vGBnZ4d+/fohKyur3NeZ1R6ca5xrnGuca3UJZxpnGmeaEWcaMabFyJEjycHBgZo2bUqrVq2iQ4cO0dWrVyk5OZmkUin169ePdu3aRfHx8dSsWTPq2LGjeOy1a9cIACUkJIjbZs2aRTExMZSYmEh79+6l4cOHk7m5OaWlpRERUUZGBo0dO5YsLS0pJSWFUlJS6OLFi0REFBUVRTKZTCxr8ODB1K5dO6X63r9/nywsLOibb74hIqKCggJq3749eXp6UmxsLO3fv59ef/11MjMzo3Pnzmm87t9++41cXV1p4MCBYj3u3LlDREQffvghmZqaUlRUFP300080ceJEAkBLly7VWN4ff/xBvXv3piZNmojl/fHHH+Jr3KBBA2rVqhWtW7eOdu/eTa1atSJPT08qLCwUy5g4cSJZWlrSnDlz6ODBgzRr1iySSCT03XfflfseyuVyatSoEa1evZp27NhBQUFBZGtrS7dv3xb38/LyIldXV+rcuTNt27aNdu7cSY8fP1Z53e/fv0+NGjWiJk2a0Pr162nr1q3Url07sre3p7///rvc8jTVsUGDBhQQEEDx8fG0ZcsWeu655yg4OJjCwsLos88+owMHDtCgQYPIzMyM0tPTxWMTEhLIxMSExo4dS/v27aOVK1eSs7Mzvfbaa+I+d+7cofHjx1NCQgIdOXKE1q5dS76+vtS1a1elenh5eZGnpyf16NGDdu3aRatWrSJ7e3ulsljtx7nGuca5xrlWl3CmcaZxphlvpnFjm2k1cuRIAkAnT55U2t6lSxcKDg4mhUIhbrt48SIJgkB79uwhIvUBXlZJSQkVFRWRj48PzZgxQ9z+bGBo2r5jxw4CQFeuXBG3xcXFkampKd26dYuIiFauXElmZmbiH4FSgYGBNGjQIK3X7uXlRRMmTFDalpWVRRKJhKZPn660fciQIeTk5ETFxcUayxs5ciT5+fmp3S4IAl24cEHclpSURADo+PHjRPT0D4AgCBQTE6N07LRp08jV1ZVKSkq0nhcAHTp0SNyWm5tLNjY2Stfh5eVFDRo0oIcPHyod/+zr/vXXX5MgCJSamipuu3v3LslkMvrwww/LLU9THZ99DZYuXUoAaNq0aeK2nJwcMjU1pSVLlhARkUKhIC8vLxoyZIhSefv27VMpr6yioiI6ceIEARBvHkrr7OHhQfn5+UrXL5FItL7GrHbhXONc41zjXKtLONM40zjTjDfTuBs5K1eDBg0QGBgoPn78+DF+/vlnDBo0CCUlJSguLkZxcTG8vb3h6emJU6dOaSzr0qVL6N+/P1xcXGBqagqJRIK0tDRcuXJF73r17NkT9vb2iI+PF7fFx8cjNDQULi4uAIADBw6gVatW8Pb2FutZXFyM8PBwrfXU5JdffkFRUREGDRqktP21115DVlZWha4DANzd3eHn5yc+btmyJQAgMzMTAJCYmAgAiIiIULqOsLAw3Lp1CxkZGVrLt7OzQ7du3ZQeh4WF4ZdfflHar2vXrpDJZFrLOn78OPz9/dGiRQtxm1wuR3h4OE6cOKF3eaWefQ28vb0BAGFhYeI2e3t7ODs7i9d75coVXL9+HZGRkUqvS0hICExMTHD69Gnx2LVr16JNmzawtraGRCJBp06dxDLKCgkJURrn1rJlSxQVFZXb7Y7VLpxr/+Jc41xjtR9n2r840zjTjAk3tlm5SsOwVE5ODkpKSvDBBx9AIpEo/fz9998aw+TBgwfo0aMHrl+/jsWLF+P48eM4deoUWrdujfz8fL3rJZVKERERIQb43bt3cfDgQQwdOlTcJzs7G7///rtKPefMmVNu6KmTk5MDQPU1KX2saZxLeezt7ZUeS6VSABBfl+zsbBARHB0dla4jPDwcAMq9FicnJ5VtLi4uuHnzptrr0CYnJ0ftfi4uLirXr0t5pTS9Buq2l31dAKB///5Kr4uVlRVKSkrE12Xbtm0YMWIEOnTogE2bNuHkyZPYtm0bAKj83yvvvWB1A+ea8rUDnGuca6w240xTvnaAM40zzTjwbOSsXIIgKD22t7eHIAj4+OOP0a9fP5X9HR0d1ZaTkpKCzMxM7N69G61btxa35+XlVXgGxSFDhiA2Nhbnzp1DSkoKTE1NMWDAAPF5uVyOgIAAxMbGVqj8Z8nlcgDAnTt38Nxzz4nbb9++rfR8VZPL5RAEASdOnBADpSwfHx+tx6ubNOL27dtwc3NT2vbse62pLmlpaWrLe/b6dSmvMkrP9+233yp9ol/K3d0dAJCQkIDnn39eaXKUo0ePGrRuzLhxrv2Lc41zjdV+nGn/4kzjTDMm3NhmepPJZAgKCsKlS5cwZ84cnY978uQJACgFUHJyMtLT05W6pEilUhQUFOhUZteuXeHq6ooNGzYgJSUFvXr1gp2dnfh8WFgY9u7dC3d3d/GXWVdlP5Ur1aFDB0gkEiQkJKBNmzbi9k2bNsHZ2VnsTqNrebrq3r07gKefCL/yyit6H5+Xl4fDhw+L3ZPy8vKQmJiICRMm6F1Wp06dsHnzZqSlpYl/OHJycpCYmIhx48bpXV5l+Pr6wsPDA3/99ZfWa3ny5InKH75169YZunqsFuFc41zjXGN1CWcaZxpnmnHgxjarkIULF6Jbt2547bXXMHjwYDg4OCAzMxMHDx7E6NGjxSUgyurYsSOsra0xYcIETJ8+Hf/88w+ioqKUPnUEgBYtWqC4uBhff/01goODYWtrq/HTQFNTU0RGRmL16tW4c+eO0pggABgxYgRiYmLQtWtXfPTRR/D29kZubi5+//13FBYWYt68eRqvsUWLFjh8+DAOHjwIBwcHNG7cGI6Ojpg4cSIWLlwICwsLdOzYEXv37sX69euxdOlSmJqaai1v5cqV2LBhA5o3bw5HR0c0atRI84tchre3NyZMmIDhw4djypQpCAwMRFFREa5cuYKkpCRs375d6/FyuRxjx47FrFmzYG9vj/nz54OIMGnSJJ3OX9bo0aPx1VdfoU+fPpgzZw4sLCzw+eefw8zMrELlVYYgCFi8eDGGDh2KR48eoU+fPpDJZLh+/Tr27NmDuXPnwtvbG+Hh4ZgwYQJmz56NoKAg7N27F4cOHarWujLjx7nGuca5xuoSzjTONM40I1CTs7Mx46dpVkYiolOnTlHv3r3Jzs6OLC0tqXnz5jR+/HjKyMggIvUzXO7bt4/8/PzIwsKCAgICaO/evRQSEkJ9+vQR9ykqKqJ33nmHXFxcSBAECgkJISLNM1+mpKQQALK2tla7XEFeXh598MEH1LBhQ5JIJOTm5ka9e/em3bt3a732CxcuUOfOncnGxoYA0KpVq4jo6cycn332mVhe8+bNacWKFVrLKq3H4MGDqUGDBgSARo4cSUTqX+OcnBylcxI9nc1x6dKl5O/vT1KplORyOQUFBdHixYu1nre0/N27d1OLFi1IKpVSmzZt6Oeff1baT92MnkTqX/f09HQaMGAA2djYkJWVFYWHh6ssz6GpPG11LKt0ls9Tp06VW+6BAwcoJCSEZDIZyWQy8vPzo8mTJ1Nubi4RERUXF9PkyZPJycmJbGxsaODAgXTy5EmV/5/qyt62bRsBoGvXrul0Lcz4ca5xrnGuca7VJZxpnGmcacabaQIRUfU17Rlj1W3UqFE4ffo0Lly4UNNVYYyxKsG5xhirSzjT6i6ejZwxxhhjjDHGGKti3NhmjDHGGGOMMcaqGHcjZ4wxxhhjjDHGqhh/s80YY4wxxhhjjFUxbmwzZmAdOnTAsmXLND5/9uxZCIKAI0eOGOT84eHh+Pzzzw1SNmOs/uFMY4zVNZxrzFC4sc2YAW3btg3p6ekYM2ZMjdXh448/xqJFi5CTk1NjdWCM1Q2caYyxuoZzjRkSN7YZM6AlS5ZgyJAhsLS0rLE6hIaGwsHBAXFxcTVWB8ZY3cCZxhirazjXmCFxY5sxA7l27RqOHz+OgQMHKm2fM2cOXF1dYW1tjQEDBuDOnTsqxxIRFi1aBG9vb5ibm6NJkyb46quvVPbbtm0bfHx8YGFhgY4dO+K3336Dvb09oqOjlfYbNGgQBzhjrFI40xhjdQ3nGjM0bmwzZiCHDh2CmZkZOnToIG779ttv8emnn2L48OHYsmULmjRpgrFjx6oc+/7772PmzJkYOXIk9uzZg1GjRmHatGlYsWKFuM/vv/+OQYMGoWXLlti6dStGjhyJ1157DQUFBSrlBQcH4+zZs8jKyjLMxTLG6jzONMZYXcO5xgyOGGMGMW7cOPLz8xMfFxcXk7u7Ow0fPlxpv+HDhxMASkpKIiKiP/74gwRBoJiYGKX9pk2bRq6urlRSUkJERIMGDaJmzZqJj4mI1q5dSwAoKipK6dhr164RANq9e3cVXiFjrD7hTGOM1TWca8zQ+Jttxgzk5s2bcHJyEh9nZmbixo0b6N+/v9J+z3ZdSkxMBABERESguLhY/AkLC8OtW7eQkZEBADh16hRefvllmJj8+2v86quvqq2Lo6OjWCfGGKsIzjTGWF3DucYMzaymK8BYXZWfnw9zc3PxcWl4Ojs7K+3n4uKi9Dg7OxtEJIbuszIyMuDl5aXyBwIAbGxsYGFhoXJMaT2ePHmi/4Uwxhg40xhjdQ/nGjM0bmwzZiByuRzp6eniYzc3NwBQmWTj9u3bKscJgoATJ05AKpWqlOvj4yOW9+y4ngcPHiA/P1/lmNzcXABAgwYN9L4OxhgDONMYY3UP5xozNO5GzpiB+Pj44Nq1a+JjDw8PuLm5Ydu2bUr7bd68Welx9+7dAQB3795F+/btVX5sbGwAAC+88AJ2794NhUIhHrt9+3a1dSn9Q1Ia/owxpi/ONMZYXcO5xgyNv9lmzEBefPFFfPbZZ8jMzISHhwdMTU0xffp0vP/++3BxcUF4eDgOHDiApKQkpeO8vb0xYcIEDB8+HFOmTEFgYCCKiopw5coVJCUliSE9Y8YMvPDCC4iIiMC4ceNw/fp1LFq0CBYWFkpjgwDg9OnTsLa2xvPPP19NV88Yq2s40xhjdQ3nGjO4Gp6gjbE6q6CggBo0aEDff/+9uE2hUNCsWbPI2dmZrKysqG/fvrR//36lGS5L91u6dCn5+/uTVColuVxOQUFBtHjxYqVzbNmyhby9vcnc3JzatWtHJ06cIDMzM1qyZInSfq+88orKzJqMMaYPzjTGWF3DucYMTSAiquH2PmN11uTJk/H777/j8OHD1XK+Q4cOISwsDEeOHEFISAgAICcnB66urjh48CC6dOlSLfVgjNVNnGmMsbqGc40ZEje2GTOgmzdvolmzZkhOTkbr1q2rvPx33nkH3bt3R4MGDXDx4kXMnj0b7u7uOH36tNg96bPPPsORI0eq7Y8IY6zu4kxjjNU1nGvMkHjMNmMG5ObmhtWrV6vMRFlVcnJyMHHiRGRnZ8POzg49e/bEokWLlMYByeVyfPPNNwY5P2OsfuFMY4zVNZxrzJD4m23GGGOMMcYYY6yK8dJfjDHGGGOMMcZYFePGNmOMMcYYY4wxVsW4sc0YY4wxxhhjjFUxbmwzxhhjjDHGGGNVjBvbjDHGGGOMMcZYFePGNmOMMcYYY4wxVsW4sc0YY4wxxhhjjFUxbmwzxhhjjDHGGGNVjBvbjDHGGGOMMcZYFft/rkSRqDoj7U8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1438,13 +1438,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPz0lEQVR4nOzdeVxUVf/A8c8ddhBZBBFcUHBfMKX0SVPcyyX3stQ0U1PL1Eqfxx1wLy21Vc0lNVN/WrZYPi2WZk9mpRWaueSuoIKCIiDbnN8fw4wMMwMziODyfb/yRdx7584B8cv53nPO92hKKYUQQgghhBBCCCFKjK6sGyCEEEIIIYQQQtxtJNkWQgghhBBCCCFKmCTbQgghhBBCCCFECZNkWwghhBBCCCGEKGGSbAshhBBCCCGEECVMkm0hhBBCCCGEEKKESbIthBBCCCGEEEKUMEm2hRBCCCGEEEKIEibJthBCCCGEEEIIUcIk2RbiNrZjxw40TWPz5s1l3RQhhLhpJ0+eRNM0FixYUNZNEUIIh1WvXp1u3bqVdTPEHUSSbXHH+PXXXxk9ejQNGjTAy8uLatWq8fjjj3PkyJFCX5ednU39+vWtdvBSUlIYMGAAfn5+hIWFsWLFCovX//bbb3h6enLixIkS/XqEEPe2a9euER0dzSOPPIK/vz+apvH+++9bXKfX63n//ffp3r07VatWxcvLi4YNGzJr1iyuX79udm1mZiYvvPACgYGBVKlShVmzZlnc7+zZs5QrV47//e9/t+pLE0IIC/v27aN79+74+/vj6elJw4YNeeONN8yuWbp0KTVq1MDf35+nnnqKq1evmp3X6/U0adKEOXPmlGbThSg257JugBD2euWVV/jf//7HY489RkREBOfPn+ett96iadOm/PzzzzRs2NDq6958801Onz5t9dz48ePZsWMHsbGx/PPPPwwfPpx69erRokULAJRSjBkzhnHjxlGjRo1b9rUJIe49SUlJzJgxg2rVqtG4cWN27Nhh9br09HSGDBnCv/71L0aOHEnFihXZvXs30dHRbN++ne+++w5N0wCYP38+a9asYcqUKaSmpjJjxgzCw8N58sknTfebMGEC3bt3p2XLlqXxZQohBF9//TWPPvooTZo0Ydq0aZQrV45jx45x9uxZ0zU//vgjo0aNYsyYMYSFhTF37lwmTJjA0qVLTde89957XLlyhZdffrksvgwhHKeEuEP873//U5mZmWbHjhw5otzc3NSAAQOsvubChQvKx8dHzZgxQwFq/vz5ZueDgoLU6tWrTZ9HRUWpiRMnmj5fu3atCgkJUampqSX4ldjv+++/V4DatGnTLX2fa9eu3dL7CyEsXb9+XSUkJCillPr1118VoFatWmVxXWZmpvrf//5ncTw2NlYB6ptvvjEda968uYqNjTV9PnjwYPXEE0+YPt+1a5fy8vJSZ86cKcGvxH4nTpywGotLmsQ0IW4fV65cUUFBQapXr14qNzfX5nX/+c9/VNu2bU2fr1q1SlWqVMn0eXJysgoICFAfffTRLW1vYUJDQ1XXrl1v6XtkZ2db9HfFnUumkYs7RosWLXB1dTU7VqtWLRo0aMDff/9t9TUTJ06kTp06DBw40Or5jIwM/Pz8TJ/7+/uTnp4OQFpaGhMnTmTu3LmUK1fOobaeO3eOoUOHEhISgpubGzVq1GDUqFFkZWWZrjl+/DiPPfaYaTrVv/71L7744gur99Pr9cyePZsqVarg7u5O+/bt+eeffyyu27NnD4888gg+Pj54enoSFRVlMVU0JiYGTdM4ePAg/fv3x8/Pj4ceesh0/oMPPiAyMhIPDw/8/f154oknOHPmjNk92rRpQ8OGDTl48CBt27bF09OTypUr8+qrr1q06fr168TExFC7dm3c3d0JDg6md+/eHDt2zOzrW7RoEQ0aNMDd3Z2goCBGjBhBcnKyfd9wIe5Abm5uVKpUqcjrXF1dTbNt8uvVqxeAWfwrLKbp9XrGjh3Lv//9b6pUqeJQW1NSUnjxxRepXr06bm5uVKlShUGDBpGUlGS65uLFiwwdOpSgoCDc3d1p3Lgxq1evtnnPZcuWER4ejpubGw888AC//vqrxTWHDh2ib9+++Pv74+7uzv33389nn31mds3777+Ppmns3LmT5557jooVK5p9fdu2baNVq1Z4eXnh7e1N165d+euvv8zu8fTTT1OuXDnOnTtHz549KVeuHIGBgYwfP57c3Fyza/V6PYsXL6ZRo0a4u7sTGBjII488wm+//WZ2nT2xVIh7wYcffsiFCxeYPXs2Op2OtLQ09Hq9xXWFxS8w9F8aNWpE7969HXp/e/7N5uTkMHPmTFNMql69OpMnTyYzM9PqPX/88UeaNWuGu7s7YWFhrFmzxuKalJQUxo0bR9WqVXFzc6NmzZq88sorZl97/joWixYtMr3/wYMHAcdi4P/+9z9eeuklAgMD8fLyolevXiQmJlq0a9u2bURFReHt7U358uV54IEH+PDDD82usac/KexU1tm+EDdDr9erypUrq06dOlmc27Nnj9LpdOqnn36yOZrSvn171aZNG3XkyBH13//+V3l4eKgPPvhAKaXU5MmTVbNmzZRer3eoTefOnVMhISHK09NTjRs3Ti1ZskRNmzZN1atXTyUnJyullDp//rwKCgpS3t7easqUKer1119XjRs3VjqdTn388cemexlHtps0aaIiIyPVwoULVUxMjPL09FTNmjUze9/t27crV1dX9eCDD6rXXntNLVy4UEVERChXV1e1Z88e03XR0dEKUPXr11c9evRQ77zzjnr77beVUkrNmjVLaZqm+vXrp9555x0VGxurAgICVPXq1U1tV8owAyAkJERVrVpVjR07Vr3zzjuqXbt2ClBffvml6bqcnBzVvn17BagnnnhCvfXWW2ru3LmqXbt26pNPPjFdN2zYMOXs7KyGDx+ulixZov7zn/8oLy8v9cADD6isrCyHvv9C3IkKG9m25euvv1aA+vDDD03Hhg4dqho2bKji4uLUTz/9pCpVqqRmzZqllFJq2bJlqlq1aio9Pd2htqWmpqqGDRsqJycnNXz4cPXuu++qmTNnqgceeED9/vvvSiml0tPTVb169ZSLi4t68cUX1RtvvKFatWqlALVo0SLTvYyxuEmTJqpmzZrqlVdeUa+++qoKCAhQVapUMfv3fuDAAeXj46Pq16+vXnnlFfXWW2+p1q1bK03TzOLkqlWrTDEtKipKvfnmm2revHlKKaXWrFmjNE1TjzzyiHrzzTfVK6+8oqpXr658fX3ViRMnTPcYPHiwcnd3Vw0aNFDPPPOMevfdd1WfPn0UoN555x2z78fTTz+tANW5c2e1aNEitWDBAtWjRw/15ptvmq6xN5YKcS/o06ePKl++vPrmm29U7dq1FaC8vLzUyJEjVUZGhum6tWvXKk9PT/XVV1+pI0eOqNatW6sOHToopZT666+/lJubm/rzzz8dfn97/s0OHjxYAapv377q7bffVoMGDVKA6tmzp9m9QkNDVZ06dVRQUJCaPHmyeuutt1TTpk2VpmnqwIEDpuvS0tJURESEqlChgpo8ebJasmSJGjRokNI0TY0dO9Z0nTEm1q9fX4WFhal58+aphQsXqlOnTjkcA5s0aaLatWun3nzzTfXyyy8rJycn9fjjj5u1f9WqVUrTNNWwYUM1e/Zs9fbbb6thw4app556ynSNvf1JYR9JtsUdbe3atQpQK1asMDuu1+tVs2bN1JNPPqmUsj11MS4uTlWpUkUBClB9+vRRubm56vjx48rDw0Pt3r3b4TYNGjRI6XQ69euvv1qcMybu48aNU4DatWuX6VxqaqqqUaOGql69ummalTHZrlevntmUosWLFytA7d+/33TfWrVqqYcfftjs4UB6erqqUaOG6tixo+mYMdk2fm+MTp48qZycnNTs2bPNju/fv185OzubHY+KilKAWrNmjelYZmamqlSpkurTp4/p2MqVKxWgXn/9dZvfi127dilArVu3zuz8f//7X6vHhbgbFSfZ7tChgypfvrxZ8nbmzBnVoEEDU0xr1aqVSk1NVSkpKSowMFBt2LDB4bZNnz5dAWadOyPjv+NFixYpwPSwUimlsrKy1IMPPqjKlSunrl69qpS6EYsrVKigLl++bLr2008/VYD6/PPPTcfat2+vGjVqpK5fv272fi1atFC1atUyHTN2NB966CGVk5NjOp6amqp8fX3V8OHDzdp8/vx55ePjY3bc2NGeMWOG2bXGB51G3333nQLUmDFjbH4vHImlQtwLIiIilKenp/L09FQvvPCC+uijj9QLL7xgehBvlJOTo3r37m2KX1WrVlVxcXFKKaU6deqkRo4c6fB72/Nv9o8//lCAGjZsmNn58ePHK0B99913pmOhoaEKUD/88IPp2MWLF5Wbm5t6+eWXTcdmzpypvLy81JEjR8zuOXHiROXk5KROnz6tlLoRE8uXL68uXrxodq2jMbBDhw5mfcAXX3xROTk5qZSUFKWUUikpKcrb21s1b97c7CFH/u+FI/1JYZ8yT7YvXLigTp06ZfFHiKL8/fffqnz58urBBx8062ApZUjyPDw8LIKZtXWCGRkZ6tdff1VHjx41HevVq5caOHCgUkqpjz76SEVERKjq1aur2NjYQke6c3NzVfny5VWPHj0KbXvt2rUtRqaVUmru3LlmSbQx2X711VfNrtu3b58C1Keffmr2+erVq1ViYqLZn2HDhik3NzdTAm9Mtnfu3Gl2z9dff11pmqaOHj1qcY969eqZni4rZUi2y5UrZ/G96N69u2rSpInp865du6qAgACVnZ1t83sxZswY5ePjoy5evGjxvuXKlbP45SfE3cjRZHv27NlWR12VMiS5v//+u/rrr79M/+5ffPFF9dBDDymlDA+4mjVrpqpUqaJeeOGFItcGNmjQQDVu3LjQazp16qQqVapksR5z/fr1Zkm0MRY/99xzZtddvnxZAWrx4sVKKaUuXbqkNE1TM2fOtIgLxrXqZ8+eVUrd6Gjmr7+hlFIff/yxqaNc8B6dOnVSNWvWNF1rTLYLdnbHjBmj/Pz8TJ8///zzStM0denSJZvfC0diqRD3grCwMAVYJMsjRoxQgEVCevToUfXbb7+ZEsJPP/1U+fr6qsTERHX27FnVrVs3FRwcrLp166bOnTtX6Hvb8292zpw5ClAHDx40O56QkKAAsyQ6NDRU1a9f3+IeERERqlevXmafP/LIIxYx4NtvvzV7MGmMiUOGDDG7X3Fi4P/93/+Z3cMYA42zATZt2qQAtWXLFpvfC0f6k8I+ZVKN/NKlS7zwwgt8/PHHZGdnm51TSqFpmsUaKSHyO3/+PF27dsXHx4fNmzfj5ORkOnf16lUmTZrEhAkTqFq1apH3Mq6BMfruu+/4+uuvOXz4MIcPH+aJJ55g6dKlVK9enSeffJKqVasyZMgQq/dKTEzk6tWrNiujG506dYrmzZtbHK9Xr57pfP57VKtWzew645om45rmo0ePAjB48GCb73nlyhWztVAFq6sfPXoUpRS1atWy+noXFxezz6tUqWKqgJy/XXFxcabPjx07Rp06dXB2th1qjh49ypUrV6hYsaLV8xcvXrT5WiHuRRs3bmTq1KkMHTqUUaNGWZx3cXHhvvvuM31+6NAh3nnnHX766ScuX75M165dmThxIm3btmXIkCHMnj2b2NhYm+937Ngx+vTpU2ibTp06Ra1atdDpzEvB5I9p+RUV0/755x+UUkybNo1p06ZZfc+LFy9SuXJl0+fWYhpAu3btrL6+fPnyZp8b13IWbFf+2hHHjh0jJCQEf39/q/c0vq8jsVSIu52HhweA2a4IAP3792fp0qXs3r3b7N9LzZo1Tf+flZXFyy+/THR0NAEBAbRq1Yrg4GA+//xz5s2bR//+/W3u5AD2/Zs9deoUOp3O7H0BKlWqhK+vb5HxCyxjxdGjR4mLi7OIKUYF+zYF41dxYmBRcdVYK6ewPmpx+pOicGWSbA8bNoydO3cyadIk6tevb1H0SojCXLlyhc6dO5OSksKuXbsICQkxO79gwQKysrLo168fJ0+eBDBtLZGcnMzJkycJCQmx+nOXm5vL2LFjmThxIpUrV2bmzJm0aNHClFyPGDGCdevW2Uy2b5X8DxPyU0oBmIptzJ8/36yTnV/BIm/GX35Ger0eTdPYtm2b1fcr+Pqi2mQvvV5PxYoVWbdundXztn5RCXEv+uabbxg0aBBdu3ZlyZIldr3mxRdfZODAgTRt2pS1a9fi7+/PpEmTAPj3v/9dZLJ9K9gb08aPH8/DDz9s9dqCHWNrMQ1g7dq1VgvRFXwIaKtNjnI0lgpxtwsJCeGvv/4iKCjI7LjxIXthxVAXLlyIs7Mzo0eP5syZM/z444+cOHGC6tWr8+qrrxIWFsbZs2cdLvpoTcEBBFvs6f/o9Xo6duzIv//9b6vX1q5d2+xzW/HLkRhYEv2y4vQnReHKJNn+/vvveeONNxg0aFBZvL24g12/fp1HH32UI0eO8O2331K/fn2La06fPk1ycjINGjSwODdnzhzmzJnD77//bjWIvPvuu6SmpjJ+/HgA4uPjzZL5kJAQzp07Z7N9gYGBlC9fngMHDhT6dYSGhnL48GGL44cOHTKdd0R4eDhgGKnp0KGDQ6/Nfw+lFDVq1LD4JVBc4eHh7Nmzh+zsbJujOeHh4Xz77be0bNnS4peNEOKGPXv20KtXL+6//37+7//+r9AZI0Zbt27lp59+Mo1WxMfHExwcbDpfVEwDw79Re2JaXFwcer3ebHS7uDEtLCwMMIwC30xMA0OHvrj3sHbPr776isuXL9scKbsVsVSIO1lkZCTffPMN586do06dOqbj8fHxgO2H6gkJCcyaNYtNmzbh7Oxsut7YLzN+PHfunM1k255/s6Ghoej1eo4ePWqajQNw4cIFUlJSHI5fxve9du1asWNPScRAa20COHDggEWiXvCam+lPCnPF2vrrr7/+4oknnjCVp9+3bx8AU6ZMYdu2bUW+3tfXl4CAgOK8tbiH5ebm0q9fP3bv3s2mTZt48MEHrV43ZswYtmzZYvZn6dKlgGF7ly1btlhM1wG4fPky0dHRzJ8/H3d3dwCCgoJMnUUwbLFT2FY9Op2Onj178vnnn1tsAwM3ni526dKFX375hd27d5vOpaWlsWzZMqpXr271IUJhIiMjCQ8PZ8GCBVy7ds3ivLWtHwrq3bs3Tk5OxMbGWjwFVUpx6dIlh9oE0KdPH5KSknjrrbcszhnf4/HHHyc3N5eZM2daXJOTk0NKSorD7yvE3ebvv/+ma9euVK9ena1bt9r1YCorK4uXXnqJqVOnmkaQgoKC+Oeff8jJyTHdt6jtx/r06cOff/7Jli1bLM7lj2nnz59n48aNpnM5OTm8+eablCtXjqioKLu/VjAkyG3atGHp0qUkJCRYnLcnpj388MOUL1+eOXPmWCxZs/ceBfXp0wellNWZAMbvxa2IpULcyR5//HEAVqxYYXZ8+fLlODs706ZNG6uvmzhxIq1bt+aRRx4BMI2MG/tlxm0PC4th9vyb7dKlCwCLFi0yO//6668D0LVrV5v3t+Xxxx9n9+7dfPXVVxbnUlJSTDHYlpKIgQV16tQJb29v5s6dy/Xr183OGb8XJdGfFOYcHtn+5ptv6Nq1K5GRkQwYMIBZs2aZzrm4uPDOO+/QuXPnQu/x73//mzfffJNOnTrZ9WReCICXX36Zzz77jEcffZTLly/zwQcfmJ037qXdtGlTmjZtanbOOJ28QYMG9OzZ0+r9p02bRqNGjXjsscdMx/r06cOMGTMYNWoUoaGhLF261BR8bZkzZw5ff/01UVFRPPvss9SrV4+EhAQ2bdrEjz/+iK+vLxMnTmT9+vV07tyZMWPG4O/vz+rVqzlx4gQfffSRxbrHouh0OpYvX07nzp1p0KABQ4YMoXLlypw7d47vv/+e8uXL8/nnnxd6j/DwcGbNmsWkSZM4efIkPXv2xNvbmxMnTrBlyxaeffZZ04i/vQYNGsSaNWt46aWX+OWXX2jVqhVpaWl8++23PPfcc/To0YOoqChGjBjB3Llz+eOPP+jUqRMuLi4cPXqUTZs2sXjxYvr27evQ+wpxp3jrrbdISUkxjdh8/vnnpmUvL7zwAj4+PqSmpvLwww+TnJzMhAkT+OKLL8zuER4ebvXh4+LFiwEYO3as6ViXLl14/vnn6d+/Py1atGDmzJkMGzas0DZOmDCBzZs389hjj/HMM88QGRnJ5cuX+eyzz1iyZAmNGzfm2WefZenSpTz99NPs3buX6tWrs3nzZv73v/+xaNEivL29Hf7evP322zz00EM0atSI4cOHExYWxoULF9i9ezdnz57lzz//LPT15cuX59133+Wpp56iadOmPPHEEwQGBnL69Gm++OILWrZsafVBYGHatm3LU089xRtvvMHRo0d55JFH0Ov17Nq1i7Zt2zJ69OhbEkuFuJM1adKEZ555hpUrV5KTk0NUVBQ7duxg06ZNTJo0yWI5IMAvv/zCxo0bzerAVK9enfvvv5+nn36aoUOHsnz5cpo3b17oyLM9/2YbN27M4MGDWbZsGSkpKURFRfHLL7+wevVqevbsSdu2bR3+midMmMBnn31Gt27dePrpp4mMjCQtLY39+/ezefNmTp48WeTA483GwILKly/PwoULGTZsGA888AD9+/fHz8+PP//8k/T0dFavXl0i/UlRgKMV1SIjI017sWVnZytN09TevXuVUkp98sknqnLlykXeY/To0apatWqqWrVq6qmnnlIvvPCC2R9r5fmFMG43ZetPYQqrRq6UYQswV1dX056x+b3//vuqevXqqkKFCuqll16yqHxuzalTp9SgQYNUYGCgcnNzU2FhYer55583q/p77Ngx1bdvX+Xr66vc3d1Vs2bN1NatW83uY6xGvmnTJqtfT8HKxb///rvq3bu3qlChgnJzc1OhoaHq8ccfV9u3bzddY6xGnpiYaLXtH330kXrooYeUl5eX8vLyUnXr1lXPP/+8Onz4sOmaqKgo1aBBA4vXDh48WIWGhpodS09PV1OmTFE1atRQLi4uqlKlSqpv377q2LFjZtctW7ZMRUZGKg8PD+Xt7a0aNWqk/v3vf6v4+Hir7RTibmDcRsbaH+M+0MZ/77b+DB482OK+58+fV97e3uqzzz6zOLdt2zZVt25d5evrqwYNGqTS0tKKbOelS5fU6NGjVeXKlZWrq6uqUqWKGjx4sEpKSjJdc+HCBTVkyBAVEBCgXF1dVaNGjSxiVGGxGFDR0dFmx44dO6YGDRqkKlWqpFxcXFTlypVVt27d1ObNm03XGCvxWttuUSlDHH344YeVj4+Pcnd3V+Hh4erpp59Wv/32m+mawYMHKy8vL4vXGuNlfjk5OWr+/Pmqbt26ytXVVQUGBqrOnTub+kJG9sRSIe4VWVlZKiYmRoWGhioXFxdVs2ZNtXDhQqvX6vV61bx5c/XSSy9ZnPvnn39U69atVbly5VTr1q0t+hLW2PNvNjs7W8XGxpr6KlWrVlWTJk0y23ZLKUPM7tq1q8V7REVFqaioKLNjqampatKkSapmzZrK1dVVBQQEqBYtWqgFCxaorKwspVTR/dObiYHGPuT3339vdvyzzz5TLVq0UB4eHqp8+fKqWbNmav369WbX2NOfFPbRlHKsmpG7uzuff/45HTt2JDc3FxcXF3777TeaNm3Kzp07efjhhy2mJhRkbQpvfpqmcfz4cUeaJYQQQgghhBBC3DYcnsPt7+9vmu5W0JEjR8wKr9hy4sQJR99WCCGEEEIIIYS4YzhcIK1nz55ER0ebVVLWNI3z58+zYMGCIvfivBP9888/jBw5kvvuuw9nZ2eb+9OlpKQwZswYQkJCcHd3Jzw8nNdee83smqysLCZMmEClSpXw8vKiY8eOVqtSCyHErSIxTQhxN5GYJoS4XTk8sj137lx+/fVXIiIiaNSoEQDPPPMMx48fp06dOsTExNh9r3/++YcjR45YnXbeu3dvR5t2y/z111988cUXNG/eHL1eb9qDLr+0tDTatGmDs7MzCxcuJCgoiCNHjnD16lWz68aMGcOGDRt4/fXXqVy5MrNnz6Z9+/b89ddf+Pj4lNaXJIS4h0lME0LcTSSmCSFuW8VZ6J2VlaVWrlypnnzySdWxY0fVr18/9d5775kVfyrMlStXVLt27ZROp1M6nU5pmqY0TTN9rtPpitOsWyY3N9f0/4MHD7ZaGGrq1KkqLCxMXbt2zeZ9zpw5o5ycnNTSpUtNxy5duqS8vLzUK6+8UrKNFkIIGySmCSHuJhLThBC3q2Lts+3i4sKQIUP48MMP+frrr9mwYQPDhg3D1dXVrtf/5z//4fz58+zatQulFFu2bGHHjh0MHTqUGjVq8PPPPxenWbeMPdswLV++nGeeeQYvLy+b13z99dfo9XqzraX8/f3p1KkTX375ZYm0VQghiiIxTQhxN5GYJoS4XTmcbP/55582A86XX35pth+eLf/973+ZMmUKzZs3ByAkJITWrVuzbNkyevToYbF+5nZ38uRJzp8/T0BAAN27d8fNzQ1/f3+GDx9utiH8oUOHqFixIn5+fmavr1evHocOHSrtZgshhFUS04QQdxOJaUKIsuJwsv3iiy+ye/duq+d++eUXXn755SLvcfHiRapWrYqTkxNeXl5cunTJdK5Lly7897//dbRZZer8+fMAjB8/Hj8/P7788kvmzJnDpk2bGD58uOm65ORkfH19LV7v5+fH5cuXbd4/MzOTq1evmv5cuXKFxMRElGO7tgkhhF0kpgkh7iYS04QQZcXhZPuPP/6gZcuWVs89+OCD7Nu3r8h7VK1alaSkJABq1arFZ599Zjq3e/du3N3dHW1WmTIW4qhduzarV6+mffv2jBw5kgULFrBhw4ab3jN87ty5+Pj4mP74+vpSsWJFUlNTS6L5QghhRmKaELePhH37iNU0Egr0rxw9fi+TmCaEKCsOJ9uZmZlkZWXZPGetsnhBHTt25NtvvwUMI+VLliwhMjKSBx98kOjoaAYNGuRos8qUcbpR27ZtzY63b98eMFTJNF535coVi9cnJyfj7+9v8/6TJk3iypUrpj9nzpwpqaYLIYQFiWlCiLuJxDQhbh+pCQnsiIkhNSGhrJtSKhze+qtJkyasWbOG7t27W5xbs2YNjRs3LvIer7zyCunp6QA89dRTlCtXjs2bN5ORkcFbb73FiBEjHG1WmQoPD8fNzc3meeMDiLp163LhwgWSk5PN1gMdOnSIunXr2ny9m5tbofcXQoiSJDFNCHE3kZgmxO3jWkICO2NjqdO9O97BwWXdnFvO4ZHtSZMmsWXLFrp27crmzZv56aef2Lx5M127duWTTz5hypQpRd7D09OTgIAA0+e9evVi3bp1fPzxx4waNcquqpK3E1dXVzp16sT27dvNjn/zzTcANG3aFIBOnTqh0+n46KOPTNckJyfz9ddf06VLl9JrsBBCFEJimhDibiIxTQhRVhwe2e7atSsffvghEyZM4PHHH0fTNJRSVKlShQ8//JCuXbvafa+///6b3377jTNnzvDMM89QqVIl/vnnH4KCgvD29na0abdMenq6qQL7qVOnuHr1Kps3bwYgKiqKwMBAoqOjadGiBQMGDGDw4MEcPXqUSZMmMWDAAMLDwwGoUqUKw4YNY8KECTg5OVG5cmXmzJmDj4/PHTeaL4S4c0lME0LcTSSmCXH7SU1IYO/SpUSOGGHXCLaj198xbmaT7kOHDqn//e9/6tChQw69Li0tTT355JPKyclJOTs7K51Op/bu3auUUqpv375qwoQJN9OsEnfixAkFWP3z/fffm6779ttv1f3336/c3NxUpUqV1Msvv6yuX79udq/r16+rl19+WVWsWFF5eHioDh06qL///tuh9ly5ckUB6sqVKyXx5Qkh7jES04S4c8Tv3atiQMXn9ZOKe/xuJjFNiNuPxC4Dh0e286tTp06xXjd+/Hi+++47vvzyS1q1aoWXl5fpXJcuXVi4cCGvvvrqzTStRFWvXt2u7Rvat2/Pr7/+Wug1bm5uLFiwgAULFpRU84QQwiES04S4u7l4epZ1E0qVxDQhxO2qWMn24cOH+eijjzh79qxF9XFN01ixYkWhr9+8eTPz58+nU6dO5Obmmp2rXr06J0+eLE6zhBBCCCHuWUopgiIimJyWhj4nB6UUmqaVdbOEEOKe5XCyvXbtWoYMGYK7uzuhoaG4urqanbcnqF+7do1gG3Px09LSHG2SEEIIIcQ9Ten1pMbHs3fpUi4fO4Z/eLhh7WNICNodVnhWCCHuFg4n2zNnzqRv376sXLkSz2JOU4qIiOCjjz6iU6dOFue++OIL7r///mLdVwghhBDiXuLs4YHS64n74AM+GzoUfU6O6dyP8+bRfcUKIgYOlIRbCCHKgMPJdnx8PO+++26xE22AadOm0aNHD9LT03nsscfQNI1ffvmF9evXs3LlSlNFSSGEEEIIYZtXYCCp8fEWiTaAPieHz4YOpUb79oYRbplSLoQoQXdtBfES5PBjztatW3PgwIGbetOuXbuyYcMGfvzxR3r27IlSiueee46NGzeybt062rdvf1P3F0Lcm1ITEtgRE0NqQkJZN0UIIW45Fy8v3H192bt0qUWibaTPyWHvkiUovb6UWyeEuNtdS0hgZ2ws16TfZZPDI9tz5sxh4MCBuLu707FjR3x9fS2u8ff3L/I+ffv2pW/fvhw5coSkpCT8/f2pW7euo80RQgiTawkJ/DR/PnW6d5cnrEKIu0bB6uKmQmjXrgFw+dixQl+ffPw4OienW9Y+IYQQ1jmcbDdt2hSAUaNG2ZyOVLDCeGFq165N7dq1HW2GEEKYkSq8Qoi7jbW4hlI3CqEdP06PlSvxDw8v9D5+YWHoc3Ml4RZCFItMFy8+h5PtlStXlkgH9syZM3zyySecOXPG6vZhixcvvun3EELcG6QKrxDiTmatI1swrlVt2ZIHRo2yKIQW1qEDTYYO5cd586xOJdc5OxM5cqTEQiFEsRmni8vMQcc5nGw//fTTN/2m//d//8dTTz2FXq+nYsWKVrcPk2RbCGEPqcIrhLjTFezIWotrYR07cuX0aYtYt2fRIiIGDuTR5cv5fNgws3M6Z2e6r1yJd3CwzPQRQogy4HCyXRImT55Mz549WbZsGT4+PmXRBCHEXUDlTaeUKrxCiLuF1bimaTTs148f5861iHUX4uL4ZNAgeq5ZQ4127di3bBnJx4/jFxZG5MiRhkRbHjgKIUSZKFay/cMPP7Bs2TKOHDliMQUcIC4urtDXJyYm8uyzz0qiLYS4KUqvt6sKb1RMDJqsVRRC3AGsxTUXDw9cPD1tFkI7sGEDiQcP8sjixUTFxKBzckKfk4Pm5CQPGoUQogw5/Kjzq6++ol27diQlJfHbb79RtWpVAgICOHz4MGlpadx///1F3uORRx7h559/LlaDhRDCSOfkJFV4hRB3DU2nsxrXsjMyyE5PL7QQ2oW4OE5s3w5KMcfLiwtxcZJoCyFEGXN4ZDs6Oppx48bxyiuv4OLiwsyZM2natCmnTp3i4Ycfpl27dkXeY8mSJfTr14/09HTat29vdfswY9VzIYTITymFys1F5+yMPjdXqvAKIe4KLp6eKL3eelxTigMbN9pVCO16SgrZ6eml1GohhBCFcXhk+++//6Zz587odDo0TSMtLQ2A0NBQYmJimDVrVpH3SE1NJT09nblz59KxY0ceeOAB05/777+fBx54wPGvRAhx11N6PannzrEzNpaP+vfnwp9/EjliBDpn688NpQqvEOJ2l397r6CICDSdzmpc27NoEd6VK/Po8uUW5/IXQktLTCzN5gshhCiEwyPb7u7u6PV6NE0jODiYY8eO0apVKwC8vb05c+ZMkfcYNGgQp0+f5s0336R27doW1ciFEKIga9V5E//6i+G//SZVeIUQdyRr2xY+MHo03iEhdF+xwizeXYiL49MhQ+i5ejVhHTqwd8kSq4XQcjIyyvirEkLcqWQ/7ZLncLLduHFjDh8+TMeOHWnfvj2zZ88mICAAFxcXpk6dSqNGjYq8xy+//MKHH35Iz549i9NmIcQ9xlbV8fxVeAvrfAohxO3A2JF94Pnn8axQwea2hYO2bydi4EBqtG9vEdc0TcM7JISo6GjDchophCaEKCGyn3bJczjZHjduHCdOnABgzpw5PProo3Tv3h2AKlWqsGXLliLvUatWLXJsVA8WQoiCCqs6bqzC233lSqnCK4S4rRk7ss1Gjy5028I17dvz4tmzhSbV5+PiWNWqFUN27SJY6twIIcRtyeEhny5duvD8888DULlyZfbu3cvhw4f5448/+Oeff4iMjCzyHq+//jqzZ8/m0KFDjrdYCHHPSE1I4MdXXy2y6viFuDh+fv11dE5OvBoQIFV4hRClIjUhgR0xMaQmJNj/Ik3D3de3yG0Lf33rLZRez4W4OJvVxaUQmhCirLl4epZ1E25rDifbM2bMID4+3vS5pmnUqlWLiIgILl26xIwZM4q8x7hx4zh79iwNGzakWrVqREREmP1p3Lixo80SQtxllFJ4BQby0L//bX/V8Zwcmo0eTTmZ+iSEKAXGkeprBZLtwpJwFw8PdM7O9m9bqGmSVAshbjsFizsqpcq6Sbclh6eRx8bG8sgjjxASEmJxLj4+ntjYWKZPn17oPSIjI2XUSQhhU8GiQS3GjydyxIgit7zRnJxoExNT+g0WQoh8Clv3mJ2RgT4nx+5tC5EOrBCihN1sITRrxR0jR4zAOyTErlo599JouMPJtlLKZqKckJBgdc/sgt5//31H31YIcY+QquNCiNtJSVfndfHw4HpKin0PEKXAoxDiFihuITRnDw+r/TQwFHfsvmIFEQMH2oxd+UfD9Tk5heaVdwu7ovj69evp3r073bt3R9M0Xn75ZdPnxj+dOnVi0KBBtGjR4la3+bb12Wef0bx5c7y9vQkODubxxx/n+PHjFtetWLGC2rVr4+7uTuPGjdm6dWsZtFaI209RVccb9e/P2JMnaT11Ko3696f11KmMPXmSiAEDpFN6C0hME8L2VHFH5e9kuvv6mrb3KmzP7Lu9E1raJKYJcXO8AgMLLe742dChpCYkWJ1SrvR6Us+dY2dsLB/178/O2FhSz51D6fWl1fwyYVfvNCsri9TUVFJTU1FKkZaWZvrc+EfTNAYNGsTSpUtvdZtvSzt27KBXr17Ur1+fLVu2sGjRIv788086depERr49Lzds2MDw4cPp168f27Zt48EHH6RXr178/PPPZdh6IW4PRVUdf+/++7l2/jxRMTH0XreOqOhou6csCcdITBPi5uSfJmmtk5mRnEzEwIHyALGUSEwT95piFXAsjJ3FHfcuWWKWQOcfDV9cowY/zJrFgfXr+WHWLBbXqEHcBx+g9HqcPTxKpp23GbumkQ8ePJjBgwcD0LZtW959913q1q17Sxt2p9mwYQOhoaGsXLnS9CS6YsWKtGvXjt9++41WrVoBEB0dzRNPPMHMmTMBw/czLi6OGTNm8OWXX5ZZ+4UoC0oplF5v2K4rN9fuquO9163jx1dfpfFTT8k+kLeIxDQhisdimmQhUy4f//hjanftKntmlwKJaeJO5+iSlpLeM7s4xR3BvtHwGu3b4xUYeNNtvB05/Nj0+++/t5poZ2VllUiD7lTZ2dl4e3ub/YL08fEBME2lOH78OEeOHOHxxx83e+0TTzzB9u3byczMLL0GC1GKlFKGQj+APjfXlGSnnjvHzpgY00iPI0WDHvr3vyXRvoUkpgnhuIIj2Bfi4grtZP5f796kJiRwPSXF5vZeomRITBN3upJa0lJcxSru6MBouLsddb/uRA4n22vXruXNN980fX7gwAFq1aqFp6cnbdq04eLFi4W+XinF5cuX77qA9fTTT3Pw4EHeeecdrly5wvHjx5k8eTJNmjShZcuWAKZ9xQs+rKhXrx5ZWVmcOHGi1NstxK1WMKn+bckSUMpyOtHMmcR98AFNhw+3WMNoJEWDSo/ENCHsZ3Wa5IYNBNSta3cnU7b3urUkpglxk5QyFXe0t5/m0Gi4s/NdOZXc4R7r/Pnz0eXr6L7wwgu4urqyaNEiEhISmDx5cqGvz87OpmLFinz77beOt/Y21qpVK7Zs2cLEiRPx9fUlPDycCxcusG3bNpycnABITk4GsKjY7ufnB8Dly5et3jszM5OrV6+a/RHiTmBtjY6LpydXTp+2OtLz88KFlAsOlqJBtwGJaULYz9o0SRcPD1w8Pe/pTubtRGKaEDcvLTHRseKOmmb/aHhODjn56ifcLRxOtk+ePEn9+vUBSEpKYteuXbz22muMHj2aGTNm8NVXXxX6eldXV6pUqUJu3pTSu8VPP/3EU089xfDhw/nuu+/YtGkTer2erl27mhXeKI65c+fi4+Nj+lO1atUSarUQJUspZepo6vP2YDRLqjWNhv368fuKFVZHeqTq+O1DYpoQNxS6J6yNaZLZGRlkp6ff053M24nENHG3KvFCaIXIychA0+mKLO5oql1x7RrodHaNhl9PSbnl7S8LDu+zrdPpTOuzv//+e1xcXGjbti0AwcHBXLp0qch7PP/887z++ut06tQJd3d3R5twWxozZgzt2rXjtddeMx3717/+RbVq1Vi7di3PPvus6cnolStXqFSpkuk645NUf39/q/eeNGkSL730kunzq1evSiAXtx2Vl1zvXbqUy8eP02PlSovOpz0jPQc2bMC3enXazZkjRYPKkMQ0ca+xVnzInj1hfapWtT5NUikObNxIk6FDi9xP+27tZN5OJKaJu1VJF0KzJf9DR02nwzskxGo/zaw/eOwYVVu25IFRo+i+YoXFrMb8o+FJhw/fsraXJYeT7caNG/POO+9QpUoV3njjDdq1a4ebmxsAp0+fpmLFikXe4/Tp0xw5coRq1arRpk0bgoKCzH55aZrG4sWLHW1amTp48CA9evQwO1alShUCAgI4lvcL2LgG6NChQ9SpU8d03aFDh3B1dSUsLMzqvd3c3EzfYyFuRwWr7bp4euK8bp1F59PekR6ds7OhSnneU1BbT0PFrSMxTdxrCnZYC3YY/cPDDYl43naDSikqNW7MuFOnULm5tBg/nsS//uJCXJzpnnsWLSJi4EAeXb6cz4cNu+c6mbcTiWlCFI+th46apnE+Lo5VrVoxZNcugps2tbr7woH16zm7ezc9V6+mRvv27F2yhOTjx/ELCyNy5EjDtHOdjpyMjMJnEd2hHO7Bzpkzh27duhEREYG3t7fZ2ustW7bQrFmzIu+xdetWU2D69ddfLc7ficl2aGgo+/btMzt26tQpkpKSqF69OgBhYWHUrl2bTZs2mQX8jRs30r59e1xdXUuzyUIUm1IKlZtreJqp13OtwHRxm0m1AyM9Ml28bElME3erorbPyV/szNp2XSPj4gioUwcS49E+Xgpnj6FVCadS7xE8+9tvbBk0iAMbNgA3lsb0XLOGsA4dbHYy3X19iYqOplwJjEqVCw4usXvdTSSmCeG4oh46Aqbijkopm7sv7F+3jqS//+bpH36wPhpuxyyiO5XDyXbLli1NI9Ph4eFmRSSGDh1KzZo1i7zH3VjNceTIkYwbN46xY8fy6KOPcunSJWbNmkXFihXNtpCIiYlhwIABhIeH07ZtWzZu3MiePXv44YcfyrD1QtivyOnimoaLh4fNpNrekZ67JcjeqSSmibtVYVMuXTw9C90Ttm7PnoZE+8u1aDOHQe6N89r782DacnqtWUPi339z+ehRsjMyOLh5Mw0HDKB2ly42l8Z4BwfTJibGansdTZ4Lu9e9TGKaEPZx8fQs8qFj9xUriBg40Kywo9LrC919IWHfPv43bx5R0dHM8fIyGw0vKqG/kxVrbqa3tzeRkZEWx7t06XLTDbpTjRkzBjc3N959911WrFiBt7c3Dz74IJs2baJChQqm65588knS09OZN28e8+bNo06dOmzZsoUHH3ywDFsvhH3MAm9uLp4VKuDs5sblY8cIioig+bhxNOrXD2dPT3IyMtC5uvLYRx+xqU8fU/C9EBfHp0OG0HP16kJHekTZkpgm7iVKKYIaNTKMquTmsjMmxmqHsd3s2YYR7QKJNgC5OWgb3oD2fRnx229ozs7oszLJyc7BxcMDTafj/B9/mE25tIckzyVDYpoQhTMbXbZW5DaPPieHz4YOpUb79ngFBgKGNdw6Jye7d19QStmd0N/pfUK7ku3XX3+dAQMGEBQUxOuvv17otZqm8eKLLxZ5z3PnzrFo0SJ+/PFHLl++jL+/P61atWLs2LFUrlzZvtbfRjRNY+TIkYwcObLIa4cOHcrQoUNLoVVClBzj9KA9ixfTbdkyU1KtcnNpN3s2PlWqoC6ew2n1XDh7DOcq4eh7DqNOt268fP48exYtMkuqNU2zWVxDlD2JaeJekX9U5crZs/Rctcp6h1Gnwz88HG1ZjGWiDfDwExC7Bi0pAba8B2ePoasSjkufEWj5Rn9kP+2yITFNCHP510fbU+Q2P31ODnuXLCEqOtr0en1urkO7LxQ2iyh/Qu8dEnJH9w3tSrbHjx/PQw89RFBQEOPHjy/0WnuS7QMHDtC6dWuys7Pp2LEj9913HxcuXGDJkiWsWLGCH374gQYNGtj/VQghSpxSylCkzMkJfd5WfWd++olhP/9sllRrjVvi23cUbPsA3YyhZp1Q3fvzUNOW49HlKaJiYgz3KpBUa1IETQhRinQpibQN88Q157rlqIqm0fXtt612GD39/dGcnOCslUS8VgTEroH/fgjWppdPXwGdB5boXtqyNlsIURwW66PtLHJbkHGU2hjXtLwtvuzafSFvy8SdsbFFJ/QxMYbYe4eyq3er1+ut/n9xjR8/nvDwcL7++mvTNgtg2FqhU6dOjB8/nm3btt30+wghiqfg+pmAunWJmj6der17o/13Hbr8ncnmHdHOn4YCiTZgmFY5cxiqWQd0gSGAJNVCiLKjlCKwVVuCjhmmi1uMqhRSxDH98mVUbi5aFSsjN0+Og4vnLBJtwPD5jKHwwI0plyVBppcLIQqjS0kkKtjw0ahg/67F+PF4VaxoX5HbAvKPUgOmGYv2bPHl4uFhfcvEApKPH0d3ByfaAGUyCf7HH39k6tSpZok2gJ+fH1OmTOHHH38si2YJIbixLntxjRr8MHs2hz/9lB2xseizsy3XKmoadOoHn66wPq0SDAn3R0tA3fyDOiGEKC6l15N67hw7Z8zkowEDDKMmVqZJ7lm0CO/KlXl0+XLzh4N6PZePH0f1HgFO+Y7bGQf5aAke+YrKCiHEraS7kkSbEMNHKNC/mzWLAxs2EFC3rmUczPfQ0dYAidkodT6aTkfEwIGMPXmS1lOn0qh/f1pPncrYkyeJGDDAtMVXdkYG+pwc+xL6vNmVdyq7hpgcrcDYunXrwt/U2ZnMzEyr5zIzM3G6w59gCHGnsrUuOyc93bCn4ifvmXcm3TzA3dP6tMr8zh0Hnfy7FkKUDbumSebtpHBh/37Tdl012rZl3/LlXD17lvJVquDh7w9+fqhpy288eHQgDmrOzrSdNUumfgshSpW1bblcPDxw8fS0Orps784xSYcPW7xW0+mKrsmjFNdTUuyadn5PFEhr06aNaQ80wOybZW0ftNwinkB06NCBKVOmcN9991G7dm3T8aNHjzJt2jQ6duxo9xcghLg5+ddmK73e6rps5+p1Yfh0y85kZgZcTwdr0yrzqxwG+lxJuIUQJcrWntn5j5erVMm8k6lpoGmmaZIWOymkp7N/40a2T5rEQxMn0iY6Gs3JCZWbCzqdoT/U5SlUsw6GWTvxJyAr0+442HrKlFv8XRFCiDzuhiJo1rblKmy6+IW4uBsPHdu1Y9+yZVZ3jjFOIS9I0zTOx8UVuvtCWmIiAXXqFDnt/E4ujgZ2Jtu///676f8vXrzI0KFDadu2LX379iUoKIgLFy6wadMmduzYwYoVK4q83+uvv05UVBT169enYcOGBAUFcfHiRfbv30+1atWKrHguhCgZprU7y5Zx7cIFHl261Pq6bE2Dp8ZbdiaVgq83Qo+h8P4861MonZyhz0jQ7uwnk0KI24+tPbPzH/eqWJG9S5cSWL++WVKtz87iocmTiYqejrpgvpNC435j0AYPNiydWRZjKAZZJRz6jIAAw96vKjAE9ayhcI/S66HPCEMxNImDQoibYOshorU12LYopajQ7THoNYAK2VnWt+UqpEYFwIENG7h05AhP//DDjVHq7Cw0Zxe7E+DCdl/IycgwTTuv0b79XbsVrF1fQePGjU1/li5dyhNPPMHq1at59NFHadasGY8++ihr1qyhX79+vPvuu0Xer1q1auzfv5/XX3+d2rVro9frqV27NgsXLiQuLo6qVave9BcmhCic0us58sUXHN/+La0mTuTRpUtRej3apQTLPWTzJ9VOBZ7RrV8EFSvDtOWW55ycIXolBAQbEnYhhCgFuqxE2vbxRJdzGZ2TE54VK/Lsb7/R+PG+OLsYZtjoNHB2c0P76b849a4FK2bBV+vhh8/QlfeFL9eida9x4/iKWfBoDdj2Aej1hpGbP/9kfmAgSYcPowWEGKqOSxwUQhQhNSGBHTExpCYkWJwzPiy8VuBcwTXYpuMFknCz+hT9+7Nz5iyb66Nt1qjAMLrcfNw4XDw8SNn5FTzkxaWtm0p8pDn/tPPe69YRFR1t2O7rLki0wc6R7fy++uorPv74Y6vnOnXqRO/eve26T7ly5RgzZgxjxoxxtAlCiJuklCIjOZlajzySN118Hlw8izbpXfh4mfWRmfWLoMtAQ1KdPxk/GgexQyBmNTTrAB8tMazRrhxmGMkJCIa7JGAKIW5/SikCI9sStDkNfXYW+txcmj33HGig5VyCgyvg6jEoH45WbwS0eAQ69IWvNhhukFdZ3OKhI5hVFidvh4X0pCTDVEqdDjoPNJyTOCiEwPYota1ZOcVhTMIvK8ttvIz8wsJoOny4xQh2/uniYR06sHfpUlONCmObNZ2O3KspN9XGotgz7fxO5XCyXa5cObZv3251XfU333xDuXLlSqRhQohbR+n1ePj4wP++RJd6GYZMNKzrUbnQrD388Jkhic7vaBxED4LYtdaTak0zdD6fjTaM5OTmGNZoy0iOEOIm2TutUun16HNzTVvFGPZm1Qz/HVkLPwwDlS+B/mMetF5u2CP7+EH4Z7+hsviquUVWFmdEjOU5nc4QB4dHg7Mz5OSAk8RBIe52pZFUF8WjZl3L7Qzz/LxwIY0GDLixPjo3FxcPD7IzMji4eTORI0cS2qqV1RoVKEVA3pT0gOwsw2zHWxTTCpt2fqdyONl+/vnnmT59OhcuXKBnz55UrFiRixcvsmXLFtauXUtsbKzV15UvX57vv/+eyMhIvL29C52CoGkaV65ccbRpQohCKKVA6dF0Tug0UDk5aA91hmvnYP9c00gPdYfD2t8MibVxpMfoqw3Q+CHoO8rQ0dQ5GQqfabobgdc4hbLgVEohhCgmWx1W3ZUk2oR5mkZ00ECXeQHt76Vw9Rha+XDUfRPRMpMtE20wfP7DMKjUBp4cC6++4NgOC9b6MpoGKYnw6Uro8YxhVFsIcVcrtaQ6r+CZBU3DLaQqP8+YabWyt3EEu9fatdTr0wdnF2d0rm7oszLR6xVOrq5oSfHw0dIbNSr6jwNvP0iKR8t/PK92hczWsY/DveGpU6fi6+vLvHnzWL16talKeXBwMIsWLeKFF16w+rqXX36Z4LwfvpdffvmOrywnxJ1EKT2kxZs6oAS1RGswCo5+ADuHFj7Sk3+E28kZ2vTMq+abF2SlwrgQogzkLwDkm5sLGnB0LdrO/Em1htZkEvy91DLRNt0oB44sh06TDEtkHNlhIW+XFgsBwTBUqo4LIUpGwYJnFrtB+VRA5+JqdRuv/DTAJS3ZlDzrGrdE6zsKbdsHhiUyxhk9tSIMu9B8udZ86SAYCuJOXwGdB1K+alWioqNlO8NCFGvoafTo0Tz33HOcPXuWhIQEgoODqVKlCrpCnnBER0cDhh+WMWPG4OXlhZubW/FaLYSwm1J6yw5olY5w7bRlog2WIz0zhhqOS5EfIcRtwrSTwtKlXD5+nN5r1xoeKO4sMHrt7AHOnoaHjIVJPW4YMXJ1lx0WhBBW2ZoqXtKsFjwzxrtjx/APDze0ISQENM2UhOtzc82LoGmaaap4UKNG9FqzBv67zrweRfOOaOdPmyfaYKpdYZFog1ntCq/AENrExNyy78XdoNjzPHU6HdWqVaNatWoOvS47O5uKFSvy6aef0rVr1+K+vRDCDkopKx1QDcL7we9zix7p6TwVftkuRX6EEGXK2Pl0zbluXgAoNxfPwEA0lPXR65wMyEk3LJEpjHeYYUQ7M8N2MUiQh45C3MNKa6q4zYJn+dZZJ584Qc/Vq7mWt33rlTNnaP7CC0SOGMHRL7/kgdGjTdsc5qSnc+XsWcNWhgW3dbVWo8LW8fzy167QZIZjYUp9UaWrqytVqlQhNze3tN9aiLueUgqVm2vYCzEnB02nGaaOF3ekx8UNZq2zXJcthBClyNj5zAgKIjU+nj2LF9Nt2TJTZxKwEdMUHNsIdYcalshYe8CoOUP9kXDib3ikv+HhYloqdHlKdlgQQtwS9uyZbSx4VjDe5WRkoHN15dSuXVw5dZJWEyfeOO7mxvBffkF//gxOq+fC2WM4V6mJ/7PT0ZbFmifPbh7Wa1TYOl6QsXaFKFSZVDB6/vnnef311+nUqRPu7u5l0QQh7jpKryc7IwNnV2fAOa8YmqtlB9SRkR6Va3hiKcFUCFEKbFYdz02GNoG4hVTl+JZPGPbzz3nbFs6F+BMQu9p2TNu/CGoNhKjlUHCaueYMbVaCZzDUCjI8XMxfQVwqiwtxxyut6d+OMD5ATCywZ7ZJXsEzi3h39hjOVcJR/cdRvXVr1IUa6IzHG7dE9R0J/12HU/5p4e6eaKNmWCbPmRnWa1TYOl6QsXaF9BELVSbJ9unTpzly5AjVqlWjTZs2BAUFmS3y1zSNxYsXl0XThLgjKb0eULjoL6H9sRyunUFXrhoqchqaRQfUgZEeZPRGCFF6rE3TVErh32sU9B2NTp9L/T59YNsH6GYOM3T03DwMhXzqjbAe0y7HwY4hqLZr0Cp3gINLDDN3vMMMcc4z2DBz558/YFgrWL4L6ubt8app8E+c5XEhxB2jNLffKjFuHuhcXKnXuzfaf9cZ4l2+4mXa8OmoL9eaH2/eEe38Gcv117aSZ6Ws16iwdTw/qV1htzL5Dm3duhU3Nze8vLz49ddf2bp1K59//rnZHyGEfZRShvKSp7+E+O9QTSZC21WoJv+BqydQDZ4zJM/57V8EXpUNIz0Fz+Uf6ZERHCFEKbJWGIiMdDR9vk5g5nW0n7bBlGWw6xr8mAbB1cArBKJWWI1pqkonNADPEGg6HdqtM3z0DDHvLF63scerjePlgoOlEq8Qd6jUhAR2xMSQmpBg1/FSlZlh2Ou64DprMBUvs7r++tMVlslx/uS54Las6xdBxcqGGhX5z9k6DlK7wkElMrKdnp5OfHw84eHhdm3pdeLEiZJ4WyEEGIJoVjJUe4SszHPEn5lLRsYxPDzCCak0FFf3IFS37Whb298Y8TGO9LRZDZU7oNka6RFCiFLkfPkobfp4ctVDb5qxo2Unwl8rDEtiyoejNRwLsz+E1DOwf67pOA3GGKaLV25vNnqt6o9Eyx/Tju4vsZFq7+BgqcQrxB3K1oh3WY+E63KT4UFPQKH75D37ipcVtc7aVuHHo3EQOwRiVlvWqJDaFSXC4WR7wYIFpKWlmbby2rVrF927d+fq1avUqFGDr776ivDwIub4CyFKjIZCufpw4cI6Dh8Zhso3hfL06XnUqb2coEpPoQaeRTvwllkHFE1D8wyByGjQOYM+x7BGW55UCiFKmVIKvx7Doe9ovPV60EA78oFhK0KVayjuWL4WRE6Ho2st11//MQ86fgTVukFkDOicUPpcNGvFHW2NYAshRDHYKnhm83huMkTmfcwnfxzUwDx51jTwqWA9qS5qnfXROIgeBDPWWk+e82pUqGHT0FxcUdlZaM4uhR8XdnH4kcTy5cupUqWK6fOXXnqJBg0a8OmnnxIQEMDkyZPtuk9SUhJTpkyhQ4cONGjQgA4dOjB16lQSE21X5RNCGCilUMpQ0V9pGllZCRaJtuG6HA4fGUZW5jlwr4iKjIF26wwfPUNudEJ1ec/ddM4SQIUQpU7p9YYdFPJNV9TSzsGBN1Ctl6GeuQbPpKF6/4LKuQ7737Bcm61y4Js+kHbOsLxmTSApm+dKTBNC3HLGgme6AgXPbB7XpxiSbX2K6ZjS68lOTweV93luriF5rhUB01cals18m2ioVfHUeMNx04sLmSpu9O1muHLJlDwza53hY2CIYZRa00jaugke8jJ8NMZOW8eFXRxOts+cOUPNmjUBOHfuHHv37mXu3Ll069aNiRMn8sMPPxR5jz179lCrVi3eeustfHx8iIqKwsfHhzfffJOaNWuyZ88ex78SIe4RSunJyjzHyZMxHDw4AKWyiU9YZpFo37g+h/iEZYAeLa9ipKZzsmvJhxBClLSC6yFV3ii2LvMC2t5Y+P4ZNJUNF3ajev1MVrW2nDwzl4MH+3Py1Eyy9MmoXj9D+BOWN1c5cGiZoY7F9STcQq2M8gQEGyqMBwTf3HEhhCiCrRHsbF06p6tUI1tnmGWj9HpQCmf06Iw5Lgr1zBT44DeIamtYNrO9P+yNgSoVYe1v8PAThuTX3RM2LC56nbVvYNHJs4O1K0ThHJ5G7uHhwdWrVwHYvn075cqVo0WLFgD4+vpy5cqVIu/x/PPP06BBA7788kvKly9vOn7lyhU6d+7M6NGj+fXXXx1t2h3h0KFDvPDCC/z00094e3szaNAgZs2ahaura1k3TdwBlNJz4cJaDh82jGLrdJ7odOvIyCh8L8SMjONommzNIG4NiWvCEdf3f0/1I7Fc31+bcpWeNCTGp7ZC5mVUk4lozp6GmTthfbhw/gPby2ParkFLPmioQZFf6nE0nTPcPwvPum0sGxAQDCNibv64uGtJTLvzlMb2XrmZh4iabfgI9tV7sDqCrRSBvWei6eag9LmGmThgeOiYcwkO5tWoCGqJ1mAU6ugHaDuHWl82M/MDQxLt6mFIhuN+gs4D7VtnLclzqXA42W7WrBnz5s1Dp9Mxf/58OnfujJOToRN/7NgxKleuXOQ9/vrrLzZt2mSWaAP4+PgwceJE+vXr52iz7gjJycm0a9eOWrVq8fHHH3Pu3Dleeukl0tPTeeutt8q6eeI2ZAjAejTNyTCinRVvSrQB9PoMcnPT8fAovE6Ch0cYSuVKwi1KnMQ14SjnlONU7+BJcsrxfAUeO5sVeKxadTwuLhULXR7j59sG10ZjDZ3Q/LzDDGu8m04pxa9K3C0kppWipAT4aCn0GXHTM0dKpahZyp/QIu8j/e1/nXuA6X+V0kNORt7yPSdDAp2bC87u+WpU5MW8Kh3h2mnLRBsgrC9U6wzpCfD30huFIuuNAN3tvc76XtvFoVgF0rp168ajjz5KaGgos2fPNp3buHGjaZS7MDVr1iQlJcXquStXrhAWFuZos+4IS5Ys4erVq2zZsgV/f38AcnJyeO6555g8eTIhISFl3EJxOzFMF48nPmEpGRnHqVt3JfHxSwt0PBUXL24kOHgop0/PszqVXNOcCQmRPbPFrSFxTdhkrSOtFL69J4DzVHxzsmwUeNSoU2c5p0/PLXx5zPnlVA+fBPmTbc3ZsKOCxDtRTBLTSlFSArwXC1Hd74hlGlpGKnjkfSwgW0vm9GPVcNbyTRdXCt++k0A3FV99riHRRpGVk0j8+RU3do4JHo6rcxU4902+pFqD8H7w+1zLRNs/AtqugX8+tF4oMmoF1BpI8g/f4B/9OEkvLyOw14AS/34U1722i4PDv43q16/P8ePHSUxM5MSJE6b12wCvvfYaCxYsKPIe8+fPJzo6mp07d5od37FjBzExMXbd4060bds2OnToYAreAI8//jh6vZ6vv/66DFsmbjeG6eIf8POeGpw6NYukpE/Q6dysThc/e3YRrq6VqVNnOVqB/WU1zZk6dVbi6hosa7TFLSFxTVw+8wc73m/D5TN/mJ84FwcH5hs+Aig9KifdMG0cQFMoTWeYsZNvBFun88DJydO+5THOnuDkkXc/Z2izMm/rQol3ongkpt07dFmJRHUzfLSPhk7nyY0gZqCUIrjHKKr95xTBPUYZZiUa450pETZMFb9w/gN+/qUWp07N4uLF9Zw6NYuf94Rz4cJaVJtVhkQaDLsvOHsaRqwLajQO0s5ZJtpg+HznUEhPwCO8jkwVvw0Ue5/tChUqoJQiISGBihUr4uzsTKNGjex67YQJE7hy5Qrt2rXDx8eHwMBAEhMTuXLlCn5+fvznP//hP//5DwCapvHnn38Wer9Lly7xyy+/kJCQQEZGBhUqVKBOnTrcd999t1WCcejQIZ555hmzY76+vgQHB3Po0KEyapW4HVifLj7UruniaWlxHDo0iLp11+Dr246EhGVkZBzHwyOMkJCReYm2jPKIW0Pimrhy/i90Yb9y5fxf+Fe9D8iLaQ3bor2ZhtJng9URnZpUrz6d+IT3zEawHVoek5uJVqOXYep4/ZF5ibbEO1F8EtNuD7bWYJfk2mzny0dp8yhcunwUeLjQa5VSBHd/ncrOb6PPyUQphaZpBWYhGkaqq1QZh7OzH1k5ScSfX27f0pjDw/Dzybc0JicDctINU8PNFDLibbphDhxcgnuTaTa/Hs+AALOPRnqfAHbEQz2fAGsvE8VQrGT7q6++Ijo6mt9//53c3Fx++eUXmjZtyrPPPktUVBQDBhQ+VSEyMvKmk+ArV66wevVqVq9ezR9//HGjuEAeTdMoV64cvXr1Yvjw4bRs2fKm3q8kJCcn4+vra3Hcz8+Py5cv23xdZmYmmZmZps+NBersdeS84fqwAE+cnQ1/5RevXCclIwtvdxeCfT0srq3m64m7u+HapGvXuXwtCw9XHVX9yxXr2mMXr5Gr1xPi60m5vGtT0q5zMTULV2cd1QOKd+3JpGtk5eip6O2Kr5c7ANeu5xCfku7QtU46HeEVb1x75vI1MrL0+JdzJaCc49dev57D6RTD08TalW7UJkhIySD1eja+Hq5U9DFcq5SezMx4Em5iuvjFixtITz/Cfff9QPXqMXlJey5XM3JJuJROFV/3Yv3dl8TPibW/z5L4OTH+fd7sz0nBv8+b/Tmx9Xd/typOXJOYdvfEtPTMHKo1fYwaTgPQ52bl/S5WZGXFEx9v6Hz6+LQkJGSUYap4voeIOp0nNWrMsDKC7cDyGM0J2q1Dn5PF9VwdnvkSbYlpjl8rMa1sYhrcm3EtITkTb1c/KuX7Phiv5Y/fYVks6a0fRPMLNP28euZbm53i5m36eTW6lp3DkfNXLX62U8sFcDwlG5dr100/29lXU0jKKc+5pGtUyNeGxHO7abu4IpfP7Sa4adMC/TRDQl258mhcXAK5cOEDs7jm5RVBaOh0s2K2xVsao+DYRqg71DA13Pi6wka880s9jubsylnvapB747Dp775SLbyGR+NVL8Ls79O7Rn14NhrPehFmPyfu+W7tyN/9lfIVOZ6Sjff1nCKvPZOaQ7JfZa5ez8H4GOVuiGsOJ9vr169n4MCBPP744wwfPpzhw4ebzoWHh7Nq1aoik+3333/f4YbmN2fOHBYsWICfnx+PPfYY0dHRNG7cmICAANzc3EhJSeHkyZP89ttvbNu2jfbt2/PQQw/xxhtvUL9+/Zt677Iwd+5cYmNji/36Tot2AbBiUCTt61fKO7aTlIwcXHQaR+d0sbg2tns9BrcwrJ3vvGgXideycNJpHLNy7XNtwvj3I/UA6PX2T5xJzkDT4MTcrqZr279uWDLQ7/4qvNK3MQCPLd3D0YvX0IAT8yyv7VivIu8NfgCAIe/v5fczKQCczHdtmwWGa5vX8GPjCEO9gOfW7eWHo0k2r20YUp6tY1oBMOnjOD6PS7C4tvWrO1FAjQqefD+hLQDzv/6b1T+dtrg2av5O9Aoq+bjx86QOAKzcfZJXvzpscW2rV78nR6/w93Jh37ROpunixkBdWHXxs2cXERQ0kDp1lpsVSQNDx7NKlbE4OXlgnN50KS2b+2dtB+D/Rv6LZtUr5H1/d5CamYurk44jszub7mH8+3z9sQh6R1YF4JE3fuByWjbOOo1/rPzd//vhOjzX1rCUpNubP3L+SiY6DY5b+bsf3KIasd0Ns18ee3c3Jy6l2/y7fzQimDf7Gyp9DlzxKwfir1p8L41/n61rBbBmaHMARnywjz0nkm1e26SqL1ueNzx4e3Hj73zz90WLa9suMPzd16pYjm9eigJg5ta/2PjbWYtrW8/fiVJQ1c+DXf9pB8AbO47yzo7jFteKGySm3R0xTSk9KjeB0/HLCiTV5p1PP7+OZGaeNjsGhY9gFxXvjMtjrh/4ihGfHuSHa3UlpklMKzM3G9PgXo1rl9FareZEvu+DKa55XGdrCCReSTKLa7sfvzGanT+ubWiVRVQ3WPVnAh9uSbRow+ZRK9j8dRKV9vxoimufXPRmXvyHgOJk3nVKKeo8Mhw3l+fJys626KcZubuH4+fXzuJ4lSrjyMo6Zxa3irU0JjcD9i+CWgMhavmNKeM2R7wL8A4jMyubh5q/w9iEVF7MO2we12JMl5vFtbz11N3nf2+Ka780x+Jae+LaxyNX8PHXSbQ+sbfIuPb4tkR4dilHf0zmi7wSYHdDXHN4rtXMmTMZN24c69ev5+mnnzY716BBAw4cOFBSbbNpx44dfPzxxxw7dox58+bRvXt3QkND8fLywtnZmYCAAO6//35GjhzJp59+SkJCAlFRUezYseOWt60wfn5+VrdGS05ONlsbVNCkSZO4cuWK6c+ZM2duZTPFLaRp4OHihIYhoBdnunjFiv1p3vw4oaFTqVixP6GhU/nXv04SFDQQFLfV0glx9ytOXJOYduczdkB/+zXMtPZQp/O0klRrVKzYj4SEFVZGdG6MYBesN5E/3v3rXyfN4t39D5ygYtAANE2HR3AQmdnZpfI1i3uDxLQ7ky47iTaPgpu65tDrPFycTCUeDMv4zhF/diYHD/Yn8/p+MjPjLRJqQ1x7nIQCS2BsxTuHlsbkpBsSbTBsa7hjCNQcCP1PQpOpUPNJSD6EqjfCUKfCmrxCkZ/+meDQ96Iwtqadi6JpquD86yK4u7vzxRdf0L59e3Jzc3FxceG3336jadOmfP/993Tp0oWMjIxb1d47WuvWralQoQJbtmwxHTOuU1+5cqXFwwtbrl69io+PD1euXLHYPs2ae3Fq0u045VIphVK56HTO6PU5aJrGyZMxnDo1y+zvq06dlfj5tWXPnlpWpxuVK9eU++7biZOTh2m6OLl60DmRka3H083wPcvJyeF4UvpN/d3LlMvbe2rS7aAk4prEtDsrptUK8iYr6xw//1zDLKlu1eoap0/PNYtpOp0nrVuncfBgfy5eXG/xd+nlFUFk5G9cvPih1RHsBg22UKFCF5Q+B52TK7m5WVzLBC9XneHvPj2B5H1LSao6gHI+VSSmSUy7aWUR0+DejGsJv/+K98tdqbTyW6jb1Oxa3a7PqfnKQBKnfIBH5343ppGfPcKyyEie3buXnOq1TT+v6vePCDz6LKdqLCWzXnezn+2Efft4Lephen26lTrNGht+tpVC5WahObuhz8lGc3IqMIJtPaaB7bhWWLwrqm+nac78618ncdX5ov0xD1KPg3cYqv5INM9gQLNor3b0A8OU8/z3MxaKrDmA/V98ie+cZ9BeWkiVvgMc/rs3u1afatpd4pje266/+4R9+5jftjN9tnxG4xaRRf6c/LLzFz7s1ZtRWz+mTotmpp+TOz2uOTyNvFKlShw6dIj27dtbnIuLiyM0NLREGnY36ty5M3PmzCElJcW0HmjTpk3odDo6dep0y97X2g9RRR9305rhoq4NKOdu+uEs7rX5f+iNfL3cTf9Aintt/n+kRuXcna22zZFr8weg4lzrXuBaY9Ez4xpGT8+6VK8+/Sami3saCltqgB5wckbTNDzdbkxWcXa23l5H/u5L4ufE2t9nSfycWPv7vB1+Tgr+3d/tyiKuSUxz/NqSjGlK5VrUlbA1TbKoER3jCHa9emvx8+tAfPwSqwUeT+7bxJmMZ6nqsYwaD+RbquYZjN9DMfhZubfENMevlZgmfbWCHIlrTleTic8rXgY3zlcnFT7N2wbQyzANvJy7M7X83CAr2ewexp/XxHwZSv6f14SzN46bfl6VQrV4DFoNoFpuFprOfE9pXUoi3byTqElKXqKth/R4tIOG/am1iPFkeVcsUFPC9tRvW3GtJJbGaGioJlPRnN1QOZloTq6mr+Xy1+9R4fx/SK70ChW6jDZMMa/cHg4uMSXn+QtFVsq+QmBWIolON9pR/LhWDkbEGK61uNL2z4nP1YuE+bqYEu3Crq3q7Yxf8jnK57v2bohrDifb/fv3JyYmhrp169KmTRvAMG31wIEDvPrqq4waNaqk21ioGTNm2Dyn0+nw8fHhvvvuo1WrVqXYKutGjhzJm2++Sc+ePZk8eTLnzp1jwoQJjBw5UvZtvItZX++jUbXqeMeri1cahqt7lbxbGIKv5uRkcQ8hSovEtXvEmT/gy3HQ9Q20KhEOJNVFFztLTNxMzZqLcHUNIbTqVHTObujzOpn5l8Xo9bKFjbj1JKYV37V8xcvMKoXfyv20CybO5cOh/gjwDDHtTGCsOp6Se9lwvdmIsAZRK4g/M8eBqd+24prteJe/b1fYg0WAlI/n43dtLinlJuH3+NQbbfL2g7Ppho9g+Po8Q1BNp6E5uRpGvgs8aBBlz+FkOyYmhr/++ouOHTtSoYKh4FLnzp1JTEykW7duTJw4scQbWZiFCxeSlZVlmrru7u7O9evXAfDw8CA7O5vc3FyaNm3Kl19+SWBgYKm2Lz8/Pz+2b9/OCy+8QM+ePfH29mbYsGHMnj27zNokbi1r67LzzthfXTw0Gk3njMrNhNxs41aNaDoJpqLsSVy7R5z/Czz+goT9qMoNHEqq7RnRcXEJRNM0Lv6wg8PDe1PnvY8JandjKx6fSg1gexQ+7Rvc6q9U3OMkphWtJLffcpQuJZGoYHDNuW4lcc7zxzyIWmEY+dV06PQp0NwTj5r1ID3e/HpnDzRnD4d3RbgR11aY9fEKi3eJiZupWHEAFSp0IbTaNHROrlYfLAKGImj20DSSftpE4NFnSaq1jMBWN2b+yDrr24PDybarqyuffvop33//Pd988w1JSUn4+/vToUMHOnTo4HADzpw5w5kzZ2jcuDFeXl4Ov/67776jX79+REdH06NHD8qVK8e1a9fYsmULM2bMYM2aNaSnpzNw4EAmTJhw05XQb1a9evX49ttvy7QNohSkJ8ChldBkopVtvAzsmy7ubkqulR5ysjVcnDU0newjK24fEtfuIukJcHBp3shQXidaKVTkE2gPDEDpcwEdIcEj7E6qDSM6Q6hXb3WRIzqe9SLQPzUBz7ztaIz8q95Hm6d3lMZ3QAiJaUWwOYJdCnRXkmgTAteDgiwTZyOVYzhe9WFwr4hv7wngPBVXfS7sjTG/Puc6SuU6PPU7Pf0gV6/+TFDQQPx82hB//j1TXMvNSSEo6KlC4138py9yLOB9wpMGU7n3O2bvq9f5wl7Qd/S163uidwlgx5Z06k0xT6q96kVAvu29Slu54GCioqMpV8o/I7cbh5Pt06dPExwcTNu2bWnbtq3ZuZycHOLj46lWrVqR91m2bBmxsbGcP38egF9//ZWmTZvSq1cv2rRpw9ixY+1qz/PPP8/LL79stt1YuXLleOqpp0hLS2PcuHHs2bOHqVOnFjrlXIgSoxS4B0LTKWhgc6uHQtcqVhqGq1sIZF4BV1/DCzQnXDytPP0UQoiSci4O9sWCz4NQK9jwlC8tHu1v4xTNmhA5HVfXStSpvZzDR+xMqisNA8DVNZjq1WNuFHdEZxbTvIODaZO37YwQ4i7i7lly99I03CpXhd9nWibaRmF9wa0CpJ8zTDG/dhat7SrL/amd3QEdIZWGOTb1u9IwXN0qA+DqXIHq1aaiObkZZiHqc9AAV9eQQuKdsrk0Ru/kZ0i2HzGvRqF3CWDH51Avwjyp1rsGsnMr1IktMHs3INi0zrosSDw3cHh4rEaNGvz+++9Wz/3555/UqFGjyHssWrSIF154gUGDBvHVV1+RvyB6mzZt2LRpk93t+f33320WZatevTr79+8HoGHDhla3chCiRCk9Kv0c7I2F75+x+bTU6OLFDcTHL8XVpSLVq06ifv11VK86CdfT38GZr8DVB6XX88Ps2aQlJkqiLYS4tVKSDB81j7wpmmthfQ34fRYcWw/7XwOdM9rBdwkK6s+/mv1jti1XeNgcQMPVyZ/q1aYaYlq1qbg6BwAaZ3/eg8rJhUmhXP7oXYlpQtztlELVbAQ/phk+FtwEqThJuE8FNGdXy8TZyD8C2q6Bf9bBh3nx6+hq6/tT52Sg5V7H1a0ydWovt9iGMDFxM5cv/xdXl0pUrzrZvJ92ehuAYW9s45el8j7XDIl14kdTOfV5IIkfTTaLd06qMqH7DR/tZUyq9a5ltyRWOM7hZLuwncIyMzNxc3Mr8h5vvvkm06ZNY+7cuRaj43Xq1OHw4cN2tyc0NJTly5dbPbds2TJTIn7p0iUCZM2CuJWUHnX0AzRTYH8flJ6Q4OEWwdtI05wJCOgJuVlov8+DHc+g/T4XQjqgKj9MRsoVNCcnWk+ZUupTtYQQ9yhnT6h8H6TFw85hBaZcZhg6rBkX0T6+H9fT280fFJ76Fu3bfmjJB2/sAas5c/nEOT56sj8+1aqRee40fHPaMHojhLh76fWQeA7tvRkwpb/hY+I5w3GloGYE/Jhm+GjPTsRKEdDtMfg20bCkpWDibNRoHKSdKxC/FBzbCHWHFtifWsGxDWiZyVYfIP6r+TEqVOgKWVcM/TNjP61KJwjtalgCo2lc/uQ9eMHL8DF/Uk1lQrcm4URVsyY66apTY7Xho8W3zSeAHfGGj+LOZ9c08kOHDnHw4EHT5zt27ODs2bNm11y/fp3169cTFhZW5P3OnTtHixYtrJ5zcXHh2jX7N6SfO3cujz/+OHXq1KFbt24EBgaSmJjI1q1bOX78uGmUfPv27bRu3dru+wrhEKVQ6fFoZmuHFNrpL3ANfdRiuiUYCwOtMG31kNNwIs4enuRkpHNg40Y8AgKp3aWLjPwIIUpeUoJpz1RTdWClUE0eM63N1vbOtzJFM1+H9Y95hpi3c5ihyJCxoI/mjHpwEZf/OcbKli1JT0pC5+xM95Ur8Q4O5vJvP7MnHupJR1KIu5Kzh4chod72AcwYCrn54kj8CYhZDUnxhhh09hhUCc+LRSFgqyaNXg9J8Wh5r9GeGg/1RhiKoZnFKQ3C+8Hvcy3j1/5FhqJpUcvNE/G849rpbbhmXqJ6+CQ0Z09UTroh3pULg5BWqMhoNJ2TIdHXzJfA6J38YHc6+nYFpn7bmBJeGL1vIDsToI6vjGDfDexKtjdu3EhsbCxg2ObLVsVxX19fuwqQhYaG8ssvv9CuXTuLc3v27KF27dr2NAuAXr168csvvzB37ly2bNlCQkICwcHBPPDAA2zcuJH77rsPgLffftvuewrhKKX0hjVBBQP7b9Fo1boRVGkgfr5tiD+/3GIbL00plNKza+48rp49S/nKlYkcORLv4GAphCaEKFKxKgMb12b/60FDsp1/+xxbaxuNrHVY8yfaUSvAK5j4ff9HeKdO+IWFmcU016o14NloiyJoQoi7g1dgoCGZLpho14qA6FWGJHzmMPNz78+D6Sug80CzhNupvK/1xP34X/DBXkPV8QLVxXH2tB6/LsfB94MMU8xD2sLf793YnzrzCoR2Q0tPgN/nQdpZNK/KqHojwSuYrLR0cpLi+DP+SULPd7UoalaWpBDZ7c2uZHvcuHE8/fTTKKUICwvj448/pkmTJmbXuLq6UqlSJbtG4YYPH05MTAyBgYH07t0bgOzsbL744gvmz5/v8PYKTZo04f/+7/8ceo0QJUnTORUS2J9Ca7vGsoBGThZarh6Vlgrl/YiKjkbn5IQ+NxdNp5MRbSGEXYpVGTgrCSIBpxzr+862etv2FE1Th3UtqnIHtINLTB1WY8dUn51Dg759afTEE+izs9CcXUwxTYrmCHH7K/b2XpqGh6+vYV/t3AIDEE+Og4vnLBNtMHw+Yyg80B4Cb+xn7lmzrvXE3ajmAAiKgiPL8+JQOOhzbMevYxsg+SBErYTIGNA5wfV0+HoDHD8IgyeajWBf/ucYqQm7CG3VipRj35PldNr+7wU3poQXnMlj63hxSEy9vdk1bObj40NoaCjVq1fnxIkTdOnShdDQULM/wcHBdicH48eP55lnnuHZZ5817XvdsmVLevTowVNPPcVzzz1XrC/mzJkz/PTTT6SlpRXr9UI4RClUTl7gL2zt0LEN8PH9aCmHTWu3texctK83o3Z/hebti6Zp6JycANA5OUmiLYS49Zw9Iaiule1zbK1tzOf4ZlTmJXKdA1CRMdBuHSoyhsvxaZz6YRc6Z2eS9/3CD+FeJO76XmKaEHcY40O8awkJDr3OxcMDzdnZMD08P02DTv3g0xXWk2YwHP9oieEBIICHF24hVQ3Tza0l7hfOwqBmsHM7NJoE7dZBxETQnKDucNvxK/kguAbA1tXwkJfhz4yhsH4xKjuT87//wdaRI9kRHYOLlxehrVoZBkGSrxJ6CVz03ha3tLXO2jglXF9gSrit4/eyu3WE3uGtv/JX/k5PT+f69esW1/j7+xd5nzfeeINx48bxzTffcOnSJfz9/Wnfvj21atVytEmmbcQSEhLQNK3Y24gJYTe9HpWZYfiFgrPhl0i9Z62sHcqTfBA8K8HhP+D/3oaKlVF9RqIFBNtenySEELeCUtDkMXhggOFBYcF9Z8H22ka4MVXcPZCsy8nseeMN0i5cwCswkMiRI00d0yxnd74/nk4t6UwKcc/IzshA5eSgVSkwAOHmYag8XjAJLyg3BzSdoRBarwFoYDtxXzUXDu0zJMozhxneIzPDUHTNMwRaL4cfLOMXUSvAKwTWLzaMagM4OaOmrYCAYIL8g+i2ZAn67Ew05xtbrrrovamRAsm+VpLtElxnbSvpvFuTUaO7dYTe4WRbKcWsWbNYunQpCTaeduXm5tp1r7CwMEaMGOFoE8wsWrSI//znP7z00ku0b9+eTp06mc4ZtxGTZFuUKL0ehULLSoQDKwzTx4NaQoNRlmuH4EZg96iEql0JLXol5OYYpp7LaI8Q4haymAqq1xs6o855v/4LXQJjfW2jcar42d0/U+XBB4maOhWdi4vFdPG7vWMohLBCKTJSUvDsM8KwDts4Ip2ZYUhsCybh+T38BIyaaahg/tFSOHccpq+0fI21xF2pG4nzVxugVTcI7w+V2uSbYh5mGPEuVwV1NQWtdXcIbwiVw8jtMQxdUBUAUn75mtT3HsPzyfcI7NTf9BY5vmGc/AS8ni66GPTNsJV03q3J6N3O4WR74cKFvP766/z73/9mypQpTJ06FScnJzZs2EBWVhZTpkyx6z65ubns2bOHs2fPWh0dHzRokF33MW4jNnXqVIsk39FtxIQoklIoDbQjH5g/LT22Hi7uhjaroXJ7yLeGkdrDwCsElXoFrXxeNUonh//pCSGEw4xTQRv064d3UBCgwPSg8Di0WWnX2kYVGWO2hvG7Kf0IqFuXys2bc2H/fla1asWQXbsIbtrU9HLpGApxb0pLTMSzTh1DwTPjWmul4OuN0GOoeRJuVCsCYtfAfz80X5/drIPla4pK3Ncvgi4D4X/b4Ool6DjJkJxfT4dvNqIqh8F9rdAPnYbO1RV9Via52TnoNA1NpyPTvRLvv5/Osy/UNbttTkBdVq+HZ8fXtf6+QljhcI9/xYoVxMbG8vzzzzNlyhR69uxJ06ZNmTZtGt27d+eff/4p8h779u2jd+/enDlzxuq+3Zqm2Z1sl+Q2YkIURSmFlnbWcloSwD/rIPlv6LYDmkwDZ9cbgd03EK1lFxnJFkKUiXKVKoEGFHxQWKWDaRsvm0tg3CuicvUsCKpEelISADpnZ8aePGnaMSE7Pb2UvhIhxO0uJyPDsESu80BDwbOPlhhGqa+nQ6Vq5km4Uf8XDVsSFjxuTJynLb9RWK2oxP1oHMQOQcWugaQEtFXz4OJZ0xI+AoIN/TFjl0zTcPH0lNoS4pZweLHoyZMnue+++3BycsLFxYWUlBTDjXQ6nnvuObu2/ho1ahQ+Pj589913XLhwgeTkZLM/ly9ftrs9xm3ErHF0GzEhrFLKsK4R0DQFh96z3ikFuLQP4l41vCb2GVg1F9W8kyHRlrXZQohSpktJpG24F+4+5eGalQeF+xeBV2XD2uyCxYQ0Z2i9AjyD0bm4kJVXfDT/ntnSORVC2KTTQWAIatg0mLUO1Wu4IcntPBA+PwlDp8Ij/WHoNENCveU964lz9CDDdZ8dv/Ga6+moStVQ01dYzhZ0ckY1z1tWGhiCejYaoleino2BwBDTji+Xtm6Ch7y4tHWTxDJxyzg8sl2hQgXTaHG1atXYt2+fab/spKQk0u14uv3XX3+xadMmoqKiHH17CyW9jZgQZvR6VFK8Ye3QxXMQvdL23rNGqcfBxc1wrT4XTdPJiLYQotQppQhs1Zagf66ByrX+oNBsbXY7+HuZxRIYvvsYfVQP6vXqZbFnthBCFErTSNq6icDXniXp5WUE9hpg6BPlJeGaiysqOwvNyUoFc6Ov8rblGr8YRsSAzgmVm0vKyZP4dHoSfZMonD5dbhg9z1t/rQWG8PfmzdTr04fkLe9SYXcslx+MpkLf0eb3vl42s3KkpsW9w+Fku2XLlvz666906dKF/v37ExMTw/nz53FxceG9996jffv2Rd6jdu3aXL16tVgNLmj8+PGcPn2aZ5991lRsrWXLlgA899xzxd5GTAj0etS2D9CMU5o0DaYssb2+0cg7DKXPNRRA0zmVTluFECIfpdeTGh/P3qVLuXLuHD1XFvKg0Lg2u8ViuD/GsG2Ocd/Z/3sb9fpnaM4u9F63Dn1ODppsTyiEcFTBpLZAEh7Q/QnLCub5HY2DX7aTU68ZC0NDmZCYyHdTp5L41180HzuWRoMn4ezpSU56Ovs3bGDP4sVUbNiQBo8/jt41AHYmoX/I79Z+jQ6Qmhb3DoeT7ZiYGM6dOwfA5MmTSUlJYf369WRkZNCxY0fefPPNIu+xcOFCxo4dS+PGjalb9+aLDJTkNmJCAIZCaEnxNxLtvGP8+CXcP8L2+kbNGVV/JGgy4iOEKBtKryfugw/4bOhQ9Lm5uHh60n3ZEnSFPSi8HAfntoN/M+gQaOgYOzkbpmgGBJN88iRLGjWyKIImhBA35Xo6ODmh6XToew5DZ20NNoCTM7k9hrF/wwbSL10iOz0d//BwDqxfz2dDh/LZsGG4eHiY1Y+o0707+txcsHOXJCFuBYeT7Tp16lCnTh0A3NzcWLx4MYsXLy7ydY0aNTJ7Ep6QkEDDhg0JCQnB19fX7FpN0/jzzz8daldJbCMmhJFSesPU8YIBf2k0tNprc4sv1WYleMo6RiFEybPYxiuPLiWRtmGe6FISUUqRGh/PnsWL6bZsGY369cPZ0xN9Tg6q/gi0Ih4Uaif+hjY9oXKYqZCQptORmZIiRdCEuE3YigV3rNxc9Ho9WmBl1LTlaMZCaEZ5e2BrgSHsWbwYlOLAxo00GTqUH+fNQ59jKJqWP0bpnJ2JHDmy1Ja7yLRwYUup7T8UGRlZYgnIDz/84ND1rVu3LpH3FXcvpRTo9WhOhnVAmpOT9bVDR+Ng+lMww7i+cemNvWfrj8xLtGVUWwhxE5IS4KOl0GeEoWpunvS/42BZLOmtH7zRwVaKiq3aEnQsDZWdBUpx8eBBhv38M+riOZxWz4Wzx9A1bol6bBQqagVaIQ8KVe1KaLPWoXJzIa+IEEhHUojbiXFLvzrdu98RybbeJ4Ad8VDPJ8DmNZpOR8bly7g/3B990zZma7D1vZ6FCpXYMmgQF+LiANizaBERAwfy6PLlfD5smCHhzlOwiKM973+zZFq4sKVYyfaGDRvYtGkTZ86csdgj29aotD1Vyu3Vpk0bNE0zbRuWP4lXSlkk9QX33xb3MKVA6Q1rqfW5oOkMP0eJ8WgfL4Wzx9Cq1IRnp9vev9FYqGO6+d6zaDoZ0RZC2KWwkam0v+Pwei+WtPoP4tUq3wj2lSTahHmSeMWw/ZZZAcezxwzrHfuNJrxDB/hyLbr8o0NfrUfbvxsVuxpVuT3awSU3HhTWfRblUYm/N22mXq+eaP+uZFFIqLCOpCTiQtz+Sno03MXT0+5r9b6B/HTFkzq+gZYn3Q330TQNDz8/jnzxBRmXkmiYtwZbn51F9vVMVv/rXyTs22d62YW4OD4ZNIiea9YQ1qEDe5csIfn4catFHPW+gexMwOL9SyMJl/goHE62J0+ezLx584iMjKR27dq4uro6/KbPPPMM06ZNo0aNGhbnTp06RWxsLCtXrrT5+t9//930/xcvXmTo0KG0bduWvn37EhQUxIULF9i0aRM7duxgxYoVDrdP3KX0ekiKN4wYnT0GjVui+o6C/EXQjKqEoXoNR7O1duj4QfR+FdHyNmnUpBCaEMIBhY1MpScl4ZXvIwBKEdDtMeg1gIDsbMsCjkZVwuGBdpbTMAG2rUM78Tf6pTtQTaahc3YlJyOd/evNiwnxc5pDhYRkREeI25+tmONoEq6UIigigslpaYblKVYGuey5XilFhbyYViE7y3Bcp6N2166kJiSwa948rp49S3BkJA+MGkXzsWMNdSjyjWAf3LyZhgMGULtLF6KmT0fn4oI+OwvN2cWuwQ9bSXhJkvgoHE62V65cyYwZM5g6dWqx3/T9999n5MiRVpPtpKQkVq9eXWiy3bhxY9P/9+3blyeeeIJXX33V7JpHH32UCRMm8O6779KxY8dit1XcJfR62PYB5O+YNu+Idv60+TGjDxeidR6Amr7CsjNrXDtUsbJs6SWEuDXc840a5T0oNI1gDxyP8q9oGZs0DTo+jrZqrvWHhACH9qFb8yo5gycxz8fPsphQdja6zAw8A27dSI8Q4vbhyJT0/LscXD52DP/wcEOSHhJidW20teubjxuHh59foffxDgkhatpUdC6u6LOzQNOIGDiQGu3b2xzBvrjjGw4P702d9z4mqN3Dt+rbJYTDijWNvHnz5jf9xraeOB09epQKFSrYfZ+vvvqKjz/+2Oq5Tp06mfbeFvcwpQwj2vk7ppoGnfqBrU7p0TiIHoQ2Yy3qgfZoHy0x279RF1Ql7zaSbAshSpCVEWyzB4WaBtOWW0+o3TwMSbqtvWqNzh3H2dPTtBQL8hUTSrsCgFfgrRvpEULcGreycJrZLgf5Rpd/nDeP7itWEDFwIM4eHgA4e3hYvT4oIoLW06fz59q1Fuus899H0+lM24Jdyrc3t3dICFHR0eicnS22IdT7BvL98XRq3cJRapkSLorD4UpOw4YN48MPP3T4jd59910iIiKIiIhA0zT69+9v+tz4p3bt2gwaNMihkehy5cqxfft2q+e++eYbypUr53Bbi+PSpUuMHDmSatWq4eXlRcOGDVmyZInFdfHx8fTp0wdvb2/8/f0ZNmxYie05LmxQesPU8fwdU3s6pV9tgHenoQWGoB86FWatQz90Krk+AaBppVbhUoiyIDGtDOj1kHgObflMmNIf7Z/9kFjgQWFhsSszw7CNTmF71QJUDiMnPZ2cjAygQDGh5MQS/qKEuH3c7XHNOEp9LSGhRO9r3OWgYKINoM/J4bOhQ0lNSMArMBAXT0+8AgOtXt983DhSz52zSLQL3sf0ILDA3tyapnEhLo45Xl5ciIsr9QEP45TwO6Eo3b0uNSGBHTExpJbwv4XicHhke+bMmYwdO5aWLVvSvn17q9t2vfjiixavCwkJITIyEoADBw5Qp04dAgs8OXd1daVevXoMHTrU7vY8//zzTJ8+nQsXLtCzZ08qVqzIxYsX2bJlC2vXriU2NtbRL7FYHnvsMQ4dOsScOXOoVq0aX375JaNGjcLJyYnhw4cDkJ2dzcMPG6a2fPjhh6SnpzN+/Hj69+/P1q1bS6Wd9ySdlcri9nZKnZxRSg9OzqbPXVxcZURb3PUkppUyGyPYFrNvCotdSsHXG6HHUChkr1rVZySJf/9No/79LYsJefvC8GizKuhC3C0krjnGWARN6fXsXbrUIkE2Cqxfn7QLFwhq3NiwNjs3l50xMebXaxoN+/Xjx7lzbd5Hn5PD3iVLiCpijfOt3oZQRrDvfLdTxX6Hk+3vvvuO1atXk5qayu7duy3O20q2e/ToQY8ePUyfT58+3eqabUdNnToVX19f5s2bx+rVq01FF4KDg1m0aBEvvPDCTb9HUc6fP8/333/PqlWrePrppwFo164dv/76Kxs2bDAF8M2bN/PXX3/x999/m/Yq9/Pz4+GHH+aXX36hWbNmt7yt9yKVm2uo0mt20P5OKZoOnc6QXOucpBCauPtJTCs5dk3rtLbUxdYIdlGxa/0i6DLQZr0JoldCQDBB/kH0XrfOYiomAcEwIqYkvnQhbisS1+xXsKiZzsmJy8eszwRs+MQT9FyzhtT4eHbGxHDl7Fl6rlplcb2Lhwcunp4272OUfPy4oa9Vhv0tKWomSpLD82Cff/557r//fvbv309mZiZ6vd7sjz3bbK1atapEEm2j0aNHc/r0aU6ePMlPP/3EyZMnOXPmTKkk2mB4Cgrg4+NjdtzHx8dsTdy2bduIiIgwBW+Ajh074u/vz5dfflkqbb1XKKVMT041nQ59z2E3RqeN1i+CipUNo0cFzzk5o6avgIBgGcUW9xyJaSXHrmmd1pa6FDaCXVjsOn4QFbcbOg9EfX4Shk6FR/obPn5+Eh4ZgKbTlelUTCHKgsQ1+yi9ntRz59gZG8tH/fuzc8YM9Dk5+IdbxqKgiAh6rlnD/g8/5M2aNflh1iz+XL2a7PR0i+uzMzKsHi/ILywMfW4uyLa94i7h8Mj2mTNnePPNN2nQoMGtaI9d3n33XZ555hnc3NxMx3Q6HdWqVaNatWpWX7N//34SExNp165dibenatWqdOrUiTlz5lCnTh2qVq3Ktm3b+Prrr1m3bp3pukOHDlG3bl2z12qaRt26dTl06FCJt+teZVb98vhxeqxahVNgZdS05ebb4RyNg9ghqJjV0KyDWRE01WekIdGWddniHiQxrfRoOp31pS6FjWDnFXAkdg2qQOwyK+AYGIIaNg3NxRWVtx1O/h0UbvVUTCFuJxLXCmerqBkYEuCmw4fz47x5Ra/BVooDGzfSZOhQ8+ttHc/HVKhR+l7iLuLwT/NDDz3E4cOHb0Vb7Pb+++8TGhrKiy++yE8//WR6WllQfHw8K1asoEOHDrRo0YLk5ORb1qaPP/6YoKAgGjRoQPny5enfvz8LFy6kT58+pmuSk5Mt1riDYXrS5cuXbd47MzOTq1evmv0R1hl/USyuUYMfZs3iwIcfsn/dOtKTk1EP9yd3yz9mIz25o2ajlB7lH4R6NgZmrTN8DLS+jYUQ9wqJaaVD6fWgz3V8BPvbzajdX0FAMPqh06wXcNQ00n/+Hh7yMnzMl2jLmkRxL7pVce1uiGm2ipoB/LxwIeWCg+m+YgU657xYlLcG+/cVKyyu37NoEd6VK/Po8uU3ri/kOBQo1CizbcRdxOGR7Tlz5jB48GBcXV3p0KGD1YDk7+9fEm2zac+ePWzZsoXFixfzxhtv4OLiQu3atQkMDMTNzY2UlBROnDjBxYsX8ff3Z/DgwXzwwQdUqlTppt9bKWU2VV7TNHQ6HUOGDOHo0aN8+OGHBAcH88033zBu3Dj8/Px44oknbuo9586dW2qF3u5ktqpl7lm0iIiBAzmybRvXL1+i4eBJOHt6kpOezoH/24hHQCC1u3QxJdearMsW9xCJabcBTQd9Rjg8gq0FhnDl5El8QkMN1+uccPE0L+DoFRgI19MttvKSNYniblbace2Oj2mahruvLztjY62OOF+Ii+OTQYPotXataa/rq+fO2VyDbby+55o11Gjbln3vvWfaGzszNZXGTz1FWIcONvfMFuJu4nCy/cADDwAwcuRIm0+e7Fm3fbN69epFr169OHnyJN9++y2//fYbCQkJXL9+ndDQUDp16kTLli1p06YNLi4uJfa+O3fupG3btqbPo6KiGD9+PJs2bSIuLo5GjRoB0KZNGy5evMjLL79sCuB+fn5cuXLF4p7JyclUrVrV5ntOmjSJl156yfT51atXC73+XpKakMDvK1fS5Jln8KpY0Wq1zPxB/9r58+yaN4+rZ89SvnJlCe7inicx7TagaaiAEMP+2fmXuoBhBLtTf3ioCzlPT8bZw4Oc9HT2b9jAr2+/zROffcb15GQWhYYyZNcugps2LbuvQ4jbRGnHtTs9prl4eKBzdi60eNmBDRvwrV6ddnPm3NjrOjfX5hrsAxs2kHjwIN1XriQqJgadk5NZQcbC9swuLTLDR5QGh5PtlStXltg/BqUUR44c4fLly/j7+1O7dm2H7129enWGDRvGsGHDSqRNRYmMjOTXX381fe7t7c2nn36Kk5MTDRs2NLu2SZMmLF++nPT0dDw9Palbty779+83u0YpxeHDhwvdW9zNzc1sfbowUErhFRhI6ylTiqyWaQz6jyxebAjuBYK+EPcqiWllTylFRnIy7g/3R9+0DU6fLjevH1GhElsGD2b/hx/i4uFBdnq62ZTLpMOHba+/DgiWrbzEPae049qdHtOyMzJsFkHLT+fsjNLruRAXx6pWrRh36hSRI0bYXIOdePAg5SpVsvpAUNM0zufdp6weFMoMH1EaHE62jdsl3Kx33nmHGTNmkJiYaDpWsWJFpk+fzqhRo0rkPW4Fb29v7r//frNjoaGh5ObmEhcXR+PGjU3H9+7dS8WKFfHM26ewc+fOfPDBBxw9epRatWoBsH37di5dukSXLl1K74u4C5gVQTt2DP+aNYmaPr3QXxQX4uI4sX071Vq1ArBYLyTEvUhiWtlTej17Fi3i8Gef0XzsWBrlW+pyds8eqj5UkfZz5+JXo4bVKZc5GRm2by5beYl7kMQ1BynF9ZSUQhPngsXLstPTSUtMJKBOHbqvWGGxhM/eB4JSqFHc7cok21i2bBmjR4/mySefpF+/fgQFBXHhwgU2btzI6NGjcXFxKbWR6pLQpUsXqlWrRt++fYmOjiY4OJivv/6a999/32wNT9++fZkzZw59+vRhzpw5pKenM378eLp27XpP7Nt4M4zTxSOffRbPChUcqpZpJFUuhbCPxLTS4eLpiabTmWblXIiL47OhQ/ls2DDTCDYYttd5ZPFiq1MxhRD2kbhWOHsT5/xxJycjA02nI2LgQNNabocfCJYCmS4uypJdyXZERAQffvghDRs2pFGjRoX+gtc0jT///LPQ+y1cuJAxY8awaNEis+Pdu3cnMDCQBQsW3FHJtre3N9u3b2fKlCn85z//ISUlhRo1avD6668zevRo03UuLi7897//ZcyYMTz55JM4OzvTu3dvFi5cWIatv/2ZTRfPG9G2VS2z0YABDv2iEEJYutdjWmpCAnuXLiVyxAi8S6Bz5pI3YmaklCIoIoLJaWnoc3Is1z0qZTbaY5qV89BDzPHykrXZQhTDvR7XimJv4myNptOV+BpsvU8AO+Khnk9Ase9hJNPFRVmyK9mOjIzEy8vL9P83m6ycOHGCbt26WT3XtWtXlixZclP3Lws1a9Zk48aNRV5XuXJlPvroo1Jo0d3BYs/slSutFkED69UypcqlEMVzL8e0awkJ7IyNpU737jeVbBdMqpVSkLdrgmkJTHg4LSdOtGv65vWUFJlyKW4LJf1AqrTcy3HNXsVNnEt6DbbeN5CdCVDHN7Doi4W4jdmVbK9atcr0/++///5Nv2lwcDC7d++mQ4cOFud+/vlngu+gwC1uHeOe2cZRahdPT5zXrXO8WqZMuRRClLKCdSWqtmzJA6NGWV0Cc/TLLxn2yy92rXsU4nZQUg+kxO3pZhJneSAohDmH12w/88wzTJs2jRo1alicO3XqFLGxsaxcubLQewwdOpQZM2aQmZlJ3759CQoK4uLFi2zatIn58+czffp0R5sl7jLW9szOzsggOz3d7mqZxgJoUghNCFGaCj4oBAjr2JErp09bXQKTsG8fnwweTK81a27rdY9CiNJV1jMIJHEW4uY5PKf2/fffN6sgnl9SUhKrV68u8h5TpkzhhRdeYP78+URGRlKlShWaNm3K/PnzeeGFF5g8ebKjzRJ3idSEBH6YPRuVm2s5XVwpDmzcSJOhQ20m0FIETQhRlqw9KETTaNivH7+vWGF1mjjA/nXr+PXdd02FfHqvW0dUdDTeISESz4S4RxlnEFxLSCjrpghx10tNSGBHTAypJfzvrVi/wW1Nxz169CgVKlSw6/WvvfYa8fHxfP7556xZs4atW7cSHx/PggULZLrvPSp/ITSds7PV6eJ7Fi3Cu3JlHl2+3CLhliJoQoiypvR6iweFLh4euHh6FroEBuDsTz+h0+m4sH8/c7y8uBAXZxbLpKKuEOJeIfFOlLZb9XDLrvm17777Lu+++y5gSJT79++Ph4eH2TXXr1/n5MmTPPbYY0Xeb82aNXTt2pUKFSpY7Fl4+fJltm7dyqBBg+z9GsRdwFohNGvTxY1F0HquWUONdu3Yt2yZFEETQtw2jNt45WfvEhi/sDD0ubkW1ciNpKKuKG1lPY1Z3Lsk3om7hV3JdkhICJGRkQAcOHCAOnXqEBhoXh3Q1dWVevXqMXTo0CLvN2TIEHbv3m11FPzEiRMMGTJEku17iNX1jR060GToUKvVeQ9s2MClI0d4+ocfZN9ZIcRtITUhgb3LltF6yhTLpDrfEpiiKo7Lw0JxO5FCaOJ2Y2vEW0bCxe3KrmS7R48e9OjRw/T5tGnTCAsLK/abKqVsnktOTsbb27vY9xZ3FqvrGzFMF48YOJBHly/n82HDLKrzNh83DhcPD1PHVIqgCSFKg62RvmsJCeyMiaHZ889b3carqJh2M0tgpJMphLhX2BrxlpFwcbtyOEPJvw2YUXp6OvHx8YSHh9vsKGzbto1t27aZPn/ttdcICgoyu+b69et899133HfffY42S9xBlFKo3FxT1XBr+2bLdHEhREkpyamwhY30uXh6kpaYSECdOhbbeF2Ii+PTIUPouXo1YR062Kw4XhzSyRRCGLl4epZ1E+wmDwrFvcDhZHvBggWkpaURHR0NwK5du+jevTtXr16lRo0afPXVV4RbWZd25MgRPv/8c8Cw7nvXrl24ubmZXePq6krDhg2ZM2dOcb4WcQfIvzb7ytmz9Fy1ymbRoAMbNpB48CCPLF4s08WFEMV2q6fCKqUIiohgclqaIbnWNCIGDrS6jZemaXiHhBAVHY3O2VlimrgtyNrsO1/BOKSUsogrt1siLg8Kxa10u/y8O5xsL1++nAkTJpg+f+mll2jQoAETJ05k1qxZTJ48mY0bN1q8buzYsYwdOxaAGjVq8Mknn9C4ceObaLq401iszdY0ur79dqFFgy7ExXFi+3aqPfQQP8yeTZNnnpGOgBCiTOX/BW5W3PHYMfzDww0JS0hIoUn1+bg4VrVqxZBduwhu2rSsvhQhAFmbfacrLA5pOl2RifjtkpQIURLsefBUmhxOts+cOUPNmjUBOHfuHHv37mXnzp20atWKnJwcRo0aVeQ9Tpw44XhLxR3N6tpsR4oGOTnResqUUm61EOJeZa3zafEL3EpxR4Af582j+4oVRAwcyKWjR3nv/vutJtXWKo4LIYS9nD08Co1Dg/IGK2wl4mjabZWUCHGzinrwVBYcTrY9PDy4evUqANu3b6dcuXK0aNECAF9fX65cuVKyLRR3BVtrs29l0SAhhHCUrSfiBX+Btxg/Hq+KFS06uAD6nBw+GzqUGu3b4xUY6HBSLesYhRBFcfH0xCsw0GqRWYDA+vWp8uCDVhPx5BMn6Ll6NddKKSmRmCZKgz0PwMsi4XY42W7WrBnz5s1Dp9Mxf/58OnfujJOTEwDHjh2jcuXKJd5IceeztvcsFCiE1rYt+957TwqhCSHKhLUn4g+MHo1XYKDFEpjuy5fz49y5VmfkgCHh3rtkCVF59U0cIesYhRC2mD0QzM1lZ0yM1TjUfNw4Us+ds0g8giIi6LFqFXEffGAxyJE/KXH28CixNktME7eard2NwPwBuHdISKkP4BWrQFq3bt149NFHCQ0NZfbs2aZzGzduNI1yi3ubUgql1xuKmuXmAthcm20shNZ95UophCaEKBO2noj7hYdTo107s+MuHh64eHraLO5olHz8ODpn5xLttAoh7l12F5nVNBr262f1gaAxCS+YaIPlrBxbZKRa3G5szaA1Mj0Aj4lByxskLi0ODxnWr1+f48ePk5iYyIkTJ0zrt8GwndeCBQtKtIHizqP0elLPnWNnTAwf9e/PzpgYcq5fJ3LECJv7YScePEi5SpW4npzMHC8vLsTFSaIthCgVNp+IaxoNHn+cfe+9Z3Y8OyOD7PT0Qos7AviFhaHPySEnI+NWNV0IcQ/IvzZ7cY0a/DBrFn+uXm0zDtl8IJiXhP++YkWRSYm7r6/N9hhHqqWYnrhd2JpBm1/y8ePoSjnRhmIk20YVKlRAKUV8fDw5ef9gGzVqRGAhT8LEnUspZRqh1ufmopSyfrzAL4MD69fzw6xZvN+6NeWCg+m+YoVFwp1/bbZSihYTJsjTUiFEqbH1RNxmhzVfcUdbDxCNxR2vp6TcolYLIe4VVtdmFxKHbD0QlFk54m6lz821+wH4jpgYUhMSSqllxUy2v/rqK/71r3/h7u5OtWrViIuLA+DZZ59l3bp1dt3jr7/+4oknniA8PBw3Nzf27dsHwJQpU9i2bVtxmiVuEWsj1RmXL1scv/DnnzbXSyTs28cngwcTMXAgY0+epPXUqTTq35/WU6cy9uRJIgYMQNPp8AoMlKelQohSZeuJeGEj2HsWLcK7cmUeXb680AeIaYmJt6zdQoh7gKbh7utrs8is1TikFH/93//RdPhws+MyK0fcrTSdrtAZtPkfgP80fz7Xbudke/369XTp0oUaNWrwzjvvoNfrTefCw8NZtWpVkff45ptvaNKkCadOnWLAgAFkZ2ebzrm4uPDOO+842ixxi1gbqT782We4lS/Pn2vX3ji+YQMBdesWul5i/7p1/Pruu6a1Pr3XrSMqOrpMy/ELIYTNJ+KFjBwZizs26t+/0AeI0lkVQtwMFw8PdM7OhRaZbdS/P2OOHTOLQzU7d6Z8lSrmMwodmJWTk5Ul67LFHUPTNLxDQmzOoH18yxa8g4Nx9/VlcloaQRERplm6t5rDGc7MmTMZN24c69ev5+mnnzY716BBAw4cOFDkPSZNmsQTTzzB7t27mT59utm5Jk2a8PvvvzvaLHEL2FrHaK24hr1Tk87+9BM6nc70D0Hn7Cxrs4UQpS7/Ehg0zeYTcePIkbVf4Ac3b+afr77CWx4gCiFukeyMDPQ5OYUWmX3v/vtJS0wkKibGFIe8KlZE0+ksZhRmp6fjU61akcv6XD09ZaahuG2kJiQUOf3b2s9766lTefnCBWp36UJqfDw7Y2MNs3RjY0k9dw6Vb9D4VnG4Gvnx48fp0qWL1XNeXl527bN94MAB5s6dC2CRaPn6+pKUlORos8QtYHUdo40Klw5NTcrNLZMCBUIIAZZbfFVt2ZIHRo2i+4oVFg8XEw8e5OzPPxMxcCA12rdn75IlVrcnPP/HH6xq1Yohu3YR3LSp6fVStVcIcVOU4npKCpEjRvDjvHlWZw/mLzK7KDTULA5pOh3eISFERUejc3Y2bV9YVEwT4nZyLSGBnbGx1OnevdAHQNZ+3jWdrkz333Y42a5UqRKHDh2iffv2Fufi4uIIDQ0t8h7+/v7Ex8dbPXfkyBGCpVNyW7C2jtGegkG2fhkYpyZJEBdClDYXT0+zir75f+keWL+es7t303P16kI7nxa/wAtsT5idnm7xvrK/rBDiZqUlJhJQp47VB4L5R6OTDh+2Goc0TeN8XJz5A8G8abeFxTQh7kT5f97HnTpFzvXrdu2/fas4nPX079+fmJgYtm/fbjqmaRoHDhzg1VdfZeDAgUXeo2fPnkRHR3P48GGze5w/f54FCxbQp08fR5t1y7zzzjt069aNwMBANE1j8+bNNq/94osvaNGiBV5eXvj5+dG2bVvOnj1rds1PP/3Egw8+iIeHB6GhobzyyiultmbAUdbWMZZEwSAJ5EKUnXstpimlCIqIYHJaGhXq1LFZxHH/unUsb9YMd19fm1PCNU3jQlyc1e0JZQRbiLJzt8e1nIwMm1NkHakRUTARLyymCXGny87IsFlc0Mi41d2tnE7ucLIdExNDixYt6NixI5UqVQKgc+fONG7cmPvvv5+JEycWeY+5c+cSGBhIREQEzZs3B+CZZ56hTp06+Pj4EHMbjQKsWbOGpKQkm1PnjT744AN69+5NmzZt2Lp1K6tXr+b+++/n+vXrpmv++ecfHn74YYKDg9m6dSvjxo1j+vTpvPbaa7f6yygWq5X9SqBgkBCi7NxLMc20Y0JsLB8NGIA+O7vQX7oJ+/bxv3nzAArtfBY2gm3v+kZJzoUoOfdKXMs/w6Yka0RYi2lC3OkKKy6Yn2n/7Vv0sMnhaeSurq58+umnfP/993zzzf+3d+dxUVX9H8A/F5gZYEBg2JXFFUVR3BIhExckt0xFSSz3MovMyr2nApdc0scs06JfuKaimPu+gUtiqeXjvpUa5AYIKCrbzPf3h3FjnAFmgBmG8ft+vXjVXM4995w78oFz595z9iEjIwMKhQJhYWEICwvTqQ4HBwccO3YMP/74I/bt2weFQgGFQoHo6GgMHToUUqlU744YyrF/JvS6ceMGVq5cqbXM/fv3ER0djYULF+Kdd94Rt/fp00et3Lx58+Ds7IyEhARIpVJ07doV6enp+PzzzzF27FjIZDKD9kVfJWf2K/lJ0C8LF6LFG2/glR9+UJskDXg6YVDA66/Dr2dPhMbGwsLSEiqlEoKFBV8xZcwEmHOmPbx9G6fi4vBCdDRsnZ3VbheX2NrCavVqndeXNfSnWHx7OavpJLa21d0EkTnn2rO03hLOGNNQ3uSCxYrnk4KBfu/rPdgu1rlzZ3Tu3LnCB5ZIJBgxYgRGjBhR4TqMwUKHq4Xr16+HUqnEqFGjyiy3a9cu9O/fX+1iwqBBgzB79mykpKSgU6dOlW1ulSu+benZ5xjzHz5E4JAhqB8WVurzjcVDa54MjTHTYc6Zlnv7No7Nm4d2772ncbt4Va0vy59Is+ddyUczVEVFIKJqv5huzrlWGlP8NJrzkZkUHSYXNMZ8UtVyT++LL76IJUuWID09vToOX+WOHz+OJk2aYMWKFfD19YWVlRVatmyJXbt2iWUePXqE1NRUNGnSRG3fJk2aQBAEXLp0ydjN1pl421LxkhKxsbBxctK6nZe8Yazmq4mZVnIAYO3kpHm7uB7ry+ZlZ5d6HH1vF2fMnKg9mmHk5XMqqybmWk3D+chMzaP09DLX3zbGfFLVMiry9PTEhAkTUKdOHbz88stYuXIlHj58WB1NqRJ37tzB5cuX8emnn2LGjBnYtWsX6tatiz59+uD8+fMAgOx//nhzdHRU21cqlcLW1hb3798vtf78/Hw8ePBA7cvYBEEQP6G2KDFbZWnbGWM1V03LtJIDgM0jRmhdSQHQfRLHR2ZyIZixqlJyJv+v6tXD4ZkzcW7tWhyeORNf1auHMz/+aPIDbkPmmin8ncYY06Tr5IKGVOHbyCtjw4YNyM3NxcaNG7Fu3Tq8+eabGDNmDHr06IHBgwejd+/eRn8mhoigVCrF14IgwFLH259VKhVyc3OxevVq8dmfTp06wc/PD3Pnzi31+SFdzZ49G9OmTatUHYyx58vzkmkaS3kJAnotXqz1dvHiSRz7rlyJel264Lfvv9f6CEx5M/oy9ryRu7qWOpP/s8vnGPKiu6nmGv+dxphp02X5TkOptvt97ezsMHToUOzYsQO3b9/Gl19+ifv372PQoEFwd3c3ensOHToEiUQifmlbR7w0Tk5OAIAuXbqI2yQSCTp27CheLS2+SpqTk6O2b0FBAR4/fgyFQlFq/VOnTkVOTo74lZqaqnPbGGPPp+ch04hIcwBQzu3i5xISEN++PWwUCn4EhjEdSORyk1g+BzDdXOO/0xgzfdW11F21fLL9LGdnZ7z44ou4efMmLl++jLt37xq9DW3atMGJEyfE1/b29jrv26xZs1K/V7ychFwuh7e3t8bzPpcvXwYRaTwfVJJMJqv22S8ZYzXL85BppFJpHQCUtWKChZUVgj74ABIbG3FwzZM4MqZJnAchNxcAdF8+x4BMNdf47zTGagY7T0+ETJxo1En8KjTYViqV+OWXX5CWlqa2NmGxoUOH6lTPH3/8gYSEBCQkJODChQtwd3dHZGQkoqKiKtKsSrG3t0fbtm0rtG/v3r0RExOD/fv3o2/fvgCeXgU9dOgQOnbsKJbr0aMHtmzZgi+++AISiQQAsG7dOjg6OiIkJKTSfWCMsWLPQ6aV9my22u3inTvjt//7P623izPGtCOVCg9v3cKpuDjc//NPvLp0qc7L5xhywP085BpjzHCqY9lNvQfbv/32G/r374/U1FSt65AKglDuYHvBggVISEjAqVOn4ODggIiICHz11Vfo1KmTTss3GNPJkydx48YNceb048ePAwBcXV0RGhoKAGjdujUiIiIwevRo3L9/H56enli8eDHu3r2LiRMninVNnDgRq1evRlRUFN59912cPXsW8+bNw+eff25Sa4szxsyXOWWaSqksdQBwLiEB6RcuoM/SpQiNjYWFpaVRn9FirCYqORFayccz6oeFodWoUdW6fE5ZzCnXnmVK65kzxiqA9NSuXTtq0aIFJScn07179yg7O1vjqzxyuZyioqJo69atVFBQoG8TjGrYsGEEQOMrNDRUrVxubi6NHTuWXF1dSSaTUUhICB09elSjvp9//pmCgoJIJpORl5cXzZ49m1QqlV5tysnJIQCUk5NTma4xxp5D5pRpKpWKclJTabqVFcUCGl/TrawoJy2NHqWn0+e2tnTr1Cmd6r116hTFAjqXZ6ymK/43/yg9XevP1LctWlBRQQH9vny5xvemW1nR6ZUrSaVUVlv7TS3XquLvNJVKRcrCQiIiUhYWqh2/tIwqK7sqsg9jpkLff6cV+XdtqJ8FvT/ZPn/+PBITE8UrhRVx79492NaQK3XLly/H8uXLyy0nl8vx9ddf4+uvvy6zXEhIiHjFlTHGjM2cMk0QBHH9zGdnSS65lFfG5csofPy4WtrIWI0hCLB2dMShadM0Pr3WdSb/6mJOuQY8cxv/H39A0aAB2rz9Nk/kyJiBGeJOEr0H235+fpVeP7CmDLQZY4yZtuL1M+t17YpT333HS3kxVkESGxtYWFmVOhFa8aMZ3b/6ih/NMCBtt/EDwNE5c9AnPh4t3ngDVjY21dhCxkzHw9u3cSou7unFqEpMekbFE0I+egRVURGIqMpyTe/B9pdffolx48YhMDCwzNlmn1WrVi0kJSWhTZs2sLe3L7MDgiBoLLvAGGOMaVPV62faeXoiNCbGqLOVMlbtBAGqoqIyJ0K7e+YMrh84AJ8OHTBLLseII0fg2bq1ERtp3kjbcob/KLmeudzVtZpayJhpyb19G4emTUPjPn0qPNg29J0keg+233vvPdy5cwcBAQGoXbu2uCZhMUEQ8L///U9jv/Hjx8Pzn5Mwfvx4vgrKGGOsygiCgDtnzmDZSy9VegBQHbOVMlZdqMQSXyqVCm3efrvcidDysrP50QwDKG05w2LF65mHxsQYuWWMmSdd7iSp7IBb78F2mzZtKjRQjikRDLH8RwxjjLEqVh3rZzJWkz37iY73iy/ihXfe0WkeBFb1SlvOsKSsP/+EhZUV30rO2D8q+py1rneS2NeuXakPifUebOsyAUV5unTpgiVLlmi9Df3KlSsYM2YMDh48WOnjMMYYe37wJ9KM6U7bJzrn1q5FWkoK+q5YwfMgVIOyljMs5lS/PlRFRfwesOdeZZ+z1vlOkthYCJaWFW6n3oPtqpCcnFzqJGsPHjzA4cOHjdwixhj7FxGBVKqnEwAplRAsLPjRF8aY2SjrE52zq1cj4+JFDD98uMrmQWC6ESwsdL6NXxueb4I9L6riOWud7ySpxEAbqOBgOzs7Gxs2bMCVK1eQl5en8f3yllQAUGpgHzt2DG5ubhVpFmOMVRovucIYM0clZ+2Vu7mV+YnO7d9+w89z5iA0JoYnQjMifZYz1Ibv7mHmzsrGpspm7Nf5ThKlslIDbr0H21evXkVISAjy8/Px6NEjuLq64v79+ygqKoKTkxMcHBy0DrZnz56N2bNnA3gaJp07d4bFM3+45ufno6ioCO+++24Fu8MYYxVnjIkyGGOsOhTP2tukb1/Ye3rq/GwwERmphQzg5QwZK4vc1VWn56wdfH3LvctD1ztJjD5B2kcffYSgoCAkJiZCLpdj586dCAwMxLp16/Dxxx8jMTFR634hISEYP348iAjTp09HVFQUvLy81MpIpVL4+/vjlVdeqVhvGGOsgow1UQZjjFUnUqn42WATV9XLGTJmFgQB1o6OODRtmk7PWZd3l4eud5JU9udO78H2r7/+ivj4eMhkMgBAQUEBLC0tMXjwYGRkZOD999/Hzz//rLFfaGgoQkNDATzt3FtvvYXatWtXqvGMMVZVjDVRBmOMVZfiWXsr+2wwM7yqXM6QMXMgsbGBhZVVlT5nrcudJJWl92A7Pz8ftWrVgoWFBRQKBW7duiV+LyAgAFOnTi23jhheH5AxZmKMNVEGMz6eNIg9756dtRdApZ4NZsbD65kz9g9BgKqoqMqfszb0nSR6D7b9/Pxw8+ZNAECrVq2wZMkSdOvWDVZWVoiLi9P50+pr165h+fLlpU6ytnXrVn2bxhhjFWasiTKY8fGkQex5Vtakj/xs8POjtIuOfDGSmTrxYmFuLlQqlUGeszbknSR6D7YHDRqE06dPY8iQIZgxYwZefvllODk5QRAEEBFWrFhRbh0nTpxAaGgofH19ceXKFbRo0QI5OTm4ceMGvLy80LBhwwp1hjHGKspYE2Uwxpix6DLpIz8b/Hwo7aIjX4xkpuzZi4XeL76IF955x2DPWRviTpIKTZBWrH379jh37hx27dqFvLw8dOnSBQEBAeXWMWnSJERGRiI+Ph4SiQTx8fFo3bo1jh07hqioKEyePFnfZjHGWKUYa6IMxhgzBn0mfbzLzwYzxkyMtouF59auRVpKCvquWGHQ56yrUoXW2S7J29sbo0eP1muf//3vf5gyZYq49FfxbeQhISGIjY3FlClT8PLLL1e2aYwxphdjTJTBGGPGoM+kjwA/G8wYMx1lXSw8u3o1Mi5exPDDh2vEXTkV+suxsLAQ3333HUaNGoXw8HBcvXoVALBu3TpcvHix3P0FQYBUKoUgCHBzcxOfAQcALy8vXLlypSLNYoyxUj28fRvJsbF4ePu2uI2IoFIqATx9ZpuI1CbK6L96NUJjYp4u98UDbcZYDaLXpI8m+AcqY+z5Vd7Fwtu//Yaf58wBAMySy3H3zBmTHGgDFRhs//nnn2jcuDEmTZqEa9eu4cCBA3j48CEA4PDhw/jiiy/KraNp06b4459fAMHBwfjvf/+Lc+fO4fLly5gzZw4alDNJEWOM6Sv39m0cmzcPuf8MtkmlwsO//8ah2Fj8NHgwDsXG4uHff4NUKgiCAAurpzf+WFhZmWyAM8ZYafSZ9BFERmoVY4yVT+eLhVZWIBPPL71vI3///ffh6uqKX3/9FY6OjpBKpeL3QkNDdVr6a/To0eKn2bNmzUJ4eDgCAwMBAHK5HBs2bNC3WYwxVqpnl73RZdIg/iSbMVaT8aSPjLGaSueLhUVFJr9qgt6D7eTkZKxduxYuLi5Q/nP7ZTEPDw/cLnGLZmmGDBki/r+/vz8uXryIlJQUPHnyBO3bt4ebm5u+zWKMMa2enckyZMIEyN3cdJo0iD/RZozVVDzpI2OsptL1YmFRQYHJL12n92DbqoyP6+/evQs7Ozu9G2FnZ4du3brpvR9jjJVF4xNsQUCfH37A0dmzdZo0SOD1tBljNRhP+mieeG1sZu50vlhoYWHyS9fpPdgODQ3Ff//7X/To0UOcTbx4je3vv/8eXbt21brfxo0b9TpO//799W0aY4yJtM1kKbGxgcTWVvdJgxhjrIYrOemjqc/ay3TDa2Oz54G5XCzUe7A9d+5chISEoGnTpujTpw8EQcDixYtx7tw5XL16Fb/++qvW/QYMGKDzMQRB0LhFnf2r+M6CBw8eVHNLGDNdKqUSR7/+Go9LXA3Ne/wYmXfuQOblhbwy9pXWqYPsrKxqHXDb29s/N38Mc6YxZnh3Tp/Gj927443du+HRsqXa9x7m5iLvn//KS/wc6ru9PM9LrlVVplX0PDNmTsjODq0+/FC8WEiWlniYm1vlx6nIz5sumSZQBaZwu379OmJjY7Fv3z5kZGRAoVAgLCwM06ZNK3Um8ZLLe+nC19dX32Y9N9LS0uDt7V3dzWCMGVBOTg5q1apV3c0wCs40xp4Pz0uucaYx9nzQJdMqNNhm1UulUuHWrVsGuUL84MEDeHt7IzU1tcb/QjSXvnA/TIux+vG8fAIEGDbTAP63Z2rMpR+A+fSFc61qcabpxlz6AZhPX7gf+tHlZ1zv28ir0u7du3HixAmkpqbik08+gY+PDw4fPoyGDRuidu3a1dk0k2ZhYQEvLy+DHqNWrVo1+oesJHPpC/fDtJhLP0yBMTINMJ/3jPthesylL+bSj+rGmaYfc+kHYD594X5UHZ0G2yNHjtS5QkEQEB8fX2aZ9PR09O3bF8ePHxevOowZMwY+Pj5YunQp5HI5Fi9erPMxGWOMMcYYY4wxU6LTYHv58uWwt7dHgwYNSl32q5gut8t88MEHSE9Px7lz59CoUSNIpVLxe2FhYZg5c6YuzWKMMcYYY4wxxkySToPt4OBgHD9+HEqlEoMHD8agQYMqNYHZjh078H//93/w9/fXmHXc29sbaWlpFa6bVY5MJkNMTAxkMll1N6XSzKUv3A/TYi79eJ6Yy3vG/TA95tIXc+nH88Jc3i9z6QdgPn3hflQ9nSdI++uvv5CQkIA1a9bg7NmzCA4OxuDBgxEZGQkXFxe9DmpnZ4f169ejZ8+eUCqVkEgkOHnyJFq3bo3Nmzdj5MiRuH//foU6xBhjjDHGGGOMVTedVwP38fHBpEmTcPr0aZw9exadO3fGwoULUbt2bfTo0QO7du3S+aBBQUFYunSp1u8lJCTgxRdf1LkuxhhjjDHGGGPM1FRq6a+8vDx89tlnWLBgAfr06YONGzfqtF9KSgo6d+6Mdu3aYcCAAfjwww/xn//8BxcvXsSOHTtw9OhRtG7duqLNYowxxhhjjDHGqpXeg22lUom9e/ciISEBW7ZsgZWVFSIiIvDmm2/ihRde0LmelJQUTJkyBceOHYNSqYQgCAgODsa8efMQHBysd0cYY4wxxhhjjDFTofNt5IcPH8Y777wDd3d3REZGQqlUYvXq1bhz5w7i4uJ0HmgXFBRg48aNcHd3x6FDh/DgwQOkpaXh4cOHOHr0KA+0DWjJkiXo3bs3XF1dIQgCNmzYUGrZHTt2ICQkBHK5HE5OTujcubPGxHXHjh1DcHAwbGxs4Ovri7lz55Y7W72hZGZmisvHyeVyBAQE4LvvvtMod+vWLURERMDe3h4KhQJvvvkmHjx4UA0tLt+lS5fQrVs3yOVyeHh4YNKkSSgoKKjuZpVr69atCAoKgr29PTw9PREZGYk///xTo1x8fDz8/PxgbW2NwMBAbN++vRpa+9S1a9cwZswYtGzZElZWVggICNBaLjs7G++//z5q164Na2trNGjQAP/973/VyhQUFGDixInw8PCAXC5Ht27dcPnyZWN047nDmcaZZgycaZxpxsS5xrlmaJxpRs400oGXlxdZW1tTv379aP369fTkyRNddiuVTCajpKSkStXB9BcUFERBQUE0dOhQAkCJiYlay61atYqkUilNnTqVDh48SFu2bKEJEybQ1atXxTJXr14lOzs76tevH+3fv58WLFhAUqmU5s2bZ6zuqOncuTN5enrSsmXL6MCBAzR+/HgCQN9//71YpqCggAICAiggIIC2bt1KCQkJ5OXlRb169aqWNpfl/v375OnpSR07dqTdu3dTfHw8OTg4UHR0dHU3rUxJSUlkYWFBw4cPp3379lFCQgL5+flRgwYN6PHjx2K5tWvXkiAI9Mknn9DBgwfp7bffJisrK0pJSamWdm/evJm8vLwoIiKCmjdvTs2aNdMok5ubS4GBgdSmTRtKSEigpKQkiouL0/g3//bbb5ODgwPFx8fT7t276aWXXqI6depQdna2sbrz3OBM40wzNM40zjRj41zjXDMkzjTjZ5pOg21BEEgqlZKdnR3Z29uX+VWrVq1y6wsMDKQVK1ZUuvFMP0qlkoiIrl+/XmqAZ2ZmUq1atWjJkiVl1jV69Gjy9fWl/Px8cdvUqVPJ0dGR8vLyqrbh5bh9+zYBoGXLlqlt79ixI3Xp0kV8vWbNGhIEgS5duiRu27NnDwGgX375xVjN1cmsWbNILpdTZmamuC0uLo4sLS3p77//rsaWle3tt9+mevXqkUqlErcdPHiQANDhw4fFbX5+fhQVFaW2b3BwMPXo0cNobS2p+GeDiGjYsGFaQ/yTTz6h+vXrU25ubqn1pKamkqWlJcXFxYnbMjMzSS6X09y5c6u20YwzjTPN4DjTONOMjXONc82QONOMn2k63UYeExODjz/+GBMmTMD48ePL/Proo4/KrW/27NmYOXMmTp48qefn8KwyLCzKf7vXr18PpVKJUaNGlVlu165d6Nu3L6RSqbht0KBByM7ORkpKSqXbqo/CwkIAgIODg9p2BwcHtVuldu3ahRYtWqBx48bitm7dukGhUGDnzp3GaayOdu3ahbCwMCgUCnFbZGQkVCoV9u7dW40tK1thYSHs7e0hCIK4rfh9KX4v/vzzT1y5cgWRkZFq+w4aNAgHDhxAfn6+8Rr8D11+Nn744QeMHDkScrm81DJ79+6FSqXCwIEDxW0KhQLh4eEm92/MHHCmcaYZGmcaZ5qxca5xrhkSZ5rxM03nwbY+X+WZNGkSMjMzERQUBDc3NzRv3hwtWrQQvwIDAyvdMVYxx48fR5MmTbBixQr4+vrCysoKLVu2VFva7dGjR0hNTUWTJk3U9m3SpAkEQcClS5eM2mZvb2+Eh4dj1qxZuHDhAh4+fIj169dj7969iI6OFstdunRJo82CIKBJkyZGb3N5tLXV0dERnp6eJtfWkoYPH44LFy5gyZIlyMnJwZ9//omPP/4YrVq1Epf0K27/s/3z9/dHQUEBrl+/bvR2l+fGjRu4c+cOXFxc0KdPH8hkMigUCrz11lvIzc0Vy126dAlubm5wcnJS29/f39+k3zdzxplmGjjTTAtnWs3GuWYaamKucaYZP9OsDFJrOdq0aYO2bdtWx6FZOe7cuYPLly/j008/xRdffAFPT08sXrwYffr0wenTp9GsWTNkZ2cDeBooJUmlUtja2uL+/ftGb/fGjRvx2muvoVmzZgAAS0tLLFq0CBEREWKZrKwsjTYDgJOTU7W0uSw1qa0lvfTSS9i0aRMGDx4s/vJs2bIldu/eDUtLSwBP+wZo/vspDj5T7N+dO3cAABMmTED//v2xc+dOXL16FVOmTEFubi7Wrl0LoOa+b+aMM8001KS2lsSZVjPfN3PHuWYaalJbi3GmGf89q5bB9vLly6vjsM8NIoJSqRRfC4Ig/gCVR6VSITc3F6tXr0afPn0AAJ06dYKfnx/mzp2LlStXGqTNutLWNwsLC4wYMQJXr17FmjVr4OnpiX379uGDDz6Ak5MTBg0aVI0tfr4cO3YMQ4YMwVtvvYXevXsjMzMTM2bMQK9evXDkyBHY2NhUdxMrRKVSAQD8/PywYsUKAEDXrl1hZWWFt956C59//jnq169fnU00a5xpnGnVhTONGQrnGudadeBMM75qGWwzwzp06BA6d+4svg4NDUVycrJO+xZfterSpYu4TSKRoGPHjjh37hyAf6905eTkqO1bUFCAx48fqz27UtW09W3ChAlITEzEmTNn0Lx5cwBPf+ncu3cP48ePFwPcyclJo83A06tc3t7eBmtzRZTVVkOe38p6//330aVLF7VlFtq3bw8fHx+sWrUKo0ePFv+N5eTkwMPDQyxXfCXVFPtX3OaS//aAp0EOAOfPn0f9+vVr7Ptm6jjTONOqC2dazXzfagLONc616sCZZvz3jAfbZqhNmzY4ceKE+Nre3l7nfYtv7dEmLy8PACCXy+Ht7a3xbMPly5dBRBrPeFQlbX3bsmULLC0tNdbca9WqFX744Qc8fvwYtra2aNKkCc6ePatWhohw+fJldOvWzWBtrghtzybl5OTg9u3bBj2/lXXhwgW8+uqratu8vLzg4uKCP/74A8C/zwBdunRJbQKUS5cuQSqVmuSnKQ0aNIBMJiv1+8U/G02aNMHdu3eRlZWl9jyQtue6mO44057iTDM+zjTONEPhXHuKc824ONOMn2k6TZDGahZ7e3u0bdtW/Cr5g1Ke3r17AwD2798vbisoKMChQ4fQpk0bcVuPHj2wZcsWcXZJAFi3bh0cHR0REhJSBb3QTlvffH19oVQqcebMGbWyp06dgpubG2xtbcU2/+9//8PVq1fFMgcOHEBmZiZ69uxpsDZXRI8ePbB//37xmSsASExMhIWFBcLDw6uvYeXw9fXFb7/9prbt5s2byMjIQN26dQEA9evXh5+fHxITE9XKrVu3Dl27dlWbNdVUSKVShIeH48CBA2rb9+3bBwBo3bo1ACA8PBwWFhb46aefxDJZWVnYu3evyf0bq0k4057iTDM+zjTONEPhXHuKc824ONOqIdMMsqAYM0knTpygxMREWrJkCQGg8ePHU2JiIiUnJ6uVi4iIIFdXV4qPj6edO3dSr169yNrams6cOSOWuXr1KsnlcoqIiKADBw7QwoULSSqVaiwcbwwPHjwgHx8fatiwIa1atYr2799PkyZNIgsLC5oxY4ZYrqCggAICAqh58+a0bds2WrduHXl7e1OvXr2M3uby3L9/nzw9PSk0NJT27NlDS5cuJUdHR4qOjq7uppVp4cKFBIDef/992rdvHyUkJFBAQAC5u7tTRkaGWK54Hc3PPvuMkpKSaMyYMWRlZUXHjh2rlnY/evSIEhMTKTExkTp16kTe3t7i63v37hER0cmTJ0kqldLgwYNpz5499M0335C9vT29/vrranW9/fbb5OjoSEuXLqU9e/ZQaGgo1alTh7Kzs6uja2aNM40zzdA40zjTjI1zjXPNkDjTjJ9pPNh+jgwbNowAaHyFhoaqlcvNzaWxY8eSq6sryWQyCgkJoaNHj2rU9/PPP1NQUBDJZDLy8vKi2bNnk0qlMlJv1F29epUiIyOpdu3aZGtrS82aNaOFCxdSUVGRWrm0tDTq378/2dnZkaOjI40cOZJycnKqpc3luXDhAnXt2pVsbGzIzc2NJkyYQPn5+dXdrDKpVCr69ttvqUWLFiSXy8nDw4P69etHFy9e1Cj7ww8/UMOGDUkqlYq/VKvL9evXtf5sAKCkpCSx3P79+6lt27Ykk8nIw8ODxo8fT3l5eWp15eXl0fjx48nNzY1sbGwoLCxMa/9Z5XGmcaYZGmcaZ5qxca5xrhkSZ5rxM00gKrGSPGOMMcYYY4wxxiqNn9lmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJvpJDY2FoIgoE6dOlCpVBrff/HFFyEIAoYPH65XvdnZ2YiNjcWFCxfUtt+4cQOCIGDDhg2VaXalLVy4EIIgiK+Tk5MhCAJOnjxptDbExsbi2LFjGtsFQcD8+fON1g5tNm/eDEEQcOPGDQAVe98WLlyInTt3GqiFjGnHmfYUZ5o6zjRWk3GuPcW5po5zrXrxYJvpTCKRICMjA4cPH1bbfvPmTaSkpMDOzk7vOrOzszFt2jSNAPf09ERKSgq6dOlSqTZXtdatWyMlJQX+/v5GO+a0adO0BnhKSgpef/11o7VDFxV53zjAWXXhTONMKw9nGqtpONc418rDuWZcVtXdAFZzSKVShIWFYe3atejUqZO4PSEhAc2aNYOlpWWVHUsmk6F9+/ZVVl9VqVWrVrntevLkCWxsbAzeFlM8P6b6vjGmDWcaZ1p5TPV9Y6w0nGuca+Ux1ffNXPEn20wvUVFR2LBhAwoLC8Vta9asweDBg7WWP3z4MEJCQmBjYwMXFxeMHDkS9+/fB/D0NpZ69eoBAAYOHAhBEMTbXLTd4qJSqTBz5kzUrVsXMpkMTZo0QVxcnNrxYmNjYWdnh7Nnz6JDhw6wtbVFQEAA9uzZU27fHjx4gKFDh8Le3h6urq6YNGkSioqK1MpouzVJEATMmTMHkydPhoeHB9zc3AAARIT58+fDz88PMpkM9evXx5dffqlx3IsXL6J///5QKBSwtbVFYGAg1q5dK9YNABMnThTPT3Jysvi9Z29NiouLQ+PGjSGTyVC3bl3MnDlT7Vay5cuXQxAE/P777+jRowfkcjkaNWqElStXlnt+CgsL8cEHH0ChUMDBwQGjRo1Cbm6uWhlt79vWrVvRtm1b2NnZwdHREW3bthWvjtatWxc3b97E4sWLxf4tX74cALBy5Up06NABCoUCTk5O6NSpE3799Ve14+nzfq9cuRKtWrWCtbU1XFxc0LNnT9y8eVP8flpaGt544w24uLjAxsYGHTt2xKlTp8o9L6xm40zjTONMY+aGc41zjXPNdPBgm+nllVdeQX5+Pvbu3QsAuHDhAs6cOYNBgwZplD116hS6desGe3t7JCYmYu7cudi2bRt69OgBpVIJT09PbNy4EQAwa9YspKSkICUlBZ6enlqPPXHiRMTGxmL48OHYtm0bwsPDMWbMGHzzzTdq5QoLC/H6669j+PDh2LRpE9zc3BAREYHMzMwy+zZy5Ehs2rQJc+bMwYoVK3DhwgUsXLhQp/Py1Vdf4cqVK4iPj8ePP/4IABg3bhw+++wzDBs2DDt27MDw4cMxefJkfPfdd+J+V69eRXBwMK5evYqvv/4aW7duxYgRI/DXX38BeHr7EQCMHTtWPD+tW7fW2oZFixZhzJgxePnll7Ft2zYMHz4csbGxmDRpkkbZ119/HeHh4di8eTNatWqF4cOH4+LFi2X2cerUqViyZAkmTpyI9evXQ6lUYsqUKWXu88cff2DAgAFo1qwZNm3ahHXr1iEyMhJZWVkAgE2bNsHDwwMDBgwQ+9erVy8AT38ZDB06FImJiVizZg18fHzQsWNHXLlyRe0Yurzf8+bNw7Bhw9CmTRts3LgR8fHxaNSoEdLT0wEAWVlZ6NChA06fPo1Fixbhp59+glwuR5cuXXDv3r0y+8hqNs407TjTtONMYzUB55p2nGvaca4ZGDGmg5iYGJLL5URENHjwYHrjjTeIiOiTTz6h4OBgIiIKDAykYcOGifv069ePfHx8qKCgQNy2Z88eAkBbt24lIqLr168TAEpMTFQ73rPb09PTSSKR0JQpU9TKRUVFkaurKxUVFYntBEA7duzQqGvVqlWl9u/8+fMkCALFx8eL24qKiqhevXpU8sckKSmJANCJEyfEbQCoadOmpFKpxG3Xrl0jQRAoLi5O7TiTJ08mDw8PUiqV4rl0dXWlnJycUtsGgObNm1fm9qKiInJxcaFBgwaplZk6dSpJpVLKyMggIqJly5YRAFq8eLFYJjc3l2xtbWnGjBmltiEzM5NsbGzo008/VdvesWNHAkDXr18nIs33LTExkQDQgwcPSq3b19eXoqOjS/0+EZFSqaTCwkJq3LgxTZ06Vdyuy/udnZ1Ntra2NHr06FLr/+yzz8jBwYHu3r0rbsvLyyMfHx+aOHFimW1jNRNn2lOcaZxpzHxwrj3Fuca5Zkr4k22mt6ioKGzZsgVPnjxBQkICoqKitJY7cuQIXn31VUgkEnFbeHg4HB0dcfToUb2O+csvv6CwsBADBw5U2/7aa68hPT1d7QqahYUFwsLCxNd169aFjY0N0tLSSq3/xIkTICL069dP3GZpaYm+ffvq1L4ePXqozYS5f/9+AEBERASKiorEr7CwMNy5cwepqakAgAMHDmDAgAGoVauWTscpzaVLl5CRkaH1/BQUFGjc0hMeHi7+v1wuh6+vb5nn5+zZs3jy5Ina+SnuX1latGgBS0tLDB48GNu2bUNOTo6uXcLFixfRr18/uLu7w9LSEhKJBJcvX9a4Wlre+52SkoLHjx9j1KhRpR5r79696Ny5MxQKhfheWVpaIjQ0FCdOnNC5zaxm4kzTxJmmHWcaqyk41zRxrmnHuWZYPEEa09vLL78MiUSCzz77DNevX0dkZKTWcllZWXB3d9fY7u7uLj4LpKviW1mera/4dcn6bGxsIJVK1cpJpVLk5eWVWv/t27chkUjg5OSktf7yPFsuIyMDRAQXFxet5VNTU+Hr64vMzEzUrl1bp2OURZ/zAwCOjo5qr3U5PwDEZ5yerb80fn5+2L59O2bNmoV+/frBwsIC3bt3xzfffAMfH59S93v48CHCw8Ph6uqKBQsWwNfXF9bW1njzzTc12lne+118i1JZ5zkjIwPHjx9X+2OjWIMGDcrsI6v5ONM0caZpx5nGagrONU2ca9pxrhkWD7aZ3iQSCSIiIrBgwQJ07dq11B9ihUKh9RmKu3fvQqFQ6HXM4vL37t1DnTp11Ooq+f2K8vT0RGFhIbKystRCvLj+8pS8UlrcHkEQcPToUY1wAYDGjRsDAJydnXHr1q1KtPzf4wHQON9VeX6K69d2/svSvXt3dO/eHQ8ePMDu3bvx4YcfYsSIEThw4ECp+6SkpCAtLQ3bt29HYGCguD0nJwdeXl56td3Z2RkAcOvWrVL3VSgU6N69O2bMmKHxPZlMptfxWM3DmaaJM610nGmsJuBc08S5VjrONcPh28hZhbz55pt45ZVXMG7cuFLLdOjQAZs3b1abJXLfvn3Izs5Ghw4dAEAMt7Ku1AFAu3btIJFIkJiYqLZ9/fr1cHNzg5+fX0W7AgB44YUXADydBKKYUqnE5s2bK1Rf165dATy9Ute2bVuNL3t7ewBAWFgYNmzYgIcPH5Zal0QiKff8NG7cGK6urlrPj1QqRbt27SrUj2LNmzeHjY2N2vkBgJ9++knnOmrVqoXIyEgMGjRIbYIPbVdqnzx5In6v2LFjx3Djxg292x4cHAxbW1ssW7as1DJhYWG4cOEC/P39Nd6r5s2b631MVvNwppWNM00TZxozdZxrZeNc08S5VvX4k21WIe3atSs33P7zn/8gJCQEvXv3xtixY3H37l1MmTIF7dq1Q8+ePQEAHh4ecHR0xNq1a1GvXj3IZDK0aNFCoy4XFxeMHTsW8+bNg7W1Ndq3b4+dO3dizZo1WLRoUaXXjWzatCn69euHDz74AHl5eahbty6WLFmCgoKCCtXn5+eH6OhoDBkyBBMnTkRQUBAKCwtx5coVJCUliecuJiYG27dvR4cOHTBp0iR4enriwoULePz4sTgzpb+/P7Zs2YKXXnoJcrkcjRs3Fn8BFLO0tMSnn36K999/H25ubujZsyeOHz+OuXPn4oMPPhCvGFaUQqHAmDFjMGfOHNjY2KB169ZYu3Yt/vjjjzL3i4uLQ0pKCrp37w5PT09cv34dP/74o9pzSP7+/jh48CD27dsHJycn1KtXD+3bt4ednR2io6MxZcoU/P3334iJiVG7UqsrBwcHxMTEYPLkyVCpVHj11VehUqmQlJSEqKgotG3bFh999BFWr16N0NBQjBs3Dj4+PkhPT8cvv/yC2rVr48MPP9T7uKxm4UwrG2faU5xprCbhXCsb59pTnGsGVp2zs7Gao+QMl6V5doZLIqLk5GQKDg4mmUxGCoWChg8fTpmZmWplNm3aRP7+/iSTycTZErXNfKlUKmn69Onk4+NDEomEGjVqRN99951O7XRwcKCYmJgy25+VlUWvv/46yeVycnZ2po8++ojmzZun0wyX2magVKlUtGjRIgoICCCpVEoKhYKCg4NpwYIFauXOnz9Pffr0oVq1apGtrS21bNmSEhISxO8fOXKEWrduTTY2NgSAkpKSSj3ut99+S40aNSKJREI+Pj40Y8YMcTZNon9nuExPT1fbT9t796z8/HwaO3YsOTo6Uq1atWjYsGG0atWqMme4PHbsGPXq1Ys8PT1JKpWSj48PjRs3Tm3Gy3PnztFLL71E9vb2BICWLVtGRES7du2iZs2akbW1NbVo0YJ27txJoaGh1KtXL3Fffd7vpUuXUvPmzUkqlZKzszP17t2bbt68KX7/9u3bNGrUKLGtXl5eNGDAAPr555/LPC+sZuJMe4ozjTONmQ/Otac41zjXTIlARGTwET1jjDHGGGOMMfYc4We2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbWYwN27cgCAI2LBhg177JScnY9asWRrbY2NjYWdnV1XNK9fChQuxc+fOKqtv8+bNWLJkicb24cOHIyAgoMqOU9WMfd4ZM2Wca+o41xir2TjT1HGmsarGg21mckoL8DfffBNJSUlGa4exAtzUGfu8M2aOONdMC+caY5XDmWZaONNMl1V1N4DVLESEgoICyGQyox/by8sLXl5eRj/u8yo/Px8SiaTKzntxfRYWfI2PmRbOtecH5xp7HnCmPT8400wfn0lWpuLbZnbu3InAwEDIZDJs27YNAJCSkoIuXbpALpfDwcEBgwcPxr1798qsb+XKlejQoQMUCgWcnJzQqVMn/Prrr+L3Y2NjMW3aNDx69AiCIEAQBHTq1En8XvEtMo8ePYJcLsf8+fM1jjFgwAAEBweLr7Ozs/Huu+/C09MTMpkMbdq0wd69e8tsZ926dXHz5k0sXrxYbMfy5csBACqVCjNnzkTdunUhk8nQpEkTxMXFlXseV6xYgfPnz4v1DR8+XK1McnIyWrVqBblcjnbt2uHUqVNq3ycizJ8/H35+fpDJZKhfvz6+/PLLMo9bfOyAgADs2rULAQEBsLa2Rps2bXD8+HGNPr/33nv44osv4OvrCxsbG9y/f1/rrUk3b97EgAED4ODgALlcjpdffhlnz57Vqb6y2rh//360aNECNjY2CA0NxY0bN3D//n1ERkaiVq1aaNCgAdatW6ex/44dOxAUFAQbGxu4urrinXfewaNHj8TvP3r0CO+99x4aN24MW1tb1K1bF2PGjEFOTo7WNi9evBi+vr5wcHBA3759kZ6eXu55ZjUH5xrnGuca55o54UzjTONMM+FMI8bKMGzYMHJycqIGDRrQsmXL6MCBA3T16lU6duwYSaVS6tu3L23bto0SEhKoYcOG1L59e3Hf69evEwBKTEwUt02bNo3i4uJo//79tHPnThoyZAjJZDK6fPkyERGlpqbSqFGjyMbGhlJSUiglJYXOnz9PREQxMTEkl8vFugYNGkRt2rRRa++DBw/I2tqavv76ayIiys/Pp7Zt25K3tzfFx8fT7t276Y033iArKys6c+ZMqf3+7bffyMPDgwYMGCC24969e0RE9NFHH5GlpSXFxMTQnj17aOzYsQSAFi1aVGp9165do549e1L9+vXF+q5duyaeY2dnZ2revDmtXr2atm/fTs2bNydvb28qKCgQ6xg7dizZ2NjQzJkzad++fTRt2jSSSCT07bfflvseKhQKqlu3Li1fvpy2bNlCwcHBVKtWLbp7965YztfXlzw8POill16iTZs20datW+nx48ca5/3BgwdUt25dql+/Pq1Zs4Y2btxIbdq0IUdHR/rrr7/Kra+0Njo7O1OLFi0oISGBfvrpJ6pTpw6FhIRQWFgYTZ8+nfbu3UsDBw4kKysrunHjhrhvYmIiWVhY0KhRo2jXrl20dOlScnNzo9dee00sc+/ePRozZgwlJiZScnIyrVq1ipo0aUKdOnVSa4evry95e3tTeHg4bdu2jZYtW0aOjo5qdbGaj3ONc41zjXPNnHCmcaZxpplupvFgm5Vp2LBhBICOHz+utr1jx44UEhJCKpVK3Hb+/HkSBIF27NhBRNoDvCSlUkmFhYXUuHFjmjp1qrj92cAobfuWLVsIAF25ckXctmLFCrK0tKQ7d+4QEdHSpUvJyspK/CVQLCgoiAYOHFhm3319fSk6OlptW3p6OkkkEpoyZYra9qioKHJ1daWioqJS6xs2bBg1a9ZM63ZBEOjcuXPitqSkJAJAR44cIaKnvwAEQaC4uDi1fSdPnkweHh6kVCrLPC4AOnDggLgtOzub7O3t1frh6+tLzs7OlJubq7b/s+f9q6++IkEQ6MKFC+K2zMxMksvl9NFHH5VbX2ltfPYcLFq0iADQ5MmTxW1ZWVlkaWlJCxcuJCIilUpFvr6+FBUVpVbfrl27NOorqbCwkI4ePUoAxD8eitvs5eVFeXl5av2XSCRlnmNWs3Cuca5xrnGumRPONM40zjTTzTS+jZyVy9nZGUFBQeLrx48f4+eff8bAgQOhVCpRVFSEoqIi+Pn5wdvbGydOnCi1rosXL6Jfv35wd3eHpaUlJBIJLl++jCtXrujdru7du8PR0REJCQnitoSEBHTu3Bnu7u4AgL1796J58+bw8/MT21lUVIRu3bqV2c7S/PLLLygsLMTAgQPVtr/22mtIT0+vUD8AoHbt2mjWrJn4umnTpgCAtLQ0AMD+/fsBABEREWr9CAsLw507d5Camlpm/Q4ODujSpYva67CwMPzyyy9q5Tp16gS5XF5mXUeOHEFAQAD8/f3FbQqFAt26dcPRo0f1rq/Ys+fAz88PABAWFiZuc3R0hJubm9jfK1eu4ObNm4iMjFQ7L6GhobCwsMDJkyfFfVetWoVWrVrBzs4OEokEHTp0EOsoKTQ0VO05t6ZNm6KwsLDc2+5YzcK59i/ONc41VvNxpv2LM40zzZTwYJuVqzgMi2VlZUGpVOLDDz+ERCJR+/rrr79KDZOHDx8iPDwcN2/exIIFC3DkyBGcOHECgYGByMvL07tdUqkUERERYoBnZmZi3759GDx4sFgmIyMDv//+u0Y7Z86cWW7oaZOVlQVA85wUvy7tOZfyODo6qr2WSqUAIJ6XjIwMEBFcXFzU+tGtWzcAKLcvrq6uGtvc3d1x+/Ztrf0oS1ZWltZy7u7uGv3Xpb5ipZ0DbdtLnhcA6Nevn9p5sbW1hVKpFM/Lpk2bMHToULRr1w7r16/H8ePHsWnTJgDQ+LdX3nvBzAPnmnrfAc41zjVWk3Gmqfcd4EzjTDMNPBs5K5cgCGqvHR0dIQgCPv74Y/Tt21ejvIuLi9Z6UlJSkJaWhu3btyMwMFDcnpOTU+EZFKOiohAfH48zZ84gJSUFlpaW6N+/v/h9hUKBFi1aID4+vkL1P0uhUAAA7t27hzp16ojb7969q/b9qqZQKCAIAo4ePSoGSkmNGzcuc39tk0bcvXsXnp6eatuefa9La8vly5e11vds/3WprzKKj/fNN9+oXdEvVrt2bQBAYmIiWrZsqTY5yqFDhwzaNmbaONf+xbnGucZqPs60f3GmcaaZEh5sM73J5XIEBwfj4sWLmDlzps77PXnyBADUAujYsWO4ceOG2i0pUqkU+fn5OtXZqVMneHh4YO3atUhJSUGPHj3g4OAgfj8sLAw7d+5E7dq1xR9mXZW8KlesXbt2kEgkSExMRKtWrcTt69evh5ubm3g7ja716apr164Anl4RfuWVV/TePycnBwcPHhRvT8rJycH+/fsRHR2td10dOnTAhg0bcPnyZfEXR1ZWFvbv34/Ro0frXV9lNGnSBF5eXvjzzz/L7MuTJ080fvGtXr3a0M1jNQjnGuca5xozJ5xpnGmcaaaBB9usQubNm4cuXbrgtddew6BBg+Dk5IS0tDTs27cPI0aMEJeAKKl9+/aws7NDdHQ0pkyZgr///hsxMTFqVx0BwN/fH0VFRfjqq68QEhKCWrVqlXo10NLSEpGRkVi+fDnu3bun9kwQAAwdOhRxcXHo1KkTJkyYAD8/P2RnZ+P3339HQUEBZs+eXWof/f39cfDgQezbtw9OTk6oV68eXFxcMHbsWMybNw/W1tZo3749du7ciTVr1mDRokWwtLQss76lS5di7dq1aNSoEVxcXFC3bt3ST3IJfn5+iI6OxpAhQzBx4kQEBQWhsLAQV65cQVJSEjZv3lzm/gqFAqNGjcK0adPg6OiIOXPmgIjwwQcf6HT8kkaMGIEvv/wSvXr1wsyZM2FtbY3PP/8cVlZWFaqvMgRBwIIFCzB48GA8evQIvXr1glwux82bN7Fjxw7MmjULfn5+6NatG6KjozFjxgwEBwdj586dOHDggFHbykwf5xrnGucaMyecaZxpnGkmoDpnZ2Omr7RZGYmITpw4QT179iQHBweysbGhRo0a0ZgxYyg1NZWItM9wuWvXLmrWrBlZW1tTixYtaOfOnRQaGkq9evUSyxQWFtK7775L7u7uJAgChYaGElHpM1+mpKQQALKzs9O6XEFOTg59+OGH5OPjQxKJhDw9Palnz560ffv2Mvt+7tw5eumll8je3p4A0LJly4jo6cyc06dPF+tr1KgRfffdd2XWVdyOQYMGkbOzMwGgYcOGEZH2c5yVlaV2TKKnszkuWrSIAgICSCqVkkKhoODgYFqwYEGZxy2uf/v27eTv709SqZRatWpFP//8s1o5bTN6Emk/7zdu3KD+/fuTvb092draUrdu3TSW5yitvrLaWFLxLJ8nTpwot969e/dSaGgoyeVyksvl1KxZMxo/fjxlZ2cTEVFRURGNHz+eXF1dyd7engYMGEDHjx/X+Pepre5NmzYRALp+/bpOfWGmj3ONc41zjXPNnHCmcaZxpplupglERMYb2jPGjG348OE4efIkzp07V91NYYyxKsG5xhgzJ5xp5otnI2eMMcYYY4wxxqoYD7YZY4wxxhhjjLEqxreRM8YYY4wxxhhjVYw/2WaMMcYYY4wxxqoYD7YZM7B27dph8eLFpX7/9OnTEAQBycnJBjl+t27d8PnnnxukbsbY84czjTFmbjjXmKHwYJsxA9q0aRNu3LiBkSNHVlsbPv74Y8yfPx9ZWVnV1gbGmHngTGOMmRvONWZIPNhmzIAWLlyIqKgo2NjYVFsbOnfuDCcnJ6xYsaLa2sAYMw+caYwxc8O5xgyJB9uMGcj169dx5MgRDBgwQG37zJkz4eHhATs7O/Tv3x/37t3T2JeIMH/+fPj5+UEmk6F+/fr48ssvNcpt2rQJjRs3hrW1Ndq3b4/ffvsNjo6OiI2NVSs3cOBADnDGWKVwpjHGzA3nGjM0HmwzZiAHDhyAlZUV2rVrJ2775ptv8Omnn2LIkCH46aefUL9+fYwaNUpj33HjxuGzzz7DsGHDsGPHDgwfPhyTJ0/Gd999J5b5/fffMXDgQDRt2hQbN27EsGHD8NprryE/P1+jvpCQEJw+fRrp6emG6SxjzOxxpjHGzA3nGjM4YowZxOjRo6lZs2bi66KiIqpduzYNGTJErdyQIUMIACUlJRER0bVr10gQBIqLi1MrN3nyZPLw8CClUklERAMHDqSGDRuKr4mIVq1aRQAoJiZGbd/r168TANq+fXsV9pAx9jzhTGOMmRvONWZo/Mk2YwZy+/ZtuLq6iq/T0tJw69Yt9OvXT63cs7cu7d+/HwAQERGBoqIi8SssLAx37txBamoqAODEiRPo3bs3LCz+/TF+9dVXtbbFxcVFbBNjjFUEZxpjzNxwrjFDs6ruBjBmrvLy8iCTycTXxeHp5uamVs7d3V3tdUZGBohIDN1npaamwtfXV+MXBADY29vD2tpaY5/idjx58kT/jjDGGDjTGGPmh3ONGRoPthkzEIVCgRs3boivPT09AUBjko27d+9q7CcIAo4ePQqpVKpRb+PGjcX6nn2u5+HDh8jLy9PYJzs7GwDg7Oysdz8YYwzgTGOMmR/ONWZofBs5YwbSuHFjXL9+XXzt5eUFT09PbNq0Sa3chg0b1F537doVAJCZmYm2bdtqfNnb2wMAXnjhBWzfvh0qlUrcd/PmzVrbUvyLpDj8GWNMX5xpjDFzw7nGDI0/2WbMQF588UVMnz4daWlp8PLygqWlJaZMmYJx48bB3d0d3bp1w969e5GUlKS2n5+fH6KjozFkyBBMnDgRQUFBKCwsxJUrV5CUlCSG9NSpU/HCCy8gIiICo0ePxs2bNzF//nxYW1urPRsEACdPnoSdnR1atmxppN4zxswNZxpjzNxwrjGDq+YJ2hgzW/n5+eTs7Ezff/+9uE2lUtG0adPIzc2NbG1tqU+fPrR79261GS6Lyy1atIgCAgJIKpWSQqGg4OBgWrBggdoxfvrpJ/Lz8yOZTEZt2rSho0ePkpWVFS1cuFCt3CuvvKIxsyZjjOmDM40xZm4415ihCURE1TzeZ8xsjR8/Hr///jsOHjxolOMdOHAAYWFhSE5ORmhoKAAgKysLHh4e2LdvHzp27GiUdjDGzBNnGmPM3HCuMUPiwTZjBnT79m00bNgQx44dQ2BgYJXX/+6776Jr165wdnbG+fPnMWPGDNSuXRsnT54Ub0+aPn06kpOTjfZLhDFmvjjTGGPmhnONGRI/s82YAXl6emL58uUaM1FWlaysLIwdOxYZGRlwcHBA9+7dMX/+fLXngBQKBb7++muDHJ8x9nzhTGOMmRvONWZI/Mk2Y4wxxhhjjDFWxXjpL8YYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIr9P9RQOd8saC3CAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPz0lEQVR4nOzdeVxUVf/A8c8ddhBZBBFcUHBfMKX0SVPcyyX3stQ0U1PL1Eqfxx1wLy21Vc0lNVN/WrZYPi2WZk9mpRWaueSuoIKCIiDbnN8fw4wMMwMziODyfb/yRdx7584B8cv53nPO92hKKYUQQgghhBBCCCFKjK6sGyCEEEIIIYQQQtxtJNkWQgghhBBCCCFKmCTbQgghhBBCCCFECZNkWwghhBBCCCGEKGGSbAshhBBCCCGEECVMkm0hhBBCCCGEEKKESbIthBBCCCGEEEKUMEm2hRBCCCGEEEKIEibJthBCCCGEEEIIUcIk2RbiNrZjxw40TWPz5s1l3RQhhLhpJ0+eRNM0FixYUNZNEUIIh1WvXp1u3bqVdTPEHUSSbXHH+PXXXxk9ejQNGjTAy8uLatWq8fjjj3PkyJFCX5ednU39+vWtdvBSUlIYMGAAfn5+hIWFsWLFCovX//bbb3h6enLixIkS/XqEEPe2a9euER0dzSOPPIK/vz+apvH+++9bXKfX63n//ffp3r07VatWxcvLi4YNGzJr1iyuX79udm1mZiYvvPACgYGBVKlShVmzZlnc7+zZs5QrV47//e9/t+pLE0IIC/v27aN79+74+/vj6elJw4YNeeONN8yuWbp0KTVq1MDf35+nnnqKq1evmp3X6/U0adKEOXPmlGbThSg257JugBD2euWVV/jf//7HY489RkREBOfPn+ett96iadOm/PzzzzRs2NDq6958801Onz5t9dz48ePZsWMHsbGx/PPPPwwfPpx69erRokULAJRSjBkzhnHjxlGjRo1b9rUJIe49SUlJzJgxg2rVqtG4cWN27Nhh9br09HSGDBnCv/71L0aOHEnFihXZvXs30dHRbN++ne+++w5N0wCYP38+a9asYcqUKaSmpjJjxgzCw8N58sknTfebMGEC3bt3p2XLlqXxZQohBF9//TWPPvooTZo0Ydq0aZQrV45jx45x9uxZ0zU//vgjo0aNYsyYMYSFhTF37lwmTJjA0qVLTde89957XLlyhZdffrksvgwhHKeEuEP873//U5mZmWbHjhw5otzc3NSAAQOsvubChQvKx8dHzZgxQwFq/vz5ZueDgoLU6tWrTZ9HRUWpiRMnmj5fu3atCgkJUampqSX4ldjv+++/V4DatGnTLX2fa9eu3dL7CyEsXb9+XSUkJCillPr1118VoFatWmVxXWZmpvrf//5ncTw2NlYB6ptvvjEda968uYqNjTV9PnjwYPXEE0+YPt+1a5fy8vJSZ86cKcGvxH4nTpywGotLmsQ0IW4fV65cUUFBQapXr14qNzfX5nX/+c9/VNu2bU2fr1q1SlWqVMn0eXJysgoICFAfffTRLW1vYUJDQ1XXrl1v6XtkZ2db9HfFnUumkYs7RosWLXB1dTU7VqtWLRo0aMDff/9t9TUTJ06kTp06DBw40Or5jIwM/Pz8TJ/7+/uTnp4OQFpaGhMnTmTu3LmUK1fOobaeO3eOoUOHEhISgpubGzVq1GDUqFFkZWWZrjl+/DiPPfaYaTrVv/71L7744gur99Pr9cyePZsqVarg7u5O+/bt+eeffyyu27NnD4888gg+Pj54enoSFRVlMVU0JiYGTdM4ePAg/fv3x8/Pj4ceesh0/oMPPiAyMhIPDw/8/f154oknOHPmjNk92rRpQ8OGDTl48CBt27bF09OTypUr8+qrr1q06fr168TExFC7dm3c3d0JDg6md+/eHDt2zOzrW7RoEQ0aNMDd3Z2goCBGjBhBcnKyfd9wIe5Abm5uVKpUqcjrXF1dTbNt8uvVqxeAWfwrLKbp9XrGjh3Lv//9b6pUqeJQW1NSUnjxxRepXr06bm5uVKlShUGDBpGUlGS65uLFiwwdOpSgoCDc3d1p3Lgxq1evtnnPZcuWER4ejpubGw888AC//vqrxTWHDh2ib9+++Pv74+7uzv33389nn31mds3777+Ppmns3LmT5557jooVK5p9fdu2baNVq1Z4eXnh7e1N165d+euvv8zu8fTTT1OuXDnOnTtHz549KVeuHIGBgYwfP57c3Fyza/V6PYsXL6ZRo0a4u7sTGBjII488wm+//WZ2nT2xVIh7wYcffsiFCxeYPXs2Op2OtLQ09Hq9xXWFxS8w9F8aNWpE7969HXp/e/7N5uTkMHPmTFNMql69OpMnTyYzM9PqPX/88UeaNWuGu7s7YWFhrFmzxuKalJQUxo0bR9WqVXFzc6NmzZq88sorZl97/joWixYtMr3/wYMHAcdi4P/+9z9eeuklAgMD8fLyolevXiQmJlq0a9u2bURFReHt7U358uV54IEH+PDDD82usac/KexU1tm+EDdDr9erypUrq06dOlmc27Nnj9LpdOqnn36yOZrSvn171aZNG3XkyBH13//+V3l4eKgPPvhAKaXU5MmTVbNmzZRer3eoTefOnVMhISHK09NTjRs3Ti1ZskRNmzZN1atXTyUnJyullDp//rwKCgpS3t7easqUKer1119XjRs3VjqdTn388cemexlHtps0aaIiIyPVwoULVUxMjPL09FTNmjUze9/t27crV1dX9eCDD6rXXntNLVy4UEVERChXV1e1Z88e03XR0dEKUPXr11c9evRQ77zzjnr77beVUkrNmjVLaZqm+vXrp9555x0VGxurAgICVPXq1U1tV8owAyAkJERVrVpVjR07Vr3zzjuqXbt2ClBffvml6bqcnBzVvn17BagnnnhCvfXWW2ru3LmqXbt26pNPPjFdN2zYMOXs7KyGDx+ulixZov7zn/8oLy8v9cADD6isrCyHvv9C3IkKG9m25euvv1aA+vDDD03Hhg4dqho2bKji4uLUTz/9pCpVqqRmzZqllFJq2bJlqlq1aio9Pd2htqWmpqqGDRsqJycnNXz4cPXuu++qmTNnqgceeED9/vvvSiml0tPTVb169ZSLi4t68cUX1RtvvKFatWqlALVo0SLTvYyxuEmTJqpmzZrqlVdeUa+++qoKCAhQVapUMfv3fuDAAeXj46Pq16+vXnnlFfXWW2+p1q1bK03TzOLkqlWrTDEtKipKvfnmm2revHlKKaXWrFmjNE1TjzzyiHrzzTfVK6+8oqpXr658fX3ViRMnTPcYPHiwcnd3Vw0aNFDPPPOMevfdd1WfPn0UoN555x2z78fTTz+tANW5c2e1aNEitWDBAtWjRw/15ptvmq6xN5YKcS/o06ePKl++vPrmm29U7dq1FaC8vLzUyJEjVUZGhum6tWvXKk9PT/XVV1+pI0eOqNatW6sOHToopZT666+/lJubm/rzzz8dfn97/s0OHjxYAapv377q7bffVoMGDVKA6tmzp9m9QkNDVZ06dVRQUJCaPHmyeuutt1TTpk2VpmnqwIEDpuvS0tJURESEqlChgpo8ebJasmSJGjRokNI0TY0dO9Z0nTEm1q9fX4WFhal58+aphQsXqlOnTjkcA5s0aaLatWun3nzzTfXyyy8rJycn9fjjj5u1f9WqVUrTNNWwYUM1e/Zs9fbbb6thw4app556ynSNvf1JYR9JtsUdbe3atQpQK1asMDuu1+tVs2bN1JNPPqmUsj11MS4uTlWpUkUBClB9+vRRubm56vjx48rDw0Pt3r3b4TYNGjRI6XQ69euvv1qcMybu48aNU4DatWuX6VxqaqqqUaOGql69ummalTHZrlevntmUosWLFytA7d+/33TfWrVqqYcfftjs4UB6erqqUaOG6tixo+mYMdk2fm+MTp48qZycnNTs2bPNju/fv185OzubHY+KilKAWrNmjelYZmamqlSpkurTp4/p2MqVKxWgXn/9dZvfi127dilArVu3zuz8f//7X6vHhbgbFSfZ7tChgypfvrxZ8nbmzBnVoEEDU0xr1aqVSk1NVSkpKSowMFBt2LDB4bZNnz5dAWadOyPjv+NFixYpwPSwUimlsrKy1IMPPqjKlSunrl69qpS6EYsrVKigLl++bLr2008/VYD6/PPPTcfat2+vGjVqpK5fv272fi1atFC1atUyHTN2NB966CGVk5NjOp6amqp8fX3V8OHDzdp8/vx55ePjY3bc2NGeMWOG2bXGB51G3333nQLUmDFjbH4vHImlQtwLIiIilKenp/L09FQvvPCC+uijj9QLL7xgehBvlJOTo3r37m2KX1WrVlVxcXFKKaU6deqkRo4c6fB72/Nv9o8//lCAGjZsmNn58ePHK0B99913pmOhoaEKUD/88IPp2MWLF5Wbm5t6+eWXTcdmzpypvLy81JEjR8zuOXHiROXk5KROnz6tlLoRE8uXL68uXrxodq2jMbBDhw5mfcAXX3xROTk5qZSUFKWUUikpKcrb21s1b97c7CFH/u+FI/1JYZ8yT7YvXLigTp06ZfFHiKL8/fffqnz58urBBx8062ApZUjyPDw8LIKZtXWCGRkZ6tdff1VHjx41HevVq5caOHCgUkqpjz76SEVERKjq1aur2NjYQke6c3NzVfny5VWPHj0KbXvt2rUtRqaVUmru3LlmSbQx2X711VfNrtu3b58C1Keffmr2+erVq1ViYqLZn2HDhik3NzdTAm9Mtnfu3Gl2z9dff11pmqaOHj1qcY969eqZni4rZUi2y5UrZ/G96N69u2rSpInp865du6qAgACVnZ1t83sxZswY5ePjoy5evGjxvuXKlbP45SfE3cjRZHv27NlWR12VMiS5v//+u/rrr79M/+5ffPFF9dBDDymlDA+4mjVrpqpUqaJeeOGFItcGNmjQQDVu3LjQazp16qQqVapksR5z/fr1Zkm0MRY/99xzZtddvnxZAWrx4sVKKaUuXbqkNE1TM2fOtIgLxrXqZ8+eVUrd6Gjmr7+hlFIff/yxqaNc8B6dOnVSNWvWNF1rTLYLdnbHjBmj/Pz8TJ8///zzStM0denSJZvfC0diqRD3grCwMAVYJMsjRoxQgEVCevToUfXbb7+ZEsJPP/1U+fr6qsTERHX27FnVrVs3FRwcrLp166bOnTtX6Hvb8292zpw5ClAHDx40O56QkKAAsyQ6NDRU1a9f3+IeERERqlevXmafP/LIIxYx4NtvvzV7MGmMiUOGDDG7X3Fi4P/93/+Z3cMYA42zATZt2qQAtWXLFpvfC0f6k8I+ZVKN/NKlS7zwwgt8/PHHZGdnm51TSqFpmsUaKSHyO3/+PF27dsXHx4fNmzfj5ORkOnf16lUmTZrEhAkTqFq1apH3Mq6BMfruu+/4+uuvOXz4MIcPH+aJJ55g6dKlVK9enSeffJKqVasyZMgQq/dKTEzk6tWrNiujG506dYrmzZtbHK9Xr57pfP57VKtWzew645om45rmo0ePAjB48GCb73nlyhWztVAFq6sfPXoUpRS1atWy+noXFxezz6tUqWKqgJy/XXFxcabPjx07Rp06dXB2th1qjh49ypUrV6hYsaLV8xcvXrT5WiHuRRs3bmTq1KkMHTqUUaNGWZx3cXHhvvvuM31+6NAh3nnnHX766ScuX75M165dmThxIm3btmXIkCHMnj2b2NhYm+937Ngx+vTpU2ibTp06Ra1atdDpzEvB5I9p+RUV0/755x+UUkybNo1p06ZZfc+LFy9SuXJl0+fWYhpAu3btrL6+fPnyZp8b13IWbFf+2hHHjh0jJCQEf39/q/c0vq8jsVSIu52HhweA2a4IAP3792fp0qXs3r3b7N9LzZo1Tf+flZXFyy+/THR0NAEBAbRq1Yrg4GA+//xz5s2bR//+/W3u5AD2/Zs9deoUOp3O7H0BKlWqhK+vb5HxCyxjxdGjR4mLi7OIKUYF+zYF41dxYmBRcdVYK6ewPmpx+pOicGWSbA8bNoydO3cyadIk6tevb1H0SojCXLlyhc6dO5OSksKuXbsICQkxO79gwQKysrLo168fJ0+eBDBtLZGcnMzJkycJCQmx+nOXm5vL2LFjmThxIpUrV2bmzJm0aNHClFyPGDGCdevW2Uy2b5X8DxPyU0oBmIptzJ8/36yTnV/BIm/GX35Ger0eTdPYtm2b1fcr+Pqi2mQvvV5PxYoVWbdundXztn5RCXEv+uabbxg0aBBdu3ZlyZIldr3mxRdfZODAgTRt2pS1a9fi7+/PpEmTAPj3v/9dZLJ9K9gb08aPH8/DDz9s9dqCHWNrMQ1g7dq1VgvRFXwIaKtNjnI0lgpxtwsJCeGvv/4iKCjI7LjxIXthxVAXLlyIs7Mzo0eP5syZM/z444+cOHGC6tWr8+qrrxIWFsbZs2cdLvpoTcEBBFvs6f/o9Xo6duzIv//9b6vX1q5d2+xzW/HLkRhYEv2y4vQnReHKJNn+/vvveeONNxg0aFBZvL24g12/fp1HH32UI0eO8O2331K/fn2La06fPk1ycjINGjSwODdnzhzmzJnD77//bjWIvPvuu6SmpjJ+/HgA4uPjzZL5kJAQzp07Z7N9gYGBlC9fngMHDhT6dYSGhnL48GGL44cOHTKdd0R4eDhgGKnp0KGDQ6/Nfw+lFDVq1LD4JVBc4eHh7Nmzh+zsbJujOeHh4Xz77be0bNnS4peNEOKGPXv20KtXL+6//37+7//+r9AZI0Zbt27lp59+Mo1WxMfHExwcbDpfVEwDw79Re2JaXFwcer3ebHS7uDEtLCwMMIwC30xMA0OHvrj3sHbPr776isuXL9scKbsVsVSIO1lkZCTffPMN586do06dOqbj8fHxgO2H6gkJCcyaNYtNmzbh7Oxsut7YLzN+PHfunM1k255/s6Ghoej1eo4ePWqajQNw4cIFUlJSHI5fxve9du1asWNPScRAa20COHDggEWiXvCam+lPCnPF2vrrr7/+4oknnjCVp9+3bx8AU6ZMYdu2bUW+3tfXl4CAgOK8tbiH5ebm0q9fP3bv3s2mTZt48MEHrV43ZswYtmzZYvZn6dKlgGF7ly1btlhM1wG4fPky0dHRzJ8/H3d3dwCCgoJMnUUwbLFT2FY9Op2Onj178vnnn1tsAwM3ni526dKFX375hd27d5vOpaWlsWzZMqpXr271IUJhIiMjCQ8PZ8GCBVy7ds3ivLWtHwrq3bs3Tk5OxMbGWjwFVUpx6dIlh9oE0KdPH5KSknjrrbcszhnf4/HHHyc3N5eZM2daXJOTk0NKSorD7yvE3ebvv/+ma9euVK9ena1bt9r1YCorK4uXXnqJqVOnmkaQgoKC+Oeff8jJyTHdt6jtx/r06cOff/7Jli1bLM7lj2nnz59n48aNpnM5OTm8+eablCtXjqioKLu/VjAkyG3atGHp0qUkJCRYnLcnpj388MOUL1+eOXPmWCxZs/ceBfXp0wellNWZAMbvxa2IpULcyR5//HEAVqxYYXZ8+fLlODs706ZNG6uvmzhxIq1bt+aRRx4BMI2MG/tlxm0PC4th9vyb7dKlCwCLFi0yO//6668D0LVrV5v3t+Xxxx9n9+7dfPXVVxbnUlJSTDHYlpKIgQV16tQJb29v5s6dy/Xr183OGb8XJdGfFOYcHtn+5ptv6Nq1K5GRkQwYMIBZs2aZzrm4uPDOO+/QuXPnQu/x73//mzfffJNOnTrZ9WReCICXX36Zzz77jEcffZTLly/zwQcfmJ037qXdtGlTmjZtanbOOJ28QYMG9OzZ0+r9p02bRqNGjXjsscdMx/r06cOMGTMYNWoUoaGhLF261BR8bZkzZw5ff/01UVFRPPvss9SrV4+EhAQ2bdrEjz/+iK+vLxMnTmT9+vV07tyZMWPG4O/vz+rVqzlx4gQfffSRxbrHouh0OpYvX07nzp1p0KABQ4YMoXLlypw7d47vv/+e8uXL8/nnnxd6j/DwcGbNmsWkSZM4efIkPXv2xNvbmxMnTrBlyxaeffZZ04i/vQYNGsSaNWt46aWX+OWXX2jVqhVpaWl8++23PPfcc/To0YOoqChGjBjB3Llz+eOPP+jUqRMuLi4cPXqUTZs2sXjxYvr27evQ+wpxp3jrrbdISUkxjdh8/vnnpmUvL7zwAj4+PqSmpvLwww+TnJzMhAkT+OKLL8zuER4ebvXh4+LFiwEYO3as6ViXLl14/vnn6d+/Py1atGDmzJkMGzas0DZOmDCBzZs389hjj/HMM88QGRnJ5cuX+eyzz1iyZAmNGzfm2WefZenSpTz99NPs3buX6tWrs3nzZv73v/+xaNEivL29Hf7evP322zz00EM0atSI4cOHExYWxoULF9i9ezdnz57lzz//LPT15cuX59133+Wpp56iadOmPPHEEwQGBnL69Gm++OILWrZsafVBYGHatm3LU089xRtvvMHRo0d55JFH0Ov17Nq1i7Zt2zJ69OhbEkuFuJM1adKEZ555hpUrV5KTk0NUVBQ7duxg06ZNTJo0yWI5IMAvv/zCxo0bzerAVK9enfvvv5+nn36aoUOHsnz5cpo3b17oyLM9/2YbN27M4MGDWbZsGSkpKURFRfHLL7+wevVqevbsSdu2bR3+midMmMBnn31Gt27dePrpp4mMjCQtLY39+/ezefNmTp48WeTA483GwILKly/PwoULGTZsGA888AD9+/fHz8+PP//8k/T0dFavXl0i/UlRgKMV1SIjI017sWVnZytN09TevXuVUkp98sknqnLlykXeY/To0apatWqqWrVq6qmnnlIvvPCC2R9r5fmFMG43ZetPYQqrRq6UYQswV1dX056x+b3//vuqevXqqkKFCuqll16yqHxuzalTp9SgQYNUYGCgcnNzU2FhYer55583q/p77Ngx1bdvX+Xr66vc3d1Vs2bN1NatW83uY6xGvmnTJqtfT8HKxb///rvq3bu3qlChgnJzc1OhoaHq8ccfV9u3bzddY6xGnpiYaLXtH330kXrooYeUl5eX8vLyUnXr1lXPP/+8Onz4sOmaqKgo1aBBA4vXDh48WIWGhpodS09PV1OmTFE1atRQLi4uqlKlSqpv377q2LFjZtctW7ZMRUZGKg8PD+Xt7a0aNWqk/v3vf6v4+Hir7RTibmDcRsbaH+M+0MZ/77b+DB482OK+58+fV97e3uqzzz6zOLdt2zZVt25d5evrqwYNGqTS0tKKbOelS5fU6NGjVeXKlZWrq6uqUqWKGjx4sEpKSjJdc+HCBTVkyBAVEBCgXF1dVaNGjSxiVGGxGFDR0dFmx44dO6YGDRqkKlWqpFxcXFTlypVVt27d1ObNm03XGCvxWttuUSlDHH344YeVj4+Pcnd3V+Hh4erpp59Wv/32m+mawYMHKy8vL4vXGuNlfjk5OWr+/Pmqbt26ytXVVQUGBqrOnTub+kJG9sRSIe4VWVlZKiYmRoWGhioXFxdVs2ZNtXDhQqvX6vV61bx5c/XSSy9ZnPvnn39U69atVbly5VTr1q0t+hLW2PNvNjs7W8XGxpr6KlWrVlWTJk0y23ZLKUPM7tq1q8V7REVFqaioKLNjqampatKkSapmzZrK1dVVBQQEqBYtWqgFCxaorKwspVTR/dObiYHGPuT3339vdvyzzz5TLVq0UB4eHqp8+fKqWbNmav369WbX2NOfFPbRlHKsmpG7uzuff/45HTt2JDc3FxcXF3777TeaNm3Kzp07efjhhy2mJhRkbQpvfpqmcfz4cUeaJYQQQgghhBBC3DYcnsPt7+9vmu5W0JEjR8wKr9hy4sQJR99WCCGEEEIIIYS4YzhcIK1nz55ER0ebVVLWNI3z58+zYMGCIvfivBP9888/jBw5kvvuuw9nZ2eb+9OlpKQwZswYQkJCcHd3Jzw8nNdee83smqysLCZMmEClSpXw8vKiY8eOVqtSCyHErSIxTQhxN5GYJoS4XTk8sj137lx+/fVXIiIiaNSoEQDPPPMMx48fp06dOsTExNh9r3/++YcjR45YnXbeu3dvR5t2y/z111988cUXNG/eHL1eb9qDLr+0tDTatGmDs7MzCxcuJCgoiCNHjnD16lWz68aMGcOGDRt4/fXXqVy5MrNnz6Z9+/b89ddf+Pj4lNaXJIS4h0lME0LcTSSmCSFuW8VZ6J2VlaVWrlypnnzySdWxY0fVr18/9d5775kVfyrMlStXVLt27ZROp1M6nU5pmqY0TTN9rtPpitOsWyY3N9f0/4MHD7ZaGGrq1KkqLCxMXbt2zeZ9zpw5o5ycnNTSpUtNxy5duqS8vLzUK6+8UrKNFkIIGySmCSHuJhLThBC3q2Lts+3i4sKQIUP48MMP+frrr9mwYQPDhg3D1dXVrtf/5z//4fz58+zatQulFFu2bGHHjh0MHTqUGjVq8PPPPxenWbeMPdswLV++nGeeeQYvLy+b13z99dfo9XqzraX8/f3p1KkTX375ZYm0VQghiiIxTQhxN5GYJoS4XTmcbP/55582A86XX35pth+eLf/973+ZMmUKzZs3ByAkJITWrVuzbNkyevToYbF+5nZ38uRJzp8/T0BAAN27d8fNzQ1/f3+GDx9utiH8oUOHqFixIn5+fmavr1evHocOHSrtZgshhFUS04QQdxOJaUKIsuJwsv3iiy+ye/duq+d++eUXXn755SLvcfHiRapWrYqTkxNeXl5cunTJdK5Lly7897//dbRZZer8+fMAjB8/Hj8/P7788kvmzJnDpk2bGD58uOm65ORkfH19LV7v5+fH5cuXbd4/MzOTq1evmv5cuXKFxMRElGO7tgkhhF0kpgkh7iYS04QQZcXhZPuPP/6gZcuWVs89+OCD7Nu3r8h7VK1alaSkJABq1arFZ599Zjq3e/du3N3dHW1WmTIW4qhduzarV6+mffv2jBw5kgULFrBhw4ab3jN87ty5+Pj4mP74+vpSsWJFUlNTS6L5QghhRmKaELePhH37iNU0Egr0rxw9fi+TmCaEKCsOJ9uZmZlkZWXZPGetsnhBHTt25NtvvwUMI+VLliwhMjKSBx98kOjoaAYNGuRos8qUcbpR27ZtzY63b98eMFTJNF535coVi9cnJyfj7+9v8/6TJk3iypUrpj9nzpwpqaYLIYQFiWlCiLuJxDQhbh+pCQnsiIkhNSGhrJtSKhze+qtJkyasWbOG7t27W5xbs2YNjRs3LvIer7zyCunp6QA89dRTlCtXjs2bN5ORkcFbb73FiBEjHG1WmQoPD8fNzc3meeMDiLp163LhwgWSk5PN1gMdOnSIunXr2ny9m5tbofcXQoiSJDFNCHE3kZgmxO3jWkICO2NjqdO9O97BwWXdnFvO4ZHtSZMmsWXLFrp27crmzZv56aef2Lx5M127duWTTz5hypQpRd7D09OTgIAA0+e9evVi3bp1fPzxx4waNcquqpK3E1dXVzp16sT27dvNjn/zzTcANG3aFIBOnTqh0+n46KOPTNckJyfz9ddf06VLl9JrsBBCFEJimhDibiIxTQhRVhwe2e7atSsffvghEyZM4PHHH0fTNJRSVKlShQ8//JCuXbvafa+///6b3377jTNnzvDMM89QqVIl/vnnH4KCgvD29na0abdMenq6qQL7qVOnuHr1Kps3bwYgKiqKwMBAoqOjadGiBQMGDGDw4MEcPXqUSZMmMWDAAMLDwwGoUqUKw4YNY8KECTg5OVG5cmXmzJmDj4/PHTeaL4S4c0lME0LcTSSmCXH7SU1IYO/SpUSOGGHXCLaj198xbmaT7kOHDqn//e9/6tChQw69Li0tTT355JPKyclJOTs7K51Op/bu3auUUqpv375qwoQJN9OsEnfixAkFWP3z/fffm6779ttv1f3336/c3NxUpUqV1Msvv6yuX79udq/r16+rl19+WVWsWFF5eHioDh06qL///tuh9ly5ckUB6sqVKyXx5Qkh7jES04S4c8Tv3atiQMXn9ZOKe/xuJjFNiNuPxC4Dh0e286tTp06xXjd+/Hi+++47vvzyS1q1aoWXl5fpXJcuXVi4cCGvvvrqzTStRFWvXt2u7Rvat2/Pr7/+Wug1bm5uLFiwgAULFpRU84QQwiES04S4u7l4epZ1E0qVxDQhxO2qWMn24cOH+eijjzh79qxF9XFN01ixYkWhr9+8eTPz58+nU6dO5Obmmp2rXr06J0+eLE6zhBBCCCHuWUopgiIimJyWhj4nB6UUmqaVdbOEEOKe5XCyvXbtWoYMGYK7uzuhoaG4urqanbcnqF+7do1gG3Px09LSHG2SEEIIIcQ9Ten1pMbHs3fpUi4fO4Z/eLhh7WNICNodVnhWCCHuFg4n2zNnzqRv376sXLkSz2JOU4qIiOCjjz6iU6dOFue++OIL7r///mLdVwghhBDiXuLs4YHS64n74AM+GzoUfU6O6dyP8+bRfcUKIgYOlIRbCCHKgMPJdnx8PO+++26xE22AadOm0aNHD9LT03nsscfQNI1ffvmF9evXs3LlSlNFSSGEEEIIYZtXYCCp8fEWiTaAPieHz4YOpUb79oYRbplSLoQoQXdtBfES5PBjztatW3PgwIGbetOuXbuyYcMGfvzxR3r27IlSiueee46NGzeybt062rdvf1P3F0Lcm1ITEtgRE0NqQkJZN0UIIW45Fy8v3H192bt0qUWibaTPyWHvkiUovb6UWyeEuNtdS0hgZ2ws16TfZZPDI9tz5sxh4MCBuLu707FjR3x9fS2u8ff3L/I+ffv2pW/fvhw5coSkpCT8/f2pW7euo80RQgiTawkJ/DR/PnW6d5cnrEKIu0bB6uKmQmjXrgFw+dixQl+ffPw4OienW9Y+IYQQ1jmcbDdt2hSAUaNG2ZyOVLDCeGFq165N7dq1HW2GEEKYkSq8Qoi7jbW4hlI3CqEdP06PlSvxDw8v9D5+YWHoc3Ml4RZCFItMFy8+h5PtlStXlkgH9syZM3zyySecOXPG6vZhixcvvun3EELcG6QKrxDiTmatI1swrlVt2ZIHRo2yKIQW1qEDTYYO5cd586xOJdc5OxM5cqTEQiFEsRmni8vMQcc5nGw//fTTN/2m//d//8dTTz2FXq+nYsWKVrcPk2RbCGEPqcIrhLjTFezIWotrYR07cuX0aYtYt2fRIiIGDuTR5cv5fNgws3M6Z2e6r1yJd3CwzPQRQogy4HCyXRImT55Mz549WbZsGT4+PmXRBCHEXUDlTaeUKrxCiLuF1bimaTTs148f5861iHUX4uL4ZNAgeq5ZQ4127di3bBnJx4/jFxZG5MiRhkRbHjgKIUSZKFay/cMPP7Bs2TKOHDliMQUcIC4urtDXJyYm8uyzz0qiLYS4KUqvt6sKb1RMDJqsVRRC3AGsxTUXDw9cPD1tFkI7sGEDiQcP8sjixUTFxKBzckKfk4Pm5CQPGoUQogw5/Kjzq6++ol27diQlJfHbb79RtWpVAgICOHz4MGlpadx///1F3uORRx7h559/LlaDhRDCSOfkJFV4hRB3DU2nsxrXsjMyyE5PL7QQ2oW4OE5s3w5KMcfLiwtxcZJoCyFEGXN4ZDs6Oppx48bxyiuv4OLiwsyZM2natCmnTp3i4Ycfpl27dkXeY8mSJfTr14/09HTat29vdfswY9VzIYTITymFys1F5+yMPjdXqvAKIe4KLp6eKL3eelxTigMbN9pVCO16SgrZ6eml1GohhBCFcXhk+++//6Zz587odDo0TSMtLQ2A0NBQYmJimDVrVpH3SE1NJT09nblz59KxY0ceeOAB05/777+fBx54wPGvRAhx11N6PannzrEzNpaP+vfnwp9/EjliBDpn688NpQqvEOJ2l397r6CICDSdzmpc27NoEd6VK/Po8uUW5/IXQktLTCzN5gshhCiEwyPb7u7u6PV6NE0jODiYY8eO0apVKwC8vb05c+ZMkfcYNGgQp0+f5s0336R27doW1ciFEKIga9V5E//6i+G//SZVeIUQdyRr2xY+MHo03iEhdF+xwizeXYiL49MhQ+i5ejVhHTqwd8kSq4XQcjIyyvirEkLcqWQ/7ZLncLLduHFjDh8+TMeOHWnfvj2zZ88mICAAFxcXpk6dSqNGjYq8xy+//MKHH35Iz549i9NmIcQ9xlbV8fxVeAvrfAohxO3A2JF94Pnn8axQwea2hYO2bydi4EBqtG9vEdc0TcM7JISo6GjDchophCaEKCGyn3bJczjZHjduHCdOnABgzpw5PProo3Tv3h2AKlWqsGXLliLvUatWLXJsVA8WQoiCCqs6bqzC233lSqnCK4S4rRk7ss1Gjy5028I17dvz4tmzhSbV5+PiWNWqFUN27SJY6twIIcRtyeEhny5duvD8888DULlyZfbu3cvhw4f5448/+Oeff4iMjCzyHq+//jqzZ8/m0KFDjrdYCHHPSE1I4MdXXy2y6viFuDh+fv11dE5OvBoQIFV4hRClIjUhgR0xMaQmJNj/Ik3D3de3yG0Lf33rLZRez4W4OJvVxaUQmhCirLl4epZ1E25rDifbM2bMID4+3vS5pmnUqlWLiIgILl26xIwZM4q8x7hx4zh79iwNGzakWrVqREREmP1p3Lixo80SQtxllFJ4BQby0L//bX/V8Zwcmo0eTTmZ+iSEKAXGkeprBZLtwpJwFw8PdM7O9m9bqGmSVAshbjsFizsqpcq6Sbclh6eRx8bG8sgjjxASEmJxLj4+ntjYWKZPn17oPSIjI2XUSQhhU8GiQS3GjydyxIgit7zRnJxoExNT+g0WQoh8Clv3mJ2RgT4nx+5tC5EOrBCihN1sITRrxR0jR4zAOyTErlo599JouMPJtlLKZqKckJBgdc/sgt5//31H31YIcY+QquNCiNtJSVfndfHw4HpKin0PEKXAoxDiFihuITRnDw+r/TQwFHfsvmIFEQMH2oxd+UfD9Tk5heaVdwu7ovj69evp3r073bt3R9M0Xn75ZdPnxj+dOnVi0KBBtGjR4la3+bb12Wef0bx5c7y9vQkODubxxx/n+PHjFtetWLGC2rVr4+7uTuPGjdm6dWsZtFaI209RVccb9e/P2JMnaT11Ko3696f11KmMPXmSiAEDpFN6C0hME8L2VHFH5e9kuvv6mrb3KmzP7Lu9E1raJKYJcXO8AgMLLe742dChpCYkWJ1SrvR6Us+dY2dsLB/178/O2FhSz51D6fWl1fwyYVfvNCsri9TUVFJTU1FKkZaWZvrc+EfTNAYNGsTSpUtvdZtvSzt27KBXr17Ur1+fLVu2sGjRIv788086depERr49Lzds2MDw4cPp168f27Zt48EHH6RXr178/PPPZdh6IW4PRVUdf+/++7l2/jxRMTH0XreOqOhou6csCcdITBPi5uSfJmmtk5mRnEzEwIHyALGUSEwT95piFXAsjJ3FHfcuWWKWQOcfDV9cowY/zJrFgfXr+WHWLBbXqEHcBx+g9HqcPTxKpp23GbumkQ8ePJjBgwcD0LZtW959913q1q17Sxt2p9mwYQOhoaGsXLnS9CS6YsWKtGvXjt9++41WrVoBEB0dzRNPPMHMmTMBw/czLi6OGTNm8OWXX5ZZ+4UoC0oplF5v2K4rN9fuquO9163jx1dfpfFTT8k+kLeIxDQhisdimmQhUy4f//hjanftKntmlwKJaeJO5+iSlpLeM7s4xR3BvtHwGu3b4xUYeNNtvB05/Nj0+++/t5poZ2VllUiD7lTZ2dl4e3ub/YL08fEBME2lOH78OEeOHOHxxx83e+0TTzzB9u3byczMLL0GC1GKlFKGQj+APjfXlGSnnjvHzpgY00iPI0WDHvr3vyXRvoUkpgnhuIIj2Bfi4grtZP5f796kJiRwPSXF5vZeomRITBN3upJa0lJcxSru6MBouLsddb/uRA4n22vXruXNN980fX7gwAFq1aqFp6cnbdq04eLFi4W+XinF5cuX77qA9fTTT3Pw4EHeeecdrly5wvHjx5k8eTJNmjShZcuWAKZ9xQs+rKhXrx5ZWVmcOHGi1NstxK1WMKn+bckSUMpyOtHMmcR98AFNhw+3WMNoJEWDSo/ENCHsZ3Wa5IYNBNSta3cnU7b3urUkpglxk5QyFXe0t5/m0Gi4s/NdOZXc4R7r/Pnz0eXr6L7wwgu4urqyaNEiEhISmDx5cqGvz87OpmLFinz77beOt/Y21qpVK7Zs2cLEiRPx9fUlPDycCxcusG3bNpycnABITk4GsKjY7ufnB8Dly5et3jszM5OrV6+a/RHiTmBtjY6LpydXTp+2OtLz88KFlAsOlqJBtwGJaULYz9o0SRcPD1w8Pe/pTubtRGKaEDcvLTHRseKOmmb/aHhODjn56ifcLRxOtk+ePEn9+vUBSEpKYteuXbz22muMHj2aGTNm8NVXXxX6eldXV6pUqUJu3pTSu8VPP/3EU089xfDhw/nuu+/YtGkTer2erl27mhXeKI65c+fi4+Nj+lO1atUSarUQJUspZepo6vP2YDRLqjWNhv368fuKFVZHeqTq+O1DYpoQNxS6J6yNaZLZGRlkp6ff053M24nENHG3KvFCaIXIychA0+mKLO5oql1x7RrodHaNhl9PSbnl7S8LDu+zrdPpTOuzv//+e1xcXGjbti0AwcHBXLp0qch7PP/887z++ut06tQJd3d3R5twWxozZgzt2rXjtddeMx3717/+RbVq1Vi7di3PPvus6cnolStXqFSpkuk645NUf39/q/eeNGkSL730kunzq1evSiAXtx2Vl1zvXbqUy8eP02PlSovOpz0jPQc2bMC3enXazZkjRYPKkMQ0ca+xVnzInj1hfapWtT5NUikObNxIk6FDi9xP+27tZN5OJKaJu1VJF0KzJf9DR02nwzskxGo/zaw/eOwYVVu25IFRo+i+YoXFrMb8o+FJhw/fsraXJYeT7caNG/POO+9QpUoV3njjDdq1a4ebmxsAp0+fpmLFikXe4/Tp0xw5coRq1arRpk0bgoKCzH55aZrG4sWLHW1amTp48CA9evQwO1alShUCAgI4lvcL2LgG6NChQ9SpU8d03aFDh3B1dSUsLMzqvd3c3EzfYyFuRwWr7bp4euK8bp1F59PekR6ds7OhSnneU1BbT0PFrSMxTdxrCnZYC3YY/cPDDYl43naDSikqNW7MuFOnULm5tBg/nsS//uJCXJzpnnsWLSJi4EAeXb6cz4cNu+c6mbcTiWlCFI+th46apnE+Lo5VrVoxZNcugps2tbr7woH16zm7ezc9V6+mRvv27F2yhOTjx/ELCyNy5EjDtHOdjpyMjMJnEd2hHO7Bzpkzh27duhEREYG3t7fZ2ustW7bQrFmzIu+xdetWU2D69ddfLc7ficl2aGgo+/btMzt26tQpkpKSqF69OgBhYWHUrl2bTZs2mQX8jRs30r59e1xdXUuzyUIUm1IKlZtreJqp13OtwHRxm0m1AyM9Ml28bElME3erorbPyV/szNp2XSPj4gioUwcS49E+Xgpnj6FVCadS7xE8+9tvbBk0iAMbNgA3lsb0XLOGsA4dbHYy3X19iYqOplwJjEqVCw4usXvdTSSmCeG4oh46Aqbijkopm7sv7F+3jqS//+bpH36wPhpuxyyiO5XDyXbLli1NI9Ph4eFmRSSGDh1KzZo1i7zH3VjNceTIkYwbN46xY8fy6KOPcunSJWbNmkXFihXNtpCIiYlhwIABhIeH07ZtWzZu3MiePXv44YcfyrD1QtivyOnimoaLh4fNpNrekZ67JcjeqSSmibtVYVMuXTw9C90Ttm7PnoZE+8u1aDOHQe6N89r782DacnqtWUPi339z+ehRsjMyOLh5Mw0HDKB2ly42l8Z4BwfTJibGansdTZ4Lu9e9TGKaEPZx8fQs8qFj9xUriBg40Kywo9LrC919IWHfPv43bx5R0dHM8fIyGw0vKqG/kxVrbqa3tzeRkZEWx7t06XLTDbpTjRkzBjc3N959911WrFiBt7c3Dz74IJs2baJChQqm65588knS09OZN28e8+bNo06dOmzZsoUHH3ywDFsvhH3MAm9uLp4VKuDs5sblY8cIioig+bhxNOrXD2dPT3IyMtC5uvLYRx+xqU8fU/C9EBfHp0OG0HP16kJHekTZkpgm7iVKKYIaNTKMquTmsjMmxmqHsd3s2YYR7QKJNgC5OWgb3oD2fRnx229ozs7oszLJyc7BxcMDTafj/B9/mE25tIckzyVDYpoQhTMbXbZW5DaPPieHz4YOpUb79ngFBgKGNdw6Jye7d19QStmd0N/pfUK7ku3XX3+dAQMGEBQUxOuvv17otZqm8eKLLxZ5z3PnzrFo0SJ+/PFHLl++jL+/P61atWLs2LFUrlzZvtbfRjRNY+TIkYwcObLIa4cOHcrQoUNLoVVClBzj9KA9ixfTbdkyU1KtcnNpN3s2PlWqoC6ew2n1XDh7DOcq4eh7DqNOt268fP48exYtMkuqNU2zWVxDlD2JaeJekX9U5crZs/Rctcp6h1Gnwz88HG1ZjGWiDfDwExC7Bi0pAba8B2ePoasSjkufEWj5Rn9kP+2yITFNCHP510fbU+Q2P31ODnuXLCEqOtr0en1urkO7LxQ2iyh/Qu8dEnJH9w3tSrbHjx/PQw89RFBQEOPHjy/0WnuS7QMHDtC6dWuys7Pp2LEj9913HxcuXGDJkiWsWLGCH374gQYNGtj/VQghSpxSylCkzMkJfd5WfWd++olhP/9sllRrjVvi23cUbPsA3YyhZp1Q3fvzUNOW49HlKaJiYgz3KpBUa1IETQhRinQpibQN88Q157rlqIqm0fXtt612GD39/dGcnOCslUS8VgTEroH/fgjWppdPXwGdB5boXtqyNlsIURwW66PtLHJbkHGU2hjXtLwtvuzafSFvy8SdsbFFJ/QxMYbYe4eyq3er1+ut/n9xjR8/nvDwcL7++mvTNgtg2FqhU6dOjB8/nm3btt30+wghiqfg+pmAunWJmj6der17o/13Hbr8ncnmHdHOn4YCiTZgmFY5cxiqWQd0gSGAJNVCiLKjlCKwVVuCjhmmi1uMqhRSxDH98mVUbi5aFSsjN0+Og4vnLBJtwPD5jKHwwI0plyVBppcLIQqjS0kkKtjw0ahg/67F+PF4VaxoX5HbAvKPUgOmGYv2bPHl4uFhfcvEApKPH0d3ByfaAGUyCf7HH39k6tSpZok2gJ+fH1OmTOHHH38si2YJIbixLntxjRr8MHs2hz/9lB2xseizsy3XKmoadOoHn66wPq0SDAn3R0tA3fyDOiGEKC6l15N67hw7Z8zkowEDDKMmVqZJ7lm0CO/KlXl0+XLzh4N6PZePH0f1HgFO+Y7bGQf5aAke+YrKCiHEraS7kkSbEMNHKNC/mzWLAxs2EFC3rmUczPfQ0dYAidkodT6aTkfEwIGMPXmS1lOn0qh/f1pPncrYkyeJGDDAtMVXdkYG+pwc+xL6vNmVdyq7hpgcrcDYunXrwt/U2ZnMzEyr5zIzM3G6w59gCHGnsrUuOyc93bCn4ifvmXcm3TzA3dP6tMr8zh0Hnfy7FkKUDbumSebtpHBh/37Tdl012rZl3/LlXD17lvJVquDh7w9+fqhpy288eHQgDmrOzrSdNUumfgshSpW1bblcPDxw8fS0Orps784xSYcPW7xW0+mKrsmjFNdTUuyadn5PFEhr06aNaQ80wOybZW0ftNwinkB06NCBKVOmcN9991G7dm3T8aNHjzJt2jQ6duxo9xcghLg5+ddmK73e6rps5+p1Yfh0y85kZgZcTwdr0yrzqxwG+lxJuIUQJcrWntn5j5erVMm8k6lpoGmmaZIWOymkp7N/40a2T5rEQxMn0iY6Gs3JCZWbCzqdoT/U5SlUsw6GWTvxJyAr0+442HrKlFv8XRFCiDzuhiJo1rblKmy6+IW4uBsPHdu1Y9+yZVZ3jjFOIS9I0zTOx8UVuvtCWmIiAXXqFDnt/E4ujgZ2Jtu///676f8vXrzI0KFDadu2LX379iUoKIgLFy6wadMmduzYwYoVK4q83+uvv05UVBT169enYcOGBAUFcfHiRfbv30+1atWKrHguhCgZprU7y5Zx7cIFHl261Pq6bE2Dp8ZbdiaVgq83Qo+h8P4861MonZyhz0jQ7uwnk0KI24+tPbPzH/eqWJG9S5cSWL++WVKtz87iocmTiYqejrpgvpNC435j0AYPNiydWRZjKAZZJRz6jIAAw96vKjAE9ayhcI/S66HPCEMxNImDQoibYOshorU12LYopajQ7THoNYAK2VnWt+UqpEYFwIENG7h05AhP//DDjVHq7Cw0Zxe7E+DCdl/IycgwTTuv0b79XbsVrF1fQePGjU1/li5dyhNPPMHq1at59NFHadasGY8++ihr1qyhX79+vPvuu0Xer1q1auzfv5/XX3+d2rVro9frqV27NgsXLiQuLo6qVave9BcmhCic0us58sUXHN/+La0mTuTRpUtRej3apQTLPWTzJ9VOBZ7RrV8EFSvDtOWW55ycIXolBAQbEnYhhCgFuqxE2vbxRJdzGZ2TE54VK/Lsb7/R+PG+OLsYZtjoNHB2c0P76b849a4FK2bBV+vhh8/QlfeFL9eida9x4/iKWfBoDdj2Aej1hpGbP/9kfmAgSYcPowWEGKqOSxwUQhQhNSGBHTExpCYkWJwzPiy8VuBcwTXYpuMFknCz+hT9+7Nz5iyb66Nt1qjAMLrcfNw4XDw8SNn5FTzkxaWtm0p8pDn/tPPe69YRFR1t2O7rLki0wc6R7fy++uorPv74Y6vnOnXqRO/eve26T7ly5RgzZgxjxoxxtAlCiJuklCIjOZlajzySN118Hlw8izbpXfh4mfWRmfWLoMtAQ1KdPxk/GgexQyBmNTTrAB8tMazRrhxmGMkJCIa7JGAKIW5/SikCI9sStDkNfXYW+txcmj33HGig5VyCgyvg6jEoH45WbwS0eAQ69IWvNhhukFdZ3OKhI5hVFidvh4X0pCTDVEqdDjoPNJyTOCiEwPYota1ZOcVhTMIvK8ttvIz8wsJoOny4xQh2/uniYR06sHfpUlONCmObNZ2O3KspN9XGotgz7fxO5XCyXa5cObZv3251XfU333xDuXLlSqRhQohbR+n1ePj4wP++RJd6GYZMNKzrUbnQrD388Jkhic7vaBxED4LYtdaTak0zdD6fjTaM5OTmGNZoy0iOEOIm2TutUun16HNzTVvFGPZm1Qz/HVkLPwwDlS+B/mMetF5u2CP7+EH4Z7+hsviquUVWFmdEjOU5nc4QB4dHg7Mz5OSAk8RBIe52pZFUF8WjZl3L7Qzz/LxwIY0GDLixPjo3FxcPD7IzMji4eTORI0cS2qqV1RoVKEVA3pT0gOwsw2zHWxTTCpt2fqdyONl+/vnnmT59OhcuXKBnz55UrFiRixcvsmXLFtauXUtsbKzV15UvX57vv/+eyMhIvL29C52CoGkaV65ccbRpQohCKKVA6dF0Tug0UDk5aA91hmvnYP9c00gPdYfD2t8MibVxpMfoqw3Q+CHoO8rQ0dQ5GQqfabobgdc4hbLgVEohhCgmWx1W3ZUk2oR5mkZ00ECXeQHt76Vw9Rha+XDUfRPRMpMtE20wfP7DMKjUBp4cC6++4NgOC9b6MpoGKYnw6Uro8YxhVFsIcVcrtaQ6r+CZBU3DLaQqP8+YabWyt3EEu9fatdTr0wdnF2d0rm7oszLR6xVOrq5oSfHw0dIbNSr6jwNvP0iKR8t/PK92hczWsY/DveGpU6fi6+vLvHnzWL16talKeXBwMIsWLeKFF16w+rqXX36Z4LwfvpdffvmOrywnxJ1EKT2kxZs6oAS1RGswCo5+ADuHFj7Sk3+E28kZ2vTMq+abF2SlwrgQogzkLwDkm5sLGnB0LdrO/Em1htZkEvy91DLRNt0oB44sh06TDEtkHNlhIW+XFgsBwTBUqo4LIUpGwYJnFrtB+VRA5+JqdRuv/DTAJS3ZlDzrGrdE6zsKbdsHhiUyxhk9tSIMu9B8udZ86SAYCuJOXwGdB1K+alWioqNlO8NCFGvoafTo0Tz33HOcPXuWhIQEgoODqVKlCrpCnnBER0cDhh+WMWPG4OXlhZubW/FaLYSwm1J6yw5olY5w7bRlog2WIz0zhhqOS5EfIcRtwrSTwtKlXD5+nN5r1xoeKO4sMHrt7AHOnoaHjIVJPW4YMXJ1lx0WhBBW2ZoqXtKsFjwzxrtjx/APDze0ISQENM2UhOtzc82LoGmaaap4UKNG9FqzBv67zrweRfOOaOdPmyfaYKpdYZFog1ntCq/AENrExNyy78XdoNjzPHU6HdWqVaNatWoOvS47O5uKFSvy6aef0rVr1+K+vRDCDkopKx1QDcL7we9zix7p6TwVftkuRX6EEGXK2Pl0zbluXgAoNxfPwEA0lPXR65wMyEk3LJEpjHeYYUQ7M8N2MUiQh45C3MNKa6q4zYJn+dZZJ584Qc/Vq7mWt33rlTNnaP7CC0SOGMHRL7/kgdGjTdsc5qSnc+XsWcNWhgW3dbVWo8LW8fzy167QZIZjYUp9UaWrqytVqlQhNze3tN9aiLueUgqVm2vYCzEnB02nGaaOF3ekx8UNZq2zXJcthBClyNj5zAgKIjU+nj2LF9Nt2TJTZxKwEdMUHNsIdYcalshYe8CoOUP9kXDib3ikv+HhYloqdHlKdlgQQtwS9uyZbSx4VjDe5WRkoHN15dSuXVw5dZJWEyfeOO7mxvBffkF//gxOq+fC2WM4V6mJ/7PT0ZbFmifPbh7Wa1TYOl6QsXaFKFSZVDB6/vnnef311+nUqRPu7u5l0QQh7jpKryc7IwNnV2fAOa8YmqtlB9SRkR6Va3hiKcFUCFEKbFYdz02GNoG4hVTl+JZPGPbzz3nbFs6F+BMQu9p2TNu/CGoNhKjlUHCaueYMbVaCZzDUCjI8XMxfQVwqiwtxxyut6d+OMD5ATCywZ7ZJXsEzi3h39hjOVcJR/cdRvXVr1IUa6IzHG7dE9R0J/12HU/5p4e6eaKNmWCbPmRnWa1TYOl6QsXaF9BELVSbJ9unTpzly5AjVqlWjTZs2BAUFmS3y1zSNxYsXl0XThLgjKb0eULjoL6H9sRyunUFXrhoqchqaRQfUgZEeZPRGCFF6rE3TVErh32sU9B2NTp9L/T59YNsH6GYOM3T03DwMhXzqjbAe0y7HwY4hqLZr0Cp3gINLDDN3vMMMcc4z2DBz558/YFgrWL4L6ubt8app8E+c5XEhxB2jNLffKjFuHuhcXKnXuzfaf9cZ4l2+4mXa8OmoL9eaH2/eEe38Gcv117aSZ6Ws16iwdTw/qV1htzL5Dm3duhU3Nze8vLz49ddf2bp1K59//rnZHyGEfZRShvKSp7+E+O9QTSZC21WoJv+BqydQDZ4zJM/57V8EXpUNIz0Fz+Uf6ZERHCFEKbJWGIiMdDR9vk5g5nW0n7bBlGWw6xr8mAbB1cArBKJWWI1pqkonNADPEGg6HdqtM3z0DDHvLF63scerjePlgoOlEq8Qd6jUhAR2xMSQmpBg1/FSlZlh2Ou64DprMBUvs7r++tMVlslx/uS54Las6xdBxcqGGhX5z9k6DlK7wkElMrKdnp5OfHw84eHhdm3pdeLEiZJ4WyEEGIJoVjJUe4SszHPEn5lLRsYxPDzCCak0FFf3IFS37Whb298Y8TGO9LRZDZU7oNka6RFCiFLkfPkobfp4ctVDb5qxo2Unwl8rDEtiyoejNRwLsz+E1DOwf67pOA3GGKaLV25vNnqt6o9Eyx/Tju4vsZFq7+BgqcQrxB3K1oh3WY+E63KT4UFPQKH75D37ipcVtc7aVuHHo3EQOwRiVlvWqJDaFSXC4WR7wYIFpKWlmbby2rVrF927d+fq1avUqFGDr776ivDwIub4CyFKjIZCufpw4cI6Dh8Zhso3hfL06XnUqb2coEpPoQaeRTvwllkHFE1D8wyByGjQOYM+x7BGW55UCiFKmVIKvx7Doe9ovPV60EA78oFhK0KVayjuWL4WRE6Ho2st11//MQ86fgTVukFkDOicUPpcNGvFHW2NYAshRDHYKnhm83huMkTmfcwnfxzUwDx51jTwqWA9qS5qnfXROIgeBDPWWk+e82pUqGHT0FxcUdlZaM4uhR8XdnH4kcTy5cupUqWK6fOXXnqJBg0a8OmnnxIQEMDkyZPtuk9SUhJTpkyhQ4cONGjQgA4dOjB16lQSE21X5RNCGCilUMpQ0V9pGllZCRaJtuG6HA4fGUZW5jlwr4iKjIF26wwfPUNudEJ1ec/ddM4SQIUQpU7p9YYdFPJNV9TSzsGBN1Ctl6GeuQbPpKF6/4LKuQ7737Bcm61y4Js+kHbOsLxmTSApm+dKTBNC3HLGgme6AgXPbB7XpxiSbX2K6ZjS68lOTweV93luriF5rhUB01cals18m2ioVfHUeMNx04sLmSpu9O1muHLJlDwza53hY2CIYZRa00jaugke8jJ8NMZOW8eFXRxOts+cOUPNmjUBOHfuHHv37mXu3Ll069aNiRMn8sMPPxR5jz179lCrVi3eeustfHx8iIqKwsfHhzfffJOaNWuyZ88ex78SIe4RSunJyjzHyZMxHDw4AKWyiU9YZpFo37g+h/iEZYAeLa9ipKZzsmvJhxBClLSC6yFV3ii2LvMC2t5Y+P4ZNJUNF3ajev1MVrW2nDwzl4MH+3Py1Eyy9MmoXj9D+BOWN1c5cGiZoY7F9STcQq2M8gQEGyqMBwTf3HEhhCiCrRHsbF06p6tUI1tnmGWj9HpQCmf06Iw5Lgr1zBT44DeIamtYNrO9P+yNgSoVYe1v8PAThuTX3RM2LC56nbVvYNHJs4O1K0ThHJ5G7uHhwdWrVwHYvn075cqVo0WLFgD4+vpy5cqVIu/x/PPP06BBA7788kvKly9vOn7lyhU6d+7M6NGj+fXXXx1t2h3h0KFDvPDCC/z00094e3szaNAgZs2ahaura1k3TdwBlNJz4cJaDh82jGLrdJ7odOvIyCh8L8SMjONommzNIG4NiWvCEdf3f0/1I7Fc31+bcpWeNCTGp7ZC5mVUk4lozp6GmTthfbhw/gPby2ParkFLPmioQZFf6nE0nTPcPwvPum0sGxAQDCNibv64uGtJTLvzlMb2XrmZh4iabfgI9tV7sDqCrRSBvWei6eag9LmGmThgeOiYcwkO5tWoCGqJ1mAU6ugHaDuHWl82M/MDQxLt6mFIhuN+gs4D7VtnLclzqXA42W7WrBnz5s1Dp9Mxf/58OnfujJOToRN/7NgxKleuXOQ9/vrrLzZt2mSWaAP4+PgwceJE+vXr52iz7gjJycm0a9eOWrVq8fHHH3Pu3Dleeukl0tPTeeutt8q6eeI2ZAjAejTNyTCinRVvSrQB9PoMcnPT8fAovE6Ch0cYSuVKwi1KnMQ14SjnlONU7+BJcsrxfAUeO5sVeKxadTwuLhULXR7j59sG10ZjDZ3Q/LzDDGu8m04pxa9K3C0kppWipAT4aCn0GXHTM0dKpahZyp/QIu8j/e1/nXuA6X+V0kNORt7yPSdDAp2bC87u+WpU5MW8Kh3h2mnLRBsgrC9U6wzpCfD30huFIuuNAN3tvc76XtvFoVgF0rp168ajjz5KaGgos2fPNp3buHGjaZS7MDVr1iQlJcXquStXrhAWFuZos+4IS5Ys4erVq2zZsgV/f38AcnJyeO6555g8eTIhISFl3EJxOzFMF48nPmEpGRnHqVt3JfHxSwt0PBUXL24kOHgop0/PszqVXNOcCQmRPbPFrSFxTdhkrSOtFL69J4DzVHxzsmwUeNSoU2c5p0/PLXx5zPnlVA+fBPmTbc3ZsKOCxDtRTBLTSlFSArwXC1Hd74hlGlpGKnjkfSwgW0vm9GPVcNbyTRdXCt++k0A3FV99riHRRpGVk0j8+RU3do4JHo6rcxU4902+pFqD8H7w+1zLRNs/AtqugX8+tF4oMmoF1BpI8g/f4B/9OEkvLyOw14AS/34U1722i4PDv43q16/P8ePHSUxM5MSJE6b12wCvvfYaCxYsKPIe8+fPJzo6mp07d5od37FjBzExMXbd4060bds2OnToYAreAI8//jh6vZ6vv/66DFsmbjeG6eIf8POeGpw6NYukpE/Q6dysThc/e3YRrq6VqVNnOVqB/WU1zZk6dVbi6hosa7TFLSFxTVw+8wc73m/D5TN/mJ84FwcH5hs+Aig9KifdMG0cQFMoTWeYsZNvBFun88DJydO+5THOnuDkkXc/Z2izMm/rQol3ongkpt07dFmJRHUzfLSPhk7nyY0gZqCUIrjHKKr95xTBPUYZZiUa450pETZMFb9w/gN+/qUWp07N4uLF9Zw6NYuf94Rz4cJaVJtVhkQaDLsvOHsaRqwLajQO0s5ZJtpg+HznUEhPwCO8jkwVvw0Ue5/tChUqoJQiISGBihUr4uzsTKNGjex67YQJE7hy5Qrt2rXDx8eHwMBAEhMTuXLlCn5+fvznP//hP//5DwCapvHnn38Wer9Lly7xyy+/kJCQQEZGBhUqVKBOnTrcd999t1WCcejQIZ555hmzY76+vgQHB3Po0KEyapW4HVifLj7UruniaWlxHDo0iLp11+Dr246EhGVkZBzHwyOMkJCReYm2jPKIW0Pimrhy/i90Yb9y5fxf+Fe9D8iLaQ3bor2ZhtJng9URnZpUrz6d+IT3zEawHVoek5uJVqOXYep4/ZF5ibbEO1F8EtNuD7bWYJfk2mzny0dp8yhcunwUeLjQa5VSBHd/ncrOb6PPyUQphaZpBWYhGkaqq1QZh7OzH1k5ScSfX27f0pjDw/Dzybc0JicDctINU8PNFDLibbphDhxcgnuTaTa/Hs+AALOPRnqfAHbEQz2fAGsvE8VQrGT7q6++Ijo6mt9//53c3Fx++eUXmjZtyrPPPktUVBQDBhQ+VSEyMvKmk+ArV66wevVqVq9ezR9//HGjuEAeTdMoV64cvXr1Yvjw4bRs2fKm3q8kJCcn4+vra3Hcz8+Py5cv23xdZmYmmZmZps+NBersdeS84fqwAE+cnQ1/5RevXCclIwtvdxeCfT0srq3m64m7u+HapGvXuXwtCw9XHVX9yxXr2mMXr5Gr1xPi60m5vGtT0q5zMTULV2cd1QOKd+3JpGtk5eip6O2Kr5c7ANeu5xCfku7QtU46HeEVb1x75vI1MrL0+JdzJaCc49dev57D6RTD08TalW7UJkhIySD1eja+Hq5U9DFcq5SezMx4Em5iuvjFixtITz/Cfff9QPXqMXlJey5XM3JJuJROFV/3Yv3dl8TPibW/z5L4OTH+fd7sz0nBv8+b/Tmx9Xd/typOXJOYdvfEtPTMHKo1fYwaTgPQ52bl/S5WZGXFEx9v6Hz6+LQkJGSUYap4voeIOp0nNWrMsDKC7cDyGM0J2q1Dn5PF9VwdnvkSbYlpjl8rMa1sYhrcm3EtITkTb1c/KuX7Phiv5Y/fYVks6a0fRPMLNP28euZbm53i5m36eTW6lp3DkfNXLX62U8sFcDwlG5dr100/29lXU0jKKc+5pGtUyNeGxHO7abu4IpfP7Sa4adMC/TRDQl258mhcXAK5cOEDs7jm5RVBaOh0s2K2xVsao+DYRqg71DA13Pi6wka880s9jubsylnvapB747Dp775SLbyGR+NVL8Ls79O7Rn14NhrPehFmPyfu+W7tyN/9lfIVOZ6Sjff1nCKvPZOaQ7JfZa5ez8H4GOVuiGsOJ9vr169n4MCBPP744wwfPpzhw4ebzoWHh7Nq1aoik+3333/f4YbmN2fOHBYsWICfnx+PPfYY0dHRNG7cmICAANzc3EhJSeHkyZP89ttvbNu2jfbt2/PQQw/xxhtvUL9+/Zt677Iwd+5cYmNji/36Tot2AbBiUCTt61fKO7aTlIwcXHQaR+d0sbg2tns9BrcwrJ3vvGgXideycNJpHLNy7XNtwvj3I/UA6PX2T5xJzkDT4MTcrqZr279uWDLQ7/4qvNK3MQCPLd3D0YvX0IAT8yyv7VivIu8NfgCAIe/v5fczKQCczHdtmwWGa5vX8GPjCEO9gOfW7eWHo0k2r20YUp6tY1oBMOnjOD6PS7C4tvWrO1FAjQqefD+hLQDzv/6b1T+dtrg2av5O9Aoq+bjx86QOAKzcfZJXvzpscW2rV78nR6/w93Jh37ROpunixkBdWHXxs2cXERQ0kDp1lpsVSQNDx7NKlbE4OXlgnN50KS2b+2dtB+D/Rv6LZtUr5H1/d5CamYurk44jszub7mH8+3z9sQh6R1YF4JE3fuByWjbOOo1/rPzd//vhOjzX1rCUpNubP3L+SiY6DY5b+bsf3KIasd0Ns18ee3c3Jy6l2/y7fzQimDf7Gyp9DlzxKwfir1p8L41/n61rBbBmaHMARnywjz0nkm1e26SqL1ueNzx4e3Hj73zz90WLa9suMPzd16pYjm9eigJg5ta/2PjbWYtrW8/fiVJQ1c+DXf9pB8AbO47yzo7jFteKGySm3R0xTSk9KjeB0/HLCiTV5p1PP7+OZGaeNjsGhY9gFxXvjMtjrh/4ihGfHuSHa3UlpklMKzM3G9PgXo1rl9FareZEvu+DKa55XGdrCCReSTKLa7sfvzGanT+ubWiVRVQ3WPVnAh9uSbRow+ZRK9j8dRKV9vxoimufXPRmXvyHgOJk3nVKKeo8Mhw3l+fJys626KcZubuH4+fXzuJ4lSrjyMo6Zxa3irU0JjcD9i+CWgMhavmNKeM2R7wL8A4jMyubh5q/w9iEVF7MO2we12JMl5vFtbz11N3nf2+Ka780x+Jae+LaxyNX8PHXSbQ+sbfIuPb4tkR4dilHf0zmi7wSYHdDXHN4rtXMmTMZN24c69ev5+mnnzY716BBAw4cOFBSbbNpx44dfPzxxxw7dox58+bRvXt3QkND8fLywtnZmYCAAO6//35GjhzJp59+SkJCAlFRUezYseOWt60wfn5+VrdGS05ONlsbVNCkSZO4cuWK6c+ZM2duZTPFLaRp4OHihIYhoBdnunjFiv1p3vw4oaFTqVixP6GhU/nXv04SFDQQFLfV0glx9ytOXJOYduczdkB/+zXMtPZQp/O0klRrVKzYj4SEFVZGdG6MYBesN5E/3v3rXyfN4t39D5ygYtAANE2HR3AQmdnZpfI1i3uDxLQ7ky47iTaPgpu65tDrPFycTCUeDMv4zhF/diYHD/Yn8/p+MjPjLRJqQ1x7nIQCS2BsxTuHlsbkpBsSbTBsa7hjCNQcCP1PQpOpUPNJSD6EqjfCUKfCmrxCkZ/+meDQ96Iwtqadi6JpquD86yK4u7vzxRdf0L59e3Jzc3FxceG3336jadOmfP/993Tp0oWMjIxb1d47WuvWralQoQJbtmwxHTOuU1+5cqXFwwtbrl69io+PD1euXLHYPs2ae3Fq0u045VIphVK56HTO6PU5aJrGyZMxnDo1y+zvq06dlfj5tWXPnlpWpxuVK9eU++7biZOTh2m6OLl60DmRka3H083wPcvJyeF4UvpN/d3LlMvbe2rS7aAk4prEtDsrptUK8iYr6xw//1zDLKlu1eoap0/PNYtpOp0nrVuncfBgfy5eXG/xd+nlFUFk5G9cvPih1RHsBg22UKFCF5Q+B52TK7m5WVzLBC9XneHvPj2B5H1LSao6gHI+VSSmSUy7aWUR0+DejGsJv/+K98tdqbTyW6jb1Oxa3a7PqfnKQBKnfIBH5343ppGfPcKyyEie3buXnOq1TT+v6vePCDz6LKdqLCWzXnezn+2Efft4Lephen26lTrNGht+tpVC5WahObuhz8lGc3IqMIJtPaaB7bhWWLwrqm+nac78618ncdX5ov0xD1KPg3cYqv5INM9gQLNor3b0A8OU8/z3MxaKrDmA/V98ie+cZ9BeWkiVvgMc/rs3u1afatpd4pje266/+4R9+5jftjN9tnxG4xaRRf6c/LLzFz7s1ZtRWz+mTotmpp+TOz2uOTyNvFKlShw6dIj27dtbnIuLiyM0NLREGnY36ty5M3PmzCElJcW0HmjTpk3odDo6dep0y97X2g9RRR9305rhoq4NKOdu+uEs7rX5f+iNfL3cTf9Aintt/n+kRuXcna22zZFr8weg4lzrXuBaY9Ez4xpGT8+6VK8+/Sami3saCltqgB5wckbTNDzdbkxWcXa23l5H/u5L4ufE2t9nSfycWPv7vB1+Tgr+3d/tyiKuSUxz/NqSjGlK5VrUlbA1TbKoER3jCHa9emvx8+tAfPwSqwUeT+7bxJmMZ6nqsYwaD+RbquYZjN9DMfhZubfENMevlZgmfbWCHIlrTleTic8rXgY3zlcnFT7N2wbQyzANvJy7M7X83CAr2ewexp/XxHwZSv6f14SzN46bfl6VQrV4DFoNoFpuFprOfE9pXUoi3byTqElKXqKth/R4tIOG/am1iPFkeVcsUFPC9tRvW3GtJJbGaGioJlPRnN1QOZloTq6mr+Xy1+9R4fx/SK70ChW6jDZMMa/cHg4uMSXn+QtFVsq+QmBWIolON9pR/LhWDkbEGK61uNL2z4nP1YuE+bqYEu3Crq3q7Yxf8jnK57v2bohrDifb/fv3JyYmhrp169KmTRvAMG31wIEDvPrqq4waNaqk21ioGTNm2Dyn0+nw8fHhvvvuo1WrVqXYKutGjhzJm2++Sc+ePZk8eTLnzp1jwoQJjBw5UvZtvItZX++jUbXqeMeri1cahqt7lbxbGIKv5uRkcQ8hSovEtXvEmT/gy3HQ9Q20KhEOJNVFFztLTNxMzZqLcHUNIbTqVHTObujzOpn5l8Xo9bKFjbj1JKYV37V8xcvMKoXfyv20CybO5cOh/gjwDDHtTGCsOp6Se9lwvdmIsAZRK4g/M8eBqd+24prteJe/b1fYg0WAlI/n43dtLinlJuH3+NQbbfL2g7Ppho9g+Po8Q1BNp6E5uRpGvgs8aBBlz+FkOyYmhr/++ouOHTtSoYKh4FLnzp1JTEykW7duTJw4scQbWZiFCxeSlZVlmrru7u7O9evXAfDw8CA7O5vc3FyaNm3Kl19+SWBgYKm2Lz8/Pz+2b9/OCy+8QM+ePfH29mbYsGHMnj27zNokbi1r67LzzthfXTw0Gk3njMrNhNxs41aNaDoJpqLsSVy7R5z/Czz+goT9qMoNHEqq7RnRcXEJRNM0Lv6wg8PDe1PnvY8JandjKx6fSg1gexQ+7Rvc6q9U3OMkphWtJLffcpQuJZGoYHDNuW4lcc7zxzyIWmEY+dV06PQp0NwTj5r1ID3e/HpnDzRnD4d3RbgR11aY9fEKi3eJiZupWHEAFSp0IbTaNHROrlYfLAKGImj20DSSftpE4NFnSaq1jMBWN2b+yDrr24PDybarqyuffvop33//Pd988w1JSUn4+/vToUMHOnTo4HADzpw5w5kzZ2jcuDFeXl4Ov/67776jX79+REdH06NHD8qVK8e1a9fYsmULM2bMYM2aNaSnpzNw4EAmTJhw05XQb1a9evX49ttvy7QNohSkJ8ChldBkopVtvAzsmy7ubkqulR5ysjVcnDU0newjK24fEtfuIukJcHBp3shQXidaKVTkE2gPDEDpcwEdIcEj7E6qDSM6Q6hXb3WRIzqe9SLQPzUBz7ztaIz8q95Hm6d3lMZ3QAiJaUWwOYJdCnRXkmgTAteDgiwTZyOVYzhe9WFwr4hv7wngPBVXfS7sjTG/Puc6SuU6PPU7Pf0gV6/+TFDQQPx82hB//j1TXMvNSSEo6KlC4138py9yLOB9wpMGU7n3O2bvq9f5wl7Qd/S163uidwlgx5Z06k0xT6q96kVAvu29Slu54GCioqMpV8o/I7cbh5Pt06dPExwcTNu2bWnbtq3ZuZycHOLj46lWrVqR91m2bBmxsbGcP38egF9//ZWmTZvSq1cv2rRpw9ixY+1qz/PPP8/LL79stt1YuXLleOqpp0hLS2PcuHHs2bOHqVOnFjrlXIgSoxS4B0LTKWhgc6uHQtcqVhqGq1sIZF4BV1/DCzQnXDytPP0UQoiSci4O9sWCz4NQK9jwlC8tHu1v4xTNmhA5HVfXStSpvZzDR+xMqisNA8DVNZjq1WNuFHdEZxbTvIODaZO37YwQ4i7i7lly99I03CpXhd9nWibaRmF9wa0CpJ8zTDG/dhat7SrL/amd3QEdIZWGOTb1u9IwXN0qA+DqXIHq1aaiObkZZiHqc9AAV9eQQuKdsrk0Ru/kZ0i2HzGvRqF3CWDH51Avwjyp1rsGsnMr1IktMHs3INi0zrosSDw3cHh4rEaNGvz+++9Wz/3555/UqFGjyHssWrSIF154gUGDBvHVV1+RvyB6mzZt2LRpk93t+f33320WZatevTr79+8HoGHDhla3chCiRCk9Kv0c7I2F75+x+bTU6OLFDcTHL8XVpSLVq06ifv11VK86CdfT38GZr8DVB6XX88Ps2aQlJkqiLYS4tVKSDB81j7wpmmthfQ34fRYcWw/7XwOdM9rBdwkK6s+/mv1jti1XeNgcQMPVyZ/q1aYaYlq1qbg6BwAaZ3/eg8rJhUmhXP7oXYlpQtztlELVbAQ/phk+FtwEqThJuE8FNGdXy8TZyD8C2q6Bf9bBh3nx6+hq6/tT52Sg5V7H1a0ydWovt9iGMDFxM5cv/xdXl0pUrzrZvJ92ehuAYW9s45el8j7XDIl14kdTOfV5IIkfTTaLd06qMqH7DR/tZUyq9a5ltyRWOM7hZLuwncIyMzNxc3Mr8h5vvvkm06ZNY+7cuRaj43Xq1OHw4cN2tyc0NJTly5dbPbds2TJTIn7p0iUCZM2CuJWUHnX0AzRTYH8flJ6Q4OEWwdtI05wJCOgJuVlov8+DHc+g/T4XQjqgKj9MRsoVNCcnWk+ZUupTtYQQ9yhnT6h8H6TFw85hBaZcZhg6rBkX0T6+H9fT280fFJ76Fu3bfmjJB2/sAas5c/nEOT56sj8+1aqRee40fHPaMHojhLh76fWQeA7tvRkwpb/hY+I5w3GloGYE/Jhm+GjPTsRKEdDtMfg20bCkpWDibNRoHKSdKxC/FBzbCHWHFtifWsGxDWiZyVYfIP6r+TEqVOgKWVcM/TNjP61KJwjtalgCo2lc/uQ9eMHL8DF/Uk1lQrcm4URVsyY66apTY7Xho8W3zSeAHfGGj+LOZ9c08kOHDnHw4EHT5zt27ODs2bNm11y/fp3169cTFhZW5P3OnTtHixYtrJ5zcXHh2jX7N6SfO3cujz/+OHXq1KFbt24EBgaSmJjI1q1bOX78uGmUfPv27bRu3dru+wrhEKVQ6fFoZmuHFNrpL3ANfdRiuiUYCwOtMG31kNNwIs4enuRkpHNg40Y8AgKp3aWLjPwIIUpeUoJpz1RTdWClUE0eM63N1vbOtzJFM1+H9Y95hpi3c5ihyJCxoI/mjHpwEZf/OcbKli1JT0pC5+xM95Ur8Q4O5vJvP7MnHupJR1KIu5Kzh4chod72AcwYCrn54kj8CYhZDUnxhhh09hhUCc+LRSFgqyaNXg9J8Wh5r9GeGg/1RhiKoZnFKQ3C+8Hvcy3j1/5FhqJpUcvNE/G849rpbbhmXqJ6+CQ0Z09UTroh3pULg5BWqMhoNJ2TIdHXzJfA6J38YHc6+nYFpn7bmBJeGL1vIDsToI6vjGDfDexKtjdu3EhsbCxg2ObLVsVxX19fuwqQhYaG8ssvv9CuXTuLc3v27KF27dr2NAuAXr168csvvzB37ly2bNlCQkICwcHBPPDAA2zcuJH77rsPgLffftvuewrhKKX0hjVBBQP7b9Fo1boRVGkgfr5tiD+/3GIbL00plNKza+48rp49S/nKlYkcORLv4GAphCaEKFKxKgMb12b/60FDsp1/+xxbaxuNrHVY8yfaUSvAK5j4ff9HeKdO+IWFmcU016o14NloiyJoQoi7g1dgoCGZLpho14qA6FWGJHzmMPNz78+D6Sug80CzhNupvK/1xP34X/DBXkPV8QLVxXH2tB6/LsfB94MMU8xD2sLf793YnzrzCoR2Q0tPgN/nQdpZNK/KqHojwSuYrLR0cpLi+DP+SULPd7UoalaWpBDZ7c2uZHvcuHE8/fTTKKUICwvj448/pkmTJmbXuLq6UqlSJbtG4YYPH05MTAyBgYH07t0bgOzsbL744gvmz5/v8PYKTZo04f/+7/8ceo0QJUnTORUS2J9Ca7vGsoBGThZarh6Vlgrl/YiKjkbn5IQ+NxdNp5MRbSGEXYpVGTgrCSIBpxzr+862etv2FE1Th3UtqnIHtINLTB1WY8dUn51Dg759afTEE+izs9CcXUwxTYrmCHH7K/b2XpqGh6+vYV/t3AIDEE+Og4vnLBNtMHw+Yyg80B4Cb+xn7lmzrvXE3ajmAAiKgiPL8+JQOOhzbMevYxsg+SBErYTIGNA5wfV0+HoDHD8IgyeajWBf/ucYqQm7CG3VipRj35PldNr+7wU3poQXnMlj63hxSEy9vdk1bObj40NoaCjVq1fnxIkTdOnShdDQULM/wcHBdicH48eP55lnnuHZZ5817XvdsmVLevTowVNPPcVzzz1XrC/mzJkz/PTTT6SlpRXr9UI4RClUTl7gL2zt0LEN8PH9aCmHTWu3texctK83o3Z/hebti6Zp6JycANA5OUmiLYS49Zw9Iaiule1zbK1tzOf4ZlTmJXKdA1CRMdBuHSoyhsvxaZz6YRc6Z2eS9/3CD+FeJO76XmKaEHcY40O8awkJDr3OxcMDzdnZMD08P02DTv3g0xXWk2YwHP9oieEBIICHF24hVQ3Tza0l7hfOwqBmsHM7NJoE7dZBxETQnKDucNvxK/kguAbA1tXwkJfhz4yhsH4xKjuT87//wdaRI9kRHYOLlxehrVoZBkGSrxJ6CVz03ha3tLXO2jglXF9gSrit4/eyu3WE3uGtv/JX/k5PT+f69esW1/j7+xd5nzfeeINx48bxzTffcOnSJfz9/Wnfvj21atVytEmmbcQSEhLQNK3Y24gJYTe9HpWZYfiFgrPhl0i9Z62sHcqTfBA8K8HhP+D/3oaKlVF9RqIFBNtenySEELeCUtDkMXhggOFBYcF9Z8H22ka4MVXcPZCsy8nseeMN0i5cwCswkMiRI00d0yxnd74/nk4t6UwKcc/IzshA5eSgVSkwAOHmYag8XjAJLyg3BzSdoRBarwFoYDtxXzUXDu0zJMozhxneIzPDUHTNMwRaL4cfLOMXUSvAKwTWLzaMagM4OaOmrYCAYIL8g+i2ZAn67Ew05xtbrrrovamRAsm+VpLtElxnbSvpvFuTUaO7dYTe4WRbKcWsWbNYunQpCTaeduXm5tp1r7CwMEaMGOFoE8wsWrSI//znP7z00ku0b9+eTp06mc4ZtxGTZFuUKL0ehULLSoQDKwzTx4NaQoNRlmuH4EZg96iEql0JLXol5OYYpp7LaI8Q4haymAqq1xs6o855v/4LXQJjfW2jcar42d0/U+XBB4maOhWdi4vFdPG7vWMohLBCKTJSUvDsM8KwDts4Ip2ZYUhsCybh+T38BIyaaahg/tFSOHccpq+0fI21xF2pG4nzVxugVTcI7w+V2uSbYh5mGPEuVwV1NQWtdXcIbwiVw8jtMQxdUBUAUn75mtT3HsPzyfcI7NTf9BY5vmGc/AS8ni66GPTNsJV03q3J6N3O4WR74cKFvP766/z73/9mypQpTJ06FScnJzZs2EBWVhZTpkyx6z65ubns2bOHs2fPWh0dHzRokF33MW4jNnXqVIsk39FtxIQoklIoDbQjH5g/LT22Hi7uhjaroXJ7yLeGkdrDwCsElXoFrXxeNUonh//pCSGEw4xTQRv064d3UBCgwPSg8Di0WWnX2kYVGWO2hvG7Kf0IqFuXys2bc2H/fla1asWQXbsIbtrU9HLpGApxb0pLTMSzTh1DwTPjWmul4OuN0GOoeRJuVCsCYtfAfz80X5/drIPla4pK3Ncvgi4D4X/b4Ool6DjJkJxfT4dvNqIqh8F9rdAPnYbO1RV9Via52TnoNA1NpyPTvRLvv5/Osy/UNbttTkBdVq+HZ8fXtf6+QljhcI9/xYoVxMbG8vzzzzNlyhR69uxJ06ZNmTZtGt27d+eff/4p8h779u2jd+/enDlzxuq+3Zqm2Z1sl+Q2YkIURSmFlnbWcloSwD/rIPlv6LYDmkwDZ9cbgd03EK1lFxnJFkKUiXKVKoEGFHxQWKWDaRsvm0tg3CuicvUsCKpEelISADpnZ8aePGnaMSE7Pb2UvhIhxO0uJyPDsESu80BDwbOPlhhGqa+nQ6Vq5km4Uf8XDVsSFjxuTJynLb9RWK2oxP1oHMQOQcWugaQEtFXz4OJZ0xI+AoIN/TFjl0zTcPH0lNoS4pZweLHoyZMnue+++3BycsLFxYWUlBTDjXQ6nnvuObu2/ho1ahQ+Pj589913XLhwgeTkZLM/ly9ftrs9xm3ErHF0GzEhrFLKsK4R0DQFh96z3ikFuLQP4l41vCb2GVg1F9W8kyHRlrXZQohSpktJpG24F+4+5eGalQeF+xeBV2XD2uyCxYQ0Z2i9AjyD0bm4kJVXfDT/ntnSORVC2KTTQWAIatg0mLUO1Wu4IcntPBA+PwlDp8Ij/WHoNENCveU964lz9CDDdZ8dv/Ga6+moStVQ01dYzhZ0ckY1z1tWGhiCejYaoleino2BwBDTji+Xtm6Ch7y4tHWTxDJxyzg8sl2hQgXTaHG1atXYt2+fab/spKQk0u14uv3XX3+xadMmoqKiHH17CyW9jZgQZvR6VFK8Ye3QxXMQvdL23rNGqcfBxc1wrT4XTdPJiLYQotQppQhs1Zagf66ByrX+oNBsbXY7+HuZxRIYvvsYfVQP6vXqZbFnthBCFErTSNq6icDXniXp5WUE9hpg6BPlJeGaiysqOwvNyUoFc6Ov8rblGr8YRsSAzgmVm0vKyZP4dHoSfZMonD5dbhg9z1t/rQWG8PfmzdTr04fkLe9SYXcslx+MpkLf0eb3vl42s3KkpsW9w+Fku2XLlvz666906dKF/v37ExMTw/nz53FxceG9996jffv2Rd6jdu3aXL16tVgNLmj8+PGcPn2aZ5991lRsrWXLlgA899xzxd5GTAj0etS2D9CMU5o0DaYssb2+0cg7DKXPNRRA0zmVTluFECIfpdeTGh/P3qVLuXLuHD1XFvKg0Lg2u8ViuD/GsG2Ocd/Z/3sb9fpnaM4u9F63Dn1ODppsTyiEcFTBpLZAEh7Q/QnLCub5HY2DX7aTU68ZC0NDmZCYyHdTp5L41180HzuWRoMn4ezpSU56Ovs3bGDP4sVUbNiQBo8/jt41AHYmoX/I79Z+jQ6Qmhb3DoeT7ZiYGM6dOwfA5MmTSUlJYf369WRkZNCxY0fefPPNIu+xcOFCxo4dS+PGjalb9+aLDJTkNmJCAIZCaEnxNxLtvGP8+CXcP8L2+kbNGVV/JGgy4iOEKBtKryfugw/4bOhQ9Lm5uHh60n3ZEnSFPSi8HAfntoN/M+gQaOgYOzkbpmgGBJN88iRLGjWyKIImhBA35Xo6ODmh6XToew5DZ20NNoCTM7k9hrF/wwbSL10iOz0d//BwDqxfz2dDh/LZsGG4eHiY1Y+o0707+txcsHOXJCFuBYeT7Tp16lCnTh0A3NzcWLx4MYsXLy7ydY0aNTJ7Ep6QkEDDhg0JCQnB19fX7FpN0/jzzz8daldJbCMmhJFSesPU8YIBf2k0tNprc4sv1WYleMo6RiFEybPYxiuPLiWRtmGe6FISUUqRGh/PnsWL6bZsGY369cPZ0xN9Tg6q/gi0Ih4Uaif+hjY9oXKYqZCQptORmZIiRdCEuE3YigV3rNxc9Ho9WmBl1LTlaMZCaEZ5e2BrgSHsWbwYlOLAxo00GTqUH+fNQ59jKJqWP0bpnJ2JHDmy1Ja7yLRwYUup7T8UGRlZYgnIDz/84ND1rVu3LpH3FXcvpRTo9WhOhnVAmpOT9bVDR+Ng+lMww7i+cemNvWfrj8xLtGVUWwhxE5IS4KOl0GeEoWpunvS/42BZLOmtH7zRwVaKiq3aEnQsDZWdBUpx8eBBhv38M+riOZxWz4Wzx9A1bol6bBQqagVaIQ8KVe1KaLPWoXJzIa+IEEhHUojbiXFLvzrdu98RybbeJ4Ad8VDPJ8DmNZpOR8bly7g/3B990zZma7D1vZ6FCpXYMmgQF+LiANizaBERAwfy6PLlfD5smCHhzlOwiKM973+zZFq4sKVYyfaGDRvYtGkTZ86csdgj29aotD1Vyu3Vpk0bNE0zbRuWP4lXSlkk9QX33xb3MKVA6Q1rqfW5oOkMP0eJ8WgfL4Wzx9Cq1IRnp9vev9FYqGO6+d6zaDoZ0RZC2KWwkam0v+Pwei+WtPoP4tUq3wj2lSTahHmSeMWw/ZZZAcezxwzrHfuNJrxDB/hyLbr8o0NfrUfbvxsVuxpVuT3awSU3HhTWfRblUYm/N22mXq+eaP+uZFFIqLCOpCTiQtz+Sno03MXT0+5r9b6B/HTFkzq+gZYn3Q330TQNDz8/jnzxBRmXkmiYtwZbn51F9vVMVv/rXyTs22d62YW4OD4ZNIiea9YQ1qEDe5csIfn4catFHPW+gexMwOL9SyMJl/goHE62J0+ezLx584iMjKR27dq4uro6/KbPPPMM06ZNo0aNGhbnTp06RWxsLCtXrrT5+t9//930/xcvXmTo0KG0bduWvn37EhQUxIULF9i0aRM7duxgxYoVDrdP3KX0ekiKN4wYnT0GjVui+o6C/EXQjKqEoXoNR7O1duj4QfR+FdHyNmnUpBCaEMIBhY1MpScl4ZXvIwBKEdDtMeg1gIDsbMsCjkZVwuGBdpbTMAG2rUM78Tf6pTtQTaahc3YlJyOd/evNiwnxc5pDhYRkREeI25+tmONoEq6UIigigslpaYblKVYGuey5XilFhbyYViE7y3Bcp6N2166kJiSwa948rp49S3BkJA+MGkXzsWMNdSjyjWAf3LyZhgMGULtLF6KmT0fn4oI+OwvN2cWuwQ9bSXhJkvgoHE62V65cyYwZM5g6dWqx3/T9999n5MiRVpPtpKQkVq9eXWiy3bhxY9P/9+3blyeeeIJXX33V7JpHH32UCRMm8O6779KxY8dit1XcJfR62PYB5O+YNu+Idv60+TGjDxeidR6Amr7CsjNrXDtUsbJs6SWEuDXc840a5T0oNI1gDxyP8q9oGZs0DTo+jrZqrvWHhACH9qFb8yo5gycxz8fPsphQdja6zAw8A27dSI8Q4vbhyJT0/LscXD52DP/wcEOSHhJidW20teubjxuHh59foffxDgkhatpUdC6u6LOzQNOIGDiQGu3b2xzBvrjjGw4P702d9z4mqN3Dt+rbJYTDijWNvHnz5jf9xraeOB09epQKFSrYfZ+vvvqKjz/+2Oq5Tp06mfbeFvcwpQwj2vk7ppoGnfqBrU7p0TiIHoQ2Yy3qgfZoHy0x279RF1Ql7zaSbAshSpCVEWyzB4WaBtOWW0+o3TwMSbqtvWqNzh3H2dPTtBQL8hUTSrsCgFfgrRvpEULcGreycJrZLgf5Rpd/nDeP7itWEDFwIM4eHgA4e3hYvT4oIoLW06fz59q1Fuus899H0+lM24Jdyrc3t3dICFHR0eicnS22IdT7BvL98XRq3cJRapkSLorD4UpOw4YN48MPP3T4jd59910iIiKIiIhA0zT69+9v+tz4p3bt2gwaNMihkehy5cqxfft2q+e++eYbypUr53Bbi+PSpUuMHDmSatWq4eXlRcOGDVmyZInFdfHx8fTp0wdvb2/8/f0ZNmxYie05LmxQesPU8fwdU3s6pV9tgHenoQWGoB86FWatQz90Krk+AaBppVbhUoiyIDGtDOj1kHgObflMmNIf7Z/9kFjgQWFhsSszw7CNTmF71QJUDiMnPZ2cjAygQDGh5MQS/qKEuH3c7XHNOEp9LSGhRO9r3OWgYKINoM/J4bOhQ0lNSMArMBAXT0+8AgOtXt983DhSz52zSLQL3sf0ILDA3tyapnEhLo45Xl5ciIsr9QEP45TwO6Eo3b0uNSGBHTExpJbwv4XicHhke+bMmYwdO5aWLVvSvn17q9t2vfjiixavCwkJITIyEoADBw5Qp04dAgs8OXd1daVevXoMHTrU7vY8//zzTJ8+nQsXLtCzZ08qVqzIxYsX2bJlC2vXriU2NtbRL7FYHnvsMQ4dOsScOXOoVq0aX375JaNGjcLJyYnhw4cDkJ2dzcMPG6a2fPjhh6SnpzN+/Hj69+/P1q1bS6Wd9ySdlcri9nZKnZxRSg9OzqbPXVxcZURb3PUkppUyGyPYFrNvCotdSsHXG6HHUChkr1rVZySJf/9No/79LYsJefvC8GizKuhC3C0krjnGWARN6fXsXbrUIkE2Cqxfn7QLFwhq3NiwNjs3l50xMebXaxoN+/Xjx7lzbd5Hn5PD3iVLiCpijfOt3oZQRrDvfLdTxX6Hk+3vvvuO1atXk5qayu7duy3O20q2e/ToQY8ePUyfT58+3eqabUdNnToVX19f5s2bx+rVq01FF4KDg1m0aBEvvPDCTb9HUc6fP8/333/PqlWrePrppwFo164dv/76Kxs2bDAF8M2bN/PXX3/x999/m/Yq9/Pz4+GHH+aXX36hWbNmt7yt9yKVm2uo0mt20P5OKZoOnc6QXOucpBCauPtJTCs5dk3rtLbUxdYIdlGxa/0i6DLQZr0JoldCQDBB/kH0XrfOYiomAcEwIqYkvnQhbisS1+xXsKiZzsmJy8eszwRs+MQT9FyzhtT4eHbGxHDl7Fl6rlplcb2Lhwcunp4272OUfPy4oa9Vhv0tKWomSpLD82Cff/557r//fvbv309mZiZ6vd7sjz3bbK1atapEEm2j0aNHc/r0aU6ePMlPP/3EyZMnOXPmTKkk2mB4Cgrg4+NjdtzHx8dsTdy2bduIiIgwBW+Ajh074u/vz5dfflkqbb1XKKVMT041nQ59z2E3RqeN1i+CipUNo0cFzzk5o6avgIBgGcUW9xyJaSXHrmmd1pa6FDaCXVjsOn4QFbcbOg9EfX4Shk6FR/obPn5+Eh4ZgKbTlelUTCHKgsQ1+yi9ntRz59gZG8tH/fuzc8YM9Dk5+IdbxqKgiAh6rlnD/g8/5M2aNflh1iz+XL2a7PR0i+uzMzKsHi/ILywMfW4uyLa94i7h8Mj2mTNnePPNN2nQoMGtaI9d3n33XZ555hnc3NxMx3Q6HdWqVaNatWpWX7N//34SExNp165dibenatWqdOrUiTlz5lCnTh2qVq3Ktm3b+Prrr1m3bp3pukOHDlG3bl2z12qaRt26dTl06FCJt+teZVb98vhxeqxahVNgZdS05ebb4RyNg9ghqJjV0KyDWRE01WekIdGWddniHiQxrfRoOp31pS6FjWDnFXAkdg2qQOwyK+AYGIIaNg3NxRWVtx1O/h0UbvVUTCFuJxLXCmerqBkYEuCmw4fz47x5Ra/BVooDGzfSZOhQ8+ttHc/HVKhR+l7iLuLwT/NDDz3E4cOHb0Vb7Pb+++8TGhrKiy++yE8//WR6WllQfHw8K1asoEOHDrRo0YLk5ORb1qaPP/6YoKAgGjRoQPny5enfvz8LFy6kT58+pmuSk5Mt1riDYXrS5cuXbd47MzOTq1evmv0R1hl/USyuUYMfZs3iwIcfsn/dOtKTk1EP9yd3yz9mIz25o2ajlB7lH4R6NgZmrTN8DLS+jYUQ9wqJaaVD6fWgz3V8BPvbzajdX0FAMPqh06wXcNQ00n/+Hh7yMnzMl2jLmkRxL7pVce1uiGm2ipoB/LxwIeWCg+m+YgU657xYlLcG+/cVKyyu37NoEd6VK/Po8uU3ri/kOBQo1CizbcRdxOGR7Tlz5jB48GBcXV3p0KGD1YDk7+9fEm2zac+ePWzZsoXFixfzxhtv4OLiQu3atQkMDMTNzY2UlBROnDjBxYsX8ff3Z/DgwXzwwQdUqlTppt9bKWU2VV7TNHQ6HUOGDOHo0aN8+OGHBAcH88033zBu3Dj8/Px44oknbuo9586dW2qF3u5ktqpl7lm0iIiBAzmybRvXL1+i4eBJOHt6kpOezoH/24hHQCC1u3QxJdearMsW9xCJabcBTQd9Rjg8gq0FhnDl5El8QkMN1+uccPE0L+DoFRgI19MttvKSNYniblbace2Oj2mahruvLztjY62OOF+Ii+OTQYPotXataa/rq+fO2VyDbby+55o11Gjbln3vvWfaGzszNZXGTz1FWIcONvfMFuJu4nCy/cADDwAwcuRIm0+e7Fm3fbN69epFr169OHnyJN9++y2//fYbCQkJXL9+ndDQUDp16kTLli1p06YNLi4uJfa+O3fupG3btqbPo6KiGD9+PJs2bSIuLo5GjRoB0KZNGy5evMjLL79sCuB+fn5cuXLF4p7JyclUrVrV5ntOmjSJl156yfT51atXC73+XpKakMDvK1fS5Jln8KpY0Wq1zPxB/9r58+yaN4+rZ89SvnJlCe7inicx7TagaaiAEMP+2fmXuoBhBLtTf3ioCzlPT8bZw4Oc9HT2b9jAr2+/zROffcb15GQWhYYyZNcugps2LbuvQ4jbRGnHtTs9prl4eKBzdi60eNmBDRvwrV6ddnPm3NjrOjfX5hrsAxs2kHjwIN1XriQqJgadk5NZQcbC9swuLTLDR5QGh5PtlStXltg/BqUUR44c4fLly/j7+1O7dm2H7129enWGDRvGsGHDSqRNRYmMjOTXX381fe7t7c2nn36Kk5MTDRs2NLu2SZMmLF++nPT0dDw9Palbty779+83u0YpxeHDhwvdW9zNzc1sfbowUErhFRhI6ylTiqyWaQz6jyxebAjuBYK+EPcqiWllTylFRnIy7g/3R9+0DU6fLjevH1GhElsGD2b/hx/i4uFBdnq62ZTLpMOHba+/DgiWrbzEPae049qdHtOyMzJsFkHLT+fsjNLruRAXx6pWrRh36hSRI0bYXIOdePAg5SpVsvpAUNM0zufdp6weFMoMH1EaHE62jdsl3Kx33nmHGTNmkJiYaDpWsWJFpk+fzqhRo0rkPW4Fb29v7r//frNjoaGh5ObmEhcXR+PGjU3H9+7dS8WKFfHM26ewc+fOfPDBBxw9epRatWoBsH37di5dukSXLl1K74u4C5gVQTt2DP+aNYmaPr3QXxQX4uI4sX071Vq1ArBYLyTEvUhiWtlTej17Fi3i8Gef0XzsWBrlW+pyds8eqj5UkfZz5+JXo4bVKZc5GRm2by5beYl7kMQ1BynF9ZSUQhPngsXLstPTSUtMJKBOHbqvWGGxhM/eB4JSqFHc7cok21i2bBmjR4/mySefpF+/fgQFBXHhwgU2btzI6NGjcXFxKbWR6pLQpUsXqlWrRt++fYmOjiY4OJivv/6a999/32wNT9++fZkzZw59+vRhzpw5pKenM378eLp27XpP7Nt4M4zTxSOffRbPChUcqpZpJFUuhbCPxLTS4eLpiabTmWblXIiL47OhQ/ls2DDTCDYYttd5ZPFiq1MxhRD2kbhWOHsT5/xxJycjA02nI2LgQNNabocfCJYCmS4uypJdyXZERAQffvghDRs2pFGjRoX+gtc0jT///LPQ+y1cuJAxY8awaNEis+Pdu3cnMDCQBQsW3FHJtre3N9u3b2fKlCn85z//ISUlhRo1avD6668zevRo03UuLi7897//ZcyYMTz55JM4OzvTu3dvFi5cWIatv/2ZTRfPG9G2VS2z0YABDv2iEEJYutdjWmpCAnuXLiVyxAi8S6Bz5pI3YmaklCIoIoLJaWnoc3Is1z0qZTbaY5qV89BDzPHykrXZQhTDvR7XimJv4myNptOV+BpsvU8AO+Khnk9Ase9hJNPFRVmyK9mOjIzEy8vL9P83m6ycOHGCbt26WT3XtWtXlixZclP3Lws1a9Zk48aNRV5XuXJlPvroo1Jo0d3BYs/slSutFkED69UypcqlEMVzL8e0awkJ7IyNpU737jeVbBdMqpVSkLdrgmkJTHg4LSdOtGv65vWUFJlyKW4LJf1AqrTcy3HNXsVNnEt6DbbeN5CdCVDHN7Doi4W4jdmVbK9atcr0/++///5Nv2lwcDC7d++mQ4cOFud+/vlngu+gwC1uHeOe2cZRahdPT5zXrXO8WqZMuRRClLKCdSWqtmzJA6NGWV0Cc/TLLxn2yy92rXsU4nZQUg+kxO3pZhJneSAohDmH12w/88wzTJs2jRo1alicO3XqFLGxsaxcubLQewwdOpQZM2aQmZlJ3759CQoK4uLFi2zatIn58+czffp0R5sl7jLW9szOzsggOz3d7mqZxgJoUghNCFGaCj4oBAjr2JErp09bXQKTsG8fnwweTK81a27rdY9CiNJV1jMIJHEW4uY5PKf2/fffN6sgnl9SUhKrV68u8h5TpkzhhRdeYP78+URGRlKlShWaNm3K/PnzeeGFF5g8ebKjzRJ3idSEBH6YPRuVm2s5XVwpDmzcSJOhQ20m0FIETQhRlqw9KETTaNivH7+vWGF1mjjA/nXr+PXdd02FfHqvW0dUdDTeISESz4S4RxlnEFxLSCjrpghx10tNSGBHTAypJfzvrVi/wW1Nxz169CgVKlSw6/WvvfYa8fHxfP7556xZs4atW7cSHx/PggULZLrvPSp/ITSds7PV6eJ7Fi3Cu3JlHl2+3CLhliJoQoiypvR6iweFLh4euHh6FroEBuDsTz+h0+m4sH8/c7y8uBAXZxbLpKKuEOJeIfFOlLZb9XDLrvm17777Lu+++y5gSJT79++Ph4eH2TXXr1/n5MmTPPbYY0Xeb82aNXTt2pUKFSpY7Fl4+fJltm7dyqBBg+z9GsRdwFohNGvTxY1F0HquWUONdu3Yt2yZFEETQtw2jNt45WfvEhi/sDD0ubkW1ciNpKKuKG1lPY1Z3Lsk3om7hV3JdkhICJGRkQAcOHCAOnXqEBhoXh3Q1dWVevXqMXTo0CLvN2TIEHbv3m11FPzEiRMMGTJEku17iNX1jR060GToUKvVeQ9s2MClI0d4+ocfZN9ZIcRtITUhgb3LltF6yhTLpDrfEpiiKo7Lw0JxO5FCaOJ2Y2vEW0bCxe3KrmS7R48e9OjRw/T5tGnTCAsLK/abKqVsnktOTsbb27vY9xZ3FqvrGzFMF48YOJBHly/n82HDLKrzNh83DhcPD1PHVIqgCSFKg62RvmsJCeyMiaHZ889b3carqJh2M0tgpJMphLhX2BrxlpFwcbtyOEPJvw2YUXp6OvHx8YSHh9vsKGzbto1t27aZPn/ttdcICgoyu+b69et899133HfffY42S9xBlFKo3FxT1XBr+2bLdHEhREkpyamwhY30uXh6kpaYSECdOhbbeF2Ii+PTIUPouXo1YR062Kw4XhzSyRRCGLl4epZ1E+wmDwrFvcDhZHvBggWkpaURHR0NwK5du+jevTtXr16lRo0afPXVV4RbWZd25MgRPv/8c8Cw7nvXrl24ubmZXePq6krDhg2ZM2dOcb4WcQfIvzb7ytmz9Fy1ymbRoAMbNpB48CCPLF4s08WFEMV2q6fCKqUIiohgclqaIbnWNCIGDrS6jZemaXiHhBAVHY3O2VlimrgtyNrsO1/BOKSUsogrt1siLg8Kxa10u/y8O5xsL1++nAkTJpg+f+mll2jQoAETJ05k1qxZTJ48mY0bN1q8buzYsYwdOxaAGjVq8Mknn9C4ceObaLq401iszdY0ur79dqFFgy7ExXFi+3aqPfQQP8yeTZNnnpGOgBCiTOX/BW5W3PHYMfzDww0JS0hIoUn1+bg4VrVqxZBduwhu2rSsvhQhAFmbfacrLA5pOl2RifjtkpQIURLsefBUmhxOts+cOUPNmjUBOHfuHHv37mXnzp20atWKnJwcRo0aVeQ9Tpw44XhLxR3N6tpsR4oGOTnResqUUm61EOJeZa3zafEL3EpxR4Af582j+4oVRAwcyKWjR3nv/vutJtXWKo4LIYS9nD08Co1Dg/IGK2wl4mjabZWUCHGzinrwVBYcTrY9PDy4evUqANu3b6dcuXK0aNECAF9fX65cuVKyLRR3BVtrs29l0SAhhHCUrSfiBX+Btxg/Hq+KFS06uAD6nBw+GzqUGu3b4xUY6HBSLesYhRBFcfH0xCsw0GqRWYDA+vWp8uCDVhPx5BMn6Ll6NddKKSmRmCZKgz0PwMsi4XY42W7WrBnz5s1Dp9Mxf/58OnfujJOTEwDHjh2jcuXKJd5IceeztvcsFCiE1rYt+957TwqhCSHKhLUn4g+MHo1XYKDFEpjuy5fz49y5VmfkgCHh3rtkCVF59U0cIesYhRC2mD0QzM1lZ0yM1TjUfNw4Us+ds0g8giIi6LFqFXEffGAxyJE/KXH28CixNktME7eard2NwPwBuHdISKkP4BWrQFq3bt149NFHCQ0NZfbs2aZzGzduNI1yi3ubUgql1xuKmuXmAthcm20shNZ95UophCaEKBO2noj7hYdTo107s+MuHh64eHraLO5olHz8ODpn5xLttAoh7l12F5nVNBr262f1gaAxCS+YaIPlrBxbZKRa3G5szaA1Mj0Aj4lByxskLi0ODxnWr1+f48ePk5iYyIkTJ0zrt8GwndeCBQtKtIHizqP0elLPnWNnTAwf9e/PzpgYcq5fJ3LECJv7YScePEi5SpW4npzMHC8vLsTFSaIthCgVNp+IaxoNHn+cfe+9Z3Y8OyOD7PT0Qos7AviFhaHPySEnI+NWNV0IcQ/IvzZ7cY0a/DBrFn+uXm0zDtl8IJiXhP++YkWRSYm7r6/N9hhHqqWYnrhd2JpBm1/y8ePoSjnRhmIk20YVKlRAKUV8fDw5ef9gGzVqRGAhT8LEnUspZRqh1ufmopSyfrzAL4MD69fzw6xZvN+6NeWCg+m+YoVFwp1/bbZSihYTJsjTUiFEqbH1RNxmhzVfcUdbDxCNxR2vp6TcolYLIe4VVtdmFxKHbD0QlFk54m6lz821+wH4jpgYUhMSSqllxUy2v/rqK/71r3/h7u5OtWrViIuLA+DZZ59l3bp1dt3jr7/+4oknniA8PBw3Nzf27dsHwJQpU9i2bVtxmiVuEWsj1RmXL1scv/DnnzbXSyTs28cngwcTMXAgY0+epPXUqTTq35/WU6cy9uRJIgYMQNPp8AoMlKelQohSZeuJeGEj2HsWLcK7cmUeXb680AeIaYmJt6zdQoh7gKbh7utrs8is1TikFH/93//RdPhws+MyK0fcrTSdrtAZtPkfgP80fz7Xbudke/369XTp0oUaNWrwzjvvoNfrTefCw8NZtWpVkff45ptvaNKkCadOnWLAgAFkZ2ebzrm4uPDOO+842ixxi1gbqT782We4lS/Pn2vX3ji+YQMBdesWul5i/7p1/Pruu6a1Pr3XrSMqOrpMy/ELIYTNJ+KFjBwZizs26t+/0AeI0lkVQtwMFw8PdM7OhRaZbdS/P2OOHTOLQzU7d6Z8lSrmMwodmJWTk5Ul67LFHUPTNLxDQmzOoH18yxa8g4Nx9/VlcloaQRERplm6t5rDGc7MmTMZN24c69ev5+mnnzY716BBAw4cOFDkPSZNmsQTTzzB7t27mT59utm5Jk2a8PvvvzvaLHEL2FrHaK24hr1Tk87+9BM6nc70D0Hn7Cxrs4UQpS7/Ehg0zeYTcePIkbVf4Ac3b+afr77CWx4gCiFukeyMDPQ5OYUWmX3v/vtJS0wkKibGFIe8KlZE0+ksZhRmp6fjU61akcv6XD09ZaahuG2kJiQUOf3b2s9766lTefnCBWp36UJqfDw7Y2MNs3RjY0k9dw6Vb9D4VnG4Gvnx48fp0qWL1XNeXl527bN94MAB5s6dC2CRaPn6+pKUlORos8QtYHUdo40Klw5NTcrNLZMCBUIIAZZbfFVt2ZIHRo2i+4oVFg8XEw8e5OzPPxMxcCA12rdn75IlVrcnPP/HH6xq1Yohu3YR3LSp6fVStVcIcVOU4npKCpEjRvDjvHlWZw/mLzK7KDTULA5pOh3eISFERUejc3Y2bV9YVEwT4nZyLSGBnbGx1OnevdAHQNZ+3jWdrkz333Y42a5UqRKHDh2iffv2Fufi4uIIDQ0t8h7+/v7Ex8dbPXfkyBGCpVNyW7C2jtGegkG2fhkYpyZJEBdClDYXT0+zir75f+keWL+es7t303P16kI7nxa/wAtsT5idnm7xvrK/rBDiZqUlJhJQp47VB4L5R6OTDh+2Goc0TeN8XJz5A8G8abeFxTQh7kT5f97HnTpFzvXrdu2/fas4nPX079+fmJgYtm/fbjqmaRoHDhzg1VdfZeDAgUXeo2fPnkRHR3P48GGze5w/f54FCxbQp08fR5t1y7zzzjt069aNwMBANE1j8+bNNq/94osvaNGiBV5eXvj5+dG2bVvOnj1rds1PP/3Egw8+iIeHB6GhobzyyiultmbAUdbWMZZEwSAJ5EKUnXstpimlCIqIYHJaGhXq1LFZxHH/unUsb9YMd19fm1PCNU3jQlyc1e0JZQRbiLJzt8e1nIwMm1NkHakRUTARLyymCXGny87IsFlc0Mi41d2tnE7ucLIdExNDixYt6NixI5UqVQKgc+fONG7cmPvvv5+JEycWeY+5c+cSGBhIREQEzZs3B+CZZ56hTp06+Pj4EHMbjQKsWbOGpKQkm1PnjT744AN69+5NmzZt2Lp1K6tXr+b+++/n+vXrpmv++ecfHn74YYKDg9m6dSvjxo1j+vTpvPbaa7f6yygWq5X9SqBgkBCi7NxLMc20Y0JsLB8NGIA+O7vQX7oJ+/bxv3nzAArtfBY2gm3v+kZJzoUoOfdKXMs/w6Yka0RYi2lC3OkKKy6Yn2n/7Vv0sMnhaeSurq58+umnfP/993zzzf+3d+dxUVX9H8A/F5gZYEBg2JXFFUVR3BIhExckt0xFSSz3MovMyr2nApdc0scs06JfuKaimPu+gUtiqeXjvpUa5AYIKCrbzPf3h3FjnAFmgBmG8ft+vXjVXM4995w78oFz595z9iEjIwMKhQJhYWEICwvTqQ4HBwccO3YMP/74I/bt2weFQgGFQoHo6GgMHToUUqlU744YyrF/JvS6ceMGVq5cqbXM/fv3ER0djYULF+Kdd94Rt/fp00et3Lx58+Ds7IyEhARIpVJ07doV6enp+PzzzzF27FjIZDKD9kVfJWf2K/lJ0C8LF6LFG2/glR9+UJskDXg6YVDA66/Dr2dPhMbGwsLSEiqlEoKFBV8xZcwEmHOmPbx9G6fi4vBCdDRsnZ3VbheX2NrCavVqndeXNfSnWHx7OavpJLa21d0EkTnn2rO03hLOGNNQ3uSCxYrnk4KBfu/rPdgu1rlzZ3Tu3LnCB5ZIJBgxYgRGjBhR4TqMwUKHq4Xr16+HUqnEqFGjyiy3a9cu9O/fX+1iwqBBgzB79mykpKSgU6dOlW1ulSu+benZ5xjzHz5E4JAhqB8WVurzjcVDa54MjTHTYc6Zlnv7No7Nm4d2772ncbt4Va0vy59Is+ddyUczVEVFIKJqv5huzrlWGlP8NJrzkZkUHSYXNMZ8UtVyT++LL76IJUuWID09vToOX+WOHz+OJk2aYMWKFfD19YWVlRVatmyJXbt2iWUePXqE1NRUNGnSRG3fJk2aQBAEXLp0ydjN1pl421LxkhKxsbBxctK6nZe8Yazmq4mZVnIAYO3kpHm7uB7ry+ZlZ5d6HH1vF2fMnKg9mmHk5XMqqybmWk3D+chMzaP09DLX3zbGfFLVMiry9PTEhAkTUKdOHbz88stYuXIlHj58WB1NqRJ37tzB5cuX8emnn2LGjBnYtWsX6tatiz59+uD8+fMAgOx//nhzdHRU21cqlcLW1hb3798vtf78/Hw8ePBA7cvYBEEQP6G2KDFbZWnbGWM1V03LtJIDgM0jRmhdSQHQfRLHR2ZyIZixqlJyJv+v6tXD4ZkzcW7tWhyeORNf1auHMz/+aPIDbkPmmin8ncYY06Tr5IKGVOHbyCtjw4YNyM3NxcaNG7Fu3Tq8+eabGDNmDHr06IHBgwejd+/eRn8mhoigVCrF14IgwFLH259VKhVyc3OxevVq8dmfTp06wc/PD3Pnzi31+SFdzZ49G9OmTatUHYyx58vzkmkaS3kJAnotXqz1dvHiSRz7rlyJel264Lfvv9f6CEx5M/oy9ryRu7qWOpP/s8vnGPKiu6nmGv+dxphp02X5TkOptvt97ezsMHToUOzYsQO3b9/Gl19+ifv372PQoEFwd3c3ensOHToEiUQifmlbR7w0Tk5OAIAuXbqI2yQSCTp27CheLS2+SpqTk6O2b0FBAR4/fgyFQlFq/VOnTkVOTo74lZqaqnPbGGPPp+ch04hIcwBQzu3i5xISEN++PWwUCn4EhjEdSORyk1g+BzDdXOO/0xgzfdW11F21fLL9LGdnZ7z44ou4efMmLl++jLt37xq9DW3atMGJEyfE1/b29jrv26xZs1K/V7ychFwuh7e3t8bzPpcvXwYRaTwfVJJMJqv22S8ZYzXL85BppFJpHQCUtWKChZUVgj74ABIbG3FwzZM4MqZJnAchNxcAdF8+x4BMNdf47zTGagY7T0+ETJxo1En8KjTYViqV+OWXX5CWlqa2NmGxoUOH6lTPH3/8gYSEBCQkJODChQtwd3dHZGQkoqKiKtKsSrG3t0fbtm0rtG/v3r0RExOD/fv3o2/fvgCeXgU9dOgQOnbsKJbr0aMHtmzZgi+++AISiQQAsG7dOjg6OiIkJKTSfWCMsWLPQ6aV9my22u3inTvjt//7P623izPGtCOVCg9v3cKpuDjc//NPvLp0qc7L5xhywP085BpjzHCqY9lNvQfbv/32G/r374/U1FSt65AKglDuYHvBggVISEjAqVOn4ODggIiICHz11Vfo1KmTTss3GNPJkydx48YNceb048ePAwBcXV0RGhoKAGjdujUiIiIwevRo3L9/H56enli8eDHu3r2LiRMninVNnDgRq1evRlRUFN59912cPXsW8+bNw+eff25Sa4szxsyXOWWaSqksdQBwLiEB6RcuoM/SpQiNjYWFpaVRn9FirCYqORFayccz6oeFodWoUdW6fE5ZzCnXnmVK65kzxiqA9NSuXTtq0aIFJScn07179yg7O1vjqzxyuZyioqJo69atVFBQoG8TjGrYsGEEQOMrNDRUrVxubi6NHTuWXF1dSSaTUUhICB09elSjvp9//pmCgoJIJpORl5cXzZ49m1QqlV5tysnJIQCUk5NTma4xxp5D5pRpKpWKclJTabqVFcUCGl/TrawoJy2NHqWn0+e2tnTr1Cmd6r116hTFAjqXZ6ymK/43/yg9XevP1LctWlBRQQH9vny5xvemW1nR6ZUrSaVUVlv7TS3XquLvNJVKRcrCQiIiUhYWqh2/tIwqK7sqsg9jpkLff6cV+XdtqJ8FvT/ZPn/+PBITE8UrhRVx79492NaQK3XLly/H8uXLyy0nl8vx9ddf4+uvvy6zXEhIiHjFlTHGjM2cMk0QBHH9zGdnSS65lFfG5csofPy4WtrIWI0hCLB2dMShadM0Pr3WdSb/6mJOuQY8cxv/H39A0aAB2rz9Nk/kyJiBGeJOEr0H235+fpVeP7CmDLQZY4yZtuL1M+t17YpT333HS3kxVkESGxtYWFmVOhFa8aMZ3b/6ih/NMCBtt/EDwNE5c9AnPh4t3ngDVjY21dhCxkzHw9u3cSou7unFqEpMekbFE0I+egRVURGIqMpyTe/B9pdffolx48YhMDCwzNlmn1WrVi0kJSWhTZs2sLe3L7MDgiBoLLvAGGOMaVPV62faeXoiNCbGqLOVMlbtBAGqoqIyJ0K7e+YMrh84AJ8OHTBLLseII0fg2bq1ERtp3kjbcob/KLmeudzVtZpayJhpyb19G4emTUPjPn0qPNg29J0keg+233vvPdy5cwcBAQGoXbu2uCZhMUEQ8L///U9jv/Hjx8Pzn5Mwfvx4vgrKGGOsygiCgDtnzmDZSy9VegBQHbOVMlZdqMQSXyqVCm3efrvcidDysrP50QwDKG05w2LF65mHxsQYuWWMmSdd7iSp7IBb78F2mzZtKjRQjikRDLH8RwxjjLEqVh3rZzJWkz37iY73iy/ihXfe0WkeBFb1SlvOsKSsP/+EhZUV30rO2D8q+py1rneS2NeuXakPifUebOsyAUV5unTpgiVLlmi9Df3KlSsYM2YMDh48WOnjMMYYe37wJ9KM6U7bJzrn1q5FWkoK+q5YwfMgVIOyljMs5lS/PlRFRfwesOdeZZ+z1vlOkthYCJaWFW6n3oPtqpCcnFzqJGsPHjzA4cOHjdwixhj7FxGBVKqnEwAplRAsLPjRF8aY2SjrE52zq1cj4+JFDD98uMrmQWC6ESwsdL6NXxueb4I9L6riOWud7ySpxEAbqOBgOzs7Gxs2bMCVK1eQl5en8f3yllQAUGpgHzt2DG5ubhVpFmOMVRovucIYM0clZ+2Vu7mV+YnO7d9+w89z5iA0JoYnQjMifZYz1Ibv7mHmzsrGpspm7Nf5ThKlslIDbr0H21evXkVISAjy8/Px6NEjuLq64v79+ygqKoKTkxMcHBy0DrZnz56N2bNnA3gaJp07d4bFM3+45ufno6ioCO+++24Fu8MYYxVnjIkyGGOsOhTP2tukb1/Ye3rq/GwwERmphQzg5QwZK4vc1VWn56wdfH3LvctD1ztJjD5B2kcffYSgoCAkJiZCLpdj586dCAwMxLp16/Dxxx8jMTFR634hISEYP348iAjTp09HVFQUvLy81MpIpVL4+/vjlVdeqVhvGGOsgow1UQZjjFUnUqn42WATV9XLGTJmFgQB1o6OODRtmk7PWZd3l4eud5JU9udO78H2r7/+ivj4eMhkMgBAQUEBLC0tMXjwYGRkZOD999/Hzz//rLFfaGgoQkNDATzt3FtvvYXatWtXqvGMMVZVjDVRBmOMVZfiWXsr+2wwM7yqXM6QMXMgsbGBhZVVlT5nrcudJJWl92A7Pz8ftWrVgoWFBRQKBW7duiV+LyAgAFOnTi23jhheH5AxZmKMNVEGMz6eNIg9756dtRdApZ4NZsbD65kz9g9BgKqoqMqfszb0nSR6D7b9/Pxw8+ZNAECrVq2wZMkSdOvWDVZWVoiLi9P50+pr165h+fLlpU6ytnXrVn2bxhhjFWasiTKY8fGkQex5Vtakj/xs8POjtIuOfDGSmTrxYmFuLlQqlUGeszbknSR6D7YHDRqE06dPY8iQIZgxYwZefvllODk5QRAEEBFWrFhRbh0nTpxAaGgofH19ceXKFbRo0QI5OTm4ceMGvLy80LBhwwp1hjHGKspYE2Uwxpix6DLpIz8b/Hwo7aIjX4xkpuzZi4XeL76IF955x2DPWRviTpIKTZBWrH379jh37hx27dqFvLw8dOnSBQEBAeXWMWnSJERGRiI+Ph4SiQTx8fFo3bo1jh07hqioKEyePFnfZjHGWKUYa6IMxhgzBn0mfbzLzwYzxkyMtouF59auRVpKCvquWGHQ56yrUoXW2S7J29sbo0eP1muf//3vf5gyZYq49FfxbeQhISGIjY3FlClT8PLLL1e2aYwxphdjTJTBGGPGoM+kjwA/G8wYMx1lXSw8u3o1Mi5exPDDh2vEXTkV+suxsLAQ3333HUaNGoXw8HBcvXoVALBu3TpcvHix3P0FQYBUKoUgCHBzcxOfAQcALy8vXLlypSLNYoyxUj28fRvJsbF4ePu2uI2IoFIqATx9ZpuI1CbK6L96NUJjYp4u98UDbcZYDaLXpI8m+AcqY+z5Vd7Fwtu//Yaf58wBAMySy3H3zBmTHGgDFRhs//nnn2jcuDEmTZqEa9eu4cCBA3j48CEA4PDhw/jiiy/KraNp06b4459fAMHBwfjvf/+Lc+fO4fLly5gzZw4alDNJEWOM6Sv39m0cmzcPuf8MtkmlwsO//8ah2Fj8NHgwDsXG4uHff4NUKgiCAAurpzf+WFhZmWyAM8ZYafSZ9BFERmoVY4yVT+eLhVZWIBPPL71vI3///ffh6uqKX3/9FY6OjpBKpeL3QkNDdVr6a/To0eKn2bNmzUJ4eDgCAwMBAHK5HBs2bNC3WYwxVqpnl73RZdIg/iSbMVaT8aSPjLGaSueLhUVFJr9qgt6D7eTkZKxduxYuLi5Q/nP7ZTEPDw/cLnGLZmmGDBki/r+/vz8uXryIlJQUPHnyBO3bt4ebm5u+zWKMMa2enckyZMIEyN3cdJo0iD/RZozVVDzpI2OsptL1YmFRQYHJL12n92DbqoyP6+/evQs7Ozu9G2FnZ4du3brpvR9jjJVF4xNsQUCfH37A0dmzdZo0SOD1tBljNRhP+mieeG1sZu50vlhoYWHyS9fpPdgODQ3Ff//7X/To0UOcTbx4je3vv/8eXbt21brfxo0b9TpO//799W0aY4yJtM1kKbGxgcTWVvdJgxhjrIYrOemjqc/ay3TDa2Oz54G5XCzUe7A9d+5chISEoGnTpujTpw8EQcDixYtx7tw5XL16Fb/++qvW/QYMGKDzMQRB0LhFnf2r+M6CBw8eVHNLGDNdKqUSR7/+Go9LXA3Ne/wYmXfuQOblhbwy9pXWqYPsrKxqHXDb29s/N38Mc6YxZnh3Tp/Gj927443du+HRsqXa9x7m5iLvn//KS/wc6ru9PM9LrlVVplX0PDNmTsjODq0+/FC8WEiWlniYm1vlx6nIz5sumSZQBaZwu379OmJjY7Fv3z5kZGRAoVAgLCwM06ZNK3Um8ZLLe+nC19dX32Y9N9LS0uDt7V3dzWCMGVBOTg5q1apV3c0wCs40xp4Pz0uucaYx9nzQJdMqNNhm1UulUuHWrVsGuUL84MEDeHt7IzU1tcb/QjSXvnA/TIux+vG8fAIEGDbTAP63Z2rMpR+A+fSFc61qcabpxlz6AZhPX7gf+tHlZ1zv28ir0u7du3HixAmkpqbik08+gY+PDw4fPoyGDRuidu3a1dk0k2ZhYQEvLy+DHqNWrVo1+oesJHPpC/fDtJhLP0yBMTINMJ/3jPthesylL+bSj+rGmaYfc+kHYD594X5UHZ0G2yNHjtS5QkEQEB8fX2aZ9PR09O3bF8ePHxevOowZMwY+Pj5YunQp5HI5Fi9erPMxGWOMMcYYY4wxU6LTYHv58uWwt7dHgwYNSl32q5gut8t88MEHSE9Px7lz59CoUSNIpVLxe2FhYZg5c6YuzWKMMcYYY4wxxkySToPt4OBgHD9+HEqlEoMHD8agQYMqNYHZjh078H//93/w9/fXmHXc29sbaWlpFa6bVY5MJkNMTAxkMll1N6XSzKUv3A/TYi79eJ6Yy3vG/TA95tIXc+nH88Jc3i9z6QdgPn3hflQ9nSdI++uvv5CQkIA1a9bg7NmzCA4OxuDBgxEZGQkXFxe9DmpnZ4f169ejZ8+eUCqVkEgkOHnyJFq3bo3Nmzdj5MiRuH//foU6xBhjjDHGGGOMVTedVwP38fHBpEmTcPr0aZw9exadO3fGwoULUbt2bfTo0QO7du3S+aBBQUFYunSp1u8lJCTgxRdf1LkuxhhjjDHGGGPM1FRq6a+8vDx89tlnWLBgAfr06YONGzfqtF9KSgo6d+6Mdu3aYcCAAfjwww/xn//8BxcvXsSOHTtw9OhRtG7duqLNYowxxhhjjDHGqpXeg22lUom9e/ciISEBW7ZsgZWVFSIiIvDmm2/ihRde0LmelJQUTJkyBceOHYNSqYQgCAgODsa8efMQHBysd0cYY4wxxhhjjDFTofNt5IcPH8Y777wDd3d3REZGQqlUYvXq1bhz5w7i4uJ0HmgXFBRg48aNcHd3x6FDh/DgwQOkpaXh4cOHOHr0KA+0DWjJkiXo3bs3XF1dIQgCNmzYUGrZHTt2ICQkBHK5HE5OTujcubPGxHXHjh1DcHAwbGxs4Ovri7lz55Y7W72hZGZmisvHyeVyBAQE4LvvvtMod+vWLURERMDe3h4KhQJvvvkmHjx4UA0tLt+lS5fQrVs3yOVyeHh4YNKkSSgoKKjuZpVr69atCAoKgr29PTw9PREZGYk///xTo1x8fDz8/PxgbW2NwMBAbN++vRpa+9S1a9cwZswYtGzZElZWVggICNBaLjs7G++//z5q164Na2trNGjQAP/973/VyhQUFGDixInw8PCAXC5Ht27dcPnyZWN047nDmcaZZgycaZxpxsS5xrlmaJxpRs400oGXlxdZW1tTv379aP369fTkyRNddiuVTCajpKSkStXB9BcUFERBQUE0dOhQAkCJiYlay61atYqkUilNnTqVDh48SFu2bKEJEybQ1atXxTJXr14lOzs76tevH+3fv58WLFhAUqmU5s2bZ6zuqOncuTN5enrSsmXL6MCBAzR+/HgCQN9//71YpqCggAICAiggIIC2bt1KCQkJ5OXlRb169aqWNpfl/v375OnpSR07dqTdu3dTfHw8OTg4UHR0dHU3rUxJSUlkYWFBw4cPp3379lFCQgL5+flRgwYN6PHjx2K5tWvXkiAI9Mknn9DBgwfp7bffJisrK0pJSamWdm/evJm8vLwoIiKCmjdvTs2aNdMok5ubS4GBgdSmTRtKSEigpKQkiouL0/g3//bbb5ODgwPFx8fT7t276aWXXqI6depQdna2sbrz3OBM40wzNM40zjRj41zjXDMkzjTjZ5pOg21BEEgqlZKdnR3Z29uX+VWrVq1y6wsMDKQVK1ZUuvFMP0qlkoiIrl+/XmqAZ2ZmUq1atWjJkiVl1jV69Gjy9fWl/Px8cdvUqVPJ0dGR8vLyqrbh5bh9+zYBoGXLlqlt79ixI3Xp0kV8vWbNGhIEgS5duiRu27NnDwGgX375xVjN1cmsWbNILpdTZmamuC0uLo4sLS3p77//rsaWle3tt9+mevXqkUqlErcdPHiQANDhw4fFbX5+fhQVFaW2b3BwMPXo0cNobS2p+GeDiGjYsGFaQ/yTTz6h+vXrU25ubqn1pKamkqWlJcXFxYnbMjMzSS6X09y5c6u20YwzjTPN4DjTONOMjXONc82QONOMn2k63UYeExODjz/+GBMmTMD48ePL/Proo4/KrW/27NmYOXMmTp48qefn8KwyLCzKf7vXr18PpVKJUaNGlVlu165d6Nu3L6RSqbht0KBByM7ORkpKSqXbqo/CwkIAgIODg9p2BwcHtVuldu3ahRYtWqBx48bitm7dukGhUGDnzp3GaayOdu3ahbCwMCgUCnFbZGQkVCoV9u7dW40tK1thYSHs7e0hCIK4rfh9KX4v/vzzT1y5cgWRkZFq+w4aNAgHDhxAfn6+8Rr8D11+Nn744QeMHDkScrm81DJ79+6FSqXCwIEDxW0KhQLh4eEm92/MHHCmcaYZGmcaZ5qxca5xrhkSZ5rxM03nwbY+X+WZNGkSMjMzERQUBDc3NzRv3hwtWrQQvwIDAyvdMVYxx48fR5MmTbBixQr4+vrCysoKLVu2VFva7dGjR0hNTUWTJk3U9m3SpAkEQcClS5eM2mZvb2+Eh4dj1qxZuHDhAh4+fIj169dj7969iI6OFstdunRJo82CIKBJkyZGb3N5tLXV0dERnp6eJtfWkoYPH44LFy5gyZIlyMnJwZ9//omPP/4YrVq1Epf0K27/s/3z9/dHQUEBrl+/bvR2l+fGjRu4c+cOXFxc0KdPH8hkMigUCrz11lvIzc0Vy126dAlubm5wcnJS29/f39+k3zdzxplmGjjTTAtnWs3GuWYaamKucaYZP9OsDFJrOdq0aYO2bdtWx6FZOe7cuYPLly/j008/xRdffAFPT08sXrwYffr0wenTp9GsWTNkZ2cDeBooJUmlUtja2uL+/ftGb/fGjRvx2muvoVmzZgAAS0tLLFq0CBEREWKZrKwsjTYDgJOTU7W0uSw1qa0lvfTSS9i0aRMGDx4s/vJs2bIldu/eDUtLSwBP+wZo/vspDj5T7N+dO3cAABMmTED//v2xc+dOXL16FVOmTEFubi7Wrl0LoOa+b+aMM8001KS2lsSZVjPfN3PHuWYaalJbi3GmGf89q5bB9vLly6vjsM8NIoJSqRRfC4Ig/gCVR6VSITc3F6tXr0afPn0AAJ06dYKfnx/mzp2LlStXGqTNutLWNwsLC4wYMQJXr17FmjVr4OnpiX379uGDDz6Ak5MTBg0aVI0tfr4cO3YMQ4YMwVtvvYXevXsjMzMTM2bMQK9evXDkyBHY2NhUdxMrRKVSAQD8/PywYsUKAEDXrl1hZWWFt956C59//jnq169fnU00a5xpnGnVhTONGQrnGudadeBMM75qGWwzwzp06BA6d+4svg4NDUVycrJO+xZfterSpYu4TSKRoGPHjjh37hyAf6905eTkqO1bUFCAx48fqz27UtW09W3ChAlITEzEmTNn0Lx5cwBPf+ncu3cP48ePFwPcyclJo83A06tc3t7eBmtzRZTVVkOe38p6//330aVLF7VlFtq3bw8fHx+sWrUKo0ePFv+N5eTkwMPDQyxXfCXVFPtX3OaS//aAp0EOAOfPn0f9+vVr7Ptm6jjTONOqC2dazXzfagLONc616sCZZvz3jAfbZqhNmzY4ceKE+Nre3l7nfYtv7dEmLy8PACCXy+Ht7a3xbMPly5dBRBrPeFQlbX3bsmULLC0tNdbca9WqFX744Qc8fvwYtra2aNKkCc6ePatWhohw+fJldOvWzWBtrghtzybl5OTg9u3bBj2/lXXhwgW8+uqratu8vLzg4uKCP/74A8C/zwBdunRJbQKUS5cuQSqVmuSnKQ0aNIBMJiv1+8U/G02aNMHdu3eRlZWl9jyQtue6mO44057iTDM+zjTONEPhXHuKc824ONOMn2k6TZDGahZ7e3u0bdtW/Cr5g1Ke3r17AwD2798vbisoKMChQ4fQpk0bcVuPHj2wZcsWcXZJAFi3bh0cHR0REhJSBb3QTlvffH19oVQqcebMGbWyp06dgpubG2xtbcU2/+9//8PVq1fFMgcOHEBmZiZ69uxpsDZXRI8ePbB//37xmSsASExMhIWFBcLDw6uvYeXw9fXFb7/9prbt5s2byMjIQN26dQEA9evXh5+fHxITE9XKrVu3Dl27dlWbNdVUSKVShIeH48CBA2rb9+3bBwBo3bo1ACA8PBwWFhb46aefxDJZWVnYu3evyf0bq0k4057iTDM+zjTONEPhXHuKc824ONOqIdMMsqAYM0knTpygxMREWrJkCQGg8ePHU2JiIiUnJ6uVi4iIIFdXV4qPj6edO3dSr169yNrams6cOSOWuXr1KsnlcoqIiKADBw7QwoULSSqVaiwcbwwPHjwgHx8fatiwIa1atYr2799PkyZNIgsLC5oxY4ZYrqCggAICAqh58+a0bds2WrduHXl7e1OvXr2M3uby3L9/nzw9PSk0NJT27NlDS5cuJUdHR4qOjq7uppVp4cKFBIDef/992rdvHyUkJFBAQAC5u7tTRkaGWK54Hc3PPvuMkpKSaMyYMWRlZUXHjh2rlnY/evSIEhMTKTExkTp16kTe3t7i63v37hER0cmTJ0kqldLgwYNpz5499M0335C9vT29/vrranW9/fbb5OjoSEuXLqU9e/ZQaGgo1alTh7Kzs6uja2aNM40zzdA40zjTjI1zjXPNkDjTjJ9pPNh+jgwbNowAaHyFhoaqlcvNzaWxY8eSq6sryWQyCgkJoaNHj2rU9/PPP1NQUBDJZDLy8vKi2bNnk0qlMlJv1F29epUiIyOpdu3aZGtrS82aNaOFCxdSUVGRWrm0tDTq378/2dnZkaOjI40cOZJycnKqpc3luXDhAnXt2pVsbGzIzc2NJkyYQPn5+dXdrDKpVCr69ttvqUWLFiSXy8nDw4P69etHFy9e1Cj7ww8/UMOGDUkqlYq/VKvL9evXtf5sAKCkpCSx3P79+6lt27Ykk8nIw8ODxo8fT3l5eWp15eXl0fjx48nNzY1sbGwoLCxMa/9Z5XGmcaYZGmcaZ5qxca5xrhkSZ5rxM00gKrGSPGOMMcYYY4wxxiqNn9lmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJvpJDY2FoIgoE6dOlCpVBrff/HFFyEIAoYPH65XvdnZ2YiNjcWFCxfUtt+4cQOCIGDDhg2VaXalLVy4EIIgiK+Tk5MhCAJOnjxptDbExsbi2LFjGtsFQcD8+fON1g5tNm/eDEEQcOPGDQAVe98WLlyInTt3GqiFjGnHmfYUZ5o6zjRWk3GuPcW5po5zrXrxYJvpTCKRICMjA4cPH1bbfvPmTaSkpMDOzk7vOrOzszFt2jSNAPf09ERKSgq6dOlSqTZXtdatWyMlJQX+/v5GO+a0adO0BnhKSgpef/11o7VDFxV53zjAWXXhTONMKw9nGqtpONc418rDuWZcVtXdAFZzSKVShIWFYe3atejUqZO4PSEhAc2aNYOlpWWVHUsmk6F9+/ZVVl9VqVWrVrntevLkCWxsbAzeFlM8P6b6vjGmDWcaZ1p5TPV9Y6w0nGuca+Ux1ffNXPEn20wvUVFR2LBhAwoLC8Vta9asweDBg7WWP3z4MEJCQmBjYwMXFxeMHDkS9+/fB/D0NpZ69eoBAAYOHAhBEMTbXLTd4qJSqTBz5kzUrVsXMpkMTZo0QVxcnNrxYmNjYWdnh7Nnz6JDhw6wtbVFQEAA9uzZU27fHjx4gKFDh8Le3h6urq6YNGkSioqK1MpouzVJEATMmTMHkydPhoeHB9zc3AAARIT58+fDz88PMpkM9evXx5dffqlx3IsXL6J///5QKBSwtbVFYGAg1q5dK9YNABMnThTPT3Jysvi9Z29NiouLQ+PGjSGTyVC3bl3MnDlT7Vay5cuXQxAE/P777+jRowfkcjkaNWqElStXlnt+CgsL8cEHH0ChUMDBwQGjRo1Cbm6uWhlt79vWrVvRtm1b2NnZwdHREW3bthWvjtatWxc3b97E4sWLxf4tX74cALBy5Up06NABCoUCTk5O6NSpE3799Ve14+nzfq9cuRKtWrWCtbU1XFxc0LNnT9y8eVP8flpaGt544w24uLjAxsYGHTt2xKlTp8o9L6xm40zjTONMY+aGc41zjXPNdPBgm+nllVdeQX5+Pvbu3QsAuHDhAs6cOYNBgwZplD116hS6desGe3t7JCYmYu7cudi2bRt69OgBpVIJT09PbNy4EQAwa9YspKSkICUlBZ6enlqPPXHiRMTGxmL48OHYtm0bwsPDMWbMGHzzzTdq5QoLC/H6669j+PDh2LRpE9zc3BAREYHMzMwy+zZy5Ehs2rQJc+bMwYoVK3DhwgUsXLhQp/Py1Vdf4cqVK4iPj8ePP/4IABg3bhw+++wzDBs2DDt27MDw4cMxefJkfPfdd+J+V69eRXBwMK5evYqvv/4aW7duxYgRI/DXX38BeHr7EQCMHTtWPD+tW7fW2oZFixZhzJgxePnll7Ft2zYMHz4csbGxmDRpkkbZ119/HeHh4di8eTNatWqF4cOH4+LFi2X2cerUqViyZAkmTpyI9evXQ6lUYsqUKWXu88cff2DAgAFo1qwZNm3ahHXr1iEyMhJZWVkAgE2bNsHDwwMDBgwQ+9erVy8AT38ZDB06FImJiVizZg18fHzQsWNHXLlyRe0Yurzf8+bNw7Bhw9CmTRts3LgR8fHxaNSoEdLT0wEAWVlZ6NChA06fPo1Fixbhp59+glwuR5cuXXDv3r0y+8hqNs407TjTtONMYzUB55p2nGvaca4ZGDGmg5iYGJLL5URENHjwYHrjjTeIiOiTTz6h4OBgIiIKDAykYcOGifv069ePfHx8qKCgQNy2Z88eAkBbt24lIqLr168TAEpMTFQ73rPb09PTSSKR0JQpU9TKRUVFkaurKxUVFYntBEA7duzQqGvVqlWl9u/8+fMkCALFx8eL24qKiqhevXpU8sckKSmJANCJEyfEbQCoadOmpFKpxG3Xrl0jQRAoLi5O7TiTJ08mDw8PUiqV4rl0dXWlnJycUtsGgObNm1fm9qKiInJxcaFBgwaplZk6dSpJpVLKyMggIqJly5YRAFq8eLFYJjc3l2xtbWnGjBmltiEzM5NsbGzo008/VdvesWNHAkDXr18nIs33LTExkQDQgwcPSq3b19eXoqOjS/0+EZFSqaTCwkJq3LgxTZ06Vdyuy/udnZ1Ntra2NHr06FLr/+yzz8jBwYHu3r0rbsvLyyMfHx+aOHFimW1jNRNn2lOcaZxpzHxwrj3Fuca5Zkr4k22mt6ioKGzZsgVPnjxBQkICoqKitJY7cuQIXn31VUgkEnFbeHg4HB0dcfToUb2O+csvv6CwsBADBw5U2/7aa68hPT1d7QqahYUFwsLCxNd169aFjY0N0tLSSq3/xIkTICL069dP3GZpaYm+ffvq1L4ePXqozYS5f/9+AEBERASKiorEr7CwMNy5cwepqakAgAMHDmDAgAGoVauWTscpzaVLl5CRkaH1/BQUFGjc0hMeHi7+v1wuh6+vb5nn5+zZs3jy5Ina+SnuX1latGgBS0tLDB48GNu2bUNOTo6uXcLFixfRr18/uLu7w9LSEhKJBJcvX9a4Wlre+52SkoLHjx9j1KhRpR5r79696Ny5MxQKhfheWVpaIjQ0FCdOnNC5zaxm4kzTxJmmHWcaqyk41zRxrmnHuWZYPEEa09vLL78MiUSCzz77DNevX0dkZKTWcllZWXB3d9fY7u7uLj4LpKviW1mera/4dcn6bGxsIJVK1cpJpVLk5eWVWv/t27chkUjg5OSktf7yPFsuIyMDRAQXFxet5VNTU+Hr64vMzEzUrl1bp2OURZ/zAwCOjo5qr3U5PwDEZ5yerb80fn5+2L59O2bNmoV+/frBwsIC3bt3xzfffAMfH59S93v48CHCw8Ph6uqKBQsWwNfXF9bW1njzzTc12lne+118i1JZ5zkjIwPHjx9X+2OjWIMGDcrsI6v5ONM0caZpx5nGagrONU2ca9pxrhkWD7aZ3iQSCSIiIrBgwQJ07dq11B9ihUKh9RmKu3fvQqFQ6HXM4vL37t1DnTp11Ooq+f2K8vT0RGFhIbKystRCvLj+8pS8UlrcHkEQcPToUY1wAYDGjRsDAJydnXHr1q1KtPzf4wHQON9VeX6K69d2/svSvXt3dO/eHQ8ePMDu3bvx4YcfYsSIEThw4ECp+6SkpCAtLQ3bt29HYGCguD0nJwdeXl56td3Z2RkAcOvWrVL3VSgU6N69O2bMmKHxPZlMptfxWM3DmaaJM610nGmsJuBc08S5VjrONcPh28hZhbz55pt45ZVXMG7cuFLLdOjQAZs3b1abJXLfvn3Izs5Ghw4dAEAMt7Ku1AFAu3btIJFIkJiYqLZ9/fr1cHNzg5+fX0W7AgB44YUXADydBKKYUqnE5s2bK1Rf165dATy9Ute2bVuNL3t7ewBAWFgYNmzYgIcPH5Zal0QiKff8NG7cGK6urlrPj1QqRbt27SrUj2LNmzeHjY2N2vkBgJ9++knnOmrVqoXIyEgMGjRIbYIPbVdqnzx5In6v2LFjx3Djxg292x4cHAxbW1ssW7as1DJhYWG4cOEC/P39Nd6r5s2b631MVvNwppWNM00TZxozdZxrZeNc08S5VvX4k21WIe3atSs33P7zn/8gJCQEvXv3xtixY3H37l1MmTIF7dq1Q8+ePQEAHh4ecHR0xNq1a1GvXj3IZDK0aNFCoy4XFxeMHTsW8+bNg7W1Ndq3b4+dO3dizZo1WLRoUaXXjWzatCn69euHDz74AHl5eahbty6WLFmCgoKCCtXn5+eH6OhoDBkyBBMnTkRQUBAKCwtx5coVJCUliecuJiYG27dvR4cOHTBp0iR4enriwoULePz4sTgzpb+/P7Zs2YKXXnoJcrkcjRs3Fn8BFLO0tMSnn36K999/H25ubujZsyeOHz+OuXPn4oMPPhCvGFaUQqHAmDFjMGfOHNjY2KB169ZYu3Yt/vjjjzL3i4uLQ0pKCrp37w5PT09cv34dP/74o9pzSP7+/jh48CD27dsHJycn1KtXD+3bt4ednR2io6MxZcoU/P3334iJiVG7UqsrBwcHxMTEYPLkyVCpVHj11VehUqmQlJSEqKgotG3bFh999BFWr16N0NBQjBs3Dj4+PkhPT8cvv/yC2rVr48MPP9T7uKxm4UwrG2faU5xprCbhXCsb59pTnGsGVp2zs7Gao+QMl6V5doZLIqLk5GQKDg4mmUxGCoWChg8fTpmZmWplNm3aRP7+/iSTycTZErXNfKlUKmn69Onk4+NDEomEGjVqRN99951O7XRwcKCYmJgy25+VlUWvv/46yeVycnZ2po8++ojmzZun0wyX2magVKlUtGjRIgoICCCpVEoKhYKCg4NpwYIFauXOnz9Pffr0oVq1apGtrS21bNmSEhISxO8fOXKEWrduTTY2NgSAkpKSSj3ut99+S40aNSKJREI+Pj40Y8YMcTZNon9nuExPT1fbT9t796z8/HwaO3YsOTo6Uq1atWjYsGG0atWqMme4PHbsGPXq1Ys8PT1JKpWSj48PjRs3Tm3Gy3PnztFLL71E9vb2BICWLVtGRES7du2iZs2akbW1NbVo0YJ27txJoaGh1KtXL3Fffd7vpUuXUvPmzUkqlZKzszP17t2bbt68KX7/9u3bNGrUKLGtXl5eNGDAAPr555/LPC+sZuJMe4ozjTONmQ/Otac41zjXTIlARGTwET1jjDHGGGOMMfYc4We2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbWYwN27cgCAI2LBhg177JScnY9asWRrbY2NjYWdnV1XNK9fChQuxc+fOKqtv8+bNWLJkicb24cOHIyAgoMqOU9WMfd4ZM2Wca+o41xir2TjT1HGmsarGg21mckoL8DfffBNJSUlGa4exAtzUGfu8M2aOONdMC+caY5XDmWZaONNMl1V1N4DVLESEgoICyGQyox/by8sLXl5eRj/u8yo/Px8SiaTKzntxfRYWfI2PmRbOtecH5xp7HnCmPT8400wfn0lWpuLbZnbu3InAwEDIZDJs27YNAJCSkoIuXbpALpfDwcEBgwcPxr1798qsb+XKlejQoQMUCgWcnJzQqVMn/Prrr+L3Y2NjMW3aNDx69AiCIEAQBHTq1En8XvEtMo8ePYJcLsf8+fM1jjFgwAAEBweLr7Ozs/Huu+/C09MTMpkMbdq0wd69e8tsZ926dXHz5k0sXrxYbMfy5csBACqVCjNnzkTdunUhk8nQpEkTxMXFlXseV6xYgfPnz4v1DR8+XK1McnIyWrVqBblcjnbt2uHUqVNq3ycizJ8/H35+fpDJZKhfvz6+/PLLMo9bfOyAgADs2rULAQEBsLa2Rps2bXD8+HGNPr/33nv44osv4OvrCxsbG9y/f1/rrUk3b97EgAED4ODgALlcjpdffhlnz57Vqb6y2rh//360aNECNjY2CA0NxY0bN3D//n1ERkaiVq1aaNCgAdatW6ex/44dOxAUFAQbGxu4urrinXfewaNHj8TvP3r0CO+99x4aN24MW1tb1K1bF2PGjEFOTo7WNi9evBi+vr5wcHBA3759kZ6eXu55ZjUH5xrnGuca55o54UzjTONMM+FMI8bKMGzYMHJycqIGDRrQsmXL6MCBA3T16lU6duwYSaVS6tu3L23bto0SEhKoYcOG1L59e3Hf69evEwBKTEwUt02bNo3i4uJo//79tHPnThoyZAjJZDK6fPkyERGlpqbSqFGjyMbGhlJSUiglJYXOnz9PREQxMTEkl8vFugYNGkRt2rRRa++DBw/I2tqavv76ayIiys/Pp7Zt25K3tzfFx8fT7t276Y033iArKys6c+ZMqf3+7bffyMPDgwYMGCC24969e0RE9NFHH5GlpSXFxMTQnj17aOzYsQSAFi1aVGp9165do549e1L9+vXF+q5duyaeY2dnZ2revDmtXr2atm/fTs2bNydvb28qKCgQ6xg7dizZ2NjQzJkzad++fTRt2jSSSCT07bfflvseKhQKqlu3Li1fvpy2bNlCwcHBVKtWLbp7965YztfXlzw8POill16iTZs20datW+nx48ca5/3BgwdUt25dql+/Pq1Zs4Y2btxIbdq0IUdHR/rrr7/Kra+0Njo7O1OLFi0oISGBfvrpJ6pTpw6FhIRQWFgYTZ8+nfbu3UsDBw4kKysrunHjhrhvYmIiWVhY0KhRo2jXrl20dOlScnNzo9dee00sc+/ePRozZgwlJiZScnIyrVq1ipo0aUKdOnVSa4evry95e3tTeHg4bdu2jZYtW0aOjo5qdbGaj3ONc41zjXPNnHCmcaZxpplupvFgm5Vp2LBhBICOHz+utr1jx44UEhJCKpVK3Hb+/HkSBIF27NhBRNoDvCSlUkmFhYXUuHFjmjp1qrj92cAobfuWLVsIAF25ckXctmLFCrK0tKQ7d+4QEdHSpUvJyspK/CVQLCgoiAYOHFhm3319fSk6OlptW3p6OkkkEpoyZYra9qioKHJ1daWioqJS6xs2bBg1a9ZM63ZBEOjcuXPitqSkJAJAR44cIaKnvwAEQaC4uDi1fSdPnkweHh6kVCrLPC4AOnDggLgtOzub7O3t1frh6+tLzs7OlJubq7b/s+f9q6++IkEQ6MKFC+K2zMxMksvl9NFHH5VbX2ltfPYcLFq0iADQ5MmTxW1ZWVlkaWlJCxcuJCIilUpFvr6+FBUVpVbfrl27NOorqbCwkI4ePUoAxD8eitvs5eVFeXl5av2XSCRlnmNWs3Cuca5xrnGumRPONM40zjTTzTS+jZyVy9nZGUFBQeLrx48f4+eff8bAgQOhVCpRVFSEoqIi+Pn5wdvbGydOnCi1rosXL6Jfv35wd3eHpaUlJBIJLl++jCtXrujdru7du8PR0REJCQnitoSEBHTu3Bnu7u4AgL1796J58+bw8/MT21lUVIRu3bqV2c7S/PLLLygsLMTAgQPVtr/22mtIT0+vUD8AoHbt2mjWrJn4umnTpgCAtLQ0AMD+/fsBABEREWr9CAsLw507d5Camlpm/Q4ODujSpYva67CwMPzyyy9q5Tp16gS5XF5mXUeOHEFAQAD8/f3FbQqFAt26dcPRo0f1rq/Ys+fAz88PABAWFiZuc3R0hJubm9jfK1eu4ObNm4iMjFQ7L6GhobCwsMDJkyfFfVetWoVWrVrBzs4OEokEHTp0EOsoKTQ0VO05t6ZNm6KwsLDc2+5YzcK59i/ONc41VvNxpv2LM40zzZTwYJuVqzgMi2VlZUGpVOLDDz+ERCJR+/rrr79KDZOHDx8iPDwcN2/exIIFC3DkyBGcOHECgYGByMvL07tdUqkUERERYoBnZmZi3759GDx4sFgmIyMDv//+u0Y7Z86cWW7oaZOVlQVA85wUvy7tOZfyODo6qr2WSqUAIJ6XjIwMEBFcXFzU+tGtWzcAKLcvrq6uGtvc3d1x+/Ztrf0oS1ZWltZy7u7uGv3Xpb5ipZ0DbdtLnhcA6Nevn9p5sbW1hVKpFM/Lpk2bMHToULRr1w7r16/H8ePHsWnTJgDQ+LdX3nvBzAPnmnrfAc41zjVWk3Gmqfcd4EzjTDMNPBs5K5cgCGqvHR0dIQgCPv74Y/Tt21ejvIuLi9Z6UlJSkJaWhu3btyMwMFDcnpOTU+EZFKOiohAfH48zZ84gJSUFlpaW6N+/v/h9hUKBFi1aID4+vkL1P0uhUAAA7t27hzp16ojb7969q/b9qqZQKCAIAo4ePSoGSkmNGzcuc39tk0bcvXsXnp6eatuefa9La8vly5e11vds/3WprzKKj/fNN9+oXdEvVrt2bQBAYmIiWrZsqTY5yqFDhwzaNmbaONf+xbnGucZqPs60f3GmcaaZEh5sM73J5XIEBwfj4sWLmDlzps77PXnyBADUAujYsWO4ceOG2i0pUqkU+fn5OtXZqVMneHh4YO3atUhJSUGPHj3g4OAgfj8sLAw7d+5E7dq1xR9mXZW8KlesXbt2kEgkSExMRKtWrcTt69evh5ubm3g7ja716apr164Anl4RfuWVV/TePycnBwcPHhRvT8rJycH+/fsRHR2td10dOnTAhg0bcPnyZfEXR1ZWFvbv34/Ro0frXV9lNGnSBF5eXvjzzz/L7MuTJ080fvGtXr3a0M1jNQjnGuca5xozJ5xpnGmcaaaBB9usQubNm4cuXbrgtddew6BBg+Dk5IS0tDTs27cPI0aMEJeAKKl9+/aws7NDdHQ0pkyZgr///hsxMTFqVx0BwN/fH0VFRfjqq68QEhKCWrVqlXo10NLSEpGRkVi+fDnu3bun9kwQAAwdOhRxcXHo1KkTJkyYAD8/P2RnZ+P3339HQUEBZs+eXWof/f39cfDgQezbtw9OTk6oV68eXFxcMHbsWMybNw/W1tZo3749du7ciTVr1mDRokWwtLQss76lS5di7dq1aNSoEVxcXFC3bt3ST3IJfn5+iI6OxpAhQzBx4kQEBQWhsLAQV65cQVJSEjZv3lzm/gqFAqNGjcK0adPg6OiIOXPmgIjwwQcf6HT8kkaMGIEvv/wSvXr1wsyZM2FtbY3PP/8cVlZWFaqvMgRBwIIFCzB48GA8evQIvXr1glwux82bN7Fjxw7MmjULfn5+6NatG6KjozFjxgwEBwdj586dOHDggFHbykwf5xrnGucaMyecaZxpnGkmoDpnZ2Omr7RZGYmITpw4QT179iQHBweysbGhRo0a0ZgxYyg1NZWItM9wuWvXLmrWrBlZW1tTixYtaOfOnRQaGkq9evUSyxQWFtK7775L7u7uJAgChYaGElHpM1+mpKQQALKzs9O6XEFOTg59+OGH5OPjQxKJhDw9Palnz560ffv2Mvt+7tw5eumll8je3p4A0LJly4jo6cyc06dPF+tr1KgRfffdd2XWVdyOQYMGkbOzMwGgYcOGEZH2c5yVlaV2TKKnszkuWrSIAgICSCqVkkKhoODgYFqwYEGZxy2uf/v27eTv709SqZRatWpFP//8s1o5bTN6Emk/7zdu3KD+/fuTvb092draUrdu3TSW5yitvrLaWFLxLJ8nTpwot969e/dSaGgoyeVyksvl1KxZMxo/fjxlZ2cTEVFRURGNHz+eXF1dyd7engYMGEDHjx/X+Pepre5NmzYRALp+/bpOfWGmj3ONc41zjXPNnHCmcaZxpplupglERMYb2jPGjG348OE4efIkzp07V91NYYyxKsG5xhgzJ5xp5otnI2eMMcYYY4wxxqoYD7YZY4wxxhhjjLEqxreRM8YYY4wxxhhjVYw/2WaMMcYYY4wxxqoYD7YZM7B27dph8eLFpX7/9OnTEAQBycnJBjl+t27d8PnnnxukbsbY84czjTFmbjjXmKHwYJsxA9q0aRNu3LiBkSNHVlsbPv74Y8yfPx9ZWVnV1gbGmHngTGOMmRvONWZIPNhmzIAWLlyIqKgo2NjYVFsbOnfuDCcnJ6xYsaLa2sAYMw+caYwxc8O5xgyJB9uMGcj169dx5MgRDBgwQG37zJkz4eHhATs7O/Tv3x/37t3T2JeIMH/+fPj5+UEmk6F+/fr48ssvNcpt2rQJjRs3hrW1Ndq3b4/ffvsNjo6OiI2NVSs3cOBADnDGWKVwpjHGzA3nGjM0HmwzZiAHDhyAlZUV2rVrJ2775ptv8Omnn2LIkCH46aefUL9+fYwaNUpj33HjxuGzzz7DsGHDsGPHDgwfPhyTJ0/Gd999J5b5/fffMXDgQDRt2hQbN27EsGHD8NprryE/P1+jvpCQEJw+fRrp6emG6SxjzOxxpjHGzA3nGjM4YowZxOjRo6lZs2bi66KiIqpduzYNGTJErdyQIUMIACUlJRER0bVr10gQBIqLi1MrN3nyZPLw8CClUklERAMHDqSGDRuKr4mIVq1aRQAoJiZGbd/r168TANq+fXsV9pAx9jzhTGOMmRvONWZo/Mk2YwZy+/ZtuLq6iq/T0tJw69Yt9OvXT63cs7cu7d+/HwAQERGBoqIi8SssLAx37txBamoqAODEiRPo3bs3LCz+/TF+9dVXtbbFxcVFbBNjjFUEZxpjzNxwrjFDs6ruBjBmrvLy8iCTycTXxeHp5uamVs7d3V3tdUZGBohIDN1npaamwtfXV+MXBADY29vD2tpaY5/idjx58kT/jjDGGDjTGGPmh3ONGRoPthkzEIVCgRs3boivPT09AUBjko27d+9q7CcIAo4ePQqpVKpRb+PGjcX6nn2u5+HDh8jLy9PYJzs7GwDg7Oysdz8YYwzgTGOMmR/ONWZofBs5YwbSuHFjXL9+XXzt5eUFT09PbNq0Sa3chg0b1F537doVAJCZmYm2bdtqfNnb2wMAXnjhBWzfvh0qlUrcd/PmzVrbUvyLpDj8GWNMX5xpjDFzw7nGDI0/2WbMQF588UVMnz4daWlp8PLygqWlJaZMmYJx48bB3d0d3bp1w969e5GUlKS2n5+fH6KjozFkyBBMnDgRQUFBKCwsxJUrV5CUlCSG9NSpU/HCCy8gIiICo0ePxs2bNzF//nxYW1urPRsEACdPnoSdnR1atmxppN4zxswNZxpjzNxwrjGDq+YJ2hgzW/n5+eTs7Ezff/+9uE2lUtG0adPIzc2NbG1tqU+fPrR79261GS6Lyy1atIgCAgJIKpWSQqGg4OBgWrBggdoxfvrpJ/Lz8yOZTEZt2rSho0ePkpWVFS1cuFCt3CuvvKIxsyZjjOmDM40xZm4415ihCURE1TzeZ8xsjR8/Hr///jsOHjxolOMdOHAAYWFhSE5ORmhoKAAgKysLHh4e2LdvHzp27GiUdjDGzBNnGmPM3HCuMUPiwTZjBnT79m00bNgQx44dQ2BgYJXX/+6776Jr165wdnbG+fPnMWPGDNSuXRsnT54Ub0+aPn06kpOTjfZLhDFmvjjTGGPmhnONGRI/s82YAXl6emL58uUaM1FWlaysLIwdOxYZGRlwcHBA9+7dMX/+fLXngBQKBb7++muDHJ8x9nzhTGOMmRvONWZI/Mk2Y4wxxhhjjDFWxXjpL8YYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIrxYJsxxhhjjDHGGKtiPNhmjDHGGGOMMcaqGA+2GWOMMcYYY4yxKsaDbcYYY4wxxhhjrIr9P9RQOd8saC3CAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1456,13 +1456,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADK60lEQVR4nOydeXhM1/vAP3cy2RNZZJHYE/sStZRftcSultpbilKNtUq1pbUnQdGV7qhQai2qVa2iWqrLV1tdQtVSoUiChITIPjPn98dkRiYzk8xEyHY+zzMPc++5556bzLx53/NuihBCIJFIJBKJRCKRSCQSiaTEUJX2AiQSiUQikUgkEolEIqloSGNbIpFIJBKJRCKRSCSSEkYa2xKJRCKRSCQSiUQikZQw0tiWSCQSiUQikUgkEomkhJHGtkQikUgkEolEIpFIJCWMNLYlEolEIpFIJBKJRCIpYaSxLZFIJBKJRCKRSCQSSQkjjW2JRCKRSCQSiUQikUhKGGlsSyQSiUQikUgkEolEUsJIY1siKcMcPHgQRVHYvn17aS9FIpFI7pjz58+jKAqvv/56aS9FIpFI7KZOnTr07du3tJchKUdIY1tSbvj111955plnaNq0Ke7u7tSqVYvHHnuM06dPF3pdbm4uTZo0sajgpaamMmLECHx8fAgJCSEmJsbs+t9++w03NzfOnTtXos8jkUgqN7du3SIyMpKHH34YX19fFEXho48+Mhun0+n46KOP6NevHzVr1sTd3Z1mzZqxaNEisrKyTMZmZ2czZcoU/P39qVGjBosWLTKb79KlS3h4ePDjjz/erUeTSCQSM37//Xf69euHr68vbm5uNGvWjLfffttkzMqVK6lbty6+vr488cQT3Lx50+S8TqejZcuWLF68+F4uXSIpNurSXoBEYiuvvPIKP/74I48++ihhYWFcvnyZd999l1atWvG///2PZs2aWbzunXfe4cKFCxbPTZ8+nYMHDxIdHc2///7LuHHjaNy4Me3btwdACMHUqVOZNm0adevWvWvPJpFIKh/JycksWLCAWrVq0aJFCw4ePGhxXEZGBmPGjOH//u//mDhxIgEBAfz8889ERkZy4MABvv32WxRFAeC1115j/fr1zJkzh7S0NBYsWEBoaCiPP/64cb4ZM2bQr18/HnzwwXvxmBKJRMK+fft45JFHaNmyJfPmzcPDw4OzZ89y6dIl45gffviBSZMmMXXqVEJCQliyZAkzZsxg5cqVxjEffvghN27c4IUXXiiNx5BI7EdIJOWEH3/8UWRnZ5scO336tHB2dhYjRoyweM2VK1eEl5eXWLBggQDEa6+9ZnI+MDBQrFu3zvg+PDxczJw50/j+448/FsHBwSItLa0En8R2vvvuOwGIbdu23dX73Lp1667OL5FIzMnKyhKJiYlCCCF+/fVXAYi1a9eajcvOzhY//vij2fHo6GgBiP379xuPtWvXTkRHRxvfjx49WgwbNsz4/vDhw8Ld3V1cvHixBJ/Eds6dO2dRFpc0UqZJJGWHGzduiMDAQDFw4ECh1WqtjnvppZdE586dje/Xrl0rqlWrZnyfkpIi/Pz8xI4dO+7qegujdu3aok+fPnf1Hrm5uWb6rqT8IsPIJeWG9u3b4+TkZHKsfv36NG3alH/++cfiNTNnzqRhw4aMHDnS4vnMzEx8fHyM7319fcnIyAAgPT2dmTNnsmTJEjw8POxaa3x8PBEREQQHB+Ps7EzdunWZNGkSOTk5xjFxcXE8+uijxnCq//u//+PLL7+0OJ9Op+Pll1+mRo0auLi40LVrV/7991+zcUeOHOHhhx/Gy8sLNzc3wsPDzUJFo6KiUBSFEydOMHz4cHx8fHjooYeM5zds2EDr1q1xdXXF19eXYcOGcfHiRZM5OnXqRLNmzThx4gSdO3fGzc2N6tWr8+qrr5qtKSsri6ioKBo0aICLiwtBQUEMGjSIs2fPmjzf8uXLadq0KS4uLgQGBjJhwgRSUlJs+4FLJOUQZ2dnqlWrVuQ4JycnY7RNfgYOHAhgIv8Kk2k6nY5nn32WF198kRo1ati11tTUVJ577jnq1KmDs7MzNWrUYNSoUSQnJxvHXL16lYiICAIDA3FxcaFFixasW7fO6pyrVq0iNDQUZ2dn7r//fn799VezMSdPnmTIkCH4+vri4uJCmzZt2LVrl8mYjz76CEVROHToEE8//TQBAQEmz7dnzx46dOiAu7s7np6e9OnTh7///ttkjieffBIPDw/i4+MZMGAAHh4e+Pv7M336dLRarclYnU7HW2+9RfPmzXFxccHf35+HH36Y3377zWScLbJUIqkMbNq0iStXrvDyyy+jUqlIT09Hp9OZjStMfoFef2nevDmDBg2y6/62fGc1Gg0LFy40yqQ6deowe/ZssrOzLc75ww8/0LZtW1xcXAgJCWH9+vVmY1JTU5k2bRo1a9bE2dmZevXq8corr5g8e/46FsuXLzfe/8SJE4B9MvDHH3/k+eefx9/fH3d3dwYOHEhSUpLZuvbs2UN4eDienp5UqVKF+++/n02bNpmMsUWflNhIaVv7EsmdoNPpRPXq1UWPHj3Mzh05ckSoVCrx008/WfWmdO3aVXTq1EmcPn1afP3118LV1VVs2LBBCCHE7NmzRdu2bYVOp7NrTfHx8SI4OFi4ubmJadOmiRUrVoh58+aJxo0bi5SUFCGEEJcvXxaBgYHC09NTzJkzR7z55puiRYsWQqVSiU8//dQ4l8Gz3bJlS9G6dWuxbNkyERUVJdzc3ETbtm1N7nvgwAHh5OQkHnjgAfHGG2+IZcuWibCwMOHk5CSOHDliHBcZGSkA0aRJE9G/f3/x/vvvi/fee08IIcSiRYuEoihi6NCh4v333xfR0dHCz89P1KlTx7h2IfQRAMHBwaJmzZri2WefFe+//77o0qWLAMRXX31lHKfRaETXrl0FIIYNGybeffddsWTJEtGlSxfx2WefGceNHTtWqNVqMW7cOLFixQrx0ksvCXd3d3H//feLnJwcu37+Ekl5pDDPtjX27dsnALFp0ybjsYiICNGsWTMRGxsrfvrpJ1GtWjWxaNEiIYQQq1atErVq1RIZGRl2rS0tLU00a9ZMODg4iHHjxokPPvhALFy4UNx///3ijz/+EEIIkZGRIRo3biwcHR3Fc889J95++23RoUMHAYjly5cb5zLI4pYtW4p69eqJV155Rbz66qvCz89P1KhRw+T7fvz4ceHl5SWaNGkiXnnlFfHuu++Kjh07CkVRTOTk2rVrjTItPDxcvPPOO2Lp0qVCCCHWr18vFEURDz/8sHjnnXfEK6+8IurUqSO8vb3FuXPnjHOMHj1auLi4iKZNm4qnnnpKfPDBB2Lw4MECEO+//77Jz+PJJ58UgOjVq5dYvny5eP3110X//v3FO++8YxxjqyyVSCoDgwcPFlWqVBH79+8XDRo0EIBwd3cXEydOFJmZmcZxH3/8sXBzcxN79+4Vp0+fFh07dhTdunUTQgjx999/C2dnZ/HXX3/ZfX9bvrOjR48WgBgyZIh47733xKhRowQgBgwYYDJX7dq1RcOGDUVgYKCYPXu2ePfdd0WrVq2Eoiji+PHjxnHp6ekiLCxMVK1aVcyePVusWLFCjBo1SiiKIp599lnjOINMbNKkiQgJCRFLly4Vy5YtE//995/dMrBly5aiS5cu4p133hEvvPCCcHBwEI899pjJ+teuXSsURRHNmjUTL7/8snjvvffE2LFjxRNPPGEcY6s+KbENaWxLyjUff/yxAERMTIzJcZ1OJ9q2bSsef/xxIYT10MXY2FhRo0YNAQhADB48WGi1WhEXFydcXV3Fzz//bPeaRo0aJVQqlfj111/NzhkM92nTpglAHD582HguLS1N1K1bV9SpU8cYZmUwths3bmwSUvTWW28JQBw7dsw4b/369UXPnj1NNgcyMjJE3bp1Rffu3Y3HDMa24Wdj4Pz588LBwUG8/PLLJsePHTsm1Gq1yfHw8HABiPXr1xuPZWdni2rVqonBgwcbj61Zs0YA4s0337T6szh8+LAAxMaNG03Of/311xaPSyQVkeIY2926dRNVqlQxMd4uXrwomjZtapRpHTp0EGlpaSI1NVX4+/uLLVu22L22+fPnC8BEuTNg+B4vX75cAMbNSiGEyMnJEQ888IDw8PAQN2/eFELclsVVq1YV169fN479/PPPBSC++OIL47GuXbuK5s2bi6ysLJP7tW/fXtSvX994zKBoPvTQQ0Kj0RiPp6WlCW9vbzFu3DiTNV++fFl4eXmZHDco2gsWLDAZa9joNPDtt98KQEydOtXqz8IeWSqRVAbCwsKEm5ubcHNzE1OmTBE7duwQU6ZMMW7EG9BoNGLQoEFG+VWzZk0RGxsrhBCiR48eYuLEiXbf25bv7J9//ikAMXbsWJPz06dPF4D49ttvjcdq164tAPH9998bj129elU4OzuLF154wXhs4cKFwt3dXZw+fdpkzpkzZwoHBwdx4cIFIcRtmVilShVx9epVk7H2ysBu3bqZ6IDPPfeccHBwEKmpqUIIIVJTU4Wnp6do166dySZH/p+FPfqkxDZK3di+cuWK+O+//8xeEklR/PPPP6JKlSrigQceMFGwhNAbea6urmbCzFKeYGZmpvj111/FmTNnjMcGDhwoRo4cKYQQYseOHSIsLEzUqVNHREdHF+rp1mq1okqVKqJ///6Frr1BgwZmnmkhhFiyZImJEW0wtl999VWTcb///rsAxOeff27yft26dSIpKcnkNXbsWOHs7Gw04A3G9qFDh0zmfPPNN4WiKOLMmTNmczRu3Ni4uyyE3tj28PAw+1n069dPtGzZ0vi+T58+ws/PT+Tm5lr9WUydOlV4eXmJq1evmt3Xw8PD7I+fRFIRsdfYfvnlly16XYXQG7l//PGH+Pvvv43f++eee0489NBDQgj9Blfbtm1FjRo1xJQpU4rMDWzatKlo0aJFoWN69OghqlWrZpaPuXnzZhMj2iCLn376aZNx169fF4B46623hBBCXLt2TSiKIhYuXGgmFwy56pcuXRJC3FY089ffEEKITz/91KgoF5yjR48eol69esaxBmO7oLI7depU4ePjY3w/efJkoSiKuHbtmtWfhT2yVCKpDISEhAjAzFieMGGCAMwM0jNnzojffvvNaBB+/vnnwtvbWyQlJYlLly6Jvn37iqCgING3b18RHx9f6L1t+c4uXrxYAOLEiRMmxxMTEwVgYkTXrl1bNGnSxGyOsLAwMXDgQJP3Dz/8sJkM+Oabb0w2Jg0yccyYMSbzFUcGfvLJJyZzGGSgIRpg27ZtAhA7d+60+rOwR5+U2EapVCO/du0aU6ZM4dNPPyU3N9fknBACRVHMcqQkkvxcvnyZPn364OXlxfbt23FwcDCeu3nzJrNmzWLGjBnUrFmzyLkMOTAGvv32W/bt28epU6c4deoUw4YNY+XKldSpU4fHH3+cmjVrMmbMGItzJSUlcfPmTauV0Q38999/tGvXzux448aNjefzz1GrVi2TcYacJkNO85kzZwAYPXq01XveuHHDJBeqYHX1M2fOIISgfv36Fq93dHQ0eV+jRg1jBeT864qNjTW+P3v2LA0bNkStti5qzpw5w40bNwgICLB4/urVq1avlUgqI1u3bmXu3LlEREQwadIks/OOjo7cd999xvcnT57k/fff56effuL69ev06dOHmTNn0rlzZ8aMGcPLL79MdHS01fudPXuWwYMHF7qm//77j/r166NSmZaCyS/T8lOUTPv3338RQjBv3jzmzZtn8Z5Xr16levXqxveWZBpAly5dLF5fpUoVk/eGXM6C68pfO+Ls2bMEBwfj6+trcU7Dfe2RpRJJRcfV1RXApCsCwPDhw1m5ciU///yzyfelXr16xv/n5OTwwgsvEBkZiZ+fHx06dCAoKIgvvviCpUuXMnz4cKudHMC27+x///2HSqUyuS9AtWrV8Pb2LlJ+gbmsOHPmDLGxsWYyxUBB3aag/CqODCxKrhpq5RSmoxZHn5QUTqkY22PHjuXQoUPMmjWLJk2amBW9kkgK48aNG/Tq1YvU1FQOHz5McHCwyfnXX3+dnJwchg4dyvnz5wGMrSVSUlI4f/48wcHBFj93Wq2WZ599lpkzZ1K9enUWLlxI+/btjcb1hAkT2Lhxo1Vj+26RfzMhP0IIAGOxjddee81Eyc5PwSJvhj9+BnQ6HYqisGfPHov3K3h9UWuyFZ1OR0BAABs3brR43tofKomkMrJ//35GjRpFnz59WLFihU3XPPfcc4wcOZJWrVrx8ccf4+vry6xZswB48cUXizS27wa2yrTp06fTs2dPi2MLKsaWZBrAxx9/bLEQXcFNQGtrshd7ZalEUtEJDg7m77//JjAw0OS4YZO9sGKoy5YtQ61W88wzz3Dx4kV++OEHzp07R506dXj11VcJCQnh0qVLdhd9tERBB4I1bNF/dDod3bt358UXX7Q4tkGDBibvrckve2RgSehlxdEnJYVTKsb2d999x9tvv82oUaNK4/aSckxWVhaPPPIIp0+f5ptvvqFJkyZmYy5cuEBKSgpNmzY1O7d48WIWL17MH3/8YVGIfPDBB6SlpTF9+nQAEhISTIz54OBg4uPjra7P39+fKlWqcPz48UKfo3bt2pw6dcrs+MmTJ43n7SE0NBTQe2q6detm17X55xBCULduXbM/AsUlNDSUI0eOkJuba9WbExoayjfffMODDz5o9sdGIpHc5siRIwwcOJA2bdrwySefFBoxYmD37t389NNPRm9FQkICQUFBxvNFyTTQf0dtkWmxsbHodDoT73ZxZVpISAig9wLfiUwDvUJf3Dkszbl3716uX79u1VN2N2SpRFKead26Nfv37yc+Pp6GDRsajyckJADWN9UTExNZtGgR27ZtQ61WG8cb9DLDv/Hx8VaNbVu+s7Vr10an03HmzBljNA7AlStXSE1NtVt+Ge5769atYsuekpCBltYEcPz4cTNDveCYO9EnJaYUq/XX33//zbBhw4zl6X///XcA5syZw549e4q83tvbGz8/v+LcWlKJ0Wq1DB06lJ9//plt27bxwAMPWBw3depUdu7cafJauXIloG/vsnPnTrNwHYDr168TGRnJa6+9houLCwCBgYFGZRH0LXYKa9WjUqkYMGAAX3zxhVkbGLi9u9i7d29++eUXfv75Z+O59PR0Vq1aRZ06dSxuIhRG69atCQ0N5fXXX+fWrVtm5y21fijIoEGDcHBwIDo62mwXVAjBtWvX7FoTwODBg0lOTubdd981O2e4x2OPPYZWq2XhwoVmYzQaDampqXbfVyKpaPzzzz/06dOHOnXqsHv3bps2pnJycnj++eeZO3eu0YMUGBjIv//+i0ajMc5bVPuxwYMH89dff7Fz506zc/ll2uXLl9m6davxnEaj4Z133sHDw4Pw8HCbnxX0BnKnTp1YuXIliYmJZudtkWk9e/akSpUqLF682CxlzdY5CjJ48GCEEBYjAQw/i7shSyWS8sxjjz0GQExMjMnx1atXo1ar6dSpk8XrZs6cSceOHXn44YcBjJ5xg15maHtYmAyz5Tvbu3dvAJYvX25y/s033wSgT58+Vue3xmOPPcbPP//M3r17zc6lpqYaZbA1SkIGFqRHjx54enqyZMkSsrKyTM4ZfhYloU9KTLHbs71//3769OlD69atGTFiBIsWLTKec3R05P3336dXr16FzvHiiy/yzjvv0KNHD5t25iUSgBdeeIFdu3bxyCOPcP36dTZs2GBy3tBLu1WrVrRq1crknCGcvGnTpgwYMMDi/PPmzaN58+Y8+uijxmODBw9mwYIFTJo0idq1a7Ny5Uqj8LXG4sWL2bdvH+Hh4YwfP57GjRuTmJjItm3b+OGHH/D29mbmzJls3ryZXr16MXXqVHx9fVm3bh3nzp1jx44dZnmPRaFSqVi9ejW9evWiadOmjBkzhurVqxMfH893331HlSpV+OKLLwqdIzQ0lEWLFjFr1izOnz/PgAED8PT05Ny5c+zcuZPx48cbPf62MmrUKNavX8/zzz/PL7/8QocOHUhPT+ebb77h6aefpn///oSHhzNhwgSWLFnCn3/+SY8ePXB0dOTMmTNs27aNt956iyFDhth1X4mkvPDuu++Smppq9Nh88cUXxrSXKVOm4OXlRVpaGj179iQlJYUZM2bw5ZdfmswRGhpqcfPxrbfeAuDZZ581HuvduzeTJ09m+PDhtG/fnoULFzJ27NhC1zhjxgy2b9/Oo48+ylNPPUXr1q25fv06u3btYsWKFbRo0YLx48ezcuVKnnzySY4ePUqdOnXYvn07P/74I8uXL8fT09Pun817773HQw89RPPmzRk3bhwhISFcuXKFn3/+mUuXLvHXX38Ven2VKlX44IMPeOKJJ2jVqhXDhg3D39+fCxcu8OWXX/Lggw9a3AgsjM6dO/PEE0/w9ttvc+bMGR5++GF0Oh2HDx+mc+fOPPPMM3dFlkok5ZmWLVvy1FNPsWbNGjQaDeHh4Rw8eJBt27Yxa9Yss3RAgF9++YWtW7ea1IGpU6cObdq04cknnyQiIoLVq1fTrl27Qj3PtnxnW7RowejRo1m1ahWpqamEh4fzyy+/sG7dOgYMGEDnzp3tfuYZM2awa9cu+vbty5NPPknr1q1JT0/n2LFjbN++nfPnzxfpeLxTGViQKlWqsGzZMsaOHcv999/P8OHD8fHx4a+//iIjI4N169aViD4pKYC9FdVat25t7MWWm5srFEURR48eFUII8dlnn4nq1asXOcczzzwjatWqJWrVqiWeeOIJMWXKFJOXpfL8Eomh3ZS1V2EUVo1cCH0LMCcnJ2PP2Px89NFHok6dOqJq1ari+eefN6t8bon//vtPjBo1Svj7+wtnZ2cREhIiJk+ebFL19+zZs2LIkCHC29tbuLi4iLZt24rdu3ebzGOoRr5t2zaLz1OwcvEff/whBg0aJKpWrSqcnZ1F7dq1xWOPPSYOHDhgHGOoRp6UlGRx7Tt27BAPPfSQcHd3F+7u7qJRo0Zi8uTJ4tSpU8Yx4eHhomnTpmbXjh49WtSuXdvkWEZGhpgzZ46oW7eucHR0FNWqVRNDhgwRZ8+eNRm3atUq0bp1a+Hq6io8PT1F8+bNxYsvvigSEhIsrlMiqQgY2shYehn6QBu+79Zeo0ePNpv38uXLwtPTU+zatcvs3J49e0SjRo2Et7e3GDVqlEhPTy9yndeuXRPPPPOMqF69unBychI1atQQo0ePFsnJycYxV65cEWPGjBF+fn7CyclJNG/e3ExGFSaLAREZGWly7OzZs2LUqFGiWrVqwtHRUVSvXl307dtXbN++3TjGUInXUrtFIfRytGfPnsLLy0u4uLiI0NBQ8eSTT4rffvvNOGb06NHC3d3d7FqDvMyPRqMRr732mmjUqJFwcnIS/v7+olevXkZdyIAtslQiqSzk5OSIqKgoUbt2beHo6Cjq1asnli1bZnGsTqcT7dq1E88//7zZuX///Vd07NhReHh4iI4dO5rpEpaw5Tubm5sroqOjjbpKzZo1xaxZs0zabgmhl9l9+vQxu0d4eLgIDw83OZaWliZmzZol6tWrJ5ycnISfn59o3769eP3110VOTo4Qomj99E5koEGH/O6770yO79q1S7Rv3164urqKKlWqiLZt24rNmzebjLFFn5TYhiKEfdWMXFxc+OKLL+jevTtarRZHR0d+++03WrVqxaFDh+jZs6dZaEJBLIXw5kdRFOLi4uxZlkQikUgkEolEIpFIJGUGu2O4fX19jeFuBTl9+rRJ4RVrnDt3zt7bSiQSiUQikUgkEolEUm6wu0DagAEDiIyMNKmkrCgKly9f5vXXXy+yF2d55N9//2XixIncd999qNVqq/3pUlNTmTp1KsHBwbi4uBAaGsobb7xhMiYnJ4cZM2ZQrVo13N3d6d69u8Wq1BKJRHK3kDJNIpFUJKRMk0gkZRW7PdtLlizh119/JSwsjObNmwPw1FNPERcXR8OGDYmKirJ5rn///ZfTp09bDDsfNGiQvUu7a/z99998+eWXtGvXDp1OZ+xBl5/09HQ6deqEWq1m2bJlBAYGcvr0aW7evGkyburUqWzZsoU333yT6tWr8/LLL9O1a1f+/vtvvLy87tUjSSSSSoyUaRKJpCIhZZpEIimzFCfROycnR6xZs0Y8/vjjonv37mLo0KHiww8/NCn+VBg3btwQXbp0ESqVSqhUKqEoilAUxfhepVIVZ1l3Da1Wa/z/6NGjLRaGmjt3rggJCRG3bt2yOs/FixeFg4ODWLlypfHYtWvXhLu7u3jllVdKdtESiURiBSnTJBJJRULKNIlEUlYpVp9tR0dHxowZw6ZNm9i3bx9btmxh7NixODk52XT9Sy+9xOXLlzl8+DBCCHbu3MnBgweJiIigbt26/O9//yvOsu4atrRhWr16NU899RTu7u5Wx+zbtw+dTmfSWsrX15cePXrw1VdflchaJRKJpCikTJNIJBUJKdMkEklZxW5j+6+//rIqcL766iuTfnjW+Prrr5kzZw7t2rUDIDg4mI4dO7Jq1Sr69+9vlj9T1jl//jyXL1/Gz8+Pfv364ezsjK+vL+PGjTNpCH/y5EkCAgLw8fExub5x48acPHnyXi9bIpFILCJlmkQiqUhImSaRSEoLu43t5557jp9//tniuV9++YUXXnihyDmuXr1KzZo1cXBwwN3dnWvXrhnP9e7dm6+//treZZUqly9fBmD69On4+Pjw1VdfsXjxYrZt28a4ceOM41JSUvD29ja73sfHh+vXr1udPzs7m5s3bxpfN27cICkpCWFf1zaJRCKxCSnTJBJJRULKNIlEUlrYbWz/+eefPPjggxbPPfDAA/z+++9FzlGzZk2Sk5MBqF+/Prt27TKe+/nnn3FxcbF3WaWKoRBHgwYNWLduHV27dmXixIm8/vrrbNmy5Y57hi9ZsgQvLy/jy9vbm4CAANLS0kpi+RKJRGKClGkSiaQiIWWaRCIpLew2trOzs8nJybF6zlJl8YJ0796db775BtB7ylesWEHr1q154IEHiIyMZNSoUfYuq1QxhBt17tzZ5HjXrl0BfZVMw7gbN26YXZ+SkoKvr6/V+WfNmsWNGzeMr4sXL5bU0iWScklaYiIHo6JIS0ws7aVUSKRMk0gkFQkp0yQSSWlhd+uvli1bsn79evr162d2bv369bRo0aLIOV555RUyMjIAeOKJJ/Dw8GD79u1kZmby7rvvMmHCBHuXVaqEhobi7Oxs9bxhA6JRo0ZcuXKFlJQUk3ygkydP0qhRI6vXOzs7Fzq/RFLZuJWYyKHoaBr264dnUFBpL6fCIWWaRCKpSEiZJpFISgu7PduzZs1i586d9OnTh+3bt/PTTz+xfft2+vTpw2effcacOXOKnMPNzQ0/Pz/j+4EDB7Jx40Y+/fRTJk2aZFNVybKEk5MTPXr04MCBAybH9+/fD0CrVq0A6NGjByqVih07dhjHpKSksG/fPnr37n3vFiyRSCSFIGWaRCKpSEiZJpFISgu7Pdt9+vRh06ZNzJgxg8ceewxFURBCUKNGDTZt2kSfPn1snuuff/7ht99+4+LFizz11FNUq1aNf//9l8DAQDw9Pe1d2l0jIyPDWIH9v//+4+bNm2zfvh2A8PBw/P39iYyMpH379owYMYLRo0dz5swZZs2axYgRIwgNDQWgRo0ajB07lhkzZuDg4ED16tVZvHgxXl5e5c6bL5FIyi9SpkkkkoqElGkSiaTMcidNuk+ePCl+/PFHcfLkSbuuS09PF48//rhwcHAQarVaqFQqcfToUSGEEEOGDBEzZsy4k2WVOOfOnROAxdd3331nHPfNN9+INm3aCGdnZ1GtWjXxwgsviKysLJO5srKyxAsvvCACAgKEq6ur6Natm/jnn3/sWs+NGzcEIG7cuFESjyeRlDsSjh4VUSAS8uSGxD6kTJNIJBUJKdMkEklZRRHi3vclePrpp/n0009Zv349HTp0wN3dnd9++41WrVqxdu1ali1bZlO/7srKzZs38fLy4saNG1SpUqW0lyOR3HMSf/+dVa1bM/7oUYLywv8k5Rcp0yQSSUVCyjSJRGLA7jBygFOnTrFjxw4uXbpkVn1cURRiYmIKvX779u289tpr9OjRA61Wa3KuTp06nD9/vjjLkkgkEolEIpFIJBKJpExgt7H98ccfM2bMGFxcXKhduzZOTk4m5xVFKXKOW7duEWSlgnB6erq9S5JIJBKJRCKRSCQSiaRMYbexvXDhQoYMGcKaNWtwc3Mr1k3DwsLYsWMHPXr0MDv35Zdf0qZNm2LNK5FIKjdpiYkcXbmS1hMmyJZgEolEIpFIJJJSxW5jOyEhgQ8++KDYhjbAvHnz6N+/PxkZGTz66KMoisIvv/zC5s2bWbNmjbGipEQikdiD7L8tkUgkEolEIikr2N3QumPHjhw/fvyObtqnTx+2bNnCDz/8wIABAxBC8PTTT7N161Y2btxI165d72h+iUQikUgkkvJCWmIiB6OiSEtMtOucRCKRSMo2dnu2Fy9ezMiRI3FxcaF79+54e3ubjfH19S1yniFDhjBkyBBOnz5NcnIyvr6+NGrUyN7lSCQSiUQikZRrCovKkRE7EolEUn6x29hulddmZ9KkSVaLoRWsMF4YDRo0oEGDBvYuQyKRVAJkDrZEIpFYRspHiUQiKfvYbWyvWbPGporjRXHx4kU+++wzLl68aLF92FtvvXXH95BIJOUb6dGRSCQSy0j5KJFIJGUfu43tJ5988o5v+sknn/DEE0+g0+kICAiw2D5MGtsSiUQikUgkEolEIimv2G1slwSzZ89mwIABrFq1Ci8vr9JYgkQiuVskJ8KOlTB4AvhJb4tEIpFIJBKJpHJSLGP7+++/Z9WqVZw+fdosBBwgNja20OuTkpIYP368NLQlkopIciJ8GA3h/aSxLZFIJBKJRCKptNjd+mvv3r106dKF5ORkfvvtN2rWrImfnx+nTp0iPT2dNm3aFDnHww8/zP/+979iLVgikUgkEolEIpFIJJKyjt2e7cjISKZNm8Yrr7yCo6MjCxcupFWrVvz333/07NmTLl26FDnHihUrGDp0KBkZGXTt2tVi+zBD1XOJRFI2Ke1KuI5ubvf8nhKJRCKRSCQSia3Y7dn+559/6NWrFyqVCkVRSE9PB6B27dpERUWxaNGiIudIS0sjIyODJUuW0L17d+6//37jq02bNtx///32P4lEIrmnGCrh3kpMvKf3FUIQGBbG7PR0AsPCEEKYnJdGuORukpaYyMGoKNLu8edeIpFUPqS8kUjKP3Z7tl1cXNDpdCiKQlBQEGfPnqVDhw4AeHp6cvHixSLnGDVqFBcuXOCdd96hQYMGZtXIJRKJxBJCpyMtIYGjK1dy/exZfEND9Z714GBQFKMRrtNoEEKUSJtCiSQ/st2SRCK5V0h5I5GUf+w2tlu0aMGpU6fo3r07Xbt25eWXX8bPzw9HR0fmzp1L8+bNi5zjl19+YdOmTQwYMKA4a5ZIJJUMtasrQqcjdsMGdkVEoNNojOdSzp1jwLp13LJihCsquwN4JBKJRCKRSCSSO8ZuY3vatGmcO3cOgMWLF/PII4/Qr18/AGrUqMHOnTuLnKN+/fpo8inLEolEUhju/v6kJSSYGdqBYWH0X7uW2A0b+GLsWJNzPyxdSr+YGMJGjpQGt0QiKROUdq0LiUQikdxb7NZAe/fuzeTJkwGoXr06R48e5dSpU/z555/8+++/tG7dusg53nzzTV5++WVOnjxp/4olEknlQlFw8fbm6MqVJsY0QLtp00iLjzcztAF0Gg27IiJIS0w0y+uWSCSSu4m1XNvSqnUhkUgkktLBbmN7wYIFJCQkGN8rikL9+vUJCwvj2rVrLFiwoMg5pk2bxqVLl2jWrBm1atUiLCzM5NWiRQt7lyWRSMopRRWAcataFZVazfWzZ01PKArNhg7lj5gYM0PbgE6j4eiKFQidrqSXLZFIJFaRRrVEIpFIoBhh5NHR0Tz88MMEBwebnUtISCA6Opr58+cXOkfr1q1l4SKJRAJYLwBjqDo+IykJnVaLb2ioyXWOrq44urmZG+EFSImLQ+XgcFfWLpFIJBKJRCKRWMNuY7uwCr+JiYkWe2YX5KOPPrL3thKJpBJRsOp4++nTaT1hAj8sXWr0YudmZpKbkWFmhBfEJyQEnVYrDW6JRCKRSGxE1heQSEoGm8LIN2/eTL9+/ejXrx+KovDCCy8Y3xtePXr0YNSoUbRv3/5ur7nMsmvXLtq1a4enpydBQUE89thjxMXFmY2LiYmhQYMGuLi40KJFC3bv3l0Kq5VIyiaGquNv1a3L94sWcXzzZj4fMwb3wEAeWb0alTpvj1AIjm/dSsuIiNvHCqBSq2k9caIskFZMKrpMkz1sJbYgPycVBynTbEemQkgkJYNNGmhOTg5paWmkpaUhhCA9Pd343vBSFIVRo0axcuXKu73mMsnBgwcZOHAgTZo0YefOnSxfvpy//vqLHj16kJmZaRy3ZcsWxo0bx9ChQ9mzZw8PPPAAAwcO5H//+18prl4iubsIIdBptQDotFqrBcuEEBarjl+JjeWzUaNoPnw4z54/T8e5c2k+fDi5GRl41apFv5gYM4NbpVbTb80aPIOCZNpKMagMMk0qkxJbkJ+TioGUaRKJpDSwKYx89OjRjB49GoDOnTvzwQcf0KhRo7u6sPLGli1bqF27NmvWrDEq9gEBAXTp0oXffvuNDh06ABAZGcmwYcNYuHAhoP95xsbGsmDBAr766qtSW79EcrcoGBJuqQe2o5ubcaylquMAx7dsIenECfqtWUN4VBQqBwf9OEUhbORI6nbtytEVK0iJi8MnJITWEyfqDW3p1S4WUqZJJJKKhJRpEsltZJrAvcNuLfS7776zaGjn5OSUyILKK7m5uXh6epp40Ly8vACMXry4uDhOnz7NY489ZnLtsGHDOHDgANnZ2fduwRLJ3cTFDZxdLYaEf79oEW/VrcvpL79E6HQEhoUxOz2dwLAwVA4OhRY8uxIby//efBOVgwOv+vlxJTYWRVFQVCo8g4MJj4xk0MaNhEdGmhjzEvuRMk0iKfsYNiolRSNlmkRyGxkFce+wWxP9+OOPeeedd4zvjx8/Tv369XFzc6NTp05cvXq10OuFEFy/fr3CCawnn3ySEydO8P7773Pjxg3i4uKYPXs2LVu25MEHHwQw9hUvuFnRuHFjcnJyOHfu3D1ft0RSGPbmfwkh0IU2hx/S0dVqYDEkHKDJkCHUe/hh0hISOBQdzY7hwzm0YAE6jca2gmcaDZnXrpkcVxSFK7GxLHZ3NxrhkuIjZZpEcm+xx3A2dGswbFRaS82R3EbKNInk3iLrXeix29h+7bXXUOXzFk2ZMgUnJyeWL19OYmIis2fPLvT63NxcAgIC+Oabb+xfbRmmQ4cO7Ny5k5kzZ+Lt7U1oaChXrlxhz549OORVQU5JSQEwq9ju4+MDwPXr1y3OnZ2dzc2bN01eEsm9wJ6dT6HTkRYfz6EFC9gxYoS+x7WFkPDAsDAGrF/PsU2bTD3eCxcSu2EDrcaNK7LgWVZqqtV15GZk2PWMEstImSaRFE1JKJP2Gs5GWWvYqIyOJi0+HqHTFXsNlQEp0ySSe4v0nuux29g+f/48TZo0ASA5OZnDhw/zxhtv8Mwzz7BgwQL27t1b6PVOTk7UqFEDbV6xpIrCTz/9xBNPPMG4ceP49ttv2bZtGzqdjj59+pgU3igOS5YswcvLy/iqWbNmCa1aIrlz1K7m4eKnPvsMtbOzxZDwdtOmkRYfzxdjx5oZ4v9btgyPoKAiC56lJyXd1WeSSJkmkdjCnSqT9hjOlmRt/tSc2A0bpMFdCFKmSSRFcy+80ZXN4223sa1SqYz52d999x2Ojo507twZgKCgIK4VCO20xOTJk3nzzTfJysqy9/ZllqlTp9KlSxfeeOMNOnfuzJAhQ/jyyy/5/fff+fjjj4HbO6M3btwwudawk+rr62tx7lmzZnHjxg3j6+LFi3fxSSSVkeIKPkc3N9z9/U3DxRUFFMVyD2xFodnQofwRE2OxCJq1quMd587l2fPnCRsxAkWlQnOHipGkaKRMk1Q27qUCWBzD2UzW5kOn0bArIoK0xEQZUm4FKdMkkqK5F97oyubxtqkaeX5atGjB+++/T40aNXj77bfp0qULzs7OAFy4cIGAgIAi57hw4QKnT5+mVq1adOrUicDAQJP8SkVReOutt+xdWqly4sQJ+vfvb3KsRo0a+Pn5cTbPu2fIATp58iQNGzY0jjt58iROTk6EhIRYnNvZ2dn4M5ZI7gYGwdewXz+TqpSq1CTCg/T/miAE1cKaMzs9HaHVcvmvv2g0YAD1evem+dChqN3c0OXm0P7FFznz1Vck/v47AI6urji6uRVaBO34li1416lDl8WLCY+MRKVWo9NoUBwcZB72PUTKNEllw5ocvBvYYjjX7doVz+BgABzd3XHx9uZQdLTFjUrDdUdXrCA8KgolLyxachsp0yQSSWlgt2d78eLFfP/994SFhXHs2DGio6ON53bu3Enbtm2LnGP37t04Ozvj7u7Or7/+yu7du/niiy9MXuWN2rVr83ueQWHgv//+Izk5mTp16gAQEhJCgwYN2LZtm8m4rVu30rVrV5ycnO7VciUSm1DdSKZTsP5fIzodIike5cMFMGc4yqooAuvWZMjWrbR4uAvqdUtgznBUqxfilHGDcb/8QvMRIwDIzcy07PEueF+1GqHTyYJnpYiUaZKKSqmHMCoKLt7eVtscgt5wPvnZZ7fzuW/dQqVWF7pRCZASF4dKGtoWqewyrdQ/9xJJJcVuz/aDDz5o9EyHhoaaFJGIiIigXr16Rc5REas5Tpw4kWnTpvHss8/yyCOPcO3aNRYtWkRAQIBJC4moqChGjBhBaGgonTt3ZuvWrRw5coTvv/++FFcvkdiITofYswFlQQRo85TE+mGoxs1HfPUxqoVjbx8HlI+WIubHMHD9emo88ACXfvqJ5JMnaT1hAj8sXWpR0TQUQTO07ZIFz0oHKdMkFZWS9GBbjf4pBEdX1yIN52bDhtFmwgRuJSRwdOVKrsfF0X/NGtu6NWi10uC2QGWXafcyckNS8ZB9uYuP3cY2gKenJ61btzY73rt37zteUHll6tSpODs788EHHxATE4OnpycPPPAA27Zto2rVqsZxjz/+OBkZGSxdupSlS5fSsGFDdu7cyQMPPFCKq5dICsElrx2NEIjkBFNDG+DxaXA1HqWAoQ2AVoOyIAJxf1funzSJtpMno9NqURSFfjExZiGU+YugSU926SJlmkRSNIbon6T80T9FkJuZWWibQ0PHhtiNG00KSYZ060bLiAibNyolpkiZJpEUH7lZU3xsMrbffPNNRowYQWBgIG+++WahYxVF4bnnnityzvj4eJYvX84PP/zA9evX8fX1pUOHDjz77LNUr17dttWXIRRFYeLEiUycOLHIsREREURERNyDVUkkd4AQ+PV9FAaOwC83ByF0KDtWmhrUigI9hsLaJeaGtgGtBmXHCpgQBWD0uISNHEndrl05umIFKXFx+ISE0HriRL2hLZXFUkfKNInkzrDaN1sIslJTrUb4WOvYcGT5csJGjuSR1avNzsmNyqKRMk1S3rHmXbb3uOTeYpOxPX36dB566CECAwOZPn16oWNtMbaPHz9Ox44dyc3NpXv37tx3331cuXKFFStWEBMTw/fff0/Tpk1tfwqJRFKy6HSQnKA3ri+dRanTCMbNh0sFwh6dXfWe74LHCxIfByrTsEZFpcIzOFgWQZNIJBWK/H2zdRoNQggzuZaelIRfw4bmET55HRt+WLLEzAg3dGsYsH49dbt04fdVq+RGpeSOqQwGWUV5RmveZXuPS+4tNhnbunztJ3Ql0MNx+vTphIaGsm/fPmObBdC3VujRowfTp09nz549d3wfiURiH2pXV72hvWcD5A8XVxR4YjrUKBD2mJ0JWRnmxwtSPQR0WnODW1G4HBvL2g4dGHP4MEGtWpXg00gkkopOWVOihU5HmiHP+uxZfEND9WsLDjYxhDWZmSgqlVmET9WGDQvt2HB8yxaSTpzg4bfeIjwqCpWDg9yolNwRxTHIypsnVRqdktKkVLZAf/jhB+bOnWtiaIO+v+GcOXP44YcfSmNZEkmlx93fH5ITTA1tACFg31boHwEO6qKP58dBDYMngmJd3JRUETSPoCDCIyPxkH9MJZJKgbV+rfe68rJDFW+b+mar89ofGsgf4TNo40Y6zJ6NTqsttBDaldhYzh04AELIbg2VlNKuLG7te1fZ+idLJLZgk7H9/fff2/UqCrVaTXZ2tsVz2dnZOMgqmhLJvUdRcPX2hoJ52QY2L4eA6jBvtalhnXdcFDwO+veRa8AvSO8dv8t4BgXRKSpK7lxLJJWce630u9ZrVGjf7CNvvUVuZiZV69dndno6gWFhCCEAfYSPSZtDlYrWEyagUlvewDQUQstKTZXdGiop0qg1p7Q3ICoKxemwICkcm8LIO3XqhKIoJn8YDFjKRdJqtYXO161bN+bMmcN9991HgwYNjMfPnDnDvHnz6N69u80PIJFISgZHV1cUtdp6/vWZWIgcBdEfQ9tusGOFPhe7egi6tFSU3k8g2nbTF0PLO87giXpDW+YRSiSSioqi4Bxck/8tWGixSnizYcMYsH49txIT+f3DD62GlxsMZ0VR8AwOLrJjQ/KpU/fm+SSScoAMFS8Z7O2wUFZTB8oSNhnbf/zxh/H/V69eJSIigs6dOzNkyBACAwO5cuUK27Zt4+DBg8TExBQ535tvvkl4eDhNmjShWbNmBAYGcvXqVY4dO0atWrWKrHgukUhKntzMTIRGg1JY/vXeLdDiIcSQSYiIuaicnNHlZKPJ1eAIKP7BMC4S1GrQaMDB4Z54tCWS0sZehaM4CopUakoPq5XFAbyqonJ0sphnbWjjdWzTJrMK4j8sXUq/mBjCRo7U18vIh6V87oKF0DSZmSX2fBLJ3aS85XhXBkrKgy03OYrGJndTixYtjK+VK1cybNgw1q1bxyOPPELbtm155JFHWL9+PUOHDuWDDz4ocr5atWpx7Ngx3nzzTRo0aIBOp6NBgwYsW7aM2NhYataseccPJpFI7EQIsm/dQgyeUGj+teg0QG9AG4qdqRxwdHPTe2cUBf6NhYfc9f/aYGjLPGtJRcDesM7ihIFWhtDR0gwFtaR8CiEIbN5cH/rdvLkxwi/vpL494jdJCK2W9tOnExgWZjKntTZeoA8v3xURQVpior5eRgEK5nOHR0aaFVqTSMoDZTXHuzKHnhs82CobPdj3Iry8ov4+7JbYe/futRrm3aNHD/bv32/TPB4eHkydOpVPPvmE/fv3s3XrVqZMmYKHh4e9S5JIJHeIKjWJziFuiJxs8Au2mn8t5sXow8LBNMewoFGdZXseocyzllRkKorycK+eozSV74LKp9DpSIuP59CCBewYPpxDCxaQFh+P0On0XRuS4lFWL4Q5w1FWRVGtegDjf/uNZsOG6SfMa+P1R0yMxfBy0BvcR1eswMXb2+J5s3xuGSkkkZQYJSlvrMnI4sjOsvh3w17jvDiU9ubL3cJuY9vDw4MDBw5YPLd//35pLEsk5QwhBP4dOtPxbDrOVf04sX07oudwtDv/hYi58PBwiJiLdue/iJ6P68/ntQC828V5pNdbUt6pKMrDvVBK7xVFeWgKqyy+pX9/EAKxZwM8UhdiFsHezRCzCKVfXZS9mxi4fj2BYWE45lUet9bGy0BKXBwqtdoslDw/shCapLJRmnKiOIazvd774sxlDVnUrGxjt7E9efJkXn31VcaMGcPnn3/Ozz//zOeff86TTz7JG2+8weTJky1eV6VKFY4ePQqAp6cnVapUsfry8vK6s6eSSCSWSU6ElVH6f8nvuVnIZ2PGoHJw4ORnn7GqTRtivz6AZvQsWLQRzehZxH59gFVt2nDq889R3aNcbGteb2mESyoypW2M3m1KewNCdSOZTiFuVj00hVUWv/+ZZ9BdvohSsD0igFaDsnAsSspV+q9ZQ6OBA9FkZxfaxgvAJyQEnUYjc7AlknyUZlu/exH2XpJzFdvr7FJILQpJiWFTgbT8zJ07F29vb5YuXcq6deuMVcqDgoJYvnw5U6ZMsXjdCy+8QFCeYvzCCy/IUCiJpBTIiP0Ot9+jyWzZFhffQGI3bNArlFotjm5u9HnvPXxDQzm+eTO7IiLYNXYsjq6uJl6Vhv36odNq9T22SwmDES6RVEQqSsGZe1H8yF6PjhCCqn0fhYEjqJqbY95RpbDK4opC86FDcVi3xHJ7RNAb3DtWUG18FIM2bECn1dJ6wgR+WLrUYih5/jZeEomkaCqKfLwXWJOPRcpBaYSXKHYb2wDPPPMMTz/9NJcuXSIxMZGgoCBq1KiBqpCiHZGRkYD+Fzx16lTc3d1xdnYu3qolEkmxyE6Ow62dGyr/YNISEjjy1lv0XbWK5kOHonZzQ5ebQ/sXX+TMV1+R+PvvIISJoW1QDGWBHomkYlKSVdLvhVJsT5saodORlpDA0ZUrrbbfwtnVvLK4ouDo6gqKgtrNzXp7RAPxcSgODtDVj9TZ6/Dp3Eu28ZJIJPccS/KxUDmoKPqijwNH4Jebo3eq3CXnaKEdHioYxTK2AVQqFbVq1aJWrVp2XZebm0tAQACff/45ffr0Ke7tJRKJvQiB98AZ4DgXJ62WjAsXGPu//0FOFipHfWVxFQInBxXjfvmFnaNHc2zjRuPl+RVDGZkikdw9SjP/rjgGcln0NBX8GRpysAsavPnbbzlU8QZFQZebg29oKIFhYbSbNs24GanJyECXm4OqsPaIANVDELk5KDeuob2ZKtt4SSSlTEXJab7T57AmB1POnWPgunWI5ASUHSvh0ll9G9jBE8AvGAybkSXg8RZCEBgWxuz0dHQajblXvQJSbGO7uDg5OVGjRg20Wu29vrVEUnnR6SA7E0Wt/8orQot37dqAQNFcgxMxcPMsVAlFaRCBcKnJwPXrqfHAA1z66SczxVAikdw97PHWSrCoAKqvn6HTI3Dt+hmE6GE1B1un0XDkrbdoPHgw3uE94fAt0GppN20a4fPnI67G68PGL51FXSMUMepFxOAJKB8ttRxK7qBGDJ5ITtJlnPOtK38bL5VajU6jQXFwqPBKpkRSFqgoMvVOnkMIYVEOBoaFMWDtWtizAWXhWFO59tFSeO1TeKgPfo88ViyPd34Ptk3RRRWQe25sg77I2ptvvkmPHj1wcXEpjSVIJJUHnQ4QkJMEx/OM6sAHUZpOgjMb4VAEiHzC9c+lKB1XIxo8wf2TJtF28mSpGEok5ZSymDddLJITYcfKPE+L/jkKyztU6VKhnRsqXSpCp+PoypUWc6abDRvGgPXr0WZng04LqEGnw9XHB77agGqhaSE05cevEOt+QcyPMS+S5qBGvPop+AXhJHTwQ7qJYqooCpdjY1nboQNjDh8mqFWru/fzklRaKnp4bnnzUpeV9ZrJwbz0mHbTpkFygrmhDdBtCLR/GJISUD4txONt6X4FPdg2RBcV1pGhPFMqxvaFCxc4ffo0tWrVolOnTgQGBpoo8Yqi8NZbb5XG0iSSco+Jcl2tGijA6Q3w/djbRnWN7nDrgrmhDfr3349FCe6CcK/OYnd3qRhKJPkoa8rsrb//JHnRNPzmLsej6X2m58pY3nSxSU6ED6MhvB/4Bd32kKxaxY2LF/GqWZPW48cb8w69B80A9Vy8NTkoKhXa3Nzbc+Upmb716zPw44/1+seNZFS7YuDSWVQjpyN8A1AWWqg4fvJ3lKjRiOh1iDadUT5dBfFxUD0E3bCpKF5V4Wo8ys5VVhVT2cZLcjcoj+G5xTFE74W8sbauMrtebQo84Kb/1xIODqgcHLh+9qxZeozQalFWRZnLuvphEL0evt4Eljze82Ogl2UDuaAHu/306bgHBFiNLtoVEUHdrl1x9/e/w59E2aRUjO3du3fj7OyMs7Mzv/76q9l5aWxLJEVjzWOV8U8srIomo+MDeAYGQvolU0MbBUKHwh9LzA1tA0IDJ1ehtIlClGLVcYmkLFHayqw1RS/z9N/UOXOIpNN/mxnbFQ5nV4ROx+kvvyTz+jU6zJxpzKe+9NuveAYHITISUE6shJtnUaqEIhpPoOvLi0AIqjZqlK8gZK4+dPGrj3EwKJOKAvNWo6wtpOL4no0ozR9AN3A82tGz9PfPzMTByQm++thyKGYhiqlEcqeU1/DcshrebW1dha3XXkO8sPGFzlUwbUYIfAeMgyHP4KvJthzirdWi02ppNGCAPjfbkB5z5RJK1FrLRR8fnwZX480NbdC/XxAB95sbyGYebEWh3+rV/LBkicXoItAb3EdXrCA8r5h2RaNEjO2MjAwSEhIIDQ21SfE4d+5cSdxWIqnUWPNYqa+fodNgN67dOAeKgJMfmhrValdQu+nDyQsjLQ4Uh7u0eomkfFEWlNmSVEzvRXh5cbCmZKYnJeEO5Lp6kpuSQv2HH85TGJfClYuom7Sh9qMT4cxGlAIRO8qfSxHhMXRdugTd1URjDvZtD3Y+ZdLZVa/MFlVxPPYnVI9NZom3NwrQ6913CevR+bbRnp9CFFOJ5E5Qu7raFJ5b2gZ3WQmlLkhJrste+Vyo4W6piriltBmE+eZikwkobsGgmP7OFZWKJkOGwFcfo8q/uTjzPShY9FFRoMdQKGzTUauBHStwHRdpjPaylBfu6OqKo5ubaYcHC6TExaFSqyvkhqTdxvbrr79Oenq6sZXX4cOH6devHzdv3qRu3brs3buX0NAiKnVKJJISwSycteAOp+JgblRrMkGTAVWK+J56hiB0WlklV1KhsSUkvCLmmpXFCuKQp2SGuJkpoFlXzuDe3h2HqoGoFQV+/ApV2nUYM1NvHGtyUdITrKbGKIciEMFdcPhlP8Qssu7Bzs6ErAxz5bMg1UPQZGSgyciwuf+2QTGVSOyhMBnl7u9faPE/Q3iuZ3Dw3V5moZQ3D3ax5ioslPsOq3gXTJsJbtOG+5+ehDizwermolI/r8OCt5/+OOirjeffEBQC9m2F/hH6CBx7Nx3j41DUapO87IL1MXIzM8nNyMC3CNvQJyQEnUZTIXVOu7e6Vq9eTY0aNYzvn3/+eZo2bcrnn3+On58fs2fPtmme5ORk5syZQ7du3WjatCndunVj7ty5JCWVrV0viaQ4pCUmcjAqirTExLsyf/5w1sCwMH2ot9AhNBl6iQqg6AU0gQ8WvBrOboVGEaBY2W9T1NBkIlk3bt6V9UskpY3F71Ae+b+/1iq4wm1lNi0xsVx6LMta7rnRc/NDOlX7Pnr7d2LYRHz7FioHFWhzUR7qBR06wbElcGAEKDr4Z1WhqTHKPyuh+1D9e2vKZH7l08GKfHRQIwZN4PgnWwG958bm/tsV1HMjKXkKk1EAKAou3t5Wi//B7fBcodPdgxWXcawZvBaOF5kDXRCDjHonXf9vPtnllyfT/Po+evu44R6tsXgPw/0dPVTGtJm4A9/QYeZMBqxdS5sJEyAjwczQ1t8zb3MxIxGfzr3gmyT8+g1DCJ2+rVfBDcHNyyGgOsxbfVvm2bHpqMvJZsfw4RxevNiYF17wZ3N861ZaRkSgUluWqSq1mtYTJ5KVmlr4/copdhvbFy9epF69egDEx8dz9OhRlixZQt++fZk5cybff/99kXMcOXKE+vXr8+677+Ll5UV4eDheXl6888471KtXjyNHjtj/JBJJGcLgNbp1F4xtodPpC+wIreEAIBAIcjRJnL+wiBMnhnP+wiJyci4hmk6CeiNMJzm2HNyrQ/hqc4NbUUOnNeAWxK3Ll0t8/RJJaSN0OtLi4zkUHc2O4cM5FB1NWny8USHN//0trJI13FZmXby9783iS6DPKUJQLawZs9PTqRbWzFQBzEmi82A3VDklEFZpZS5VahKdQ9xMQjeNcg3DWgTa7GyE0CEy4lH+WAQHhsOJFShOznB2M3xSH/5YBP99Bg7OtqXGuLjpDe3ClElLyqcBBzVErgH/YOr16k3HuXNpNHAgupxsmxRTUYKeG4+gIMIjI/EoQ5EJkpKhKBkF+k0elVptW3iug4PNrZrKK1ZDwq0ZvELg90je8UduHxdC4NNfbzj79B9nvslhljOtg3wySvljEWTE6x0gN6+jrF4EUWNQVi9CJMXndYjJ65jwoJ/+3wLrNRjuXl0fRZuTQ/2HHyZsyGDUjvrUPpVK0YeOF7a5eGIFijYX5gxHWfMyisrB8obgmViIHAUPD4fPz0LEXOj5OJw7iRg0odBNR23/sfy1YSPHN2/mYFSUVQ/2keXL8axenUdWrzYzuFVqNf3WrMEzKIj0CupwtTuM3NXVlZs39d6uAwcO4OHhQfv27QHw9vbmxo0bRc4xefJkmjZtyldffUWVKlWMx2/cuEGvXr145plnLBZOqwicPHmSKVOm8NNPP+Hp6cmoUaNYtGgRTk5Opb00STlA5LXxcshNQnViDdy6iKrFiwifhly5vIFTp8ci8gnfCxeW0rBhDIGd16Gk/APXftefuB4LB8cgOq2D6t1QTqzQK6KeIdBkIrgFgaKqkOE8kpKnPMk1e0LCFZXK8k59Ae5JrplBYSxGn1PTeXR6j0i+HD+aTAC3YEAhoE1nArenIzSm91Ann+TJJ91QJ58ETDsTqLQpEO5n6qERwvJcQhDQsTOBZ28f1yuzAkfdNZQ/V+vlmn+bvPaEhjBJrb7ehKVOCnakxpCVATlZeoPbUvgk3FY+o9cj2nZD2bHCWHGcwRPBLwhFpcI9IIDw+fNQOTohtNoi+28zeCKZJei58QwKolNUVInNJ7lNaco0W2VUbmYmOo3GtvBcrdZkU61UKImNwkKwmIKi0+lDp3fcblslhk9DqeJjUQ4Kt2C02TmoHG7L1tyMDBxdXVEURW+UDxyBn0GmIeDMhjx5lCejNJnw51JE9x0otfpAxCxwcoWsDJRvPkGENINGrfB+dBYoc/EW2tvFNi3IZ4fm00Dtg5J5Hf5cDbcuQee1tm0uOjrDwc/0Mu+J6dY3BPdugbgTMH8NYnwUioODseijmBdj3pnBQa0/7h/MEUNB63we7B+WLjX57F6JjeWzUaMYsH49Id26cXTFClLi4vAJCaH1xIl4BullakXVOe02ttu2bcvSpUtRqVS89tpr9OrVCwcH/U7L2bNnqV69epFz/P3332zbts3E0Abw8vJi5syZDB061N5llQtSUlLo0qUL9evX59NPPyU+Pp7nn3+ejIwM3n333dJenqQsIoRegKvUCJ1Wr6z+9yWq7OuIljNR1G4IoSMnO97M0NZfruHUqQh8fLri1O97lD+XGo1q0Wi8fpBrEKLlPBS1E0KTjeLgVOF3wCUlR3mSa7aEhOdvPyJ0OnRabennmul0+j6o+RRGW/qc5kft6qpX5IyKYb7nTzsHndZBpnUj3K/LYJQewxEFq90Kge+gSfo6ETqtUQHVF+1ZBbcuonjURDR/FsXZoODmO95sMrj4w39fQfa123JNlwO56SgXvkJ0XAWhQ/PknRaS/0LxaaLfNNQv4nZqzJ9LLXt7FDU0mgRXL8HhW3rFPycT1E7w6g54cbCpMvnNdsTDI1Ae7I0YNx9F7YjIzUFROxqfXVEUkndvw/+N8aREf4Jv5176quMW+m8TuQb8gkg/dcrmX7ukdChNmWaXjBKCrNRUWk+YYGbcGDCE5xa3QFpxUk0s1ZIpdKPQihFuKQLGKgYvdX5DWAjEng0oCyJAp9VvsNWqjzJuPuLMxyiHxlqUgw7aZJRjehml8qiJY7OpoLjq0/RUeWaTIhA6DUrOdTj2lqmM0mTA1V9Qqj2I0GaBg1qfL+3ooPceO6jJyU4gIXElmZlncXUNJThoAk7OwSiXf4DdXW+vyzcMpfV8OPMxGNerQIf3bN9czM77u2Rtc9FA3AlE1Wpc/vNPfnnvPapUr077l17CqfdIRNuuJpuOuoHjoWo1do4axZXYWOMUR5YvJ2zkSB5ZvZovxo41+Uye2L6dZiNG0KB3b8IjI1Gp1eg0GhQHhzLfou5OKVaBtL59+/LII49Qu3ZtXn75ZeO5rVu3Gr3chVGvXj1Srezu3rhxg5CQEHuXVS5YsWIFN2/eZOfOnfj6+gKg0Wh4+umnmT17NsGlXMBCUsYQOoQmE1RqFNSAAG0u1OpFTnY8CReXkJkZR6NGa0hIXGVmaBunERoSElZQp04UuvvmonJ0RpebjSZHgyMKikpFyvZX8bm1hFSPWfg8NvfePqekXFOe5JqtIeH5248oKpVNyuzdyDVzqOKtN7T3bDA34PK1k3Ko4l2k18jd3x8yLBQQ8w2DTmvh3w35lLk8ijTCMcoocAC0CBRIOAy3zt02nDWZoHJCJHwPt86D8XgG3IoHlRPUejifXNMroDWqP4u66yZysi6aHA+uNhanQb+hfDcKzm7Rr/XYcqg/Up8aU/A5FDX0/RY8qoG4oM/zvnlWr6w2HAsd+yL2XUHZtMyoTIrBE1H8gkClIvnzzfi/MZ7kF1bhP7BASg5AVgbam6n6jY9eI+H+rmDBG04hnhsZEl52KE2ZZo+McnRzIz0pCb+GDekXE2NmoOcPzzUYM9aM54LHbWlzaNM1QljfKFQU60a4EAR0yIuAKcpAFzqLFblxC0Y5fxLmrNJX1s4rpEhmormhnScHlQtfIvI7MzSZoHKGvDS9hMsxt+VQ8AScnINg4BFysi+Zyq4a01ArDuRokkm4vJrMzLN4eT1IcPAkrlzZwKlTEZajEAMfN91IbD4N0uMLyDQbNxcbjIV9W24f27wceo/Up8cU7JqQb0Mw0CeA/mvW6FsjOjjo2yxeS6ZZXptDdFoufH+Yr5/ta2Jow20P9sCPPy7Ug335zz9Z26EDYw4fJqiVaaRURcRuY7tJkybExcVx7do1qlatanLujTfeoFq1akXO8dprrzF58mRq1qxJeHi48fjBgweJiooqc96QkmLPnj1069bNKLwBHnvsMSZOnMi+fft48sknS29xkmJhd/ucjEQ4uQYaPaUP1TYgBEJoUVRq/W6pojLmYBuEuyVBrVK5oVJtJDOz8HCizMw4FMUBgdZ4zNHNzfSPpybDrmeXyqEEypdcK05IuKIoeAYHF6nMJpe0x9LFDbd6jSA5wdzQBv37zW9Bl8H4dOqpzzu0Fl6uKLj6eMPv0eaKmUVljsKN8AtfwcBfEYq5Alqj+jTUwR3IyapTwHCehjq4IzlZdU2OV6/+DI6OXly5/LFJdI67exi1a8/nypWPOXXKQnpMg9UEdl6PknJCr5hej4XvRkHn9RDcRV8szZAa03gSuFezWLmXP5dCXuVeax5sQO8hsoDOy4+DCdDYS1/xF5UK/IMRY+ehODpZnssCMiS87FCaMq0oGRUYFkbdbt1AUYxGLYpC2MiR1O3a1apxY814tnScPO+6tTaHtlxT88EHuX/SpNue5fzyK+EcRK0zD+8ePAHFL28jwyYDPVdvaFupyE2fA/D0IkgzbLDF6evRFGyHCno5mJ2KMHFm5Ne7NpoZyNeufUXr1r9w5comk3PWZJePT3eysy+YzQP5ohC9wnFq/qz+eVAgdCj8scR8vUVtLnaMAfdg/d8IA8b0mI+hbTeLG4JKvs3F7I2x5Do488mgQeg0Gj5/KgJHNzdmXL3KuQMHzAxtA8e3bKHmQw/RZtKkQj3Y+hodlYNi99muWrUqQggSExMJCAhArVbTvHlzm66dMWMGN27coEuXLnh5eeHv709SUhI3btzAx8eHl156iZdeegnQKzp//fVXofNdu3aNX375hcTERDIzM6latSoNGzbkvvvuK1OhCSdPnuSpp54yOebt7U1QUBAnT54spVVJ7gS72ucIgXD2Q2k1B6HN1e/45uXo3PYO6b+SAsxysC0Jap0uE602A1fXwsOJXF1DEELLte+2k7F5HG6Pf4h/j+HG8xrvEM5/Bu5P2h5VYlU59AuCcZH6fyUVnvIk14obEq6oVEUqs8UJIbfoZcoXcums1cKqKMshfz2HQfR6SE5E2flhoeHljq6uKA5qCzl+hShz1oxwgNbzEIowk1HWlMzCDGcXl1B8fLqYpcHUqDGNnJx4s/H6H5GGU6fH4uPdKZ9iit7LnXoa+h6ElvP0IeJZGXD1EoJ4q5V7ORQB1buSlZSJ68gW1j3YFtB5+3MoERp656tGny+83J65JGWD0pRphcmoZsOGMWD9er3eERVlZgh7BgdbNG6MbaPyGc/tpk3D1cfHooFsLV981IED1HroIZuuCeneHV3iBRwKGtr1wyByLezZYNqCClB+/Aqx7heUrzeabzDmGegmRvgT0xE1Aix/r32aQLUHTNNm1G7gsNGKHByGUDnqjeoi9C4D1as/Q3b2RbNzlmWXQkDAUC5cWFJ4FOLl1dQJnaVfs9pVv2ZLudkmm4ud4Z8Pb28uNhoPrtX0hvWZAgbx3i3Q4iHEkElQ2IZgdibOwTX534KFtz8HQpCbnm41L9uASq2m0YABKIrC5djYSuXBtkaxjO29e/cSGRnJH3/8gVar5ZdffqFVq1aMHz+e8PBwRowo/A9L69at79gIvnHjBuvWrWPdunX8+eefZtUCFUXBw8ODgQMHMm7cOB58sGD7o3tPSkoK3hYq1vr4+HD9+nWr12VnZ5OdnW18byhQZyunL+vHh/i5oc6rAnj1RhapmTl4ujgS5O1qNraWtxsuLvqxybeyuH4rB1cnFTV9PYo19uzVW2h1OoK93fDIG5uansXVtByc1Crq+BVv7PnkW+RodAR4OuHt7gLArSwNCakZdo11UKkIDbg99uL1W2Tm6PD1cMLPo/CxaR5+xKXm4ngryzg2S6Mhxac6cam5BEEBgxpAh9Bmoji4mHmwa9acjqNjQAHl05qgFly9upWgoAguXFhqUYgriprg4ImACo1fI97d4siAJ0LRpGYaf/cav0Ys/7o6j44NxTNLc/v3mal/jiu3NOQ3nQv/3XtSc0JUob/PkvicGH6fd/o5Kfj7vNPPSVaWhgup+h3bBtVM61JURIoj10pLpjk7O9gUEp6eb92Gz2oVVzWB+ZRZbW4ut3IFmbk63Jz1hm2W2oW41Fyyk2+ZfP5SvYOIS83FM0uDh4saIQQBzZszOz0dbW7u7RBNnQ6RlIDy6Uq4cgklaq3l6rH1w/SG9tebzMMBP1qKyAsvN+Rp5mZmotPmoiqY42dVmSvECEdB1OpjsU6ENQPZuuGsEBDwmAW5VgzFFEBRI8KmgZMbyrYV8M9RCKiBmDAf5agFr75xMg2cWIFzy3nkZN3+XBp+99lZkL+xW345ZSA1S0Pa5ZumMi0rgwsZkHL5pomcsvY5sSbT4lJzuVElwGTJUqbdPUpDpoFeVgVWcbEoowLDwhiwfj3HNm0yy4U1FE5rPnIkf/3+D9se6cuUPTsJatXKYrG1wLAwOs6fz18ff2wyV0j37ty4cMFivrh/kybUeOABi0a12TWF9Z1/fBpcjTeXWwCPPYNy5aK5oZ3PQDdepygwbzXKMUsyinybhTYUUlS7IhxcyMm6YKPeVdg5y8dVKlccHNxsi0JUu4GDa9GFH89ugZQTEL4GWkeBygG0GkR2FsqT/wcnfze/xkGN6DSAXK3g1PZtNH/v9oagQa45acDf2RWVo5PFKIvC8rItpS4kqz1M/v4B3MzS65YX00x1y4tp+uM3s24frwhyzW5je/PmzYwcOZLHHnuMcePGMW7cOOO50NBQ1q5dW6Sx/dFHH9m90PwsXryY119/HR8fHx599FEiIyNp0aIFfn5+ODs7k5qayvnz5/ntt9/Ys2cPXbt25aGHHuLtt9+mSZMmd3Tv0mDJkiVER0cX+/oeyw8DEDOqNV2bVMs7dojUTA2OKoUzi3ubjY3u15jR7fVezl7LD5N0KwcHlcJZC2Of7hTCiw83BmDgez9xMSUTRYFzS/oYx3Z98xAAQ9vU4JUhLQB4dOURzly9hQKcW2o+tnvjAD4cfT8AYz46yh8XUwE4n29sp9f1Y9vV9WHrBH29gKc3HuX7M8lWxzYLrsLuqR0AmPVpLF/EJpqN7fjqIQRQt6ob383oDMBr+/5h3U8XzMZunxTD9n3JVDvyA/+b1Q2AT85k8P20tZw+ns1XnXVmBrWrayjVg5/G0cGlgHdIoWHD1XYJ6kuXlhMYOJKGDVebKbOKoqZhwzU4Od0WfJ9NWMm2fck4HTjI6Zd7Gcd+Nm4Fn+1L5k2vRAa1rgnAE/uSSR2/ki/2JHG24+17Gn73L/ZsyNOd9a0A+77zA5dvZKNSIM7C7350+1pE99NHvzz6wc+cu5Zh9Xf/SFgQ7wzX74KOjPmV4wk3rf4+O9b3Y31EOwAmbPidI+dSrI5tWdObnZP1G2/Pbf2D/f9cNRvb+XX9775+gAf7n9enuSzc/Tdbf7tkNrbja4cQAmr6uHL4pS4AvH3wDO8fjDMbK7lNaco0z+BgHlkdwxdjzUPCH4lZg1tgNVZ+edR4vKBMM+zUr5ryCWAq0/Y88Tqb9yWj7Dtk8rneOX4VO/clM0f9H2MfqmvmZbr/mWdw9/dHyR9yqSgw8z3L1WMLU1i1GpQFEWhad0EdWF3fDqeaYMcfiQxqNB6H/Dl+hSifVj0qajdQVCQkfmijgWxdYbUm1+xWTBs8Ce41EI0nIlwCuHDoMDX6jkH92GQ0GRmoVZa8+gVIi0OldmJ37Z50yDtkkGkOVCH/1fll2sQa+mPjv73OxV2HzWTa4FgvOHbYRKbtHb6EzfuSYd8h22XaxBhm5FuDlGllizuVaaCXVY2DPPnymYfM0lbaTZtGWny8mXEDtwun1erchTOKF5tHvc0UrBdbsziXotBs6FB+WLLE4kak4ZqCRrWla6z2nVcUfe70WgtGeGHnLMk7Z1d9DrbF77W1zUIruc6aLEBHwuXVNutd9souu6IQNRko2rxIqaJys1NOINyqAYq+CBsKuLghhj1ruYL4/BjwC2La5j/Ye6wKZ/Olxxjk2gh/NS9nZ6LLzbEYZZG/snjdLl34fdUqY7RXi/ETqJIX7WXg04kxfLovmY7njhrl2ks/pfLn+JV8tieJ87eziXlsTxKMX8mZH1L4Mq8EWEWQa3Yb2wsXLmTatGm88cYbaLVaE2O7adOmLFu2rEQXaImDBw/y6aef0qlTJ4vn/fz88PPzo02bNkycOJGUlBTeffddDh48WKrGto+Pj8XWaCkpKSa5QQWZNWsWzz//vPH9zZs3qVmz5l1Zo+TOEULw4uMdeEnlgNDpLIaEg+XwyeII6vT0WE6eHEWjRuvx9u5CYuIqMjPjcHUNITh4Ik5OQdzI1ODt5oRHUBBql4vk2vgseoGpLXKcpPJSHLlWmjJNUaloNmIEtbp04a9VK01Cwt0Cq/H8tli8stML/eNYnFyzxkGePPVgHYshmj71QmnRs4upR0cIy9VjC1NKDWg1qHeuhAlR+nY4wTD51FWGtG6FCF+drziQNeWzcI+KojjYrGQWprBak2v2pscondaSk5uL2sGBM19+qc8x1GpxzGuPNCf9FmobKvdm5+aizeedvBPc/PxKZB7Jvac0Zdo/iWmcSLxpmrZy7hzNhw/n8KJFhRZO+3PVSvrNnc9Ln/wBWCm2VoiB7OjmZjlf3M5rcjMz9ZtcBTcKDQaypWgda+esybvsTH03AUvf68I2Cy3lOqtdLMq0wuSQ/bLLxijEoAl6mVzYeo0XqKHTGhS3IEa9/w3HrymkZ6RzaukAhIUK4iIvL3vb75f46thlHMx/OvmWK8hOuMh948ZbjAQ7vmUL106fZvShQ8Zor+ycXD7/K5G1n/7Inmc7Wpm4cmK3sR0XF0fv3r0tnnN3d7epz/adsm/fPrvG+/j4MG/evLu0Gttp1KiRWb7PjRs3SExMpFGjRlavc3Z2xtnZudj33TdNv08f4ueW71i4MeTS0tha+cLj9kzrYAz5LWrszsntLY498Hy4WdjdtgntjCG/RY1d+2Rri2MPTg83hpEYeH9Ea2MYeVFjlwwKY0qXejgUaIvx/YvhxpATAzN6NGZE29pmY4d8EMHAz3fT8qHWCKGD9ASUf1bqi3F0XkdOdoKFtlyWwyeLK6ivXt1CRsZp7rvvEHXqROmLoQktOp3C1bRsqrrpf8+eQUEcmtXT4u9+wIcTeXT7Dlo3vR3Us3daJ5s/J7unPGT7737SAzaP3RBxf6G/+/xjV45sZfPnZNnQlsZwo/x8Z2HsvL5NiXiorvnnZIb552Rqp/oMuK/oFogVheLItdKWaWk5GhyqBtBx/nwcHB2N+Y3/XUvnmc6hOF44yfq8sdZk2pae/vg2bmTy+ev18XT67j1I9bCmJmMHrhrPzL//JD0x0TxEU1Fo9uhjKJZCLi1Vjy1MYc1PfJw+rDCvNefC//OBmykoIcMhsBOcXq3P8cvNAI9aEB6TL+SykGq3mgyELsdmJbNww9maXLM9PSYn4TxZS9vx7/0LCBk8lgZ9+vDs+fMmufU6nUA0maAvmmSlcq9oMpGb//1H/8sHucEY4LZMy/jtBw6uv10ELb+cSjuhz4lc1cUXh5BGxs+JoX3ctwP80NRtYvI56blplsXPiTWZ9veRv9gxsB8M3WM2Vsq0kqc0ZBqYyjVFpcIzONgoowCbiju6ODsybN0UlBG7LBZbK8xAzs3IsOjJtPsaITi2dSstBoxFlX+jMDtTX0PBUrSOtXPW5J0QcPkiNJ5gQUYVsllosZDiOYsyrXA5ZL/ssikK0TkYpfrD0HLu7RzsrFRE/SegejeUEytut29tMhHFLQgUFbN9k3Df+Bw3p+gdnopKhfAPNvbMFlotqFQoikKXRgHsm9aB7O++gG9uP5FBrjnE/sDBN6D5lSv4tPk/q8VB202bhpObG8mnTvFhmzYM3v8d94U04oMRprnZg1ZEMHjnLlq0b2089kp7bz7oO4jhOz81GftJL382DRzEpN23j1cEuWa3sV2tWjVOnjxJ165dzc7FxsZSu3btEllYRaRXr14sXryY1NRUYz7Qtm3bUKlU9OjR467d11IuQoCXCwFeLjaN9fNwMeY4FHds/twJA97uLsY8i+KOzZ/vZsDDRW1xbfaMzZ9HXNhYVU4S/Xpm0LSGM66OKsjfu1HtDopiIdyyMG9P8QV1jerP6udMPM2f53tSI3kctfrNJbCKq8kdrP3ufVLiCfF2NOZgFzb2Tn/3JfE5sfT7LAufExcrYysqpSHX7lSm+bjpleLE3383Kd5i+N0nJtz+Dlj7rNb2UhNUYG5PJxUh3o4EFfgM+efexD/Al0PR0WYeAqshl5Cveux6aNMZdn6oLxSUk21ZYc1P9RB9b1mtFhQFn1o1UVYvhO93wePPQo9Zt3tNC6DeCAgML8IIBxBw4WuCgyfYqGQWbjjflmsxJoWGbE2PSTm5B9+fr1Grixc+7npFyjM4mPD581A5OqHLK/6j4GrhWTDxDjn8twenfJE8ht99YnA1Ps9XBM2kZkfev94u5p8HgBAfJyhw3EWTZfFzYk2mhXg74nXzapFjpUwrGcqKrqYoClePHWNtx47MTE21ubijS9JFhE5nsdhaYQaytcJXxbnm36++4r7RoxHzVt8uhGYtWidvLovnrBnhigKBNUHtCB1Xw/cFW2N9Ao3HWQ6/tlRIUauxINMKl0Px8e9Srdoom2WXPgpxDI0br8PHpxsJCSvMohARIFSeKPfNBUdnyM1Gl5ODohPgGoRoOQ9F7YTQZKM4OBmLmlV1Af+cJJLy/alSFIWkXVvwf28ayZOXGws1GuRaUoE/awa5lphQTV/0Ue2CysbioLkZGVSxIgO9bl4lxNvRmK8NUMVFjU9KPDU9Tc3Qmp7641Xyja0Ics1uY3v48OFERUXRqFEjYxi3oigcP36cV199lUmTJpX0GgtlwYIFVs+pVCq8vLy477776NChg9Vx94qJEyfyzjvvMGDAAGbPnk18fDwzZsxg4sSJZaoXrcRGhCDg/s4Ebk9H6PI82gXCfCyFJkHh3p5iCeqAsTi51kARkHYpjpzNF1ANrJj96iVli/Iu10qi/UiRbXVu3QIse6ashlwa2LsF4k7A/DUmXgpl8ARzhdWAg1rfykXJ2913dkVxdNIb9Gdi9eHqC8fqvUYvvqs35F8cDI9Nvm2E67SQcB5CHzc1wj1DUKq2wcmpms1KZmEKa0bGCW7e+JnAwJH4+HQ1kWtabRqBgU9YVUwVRaXvb10ARVG4evg7To0bRMMPPyWwS09A0YdjVu8K+bxDNJmob8NoZS5J5aOsybTc9HSyUlNtKu6YlZpqPKaoVObXFGIgWy18JQR/f/IJrcaNs/maer17k3HtGq49h6Nr1QmHz1fro22yMhDVasH8GPOWYJ+8i+gzyvScNSPc2VX/2vqOXtZV62QiowjuAe7VrIZfi+bPoji4wKj74cIZlJr1cNpw1EymFWUgg0JgwAh8PMNJuLr6tuzKSbUquxDglKYyiULk4llIOgwtO6BBhYMAFaAToEGFo6KgqFRc+3QVVQ+9xPXwV6g65BnbPkCpybaNs4IhyiJ8/nxUjo76/ttqdZnq9lTWsdvYjoqK4u+//6Z79+7GPtu9evUiKSmJvn37MnPmzBJfZGEsW7aMnJwcMvParri4uJCVlQWAq6srubm5aLVaWrVqxVdffYW/v39h091VfHx8OHDgAFOmTGHAgAF4enoyduxYXn755VJbk6SYCB1kJKCc0IeLK53WwD8rbQq3zJvAqrcnfw62NeHuRFXq1JyLonZGaLIhV6Mvj6FSoVNX49C70HCM9dQEiaSkqOxyzaa2OnFx9F+zxrJnKi/kMqxfBA7WjOe4E4iq1UzuiV8wyvwY88q9DmqIXKNvvWdQhrIz9e1d8hv0Qui9RoZ8yJO/3zbCvarCN0nw/lyI+9vUE56VAfu2oPx3isDJL1s3kL06k3D5wyKPGzYKEeDkFEztWvNQOTih0+agqBxRFMXq8cLQefvzXVwG9U1acqnALTifdygHxeF2yxuzntllBI+gIMIjI/Eoqr2kpEQoizItPSkJv4YNrYb0GipAJ586ZTyuKAqewcFm11gzkK/ExvL5mDEMWLeOkG7dTDyZ9Xr1wt3f32wui9fkyzE/tWsX7Z59luajZ6F2c0OTmYkKUB4egbZl+G0jvHoIYtB4UBREz+Ho8p+zZKAbPN7Xr8ITbSzKKP47BU+/DNW7mWywibwNNl3qNVQdHrl9/5spFjf9DHqXo0OgaZqeRgdCX5rMSeVnrpMZZFrNuajUzgidBk2OBqHVIXJycFixAFKuoPj4o+0/FiWsPTlpaThXqYLQ5Bp+iTi6uRnlnc7BB37OQNfF5+5/6PKhKAqXjx2TbbyKid3GtpOTE59//jnfffcd+/fvJzk5GV9fX7p160a3bt3sXsDFixe5ePEiLVq0wN3d3e7rv/32W4YOHUpkZCT9+/fHw8ODW7dusXPnThYsWMD69evJyMhg5MiRzJgx444rod8pjRs35ptvvil6oMSEtMREjq5cqe8nWdoKh9DZ2LtRwIWvLIYmgfXwSYCkpO0EBIygatXepruf6HNucHJGGBVsFYqLm1FhLI5iJpU5yZ1QGeWa2tXVvrY63bpZ7U16ZPlyWowcibDk7XFQI/KM518/+ICLP/5426DvNRLl/q6QrwgOeUVw8vfZxtmVnKQrOA2egFLQO1QwH1IIuHHtdujm3s2mnvB81WuVwFo4DhxPjWqzcHR1Q5OdiUrlBEe/xynxHHV6zEJxdkNkZ0DsL3BfB7ONQpGdow9jV/QKXfIufX/qa/n6U1s7DsUwkBWF5C8s98C22DO7uPgFwbhI/b/5KI6s9QwKolNU1J2vSWIzZU2maTIzUWwM6c2PtWuy09Jo8cQTZkZ164kTjUa6pZ7d1u5f8BrQR/JciY1lV0QEu8aO1RcszMgw9gvXVqmKEjEXlZMzupxstBotauDMnj1kXkumWZ6Bjk5L8smTVO3xuKkRfu4kYlCeTLMkoxzUMOJ58AlGtLwtcxQHJ4QQaJzcUOe7vyZXg2MBA1mXN15RFHBQEJpcFEcHhEaLSn17009xcbttIAvFqJMpQPIX2/F/Yzwp0Z/g07kXp7/8Mu/5XtJvQGRkcPyTrbj6+dOgd2+9vNttWd6VNiURCVYUjm5uRQ8qZ9htbF+4cIGgoCA6d+5M586dTc5pNBoSEhKoVatWkfOsWrWK6OhoLl++DMCvv/5Kq1atGDhwIJ06deLZZ5+1aT2TJ0/mhRdeMGk35uHhwRNPPEF6ejrTpk3jyJEjzJ07t9CQc0nZ5lZiIoeio2nYr1/pGttCQEaCbb0bAeW3SJwGmYcmQV745M3/Wd1JNYRJGudS8tWOVBSU1GT4fA1K/6dMFLriKGZSmZNI7MPd39/2tjoU3ps06cQJLv7vf9TqNRIKGM9i8ESoWo2do0ZxbONG4zU/LF3KY59+SoM+fWDcfBS1o957rb7tqUUI/Po+CgNH4KTVgKIyzaG0lg9pKXRTCBND29CvVZOTw4+vvMLNS5eoUr067Z57DtdWHVGS68OapXD1EkpAdRg8EaEoaBUHVDr0bWp0piGSRrLMFTo3Pz/IyjCr8l0cA1nn5cfBuIy768H2C4IJUWaHpayV3AnGkF4LhnBxrilsLkObw/yezKLufzk21nKOuRBGQ+34li0knThBvzVrqHbffXmLVFC7uqIoCg369CEtMZHDS5dyMz6ePu+/z/HNmy16yR2cnExlWn5DO3INePuDopD66Wv43FpCqscsfB6bi5LnMbbmQb7+2YdUPfQSKfnCtQs1gvOdK7iJB0BWBtqbqSgqlenz5cnN/Bsm+a+5m5S1SB5r6VgVAVXRQ0ypW7cuf/zxh8Vzf/31F3Xr1i1yjuXLlzNlyhRGjRrF3r17EUIYz3Xq1Ilt27bZvJ4//vjDalG2OnXqcOzYMQCaNWt2TyqlSyo6OjhRIFw8f+VepcD+1fVYlO+eIDDgcf7v/85Tu/ZcAgKGU7v2XP6vbRxenv+H8vM+nJyCqVMniiZNNlKnThROTsEmhrZF/IIgYo6Z50QikdxlFAUXb2+rbXX+iIkx814bepM2Hz6cqXFxdJw7l+bDh9Nx7lyePX+eWg8+qFe0/IMRY+fBoo2I8ZHkunnxYdu2JoY26Fv9fDJoEGmJiWRd+g8ecid597bbhrZOh0iK1xdFmzMcZVU04sZ16P0Eus/OQsRc6Pm40TuEQwHZtXk5BFTXV0IveC5PkVX8gnB0cyN83lz6r1lD+Px5uPr45HuOuRC5Rv88/sEoKhUOzs6312hQcPMpmAYFUFdAATRU93YvgVQwt8ZhMD5S/68NyMgfSVlCURSuxMay2N2dK7GxNhkk1q4pai5Lnswir8mXY27wchck6cQJPKpVI/viOXjInWu7t91eU74c4f4xMagcHWk9YQJJJ06wKyKClz08WOzuzstubnw6ciSi53DEF+f1Mu3h4fp/vzgPD48wRvjoVN5wJEP/b77nuLZ7m9n9IV+4toOFcO3CjGAL5wrKNOPz5ZObnsHBpob2PcCwUakriUieO0TodKTFx3MoOpodw4dzKDqatPh4fcpUBcDu32x+w7gg2dnZNrU+eOedd5g3bx5Lliwx8443bNiQU/lyToqidu3arF692uK5VatWGQ3xa9eu4Sf7XkruFMXBeu9G9+r6YhwFDe647SgXvsbJsRp1qs/WG9TBs3Davx9lZBv460cUoTN6rhWl8F1qiURSuji6uqJSq21uq2Pg+JYtfNimDSlnzxIeFcWgjRsJj4w0VbTyPCR0D0DodPz4yisk/v67xfl0Gg1HV6zAuXqBaDKdDrFnA8ojdSFmkT4UPGYRqoeD4PBulIDqaJ6cDYs2oqnTGPyCEAWN6jOxED0Geo3UK65WFFmrCqvhOQpsAhSm4IL9CuCdhGXbGiVl73iJ5F5QnJBea9eU5FygzzE35IsXNLjz55hnnj1l0UDNb9BfO3XKdK58XvIT27dzZu9evQwbN1+/SZm3uZc/lUbn4ANHsd94LgEsybSi5KDVuaxsRpZX8qdjvVW3Lt8vWsTxzZv5ftEi3qpbl9gNGyqEwW1TGPnJkyc5ceKE8f3Bgwe5dOmSyZisrCw2b95MSEjRFZDj4+Np3769xXOOjo7cyqvcagtLlizhscceo2HDhvTt2xd/f3+SkpLYvXs3cXFxRi/5gQMH6NhRNlmX3CFCa0fvxryqmI0ngksAyryR+tBMZ1eUfKFOumW7UfTlzSQSSTkgNzMTnUZje1udfFyJjeXcgQPUeughFru7mxWbEUJQNS/0W0XhvXUDw8Ko262bvp/2D+lUzc3Rb4gnJ5jnfgNoNSgvDka781+OfX2APVOmGHMoB65fj2jTBdXOVab534pi9LYrjk7moeoGrCms9h63ExmWLZGUPWzNMS+qA0BuRobNcyV9vtlqGHdZC5k2YkUOWluvtbSZMvt8RWAtHQv0m8m7IiKo27WrfkO6HDuhbDK2t27dSnR0NKDfjbFWcdzb29umAmS1a9fml19+oUuXLmbnjhw5QoMGDWxZFgADBw7kl19+YcmSJezcuZPExESCgoK4//772bp1K/fl5YO89957Ns8pkVhHBU0m2N67MSdT/+/hL+Gb7aZ5jw5qxLwYfT5jORYiEkmlQwjLrXgKaatjIH+LnoKeIZPK5oVVMAdjkaFbiYkciorSV0KvV49OkZEoO1ZarmoOoNXg8Plqmo+exa6ICEDvcb92+jRPfv89juMjURzUZkZ1ofmIdlJeFUOJRGIfxckxL3Ku+fNQOTqhy5NRJnNZM17LmZFqby2K8vZ8gDEd61B0tMW/lXA7eis8St/2srxiUxj5tGnTOHfuHHFxcQgh+PTTTzl37pzJKz4+nmvXrtGvX78i5xs3bhyLFi0iJiaGmzdvApCbm8uXX37Ja6+9xoQJE+x6iJYtW/LJJ58QFxdHZmYmcXFxJoa2RFJiKArCLRhhKVw8r3cjDi4wqi085A7t3SByNOKhPmY5Rdqd/0Kv29V2JRJJ+cFamOSR5cvxrF6dR1avLjR8Mj0pyeScWSjdpk0c27SJlhERZvMEhoUxYP16jm3axNuhocbQu5/ffFOvkFyy7g0HID4OtZsbaldX47raTZuGo6srKQf3mud/G7DTG20t5LFYuYJWqnuXNjKfWyIpnOLkmBc2V3HCr61hTRZZlV0lGMZ9L0LCy1JedkGspWMVJCUuDlU5NrTBRs+2l5cXXl5eAJw7d46goCCcnJyKfdPp06dz4cIFxo8fbzSsH3zwQQCefvppnn766WLNe6dtxCSVG1vaiwkh4GYKSshwCOwEp1ffDhdvNA7FowbiZipKvt6NhlBMbZWqqPK3ucjVoCpYhVcikZQLCgttLKytjqUWPUIIi6F01iqYW6t4DoBOa15dvCDVQ9DlZNN44EDLYZ3FNKptDXksFlaqe5c2MoxdIrGNEm0bdY/yrM08xYXINHu9yCUqH8sZHkFBtH/xRYvpWAXxCQlBp9WWa4Pb7tZf+St/Z2RkkJWVZTbG19e3yHnefvttpk2bxv79+7l27Rq+vr507dqV+vXr27skYxuxxMREFEUpdhsxSeXGpvZiOh3KpuXw/S54/FnoMUvfpzYrA/ZtgR/3oDw5EzFeH/Ii8oU5OTg7W20zIZFIyifFbauTH6HTmVc253YF8wHr11O3Sxd+X7WKlHPnaD58OIcXLTIbn5uRgU6rgwHjUOXvp50fBzVi8AQUtSODNm60HIppJ5VZaZRIJBIof3KwpKJyil2kMjISIYR5OlY+DGlX5d0pVaxq5AsXLqRGjRp4enri7+9v9rKVkJAQJkyYwOzZs5k4cWKxDO38bcT27dt3R23EJJUbVWoS4UH6f61hDNE8EwsLIqCDhz5c/CF3/fsD22GjPpTzpzY1uXr4O5ur8EokkvJJcdvqgN5YVzk42F7BfMMG1M7OlscLwekvv0QJrG5eXRyMdSLwCyYrOYnvQ91JOvxdmZJFMixbIqk8lNWw7Mogh0qqy8KdzGPYlC6qan1Z+htVHOz2bC9btow333yTF198kTlz5jB37lwcHBzYsmULOTk5zJkzx6Z5tFotR44c4dKlSxa946NGjbJpHkMbsblz56LVak3O2dtGTFK5Ud1IplMwJN1ItjpGaLUo+UM08xc8M1A9BKHVsv/oJepaygOKyyibxSokEskdUZy2OkKnQ6fV2l7B3MODmampVscfjIykQd++KL1Gom3VCYfPVxtTWrT9x6IKrAHArWvX+S4ug/q2FuApRqGdO2nLVRpUBgVbIilLFMcbfC/SVkpSDpU3uXKv12tLpfnyjt3GdkxMDNHR0UyePJk5c+YwYMAAWrVqxbx58+jXrx///vtvkXP8/vvvDBo0iIsXL1rs260ois3Gdkm2EZNIikSlQgyagFJoiOZEtDk5Fi8vb2FGEonk7qOoVDaF0mWlppKbnm65EnoeV2Jj+ezJJxm4fj1aLz8UK3Ui8ueM56ckFdnyls9c3tYrkVRGypsedS/kSkkayKUhB0uyan1ZxO7tgvPnz3Pffffh4OCAo6Mjqamp+olUKp5++mmbWn9NmjQJLy8vvv32W65cuUJKSorJ6/r16zavx9BGzBL2thGTSHBxK/S0Yug5ay1Ec34M+AVxMzHxLi5SIpFUJGwNpTNUMLdWCd0wPrRnTwAc3dxuVxQ31IkowktQlqvXSiQSicSckgoJL01Ksmp9WcNuz3bVqlWN3uJatWrx+++/G/tlJycnk2FDtcG///6bbdu2ER4ebu/tzRg3bhxRUVH4+/szaNAgwLSN2Msvv3zH95BUAoTAr++jMHAEfrk5+vDwfF/0W3//SfKiafjNXY5H0/sQvZ9AtO2GsmOFMURTDJ4IfvqQl+y8TaiClLdwIolEcm+wJZTO4I0urBJ6wdA7Q3/sayXQH1sikUgkpUd50yGLs94SrVpfRrDb2H7wwQf59ddf6d27N8OHDycqKorLly/j6OjIhx9+SNeuXYuco0GDBsb+2nfK3WojJrm72NJm657No9NBcgLKjpVw6aw+J3vwBPALhjyFNfP039Q5c4ik03/j0fQ+FJUK4R98u+q4VgsqVZE7cTJMUSKRWMMYSjd/HipHpyIrhdsceneX2+RIJBJJZackDWFrc5U3HbK8rfduYXcYeVRUFB06dABg9uzZREREsHnzZlauXEnXrl354IMPipxj2bJlLFmyhJMnT9q/Ygu8/fbbnDlzhvfee49Fixbx7rvv8s8///D222+XyPySksfQZuvWHYZbF2ue5ERYGQUpSXpDe88GeKQuxCyCvZv1/z5SV39cp7t9XYEQc0VRSN61Bbr5k7xri4mCW952HyUSSdnA3q4FFTn0TiKRSMoShel2JRnKXRHCwiW3sduz3bBhQxo2bAiAs7Mzb731Fm+99VaR1zVv3txECUhMTKRZs2YEBwfj7e1tMlZRFP766y+71mVoIyYp35SUx7tQkhPhw2gY+gwkJ+hbdhUsdqbV6I8/0BN8AgoNMSfVvHq53M2TSCTFpThdC0oz9K4sbi6WxTVJJJLyTXnT7aQcLBvYbWwXl9atW5fYjvv3339v1/iOHTuWyH0ldx+Dp7phv353d0dPUcDDW290W6oqDtBtCHhVhaR4qyHmxWmHI5FIJIUhq+3eOWVxTRKJRHIvkXKwbFAsY3vLli1s27aNixcvmvXItuaVtqVKua106tQJRVGMbcPyG/FCCDOjvmD/bYkEZ1dQq+HSWcvn64dB9HrYsxEWjjU1yD9aCvNjoNdIVEG1ypVSLJFIKhdlcUNQelskEkllR8rByoPdxvbs2bNZunQprVu3pkGDBjg5Odl906eeeop58+ZRt25ds3P//fcf0dHRrFmzxur1f/zxh/H/V69eJSIigs6dOzNkyBACAwO5cuUK27Zt4+DBg8TExNi9PkklIDsTNBqoEWr5/OPT4Gq8uaENt0PM7++Ku780siUSSdnFXi/5vVAApbdFIrk7SAPOMtZ+LqX585JysPJgt7G9Zs0aFixYwNy5c4t9048++oiJEydaNLaTk5NZt25docZ2ixYtjP8fMmQIw4YN49VXXzUZ88gjjzBjxgw++OADunfvXuy1Sioozq5wK1UfEv7RUlODWlGgx1BYu8R6iLlWAztW4Dou8p4sVyKR3Fsc3dyKHlQBsaYASiVeIin7lDcDrjC5Yq/MsaV4ma3HJZKSxO5q5ADt2rW74xtby98+c+YMVatWtXmevXv3WjWme/Towf79+4u1PkkFRQioFwY/pOtztv2C9SHhDvn2nZxd9ZXHrYWYG4iPQ1GrUbu63tUlSySSOyMtMZGDUVGk2dC1QAhBYFgYs9PTCQwLM6YrVXZkdVyJRFLSFCZX7JU5UkbdXeSGa/Gx29geO3YsmzZtsvtGH3zwAWFhYYSFhaEoCsOHDze+N7waNGjAqFGj7PJEe3h4cODAAYvn9u/fj4eHh91rLQ7Xrl1j4sSJ1KpVC3d3d5o1a8aKFSvMxiUkJDB48GA8PT3x9fVl7NixJdZzXFIEOh0kxeuLos0Zrv83LQV6jYQvzkPEXHh4OIx4AaEtJMTcQPUQhFaLJjPznixfIrmXVCSZZmuLQKHTkRYfz6HoaHYMH86h6GjS4uMR+VsAVhCk4iSpjFQkuSaR3EvkZkbxsTuMfOHChTz77LM8+OCDdO3a1WLbrueee87suuDgYFq3bg3A8ePHadiwIf4F8l2dnJxo3LgxERERNq9n8uTJzJ8/nytXrjBgwAACAgK4evUqO3fu5OOPPyY6OtreRywWjz76KCdPnmTx4sXUqlWLr776ikmTJuHg4MC4ceMAyM3NpWfPngBs2rSJjIwMpk+fzvDhw9m9e/c9WWelxdBPu2Cbr4+WwmufIh7qA+OjUBwcEFotKApi4DiUgiHmBhzU6AaOlz1tJRWWyiTT1K6uCJ2O2A0b2BURgU5z+zv/w9Kl9IuJIWzkSBRVsYLByiQyfFJSGakocq2sbpaV1XVJJKWJ3cb2t99+y7p160hLS+Pnn382O2/N2O7fvz/9+/c3vp8/f77FnG17mTt3Lt7e3ixdupR169YZq5QHBQWxfPlypkyZcsf3KIrLly/z3XffsXbtWp588kkAunTpwq+//sqWLVuMAnz79u38/fff/PPPP8Ze5T4+PvTs2ZNffvmFtm3b3vW1VkqEKLyf9oxB8MV5Ll+8zJF338Wnbl3C589H5xcM81ajFCyS5qBGzIsBvyAUlUqGkUsqHJVNprn7+5OWkGBmaAPoNBp2RURQt2tXPIODS+yeUimVSO4tFUmuldXNsnuxLik7JeUNu7fpJ0+eTJs2bTh27BjZ2dnodDqTly1tttauXVsihraBZ555hgsXLnD+/Hl++uknzp8/z8WLF++JoQ36XVAALy8vk+NeXl4m+X579uwhLCzMKLwBunfvjq+vL1999dU9WWulROhgx8pCi50pO1bg37gxf330EQejosjNyOCfTz9F9ByOdue/t0PMI+ai3fkvoufj/PPpp+g0GhlGLqlwVCqZpii4eHtzdOVKM0PbgE6j4eiKFSUaTi5D8iSSe0ulkmt2UBzjtSxU8ZayU1JesNuzffHiRd555x2aNm16N9ZjEx988AFPPfUUzs7OxmMqlYpatWpRq1Yti9ccO3aMpKQkunTpUuLrqVmzJj169GDx4sU0bNiQmjVrsmfPHvbt28fGjRuN406ePEmjRo1MrlUUhUaNGnHy5MkSX5ckD5WDTcXO1G5uqF1d0WRmcnzrVup27szq//s/7p88meajZ6F2c0OTkcGxLVv49b33GLZrF1mpqffkESSSe0llkmmOrq6o1Gquny1cRqTExaFycNB3K5BIJOWOyiTX7KE43uiy6lmXSMoidnu2H3roIU6dOnU31mIzH330EbVr1+a5557jp59+Mu5WFiQhIYGYmBi6detG+/btSUlJuWtr+vTTTwkMDKRp06ZUqVKF4cOHs2zZMgYPHmwck5KSYpbjDvrwpOvXr1udOzs7m5s3b5q8JHag09pU7EyTkWH0Uh9ZvhzP6tVpO3UquydM4GUPDxa7u/Oyuzu7J0yg3bRpeAYFIYSQ4UySCkllkWm5mZnoNBp8QwuXET4hIei0Wn1aikQiKZfcLblWlmSaRCIpW9jt2V68eDGjR4/GycmJbt26WRRIvr6+JbE2qxw5coSdO3fy1ltv8fbbb+Po6EiDBg3w9/fH2dmZ1NRUzp07x9WrV/H19WX06NFs2LCBatWq3fG9hRAmofKKoqBSqRgzZgxnzpxh06ZNBAUFsX//fqZNm4aPjw/Dhg27o3suWbLknhV6q5AoKsv9tA04qNH2H8uxLVuMh67ExvLZqFEM/PhjQrp14+iKFaTExeETEkLriRPxDNLna7v7+8vdXUm5pjLLNI+gIMLnz0eTk0PrCRP4YelSi6HkKrWa1hMnVqgCaRJJReZey7WyItPKKjLPWlKZsdvYvv/++wGYOHGi1UrMtuRt3ykDBw5k4MCBnD9/nm+++YbffvuNxMREsrKyqF27Nj169ODBBx+kU6dOODo6lth9Dx06ROfOnY3vw8PDmT59Otu2bSM2NpbmzZsD0KlTJ65evcoLL7xgFOA+Pj7cuHHDbM6UlBRq1qxp9Z6zZs3i+eefN76/efNmoeMl+j+0QqdD5eCATqdD8QtGmR9jXiQtr9iZ4h/MkbfeMpnj+JYt1HzoIdpMmkT4/PmoHB3R5eaiqNWyCrmkwlCZZVr+UEhHFxf6xcSYFUlTqdX0W7NGv8GmKFJplEjKAfdarpUVmVYYZSHPWiKpjNhtbK9Zs6bEDA0hBKdPn+b69ev4+vrSoEEDu+euU6cOY8eOZezYsSWypqJo3bo1v/76q/G9p6cnn3/+OQ4ODjRr1sxkbMuWLVm9ejUZGRm4ubnRqFEjjh07ZjJGCMGpU6cK7S3u7Oxskp8uMcXRzc3kvdDpSEtI4OjKlVw/exbf0FDaTZuGa6+RKPd3hR0rID5O3yd78ESETwA7R43iSmysyTwqtZpGAwagKAqXjx1jbYcOjDl8mKBWre7l40kkdxUp0/QoKhVhI0dSt2tXq5EsIJVGiaQ8cK/lWlmUaQWRsksiKR3sNrYN7RLulPfff58FCxaQlJRkPBYQEMD8+fOZNGlSidzjbuDp6UmbNm1MjtWuXRutVktsbCwtWrQwHj969CgBAQG45RmDvXr1YsOGDZw5c4b69esDcODAAa5du0bv3r3v3UNUEIQQBIaFMTs9HZ1Go68mKoTVXrlPfPMNtTt0MOunfebLLzmxfbvJ3AW9WQC5GRn39PkkknuBlGm3UVQqPIODCY+MRKVWo9NoUBwcZCSLRFLOkHJNIpGUFew2tkuCVatW8cwzz/D4448zdOhQAgMDuXLlClu3buWZZ57B0dHxnnmqS4LevXtTq1YthgwZQmRkJEFBQezbt4+PPvrIJIdnyJAhLF68mMGDB7N48WIyMjKYPn06ffr0KRN9G8s6+T3YlrzXD86cSVZKisVeuU2GDKFm+/b6a1at4sbFi3jVqEG7adNo0KcPz54/X6g3SyKpTFRmmaYoCpdjY0sskkWGnUskZYPKLNckEknpYZOxHRYWxqZNm2jWrBnNmzcvdJdfURT++uuvQudbtmwZU6dOZfny5SbH+/Xrh7+/P6+//nq5MrY9PT05cOAAc+bM4aWXXiI1NZW6devy5ptv8swzzxjHOTo68vXXXzN16lQef/xx1Go1gwYNYtmyZaW4+rKHWVh4QQ+2TmfuvVYUHpo1y2Kv3MCwMAasX8+xTZv4YuxYM4/3Y59+SoM+faQ3SyLJQ8o0+yNZrBnVpR26KY19iUSPlGsSiaQ0sMnYbt26Ne7u7sb/36kRcu7cOfr27WvxXJ8+fVixYsUdzV8a1KtXj61btxY5rnr16uzYseMerKj8YS0sPL8Hu/306bgHBJh5rx1dXXF0c7PYK7fdtGmkxcebGdoAOo2GTwYN4tnz51E7O7O8dm2L3iypsEoqG1Km2UdpG9XWKKvrkkhKAynXJBLJvcYmY3vt2rXG/3/00Ud3fNOgoCB+/vlnunXrZnbuf//7H0HSoKl0FAwLr/ngg9w/aZKpB1tR6Ld6NT8sWWJmNOdmZpKbkWHeK1dRaDZ0qMVrDOg0Go6uWEF4ZKRVb5ZUWCUSSVlFbgZKJBKJRFI2sTsh9amnnuLcuXMWz/3333889dRTRc4RERHBwoULmTt3Ln/++SeJiYn89ddfzJ07l0WLFpWrEHJJ8XF0c0Pt6moMC3+rbl2+X7SI45s34+jmxo0LF0w82IV5rxGC41u30jIiApX69h5SodfkIyUuDpVajdrVtUSfUSKRSEqKokLVPaWxLZFISgi5iSeRlAx2G9sfffSRSQXx/CQnJ7Nu3boi55gzZw5Tpkzhtddeo3Xr1tSoUYNWrVrx2muvMWXKFGbPnm3vsiTliPzh4lUbNiQtIcEs/7rZ0KH8ERNj4o226r3O48jy5XhWr84jq1cbDe6irjHgExKCTqNBk5lZMg8pkUgkJYw0qiWSykVZ6I0t5Y1EcmcUq9SytZztM2fOULVqVZuuf+ONN0hISOCLL75g/fr17N69m4SEBF5//XVZmKoCI3Q60uLjORQdzY4RI9Dl5poVNbPqjbbivTZwJTaWz8eMocUTT/Ds+fN0nDuX5o8/TvLJk7SeMMHiNaBv89V64kSyUlNL8lElEolEIpFIio00eCWS8o9NOdsffPABH3zwAaA3lIcPH45rgXDbrKwszp8/z6OPPlrkfOvXr6dPnz5UrVrVrGfh9evX2b17N6NGjbL1GSTlhIJVxB3d3FBv3GhmVBfmjT6yfDlhI0fyyOrVZgXPVGo1oT17Apj3ylWp6BcTY1ZYLX8/7eRTp+7Sk0skEolEIpFIJJLKhk3GdnBwMK1btwbg+PHjNGzYEH9/f5MxTk5ONG7cmIiIiCLnGzNmDD///LNFL/i5c+cYM2aMNLYrGCKvqnh+Y9eqUZ3Pg/3D0qUmxvGV2Fg+GzWKAevXE9KtW6G9sZU8T7bBox02ciR1u3a1eo0MIZdIJBKJRCKRSO49FbVOgE3Gdv/+/enfv7/x/bx58wgJCSn2TYUQVs+lpKTg6elZ7LklZROh05n3wC7EqC7Mg31i+3aajRhBg9697eqNrahU5h5v2U9bIpFIJBKJRCIpVSpq5x+bjO385G8DZiAjI4OEhARCQ0OtGi579uxhz549xvdvvPEGgYGBJmOysrL49ttvue++++xdlqSMo3JwsFgR3JpRbci/HrBuXaEe7Mt//snaDh0s9sa2hKIoXI6NtesaiUQiuZdU1N19iUQikUgqG3Yb26+//jrp6elERkYCcPjwYfr168fNmzepW7cue/fuJdRCru3p06f54osvAL3Bc/jwYZydnU3GODk50axZMxYvXlycZ5GUYXRarcUc7Pxh4XW7dOH3VatMjGpFUYr0RlvrjV0YxblGIpFI7gUVdXdfIpFIJJLKht3VyFevXk2NGjWM759//nmaNm3K559/jp+fn9W2Xc8++yznzp3j3Llz1KpViz179hjfG16nTp3is88+o0mTJsV/IkmZRFGprFYEP75lCzH/93+4+voSHhnJoI0bCY+MxDM4GEWlQlEUrsTGstjdnSuxsTLsWyKRSCQSiUQikZR57PZsX7x4kXr16gEQHx/P0aNHOXToEB06dECj0TBp0qQi5zh37pz9K5WUawweamsVwdtNm4ajqyvJp07xYZs2FkO8pTdaIpFIJBKJRCKRlBfsNrZdXV25efMmAAcOHMDDw4P27dsD4O3tzY0bN0p2hZIKg6JS2VQRXBrVEolEIpFIJBKJpLxjt7Hdtm1bli5dikql4rXXXqNXr144ODgAcPbsWapXr17ii5RUHGRFcIlEIpFIJBKJRFIZsDtn+/XXXycxMZFHHnmEW7du8fLLLxvPbd261ejllkisIXOwJRKJRCKRSCQSSUXHbs92kyZNiIuL49q1a1StWtXk3BtvvEG1atVKbHGSik1ZCxeX7XYkEolEIpFIJBJJSWG3sW2gatWqCCFITEwkICAAtVpN8+bNS3JtEsldwZpRLdvtSCQSiUQikUgkkpLC7jBygL179/J///d/uLi4UKtWLWJjYwEYP348GzdutGmOv//+m2HDhhEaGoqzszO///47AHPmzGHPnj3FWZZEYhMGo9pTerAlkkqDo5tbaS9BIpFIJBJJJcNuY3vz5s307t2bunXr8v7776PT6YznQkNDWbt2bZFz7N+/n5YtW/Lff/8xYsQIcnNzjeccHR15//337V2WRCKRSCRmCCEIDAtjdno6gWFhCCFKe0kSiUQikUgqCXYb2wsXLmTatGls3ryZJ5980uRc06ZNOX78eJFzzJo1i2HDhvHzzz8zf/58k3MtW7bkjz/+sHdZEolEIpGYIHQ60uLjORQdzY7hwzkUHU1afDwi3yaxRCKRSCQSyd3C7pztuLg4evfubfGcu7u7TX22jx8/zpIlSwDMKlF7e3uTnJxs77IkEolEIjEidDpiN2xgV0QEOo3GePyHpUvpFxND2MiRKKpiZVJJJBKJRCKR2ITdmka1atU4efKkxXOxsbHUrl27yDl8fX1JSEiweO706dMEyVxaiUQikRQTIQRpCQlmhjaATqNhV0QEaYmJMqRcIpFIJBLJXcVuY3v48OFERUVx4MAB4zFFUTh+/DivvvoqI0eOLHKOAQMGEBkZyalTp0zmuHz5Mq+//jqDBw+2d1l3jffff5++ffvi7++Poihs377d6tgvv/yS9u3b4+7ujo+PD507d+bSpUsmY3766SceeOABXF1dqV27Nq+88opU+CQSyT2jMsg0odNxdOVKM0PbgE6j4eiKFTKcXCKpIFQGuSaRSMondhvbUVFRtG/fnu7duxt7avfq1YsWLVrQpk0bZs6cWeQcS5Yswd/fn7CwMNq1awfAU089RcOGDfHy8iKqDLVfWr9+PcnJyVZD5w1s2LCBQYMG0alTJ3bv3s26deto06YNWVlZxjH//vsvPXv2JCgoiN3/396dh0VZ7v8Dfw/LDDCsw44g5gKiKCqmQiYuQG6ZipJYLqmZJ49puXdKNE3zaGaZnugXridFcV9wF1MDSy2P+1ZienIDAVf2z+8PvzzHaViV3ffruuaqued+7udzPyNvuGeeeWbrVowZMwZTpkzB559/Xt7TICIC8HxkmpGxMe789luRfVJ//x1GxsYVVBERlafnIdeIqHoq9We21Wo1Nm3ahPj4eOzevRvJycnQ6XQIDg5GcHBwicawsbFBQkIC/v3vf2P37t3Q6XTQ6XQYOXIkBg4cCLVaXeqJlJeEhAQYGRkhKSkJy5cvL7DPnTt3MHLkSMyfPx9/+9vflPYePXro9ZszZw7s7e0RExMDtVqNTp064fbt2/j0008xatQoaDSacp0LEdHzkGl5ubnQ1atXZB+7unWRl5vLBTdRDfA85BoRVU9PfXWYDh06YObMmfj222/x2WeflXihnc/U1BRvvfUWVq5ciV27diEmJgbDhg2rUgttADAqwQV01qxZg9zcXAwdOrTIftu3b0fPnj315tivXz+kpaUhMTHxmWt9Hlm6uiIoMhKW/Jw/UYk8D5mmMjKC/zvvwMik4NeTjUxM4D9iBC+QRlRDPA+5RkTVU6X8pfHSSy9h0aJFuH37dmXsvswdPnwYDRs2xLJly+Dp6QkTExM0a9YM27dvV/o8ePAAV69eRcOGDfW2bdiwIVQqVaEXnaOiWbm6ov3UqbDiYpuozFT3TFOpVLByc0OP6GiDBbeRiQl6LF4MK1dXg2/DIKKaq7rnGhFVT5Wy2HZ1dcW4ceNQq1YtvPLKK1i+fDnu3btXGaWUiRs3buD8+fP4+OOPMX36dGzfvh116tRBjx49cPr0aQBAWloagMdfbfYktVoNCwsL3Llzp9DxMzMzcffuXb0bEVF5qQmZpjIyQtM338TopCS0++gjNOnfH+0++gijk5LQ9I03+K420XOmPHONf6cRUWEq5a+NtWvX4tatW/juu+9gYmKCYcOGwdnZGWFhYVi3bh0yMzMrvCYRQU5OjnLLzc0t8bZ5eXm4f/8+vv32WwwcOBAhISGIjY2Fu7s7Zs+e/cy1zZo1CzY2NsrNw8PjmcesqnhaOFHZYKY9XnBbubkhKDISvb//HkGRkbByc+NCm6iaqqq59jz9nUZEpVNpf3FYWlpi4MCB2LZtG65fv44vvvgCd+7cQb9+/eDs7Fzh9fzwww8wNTVVbp06dSrxtnZ2dgCAjh07Km2mpqZo166d8mpp/quk6enpettmZWXh4cOH0Ol0hY4/efJkpKenK7erV6+WuLbqhqeFE5UNZtpjKpUKN0+cwEytFjdPnOCp40TVWFXNtefp7zQiKp1SX428PNjb2+Oll17ClStXcP78edy8ebPCa/D398eRI0eU+1ZWViXetnHjxoU+lv91ElqtFh4eHgaf9zl//jxExODzQU/SaDS8+iURlQozTV/2w4cVuj8iKntVNdf4dxoRFeap3tnOzc1FQkIC1qxZg+XLlxvcSuq3337Dp59+iiZNmsDPzw9Lly5FeHg4EhISnqasZ2JlZYWWLVsqN29v7xJv2717dwDAnj17lLasrCz88MMP8Pf3V9q6dOmCTZs2ITs7W2lbvXo1bG1tERgYWAazICJ6jJn29PhxFqKqiblGRNVNqd/Z/uWXX9C7d29cvXoVImLwuEqlwsCBA4scY968eYiJicGxY8dgY2ODsLAwfPnll2jfvn2Jvr6hIh09ehRJSUnKldMPHz4MAHB0dERQUBAAoEWLFggLC8Pw4cNx584duLq6YuHChbh58ybGjx+vjDV+/Hh8//33iIiIwLvvvouTJ09izpw5+PTTT6vcV54RUc3ETCte/sdZiKh6YK4RUZUlpdSqVStp2rSp7N+/X27duiVpaWkGt+JotVqJiIiQzZs3S1ZWVmlLqFCDBg0SAAa3oKAgvX7379+XUaNGiaOjo2g0GgkMDJRDhw4ZjPfjjz9K69atRaPRiLu7u8yaNUvy8vJKVVN6eroAkPT09GeZWqX689gxmQrIn8eOlUt/IirY85hpzA+imq2q5VpN+DuNiMqGSqSAt6eLYGlpidjYWHTp0uWpF/gPHz6EhYXFU2//vLt79y5sbGyQnp4Oa2vryi7nqVz/5Rd86++P4ceOwbVFizLvT0TVR3lnGvODiCpSTfg7jYjKRqnP2fby8nrm7w/kQpv4mUgiIiIiIqrJSv2Z7S+++AKjR4+Gn59fkVeb/Stra2vEx8fD398fVlZWRX79ikqlMvjaBapZ+JlIIiIiIiKqyUq92P773/+OGzduwNfXF25ubsp3EuZTqVT4z3/+Y7Dd2LFj4fp/72KOHTuW33VKRERERERENVapF9v+/v5PtVCOjIxU/n8q39EkIiIiIiKiGqzUi+2lS5c+8047duyIRYsWFXga+oULFzBixAjs27fvmfdDREREREREVBkq5Uut9+/fX+hF1u7evYsDBw5UcEVEREREREREZafU72wDQFpaGtauXYsLFy4gIyPD4PGvvvqq2DEKOxU9ISEBTk5OT1MWERERERERUZVQ6sX2xYsXERgYiMzMTDx48ACOjo64c+cOcnJyYGdnBxsbmwIX27NmzcKsWbMAPF5od+jQAUZG+m+sZ2ZmIicnB+++++5TTodqKn5VGBERERERVSelXmx/8MEHaN26NWJjY6HVahEXFwc/Pz+sXr0aH374IWJjYwvcLjAwEGPHjoWI4JNPPkFERATc3d31+qjVavj4+ODVV199utlQjcWvCiMiIiIiouqk1Ivtn3/+GdHR0dBoNACArKwsGBsbo3///khOTsZ7772HH3/80WC7oKAgBAUFAXj8zvbbb78NNze3ZyyfiIiIiIiIqOop9QXSMjMzYW1tDSMjI+h0Ovz555/KY76+vjh+/HixY0RGRnKhTURERERERDVWqd/Z9vLywpUrVwAAzZs3x6JFixASEgITExNERUWVeBF96dIlLF26tNCLrG3evLm0pRERERERERFVCaVebPfr1w/Hjx/HgAEDMH36dLzyyiuws7ODSqWCiGDZsmXFjnHkyBEEBQXB09MTFy5cQNOmTZGeno6kpCS4u7ujfv36TzUZIiIiIiIioqrgqS6Qlq9NmzY4deoUtm/fjoyMDHTs2BG+vr7FjjFhwgSEh4cjOjoapqamiI6ORosWLZCQkICIiAhMnDixtGURERERERERVRlP9T3bT/Lw8MDw4cNLtc1//vMfTJo0Sfnqr/zTyAMDAzF16lRMmjQJr7zyyrOWRkRERERERFQpSn2BNADIzs7GN998g6FDhyI0NBQXL14EAKxevRpnz54tdnuVSgW1Wg2VSgUnJyflM+AA4O7ujgsXLjxNWURERERERERVQqkX27///ju8vb0xYcIEXLp0CXv37sW9e/cAAAcOHMA///nPYsdo1KgRfvvtNwBAQEAAPv/8c5w6dQrnz5/HZ599hnr16pW2LCIiIiIiIqIqo9Snkb/33ntwdHTEzz//DFtbW6jVauWxoKAgTJ48udgxhg8frrybPXPmTISGhsLPzw8AoNVqsXbt2tKWRURERERERFRllHqxvX//fqxatQoODg7Izc3Ve8zFxQXXr18vdowBAwYo/+/j44OzZ88iMTERjx49Qps2beDk5FTasoiIiIiIiIiqjFIvtk1MTCAiBT528+ZNWFpalroIS0tLhISElHo7IiIiIiIioqqo1IvtoKAgfP755+jSpYtyNfH879j+9ttv0alTpwK3W79+fan207t379KWRkRERERERFQllHqxPXv2bAQGBqJRo0bo0aMHVCoVFi5ciFOnTuHixYv4+eefC9yuT58+Jd6HSqUyOEWd/if/zIK7d+9WciVEVF6srKygUqkqu4wKUd6Zdu/+fWT833+1zE2iSvO85Br/TiN6PpQk01RS2DnhRbh8+TKmTp2K3bt3Izk5GTqdDsHBwZg2bVqhVxJ/8uu9SsLT07O0ZT03rl27Bg8Pj8oug4jKUXp6OqytrSu7jArBTCN6PjwvucZMI3o+lCTTnmqxTZUrLy8Pf/75Z7m8Qnz37l14eHjg6tWr1f4XYk2ZC+dRtVTUPJ6Xd4CA8s00gP/2qpqaMg+g5syFuVa2mGklU1PmAdScuXAepVOSn/FSn0Zelnbs2IEjR47g6tWr+Oijj1C7dm0cOHAA9evXh5ubW2WWVqUZGRnB3d29XPdhbW1drX/InlRT5sJ5VC01ZR5VQUVkGlBznjPOo+qpKXOpKfOobMy00qkp8wBqzlw4j7JTosX2kCFDSjygSqVCdHR0kX1u376Nnj174vDhw8qrDiNGjEDt2rWxePFiaLVaLFy4sMT7JCIiIiIiIqpKSrTYXrp0KaysrFCvXr1Cv/YrX0lOlxkzZgxu376NU6dOoUGDBlCr1cpjwcHBmDFjRknKIiIiIiIiIqqSSrTYDggIwOHDh5Gbm4v+/fujX79+z3QBs23btuH//b//Bx8fH4Orjnt4eODatWtPPTY9G41Gg8jISGg0msou5ZnVlLlwHlVLTZnH86SmPGecR9VTU+ZSU+bxvKgpz1dNmQdQc+bCeZS9El8g7Y8//kBMTAxWrlyJkydPIiAgAP3790d4eDgcHBxKtVNLS0usWbMGXbt2RW5uLkxNTXH06FG0aNECGzduxJAhQ3Dnzp2nmhARERERERFRZTMqacfatWtjwoQJOH78OE6ePIkOHTpg/vz5cHNzQ5cuXbB9+/YS77R169ZYvHhxgY/FxMTgpZdeKvFYRERERERERFXNM331V0ZGBqZMmYJ58+ahR48eWL9+fYm2S0xMRIcOHdCqVSv06dMH77//Pv7xj3/g7Nmz2LZtGw4dOoQWLVo8bVlERERERERElarUi+3c3Fzs2rULMTEx2LRpE0xMTBAWFoZhw4bhxRdfLPE4iYmJmDRpEhISEpCbmwuVSoWAgADMmTMHAQEBpZ4IERERERERUVVR4tPIDxw4gL/97W9wdnZGeHg4cnNz8f333+PGjRuIiooq8UI7KysL69evh7OzM3744QfcvXsX165dw71793Do0CEutMvRokWL0L17dzg6OkKlUmHt2rWF9t22bRsCAwOh1WphZ2eHDh06GFy4LiEhAQEBATA3N4enpydmz55d7NXqy0tKSory9XFarRa+vr745ptvDPr9+eefCAsLg5WVFXQ6HYYNG4a7d+9WQsXFO3fuHEJCQqDVauHi4oIJEyYgKyursssq1ubNm9G6dWtYWVnB1dUV4eHh+P333w36RUdHw8vLC2ZmZvDz88PWrVsrodrHLl26hBEjRqBZs2YwMTGBr69vgf3S0tLw3nvvwc3NDWZmZqhXrx4+//xzvT5ZWVkYP348XFxcoNVqERISgvPnz1fENJ47zDRmWkVgpjHTKhJzjblW3phpFZxpUgLu7u5iZmYmvXr1kjVr1sijR49KslmhNBqNxMfHP9MYVHqtW7eW1q1by8CBAwWAxMbGFthvxYoVolarZfLkybJv3z7ZtGmTjBs3Ti5evKj0uXjxolhaWkqvXr1kz549Mm/ePFGr1TJnzpyKmo6eDh06iKurqyxZskT27t0rY8eOFQDy7bffKn2ysrLE19dXfH19ZfPmzRITEyPu7u7SrVu3Sqm5KHfu3BFXV1dp166d7NixQ6Kjo8XGxkZGjhxZ2aUVKT4+XoyMjGTw4MGye/duiYmJES8vL6lXr548fPhQ6bdq1SpRqVTy0Ucfyb59++Sdd94RExMTSUxMrJS6N27cKO7u7hIWFiZNmjSRxo0bG/S5f/+++Pn5ib+/v8TExEh8fLxERUUZ/Jt/5513xMbGRqKjo2XHjh3y8ssvS61atSQtLa2ipvPcYKYx08obM42ZVtGYa8y18sRMq/hMK9FiW6VSiVqtFktLS7GysiryZm1tXex4fn5+smzZsmcunkonNzdXREQuX75caICnpKSItbW1LFq0qMixhg8fLp6enpKZmam0TZ48WWxtbSUjI6NsCy/G9evXBYAsWbJEr71du3bSsWNH5f7KlStFpVLJuXPnlLadO3cKAPnpp58qqtwSmTlzpmi1WklJSVHaoqKixNjYWP773/9WYmVFe+edd+SFF16QvLw8pW3fvn0CQA4cOKC0eXl5SUREhN62AQEB0qVLlwqr9Un5PxsiIoMGDSowxD/66COpW7eu3L9/v9Bxrl69KsbGxhIVFaW0paSkiFarldmzZ5dt0cRMY6aVO2YaM62iMdeYa+WJmVbxmVai08gjIyPx4YcfYty4cRg7dmyRtw8++KDY8WbNmoUZM2bg6NGjpXwfnp6FkVHxT/eaNWuQm5uLoUOHFtlv+/bt6NmzJ9RqtdLWr18/pKWlITEx8ZlrLY3s7GwAgI2NjV67jY2N3qlS27dvR9OmTeHt7a20hYSEQKfTIS4urmKKLaHt27cjODgYOp1OaQsPD0deXh527dpViZUVLTs7G1ZWVlCpVEpb/vOS/1z8/vvvuHDhAsLDw/W27devH/bu3YvMzMyKK/j/lORn47vvvsOQIUOg1WoL7bNr1y7k5eWhb9++SptOp0NoaGiV+zdWEzDTmGnljZnGTKtozDXmWnliplV8ppV4sV2aW3EmTJiAlJQUtG7dGk5OTmjSpAmaNm2q3Pz8/J55YvR0Dh8+jIYNG2LZsmXw9PSEiYkJmjVrpvfVbg8ePMDVq1fRsGFDvW0bNmwIlUqFc+fOVWjNHh4eCA0NxcyZM3HmzBncu3cPa9aswa5duzBy5Eil37lz5wxqVqlUaNiwYYXXXJyCarW1tYWrq2uVq/VJgwcPxpkzZ7Bo0SKkp6fj999/x4cffojmzZsrX+mXX/9f5+fj44OsrCxcvny5wusuTlJSEm7cuAEHBwf06NEDGo0GOp0Ob7/9Nu7fv6/0O3fuHJycnGBnZ6e3vY+PT5V+3moyZlrVwEyrWphp1RtzrWqojrnGTKv4TDMpl1GL4e/vj5YtW1bGrqkYN27cwPnz5/Hxxx/jn//8J1xdXbFw4UL06NEDx48fR+PGjZGWlgbgcaA8Sa1Ww8LCAnfu3KnwutevX4/XX38djRs3BgAYGxtjwYIFCAsLU/qkpqYa1AwAdnZ2lVJzUapTrU96+eWXsWHDBvTv31/55dmsWTPs2LEDxsbGAB7PDTD895MffFVxfjdu3AAAjBs3Dr1790ZcXBwuXryISZMm4f79+1i1ahWA6vu81WTMtKqhOtX6JGZa9XzeajrmWtVQnWrNx0yr+OesUhbbS5curYzdPjdEBLm5ucp9lUql/AAVJy8vD/fv38f333+PHj16AADat28PLy8vzJ49G8uXLy+XmkuqoLkZGRnhrbfewsWLF7Fy5Uq4urpi9+7dGDNmDOzs7NCvX79KrPj5kpCQgAEDBuDtt99G9+7dkZKSgunTp6Nbt244ePAgzM3NK7vEp5KXlwcA8PLywrJlywAAnTp1gomJCd5++218+umnqFu3bmWWWKMx05hplYWZRuWFucZcqwzMtIpXKYttKl8//PADOnTooNwPCgrC/v37S7Rt/qtWHTt2VNpMTU3Rrl07nDp1CsD/XulKT0/X2zYrKwsPHz7U++xKWStobuPGjUNsbCxOnDiBJk2aAHj8S+fWrVsYO3asEuB2dnYGNQOPX+Xy8PAot5qfRlG1lufxfVbvvfceOnbsqPc1C23atEHt2rWxYsUKDB8+XPk3lp6eDhcXF6Vf/iupVXF++TU/+W8PeBzkAHD69GnUrVu32j5vVR0zjZlWWZhp1fN5qw6Ya8y1ysBMq/jnjIvtGsjf3x9HjhxR7ltZWZV42/xTewqSkZEBANBqtfDw8DD4bMP58+chIgaf8ShLBc1t06ZNMDY2NvjOvebNm+O7777Dw4cPYWFhgYYNG+LkyZN6fUQE58+fR0hISLnV/DQK+mxSeno6rl+/Xq7H91mdOXMGr732ml6bu7s7HBwc8NtvvwH432eAzp07p3cBlHPnzkGtVlfJd1Pq1asHjUZT6OP5PxsNGzbEzZs3kZqaqvd5oII+10Ulx0x7jJlW8ZhpzLTywlx7jLlWsZhpFZ9pJbpAGlUvVlZWaNmypXJ78gelON27dwcA7NmzR2nLysrCDz/8AH9/f6WtS5cu2LRpk3J1SQBYvXo1bG1tERgYWAazKFhBc/P09ERubi5OnDih1/fYsWNwcnKChYWFUvN//vMfXLx4Uemzd+9epKSkoGvXruVW89Po0qUL9uzZo3zmCgBiY2NhZGSE0NDQyiusGJ6envjll1/02q5cuYLk5GTUqVMHAFC3bl14eXkhNjZWr9/q1avRqVMnvaumVhVqtRqhoaHYu3evXvvu3bsBAC1atAAAhIaGwsjICOvWrVP6pKamYteuXVXu31h1wkx7jJlW8ZhpzLTywlx7jLlWsZhplZBp5fKFYlQlHTlyRGJjY2XRokUCQMaOHSuxsbGyf/9+vX5hYWHi6Ogo0dHREhcXJ926dRMzMzM5ceKE0ufixYui1WolLCxM9u7dK/Pnzxe1Wm3wxfEV4e7du1K7dm2pX7++rFixQvbs2SMTJkwQIyMjmT59utIvKytLfH19pUmTJrJlyxZZvXq1eHh4SLdu3Sq85uLcuXNHXF1dJSgoSHbu3CmLFy8WW1tbGTlyZGWXVqT58+cLAHnvvfdk9+7dEhMTI76+vuLs7CzJyclKv/zv0ZwyZYrEx8fLiBEjxMTERBISEiql7gcPHkhsbKzExsZK+/btxcPDQ7l/69YtERE5evSoqNVq6d+/v+zcuVO+/vprsbKykjfeeENvrHfeeUdsbW1l8eLFsnPnTgkKCpJatWpJWlpaZUytRmOmMdPKGzONmVbRmGvMtfLETKv4TONi+zkyaNAgAWBwCwoK0ut3//59GTVqlDg6OopGo5HAwEA5dOiQwXg//vijtG7dWjQajbi7u8usWbMkLy+vgmaj7+LFixIeHi5ubm5iYWEhjRs3lvnz50tOTo5ev2vXrknv3r3F0tJSbG1tZciQIZKenl4pNRfnzJkz0qlTJzE3NxcnJycZN26cZGZmVnZZRcrLy5N//etf0rRpU9FqteLi4iK9evWSs2fPGvT97rvvpH79+qJWq5VfqpXl8uXLBf5sAJD4+Hil3549e6Rly5ai0WjExcVFxo4dKxkZGXpjZWRkyNixY8XJyUnMzc0lODi4wPnTs2OmMdPKGzONmVbRmGvMtfLETKv4TFOJPPFN8kRERERERET0zPiZbSIiIiIiIqIyxsU2ERERERERURnjYpuIiIiIiIiojHGxTURERERERFTGuNgmIiIiIiIiKmNcbBMRERERERGVMS62iYiIiIiIiMoYF9tUIlOnToVKpUKtWrWQl5dn8PhLL70ElUqFwYMHl2rctLQ0TJ06FWfOnNFrT0pKgkqlwtq1a5+l7Gc2f/58qFQq5f7+/fuhUqlw9OjRCqth6tSpSEhIMGhXqVSYO3duhdVRkI0bN0KlUiEpKQnA0z1v8+fPR1xcXDlVSFQwZtpjzDR9zDSqzphrjzHX9DHXKhcX21RipqamSE5OxoEDB/Tar1y5gsTERFhaWpZ6zLS0NEybNs0gwF1dXZGYmIiOHTs+U81lrUWLFkhMTISPj0+F7XPatGkFBnhiYiLeeOONCqujJJ7meWOAU2VhpjHTisNMo+qGucZcKw5zrWKZVHYBVH2o1WoEBwdj1apVaN++vdIeExODxo0bw9jYuMz2pdFo0KZNmzIbr6xYW1sXW9ejR49gbm5e7rVUxeNTVZ83ooIw05hpxamqzxtRYZhrzLXiVNXnrabiO9tUKhEREVi7di2ys7OVtpUrV6J///4F9j9w4AACAwNhbm4OBwcHDBkyBHfu3AHw+DSWF154AQDQt29fqFQq5TSXgk5xycvLw4wZM1CnTh1oNBo0bNgQUVFRevubOnUqLC0tcfLkSbRt2xYWFhbw9fXFzp07i53b3bt3MXDgQFhZWcHR0RETJkxATk6OXp+CTk1SqVT47LPPMHHiRLi4uMDJyQkAICKYO3cuvLy8oNFoULduXXzxxRcG+z179ix69+4NnU4HCwsL+Pn5YdWqVcrYADB+/Hjl+Ozfv1957K+nJkVFRcHb2xsajQZ16tTBjBkz9E4lW7p0KVQqFX799Vd06dIFWq0WDRo0wPLly4s9PtnZ2RgzZgx0Oh1sbGwwdOhQ3L9/X69PQc/b5s2b0bJlS1haWsLW1hYtW7ZUXh2tU6cOrly5goULFyrzW7p0KQBg+fLlaNu2LXQ6Hezs7NC+fXv8/PPPevsrzfO9fPlyNG/eHGZmZnBwcEDXrl1x5coV5fFr167hzTffhIODA8zNzdGuXTscO3as2ONC1RszjZnGTKOahrnGXGOuVR1cbFOpvPrqq8jMzMSuXbsAAGfOnMGJEyfQr18/g77Hjh1DSEgIrKysEBsbi9mzZ2PLli3o0qULcnNz4erqivXr1wMAZs6cicTERCQmJsLV1bXAfY8fPx5Tp07F4MGDsWXLFoSGhmLEiBH4+uuv9fplZ2fjjTfewODBg7FhwwY4OTkhLCwMKSkpRc5tyJAh2LBhAz777DMsW7YMZ86cwfz580t0XL788ktcuHAB0dHR+Pe//w0AGD16NKZMmYJBgwZh27ZtGDx4MCZOnIhvvvlG2e7ixYsICAjAxYsX8dVXX2Hz5s1466238McffwB4fPoRAIwaNUo5Pi1atCiwhgULFmDEiBF45ZVXsGXLFgwePBhTp07FhAkTDPq+8cYbCA0NxcaNG9G8eXMMHjwYZ8+eLXKOkydPxqJFizB+/HisWbMGubm5mDRpUpHb/Pbbb+jTpw8aN26MDRs2YPXq1QgPD0dqaioAYMOGDXBxcUGfPn2U+XXr1g3A418GAwcORGxsLFauXInatWujXbt2uHDhgt4+SvJ8z5kzB4MGDYK/vz/Wr1+P6OhoNGjQALdv3wYApKamom3btjh+/DgWLFiAdevWQavVomPHjrh161aRc6TqjZlWMGZawZhpVB0w1wrGXCsYc62cCVEJREZGilarFRGR/v37y5tvvikiIh999JEEBASIiIifn58MGjRI2aZXr15Su3ZtycrKUtp27twpAGTz5s0iInL58mUBILGxsXr7+2v77du3xdTUVCZNmqTXLyIiQhwdHSUnJ0epE4Bs27bNYKwVK1YUOr/Tp0+LSqWS6OhopS0nJ0deeOEFefLHJD4+XgDIkSNHlDYA0qhRI8nLy1PaLl26JCqVSqKiovT2M3HiRHFxcZHc3FzlWDo6Okp6enqhtQGQOXPmFNmek5MjDg4O0q9fP70+kydPFrVaLcnJySIismTJEgEgCxcuVPrcv39fLCwsZPr06YXWkJKSIubm5vLxxx/rtbdr104AyOXLl0XE8HmLjY0VAHL37t1Cx/b09JSRI0cW+riISG5urmRnZ4u3t7dMnjxZaS/J852WliYWFhYyfPjwQsefMmWK2NjYyM2bN5W2jIwMqV27towfP77I2qh6YqY9xkxjplHNwVx7jLnGXKtK+M42lVpERAQ2bdqER48eISYmBhEREQX2O3jwIF577TWYmpoqbaGhobC1tcWhQ4dKtc+ffvoJ2dnZ6Nu3r17766+/jtu3b+u9gmZkZITg4GDlfp06dWBubo5r164VOv6RI0cgIujVq5fSZmxsjJ49e5aovi5duuhdCXPPnj0AgLCwMOTk5Ci34OBg3LhxA1evXgUA7N27F3369IG1tXWJ9lOYc+fOITk5ucDjk5WVZXBKT2hoqPL/Wq0Wnp6eRR6fkydP4tGjR3rHJ39+RWnatCmMjY3Rv39/bNmyBenp6SWdEs6ePYtevXrB2dkZxsbGMDU1xfnz5w1eLS3u+U5MTMTDhw8xdOjQQve1a9cudOjQATqdTnmujI2NERQUhCNHjpS4ZqqemGmGmGkFY6ZRdcFcM8RcKxhzrXzxAmlUaq+88gpMTU0xZcoUXL58GeHh4QX2S01NhbOzs0G7s7Oz8lmgkso/leWv4+Xff3I8c3NzqNVqvX5qtRoZGRmFjn/9+nWYmprCzs6uwPGL89d+ycnJEBE4ODgU2P/q1avw9PRESkoK3NzcSrSPopTm+ACAra2t3v2SHB8Aymec/jp+Yby8vLB161bMnDkTvXr1gpGRETp37oyvv/4atWvXLnS7e/fuITQ0FI6Ojpg3bx48PT1hZmaGYcOGGdRZ3POdf4pSUcc5OTkZhw8f1vtjI1+9evWKnCNVf8w0Q8y0gjHTqLpgrhlirhWMuVa+uNimUjM1NUVYWBjmzZuHTp06FfpDrNPpCvwMxc2bN6HT6Uq1z/z+t27dQq1atfTGevLxp+Xq6ors7GykpqbqhXj++MV58pXS/HpUKhUOHTpkEC4A4O3tDQCwt7fHn3/++QyV/29/AAyOd1ken/zxCzr+RencuTM6d+6Mu3fvYseOHXj//ffx1ltvYe/evYVuk5iYiGvXrmHr1q3w8/NT2tPT0+Hu7l6q2u3t7QEAf/75Z6Hb6nQ6dO7cGdOnTzd4TKPRlGp/VP0w0wwx0wrHTKPqgLlmiLlWOOZa+eFp5PRUhg0bhldffRWjR48utE/btm2xceNGvatE7t69G2lpaWjbti0AKOFW1Ct1ANCqVSuYmpoiNjZWr33NmjVwcnKCl5fX004FAPDiiy8CeHwRiHy5ubnYuHHjU43XqVMnAI9fqWvZsqXBzcrKCgAQHByMtWvX4t69e4WOZWpqWuzx8fb2hqOjY4HHR61Wo1WrVk81j3xNmjSBubm53vEBgHXr1pV4DGtra4SHh6Nfv356F/go6JXaR48eKY/lS0hIQFJSUqlrDwgIgIWFBZYsWVJon+DgYJw5cwY+Pj4Gz1WTJk1KvU+qfphpRWOmGWKmUVXHXCsac80Qc63s8Z1teiqtWrUqNtz+8Y9/IDAwEN27d8eoUaNw8+ZNTJo0Ca1atULXrl0BAC4uLrC1tcWqVavwwgsvQKPRoGnTpgZjOTg4YNSoUZgzZw7MzMzQpk0bxMXFYeXKlViwYMEzf29ko0aN0KtXL4wZMwYZGRmoU6cOFi1ahKysrKcaz8vLCyNHjsSAAQMwfvx4tG7dGtnZ2bhw4QLi4+OVYxcZGYmtW7eibdu2mDBhAlxdXXHmzBk8fPhQuTKlj48PNm3ahJdffhlarRbe3t7KL4B8xsbG+Pjjj/Hee+/ByckJXbt2xeHDhzF79myMGTNGecXwael0OowYMQKfffYZzM3N0aJFC6xatQq//fZbkdtFRUUhMTERnTt3hqurKy5fvox///vfep9D8vHxwb59+7B7927Y2dnhhRdeQJs2bWBpaYmRI0di0qRJ+O9//4vIyEi9V2pLysbGBpGRkZg4cSLy8vLw2muvIS8vD/Hx8YiIiEDLli3xwQcf4Pvvv0dQUBBGjx6N2rVr4/bt2/jpp5/g5uaG999/v9T7peqFmVY0ZtpjzDSqTphrRWOuPcZcK2eVeXU2qj6evMJlYf56hUsRkf3790tAQIBoNBrR6XQyePBgSUlJ0euzYcMG8fHxEY1Go1wtsaArX+bm5sonn3witWvXFlNTU2nQoIF88803JarTxsZGIiMji6w/NTVV3njjDdFqtWJvby8ffPCBzJkzp0RXuCzoCpR5eXmyYMEC8fX1FbVaLTqdTgICAmTevHl6/U6fPi09evQQa2trsbCwkGbNmklMTIzy+MGDB6VFixZibm4uACQ+Pr7Q/f7rX/+SBg0aiKmpqdSuXVumT5+uXE1T5H9XuLx9+7bedgU9d3+VmZkpo0aNEltbW7G2tpZBgwbJihUrirzCZUJCgnTr1k1cXV1FrVZL7dq1ZfTo0XpXvDx16pS8/PLLYmVlJQBkyZIlIiKyfft2ady4sZiZmUnTpk0lLi5OgoKCpFu3bsq2pXm+Fy9eLE2aNBG1Wi329vbSvXt3uXLlivL49evXZejQoUqt7u7u0qdPH/nxxx+LPC5UPTHTHmOmMdOo5mCuPcZcY65VJSoRkXJf0RMRERERERE9R/iZbSIiIiIiIqIyxsU2ERERERERURnjYpuIiIiIiIiojHGxTURERERERFTGuNgmIiIiIiIiKmNcbFO5SUpKgkqlwtq1a0u13f79+zFz5kyD9qlTp8LS0rKsyivW/PnzERcXV2bjbdy4EYsWLTJoHzx4MHx9fctsP2Wtoo87UVXGXNPHXCOq3php+phpVNa42KYqp7AAHzZsGOLj4yusjooK8Kquoo87UU3EXKtamGtEz4aZVrUw06ouk8ougKoXEUFWVhY0Gk2F79vd3R3u7u4Vvt/nVWZmJkxNTcvsuOePZ2TE1/ioamGuPT+Ya/Q8YKY9P5hpVR+PJBUp/7SZuLg4+Pn5QaPRYMuWLQCAxMREdOzYEVqtFjY2Nujfvz9u3bpV5HjLly9H27ZtodPpYGdnh/bt2+Pnn39WHp86dSqmTZuGBw8eQKVSQaVSoX379spj+afIPHjwAFqtFnPnzjXYR58+fRAQEKDcT0tLw7vvvgtXV1doNBr4+/tj165dRdZZp04dXLlyBQsXLlTqWLp0KQAgLy8PM2bMQJ06daDRaNCwYUNERUUVexyXLVuG06dPK+MNHjxYr8/+/fvRvHlzaLVatGrVCseOHdN7XEQwd+5ceHl5QaPRoG7duvjiiy+K3G/+vn19fbF9+3b4+vrCzMwM/v7+OHz4sMGc//73v+Of//wnPD09YW5ujjt37hR4atKVK1fQp08f2NjYQKvV4pVXXsHJkydLNF5RNe7ZswdNmzaFubk5goKCkJSUhDt37iA8PBzW1taoV68eVq9ebbD9tm3b0Lp1a5ibm8PR0RF/+9vf8ODBA+XxBw8e4O9//zu8vb1hYWGBOnXqYMSIEUhPTy+w5oULF8LT0xM2Njbo2bMnbt++XexxpuqDucZcY64x12oSZhozjZlWhTNNiIowaNAgsbOzk3r16smSJUtk7969cvHiRUlISBC1Wi09e/aULVu2SExMjNSvX1/atGmjbHv58mUBILGxsUrbtGnTJCoqSvbs2SNxcXEyYMAA0Wg0cv78eRERuXr1qgwdOlTMzc0lMTFREhMT5fTp0yIiEhkZKVqtVhmrX79+4u/vr1fv3bt3xczMTL766isREcnMzJSWLVuKh4eHREdHy44dO+TNN98UExMTOXHiRKHz/uWXX8TFxUX69Omj1HHr1i0REfnggw/E2NhYIiMjZefOnTJq1CgBIAsWLCh0vEuXLknXrl2lbt26yniXLl1SjrG9vb00adJEvv/+e9m6das0adJEPDw8JCsrSxlj1KhRYm5uLjNmzJDdu3fLtGnTxNTUVP71r38V+xzqdDqpU6eOLF26VDZt2iQBAQFibW0tN2/eVPp5enqKi4uLvPzyy7JhwwbZvHmzPHz40OC43717V+rUqSN169aVlStXyvr168Xf319sbW3ljz/+KHa8wmq0t7eXpk2bSkxMjKxbt05q1aolgYGBEhwcLJ988ons2rVL+vbtKyYmJpKUlKRsGxsbK0ZGRjJ06FDZvn27LF68WJycnOT1119X+ty6dUtGjBghsbGxsn//flmxYoU0bNhQ2rdvr1eHp6eneHh4SGhoqGzZskWWLFkitra2emNR9cdcY64x15hrNQkzjZnGTKu6mcbFNhVp0KBBAkAOHz6s196uXTsJDAyUvLw8pe306dOiUqlk27ZtIlJwgD8pNzdXsrOzxdvbWyZPnqy0/zUwCmvftGmTAJALFy4obcuWLRNjY2O5ceOGiIgsXrxYTExMlF8C+Vq3bi19+/Ytcu6enp4ycuRIvbbbt2+LqampTJo0Sa89IiJCHB0dJScnp9DxBg0aJI0bNy6wXaVSyalTp5S2+Ph4ASAHDx4Ukce/AFQqlURFReltO3HiRHFxcZHc3Nwi9wtA9u7dq7SlpaWJlZWV3jw8PT3F3t5e7t+/r7f9X4/7l19+KSqVSs6cOaO0paSkiFarlQ8++KDY8Qqr8a/HYMGCBQJAJk6cqLSlpqaKsbGxzJ8/X0RE8vLyxNPTUyIiIvTG2759u8F4T8rOzpZDhw4JAOWPh/ya3d3dJSMjQ2/+pqamRR5jql6Ya8w15hpzrSZhpjHTmGlVN9N4GjkVy97eHq1bt1buP3z4ED/++CP69u2L3Nxc5OTkICcnB15eXvDw8MCRI0cKHevs2bPo1asXnJ2dYWxsDFNTU5w/fx4XLlwodV2dO3eGra0tYmJilLaYmBh06NABzs7OAIBdu3ahSZMm8PLyUurMyclBSEhIkXUW5qeffkJ2djb69u2r1/7666/j9u3bTzUPAHBzc0Pjxo2V+40aNQIAXLt2DQCwZ88eAEBYWJjePIKDg3Hjxg1cvXq1yPFtbGzQsWNHvfvBwcH46aef9Pq1b98eWq22yLEOHjwIX19f+Pj4KG06nQ4hISE4dOhQqcfL99dj4OXlBQAIDg5W2mxtbeHk5KTM98KFC7hy5QrCw8P1jktQUBCMjIxw9OhRZdsVK1agefPmsLS0hKmpKdq2bauM8aSgoCC9z7k1atQI2dnZxZ52R9ULc+1/mGvMNar+mGn/w0xjplUlXGxTsfLDMF9qaipyc3Px/vvvw9TUVO/2xx9/FBom9+7dQ2hoKK5cuYJ58+bh4MGDOHLkCPz8/JCRkVHqutRqNcLCwpQAT0lJwe7du9G/f3+lT3JyMn799VeDOmfMmFFs6BUkNTUVgOExyb9f2OdcimNra6t3X61WA4ByXJKTkyEicHBw0JtHSEgIABQ7F0dHR4M2Z2dnXL9+vcB5FCU1NbXAfs7OzgbzL8l4+Qo7BgW1P3lcAKBXr156x8XCwgK5ubnKcdmwYQMGDhyIVq1aYc2aNTh8+DA2bNgAAAb/9op7LqhmYK7pzx1grjHXqDpjpunPHWCmMdOqBl6NnIqlUqn07tva2kKlUuHDDz9Ez549Dfo7ODgUOE5iYiKuXbuGrVu3ws/PT2lPT09/6isoRkREIDo6GidOnEBiYiKMjY3Ru3dv5XGdToemTZsiOjr6qcb/K51OBwC4desWatWqpbTfvHlT7/GyptPpoFKpcOjQISVQnuTt7V3k9gVdNOLmzZtwdXXVa/vrc11YLefPny9wvL/OvyTjPYv8/X399dd6r+jnc3NzAwDExsaiWbNmehdH+eGHH8q1NqramGv/w1xjrlH1x0z7H2YaM60q4WKbSk2r1SIgIABnz57FjBkzSrzdo0ePAEAvgBISEpCUlKR3SoparUZmZmaJxmzfvj1cXFywatUqJCYmokuXLrCxsVEeDw4ORlxcHNzc3JQf5pJ68lW5fK1atYKpqSliY2PRvHlzpX3NmjVwcnJSTqcp6Xgl1alTJwCPXxF+9dVXS719eno69u3bp5yelJ6ejj179mDkyJGlHqtt27ZYu3Ytzp8/r/ziSE1NxZ49ezB8+PBSj/csGjZsCHd3d/z+++9FzuXRo0cGv/i+//778i6PqhHmGnONuUY1CTONmcZMqxq42KanMmfOHHTs2BGvv/46+vXrBzs7O1y7dg27d+/GW2+9pXwFxJPatGkDS0tLjBw5EpMmTcJ///tfREZG6r3qCAA+Pj7IycnBl19+icDAQFhbWxf6aqCxsTHCw8OxdOlS3Lp1S+8zQQAwcOBAREVFoX379hg3bhy8vLyQlpaGX3/9FVlZWZg1a1ahc/Tx8cG+ffuwe/du2NnZ4YUXXoCDgwNGjRqFOXPmwMzMDG3atEFcXBxWrlyJBQsWwNjYuMjxFi9ejFWrVqFBgwZwcHBAnTp1Cj/IT/Dy8sLIkSMxYMAAjB8/Hq1bt0Z2djYuXLiA+Ph4bNy4scjtdTodhg4dimnTpsHW1hafffYZRARjxowp0f6f9NZbb+GLL75At27dMGPGDJiZmeHTTz+FiYnJU433LFQqFebNm4f+/fvjwYMH6NatG7RaLa5cuYJt27Zh5syZ8PLyQkhICEaOHInp06cjICAAcXFx2Lt3b4XWSlUfc425xlyjmoSZxkxjplUBlXl1Nqr6Crsqo4jIkSNHpGvXrmJjYyPm5ubSoEEDGTFihFy9elVECr7C5fbt26Vx48ZiZmYmTZs2lbi4OAkKCpJu3bopfbKzs+Xdd98VZ2dnUalUEhQUJCKFX/kyMTFRAIilpWWBX1eQnp4u77//vtSuXVtMTU3F1dVVunbtKlu3bi1y7qdOnZKXX35ZrKysBIAsWbJERB5fmfOTTz5RxmvQoIF88803RY6VX0e/fv3E3t5eAMigQYNEpOBjnJqaqrdPkcdXc1ywYIH4+vqKWq0WnU4nAQEBMm/evCL3mz/+1q1bxcfHR9RqtTRv3lx+/PFHvX4FXdFTpODjnpSUJL179xYrKyuxsLCQkJAQg6/nKGy8omp8Uv5VPo8cOVLsuLt27ZKgoCDRarWi1WqlcePGMnbsWElLSxMRkZycHBk7dqw4OjqKlZWV9OnTRw4fPmzw77OgsTds2CAA5PLlyyWaC1V9zDXmGnONuVaTMNOYacy0qptpKhGRilvaE1FFGzx4MI4ePYpTp05VdilERGWCuUZENQkzrebi1ciJiIiIiIiIyhgX20RERERERERljKeRExEREREREZUxvrNNREREREREVMa42CYqZ61atcLChQsLffz48eNQqVTYv39/uew/JCQEn376abmMTUTPH2YaEdU0zDUqL1xsE5WjDRs2ICkpCUOGDKm0Gj788EPMnTsXqamplVYDEdUMzDQiqmmYa1SeuNgmKkfz589HREQEzM3NK62GDh06wM7ODsuWLau0GoioZmCmEVFNw1yj8sTFNlE5uXz5Mg4ePIg+ffrotc+YMQMuLi6wtLRE7969cevWLYNtRQRz586Fl5cXNBoN6tatiy+++MKg34YNG+Dt7Q0zMzO0adMGv/zyC2xtbTF16lS9fn379mWAE9EzYaYRUU3DXKPyxsU2UTnZu3cvTExM0KpVK6Xt66+/xscff4wBAwZg3bp1qFu3LoYOHWqw7ejRozFlyhQMGjQI27Ztw+DBgzFx4kR88803Sp9ff/0Vffv2RaNGjbB+/XoMGjQIr7/+OjIzMw3GCwwMxPHjx3H79u3ymSwR1XjMNCKqaZhrVO6EiMrF8OHDpXHjxsr9nJwccXNzkwEDBuj1GzBggACQ+Ph4ERG5dOmSqFQqiYqK0us3ceJEcXFxkdzcXBER6du3r9SvX1+5LyKyYsUKASCRkZF6216+fFkAyNatW8twhkT0PGGmEVFNw1yj8sZ3tonKyfXr1+Ho6Kjcv3btGv7880/06tVLr99fT13as2cPACAsLAw5OTnKLTg4GDdu3MDVq1cBAEeOHEH37t1hZPS/H+PXXnutwFocHByUmoiIngYzjYhqGuYalTeTyi6AqKbKyMiARqNR7ueHp5OTk14/Z2dnvfvJyckQESV0/+rq1avw9PQ0+AUBAFZWVjAzMzPYJr+OR48elX4iRERgphFRzcNco/LGxTZROdHpdEhKSlLuu7q6AoDBRTZu3rxpsJ1KpcKhQ4egVqsNxvX29lbG++vneu7du4eMjAyDbdLS0gAA9vb2pZ4HERHATCOimoe5RuWNp5ETlRNvb29cvnxZue/u7g5XV1ds2LBBr9/atWv17nfq1AkAkJKSgpYtWxrcrKysAAAvvvgitm7diry8PGXbjRs3FlhL/i+S/PAnIiotZhoR1TTMNSpvfGebqJy89NJL+OSTT3Dt2jW4u7vD2NgYkyZNwujRo+Hs7IyQkBDs2rUL8fHxett5eXlh5MiRGDBgAMaPH4/WrVsjOzsbFy5cQHx8vBLSkydPxosvvoiwsDAMHz4cV65cwdy5c2FmZqb32SAAOHr0KCwtLdGsWbMKmj0R1TTMNCKqaZhrVO4q+QJtRDVWZmam2Nvby7fffqu05eXlybRp08TJyUksLCykR48esmPHDr0rXOb3W7Bggfj6+oparRadTicBAQEyb948vX2sW7dOvLy8RKPRiL+/vxw6dEhMTExk/vz5ev1effVVgytrEhGVBjONiGoa5hqVN5WISCWv94lqrLFjx+LXX3/Fvn37KmR/e/fuRXBwMPbv34+goCAAQGpqKlxcXLB79260a9euQuogopqJmUZENQ1zjcoTF9tE5ej69euoX78+EhIS4OfnV+bjv/vuu+jUqRPs7e1x+vRpTJ8+HW5ubjh69KhyetInn3yC/fv3V9gvESKquZhpRFTTMNeoPPEz20TlyNXVFUuXLjW4EmVZSU1NxahRo5CcnAwbGxt07twZc+fO1fsckE6nw1dffVUu+yei5wszjYhqGuYalSe+s01ERERERERUxvjVX0RERERERERljIttIiIiIiIiojLGxTYRERERERFRGeNim4iIiIiIiKiMcbFNREREREREVMa42CYiIiIiIiIqY1xsExEREREREZUxLraJiIiIiIiIyhgX20RERERERERl7P8Drqa6WZYAnOUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADK60lEQVR4nOydeXhM1/vAP3cy2RNZZJHYE/sStZRftcSultpbilKNtUq1pbUnQdGV7qhQai2qVa2iWqrLV1tdQtVSoUiChITIPjPn98dkRiYzk8xEyHY+zzMPc++5556bzLx53/NuihBCIJFIJBKJRCKRSCQSiaTEUJX2AiQSiUQikUgkEolEIqloSGNbIpFIJBKJRCKRSCSSEkYa2xKJRCKRSCQSiUQikZQw0tiWSCQSiUQikUgkEomkhJHGtkQikUgkEolEIpFIJCWMNLYlEolEIpFIJBKJRCIpYaSxLZFIJBKJRCKRSCQSSQkjjW2JRCKRSCQSiUQikUhKGGlsSyQSiUQikUgkEolEUsJIY1siKcMcPHgQRVHYvn17aS9FIpFI7pjz58+jKAqvv/56aS9FIpFI7KZOnTr07du3tJchKUdIY1tSbvj111955plnaNq0Ke7u7tSqVYvHHnuM06dPF3pdbm4uTZo0sajgpaamMmLECHx8fAgJCSEmJsbs+t9++w03NzfOnTtXos8jkUgqN7du3SIyMpKHH34YX19fFEXho48+Mhun0+n46KOP6NevHzVr1sTd3Z1mzZqxaNEisrKyTMZmZ2czZcoU/P39qVGjBosWLTKb79KlS3h4ePDjjz/erUeTSCQSM37//Xf69euHr68vbm5uNGvWjLfffttkzMqVK6lbty6+vr488cQT3Lx50+S8TqejZcuWLF68+F4uXSIpNurSXoBEYiuvvPIKP/74I48++ihhYWFcvnyZd999l1atWvG///2PZs2aWbzunXfe4cKFCxbPTZ8+nYMHDxIdHc2///7LuHHjaNy4Me3btwdACMHUqVOZNm0adevWvWvPJpFIKh/JycksWLCAWrVq0aJFCw4ePGhxXEZGBmPGjOH//u//mDhxIgEBAfz8889ERkZy4MABvv32WxRFAeC1115j/fr1zJkzh7S0NBYsWEBoaCiPP/64cb4ZM2bQr18/HnzwwXvxmBKJRMK+fft45JFHaNmyJfPmzcPDw4OzZ89y6dIl45gffviBSZMmMXXqVEJCQliyZAkzZsxg5cqVxjEffvghN27c4IUXXiiNx5BI7EdIJOWEH3/8UWRnZ5scO336tHB2dhYjRoyweM2VK1eEl5eXWLBggQDEa6+9ZnI+MDBQrFu3zvg+PDxczJw50/j+448/FsHBwSItLa0En8R2vvvuOwGIbdu23dX73Lp1667OL5FIzMnKyhKJiYlCCCF+/fVXAYi1a9eajcvOzhY//vij2fHo6GgBiP379xuPtWvXTkRHRxvfjx49WgwbNsz4/vDhw8Ld3V1cvHixBJ/Eds6dO2dRFpc0UqZJJGWHGzduiMDAQDFw4ECh1WqtjnvppZdE586dje/Xrl0rqlWrZnyfkpIi/Pz8xI4dO+7qegujdu3aok+fPnf1Hrm5uWb6rqT8IsPIJeWG9u3b4+TkZHKsfv36NG3alH/++cfiNTNnzqRhw4aMHDnS4vnMzEx8fHyM7319fcnIyAAgPT2dmTNnsmTJEjw8POxaa3x8PBEREQQHB+Ps7EzdunWZNGkSOTk5xjFxcXE8+uijxnCq//u//+PLL7+0OJ9Op+Pll1+mRo0auLi40LVrV/7991+zcUeOHOHhhx/Gy8sLNzc3wsPDzUJFo6KiUBSFEydOMHz4cHx8fHjooYeM5zds2EDr1q1xdXXF19eXYcOGcfHiRZM5OnXqRLNmzThx4gSdO3fGzc2N6tWr8+qrr5qtKSsri6ioKBo0aICLiwtBQUEMGjSIs2fPmjzf8uXLadq0KS4uLgQGBjJhwgRSUlJs+4FLJOUQZ2dnqlWrVuQ4JycnY7RNfgYOHAhgIv8Kk2k6nY5nn32WF198kRo1ati11tTUVJ577jnq1KmDs7MzNWrUYNSoUSQnJxvHXL16lYiICAIDA3FxcaFFixasW7fO6pyrVq0iNDQUZ2dn7r//fn799VezMSdPnmTIkCH4+vri4uJCmzZt2LVrl8mYjz76CEVROHToEE8//TQBAQEmz7dnzx46dOiAu7s7np6e9OnTh7///ttkjieffBIPDw/i4+MZMGAAHh4e+Pv7M336dLRarclYnU7HW2+9RfPmzXFxccHf35+HH36Y3377zWScLbJUIqkMbNq0iStXrvDyyy+jUqlIT09Hp9OZjStMfoFef2nevDmDBg2y6/62fGc1Gg0LFy40yqQ6deowe/ZssrOzLc75ww8/0LZtW1xcXAgJCWH9+vVmY1JTU5k2bRo1a9bE2dmZevXq8corr5g8e/46FsuXLzfe/8SJE4B9MvDHH3/k+eefx9/fH3d3dwYOHEhSUpLZuvbs2UN4eDienp5UqVKF+++/n02bNpmMsUWflNhIaVv7EsmdoNPpRPXq1UWPHj3Mzh05ckSoVCrx008/WfWmdO3aVXTq1EmcPn1afP3118LV1VVs2LBBCCHE7NmzRdu2bYVOp7NrTfHx8SI4OFi4ubmJadOmiRUrVoh58+aJxo0bi5SUFCGEEJcvXxaBgYHC09NTzJkzR7z55puiRYsWQqVSiU8//dQ4l8Gz3bJlS9G6dWuxbNkyERUVJdzc3ETbtm1N7nvgwAHh5OQkHnjgAfHGG2+IZcuWibCwMOHk5CSOHDliHBcZGSkA0aRJE9G/f3/x/vvvi/fee08IIcSiRYuEoihi6NCh4v333xfR0dHCz89P1KlTx7h2IfQRAMHBwaJmzZri2WefFe+//77o0qWLAMRXX31lHKfRaETXrl0FIIYNGybeffddsWTJEtGlSxfx2WefGceNHTtWqNVqMW7cOLFixQrx0ksvCXd3d3H//feLnJwcu37+Ekl5pDDPtjX27dsnALFp0ybjsYiICNGsWTMRGxsrfvrpJ1GtWjWxaNEiIYQQq1atErVq1RIZGRl2rS0tLU00a9ZMODg4iHHjxokPPvhALFy4UNx///3ijz/+EEIIkZGRIRo3biwcHR3Fc889J95++23RoUMHAYjly5cb5zLI4pYtW4p69eqJV155Rbz66qvCz89P1KhRw+T7fvz4ceHl5SWaNGkiXnnlFfHuu++Kjh07CkVRTOTk2rVrjTItPDxcvPPOO2Lp0qVCCCHWr18vFEURDz/8sHjnnXfEK6+8IurUqSO8vb3FuXPnjHOMHj1auLi4iKZNm4qnnnpKfPDBB2Lw4MECEO+//77Jz+PJJ58UgOjVq5dYvny5eP3110X//v3FO++8YxxjqyyVSCoDgwcPFlWqVBH79+8XDRo0EIBwd3cXEydOFJmZmcZxH3/8sXBzcxN79+4Vp0+fFh07dhTdunUTQgjx999/C2dnZ/HXX3/ZfX9bvrOjR48WgBgyZIh47733xKhRowQgBgwYYDJX7dq1RcOGDUVgYKCYPXu2ePfdd0WrVq2Eoiji+PHjxnHp6ekiLCxMVK1aVcyePVusWLFCjBo1SiiKIp599lnjOINMbNKkiQgJCRFLly4Vy5YtE//995/dMrBly5aiS5cu4p133hEvvPCCcHBwEI899pjJ+teuXSsURRHNmjUTL7/8snjvvffE2LFjxRNPPGEcY6s+KbENaWxLyjUff/yxAERMTIzJcZ1OJ9q2bSsef/xxIYT10MXY2FhRo0YNAQhADB48WGi1WhEXFydcXV3Fzz//bPeaRo0aJVQqlfj111/NzhkM92nTpglAHD582HguLS1N1K1bV9SpU8cYZmUwths3bmwSUvTWW28JQBw7dsw4b/369UXPnj1NNgcyMjJE3bp1Rffu3Y3HDMa24Wdj4Pz588LBwUG8/PLLJsePHTsm1Gq1yfHw8HABiPXr1xuPZWdni2rVqonBgwcbj61Zs0YA4s0337T6szh8+LAAxMaNG03Of/311xaPSyQVkeIY2926dRNVqlQxMd4uXrwomjZtapRpHTp0EGlpaSI1NVX4+/uLLVu22L22+fPnC8BEuTNg+B4vX75cAMbNSiGEyMnJEQ888IDw8PAQN2/eFELclsVVq1YV169fN479/PPPBSC++OIL47GuXbuK5s2bi6ysLJP7tW/fXtSvX994zKBoPvTQQ0Kj0RiPp6WlCW9vbzFu3DiTNV++fFl4eXmZHDco2gsWLDAZa9joNPDtt98KQEydOtXqz8IeWSqRVAbCwsKEm5ubcHNzE1OmTBE7duwQU6ZMMW7EG9BoNGLQoEFG+VWzZk0RGxsrhBCiR48eYuLEiXbf25bv7J9//ikAMXbsWJPz06dPF4D49ttvjcdq164tAPH9998bj129elU4OzuLF154wXhs4cKFwt3dXZw+fdpkzpkzZwoHBwdx4cIFIcRtmVilShVx9epVk7H2ysBu3bqZ6IDPPfeccHBwEKmpqUIIIVJTU4Wnp6do166dySZH/p+FPfqkxDZK3di+cuWK+O+//8xeEklR/PPPP6JKlSrigQceMFGwhNAbea6urmbCzFKeYGZmpvj111/FmTNnjMcGDhwoRo4cKYQQYseOHSIsLEzUqVNHREdHF+rp1mq1okqVKqJ///6Frr1BgwZmnmkhhFiyZImJEW0wtl999VWTcb///rsAxOeff27yft26dSIpKcnkNXbsWOHs7Gw04A3G9qFDh0zmfPPNN4WiKOLMmTNmczRu3Ni4uyyE3tj28PAw+1n069dPtGzZ0vi+T58+ws/PT+Tm5lr9WUydOlV4eXmJq1evmt3Xw8PD7I+fRFIRsdfYfvnlly16XYXQG7l//PGH+Pvvv43f++eee0489NBDQgj9Blfbtm1FjRo1xJQpU4rMDWzatKlo0aJFoWN69OghqlWrZpaPuXnzZhMj2iCLn376aZNx169fF4B46623hBBCXLt2TSiKIhYuXGgmFwy56pcuXRJC3FY089ffEEKITz/91KgoF5yjR48eol69esaxBmO7oLI7depU4ePjY3w/efJkoSiKuHbtmtWfhT2yVCKpDISEhAjAzFieMGGCAMwM0jNnzojffvvNaBB+/vnnwtvbWyQlJYlLly6Jvn37iqCgING3b18RHx9f6L1t+c4uXrxYAOLEiRMmxxMTEwVgYkTXrl1bNGnSxGyOsLAwMXDgQJP3Dz/8sJkM+Oabb0w2Jg0yccyYMSbzFUcGfvLJJyZzGGSgIRpg27ZtAhA7d+60+rOwR5+U2EapVCO/du0aU6ZM4dNPPyU3N9fknBACRVHMcqQkkvxcvnyZPn364OXlxfbt23FwcDCeu3nzJrNmzWLGjBnUrFmzyLkMOTAGvv32W/bt28epU6c4deoUw4YNY+XKldSpU4fHH3+cmjVrMmbMGItzJSUlcfPmTauV0Q38999/tGvXzux448aNjefzz1GrVi2TcYacJkNO85kzZwAYPXq01XveuHHDJBeqYHX1M2fOIISgfv36Fq93dHQ0eV+jRg1jBeT864qNjTW+P3v2LA0bNkStti5qzpw5w40bNwgICLB4/urVq1avlUgqI1u3bmXu3LlEREQwadIks/OOjo7cd999xvcnT57k/fff56effuL69ev06dOHmTNn0rlzZ8aMGcPLL79MdHS01fudPXuWwYMHF7qm//77j/r166NSmZaCyS/T8lOUTPv3338RQjBv3jzmzZtn8Z5Xr16levXqxveWZBpAly5dLF5fpUoVk/eGXM6C68pfO+Ls2bMEBwfj6+trcU7Dfe2RpRJJRcfV1RXApCsCwPDhw1m5ciU///yzyfelXr16xv/n5OTwwgsvEBkZiZ+fHx06dCAoKIgvvviCpUuXMnz4cKudHMC27+x///2HSqUyuS9AtWrV8Pb2LlJ+gbmsOHPmDLGxsWYyxUBB3aag/CqODCxKrhpq5RSmoxZHn5QUTqkY22PHjuXQoUPMmjWLJk2amBW9kkgK48aNG/Tq1YvU1FQOHz5McHCwyfnXX3+dnJwchg4dyvnz5wGMrSVSUlI4f/48wcHBFj93Wq2WZ599lpkzZ1K9enUWLlxI+/btjcb1hAkT2Lhxo1Vj+26RfzMhP0IIAGOxjddee81Eyc5PwSJvhj9+BnQ6HYqisGfPHov3K3h9UWuyFZ1OR0BAABs3brR43tofKomkMrJ//35GjRpFnz59WLFihU3XPPfcc4wcOZJWrVrx8ccf4+vry6xZswB48cUXizS27wa2yrTp06fTs2dPi2MLKsaWZBrAxx9/bLEQXcFNQGtrshd7ZalEUtEJDg7m77//JjAw0OS4YZO9sGKoy5YtQ61W88wzz3Dx4kV++OEHzp07R506dXj11VcJCQnh0qVLdhd9tERBB4I1bNF/dDod3bt358UXX7Q4tkGDBibvrckve2RgSehlxdEnJYVTKsb2d999x9tvv82oUaNK4/aSckxWVhaPPPIIp0+f5ptvvqFJkyZmYy5cuEBKSgpNmzY1O7d48WIWL17MH3/8YVGIfPDBB6SlpTF9+nQAEhISTIz54OBg4uPjra7P39+fKlWqcPz48UKfo3bt2pw6dcrs+MmTJ43n7SE0NBTQe2q6detm17X55xBCULduXbM/AsUlNDSUI0eOkJuba9WbExoayjfffMODDz5o9sdGIpHc5siRIwwcOJA2bdrwySefFBoxYmD37t389NNPRm9FQkICQUFBxvNFyTTQf0dtkWmxsbHodDoT73ZxZVpISAig9wLfiUwDvUJf3Dkszbl3716uX79u1VN2N2SpRFKead26Nfv37yc+Pp6GDRsajyckJADWN9UTExNZtGgR27ZtQ61WG8cb9DLDv/Hx8VaNbVu+s7Vr10an03HmzBljNA7AlStXSE1NtVt+Ge5769atYsuekpCBltYEcPz4cTNDveCYO9EnJaYUq/XX33//zbBhw4zl6X///XcA5syZw549e4q83tvbGz8/v+LcWlKJ0Wq1DB06lJ9//plt27bxwAMPWBw3depUdu7cafJauXIloG/vsnPnTrNwHYDr168TGRnJa6+9houLCwCBgYFGZRH0LXYKa9WjUqkYMGAAX3zxhVkbGLi9u9i7d29++eUXfv75Z+O59PR0Vq1aRZ06dSxuIhRG69atCQ0N5fXXX+fWrVtm5y21fijIoEGDcHBwIDo62mwXVAjBtWvX7FoTwODBg0lOTubdd981O2e4x2OPPYZWq2XhwoVmYzQaDampqXbfVyKpaPzzzz/06dOHOnXqsHv3bps2pnJycnj++eeZO3eu0YMUGBjIv//+i0ajMc5bVPuxwYMH89dff7Fz506zc/ll2uXLl9m6davxnEaj4Z133sHDw4Pw8HCbnxX0BnKnTp1YuXIliYmJZudtkWk9e/akSpUqLF682CxlzdY5CjJ48GCEEBYjAQw/i7shSyWS8sxjjz0GQExMjMnx1atXo1ar6dSpk8XrZs6cSceOHXn44YcBjJ5xg15maHtYmAyz5Tvbu3dvAJYvX25y/s033wSgT58+Vue3xmOPPcbPP//M3r17zc6lpqYaZbA1SkIGFqRHjx54enqyZMkSsrKyTM4ZfhYloU9KTLHbs71//3769OlD69atGTFiBIsWLTKec3R05P3336dXr16FzvHiiy/yzjvv0KNHD5t25iUSgBdeeIFdu3bxyCOPcP36dTZs2GBy3tBLu1WrVrRq1crknCGcvGnTpgwYMMDi/PPmzaN58+Y8+uijxmODBw9mwYIFTJo0idq1a7Ny5Uqj8LXG4sWL2bdvH+Hh4YwfP57GjRuTmJjItm3b+OGHH/D29mbmzJls3ryZXr16MXXqVHx9fVm3bh3nzp1jx44dZnmPRaFSqVi9ejW9evWiadOmjBkzhurVqxMfH893331HlSpV+OKLLwqdIzQ0lEWLFjFr1izOnz/PgAED8PT05Ny5c+zcuZPx48cbPf62MmrUKNavX8/zzz/PL7/8QocOHUhPT+ebb77h6aefpn///oSHhzNhwgSWLFnCn3/+SY8ePXB0dOTMmTNs27aNt956iyFDhth1X4mkvPDuu++Smppq9Nh88cUXxrSXKVOm4OXlRVpaGj179iQlJYUZM2bw5ZdfmswRGhpqcfPxrbfeAuDZZ581HuvduzeTJ09m+PDhtG/fnoULFzJ27NhC1zhjxgy2b9/Oo48+ylNPPUXr1q25fv06u3btYsWKFbRo0YLx48ezcuVKnnzySY4ePUqdOnXYvn07P/74I8uXL8fT09Pun817773HQw89RPPmzRk3bhwhISFcuXKFn3/+mUuXLvHXX38Ven2VKlX44IMPeOKJJ2jVqhXDhg3D39+fCxcu8OWXX/Lggw9a3AgsjM6dO/PEE0/w9ttvc+bMGR5++GF0Oh2HDx+mc+fOPPPMM3dFlkok5ZmWLVvy1FNPsWbNGjQaDeHh4Rw8eJBt27Yxa9Yss3RAgF9++YWtW7ea1IGpU6cObdq04cknnyQiIoLVq1fTrl27Qj3PtnxnW7RowejRo1m1ahWpqamEh4fzyy+/sG7dOgYMGEDnzp3tfuYZM2awa9cu+vbty5NPPknr1q1JT0/n2LFjbN++nfPnzxfpeLxTGViQKlWqsGzZMsaOHcv999/P8OHD8fHx4a+//iIjI4N169aViD4pKYC9FdVat25t7MWWm5srFEURR48eFUII8dlnn4nq1asXOcczzzwjatWqJWrVqiWeeOIJMWXKFJOXpfL8Eomh3ZS1V2EUVo1cCH0LMCcnJ2PP2Px89NFHok6dOqJq1ari+eefN6t8bon//vtPjBo1Svj7+wtnZ2cREhIiJk+ebFL19+zZs2LIkCHC29tbuLi4iLZt24rdu3ebzGOoRr5t2zaLz1OwcvEff/whBg0aJKpWrSqcnZ1F7dq1xWOPPSYOHDhgHGOoRp6UlGRx7Tt27BAPPfSQcHd3F+7u7qJRo0Zi8uTJ4tSpU8Yx4eHhomnTpmbXjh49WtSuXdvkWEZGhpgzZ46oW7eucHR0FNWqVRNDhgwRZ8+eNRm3atUq0bp1a+Hq6io8PT1F8+bNxYsvvigSEhIsrlMiqQgY2shYehn6QBu+79Zeo0ePNpv38uXLwtPTU+zatcvs3J49e0SjRo2Et7e3GDVqlEhPTy9yndeuXRPPPPOMqF69unBychI1atQQo0ePFsnJycYxV65cEWPGjBF+fn7CyclJNG/e3ExGFSaLAREZGWly7OzZs2LUqFGiWrVqwtHRUVSvXl307dtXbN++3TjGUInXUrtFIfRytGfPnsLLy0u4uLiI0NBQ8eSTT4rffvvNOGb06NHC3d3d7FqDvMyPRqMRr732mmjUqJFwcnIS/v7+olevXkZdyIAtslQiqSzk5OSIqKgoUbt2beHo6Cjq1asnli1bZnGsTqcT7dq1E88//7zZuX///Vd07NhReHh4iI4dO5rpEpaw5Tubm5sroqOjjbpKzZo1xaxZs0zabgmhl9l9+vQxu0d4eLgIDw83OZaWliZmzZol6tWrJ5ycnISfn59o3769eP3110VOTo4Qomj99E5koEGH/O6770yO79q1S7Rv3164urqKKlWqiLZt24rNmzebjLFFn5TYhiKEfdWMXFxc+OKLL+jevTtarRZHR0d+++03WrVqxaFDh+jZs6dZaEJBLIXw5kdRFOLi4uxZlkQikUgkEolEIpFIJGUGu2O4fX19jeFuBTl9+rRJ4RVrnDt3zt7bSiQSiUQikUgkEolEUm6wu0DagAEDiIyMNKmkrCgKly9f5vXXXy+yF2d55N9//2XixIncd999qNVqq/3pUlNTmTp1KsHBwbi4uBAaGsobb7xhMiYnJ4cZM2ZQrVo13N3d6d69u8Wq1BKJRHK3kDJNIpFUJKRMk0gkZRW7PdtLlizh119/JSwsjObNmwPw1FNPERcXR8OGDYmKirJ5rn///ZfTp09bDDsfNGiQvUu7a/z99998+eWXtGvXDp1OZ+xBl5/09HQ6deqEWq1m2bJlBAYGcvr0aW7evGkyburUqWzZsoU333yT6tWr8/LLL9O1a1f+/vtvvLy87tUjSSSSSoyUaRKJpCIhZZpEIimzFCfROycnR6xZs0Y8/vjjonv37mLo0KHiww8/NCn+VBg3btwQXbp0ESqVSqhUKqEoilAUxfhepVIVZ1l3Da1Wa/z/6NGjLRaGmjt3rggJCRG3bt2yOs/FixeFg4ODWLlypfHYtWvXhLu7u3jllVdKdtESiURiBSnTJBJJRULKNIlEUlYpVp9tR0dHxowZw6ZNm9i3bx9btmxh7NixODk52XT9Sy+9xOXLlzl8+DBCCHbu3MnBgweJiIigbt26/O9//yvOsu4atrRhWr16NU899RTu7u5Wx+zbtw+dTmfSWsrX15cePXrw1VdflchaJRKJpCikTJNIJBUJKdMkEklZxW5j+6+//rIqcL766iuTfnjW+Prrr5kzZw7t2rUDIDg4mI4dO7Jq1Sr69+9vlj9T1jl//jyXL1/Gz8+Pfv364ezsjK+vL+PGjTNpCH/y5EkCAgLw8fExub5x48acPHnyXi9bIpFILCJlmkQiqUhImSaRSEoLu43t5557jp9//tniuV9++YUXXnihyDmuXr1KzZo1cXBwwN3dnWvXrhnP9e7dm6+//treZZUqly9fBmD69On4+Pjw1VdfsXjxYrZt28a4ceOM41JSUvD29ja73sfHh+vXr1udPzs7m5s3bxpfN27cICkpCWFf1zaJRCKxCSnTJBJJRULKNIlEUlrYbWz/+eefPPjggxbPPfDAA/z+++9FzlGzZk2Sk5MBqF+/Prt27TKe+/nnn3FxcbF3WaWKoRBHgwYNWLduHV27dmXixIm8/vrrbNmy5Y57hi9ZsgQvLy/jy9vbm4CAANLS0kpi+RKJRGKClGkSiaQiIWWaRCIpLew2trOzs8nJybF6zlJl8YJ0796db775BtB7ylesWEHr1q154IEHiIyMZNSoUfYuq1QxhBt17tzZ5HjXrl0BfZVMw7gbN26YXZ+SkoKvr6/V+WfNmsWNGzeMr4sXL5bU0iWScklaYiIHo6JIS0ws7aVUSKRMk0gkFQkp0yQSSWlhd+uvli1bsn79evr162d2bv369bRo0aLIOV555RUyMjIAeOKJJ/Dw8GD79u1kZmby7rvvMmHCBHuXVaqEhobi7Oxs9bxhA6JRo0ZcuXKFlJQUk3ygkydP0qhRI6vXOzs7Fzq/RFLZuJWYyKHoaBr264dnUFBpL6fCIWWaRCKpSEiZJpFISgu7PduzZs1i586d9OnTh+3bt/PTTz+xfft2+vTpw2effcacOXOKnMPNzQ0/Pz/j+4EDB7Jx40Y+/fRTJk2aZFNVybKEk5MTPXr04MCBAybH9+/fD0CrVq0A6NGjByqVih07dhjHpKSksG/fPnr37n3vFiyRSCSFIGWaRCKpSEiZJpFISgu7Pdt9+vRh06ZNzJgxg8ceewxFURBCUKNGDTZt2kSfPn1snuuff/7ht99+4+LFizz11FNUq1aNf//9l8DAQDw9Pe1d2l0jIyPDWIH9v//+4+bNm2zfvh2A8PBw/P39iYyMpH379owYMYLRo0dz5swZZs2axYgRIwgNDQWgRo0ajB07lhkzZuDg4ED16tVZvHgxXl5e5c6bL5FIyi9SpkkkkoqElGkSiaTMcidNuk+ePCl+/PFHcfLkSbuuS09PF48//rhwcHAQarVaqFQqcfToUSGEEEOGDBEzZsy4k2WVOOfOnROAxdd3331nHPfNN9+INm3aCGdnZ1GtWjXxwgsviKysLJO5srKyxAsvvCACAgKEq6ur6Natm/jnn3/sWs+NGzcEIG7cuFESjyeRlDsSjh4VUSAS8uSGxD6kTJNIJBUJKdMkEklZRRHi3vclePrpp/n0009Zv349HTp0wN3dnd9++41WrVqxdu1ali1bZlO/7srKzZs38fLy4saNG1SpUqW0lyOR3HMSf/+dVa1bM/7oUYLywv8k5Rcp0yQSSUVCyjSJRGLA7jBygFOnTrFjxw4uXbpkVn1cURRiYmIKvX779u289tpr9OjRA61Wa3KuTp06nD9/vjjLkkgkEolEIpFIJBKJpExgt7H98ccfM2bMGFxcXKhduzZOTk4m5xVFKXKOW7duEWSlgnB6erq9S5JIJBKJRCKRSCQSiaRMYbexvXDhQoYMGcKaNWtwc3Mr1k3DwsLYsWMHPXr0MDv35Zdf0qZNm2LNK5FIKjdpiYkcXbmS1hMmyJZgEolEIpFIJJJSxW5jOyEhgQ8++KDYhjbAvHnz6N+/PxkZGTz66KMoisIvv/zC5s2bWbNmjbGipEQikdiD7L8tkUgkEolEIikr2N3QumPHjhw/fvyObtqnTx+2bNnCDz/8wIABAxBC8PTTT7N161Y2btxI165d72h+iUQikUgkkvJCWmIiB6OiSEtMtOucRCKRSMo2dnu2Fy9ezMiRI3FxcaF79+54e3ubjfH19S1yniFDhjBkyBBOnz5NcnIyvr6+NGrUyN7lSCQSiUQikZRrCovKkRE7EolEUn6x29hulddmZ9KkSVaLoRWsMF4YDRo0oEGDBvYuQyKRVAJkDrZEIpFYRspHiUQiKfvYbWyvWbPGporjRXHx4kU+++wzLl68aLF92FtvvXXH95BIJOUb6dGRSCQSy0j5KJFIJGUfu43tJ5988o5v+sknn/DEE0+g0+kICAiw2D5MGtsSiUQikUgkEolEIimv2G1slwSzZ89mwIABrFq1Ci8vr9JYgkQiuVskJ8KOlTB4AvhJb4tEIpFIJBKJpHJSLGP7+++/Z9WqVZw+fdosBBwgNja20OuTkpIYP368NLQlkopIciJ8GA3h/aSxLZFIJBKJRCKptNjd+mvv3r106dKF5ORkfvvtN2rWrImfnx+nTp0iPT2dNm3aFDnHww8/zP/+979iLVgikUgkEolEIpFIJJKyjt2e7cjISKZNm8Yrr7yCo6MjCxcupFWrVvz333/07NmTLl26FDnHihUrGDp0KBkZGXTt2tVi+zBD1XOJRFI2Ke1KuI5ubvf8nhKJRCKRSCQSia3Y7dn+559/6NWrFyqVCkVRSE9PB6B27dpERUWxaNGiIudIS0sjIyODJUuW0L17d+6//37jq02bNtx///32P4lEIrmnGCrh3kpMvKf3FUIQGBbG7PR0AsPCEEKYnJdGuORukpaYyMGoKNLu8edeIpFUPqS8kUjKP3Z7tl1cXNDpdCiKQlBQEGfPnqVDhw4AeHp6cvHixSLnGDVqFBcuXOCdd96hQYMGZtXIJRKJxBJCpyMtIYGjK1dy/exZfEND9Z714GBQFKMRrtNoEEKUSJtCiSQ/st2SRCK5V0h5I5GUf+w2tlu0aMGpU6fo3r07Xbt25eWXX8bPzw9HR0fmzp1L8+bNi5zjl19+YdOmTQwYMKA4a5ZIJJUMtasrQqcjdsMGdkVEoNNojOdSzp1jwLp13LJihCsquwN4JBKJRCKRSCSSO8ZuY3vatGmcO3cOgMWLF/PII4/Qr18/AGrUqMHOnTuLnKN+/fpo8inLEolEUhju/v6kJSSYGdqBYWH0X7uW2A0b+GLsWJNzPyxdSr+YGMJGjpQGt0QiKROUdq0LiUQikdxb7NZAe/fuzeTJkwGoXr06R48e5dSpU/z555/8+++/tG7dusg53nzzTV5++WVOnjxp/4olEknlQlFw8fbm6MqVJsY0QLtp00iLjzcztAF0Gg27IiJIS0w0y+uWSCSSu4m1XNvSqnUhkUgkktLBbmN7wYIFJCQkGN8rikL9+vUJCwvj2rVrLFiwoMg5pk2bxqVLl2jWrBm1atUiLCzM5NWiRQt7lyWRSMopRRWAcataFZVazfWzZ01PKArNhg7lj5gYM0PbgE6j4eiKFQidrqSXLZFIJFaRRrVEIpFIoBhh5NHR0Tz88MMEBwebnUtISCA6Opr58+cXOkfr1q1l4SKJRAJYLwBjqDo+IykJnVaLb2ioyXWOrq44urmZG+EFSImLQ+XgcFfWLpFIJBKJRCKRWMNuY7uwCr+JiYkWe2YX5KOPPrL3thKJpBJRsOp4++nTaT1hAj8sXWr0YudmZpKbkWFmhBfEJyQEnVYrDW6JRCKRSGxE1heQSEoGm8LIN2/eTL9+/ejXrx+KovDCCy8Y3xtePXr0YNSoUbRv3/5ur7nMsmvXLtq1a4enpydBQUE89thjxMXFmY2LiYmhQYMGuLi40KJFC3bv3l0Kq5VIyiaGquNv1a3L94sWcXzzZj4fMwb3wEAeWb0alTpvj1AIjm/dSsuIiNvHCqBSq2k9caIskFZMKrpMkz1sJbYgPycVBynTbEemQkgkJYNNGmhOTg5paWmkpaUhhCA9Pd343vBSFIVRo0axcuXKu73mMsnBgwcZOHAgTZo0YefOnSxfvpy//vqLHj16kJmZaRy3ZcsWxo0bx9ChQ9mzZw8PPPAAAwcO5H//+18prl4iubsIIdBptQDotFqrBcuEEBarjl+JjeWzUaNoPnw4z54/T8e5c2k+fDi5GRl41apFv5gYM4NbpVbTb80aPIOCZNpKMagMMk0qkxJbkJ+TioGUaRKJpDSwKYx89OjRjB49GoDOnTvzwQcf0KhRo7u6sPLGli1bqF27NmvWrDEq9gEBAXTp0oXffvuNDh06ABAZGcmwYcNYuHAhoP95xsbGsmDBAr766qtSW79EcrcoGBJuqQe2o5ubcaylquMAx7dsIenECfqtWUN4VBQqBwf9OEUhbORI6nbtytEVK0iJi8MnJITWEyfqDW3p1S4WUqZJJJKKhJRpEsltZJrAvcNuLfS7776zaGjn5OSUyILKK7m5uXh6epp40Ly8vACMXry4uDhOnz7NY489ZnLtsGHDOHDgANnZ2fduwRLJ3cTFDZxdLYaEf79oEW/VrcvpL79E6HQEhoUxOz2dwLAwVA4OhRY8uxIby//efBOVgwOv+vlxJTYWRVFQVCo8g4MJj4xk0MaNhEdGmhjzEvuRMk0iKfsYNiolRSNlmkRyGxkFce+wWxP9+OOPeeedd4zvjx8/Tv369XFzc6NTp05cvXq10OuFEFy/fr3CCawnn3ySEydO8P7773Pjxg3i4uKYPXs2LVu25MEHHwQw9hUvuFnRuHFjcnJyOHfu3D1ft0RSGPbmfwkh0IU2hx/S0dVqYDEkHKDJkCHUe/hh0hISOBQdzY7hwzm0YAE6jca2gmcaDZnXrpkcVxSFK7GxLHZ3NxrhkuIjZZpEcm+xx3A2dGswbFRaS82R3EbKNInk3iLrXeix29h+7bXXUOXzFk2ZMgUnJyeWL19OYmIis2fPLvT63NxcAgIC+Oabb+xfbRmmQ4cO7Ny5k5kzZ+Lt7U1oaChXrlxhz549OORVQU5JSQEwq9ju4+MDwPXr1y3OnZ2dzc2bN01eEsm9wJ6dT6HTkRYfz6EFC9gxYoS+x7WFkPDAsDAGrF/PsU2bTD3eCxcSu2EDrcaNK7LgWVZqqtV15GZk2PWMEstImSaRFE1JKJP2Gs5GWWvYqIyOJi0+HqHTFXsNlQEp0ySSe4v0nuux29g+f/48TZo0ASA5OZnDhw/zxhtv8Mwzz7BgwQL27t1b6PVOTk7UqFEDbV6xpIrCTz/9xBNPPMG4ceP49ttv2bZtGzqdjj59+pgU3igOS5YswcvLy/iqWbNmCa1aIrlz1K7m4eKnPvsMtbOzxZDwdtOmkRYfzxdjx5oZ4v9btgyPoKAiC56lJyXd1WeSSJkmkdjCnSqT9hjOlmRt/tSc2A0bpMFdCFKmSSRFcy+80ZXN4223sa1SqYz52d999x2Ojo507twZgKCgIK4VCO20xOTJk3nzzTfJysqy9/ZllqlTp9KlSxfeeOMNOnfuzJAhQ/jyyy/5/fff+fjjj4HbO6M3btwwudawk+rr62tx7lmzZnHjxg3j6+LFi3fxSSSVkeIKPkc3N9z9/U3DxRUFFMVyD2xFodnQofwRE2OxCJq1quMd587l2fPnCRsxAkWlQnOHipGkaKRMk1Q27qUCWBzD2UzW5kOn0bArIoK0xEQZUm4FKdMkkqK5F97oyubxtqkaeX5atGjB+++/T40aNXj77bfp0qULzs7OAFy4cIGAgIAi57hw4QKnT5+mVq1adOrUicDAQJP8SkVReOutt+xdWqly4sQJ+vfvb3KsRo0a+Pn5cTbPu2fIATp58iQNGzY0jjt58iROTk6EhIRYnNvZ2dn4M5ZI7gYGwdewXz+TqpSq1CTCg/T/miAE1cKaMzs9HaHVcvmvv2g0YAD1evem+dChqN3c0OXm0P7FFznz1Vck/v47AI6urji6uRVaBO34li1416lDl8WLCY+MRKVWo9NoUBwcZB72PUTKNEllw5ocvBvYYjjX7doVz+BgABzd3XHx9uZQdLTFjUrDdUdXrCA8KgolLyxachsp0yQSSWlgt2d78eLFfP/994SFhXHs2DGio6ON53bu3Enbtm2LnGP37t04Ozvj7u7Or7/+yu7du/niiy9MXuWN2rVr83ueQWHgv//+Izk5mTp16gAQEhJCgwYN2LZtm8m4rVu30rVrV5ycnO7VciUSm1DdSKZTsP5fIzodIike5cMFMGc4yqooAuvWZMjWrbR4uAvqdUtgznBUqxfilHGDcb/8QvMRIwDIzcy07PEueF+1GqHTyYJnpYiUaZKKSqmHMCoKLt7eVtscgt5wPvnZZ7fzuW/dQqVWF7pRCZASF4dKGtoWqewyrdQ/9xJJJcVuz/aDDz5o9EyHhoaaFJGIiIigXr16Rc5REas5Tpw4kWnTpvHss8/yyCOPcO3aNRYtWkRAQIBJC4moqChGjBhBaGgonTt3ZuvWrRw5coTvv/++FFcvkdiITofYswFlQQRo85TE+mGoxs1HfPUxqoVjbx8HlI+WIubHMHD9emo88ACXfvqJ5JMnaT1hAj8sXWpR0TQUQTO07ZIFz0oHKdMkFZWS9GBbjf4pBEdX1yIN52bDhtFmwgRuJSRwdOVKrsfF0X/NGtu6NWi10uC2QGWXafcyckNS8ZB9uYuP3cY2gKenJ61btzY73rt37zteUHll6tSpODs788EHHxATE4OnpycPPPAA27Zto2rVqsZxjz/+OBkZGSxdupSlS5fSsGFDdu7cyQMPPFCKq5dICsElrx2NEIjkBFNDG+DxaXA1HqWAoQ2AVoOyIAJxf1funzSJtpMno9NqURSFfjExZiGU+YugSU926SJlmkRSNIbon6T80T9FkJuZWWibQ0PHhtiNG00KSYZ060bLiAibNyolpkiZJpEUH7lZU3xsMrbffPNNRowYQWBgIG+++WahYxVF4bnnnityzvj4eJYvX84PP/zA9evX8fX1pUOHDjz77LNUr17dttWXIRRFYeLEiUycOLHIsREREURERNyDVUkkd4AQ+PV9FAaOwC83ByF0KDtWmhrUigI9hsLaJeaGtgGtBmXHCpgQBWD0uISNHEndrl05umIFKXFx+ISE0HriRL2hLZXFUkfKNInkzrDaN1sIslJTrUb4WOvYcGT5csJGjuSR1avNzsmNyqKRMk1S3rHmXbb3uOTeYpOxPX36dB566CECAwOZPn16oWNtMbaPHz9Ox44dyc3NpXv37tx3331cuXKFFStWEBMTw/fff0/Tpk1tfwqJRFKy6HSQnKA3ri+dRanTCMbNh0sFwh6dXfWe74LHCxIfByrTsEZFpcIzOFgWQZNIJBWK/H2zdRoNQggzuZaelIRfw4bmET55HRt+WLLEzAg3dGsYsH49dbt04fdVq+RGpeSOqQwGWUV5RmveZXuPS+4tNhnbunztJ3Ql0MNx+vTphIaGsm/fPmObBdC3VujRowfTp09nz549d3wfiURiH2pXV72hvWcD5A8XVxR4YjrUKBD2mJ0JWRnmxwtSPQR0WnODW1G4HBvL2g4dGHP4MEGtWpXg00gkkopOWVOihU5HmiHP+uxZfEND9WsLDjYxhDWZmSgqlVmET9WGDQvt2HB8yxaSTpzg4bfeIjwqCpWDg9yolNwRxTHIypsnVRqdktKkVLZAf/jhB+bOnWtiaIO+v+GcOXP44YcfSmNZEkmlx93fH5ITTA1tACFg31boHwEO6qKP58dBDYMngmJd3JRUETSPoCDCIyPxkH9MJZJKgbV+rfe68rJDFW+b+mar89ofGsgf4TNo40Y6zJ6NTqsttBDaldhYzh04AELIbg2VlNKuLG7te1fZ+idLJLZgk7H9/fff2/UqCrVaTXZ2tsVz2dnZOMgqmhLJvUdRcPX2hoJ52QY2L4eA6jBvtalhnXdcFDwO+veRa8AvSO8dv8t4BgXRKSpK7lxLJJWce630u9ZrVGjf7CNvvUVuZiZV69dndno6gWFhCCEAfYSPSZtDlYrWEyagUlvewDQUQstKTZXdGiop0qg1p7Q3ICoKxemwICkcm8LIO3XqhKIoJn8YDFjKRdJqtYXO161bN+bMmcN9991HgwYNjMfPnDnDvHnz6N69u80PIJFISgZHV1cUtdp6/vWZWIgcBdEfQ9tusGOFPhe7egi6tFSU3k8g2nbTF0PLO87giXpDW+YRSiSSioqi4Bxck/8tWGixSnizYcMYsH49txIT+f3DD62GlxsMZ0VR8AwOLrJjQ/KpU/fm+SSScoAMFS8Z7O2wUFZTB8oSNhnbf/zxh/H/V69eJSIigs6dOzNkyBACAwO5cuUK27Zt4+DBg8TExBQ535tvvkl4eDhNmjShWbNmBAYGcvXqVY4dO0atWrWKrHgukUhKntzMTIRGg1JY/vXeLdDiIcSQSYiIuaicnNHlZKPJ1eAIKP7BMC4S1GrQaMDB4Z54tCWS0sZehaM4CopUakoPq5XFAbyqonJ0sphnbWjjdWzTJrMK4j8sXUq/mBjCRo7U18vIh6V87oKF0DSZmSX2fBLJ3aS85XhXBkrKgy03OYrGJndTixYtjK+VK1cybNgw1q1bxyOPPELbtm155JFHWL9+PUOHDuWDDz4ocr5atWpx7Ngx3nzzTRo0aIBOp6NBgwYsW7aM2NhYataseccPJpFI7EQIsm/dQgyeUGj+teg0QG9AG4qdqRxwdHPTe2cUBf6NhYfc9f/aYGjLPGtJRcDesM7ihIFWhtDR0gwFtaR8CiEIbN5cH/rdvLkxwi/vpL494jdJCK2W9tOnExgWZjKntTZeoA8v3xURQVpior5eRgEK5nOHR0aaFVqTSMoDZTXHuzKHnhs82CobPdj3Iry8ov4+7JbYe/futRrm3aNHD/bv32/TPB4eHkydOpVPPvmE/fv3s3XrVqZMmYKHh4e9S5JIJHeIKjWJziFuiJxs8Au2mn8t5sXow8LBNMewoFGdZXseocyzllRkKorycK+eozSV74LKp9DpSIuP59CCBewYPpxDCxaQFh+P0On0XRuS4lFWL4Q5w1FWRVGtegDjf/uNZsOG6SfMa+P1R0yMxfBy0BvcR1eswMXb2+J5s3xuGSkkkZQYJSlvrMnI4sjOsvh3w17jvDiU9ubL3cJuY9vDw4MDBw5YPLd//35pLEsk5QwhBP4dOtPxbDrOVf04sX07oudwtDv/hYi58PBwiJiLdue/iJ6P68/ntQC828V5pNdbUt6pKMrDvVBK7xVFeWgKqyy+pX9/EAKxZwM8UhdiFsHezRCzCKVfXZS9mxi4fj2BYWE45lUet9bGy0BKXBwqtdoslDw/shCapLJRmnKiOIazvd774sxlDVnUrGxjt7E9efJkXn31VcaMGcPnn3/Ozz//zOeff86TTz7JG2+8weTJky1eV6VKFY4ePQqAp6cnVapUsfry8vK6s6eSSCSWSU6ElVH6f8nvuVnIZ2PGoHJw4ORnn7GqTRtivz6AZvQsWLQRzehZxH59gFVt2nDq889R3aNcbGteb2mESyoypW2M3m1KewNCdSOZTiFuVj00hVUWv/+ZZ9BdvohSsD0igFaDsnAsSspV+q9ZQ6OBA9FkZxfaxgvAJyQEnUYjc7AlknyUZlu/exH2XpJzFdvr7FJILQpJiWFTgbT8zJ07F29vb5YuXcq6deuMVcqDgoJYvnw5U6ZMsXjdCy+8QFCeYvzCCy/IUCiJpBTIiP0Ot9+jyWzZFhffQGI3bNArlFotjm5u9HnvPXxDQzm+eTO7IiLYNXYsjq6uJl6Vhv36odNq9T22SwmDES6RVEQqSsGZe1H8yF6PjhCCqn0fhYEjqJqbY95RpbDK4opC86FDcVi3xHJ7RNAb3DtWUG18FIM2bECn1dJ6wgR+WLrUYih5/jZeEomkaCqKfLwXWJOPRcpBaYSXKHYb2wDPPPMMTz/9NJcuXSIxMZGgoCBq1KiBqpCiHZGRkYD+Fzx16lTc3d1xdnYu3qolEkmxyE6Ow62dGyr/YNISEjjy1lv0XbWK5kOHonZzQ5ebQ/sXX+TMV1+R+PvvIISJoW1QDGWBHomkYlKSVdLvhVJsT5saodORlpDA0ZUrrbbfwtnVvLK4ouDo6gqKgtrNzXp7RAPxcSgODtDVj9TZ6/Dp3Eu28ZJIJPccS/KxUDmoKPqijwNH4Jebo3eq3CXnaKEdHioYxTK2AVQqFbVq1aJWrVp2XZebm0tAQACff/45ffr0Ke7tJRKJvQiB98AZ4DgXJ62WjAsXGPu//0FOFipHfWVxFQInBxXjfvmFnaNHc2zjRuPl+RVDGZkikdw9SjP/rjgGcln0NBX8GRpysAsavPnbbzlU8QZFQZebg29oKIFhYbSbNs24GanJyECXm4OqsPaIANVDELk5KDeuob2ZKtt4SSSlTEXJab7T57AmB1POnWPgunWI5ASUHSvh0ll9G9jBE8AvGAybkSXg8RZCEBgWxuz0dHQajblXvQJSbGO7uDg5OVGjRg20Wu29vrVEUnnR6SA7E0Wt/8orQot37dqAQNFcgxMxcPMsVAlFaRCBcKnJwPXrqfHAA1z66SczxVAikdw97PHWSrCoAKqvn6HTI3Dt+hmE6GE1B1un0XDkrbdoPHgw3uE94fAt0GppN20a4fPnI67G68PGL51FXSMUMepFxOAJKB8ttRxK7qBGDJ5ITtJlnPOtK38bL5VajU6jQXFwqPBKpkRSFqgoMvVOnkMIYVEOBoaFMWDtWtizAWXhWFO59tFSeO1TeKgPfo88ViyPd34Ptk3RRRWQe25sg77I2ptvvkmPHj1wcXEpjSVIJJUHnQ4QkJMEx/OM6sAHUZpOgjMb4VAEiHzC9c+lKB1XIxo8wf2TJtF28mSpGEok5ZSymDddLJITYcfKPE+L/jkKyztU6VKhnRsqXSpCp+PoypUWc6abDRvGgPXr0WZng04LqEGnw9XHB77agGqhaSE05cevEOt+QcyPMS+S5qBGvPop+AXhJHTwQ7qJYqooCpdjY1nboQNjDh8mqFWru/fzklRaKnp4bnnzUpeV9ZrJwbz0mHbTpkFygrmhDdBtCLR/GJISUD4txONt6X4FPdg2RBcV1pGhPFMqxvaFCxc4ffo0tWrVolOnTgQGBpoo8Yqi8NZbb5XG0iSSco+Jcl2tGijA6Q3w/djbRnWN7nDrgrmhDfr3349FCe6CcK/OYnd3qRhKJPkoa8rsrb//JHnRNPzmLsej6X2m58pY3nSxSU6ED6MhvB/4Bd32kKxaxY2LF/GqWZPW48cb8w69B80A9Vy8NTkoKhXa3Nzbc+Upmb716zPw44/1+seNZFS7YuDSWVQjpyN8A1AWWqg4fvJ3lKjRiOh1iDadUT5dBfFxUD0E3bCpKF5V4Wo8ys5VVhVT2cZLcjcoj+G5xTFE74W8sbauMrtebQo84Kb/1xIODqgcHLh+9qxZeozQalFWRZnLuvphEL0evt4Eljze82Ogl2UDuaAHu/306bgHBFiNLtoVEUHdrl1x9/e/w59E2aRUjO3du3fj7OyMs7Mzv/76q9l5aWxLJEVjzWOV8U8srIomo+MDeAYGQvolU0MbBUKHwh9LzA1tA0IDJ1ehtIlClGLVcYmkLFHayqw1RS/z9N/UOXOIpNN/mxnbFQ5nV4ROx+kvvyTz+jU6zJxpzKe+9NuveAYHITISUE6shJtnUaqEIhpPoOvLi0AIqjZqlK8gZK4+dPGrj3EwKJOKAvNWo6wtpOL4no0ozR9AN3A82tGz9PfPzMTByQm++thyKGYhiqlEcqeU1/DcshrebW1dha3XXkO8sPGFzlUwbUYIfAeMgyHP4KvJthzirdWi02ppNGCAPjfbkB5z5RJK1FrLRR8fnwZX480NbdC/XxAB95sbyGYebEWh3+rV/LBkicXoItAb3EdXrCA8r5h2RaNEjO2MjAwSEhIIDQ21SfE4d+5cSdxWIqnUWPNYqa+fodNgN67dOAeKgJMfmhrValdQu+nDyQsjLQ4Uh7u0eomkfFEWlNmSVEzvRXh5cbCmZKYnJeEO5Lp6kpuSQv2HH85TGJfClYuom7Sh9qMT4cxGlAIRO8qfSxHhMXRdugTd1URjDvZtD3Y+ZdLZVa/MFlVxPPYnVI9NZom3NwrQ6913CevR+bbRnp9CFFOJ5E5Qu7raFJ5b2gZ3WQmlLkhJrste+Vyo4W6piriltBmE+eZikwkobsGgmP7OFZWKJkOGwFcfo8q/uTjzPShY9FFRoMdQKGzTUauBHStwHRdpjPaylBfu6OqKo5ubaYcHC6TExaFSqyvkhqTdxvbrr79Oenq6sZXX4cOH6devHzdv3qRu3brs3buX0NAiKnVKJJISwSycteAOp+JgblRrMkGTAVWK+J56hiB0WlklV1KhsSUkvCLmmpXFCuKQp2SGuJkpoFlXzuDe3h2HqoGoFQV+/ApV2nUYM1NvHGtyUdITrKbGKIciEMFdcPhlP8Qssu7Bzs6ErAxz5bMg1UPQZGSgyciwuf+2QTGVSOyhMBnl7u9faPE/Q3iuZ3Dw3V5moZQ3D3ax5ioslPsOq3gXTJsJbtOG+5+ehDizwermolI/r8OCt5/+OOirjeffEBQC9m2F/hH6CBx7Nx3j41DUapO87IL1MXIzM8nNyMC3CNvQJyQEnUZTIXVOu7e6Vq9eTY0aNYzvn3/+eZo2bcrnn3+On58fs2fPtmme5ORk5syZQ7du3WjatCndunVj7ty5JCWVrV0viaQ4pCUmcjAqirTExLsyf/5w1sCwMH2ot9AhNBl6iQqg6AU0gQ8WvBrOboVGEaBY2W9T1NBkIlk3bt6V9UskpY3F71Ae+b+/1iq4wm1lNi0xsVx6LMta7rnRc/NDOlX7Pnr7d2LYRHz7FioHFWhzUR7qBR06wbElcGAEKDr4Z1WhqTHKPyuh+1D9e2vKZH7l08GKfHRQIwZN4PgnWwG958bm/tsV1HMjKXkKk1EAKAou3t5Wi//B7fBcodPdgxWXcawZvBaOF5kDXRCDjHonXf9vPtnllyfT/Po+evu44R6tsXgPw/0dPVTGtJm4A9/QYeZMBqxdS5sJEyAjwczQ1t8zb3MxIxGfzr3gmyT8+g1DCJ2+rVfBDcHNyyGgOsxbfVvm2bHpqMvJZsfw4RxevNiYF17wZ3N861ZaRkSgUluWqSq1mtYTJ5KVmlr4/copdhvbFy9epF69egDEx8dz9OhRlixZQt++fZk5cybff/99kXMcOXKE+vXr8+677+Ll5UV4eDheXl6888471KtXjyNHjtj/JBJJGcLgNbp1F4xtodPpC+wIreEAIBAIcjRJnL+wiBMnhnP+wiJyci4hmk6CeiNMJzm2HNyrQ/hqc4NbUUOnNeAWxK3Ll0t8/RJJaSN0OtLi4zkUHc2O4cM5FB1NWny8USHN//0trJI13FZmXby9783iS6DPKUJQLawZs9PTqRbWzFQBzEmi82A3VDklEFZpZS5VahKdQ9xMQjeNcg3DWgTa7GyE0CEy4lH+WAQHhsOJFShOznB2M3xSH/5YBP99Bg7OtqXGuLjpDe3ClElLyqcBBzVErgH/YOr16k3HuXNpNHAgupxsmxRTUYKeG4+gIMIjI/EoQ5EJkpKhKBkF+k0elVptW3iug4PNrZrKK1ZDwq0ZvELg90je8UduHxdC4NNfbzj79B9nvslhljOtg3wySvljEWTE6x0gN6+jrF4EUWNQVi9CJMXndYjJ65jwoJ/+3wLrNRjuXl0fRZuTQ/2HHyZsyGDUjvrUPpVK0YeOF7a5eGIFijYX5gxHWfMyisrB8obgmViIHAUPD4fPz0LEXOj5OJw7iRg0odBNR23/sfy1YSPHN2/mYFSUVQ/2keXL8axenUdWrzYzuFVqNf3WrMEzKIj0CupwtTuM3NXVlZs39d6uAwcO4OHhQfv27QHw9vbmxo0bRc4xefJkmjZtyldffUWVKlWMx2/cuEGvXr145plnLBZOqwicPHmSKVOm8NNPP+Hp6cmoUaNYtGgRTk5Opb00STlA5LXxcshNQnViDdy6iKrFiwifhly5vIFTp8ci8gnfCxeW0rBhDIGd16Gk/APXftefuB4LB8cgOq2D6t1QTqzQK6KeIdBkIrgFgaKqkOE8kpKnPMk1e0LCFZXK8k59Ae5JrplBYSxGn1PTeXR6j0i+HD+aTAC3YEAhoE1nArenIzSm91Ann+TJJ91QJ58ETDsTqLQpEO5n6qERwvJcQhDQsTOBZ28f1yuzAkfdNZQ/V+vlmn+bvPaEhjBJrb7ehKVOCnakxpCVATlZeoPbUvgk3FY+o9cj2nZD2bHCWHGcwRPBLwhFpcI9IIDw+fNQOTohtNoi+28zeCKZJei58QwKolNUVInNJ7lNaco0W2VUbmYmOo3GtvBcrdZkU61UKImNwkKwmIKi0+lDp3fcblslhk9DqeJjUQ4Kt2C02TmoHG7L1tyMDBxdXVEURW+UDxyBn0GmIeDMhjx5lCejNJnw51JE9x0otfpAxCxwcoWsDJRvPkGENINGrfB+dBYoc/EW2tvFNi3IZ4fm00Dtg5J5Hf5cDbcuQee1tm0uOjrDwc/0Mu+J6dY3BPdugbgTMH8NYnwUioODseijmBdj3pnBQa0/7h/MEUNB63we7B+WLjX57F6JjeWzUaMYsH49Id26cXTFClLi4vAJCaH1xIl4BullakXVOe02ttu2bcvSpUtRqVS89tpr9OrVCwcH/U7L2bNnqV69epFz/P3332zbts3E0Abw8vJi5syZDB061N5llQtSUlLo0qUL9evX59NPPyU+Pp7nn3+ejIwM3n333dJenqQsIoRegKvUCJ1Wr6z+9yWq7OuIljNR1G4IoSMnO97M0NZfruHUqQh8fLri1O97lD+XGo1q0Wi8fpBrEKLlPBS1E0KTjeLgVOF3wCUlR3mSa7aEhOdvPyJ0OnRabennmul0+j6o+RRGW/qc5kft6qpX5IyKYb7nTzsHndZBpnUj3K/LYJQewxEFq90Kge+gSfo6ETqtUQHVF+1ZBbcuonjURDR/FsXZoODmO95sMrj4w39fQfa123JNlwO56SgXvkJ0XAWhQ/PknRaS/0LxaaLfNNQv4nZqzJ9LLXt7FDU0mgRXL8HhW3rFPycT1E7w6g54cbCpMvnNdsTDI1Ae7I0YNx9F7YjIzUFROxqfXVEUkndvw/+N8aREf4Jv5176quMW+m8TuQb8gkg/dcrmX7ukdChNmWaXjBKCrNRUWk+YYGbcGDCE5xa3QFpxUk0s1ZIpdKPQihFuKQLGKgYvdX5DWAjEng0oCyJAp9VvsNWqjzJuPuLMxyiHxlqUgw7aZJRjehml8qiJY7OpoLjq0/RUeWaTIhA6DUrOdTj2lqmM0mTA1V9Qqj2I0GaBg1qfL+3ooPceO6jJyU4gIXElmZlncXUNJThoAk7OwSiXf4DdXW+vyzcMpfV8OPMxGNerQIf3bN9czM77u2Rtc9FA3AlE1Wpc/vNPfnnvPapUr077l17CqfdIRNuuJpuOuoHjoWo1do4axZXYWOMUR5YvJ2zkSB5ZvZovxo41+Uye2L6dZiNG0KB3b8IjI1Gp1eg0GhQHhzLfou5OKVaBtL59+/LII49Qu3ZtXn75ZeO5rVu3Gr3chVGvXj1Srezu3rhxg5CQEHuXVS5YsWIFN2/eZOfOnfj6+gKg0Wh4+umnmT17NsGlXMBCUsYQOoQmE1RqFNSAAG0u1OpFTnY8CReXkJkZR6NGa0hIXGVmaBunERoSElZQp04UuvvmonJ0RpebjSZHgyMKikpFyvZX8bm1hFSPWfg8NvfePqekXFOe5JqtIeH5248oKpVNyuzdyDVzqOKtN7T3bDA34PK1k3Ko4l2k18jd3x8yLBQQ8w2DTmvh3w35lLk8ijTCMcoocAC0CBRIOAy3zt02nDWZoHJCJHwPt86D8XgG3IoHlRPUejifXNMroDWqP4u66yZysi6aHA+uNhanQb+hfDcKzm7Rr/XYcqg/Up8aU/A5FDX0/RY8qoG4oM/zvnlWr6w2HAsd+yL2XUHZtMyoTIrBE1H8gkClIvnzzfi/MZ7kF1bhP7BASg5AVgbam6n6jY9eI+H+rmDBG04hnhsZEl52KE2ZZo+McnRzIz0pCb+GDekXE2NmoOcPzzUYM9aM54LHbWlzaNM1QljfKFQU60a4EAR0yIuAKcpAFzqLFblxC0Y5fxLmrNJX1s4rpEhmormhnScHlQtfIvI7MzSZoHKGvDS9hMsxt+VQ8AScnINg4BFysi+Zyq4a01ArDuRokkm4vJrMzLN4eT1IcPAkrlzZwKlTEZajEAMfN91IbD4N0uMLyDQbNxcbjIV9W24f27wceo/Up8cU7JqQb0Mw0CeA/mvW6FsjOjjo2yxeS6ZZXptDdFoufH+Yr5/ta2Jow20P9sCPPy7Ug335zz9Z26EDYw4fJqiVaaRURcRuY7tJkybExcVx7do1qlatanLujTfeoFq1akXO8dprrzF58mRq1qxJeHi48fjBgweJiooqc96QkmLPnj1069bNKLwBHnvsMSZOnMi+fft48sknS29xkmJhd/ucjEQ4uQYaPaUP1TYgBEJoUVRq/W6pojLmYBuEuyVBrVK5oVJtJDOz8HCizMw4FMUBgdZ4zNHNzfSPpybDrmeXyqEEypdcK05IuKIoeAYHF6nMJpe0x9LFDbd6jSA5wdzQBv37zW9Bl8H4dOqpzzu0Fl6uKLj6eMPv0eaKmUVljsKN8AtfwcBfEYq5Alqj+jTUwR3IyapTwHCehjq4IzlZdU2OV6/+DI6OXly5/LFJdI67exi1a8/nypWPOXXKQnpMg9UEdl6PknJCr5hej4XvRkHn9RDcRV8szZAa03gSuFezWLmXP5dCXuVeax5sQO8hsoDOy4+DCdDYS1/xF5UK/IMRY+ehODpZnssCMiS87FCaMq0oGRUYFkbdbt1AUYxGLYpC2MiR1O3a1apxY814tnScPO+6tTaHtlxT88EHuX/SpNue5fzyK+EcRK0zD+8ePAHFL28jwyYDPVdvaFupyE2fA/D0IkgzbLDF6evRFGyHCno5mJ2KMHFm5Ne7NpoZyNeufUXr1r9w5comk3PWZJePT3eysy+YzQP5ohC9wnFq/qz+eVAgdCj8scR8vUVtLnaMAfdg/d8IA8b0mI+hbTeLG4JKvs3F7I2x5Do488mgQeg0Gj5/KgJHNzdmXL3KuQMHzAxtA8e3bKHmQw/RZtKkQj3Y+hodlYNi99muWrUqQggSExMJCAhArVbTvHlzm66dMWMGN27coEuXLnh5eeHv709SUhI3btzAx8eHl156iZdeegnQKzp//fVXofNdu3aNX375hcTERDIzM6latSoNGzbkvvvuK1OhCSdPnuSpp54yOebt7U1QUBAnT54spVVJ7gS72ucIgXD2Q2k1B6HN1e/45uXo3PYO6b+SAsxysC0Jap0uE602A1fXwsOJXF1DEELLte+2k7F5HG6Pf4h/j+HG8xrvEM5/Bu5P2h5VYlU59AuCcZH6fyUVnvIk14obEq6oVEUqs8UJIbfoZcoXcums1cKqKMshfz2HQfR6SE5E2flhoeHljq6uKA5qCzl+hShz1oxwgNbzEIowk1HWlMzCDGcXl1B8fLqYpcHUqDGNnJx4s/H6H5GGU6fH4uPdKZ9iit7LnXoa+h6ElvP0IeJZGXD1EoJ4q5V7ORQB1buSlZSJ68gW1j3YFtB5+3MoERp656tGny+83J65JGWD0pRphcmoZsOGMWD9er3eERVlZgh7BgdbNG6MbaPyGc/tpk3D1cfHooFsLV981IED1HroIZuuCeneHV3iBRwKGtr1wyByLezZYNqCClB+/Aqx7heUrzeabzDmGegmRvgT0xE1Aix/r32aQLUHTNNm1G7gsNGKHByGUDnqjeoi9C4D1as/Q3b2RbNzlmWXQkDAUC5cWFJ4FOLl1dQJnaVfs9pVv2ZLudkmm4ud4Z8Pb28uNhoPrtX0hvWZAgbx3i3Q4iHEkElQ2IZgdibOwTX534KFtz8HQpCbnm41L9uASq2m0YABKIrC5djYSuXBtkaxjO29e/cSGRnJH3/8gVar5ZdffqFVq1aMHz+e8PBwRowo/A9L69at79gIvnHjBuvWrWPdunX8+eefZtUCFUXBw8ODgQMHMm7cOB58sGD7o3tPSkoK3hYq1vr4+HD9+nWr12VnZ5OdnW18byhQZyunL+vHh/i5oc6rAnj1RhapmTl4ujgS5O1qNraWtxsuLvqxybeyuH4rB1cnFTV9PYo19uzVW2h1OoK93fDIG5uansXVtByc1Crq+BVv7PnkW+RodAR4OuHt7gLArSwNCakZdo11UKkIDbg99uL1W2Tm6PD1cMLPo/CxaR5+xKXm4ngryzg2S6Mhxac6cam5BEEBgxpAh9Bmoji4mHmwa9acjqNjQAHl05qgFly9upWgoAguXFhqUYgriprg4ImACo1fI97d4siAJ0LRpGYaf/cav0Ys/7o6j44NxTNLc/v3mal/jiu3NOQ3nQv/3XtSc0JUob/PkvicGH6fd/o5Kfj7vNPPSVaWhgup+h3bBtVM61JURIoj10pLpjk7O9gUEp6eb92Gz2oVVzWB+ZRZbW4ut3IFmbk63Jz1hm2W2oW41Fyyk2+ZfP5SvYOIS83FM0uDh4saIQQBzZszOz0dbW7u7RBNnQ6RlIDy6Uq4cgklaq3l6rH1w/SG9tebzMMBP1qKyAsvN+Rp5mZmotPmoiqY42dVmSvECEdB1OpjsU6ENQPZuuGsEBDwmAW5VgzFFEBRI8KmgZMbyrYV8M9RCKiBmDAf5agFr75xMg2cWIFzy3nkZN3+XBp+99lZkL+xW345ZSA1S0Pa5ZumMi0rgwsZkHL5pomcsvY5sSbT4lJzuVElwGTJUqbdPUpDpoFeVgVWcbEoowLDwhiwfj3HNm0yy4U1FE5rPnIkf/3+D9se6cuUPTsJatXKYrG1wLAwOs6fz18ff2wyV0j37ty4cMFivrh/kybUeOABi0a12TWF9Z1/fBpcjTeXWwCPPYNy5aK5oZ3PQDdepygwbzXKMUsyinybhTYUUlS7IhxcyMm6YKPeVdg5y8dVKlccHNxsi0JUu4GDa9GFH89ugZQTEL4GWkeBygG0GkR2FsqT/wcnfze/xkGN6DSAXK3g1PZtNH/v9oagQa45acDf2RWVo5PFKIvC8rItpS4kqz1M/v4B3MzS65YX00x1y4tp+uM3s24frwhyzW5je/PmzYwcOZLHHnuMcePGMW7cOOO50NBQ1q5dW6Sx/dFHH9m90PwsXryY119/HR8fHx599FEiIyNp0aIFfn5+ODs7k5qayvnz5/ntt9/Ys2cPXbt25aGHHuLtt9+mSZMmd3Tv0mDJkiVER0cX+/oeyw8DEDOqNV2bVMs7dojUTA2OKoUzi3ubjY3u15jR7fVezl7LD5N0KwcHlcJZC2Of7hTCiw83BmDgez9xMSUTRYFzS/oYx3Z98xAAQ9vU4JUhLQB4dOURzly9hQKcW2o+tnvjAD4cfT8AYz46yh8XUwE4n29sp9f1Y9vV9WHrBH29gKc3HuX7M8lWxzYLrsLuqR0AmPVpLF/EJpqN7fjqIQRQt6ob383oDMBr+/5h3U8XzMZunxTD9n3JVDvyA/+b1Q2AT85k8P20tZw+ns1XnXVmBrWrayjVg5/G0cGlgHdIoWHD1XYJ6kuXlhMYOJKGDVebKbOKoqZhwzU4Od0WfJ9NWMm2fck4HTjI6Zd7Gcd+Nm4Fn+1L5k2vRAa1rgnAE/uSSR2/ki/2JHG24+17Gn73L/ZsyNOd9a0A+77zA5dvZKNSIM7C7350+1pE99NHvzz6wc+cu5Zh9Xf/SFgQ7wzX74KOjPmV4wk3rf4+O9b3Y31EOwAmbPidI+dSrI5tWdObnZP1G2/Pbf2D/f9cNRvb+XX9775+gAf7n9enuSzc/Tdbf7tkNrbja4cQAmr6uHL4pS4AvH3wDO8fjDMbK7lNaco0z+BgHlkdwxdjzUPCH4lZg1tgNVZ+edR4vKBMM+zUr5ryCWAq0/Y88Tqb9yWj7Dtk8rneOX4VO/clM0f9H2MfqmvmZbr/mWdw9/dHyR9yqSgw8z3L1WMLU1i1GpQFEWhad0EdWF3fDqeaYMcfiQxqNB6H/Dl+hSifVj0qajdQVCQkfmijgWxdYbUm1+xWTBs8Ce41EI0nIlwCuHDoMDX6jkH92GQ0GRmoVZa8+gVIi0OldmJ37Z50yDtkkGkOVCH/1fll2sQa+mPjv73OxV2HzWTa4FgvOHbYRKbtHb6EzfuSYd8h22XaxBhm5FuDlGllizuVaaCXVY2DPPnymYfM0lbaTZtGWny8mXEDtwun1erchTOKF5tHvc0UrBdbsziXotBs6FB+WLLE4kak4ZqCRrWla6z2nVcUfe70WgtGeGHnLMk7Z1d9DrbF77W1zUIruc6aLEBHwuXVNutd9souu6IQNRko2rxIqaJys1NOINyqAYq+CBsKuLghhj1ruYL4/BjwC2La5j/Ye6wKZ/Olxxjk2gh/NS9nZ6LLzbEYZZG/snjdLl34fdUqY7RXi/ETqJIX7WXg04kxfLovmY7njhrl2ks/pfLn+JV8tieJ87eziXlsTxKMX8mZH1L4Mq8EWEWQa3Yb2wsXLmTatGm88cYbaLVaE2O7adOmLFu2rEQXaImDBw/y6aef0qlTJ4vn/fz88PPzo02bNkycOJGUlBTeffddDh48WKrGto+Pj8XWaCkpKSa5QQWZNWsWzz//vPH9zZs3qVmz5l1Zo+TOEULw4uMdeEnlgNDpLIaEg+XwyeII6vT0WE6eHEWjRuvx9u5CYuIqMjPjcHUNITh4Ik5OQdzI1ODt5oRHUBBql4vk2vgseoGpLXKcpPJSHLlWmjJNUaloNmIEtbp04a9VK01Cwt0Cq/H8tli8stML/eNYnFyzxkGePPVgHYshmj71QmnRs4upR0cIy9VjC1NKDWg1qHeuhAlR+nY4wTD51FWGtG6FCF+drziQNeWzcI+KojjYrGQWprBak2v2pscondaSk5uL2sGBM19+qc8x1GpxzGuPNCf9FmobKvdm5+aizeedvBPc/PxKZB7Jvac0Zdo/iWmcSLxpmrZy7hzNhw/n8KJFhRZO+3PVSvrNnc9Ln/wBWCm2VoiB7OjmZjlf3M5rcjMz9ZtcBTcKDQaypWgda+esybvsTH03AUvf68I2Cy3lOqtdLMq0wuSQ/bLLxijEoAl6mVzYeo0XqKHTGhS3IEa9/w3HrymkZ6RzaukAhIUK4iIvL3vb75f46thlHMx/OvmWK8hOuMh948ZbjAQ7vmUL106fZvShQ8Zor+ycXD7/K5G1n/7Inmc7Wpm4cmK3sR0XF0fv3r0tnnN3d7epz/adsm/fPrvG+/j4MG/evLu0Gttp1KiRWb7PjRs3SExMpFGjRlavc3Z2xtnZudj33TdNv08f4ueW71i4MeTS0tha+cLj9kzrYAz5LWrszsntLY498Hy4WdjdtgntjCG/RY1d+2Rri2MPTg83hpEYeH9Ea2MYeVFjlwwKY0qXejgUaIvx/YvhxpATAzN6NGZE29pmY4d8EMHAz3fT8qHWCKGD9ASUf1bqi3F0XkdOdoKFtlyWwyeLK6ivXt1CRsZp7rvvEHXqROmLoQktOp3C1bRsqrrpf8+eQUEcmtXT4u9+wIcTeXT7Dlo3vR3Us3daJ5s/J7unPGT7737SAzaP3RBxf6G/+/xjV45sZfPnZNnQlsZwo/x8Z2HsvL5NiXiorvnnZIb552Rqp/oMuK/oFogVheLItdKWaWk5GhyqBtBx/nwcHB2N+Y3/XUvnmc6hOF44yfq8sdZk2pae/vg2bmTy+ev18XT67j1I9bCmJmMHrhrPzL//JD0x0TxEU1Fo9uhjKJZCLi1Vjy1MYc1PfJw+rDCvNefC//OBmykoIcMhsBOcXq3P8cvNAI9aEB6TL+SykGq3mgyELsdmJbNww9maXLM9PSYn4TxZS9vx7/0LCBk8lgZ9+vDs+fMmufU6nUA0maAvmmSlcq9oMpGb//1H/8sHucEY4LZMy/jtBw6uv10ELb+cSjuhz4lc1cUXh5BGxs+JoX3ctwP80NRtYvI56blplsXPiTWZ9veRv9gxsB8M3WM2Vsq0kqc0ZBqYyjVFpcIzONgoowCbiju6ODsybN0UlBG7LBZbK8xAzs3IsOjJtPsaITi2dSstBoxFlX+jMDtTX0PBUrSOtXPW5J0QcPkiNJ5gQUYVsllosZDiOYsyrXA5ZL/ssikK0TkYpfrD0HLu7RzsrFRE/SegejeUEytut29tMhHFLQgUFbN9k3Df+Bw3p+gdnopKhfAPNvbMFlotqFQoikKXRgHsm9aB7O++gG9uP5FBrjnE/sDBN6D5lSv4tPk/q8VB202bhpObG8mnTvFhmzYM3v8d94U04oMRprnZg1ZEMHjnLlq0b2089kp7bz7oO4jhOz81GftJL382DRzEpN23j1cEuWa3sV2tWjVOnjxJ165dzc7FxsZSu3btEllYRaRXr14sXryY1NRUYz7Qtm3bUKlU9OjR467d11IuQoCXCwFeLjaN9fNwMeY4FHds/twJA97uLsY8i+KOzZ/vZsDDRW1xbfaMzZ9HXNhYVU4S/Xpm0LSGM66OKsjfu1HtDopiIdyyMG9P8QV1jerP6udMPM2f53tSI3kctfrNJbCKq8kdrP3ufVLiCfF2NOZgFzb2Tn/3JfE5sfT7LAufExcrYysqpSHX7lSm+bjpleLE3383Kd5i+N0nJtz+Dlj7rNb2UhNUYG5PJxUh3o4EFfgM+efexD/Al0PR0WYeAqshl5Cveux6aNMZdn6oLxSUk21ZYc1P9RB9b1mtFhQFn1o1UVYvhO93wePPQo9Zt3tNC6DeCAgML8IIBxBw4WuCgyfYqGQWbjjflmsxJoWGbE2PSTm5B9+fr1Grixc+7npFyjM4mPD581A5OqHLK/6j4GrhWTDxDjn8twenfJE8ht99YnA1Ps9XBM2kZkfev94u5p8HgBAfJyhw3EWTZfFzYk2mhXg74nXzapFjpUwrGcqKrqYoClePHWNtx47MTE21ubijS9JFhE5nsdhaYQaytcJXxbnm36++4r7RoxHzVt8uhGYtWidvLovnrBnhigKBNUHtCB1Xw/cFW2N9Ao3HWQ6/tlRIUauxINMKl0Px8e9Srdoom2WXPgpxDI0br8PHpxsJCSvMohARIFSeKPfNBUdnyM1Gl5ODohPgGoRoOQ9F7YTQZKM4OBmLmlV1Af+cJJLy/alSFIWkXVvwf28ayZOXGws1GuRaUoE/awa5lphQTV/0Ue2CysbioLkZGVSxIgO9bl4lxNvRmK8NUMVFjU9KPDU9Tc3Qmp7641Xyja0Ics1uY3v48OFERUXRqFEjYxi3oigcP36cV199lUmTJpX0GgtlwYIFVs+pVCq8vLy477776NChg9Vx94qJEyfyzjvvMGDAAGbPnk18fDwzZsxg4sSJZaoXrcRGhCDg/s4Ebk9H6PI82gXCfCyFJkHh3p5iCeqAsTi51kARkHYpjpzNF1ANrJj96iVli/Iu10qi/UiRbXVu3QIse6ashlwa2LsF4k7A/DUmXgpl8ARzhdWAg1rfykXJ2913dkVxdNIb9Gdi9eHqC8fqvUYvvqs35F8cDI9Nvm2E67SQcB5CHzc1wj1DUKq2wcmpms1KZmEKa0bGCW7e+JnAwJH4+HQ1kWtabRqBgU9YVUwVRaXvb10ARVG4evg7To0bRMMPPyWwS09A0YdjVu8K+bxDNJmob8NoZS5J5aOsybTc9HSyUlNtKu6YlZpqPKaoVObXFGIgWy18JQR/f/IJrcaNs/maer17k3HtGq49h6Nr1QmHz1fro22yMhDVasH8GPOWYJ+8i+gzyvScNSPc2VX/2vqOXtZV62QiowjuAe7VrIZfi+bPoji4wKj74cIZlJr1cNpw1EymFWUgg0JgwAh8PMNJuLr6tuzKSbUquxDglKYyiULk4llIOgwtO6BBhYMAFaAToEGFo6KgqFRc+3QVVQ+9xPXwV6g65BnbPkCpybaNs4IhyiJ8/nxUjo76/ttqdZnq9lTWsdvYjoqK4u+//6Z79+7GPtu9evUiKSmJvn37MnPmzBJfZGEsW7aMnJwcMvParri4uJCVlQWAq6srubm5aLVaWrVqxVdffYW/v39h091VfHx8OHDgAFOmTGHAgAF4enoyduxYXn755VJbk6SYCB1kJKCc0IeLK53WwD8rbQq3zJvAqrcnfw62NeHuRFXq1JyLonZGaLIhV6Mvj6FSoVNX49C70HCM9dQEiaSkqOxyzaa2OnFx9F+zxrJnKi/kMqxfBA7WjOe4E4iq1UzuiV8wyvwY88q9DmqIXKNvvWdQhrIz9e1d8hv0Qui9RoZ8yJO/3zbCvarCN0nw/lyI+9vUE56VAfu2oPx3isDJL1s3kL06k3D5wyKPGzYKEeDkFEztWvNQOTih0+agqBxRFMXq8cLQefvzXVwG9U1acqnALTifdygHxeF2yxuzntllBI+gIMIjI/Eoqr2kpEQoizItPSkJv4YNrYb0GipAJ586ZTyuKAqewcFm11gzkK/ExvL5mDEMWLeOkG7dTDyZ9Xr1wt3f32wui9fkyzE/tWsX7Z59luajZ6F2c0OTmYkKUB4egbZl+G0jvHoIYtB4UBREz+Ho8p+zZKAbPN7Xr8ITbSzKKP47BU+/DNW7mWywibwNNl3qNVQdHrl9/5spFjf9DHqXo0OgaZqeRgdCX5rMSeVnrpMZZFrNuajUzgidBk2OBqHVIXJycFixAFKuoPj4o+0/FiWsPTlpaThXqYLQ5Bp+iTi6uRnlnc7BB37OQNfF5+5/6PKhKAqXjx2TbbyKid3GtpOTE59//jnfffcd+/fvJzk5GV9fX7p160a3bt3sXsDFixe5ePEiLVq0wN3d3e7rv/32W4YOHUpkZCT9+/fHw8ODW7dusXPnThYsWMD69evJyMhg5MiRzJgx444rod8pjRs35ptvvil6oMSEtMREjq5cqe8nWdoKh9DZ2LtRwIWvLIYmgfXwSYCkpO0EBIygatXepruf6HNucHJGGBVsFYqLm1FhLI5iJpU5yZ1QGeWa2tXVvrY63bpZ7U16ZPlyWowcibDk7XFQI/KM518/+ICLP/5426DvNRLl/q6QrwgOeUVw8vfZxtmVnKQrOA2egFLQO1QwH1IIuHHtdujm3s2mnvB81WuVwFo4DhxPjWqzcHR1Q5OdiUrlBEe/xynxHHV6zEJxdkNkZ0DsL3BfB7ONQpGdow9jV/QKXfIufX/qa/n6U1s7DsUwkBWF5C8s98C22DO7uPgFwbhI/b/5KI6s9QwKolNU1J2vSWIzZU2maTIzUWwM6c2PtWuy09Jo8cQTZkZ164kTjUa6pZ7d1u5f8BrQR/JciY1lV0QEu8aO1RcszMgw9gvXVqmKEjEXlZMzupxstBotauDMnj1kXkumWZ6Bjk5L8smTVO3xuKkRfu4kYlCeTLMkoxzUMOJ58AlGtLwtcxQHJ4QQaJzcUOe7vyZXg2MBA1mXN15RFHBQEJpcFEcHhEaLSn17009xcbttIAvFqJMpQPIX2/F/Yzwp0Z/g07kXp7/8Mu/5XtJvQGRkcPyTrbj6+dOgd2+9vNttWd6VNiURCVYUjm5uRQ8qZ9htbF+4cIGgoCA6d+5M586dTc5pNBoSEhKoVatWkfOsWrWK6OhoLl++DMCvv/5Kq1atGDhwIJ06deLZZ5+1aT2TJ0/mhRdeMGk35uHhwRNPPEF6ejrTpk3jyJEjzJ07t9CQc0nZ5lZiIoeio2nYr1/pGttCQEaCbb0bAeW3SJwGmYcmQV745M3/Wd1JNYRJGudS8tWOVBSU1GT4fA1K/6dMFLriKGZSmZNI7MPd39/2tjoU3ps06cQJLv7vf9TqNRIKGM9i8ESoWo2do0ZxbONG4zU/LF3KY59+SoM+fWDcfBS1o957rb7tqUUI/Po+CgNH4KTVgKIyzaG0lg9pKXRTCBND29CvVZOTw4+vvMLNS5eoUr067Z57DtdWHVGS68OapXD1EkpAdRg8EaEoaBUHVDr0bWp0piGSRrLMFTo3Pz/IyjCr8l0cA1nn5cfBuIy768H2C4IJUWaHpayV3AnGkF4LhnBxrilsLkObw/yezKLufzk21nKOuRBGQ+34li0knThBvzVrqHbffXmLVFC7uqIoCg369CEtMZHDS5dyMz6ePu+/z/HNmy16yR2cnExlWn5DO3INePuDopD66Wv43FpCqscsfB6bi5LnMbbmQb7+2YdUPfQSKfnCtQs1gvOdK7iJB0BWBtqbqSgqlenz5cnN/Bsm+a+5m5S1SB5r6VgVAVXRQ0ypW7cuf/zxh8Vzf/31F3Xr1i1yjuXLlzNlyhRGjRrF3r17EUIYz3Xq1Ilt27bZvJ4//vjDalG2OnXqcOzYMQCaNWt2TyqlSyo6OjhRIFw8f+VepcD+1fVYlO+eIDDgcf7v/85Tu/ZcAgKGU7v2XP6vbRxenv+H8vM+nJyCqVMniiZNNlKnThROTsEmhrZF/IIgYo6Z50QikdxlFAUXb2+rbXX+iIkx814bepM2Hz6cqXFxdJw7l+bDh9Nx7lyePX+eWg8+qFe0/IMRY+fBoo2I8ZHkunnxYdu2JoY26Fv9fDJoEGmJiWRd+g8ecid597bbhrZOh0iK1xdFmzMcZVU04sZ16P0Eus/OQsRc6Pm40TuEQwHZtXk5BFTXV0IveC5PkVX8gnB0cyN83lz6r1lD+Px5uPr45HuOuRC5Rv88/sEoKhUOzs6312hQcPMpmAYFUFdAATRU93YvgVQwt8ZhMD5S/68NyMgfSVlCURSuxMay2N2dK7GxNhkk1q4pai5Lnswir8mXY27wchck6cQJPKpVI/viOXjInWu7t91eU74c4f4xMagcHWk9YQJJJ06wKyKClz08WOzuzstubnw6ciSi53DEF+f1Mu3h4fp/vzgPD48wRvjoVN5wJEP/b77nuLZ7m9n9IV+4toOFcO3CjGAL5wrKNOPz5ZObnsHBpob2PcCwUakriUieO0TodKTFx3MoOpodw4dzKDqatPh4fcpUBcDu32x+w7gg2dnZNrU+eOedd5g3bx5Lliwx8443bNiQU/lyToqidu3arF692uK5VatWGQ3xa9eu4Sf7XkruFMXBeu9G9+r6YhwFDe647SgXvsbJsRp1qs/WG9TBs3Davx9lZBv460cUoTN6rhWl8F1qiURSuji6uqJSq21uq2Pg+JYtfNimDSlnzxIeFcWgjRsJj4w0VbTyPCR0D0DodPz4yisk/v67xfl0Gg1HV6zAuXqBaDKdDrFnA8ojdSFmkT4UPGYRqoeD4PBulIDqaJ6cDYs2oqnTGPyCEAWN6jOxED0Geo3UK65WFFmrCqvhOQpsAhSm4IL9CuCdhGXbGiVl73iJ5F5QnJBea9eU5FygzzE35IsXNLjz55hnnj1l0UDNb9BfO3XKdK58XvIT27dzZu9evQwbN1+/SZm3uZc/lUbn4ANHsd94LgEsybSi5KDVuaxsRpZX8qdjvVW3Lt8vWsTxzZv5ftEi3qpbl9gNGyqEwW1TGPnJkyc5ceKE8f3Bgwe5dOmSyZisrCw2b95MSEjRFZDj4+Np3769xXOOjo7cyqvcagtLlizhscceo2HDhvTt2xd/f3+SkpLYvXs3cXFxRi/5gQMH6NhRNlmX3CFCa0fvxryqmI0ngksAyryR+tBMZ1eUfKFOumW7UfTlzSQSSTkgNzMTnUZje1udfFyJjeXcgQPUeughFru7mxWbEUJQNS/0W0XhvXUDw8Ko262bvp/2D+lUzc3Rb4gnJ5jnfgNoNSgvDka781+OfX2APVOmGHMoB65fj2jTBdXOVab534pi9LYrjk7moeoGrCms9h63ExmWLZGUPWzNMS+qA0BuRobNcyV9vtlqGHdZC5k2YkUOWluvtbSZMvt8RWAtHQv0m8m7IiKo27WrfkO6HDuhbDK2t27dSnR0NKDfjbFWcdzb29umAmS1a9fml19+oUuXLmbnjhw5QoMGDWxZFgADBw7kl19+YcmSJezcuZPExESCgoK4//772bp1K/fl5YO89957Ns8pkVhHBU0m2N67MSdT/+/hL+Gb7aZ5jw5qxLwYfT5jORYiEkmlQwjLrXgKaatjIH+LnoKeIZPK5oVVMAdjkaFbiYkciorSV0KvV49OkZEoO1ZarmoOoNXg8Plqmo+exa6ICEDvcb92+jRPfv89juMjURzUZkZ1ofmIdlJeFUOJRGIfxckxL3Ku+fNQOTqhy5NRJnNZM17LmZFqby2K8vZ8gDEd61B0tMW/lXA7eis8St/2srxiUxj5tGnTOHfuHHFxcQgh+PTTTzl37pzJKz4+nmvXrtGvX78i5xs3bhyLFi0iJiaGmzdvApCbm8uXX37Ja6+9xoQJE+x6iJYtW/LJJ58QFxdHZmYmcXFxJoa2RFJiKArCLRhhKVw8r3cjDi4wqi085A7t3SByNOKhPmY5Rdqd/0Kv29V2JRJJ+cFamOSR5cvxrF6dR1avLjR8Mj0pyeScWSjdpk0c27SJlhERZvMEhoUxYP16jm3axNuhocbQu5/ffFOvkFyy7g0HID4OtZsbaldX47raTZuGo6srKQf3mud/G7DTG20t5LFYuYJWqnuXNjKfWyIpnOLkmBc2V3HCr61hTRZZlV0lGMZ9L0LCy1JedkGspWMVJCUuDlU5NrTBRs+2l5cXXl5eAJw7d46goCCcnJyKfdPp06dz4cIFxo8fbzSsH3zwQQCefvppnn766WLNe6dtxCSVG1vaiwkh4GYKSshwCOwEp1ffDhdvNA7FowbiZipKvt6NhlBMbZWqqPK3ucjVoCpYhVcikZQLCgttLKytjqUWPUIIi6F01iqYW6t4DoBOa15dvCDVQ9DlZNN44EDLYZ3FNKptDXksFlaqe5c2MoxdIrGNEm0bdY/yrM08xYXINHu9yCUqH8sZHkFBtH/xRYvpWAXxCQlBp9WWa4Pb7tZf+St/Z2RkkJWVZTbG19e3yHnefvttpk2bxv79+7l27Rq+vr507dqV+vXr27skYxuxxMREFEUpdhsxSeXGpvZiOh3KpuXw/S54/FnoMUvfpzYrA/ZtgR/3oDw5EzFeH/Ii8oU5OTg7W20zIZFIyifFbauTH6HTmVc253YF8wHr11O3Sxd+X7WKlHPnaD58OIcXLTIbn5uRgU6rgwHjUOXvp50fBzVi8AQUtSODNm60HIppJ5VZaZRIJBIof3KwpKJyil2kMjISIYR5OlY+DGlX5d0pVaxq5AsXLqRGjRp4enri7+9v9rKVkJAQJkyYwOzZs5k4cWKxDO38bcT27dt3R23EJJUbVWoS4UH6f61hDNE8EwsLIqCDhz5c/CF3/fsD22GjPpTzpzY1uXr4O5ur8EokkvJJcdvqgN5YVzk42F7BfMMG1M7OlscLwekvv0QJrG5eXRyMdSLwCyYrOYnvQ91JOvxdmZJFMixbIqk8lNWw7Mogh0qqy8KdzGPYlC6qan1Z+htVHOz2bC9btow333yTF198kTlz5jB37lwcHBzYsmULOTk5zJkzx6Z5tFotR44c4dKlSxa946NGjbJpHkMbsblz56LVak3O2dtGTFK5Ud1IplMwJN1ItjpGaLUo+UM08xc8M1A9BKHVsv/oJepaygOKyyibxSokEskdUZy2OkKnQ6fV2l7B3MODmampVscfjIykQd++KL1Gom3VCYfPVxtTWrT9x6IKrAHArWvX+S4ug/q2FuApRqGdO2nLVRpUBgVbIilLFMcbfC/SVkpSDpU3uXKv12tLpfnyjt3GdkxMDNHR0UyePJk5c+YwYMAAWrVqxbx58+jXrx///vtvkXP8/vvvDBo0iIsXL1rs260ois3Gdkm2EZNIikSlQgyagFJoiOZEtDk5Fi8vb2FGEonk7qOoVDaF0mWlppKbnm65EnoeV2Jj+ezJJxm4fj1aLz8UK3Ui8ueM56ckFdnyls9c3tYrkVRGypsedS/kSkkayKUhB0uyan1ZxO7tgvPnz3Pffffh4OCAo6Mjqamp+olUKp5++mmbWn9NmjQJLy8vvv32W65cuUJKSorJ6/r16zavx9BGzBL2thGTSHBxK/S0Yug5ay1Ec34M+AVxMzHxLi5SIpFUJGwNpTNUMLdWCd0wPrRnTwAc3dxuVxQ31IkowktQlqvXSiQSicSckgoJL01Ksmp9WcNuz3bVqlWN3uJatWrx+++/G/tlJycnk2FDtcG///6bbdu2ER4ebu/tzRg3bhxRUVH4+/szaNAgwLSN2Msvv3zH95BUAoTAr++jMHAEfrk5+vDwfF/0W3//SfKiafjNXY5H0/sQvZ9AtO2GsmOFMURTDJ4IfvqQl+y8TaiClLdwIolEcm+wJZTO4I0urBJ6wdA7Q3/sayXQH1sikUgkpUd50yGLs94SrVpfRrDb2H7wwQf59ddf6d27N8OHDycqKorLly/j6OjIhx9+SNeuXYuco0GDBsb+2nfK3WojJrm72NJm657No9NBcgLKjpVw6aw+J3vwBPALhjyFNfP039Q5c4ik03/j0fQ+FJUK4R98u+q4VgsqVZE7cTJMUSKRWMMYSjd/HipHpyIrhdsceneX2+RIJBJJZackDWFrc5U3HbK8rfduYXcYeVRUFB06dABg9uzZREREsHnzZlauXEnXrl354IMPipxj2bJlLFmyhJMnT9q/Ygu8/fbbnDlzhvfee49Fixbx7rvv8s8///D222+XyPySksfQZuvWHYZbF2ue5ERYGQUpSXpDe88GeKQuxCyCvZv1/z5SV39cp7t9XYEQc0VRSN61Bbr5k7xri4mCW952HyUSSdnA3q4FFTn0TiKRSMoShel2JRnKXRHCwiW3sduz3bBhQxo2bAiAs7Mzb731Fm+99VaR1zVv3txECUhMTKRZs2YEBwfj7e1tMlZRFP766y+71mVoIyYp35SUx7tQkhPhw2gY+gwkJ+hbdhUsdqbV6I8/0BN8AgoNMSfVvHq53M2TSCTFpThdC0oz9K4sbi6WxTVJJJLyTXnT7aQcLBvYbWwXl9atW5fYjvv3339v1/iOHTuWyH0ldx+Dp7phv353d0dPUcDDW290W6oqDtBtCHhVhaR4qyHmxWmHI5FIJIUhq+3eOWVxTRKJRHIvkXKwbFAsY3vLli1s27aNixcvmvXItuaVtqVKua106tQJRVGMbcPyG/FCCDOjvmD/bYkEZ1dQq+HSWcvn64dB9HrYsxEWjjU1yD9aCvNjoNdIVEG1ypVSLJFIKhdlcUNQelskEkllR8rByoPdxvbs2bNZunQprVu3pkGDBjg5Odl906eeeop58+ZRt25ds3P//fcf0dHRrFmzxur1f/zxh/H/V69eJSIigs6dOzNkyBACAwO5cuUK27Zt4+DBg8TExNi9PkklIDsTNBqoEWr5/OPT4Gq8uaENt0PM7++Ku780siUSSdnFXi/5vVAApbdFIrk7SAPOMtZ+LqX585JysPJgt7G9Zs0aFixYwNy5c4t9048++oiJEydaNLaTk5NZt25docZ2ixYtjP8fMmQIw4YN49VXXzUZ88gjjzBjxgw++OADunfvXuy1Sioozq5wK1UfEv7RUlODWlGgx1BYu8R6iLlWAztW4Dou8p4sVyKR3Fsc3dyKHlQBsaYASiVeIin7lDcDrjC5Yq/MsaV4ma3HJZKSxO5q5ADt2rW74xtby98+c+YMVatWtXmevXv3WjWme/Towf79+4u1PkkFRQioFwY/pOtztv2C9SHhDvn2nZxd9ZXHrYWYG4iPQ1GrUbu63tUlSySSOyMtMZGDUVGk2dC1QAhBYFgYs9PTCQwLM6YrVXZkdVyJRFLSFCZX7JU5UkbdXeSGa/Gx29geO3YsmzZtsvtGH3zwAWFhYYSFhaEoCsOHDze+N7waNGjAqFGj7PJEe3h4cODAAYvn9u/fj4eHh91rLQ7Xrl1j4sSJ1KpVC3d3d5o1a8aKFSvMxiUkJDB48GA8PT3x9fVl7NixJdZzXFIEOh0kxeuLos0Zrv83LQV6jYQvzkPEXHh4OIx4AaEtJMTcQPUQhFaLJjPznixfIrmXVCSZZmuLQKHTkRYfz6HoaHYMH86h6GjS4uMR+VsAVhCk4iSpjFQkuSaR3EvkZkbxsTuMfOHChTz77LM8+OCDdO3a1WLbrueee87suuDgYFq3bg3A8ePHadiwIf4F8l2dnJxo3LgxERERNq9n8uTJzJ8/nytXrjBgwAACAgK4evUqO3fu5OOPPyY6OtreRywWjz76KCdPnmTx4sXUqlWLr776ikmTJuHg4MC4ceMAyM3NpWfPngBs2rSJjIwMpk+fzvDhw9m9e/c9WWelxdBPu2Cbr4+WwmufIh7qA+OjUBwcEFotKApi4DiUgiHmBhzU6AaOlz1tJRWWyiTT1K6uCJ2O2A0b2BURgU5z+zv/w9Kl9IuJIWzkSBRVsYLByiQyfFJSGakocq2sbpaV1XVJJKWJ3cb2t99+y7p160hLS+Pnn382O2/N2O7fvz/9+/c3vp8/f77FnG17mTt3Lt7e3ixdupR169YZq5QHBQWxfPlypkyZcsf3KIrLly/z3XffsXbtWp588kkAunTpwq+//sqWLVuMAnz79u38/fff/PPPP8Ze5T4+PvTs2ZNffvmFtm3b3vW1VkqEKLyf9oxB8MV5Ll+8zJF338Wnbl3C589H5xcM81ajFCyS5qBGzIsBvyAUlUqGkUsqHJVNprn7+5OWkGBmaAPoNBp2RURQt2tXPIODS+yeUimVSO4tFUmuldXNsnuxLik7JeUNu7fpJ0+eTJs2bTh27BjZ2dnodDqTly1tttauXVsihraBZ555hgsXLnD+/Hl++uknzp8/z8WLF++JoQ36XVAALy8vk+NeXl4m+X579uwhLCzMKLwBunfvjq+vL1999dU9WWulROhgx8pCi50pO1bg37gxf330EQejosjNyOCfTz9F9ByOdue/t0PMI+ai3fkvoufj/PPpp+g0GhlGLqlwVCqZpii4eHtzdOVKM0PbgE6j4eiKFSUaTi5D8iSSe0ulkmt2UBzjtSxU8ZayU1JesNuzffHiRd555x2aNm16N9ZjEx988AFPPfUUzs7OxmMqlYpatWpRq1Yti9ccO3aMpKQkunTpUuLrqVmzJj169GDx4sU0bNiQmjVrsmfPHvbt28fGjRuN406ePEmjRo1MrlUUhUaNGnHy5MkSX5ckD5WDTcXO1G5uqF1d0WRmcnzrVup27szq//s/7p88meajZ6F2c0OTkcGxLVv49b33GLZrF1mpqffkESSSe0llkmmOrq6o1Gquny1cRqTExaFycNB3K5BIJOWOyiTX7KE43uiy6lmXSMoidnu2H3roIU6dOnU31mIzH330EbVr1+a5557jp59+Mu5WFiQhIYGYmBi6detG+/btSUlJuWtr+vTTTwkMDKRp06ZUqVKF4cOHs2zZMgYPHmwck5KSYpbjDvrwpOvXr1udOzs7m5s3b5q8JHag09pU7EyTkWH0Uh9ZvhzP6tVpO3UquydM4GUPDxa7u/Oyuzu7J0yg3bRpeAYFIYSQ4UySCkllkWm5mZnoNBp8QwuXET4hIei0Wn1aikQiKZfcLblWlmSaRCIpW9jt2V68eDGjR4/GycmJbt26WRRIvr6+JbE2qxw5coSdO3fy1ltv8fbbb+Po6EiDBg3w9/fH2dmZ1NRUzp07x9WrV/H19WX06NFs2LCBatWq3fG9hRAmofKKoqBSqRgzZgxnzpxh06ZNBAUFsX//fqZNm4aPjw/Dhg27o3suWbLknhV6q5AoKsv9tA04qNH2H8uxLVuMh67ExvLZqFEM/PhjQrp14+iKFaTExeETEkLriRPxDNLna7v7+8vdXUm5pjLLNI+gIMLnz0eTk0PrCRP4YelSi6HkKrWa1hMnVqgCaRJJReZey7WyItPKKjLPWlKZsdvYvv/++wGYOHGi1UrMtuRt3ykDBw5k4MCBnD9/nm+++YbffvuNxMREsrKyqF27Nj169ODBBx+kU6dOODo6lth9Dx06ROfOnY3vw8PDmT59Otu2bSM2NpbmzZsD0KlTJ65evcoLL7xgFOA+Pj7cuHHDbM6UlBRq1qxp9Z6zZs3i+eefN76/efNmoeMl+j+0QqdD5eCATqdD8QtGmR9jXiQtr9iZ4h/MkbfeMpnj+JYt1HzoIdpMmkT4/PmoHB3R5eaiqNWyCrmkwlCZZVr+UEhHFxf6xcSYFUlTqdX0W7NGv8GmKFJplEjKAfdarpUVmVYYZSHPWiKpjNhtbK9Zs6bEDA0hBKdPn+b69ev4+vrSoEEDu+euU6cOY8eOZezYsSWypqJo3bo1v/76q/G9p6cnn3/+OQ4ODjRr1sxkbMuWLVm9ejUZGRm4ubnRqFEjjh07ZjJGCMGpU6cK7S3u7Oxskp8uMcXRzc3kvdDpSEtI4OjKlVw/exbf0FDaTZuGa6+RKPd3hR0rID5O3yd78ESETwA7R43iSmysyTwqtZpGAwagKAqXjx1jbYcOjDl8mKBWre7l40kkdxUp0/QoKhVhI0dSt2tXq5EsIJVGiaQ8cK/lWlmUaQWRsksiKR3sNrYN7RLulPfff58FCxaQlJRkPBYQEMD8+fOZNGlSidzjbuDp6UmbNm1MjtWuXRutVktsbCwtWrQwHj969CgBAQG45RmDvXr1YsOGDZw5c4b69esDcODAAa5du0bv3r3v3UNUEIQQBIaFMTs9HZ1Go68mKoTVXrlPfPMNtTt0MOunfebLLzmxfbvJ3AW9WQC5GRn39PkkknuBlGm3UVQqPIODCY+MRKVWo9NoUBwcZCSLRFLOkHJNIpGUFew2tkuCVatW8cwzz/D4448zdOhQAgMDuXLlClu3buWZZ57B0dHxnnmqS4LevXtTq1YthgwZQmRkJEFBQezbt4+PPvrIJIdnyJAhLF68mMGDB7N48WIyMjKYPn06ffr0KRN9G8s6+T3YlrzXD86cSVZKisVeuU2GDKFm+/b6a1at4sbFi3jVqEG7adNo0KcPz54/X6g3SyKpTFRmmaYoCpdjY0sskkWGnUskZYPKLNckEknpYZOxHRYWxqZNm2jWrBnNmzcvdJdfURT++uuvQudbtmwZU6dOZfny5SbH+/Xrh7+/P6+//nq5MrY9PT05cOAAc+bM4aWXXiI1NZW6devy5ptv8swzzxjHOTo68vXXXzN16lQef/xx1Go1gwYNYtmyZaW4+rKHWVh4QQ+2TmfuvVYUHpo1y2Kv3MCwMAasX8+xTZv4YuxYM4/3Y59+SoM+faQ3SyLJQ8o0+yNZrBnVpR26KY19iUSPlGsSiaQ0sMnYbt26Ne7u7sb/36kRcu7cOfr27WvxXJ8+fVixYsUdzV8a1KtXj61btxY5rnr16uzYseMerKj8YS0sPL8Hu/306bgHBJh5rx1dXXF0c7PYK7fdtGmkxcebGdoAOo2GTwYN4tnz51E7O7O8dm2L3iypsEoqG1Km2UdpG9XWKKvrkkhKAynXJBLJvcYmY3vt2rXG/3/00Ud3fNOgoCB+/vlnunXrZnbuf//7H0HSoKl0FAwLr/ngg9w/aZKpB1tR6Ld6NT8sWWJmNOdmZpKbkWHeK1dRaDZ0qMVrDOg0Go6uWEF4ZKRVb5ZUWCUSSVlFbgZKJBKJRFI2sTsh9amnnuLcuXMWz/3333889dRTRc4RERHBwoULmTt3Ln/++SeJiYn89ddfzJ07l0WLFpWrEHJJ8XF0c0Pt6moMC3+rbl2+X7SI45s34+jmxo0LF0w82IV5rxGC41u30jIiApX69h5SodfkIyUuDpVajdrVtUSfUSKRSEqKokLVPaWxLZFISgi5iSeRlAx2G9sfffSRSQXx/CQnJ7Nu3boi55gzZw5Tpkzhtddeo3Xr1tSoUYNWrVrx2muvMWXKFGbPnm3vsiTliPzh4lUbNiQtIcEs/7rZ0KH8ERNj4o226r3O48jy5XhWr84jq1cbDe6irjHgExKCTqNBk5lZMg8pkUgkJYw0qiWSykVZ6I0t5Y1EcmcUq9SytZztM2fOULVqVZuuf+ONN0hISOCLL75g/fr17N69m4SEBF5//XVZmKoCI3Q60uLjORQdzY4RI9Dl5poVNbPqjbbivTZwJTaWz8eMocUTT/Ds+fN0nDuX5o8/TvLJk7SeMMHiNaBv89V64kSyUlNL8lElEolEIpFIio00eCWS8o9NOdsffPABH3zwAaA3lIcPH45rgXDbrKwszp8/z6OPPlrkfOvXr6dPnz5UrVrVrGfh9evX2b17N6NGjbL1GSTlhIJVxB3d3FBv3GhmVBfmjT6yfDlhI0fyyOrVZgXPVGo1oT17Apj3ylWp6BcTY1ZYLX8/7eRTp+7Sk0skEolEIpFIJJLKhk3GdnBwMK1btwbg+PHjNGzYEH9/f5MxTk5ONG7cmIiIiCLnGzNmDD///LNFL/i5c+cYM2aMNLYrGCKvqnh+Y9eqUZ3Pg/3D0qUmxvGV2Fg+GzWKAevXE9KtW6G9sZU8T7bBox02ciR1u3a1eo0MIZdIJBKJRCKRSO49FbVOgE3Gdv/+/enfv7/x/bx58wgJCSn2TYUQVs+lpKTg6elZ7LklZROh05n3wC7EqC7Mg31i+3aajRhBg9697eqNrahU5h5v2U9bIpFIJBKJRCIpVSpq5x+bjO385G8DZiAjI4OEhARCQ0OtGi579uxhz549xvdvvPEGgYGBJmOysrL49ttvue++++xdlqSMo3JwsFgR3JpRbci/HrBuXaEe7Mt//snaDh0s9sa2hKIoXI6NtesaiUQiuZdU1N19iUQikUgqG3Yb26+//jrp6elERkYCcPjwYfr168fNmzepW7cue/fuJdRCru3p06f54osvAL3Bc/jwYZydnU3GODk50axZMxYvXlycZ5GUYXRarcUc7Pxh4XW7dOH3VatMjGpFUYr0RlvrjV0YxblGIpFI7gUVdXdfIpFIJJLKht3VyFevXk2NGjWM759//nmaNm3K559/jp+fn9W2Xc8++yznzp3j3Llz1KpViz179hjfG16nTp3is88+o0mTJsV/IkmZRFGprFYEP75lCzH/93+4+voSHhnJoI0bCY+MxDM4GEWlQlEUrsTGstjdnSuxsTLsWyKRSCQSiUQikZR57PZsX7x4kXr16gEQHx/P0aNHOXToEB06dECj0TBp0qQi5zh37pz9K5WUawweamsVwdtNm4ajqyvJp07xYZs2FkO8pTdaIpFIJBKJRCKRlBfsNrZdXV25efMmAAcOHMDDw4P27dsD4O3tzY0bN0p2hZIKg6JS2VQRXBrVEolEIpFIJBKJpLxjt7Hdtm1bli5dikql4rXXXqNXr144ODgAcPbsWapXr17ii5RUHGRFcIlEIpFIJBKJRFIZsDtn+/XXXycxMZFHHnmEW7du8fLLLxvPbd261ejllkisIXOwJRKJRCKRSCQSSUXHbs92kyZNiIuL49q1a1StWtXk3BtvvEG1atVKbHGSik1ZCxeX7XYkEolEIpFIJBJJSWG3sW2gatWqCCFITEwkICAAtVpN8+bNS3JtEsldwZpRLdvtSCQSiUQikUgkkpLC7jBygL179/J///d/uLi4UKtWLWJjYwEYP348GzdutGmOv//+m2HDhhEaGoqzszO///47AHPmzGHPnj3FWZZEYhMGo9pTerAlkkqDo5tbaS9BIpFIJBJJJcNuY3vz5s307t2bunXr8v7776PT6YznQkNDWbt2bZFz7N+/n5YtW/Lff/8xYsQIcnNzjeccHR15//337V2WRCKRSCRmCCEIDAtjdno6gWFhCCFKe0kSiUQikUgqCXYb2wsXLmTatGls3ryZJ5980uRc06ZNOX78eJFzzJo1i2HDhvHzzz8zf/58k3MtW7bkjz/+sHdZEolEIpGYIHQ60uLjORQdzY7hwzkUHU1afDwi3yaxRCKRSCQSyd3C7pztuLg4evfubfGcu7u7TX22jx8/zpIlSwDMKlF7e3uTnJxs77IkEolEIjEidDpiN2xgV0QEOo3GePyHpUvpFxND2MiRKKpiZVJJJBKJRCKR2ITdmka1atU4efKkxXOxsbHUrl27yDl8fX1JSEiweO706dMEyVxaiUQikRQTIQRpCQlmhjaATqNhV0QEaYmJMqRcIpFIJBLJXcVuY3v48OFERUVx4MAB4zFFUTh+/DivvvoqI0eOLHKOAQMGEBkZyalTp0zmuHz5Mq+//jqDBw+2d1l3jffff5++ffvi7++Poihs377d6tgvv/yS9u3b4+7ujo+PD507d+bSpUsmY3766SceeOABXF1dqV27Nq+88opU+CQSyT2jMsg0odNxdOVKM0PbgE6j4eiKFTKcXCKpIFQGuSaRSMondhvbUVFRtG/fnu7duxt7avfq1YsWLVrQpk0bZs6cWeQcS5Yswd/fn7CwMNq1awfAU089RcOGDfHy8iKqDLVfWr9+PcnJyVZD5w1s2LCBQYMG0alTJ3bv3s26deto06YNWVlZxjH//vsvPXv2JCgoiN3/396dh0VZ7v8Dfw/LDDCsw44g5gKiKCqmQiYuQG6ZipJYLqmZJ49puXdKNE3zaGaZnugXridFcV9wF1MDSy2P+1ZienIDAVf2z+8PvzzHaViV3ffruuaqued+7udzPyNvuGeeeWbrVowZMwZTpkzB559/Xt7TICIC8HxkmpGxMe789luRfVJ//x1GxsYVVBERlafnIdeIqHoq9We21Wo1Nm3ahPj4eOzevRvJycnQ6XQIDg5GcHBwicawsbFBQkIC/v3vf2P37t3Q6XTQ6XQYOXIkBg4cCLVaXeqJlJeEhAQYGRkhKSkJy5cvL7DPnTt3MHLkSMyfPx9/+9vflPYePXro9ZszZw7s7e0RExMDtVqNTp064fbt2/j0008xatQoaDSacp0LEdHzkGl5ubnQ1atXZB+7unWRl5vLBTdRDfA85BoRVU9PfXWYDh06YObMmfj222/x2WeflXihnc/U1BRvvfUWVq5ciV27diEmJgbDhg2rUgttADAqwQV01qxZg9zcXAwdOrTIftu3b0fPnj315tivXz+kpaUhMTHxmWt9Hlm6uiIoMhKW/Jw/UYk8D5mmMjKC/zvvwMik4NeTjUxM4D9iBC+QRlRDPA+5RkTVU6X8pfHSSy9h0aJFuH37dmXsvswdPnwYDRs2xLJly+Dp6QkTExM0a9YM27dvV/o8ePAAV69eRcOGDfW2bdiwIVQqVaEXnaOiWbm6ov3UqbDiYpuozFT3TFOpVLByc0OP6GiDBbeRiQl6LF4MK1dXg2/DIKKaq7rnGhFVT5Wy2HZ1dcW4ceNQq1YtvPLKK1i+fDnu3btXGaWUiRs3buD8+fP4+OOPMX36dGzfvh116tRBjx49cPr0aQBAWloagMdfbfYktVoNCwsL3Llzp9DxMzMzcffuXb0bEVF5qQmZpjIyQtM338TopCS0++gjNOnfH+0++gijk5LQ9I03+K420XOmPHONf6cRUWEq5a+NtWvX4tatW/juu+9gYmKCYcOGwdnZGWFhYVi3bh0yMzMrvCYRQU5OjnLLzc0t8bZ5eXm4f/8+vv32WwwcOBAhISGIjY2Fu7s7Zs+e/cy1zZo1CzY2NsrNw8PjmcesqnhaOFHZYKY9XnBbubkhKDISvb//HkGRkbByc+NCm6iaqqq59jz9nUZEpVNpf3FYWlpi4MCB2LZtG65fv44vvvgCd+7cQb9+/eDs7Fzh9fzwww8wNTVVbp06dSrxtnZ2dgCAjh07Km2mpqZo166d8mpp/quk6enpettmZWXh4cOH0Ol0hY4/efJkpKenK7erV6+WuLbqhqeFE5UNZtpjKpUKN0+cwEytFjdPnOCp40TVWFXNtefp7zQiKp1SX428PNjb2+Oll17ClStXcP78edy8ebPCa/D398eRI0eU+1ZWViXetnHjxoU+lv91ElqtFh4eHgaf9zl//jxExODzQU/SaDS8+iURlQozTV/2w4cVuj8iKntVNdf4dxoRFeap3tnOzc1FQkIC1qxZg+XLlxvcSuq3337Dp59+iiZNmsDPzw9Lly5FeHg4EhISnqasZ2JlZYWWLVsqN29v7xJv2717dwDAnj17lLasrCz88MMP8Pf3V9q6dOmCTZs2ITs7W2lbvXo1bG1tERgYWAazICJ6jJn29PhxFqKqiblGRNVNqd/Z/uWXX9C7d29cvXoVImLwuEqlwsCBA4scY968eYiJicGxY8dgY2ODsLAwfPnll2jfvn2Jvr6hIh09ehRJSUnKldMPHz4MAHB0dERQUBAAoEWLFggLC8Pw4cNx584duLq6YuHChbh58ybGjx+vjDV+/Hh8//33iIiIwLvvvouTJ09izpw5+PTTT6vcV54RUc3ETCte/sdZiKh6YK4RUZUlpdSqVStp2rSp7N+/X27duiVpaWkGt+JotVqJiIiQzZs3S1ZWVmlLqFCDBg0SAAa3oKAgvX7379+XUaNGiaOjo2g0GgkMDJRDhw4ZjPfjjz9K69atRaPRiLu7u8yaNUvy8vJKVVN6eroAkPT09GeZWqX689gxmQrIn8eOlUt/IirY85hpzA+imq2q5VpN+DuNiMqGSqSAt6eLYGlpidjYWHTp0uWpF/gPHz6EhYXFU2//vLt79y5sbGyQnp4Oa2vryi7nqVz/5Rd86++P4ceOwbVFizLvT0TVR3lnGvODiCpSTfg7jYjKRqnP2fby8nrm7w/kQpv4mUgiIiIiIqrJSv2Z7S+++AKjR4+Gn59fkVeb/Stra2vEx8fD398fVlZWRX79ikqlMvjaBapZ+JlIIiIiIiKqyUq92P773/+OGzduwNfXF25ubsp3EuZTqVT4z3/+Y7Dd2LFj4fp/72KOHTuW33VKRERERERENVapF9v+/v5PtVCOjIxU/n8q39EkIiIiIiKiGqzUi+2lS5c+8047duyIRYsWFXga+oULFzBixAjs27fvmfdDREREREREVBkq5Uut9+/fX+hF1u7evYsDBw5UcEVEREREREREZafU72wDQFpaGtauXYsLFy4gIyPD4PGvvvqq2DEKOxU9ISEBTk5OT1MWERERERERUZVQ6sX2xYsXERgYiMzMTDx48ACOjo64c+cOcnJyYGdnBxsbmwIX27NmzcKsWbMAPF5od+jQAUZG+m+sZ2ZmIicnB+++++5TTodqKn5VGBERERERVSelXmx/8MEHaN26NWJjY6HVahEXFwc/Pz+sXr0aH374IWJjYwvcLjAwEGPHjoWI4JNPPkFERATc3d31+qjVavj4+ODVV199utlQjcWvCiMiIiIiouqk1Ivtn3/+GdHR0dBoNACArKwsGBsbo3///khOTsZ7772HH3/80WC7oKAgBAUFAXj8zvbbb78NNze3ZyyfiIiIiIiIqOop9QXSMjMzYW1tDSMjI+h0Ovz555/KY76+vjh+/HixY0RGRnKhTURERERERDVWqd/Z9vLywpUrVwAAzZs3x6JFixASEgITExNERUWVeBF96dIlLF26tNCLrG3evLm0pRERERERERFVCaVebPfr1w/Hjx/HgAEDMH36dLzyyiuws7ODSqWCiGDZsmXFjnHkyBEEBQXB09MTFy5cQNOmTZGeno6kpCS4u7ujfv36TzUZIiIiIiIioqrgqS6Qlq9NmzY4deoUtm/fjoyMDHTs2BG+vr7FjjFhwgSEh4cjOjoapqamiI6ORosWLZCQkICIiAhMnDixtGURERERERERVRlP9T3bT/Lw8MDw4cNLtc1//vMfTJo0Sfnqr/zTyAMDAzF16lRMmjQJr7zyyrOWRkRERERERFQpSn2BNADIzs7GN998g6FDhyI0NBQXL14EAKxevRpnz54tdnuVSgW1Wg2VSgUnJyflM+AA4O7ujgsXLjxNWURERERERERVQqkX27///ju8vb0xYcIEXLp0CXv37sW9e/cAAAcOHMA///nPYsdo1KgRfvvtNwBAQEAAPv/8c5w6dQrnz5/HZ599hnr16pW2LCIiIiIiIqIqo9Snkb/33ntwdHTEzz//DFtbW6jVauWxoKAgTJ48udgxhg8frrybPXPmTISGhsLPzw8AoNVqsXbt2tKWRURERERERFRllHqxvX//fqxatQoODg7Izc3Ve8zFxQXXr18vdowBAwYo/+/j44OzZ88iMTERjx49Qps2beDk5FTasoiIiIiIiIiqjFIvtk1MTCAiBT528+ZNWFpalroIS0tLhISElHo7IiIiIiIioqqo1IvtoKAgfP755+jSpYtyNfH879j+9ttv0alTpwK3W79+fan207t379KWRkRERERERFQllHqxPXv2bAQGBqJRo0bo0aMHVCoVFi5ciFOnTuHixYv4+eefC9yuT58+Jd6HSqUyOEWd/if/zIK7d+9WciVEVF6srKygUqkqu4wKUd6Zdu/+fWT833+1zE2iSvO85Br/TiN6PpQk01RS2DnhRbh8+TKmTp2K3bt3Izk5GTqdDsHBwZg2bVqhVxJ/8uu9SsLT07O0ZT03rl27Bg8Pj8oug4jKUXp6OqytrSu7jArBTCN6PjwvucZMI3o+lCTTnmqxTZUrLy8Pf/75Z7m8Qnz37l14eHjg6tWr1f4XYk2ZC+dRtVTUPJ6Xd4CA8s00gP/2qpqaMg+g5syFuVa2mGklU1PmAdScuXAepVOSn/FSn0Zelnbs2IEjR47g6tWr+Oijj1C7dm0cOHAA9evXh5ubW2WWVqUZGRnB3d29XPdhbW1drX/InlRT5sJ5VC01ZR5VQUVkGlBznjPOo+qpKXOpKfOobMy00qkp8wBqzlw4j7JTosX2kCFDSjygSqVCdHR0kX1u376Nnj174vDhw8qrDiNGjEDt2rWxePFiaLVaLFy4sMT7JCIiIiIiIqpKSrTYXrp0KaysrFCvXr1Cv/YrX0lOlxkzZgxu376NU6dOoUGDBlCr1cpjwcHBmDFjRknKIiIiIiIiIqqSSrTYDggIwOHDh5Gbm4v+/fujX79+z3QBs23btuH//b//Bx8fH4Orjnt4eODatWtPPTY9G41Gg8jISGg0msou5ZnVlLlwHlVLTZnH86SmPGecR9VTU+ZSU+bxvKgpz1dNmQdQc+bCeZS9El8g7Y8//kBMTAxWrlyJkydPIiAgAP3790d4eDgcHBxKtVNLS0usWbMGXbt2RW5uLkxNTXH06FG0aNECGzduxJAhQ3Dnzp2nmhARERERERFRZTMqacfatWtjwoQJOH78OE6ePIkOHTpg/vz5cHNzQ5cuXbB9+/YS77R169ZYvHhxgY/FxMTgpZdeKvFYRERERERERFXNM331V0ZGBqZMmYJ58+ahR48eWL9+fYm2S0xMRIcOHdCqVSv06dMH77//Pv7xj3/g7Nmz2LZtGw4dOoQWLVo8bVlERERERERElarUi+3c3Fzs2rULMTEx2LRpE0xMTBAWFoZhw4bhxRdfLPE4iYmJmDRpEhISEpCbmwuVSoWAgADMmTMHAQEBpZ4IERERERERUVVR4tPIDxw4gL/97W9wdnZGeHg4cnNz8f333+PGjRuIiooq8UI7KysL69evh7OzM3744QfcvXsX165dw71793Do0CEutMvRokWL0L17dzg6OkKlUmHt2rWF9t22bRsCAwOh1WphZ2eHDh06GFy4LiEhAQEBATA3N4enpydmz55d7NXqy0tKSory9XFarRa+vr745ptvDPr9+eefCAsLg5WVFXQ6HYYNG4a7d+9WQsXFO3fuHEJCQqDVauHi4oIJEyYgKyursssq1ubNm9G6dWtYWVnB1dUV4eHh+P333w36RUdHw8vLC2ZmZvDz88PWrVsrodrHLl26hBEjRqBZs2YwMTGBr69vgf3S0tLw3nvvwc3NDWZmZqhXrx4+//xzvT5ZWVkYP348XFxcoNVqERISgvPnz1fENJ47zDRmWkVgpjHTKhJzjblW3phpFZxpUgLu7u5iZmYmvXr1kjVr1sijR49KslmhNBqNxMfHP9MYVHqtW7eW1q1by8CBAwWAxMbGFthvxYoVolarZfLkybJv3z7ZtGmTjBs3Ti5evKj0uXjxolhaWkqvXr1kz549Mm/ePFGr1TJnzpyKmo6eDh06iKurqyxZskT27t0rY8eOFQDy7bffKn2ysrLE19dXfH19ZfPmzRITEyPu7u7SrVu3Sqm5KHfu3BFXV1dp166d7NixQ6Kjo8XGxkZGjhxZ2aUVKT4+XoyMjGTw4MGye/duiYmJES8vL6lXr548fPhQ6bdq1SpRqVTy0Ucfyb59++Sdd94RExMTSUxMrJS6N27cKO7u7hIWFiZNmjSRxo0bG/S5f/+++Pn5ib+/v8TExEh8fLxERUUZ/Jt/5513xMbGRqKjo2XHjh3y8ssvS61atSQtLa2ipvPcYKYx08obM42ZVtGYa8y18sRMq/hMK9FiW6VSiVqtFktLS7GysiryZm1tXex4fn5+smzZsmcunkonNzdXREQuX75caICnpKSItbW1LFq0qMixhg8fLp6enpKZmam0TZ48WWxtbSUjI6NsCy/G9evXBYAsWbJEr71du3bSsWNH5f7KlStFpVLJuXPnlLadO3cKAPnpp58qqtwSmTlzpmi1WklJSVHaoqKixNjYWP773/9WYmVFe+edd+SFF16QvLw8pW3fvn0CQA4cOKC0eXl5SUREhN62AQEB0qVLlwqr9Un5PxsiIoMGDSowxD/66COpW7eu3L9/v9Bxrl69KsbGxhIVFaW0paSkiFarldmzZ5dt0cRMY6aVO2YaM62iMdeYa+WJmVbxmVai08gjIyPx4YcfYty4cRg7dmyRtw8++KDY8WbNmoUZM2bg6NGjpXwfnp6FkVHxT/eaNWuQm5uLoUOHFtlv+/bt6NmzJ9RqtdLWr18/pKWlITEx8ZlrLY3s7GwAgI2NjV67jY2N3qlS27dvR9OmTeHt7a20hYSEQKfTIS4urmKKLaHt27cjODgYOp1OaQsPD0deXh527dpViZUVLTs7G1ZWVlCpVEpb/vOS/1z8/vvvuHDhAsLDw/W27devH/bu3YvMzMyKK/j/lORn47vvvsOQIUOg1WoL7bNr1y7k5eWhb9++SptOp0NoaGiV+zdWEzDTmGnljZnGTKtozDXmWnliplV8ppV4sV2aW3EmTJiAlJQUtG7dGk5OTmjSpAmaNm2q3Pz8/J55YvR0Dh8+jIYNG2LZsmXw9PSEiYkJmjVrpvfVbg8ePMDVq1fRsGFDvW0bNmwIlUqFc+fOVWjNHh4eCA0NxcyZM3HmzBncu3cPa9aswa5duzBy5Eil37lz5wxqVqlUaNiwYYXXXJyCarW1tYWrq2uVq/VJgwcPxpkzZ7Bo0SKkp6fj999/x4cffojmzZsrX+mXX/9f5+fj44OsrCxcvny5wusuTlJSEm7cuAEHBwf06NEDGo0GOp0Ob7/9Nu7fv6/0O3fuHJycnGBnZ6e3vY+PT5V+3moyZlrVwEyrWphp1RtzrWqojrnGTKv4TDMpl1GL4e/vj5YtW1bGrqkYN27cwPnz5/Hxxx/jn//8J1xdXbFw4UL06NEDx48fR+PGjZGWlgbgcaA8Sa1Ww8LCAnfu3KnwutevX4/XX38djRs3BgAYGxtjwYIFCAsLU/qkpqYa1AwAdnZ2lVJzUapTrU96+eWXsWHDBvTv31/55dmsWTPs2LEDxsbGAB7PDTD895MffFVxfjdu3AAAjBs3Dr1790ZcXBwuXryISZMm4f79+1i1ahWA6vu81WTMtKqhOtX6JGZa9XzeajrmWtVQnWrNx0yr+OesUhbbS5curYzdPjdEBLm5ucp9lUql/AAVJy8vD/fv38f333+PHj16AADat28PLy8vzJ49G8uXLy+XmkuqoLkZGRnhrbfewsWLF7Fy5Uq4urpi9+7dGDNmDOzs7NCvX79KrPj5kpCQgAEDBuDtt99G9+7dkZKSgunTp6Nbt244ePAgzM3NK7vEp5KXlwcA8PLywrJlywAAnTp1gomJCd5++218+umnqFu3bmWWWKMx05hplYWZRuWFucZcqwzMtIpXKYttKl8//PADOnTooNwPCgrC/v37S7Rt/qtWHTt2VNpMTU3Rrl07nDp1CsD/XulKT0/X2zYrKwsPHz7U++xKWStobuPGjUNsbCxOnDiBJk2aAHj8S+fWrVsYO3asEuB2dnYGNQOPX+Xy8PAot5qfRlG1lufxfVbvvfceOnbsqPc1C23atEHt2rWxYsUKDB8+XPk3lp6eDhcXF6Vf/iupVXF++TU/+W8PeBzkAHD69GnUrVu32j5vVR0zjZlWWZhp1fN5qw6Ya8y1ysBMq/jnjIvtGsjf3x9HjhxR7ltZWZV42/xTewqSkZEBANBqtfDw8DD4bMP58+chIgaf8ShLBc1t06ZNMDY2NvjOvebNm+O7777Dw4cPYWFhgYYNG+LkyZN6fUQE58+fR0hISLnV/DQK+mxSeno6rl+/Xq7H91mdOXMGr732ml6bu7s7HBwc8NtvvwH432eAzp07p3cBlHPnzkGtVlfJd1Pq1asHjUZT6OP5PxsNGzbEzZs3kZqaqvd5oII+10Ulx0x7jJlW8ZhpzLTywlx7jLlWsZhpFZ9pJbpAGlUvVlZWaNmypXJ78gelON27dwcA7NmzR2nLysrCDz/8AH9/f6WtS5cu2LRpk3J1SQBYvXo1bG1tERgYWAazKFhBc/P09ERubi5OnDih1/fYsWNwcnKChYWFUvN//vMfXLx4Uemzd+9epKSkoGvXruVW89Po0qUL9uzZo3zmCgBiY2NhZGSE0NDQyiusGJ6envjll1/02q5cuYLk5GTUqVMHAFC3bl14eXkhNjZWr9/q1avRqVMnvaumVhVqtRqhoaHYu3evXvvu3bsBAC1atAAAhIaGwsjICOvWrVP6pKamYteuXVXu31h1wkx7jJlW8ZhpzLTywlx7jLlWsZhplZBp5fKFYlQlHTlyRGJjY2XRokUCQMaOHSuxsbGyf/9+vX5hYWHi6Ogo0dHREhcXJ926dRMzMzM5ceKE0ufixYui1WolLCxM9u7dK/Pnzxe1Wm3wxfEV4e7du1K7dm2pX7++rFixQvbs2SMTJkwQIyMjmT59utIvKytLfH19pUmTJrJlyxZZvXq1eHh4SLdu3Sq85uLcuXNHXF1dJSgoSHbu3CmLFy8WW1tbGTlyZGWXVqT58+cLAHnvvfdk9+7dEhMTI76+vuLs7CzJyclKv/zv0ZwyZYrEx8fLiBEjxMTERBISEiql7gcPHkhsbKzExsZK+/btxcPDQ7l/69YtERE5evSoqNVq6d+/v+zcuVO+/vprsbKykjfeeENvrHfeeUdsbW1l8eLFsnPnTgkKCpJatWpJWlpaZUytRmOmMdPKGzONmVbRmGvMtfLETKv4TONi+zkyaNAgAWBwCwoK0ut3//59GTVqlDg6OopGo5HAwEA5dOiQwXg//vijtG7dWjQajbi7u8usWbMkLy+vgmaj7+LFixIeHi5ubm5iYWEhjRs3lvnz50tOTo5ev2vXrknv3r3F0tJSbG1tZciQIZKenl4pNRfnzJkz0qlTJzE3NxcnJycZN26cZGZmVnZZRcrLy5N//etf0rRpU9FqteLi4iK9evWSs2fPGvT97rvvpH79+qJWq5VfqpXl8uXLBf5sAJD4+Hil3549e6Rly5ai0WjExcVFxo4dKxkZGXpjZWRkyNixY8XJyUnMzc0lODi4wPnTs2OmMdPKGzONmVbRmGvMtfLETKv4TFOJPPFN8kRERERERET0zPiZbSIiIiIiIqIyxsU2ERERERERURnjYpuIiIiIiIiojHGxTURERERERFTGuNgmIiIiIiIiKmNcbBMRERERERGVMS62iYiIiIiIiMoYF9tUIlOnToVKpUKtWrWQl5dn8PhLL70ElUqFwYMHl2rctLQ0TJ06FWfOnNFrT0pKgkqlwtq1a5+l7Gc2f/58qFQq5f7+/fuhUqlw9OjRCqth6tSpSEhIMGhXqVSYO3duhdVRkI0bN0KlUiEpKQnA0z1v8+fPR1xcXDlVSFQwZtpjzDR9zDSqzphrjzHX9DHXKhcX21RipqamSE5OxoEDB/Tar1y5gsTERFhaWpZ6zLS0NEybNs0gwF1dXZGYmIiOHTs+U81lrUWLFkhMTISPj0+F7XPatGkFBnhiYiLeeOONCqujJJ7meWOAU2VhpjHTisNMo+qGucZcKw5zrWKZVHYBVH2o1WoEBwdj1apVaN++vdIeExODxo0bw9jYuMz2pdFo0KZNmzIbr6xYW1sXW9ejR49gbm5e7rVUxeNTVZ83ooIw05hpxamqzxtRYZhrzLXiVNXnrabiO9tUKhEREVi7di2ys7OVtpUrV6J///4F9j9w4AACAwNhbm4OBwcHDBkyBHfu3AHw+DSWF154AQDQt29fqFQq5TSXgk5xycvLw4wZM1CnTh1oNBo0bNgQUVFRevubOnUqLC0tcfLkSbRt2xYWFhbw9fXFzp07i53b3bt3MXDgQFhZWcHR0RETJkxATk6OXp+CTk1SqVT47LPPMHHiRLi4uMDJyQkAICKYO3cuvLy8oNFoULduXXzxxRcG+z179ix69+4NnU4HCwsL+Pn5YdWqVcrYADB+/Hjl+Ozfv1957K+nJkVFRcHb2xsajQZ16tTBjBkz9E4lW7p0KVQqFX799Vd06dIFWq0WDRo0wPLly4s9PtnZ2RgzZgx0Oh1sbGwwdOhQ3L9/X69PQc/b5s2b0bJlS1haWsLW1hYtW7ZUXh2tU6cOrly5goULFyrzW7p0KQBg+fLlaNu2LXQ6Hezs7NC+fXv8/PPPevsrzfO9fPlyNG/eHGZmZnBwcEDXrl1x5coV5fFr167hzTffhIODA8zNzdGuXTscO3as2ONC1RszjZnGTKOahrnGXGOuVR1cbFOpvPrqq8jMzMSuXbsAAGfOnMGJEyfQr18/g77Hjh1DSEgIrKysEBsbi9mzZ2PLli3o0qULcnNz4erqivXr1wMAZs6cicTERCQmJsLV1bXAfY8fPx5Tp07F4MGDsWXLFoSGhmLEiBH4+uuv9fplZ2fjjTfewODBg7FhwwY4OTkhLCwMKSkpRc5tyJAh2LBhAz777DMsW7YMZ86cwfz580t0XL788ktcuHAB0dHR+Pe//w0AGD16NKZMmYJBgwZh27ZtGDx4MCZOnIhvvvlG2e7ixYsICAjAxYsX8dVXX2Hz5s1466238McffwB4fPoRAIwaNUo5Pi1atCiwhgULFmDEiBF45ZVXsGXLFgwePBhTp07FhAkTDPq+8cYbCA0NxcaNG9G8eXMMHjwYZ8+eLXKOkydPxqJFizB+/HisWbMGubm5mDRpUpHb/Pbbb+jTpw8aN26MDRs2YPXq1QgPD0dqaioAYMOGDXBxcUGfPn2U+XXr1g3A418GAwcORGxsLFauXInatWujXbt2uHDhgt4+SvJ8z5kzB4MGDYK/vz/Wr1+P6OhoNGjQALdv3wYApKamom3btjh+/DgWLFiAdevWQavVomPHjrh161aRc6TqjZlWMGZawZhpVB0w1wrGXCsYc62cCVEJREZGilarFRGR/v37y5tvvikiIh999JEEBASIiIifn58MGjRI2aZXr15Su3ZtycrKUtp27twpAGTz5s0iInL58mUBILGxsXr7+2v77du3xdTUVCZNmqTXLyIiQhwdHSUnJ0epE4Bs27bNYKwVK1YUOr/Tp0+LSqWS6OhopS0nJ0deeOEFefLHJD4+XgDIkSNHlDYA0qhRI8nLy1PaLl26JCqVSqKiovT2M3HiRHFxcZHc3FzlWDo6Okp6enqhtQGQOXPmFNmek5MjDg4O0q9fP70+kydPFrVaLcnJySIismTJEgEgCxcuVPrcv39fLCwsZPr06YXWkJKSIubm5vLxxx/rtbdr104AyOXLl0XE8HmLjY0VAHL37t1Cx/b09JSRI0cW+riISG5urmRnZ4u3t7dMnjxZaS/J852WliYWFhYyfPjwQsefMmWK2NjYyM2bN5W2jIwMqV27towfP77I2qh6YqY9xkxjplHNwVx7jLnGXKtK+M42lVpERAQ2bdqER48eISYmBhEREQX2O3jwIF577TWYmpoqbaGhobC1tcWhQ4dKtc+ffvoJ2dnZ6Nu3r17766+/jtu3b+u9gmZkZITg4GDlfp06dWBubo5r164VOv6RI0cgIujVq5fSZmxsjJ49e5aovi5duuhdCXPPnj0AgLCwMOTk5Ci34OBg3LhxA1evXgUA7N27F3369IG1tXWJ9lOYc+fOITk5ucDjk5WVZXBKT2hoqPL/Wq0Wnp6eRR6fkydP4tGjR3rHJ39+RWnatCmMjY3Rv39/bNmyBenp6SWdEs6ePYtevXrB2dkZxsbGMDU1xfnz5w1eLS3u+U5MTMTDhw8xdOjQQve1a9cudOjQATqdTnmujI2NERQUhCNHjpS4ZqqemGmGmGkFY6ZRdcFcM8RcKxhzrXzxAmlUaq+88gpMTU0xZcoUXL58GeHh4QX2S01NhbOzs0G7s7Oz8lmgkso/leWv4+Xff3I8c3NzqNVqvX5qtRoZGRmFjn/9+nWYmprCzs6uwPGL89d+ycnJEBE4ODgU2P/q1avw9PRESkoK3NzcSrSPopTm+ACAra2t3v2SHB8Aymec/jp+Yby8vLB161bMnDkTvXr1gpGRETp37oyvv/4atWvXLnS7e/fuITQ0FI6Ojpg3bx48PT1hZmaGYcOGGdRZ3POdf4pSUcc5OTkZhw8f1vtjI1+9evWKnCNVf8w0Q8y0gjHTqLpgrhlirhWMuVa+uNimUjM1NUVYWBjmzZuHTp06FfpDrNPpCvwMxc2bN6HT6Uq1z/z+t27dQq1atfTGevLxp+Xq6ors7GykpqbqhXj++MV58pXS/HpUKhUOHTpkEC4A4O3tDQCwt7fHn3/++QyV/29/AAyOd1ken/zxCzr+RencuTM6d+6Mu3fvYseOHXj//ffx1ltvYe/evYVuk5iYiGvXrmHr1q3w8/NT2tPT0+Hu7l6q2u3t7QEAf/75Z6Hb6nQ6dO7cGdOnTzd4TKPRlGp/VP0w0wwx0wrHTKPqgLlmiLlWOOZa+eFp5PRUhg0bhldffRWjR48utE/btm2xceNGvatE7t69G2lpaWjbti0AKOFW1Ct1ANCqVSuYmpoiNjZWr33NmjVwcnKCl5fX004FAPDiiy8CeHwRiHy5ubnYuHHjU43XqVMnAI9fqWvZsqXBzcrKCgAQHByMtWvX4t69e4WOZWpqWuzx8fb2hqOjY4HHR61Wo1WrVk81j3xNmjSBubm53vEBgHXr1pV4DGtra4SHh6Nfv356F/go6JXaR48eKY/lS0hIQFJSUqlrDwgIgIWFBZYsWVJon+DgYJw5cwY+Pj4Gz1WTJk1KvU+qfphpRWOmGWKmUVXHXCsac80Qc63s8Z1teiqtWrUqNtz+8Y9/IDAwEN27d8eoUaNw8+ZNTJo0Ca1atULXrl0BAC4uLrC1tcWqVavwwgsvQKPRoGnTpgZjOTg4YNSoUZgzZw7MzMzQpk0bxMXFYeXKlViwYMEzf29ko0aN0KtXL4wZMwYZGRmoU6cOFi1ahKysrKcaz8vLCyNHjsSAAQMwfvx4tG7dGtnZ2bhw4QLi4+OVYxcZGYmtW7eibdu2mDBhAlxdXXHmzBk8fPhQuTKlj48PNm3ahJdffhlarRbe3t7KL4B8xsbG+Pjjj/Hee+/ByckJXbt2xeHDhzF79myMGTNGecXwael0OowYMQKfffYZzM3N0aJFC6xatQq//fZbkdtFRUUhMTERnTt3hqurKy5fvox///vfep9D8vHxwb59+7B7927Y2dnhhRdeQJs2bWBpaYmRI0di0qRJ+O9//4vIyEi9V2pLysbGBpGRkZg4cSLy8vLw2muvIS8vD/Hx8YiIiEDLli3xwQcf4Pvvv0dQUBBGjx6N2rVr4/bt2/jpp5/g5uaG999/v9T7peqFmVY0ZtpjzDSqTphrRWOuPcZcK2eVeXU2qj6evMJlYf56hUsRkf3790tAQIBoNBrR6XQyePBgSUlJ0euzYcMG8fHxEY1Go1wtsaArX+bm5sonn3witWvXFlNTU2nQoIF88803JarTxsZGIiMji6w/NTVV3njjDdFqtWJvby8ffPCBzJkzp0RXuCzoCpR5eXmyYMEC8fX1FbVaLTqdTgICAmTevHl6/U6fPi09evQQa2trsbCwkGbNmklMTIzy+MGDB6VFixZibm4uACQ+Pr7Q/f7rX/+SBg0aiKmpqdSuXVumT5+uXE1T5H9XuLx9+7bedgU9d3+VmZkpo0aNEltbW7G2tpZBgwbJihUrirzCZUJCgnTr1k1cXV1FrVZL7dq1ZfTo0XpXvDx16pS8/PLLYmVlJQBkyZIlIiKyfft2ady4sZiZmUnTpk0lLi5OgoKCpFu3bsq2pXm+Fy9eLE2aNBG1Wi329vbSvXt3uXLlivL49evXZejQoUqt7u7u0qdPH/nxxx+LPC5UPTHTHmOmMdOo5mCuPcZcY65VJSoRkXJf0RMRERERERE9R/iZbSIiIiIiIqIyxsU2ERERERERURnjYpuIiIiIiIiojHGxTURERERERFTGuNgmIiIiIiIiKmNcbFO5SUpKgkqlwtq1a0u13f79+zFz5kyD9qlTp8LS0rKsyivW/PnzERcXV2bjbdy4EYsWLTJoHzx4MHx9fctsP2Wtoo87UVXGXNPHXCOq3php+phpVNa42KYqp7AAHzZsGOLj4yusjooK8Kquoo87UU3EXKtamGtEz4aZVrUw06ouk8ougKoXEUFWVhY0Gk2F79vd3R3u7u4Vvt/nVWZmJkxNTcvsuOePZ2TE1/ioamGuPT+Ya/Q8YKY9P5hpVR+PJBUp/7SZuLg4+Pn5QaPRYMuWLQCAxMREdOzYEVqtFjY2Nujfvz9u3bpV5HjLly9H27ZtodPpYGdnh/bt2+Pnn39WHp86dSqmTZuGBw8eQKVSQaVSoX379spj+afIPHjwAFqtFnPnzjXYR58+fRAQEKDcT0tLw7vvvgtXV1doNBr4+/tj165dRdZZp04dXLlyBQsXLlTqWLp0KQAgLy8PM2bMQJ06daDRaNCwYUNERUUVexyXLVuG06dPK+MNHjxYr8/+/fvRvHlzaLVatGrVCseOHdN7XEQwd+5ceHl5QaPRoG7duvjiiy+K3G/+vn19fbF9+3b4+vrCzMwM/v7+OHz4sMGc//73v+Of//wnPD09YW5ujjt37hR4atKVK1fQp08f2NjYQKvV4pVXXsHJkydLNF5RNe7ZswdNmzaFubk5goKCkJSUhDt37iA8PBzW1taoV68eVq9ebbD9tm3b0Lp1a5ibm8PR0RF/+9vf8ODBA+XxBw8e4O9//zu8vb1hYWGBOnXqYMSIEUhPTy+w5oULF8LT0xM2Njbo2bMnbt++XexxpuqDucZcY64x12oSZhozjZlWhTNNiIowaNAgsbOzk3r16smSJUtk7969cvHiRUlISBC1Wi09e/aULVu2SExMjNSvX1/atGmjbHv58mUBILGxsUrbtGnTJCoqSvbs2SNxcXEyYMAA0Wg0cv78eRERuXr1qgwdOlTMzc0lMTFREhMT5fTp0yIiEhkZKVqtVhmrX79+4u/vr1fv3bt3xczMTL766isREcnMzJSWLVuKh4eHREdHy44dO+TNN98UExMTOXHiRKHz/uWXX8TFxUX69Omj1HHr1i0REfnggw/E2NhYIiMjZefOnTJq1CgBIAsWLCh0vEuXLknXrl2lbt26yniXLl1SjrG9vb00adJEvv/+e9m6das0adJEPDw8JCsrSxlj1KhRYm5uLjNmzJDdu3fLtGnTxNTUVP71r38V+xzqdDqpU6eOLF26VDZt2iQBAQFibW0tN2/eVPp5enqKi4uLvPzyy7JhwwbZvHmzPHz40OC43717V+rUqSN169aVlStXyvr168Xf319sbW3ljz/+KHa8wmq0t7eXpk2bSkxMjKxbt05q1aolgYGBEhwcLJ988ons2rVL+vbtKyYmJpKUlKRsGxsbK0ZGRjJ06FDZvn27LF68WJycnOT1119X+ty6dUtGjBghsbGxsn//flmxYoU0bNhQ2rdvr1eHp6eneHh4SGhoqGzZskWWLFkitra2emNR9cdcY64x15hrNQkzjZnGTKu6mcbFNhVp0KBBAkAOHz6s196uXTsJDAyUvLw8pe306dOiUqlk27ZtIlJwgD8pNzdXsrOzxdvbWyZPnqy0/zUwCmvftGmTAJALFy4obcuWLRNjY2O5ceOGiIgsXrxYTExMlF8C+Vq3bi19+/Ytcu6enp4ycuRIvbbbt2+LqampTJo0Sa89IiJCHB0dJScnp9DxBg0aJI0bNy6wXaVSyalTp5S2+Ph4ASAHDx4Ukce/AFQqlURFReltO3HiRHFxcZHc3Nwi9wtA9u7dq7SlpaWJlZWV3jw8PT3F3t5e7t+/r7f9X4/7l19+KSqVSs6cOaO0paSkiFarlQ8++KDY8Qqr8a/HYMGCBQJAJk6cqLSlpqaKsbGxzJ8/X0RE8vLyxNPTUyIiIvTG2759u8F4T8rOzpZDhw4JAOWPh/ya3d3dJSMjQ2/+pqamRR5jql6Ya8w15hpzrSZhpjHTmGlVN9N4GjkVy97eHq1bt1buP3z4ED/++CP69u2L3Nxc5OTkICcnB15eXvDw8MCRI0cKHevs2bPo1asXnJ2dYWxsDFNTU5w/fx4XLlwodV2dO3eGra0tYmJilLaYmBh06NABzs7OAIBdu3ahSZMm8PLyUurMyclBSEhIkXUW5qeffkJ2djb69u2r1/7666/j9u3bTzUPAHBzc0Pjxo2V+40aNQIAXLt2DQCwZ88eAEBYWJjePIKDg3Hjxg1cvXq1yPFtbGzQsWNHvfvBwcH46aef9Pq1b98eWq22yLEOHjwIX19f+Pj4KG06nQ4hISE4dOhQqcfL99dj4OXlBQAIDg5W2mxtbeHk5KTM98KFC7hy5QrCw8P1jktQUBCMjIxw9OhRZdsVK1agefPmsLS0hKmpKdq2bauM8aSgoCC9z7k1atQI2dnZxZ52R9ULc+1/mGvMNar+mGn/w0xjplUlXGxTsfLDMF9qaipyc3Px/vvvw9TUVO/2xx9/FBom9+7dQ2hoKK5cuYJ58+bh4MGDOHLkCPz8/JCRkVHqutRqNcLCwpQAT0lJwe7du9G/f3+lT3JyMn799VeDOmfMmFFs6BUkNTUVgOExyb9f2OdcimNra6t3X61WA4ByXJKTkyEicHBw0JtHSEgIABQ7F0dHR4M2Z2dnXL9+vcB5FCU1NbXAfs7OzgbzL8l4+Qo7BgW1P3lcAKBXr156x8XCwgK5ubnKcdmwYQMGDhyIVq1aYc2aNTh8+DA2bNgAAAb/9op7LqhmYK7pzx1grjHXqDpjpunPHWCmMdOqBl6NnIqlUqn07tva2kKlUuHDDz9Ez549Dfo7ODgUOE5iYiKuXbuGrVu3ws/PT2lPT09/6isoRkREIDo6GidOnEBiYiKMjY3Ru3dv5XGdToemTZsiOjr6qcb/K51OBwC4desWatWqpbTfvHlT7/GyptPpoFKpcOjQISVQnuTt7V3k9gVdNOLmzZtwdXXVa/vrc11YLefPny9wvL/OvyTjPYv8/X399dd6r+jnc3NzAwDExsaiWbNmehdH+eGHH8q1NqramGv/w1xjrlH1x0z7H2YaM60q4WKbSk2r1SIgIABnz57FjBkzSrzdo0ePAEAvgBISEpCUlKR3SoparUZmZmaJxmzfvj1cXFywatUqJCYmokuXLrCxsVEeDw4ORlxcHNzc3JQf5pJ68lW5fK1atYKpqSliY2PRvHlzpX3NmjVwcnJSTqcp6Xgl1alTJwCPXxF+9dVXS719eno69u3bp5yelJ6ejj179mDkyJGlHqtt27ZYu3Ytzp8/r/ziSE1NxZ49ezB8+PBSj/csGjZsCHd3d/z+++9FzuXRo0cGv/i+//778i6PqhHmGnONuUY1CTONmcZMqxq42KanMmfOHHTs2BGvv/46+vXrBzs7O1y7dg27d+/GW2+9pXwFxJPatGkDS0tLjBw5EpMmTcJ///tfREZG6r3qCAA+Pj7IycnBl19+icDAQFhbWxf6aqCxsTHCw8OxdOlS3Lp1S+8zQQAwcOBAREVFoX379hg3bhy8vLyQlpaGX3/9FVlZWZg1a1ahc/Tx8cG+ffuwe/du2NnZ4YUXXoCDgwNGjRqFOXPmwMzMDG3atEFcXBxWrlyJBQsWwNjYuMjxFi9ejFWrVqFBgwZwcHBAnTp1Cj/IT/Dy8sLIkSMxYMAAjB8/Hq1bt0Z2djYuXLiA+Ph4bNy4scjtdTodhg4dimnTpsHW1hafffYZRARjxowp0f6f9NZbb+GLL75At27dMGPGDJiZmeHTTz+FiYnJU433LFQqFebNm4f+/fvjwYMH6NatG7RaLa5cuYJt27Zh5syZ8PLyQkhICEaOHInp06cjICAAcXFx2Lt3b4XWSlUfc425xlyjmoSZxkxjplUBlXl1Nqr6Crsqo4jIkSNHpGvXrmJjYyPm5ubSoEEDGTFihFy9elVECr7C5fbt26Vx48ZiZmYmTZs2lbi4OAkKCpJu3bopfbKzs+Xdd98VZ2dnUalUEhQUJCKFX/kyMTFRAIilpWWBX1eQnp4u77//vtSuXVtMTU3F1dVVunbtKlu3bi1y7qdOnZKXX35ZrKysBIAsWbJERB5fmfOTTz5RxmvQoIF88803RY6VX0e/fv3E3t5eAMigQYNEpOBjnJqaqrdPkcdXc1ywYIH4+vqKWq0WnU4nAQEBMm/evCL3mz/+1q1bxcfHR9RqtTRv3lx+/PFHvX4FXdFTpODjnpSUJL179xYrKyuxsLCQkJAQg6/nKGy8omp8Uv5VPo8cOVLsuLt27ZKgoCDRarWi1WqlcePGMnbsWElLSxMRkZycHBk7dqw4OjqKlZWV9OnTRw4fPmzw77OgsTds2CAA5PLlyyWaC1V9zDXmGnONuVaTMNOYacy0qptpKhGRilvaE1FFGzx4MI4ePYpTp05VdilERGWCuUZENQkzrebi1ciJiIiIiIiIyhgX20RERERERERljKeRExEREREREZUxvrNNREREREREVMa42CYqZ61atcLChQsLffz48eNQqVTYv39/uew/JCQEn376abmMTUTPH2YaEdU0zDUqL1xsE5WjDRs2ICkpCUOGDKm0Gj788EPMnTsXqamplVYDEdUMzDQiqmmYa1SeuNgmKkfz589HREQEzM3NK62GDh06wM7ODsuWLau0GoioZmCmEVFNw1yj8sTFNlE5uXz5Mg4ePIg+ffrotc+YMQMuLi6wtLRE7969cevWLYNtRQRz586Fl5cXNBoN6tatiy+++MKg34YNG+Dt7Q0zMzO0adMGv/zyC2xtbTF16lS9fn379mWAE9EzYaYRUU3DXKPyxsU2UTnZu3cvTExM0KpVK6Xt66+/xscff4wBAwZg3bp1qFu3LoYOHWqw7ejRozFlyhQMGjQI27Ztw+DBgzFx4kR88803Sp9ff/0Vffv2RaNGjbB+/XoMGjQIr7/+OjIzMw3GCwwMxPHjx3H79u3ymSwR1XjMNCKqaZhrVO6EiMrF8OHDpXHjxsr9nJwccXNzkwEDBuj1GzBggACQ+Ph4ERG5dOmSqFQqiYqK0us3ceJEcXFxkdzcXBER6du3r9SvX1+5LyKyYsUKASCRkZF6216+fFkAyNatW8twhkT0PGGmEVFNw1yj8sZ3tonKyfXr1+Ho6Kjcv3btGv7880/06tVLr99fT13as2cPACAsLAw5OTnKLTg4GDdu3MDVq1cBAEeOHEH37t1hZPS/H+PXXnutwFocHByUmoiIngYzjYhqGuYalTeTyi6AqKbKyMiARqNR7ueHp5OTk14/Z2dnvfvJyckQESV0/+rq1avw9PQ0+AUBAFZWVjAzMzPYJr+OR48elX4iRERgphFRzcNco/LGxTZROdHpdEhKSlLuu7q6AoDBRTZu3rxpsJ1KpcKhQ4egVqsNxvX29lbG++vneu7du4eMjAyDbdLS0gAA9vb2pZ4HERHATCOimoe5RuWNp5ETlRNvb29cvnxZue/u7g5XV1ds2LBBr9/atWv17nfq1AkAkJKSgpYtWxrcrKysAAAvvvgitm7diry8PGXbjRs3FlhL/i+S/PAnIiotZhoR1TTMNSpvfGebqJy89NJL+OSTT3Dt2jW4u7vD2NgYkyZNwujRo+Hs7IyQkBDs2rUL8fHxett5eXlh5MiRGDBgAMaPH4/WrVsjOzsbFy5cQHx8vBLSkydPxosvvoiwsDAMHz4cV65cwdy5c2FmZqb32SAAOHr0KCwtLdGsWbMKmj0R1TTMNCKqaZhrVO4q+QJtRDVWZmam2Nvby7fffqu05eXlybRp08TJyUksLCykR48esmPHDr0rXOb3W7Bggfj6+oparRadTicBAQEyb948vX2sW7dOvLy8RKPRiL+/vxw6dEhMTExk/vz5ev1effVVgytrEhGVBjONiGoa5hqVN5WISCWv94lqrLFjx+LXX3/Fvn37KmR/e/fuRXBwMPbv34+goCAAQGpqKlxcXLB79260a9euQuogopqJmUZENQ1zjcoTF9tE5ej69euoX78+EhIS4OfnV+bjv/vuu+jUqRPs7e1x+vRpTJ8+HW5ubjh69KhyetInn3yC/fv3V9gvESKquZhpRFTTMNeoPPEz20TlyNXVFUuXLjW4EmVZSU1NxahRo5CcnAwbGxt07twZc+fO1fsckE6nw1dffVUu+yei5wszjYhqGuYalSe+s01ERERERERUxvjVX0RERERERERljIttIiIiIiIiojLGxTYRERERERFRGeNim4iIiIiIiKiMcbFNREREREREVMa42CYiIiIiIiIqY1xsExEREREREZUxLraJiIiIiIiIyhgX20RERERERERl7P8Drqa6WZYAnOUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1474,13 +1474,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRmklEQVR4nOzdeXiMV/vA8e8zM9lFFolI7Il9iRJt31Jir30pRVFqp1q0pa89CYpWF6pvi1pKq/jZunurG60uWvRtqqrUToKEJMiezPn9McnIZGaSTERiuT/XlStmnmeeORNyO+c559y3ppRSCCGEEEIIIYQQosToyroBQgghhBBCCCHE3UYG20IIIYQQQgghRAmTwbYQQgghhBBCCFHCZLAthBBCCCGEEEKUMBlsCyGEEEIIIYQQJUwG20IIIYQQQgghRAmTwbYQQgghhBBCCFHCZLAthBBCCCGEEEKUMBlsCyGEEEIIIYQQJUwG20Lcxnbv3o2maWzdurWsmyKEEDft1KlTaJrGK6+8UtZNEUIIh9WoUYPu3buXdTPEHUQG2+KO8euvv/L000/TsGFDPDw8qFatGv379+fo0aMFvi4zM5MGDRrY7OAlJiYyePBgfHx8CA4OZvXq1Vav379/P+7u7pw8ebJEP48Q4t52/fp1IiIi6Ny5M76+vmiaxrvvvmt1ntFo5N1336Vnz55UrVoVDw8PGjVqxPz580lLS7M4Nz09nWeeeQZ/f3+qVKnC/Pnzra537tw5ypUrxw8//HCrPpoQQlg5ePAgPXv2xNfXF3d3dxo1asQbb7xhcc6KFSuoWbMmvr6+PPHEE1y9etXiuNFopGnTpixYsKA0my5EsRnKugFCFNVLL73EDz/8wGOPPUZoaCgXLlzgzTffpFmzZvz88880atTI5uuWLVvGmTNnbB6bMmUKu3fvJioqin/++YfRo0dTv359WrRoAYBSiokTJzJ58mRq1qx5yz6bEOLeEx8fz9y5c6lWrRpNmjRh9+7dNs9LSUlh+PDh/Otf/2LcuHFUrFiRn376iYiICL7++mu++eYbNE0DYPHixaxfv56ZM2dy7do15s6dS0hICI8//rj5elOnTqVnz560bNmyND6mEEKwa9cuevToQdOmTZk9ezblypXj+PHjnDt3znzO3r17GT9+PBMnTiQ4OJiFCxcydepUVqxYYT7nnXfeISkpieeff74sPoYQjlNC3CF++OEHlZ6ebvHc0aNHlYuLixo8eLDN11y8eFF5eXmpuXPnKkAtXrzY4nhAQIBat26d+XF4eLiaNm2a+fF7772ngoKC1LVr10rwkxTdt99+qwC1ZcuWW/o+169fv6XXF0JYS0tLU7GxsUoppX799VcFqLVr11qdl56ern744Qer56OiohSgvvzyS/NzDz74oIqKijI/HjZsmBo4cKD58ffff688PDzU2bNnS/CTFN3JkydtxuKSJjFNiNtHUlKSCggIUH369FHZ2dl2z/v3v/+t2rZta368du1aValSJfPjhIQE5efnp7Zt23ZL21uQ6tWrq27dut3S98jMzLTq74o7lywjF3eMFi1a4OzsbPFc7dq1adiwIX/99ZfN10ybNo26desyZMgQm8dTU1Px8fExP/b19SUlJQWA5ORkpk2bxsKFCylXrpxDbT1//jwjR44kKCgIFxcXatasyfjx48nIyDCfc+LECR577DHzcqp//etffPbZZzavZzQaefHFF6lSpQqurq60b9+ef/75x+q8ffv20blzZ7y8vHB3dyc8PNxqqWhkZCSapnH48GEGDRqEj48PDz/8sPn4+++/T1hYGG5ubvj6+jJw4EDOnj1rcY02bdrQqFEjDh8+TNu2bXF3d6dy5cq8/PLLVm1KS0sjMjKSOnXq4OrqSmBgII8++ijHjx+3+HxLliyhYcOGuLq6EhAQwNixY0lISCjaD1yIO5CLiwuVKlUq9DxnZ2fzapu8+vTpA2AR/wqKaUajkUmTJvHCCy9QpUoVh9qamJjIs88+S40aNXBxcaFKlSoMHTqU+Ph48zmXLl1i5MiRBAQE4OrqSpMmTVi3bp3da65cuZKQkBBcXFy4//77+fXXX63OOXLkCP369cPX1xdXV1eaN2/Oxx9/bHHOu+++i6Zp7Nmzh6eeeoqKFStafL6dO3fSqlUrPDw88PT0pFu3bvz5558W13jyyScpV64c58+fp3fv3pQrVw5/f3+mTJlCdna2xblGo5GlS5fSuHFjXF1d8ff3p3Pnzuzfv9/ivKLEUiHuBR988AEXL17kxRdfRKfTkZycjNFotDqvoPgFpv5L48aNefTRRx16/6L8zmZlZTFv3jxzTKpRowYzZswgPT3d5jX37t3LAw88gKurK8HBwaxfv97qnMTERCZPnkzVqlVxcXGhVq1avPTSSxafPW8eiyVLlpjf//Dhw4BjMfCHH37gueeew9/fHw8PD/r06UNcXJxVu3bu3El4eDienp6UL1+e+++/nw8++MDinKL0J0URlfVoX4ibYTQaVeXKlVWnTp2sju3bt0/pdDr1448/2p1Nad++vWrTpo06evSo+u9//6vc3NzU+++/r5RSasaMGeqBBx5QRqPRoTadP39eBQUFKXd3dzV58mS1fPlyNXv2bFW/fn2VkJCglFLqwoULKiAgQHl6eqqZM2eq1157TTVp0kTpdDq1fft287VyZ7abNm2qwsLC1Ouvv64iIyOVu7u7euCBByze9+uvv1bOzs7qoYceUq+++qp6/fXXVWhoqHJ2dlb79u0znxcREaEA1aBBA9WrVy/11ltvqf/85z9KKaXmz5+vNE1TAwYMUG+99ZaKiopSfn5+qkaNGua2K2VaARAUFKSqVq2qJk2apN566y3Vrl07BajPP//cfF5WVpZq3769AtTAgQPVm2++qRYuXKjatWunPvzwQ/N5o0aNUgaDQY0ePVotX75c/fvf/1YeHh7q/vvvVxkZGQ79/IW4ExU0s23Prl27FKA++OAD83MjR45UjRo1UtHR0erHH39UlSpVUvPnz1dKKbVy5UpVrVo1lZKS4lDbrl27pho1aqT0er0aPXq0evvtt9W8efPU/fffr3777TellFIpKSmqfv36ysnJST377LPqjTfeUK1atVKAWrJkiflaubG4adOmqlatWuqll15SL7/8svLz81NVqlSx+H0/dOiQ8vLyUg0aNFAvvfSSevPNN1Xr1q2VpmkWcXLt2rXmmBYeHq6WLVumFi1apJRSav369UrTNNW5c2e1bNky9dJLL6kaNWoob29vdfLkSfM1hg0bplxdXVXDhg3ViBEj1Ntvv6369u2rAPXWW29Z/DyefPJJBaguXbqoJUuWqFdeeUX16tVLLVu2zHxOUWOpEPeCvn37qvLly6svv/xS1alTRwHKw8NDjRs3TqWmpprPe++995S7u7v64osv1NGjR1Xr1q1Vhw4dlFJK/fnnn8rFxUX9/vvvDr9/UX5nhw0bpgDVr18/9Z///EcNHTpUAap3794W16pevbqqW7euCggIUDNmzFBvvvmmatasmdI0TR06dMh8XnJysgoNDVUVKlRQM2bMUMuXL1dDhw5VmqapSZMmmc/LjYkNGjRQwcHBatGiRer1119Xp0+fdjgGNm3aVLVr104tW7ZMPf/880qv16v+/ftbtH/t2rVK0zTVqFEj9eKLL6r//Oc/atSoUeqJJ54wn1PU/qQoGhlsizvae++9pwC1evVqi+eNRqN64IEH1OOPP66Usr90MTo6WlWpUkUBClB9+/ZV2dnZ6sSJE8rNzU399NNPDrdp6NChSqfTqV9//dXqWO7AffLkyQpQ33//vfnYtWvXVM2aNVWNGjXMy6xyB9v169e3WFK0dOlSBag//vjDfN3atWurRx55xOLmQEpKiqpZs6bq2LGj+bncwXbuzybXqVOnlF6vVy+++KLF83/88YcyGAwWz4eHhytArV+/3vxcenq6qlSpkurbt6/5uTVr1ihAvfbaa3Z/Ft9//70C1IYNGyyO//e//7X5vBB3o+IMtjt06KDKly9vMXg7e/asatiwoTmmtWrVSl27dk0lJiYqf39/tWnTJofbNmfOHAVYdO5y5f4eL1myRAHmm5VKKZWRkaEeeughVa5cOXX16lWl1I1YXKFCBXXlyhXzuR999JEC1CeffGJ+rn379qpx48YqLS3N4v1atGihateubX4ut6P58MMPq6ysLPPz165dU97e3mr06NEWbb5w4YLy8vKyeD63oz137lyLc3NvdOb65ptvFKAmTpxo92fhSCwV4l4QGhqq3N3dlbu7u3rmmWfUtm3b1DPPPGO+EZ8rKytLPfroo+b4VbVqVRUdHa2UUqpTp05q3LhxDr93UX5n//e//ylAjRo1yuL4lClTFKC++eYb83PVq1dXgPruu+/Mz126dEm5uLio559/3vzcvHnzlIeHhzp69KjFNadNm6b0er06c+aMUupGTCxfvry6dOmSxbmOxsAOHTpY9AGfffZZpdfrVWJiolJKqcTEROXp6akefPBBi5sceX8WjvQnRdGU+WD74sWL6vTp01ZfQhTmr7/+UuXLl1cPPfSQRQdLKdMgz83NzSqY2donmJqaqn799Vd17Ngx83N9+vRRQ4YMUUoptW3bNhUaGqpq1KihoqKiCpzpzs7OVuXLl1e9evUqsO116tSxmplWSqmFCxdaDKJzB9svv/yyxXkHDx5UgProo48sHq9bt07FxcVZfI0aNUq5uLiYB/C5g+09e/ZYXPO1115TmqapY8eOWV2jfv365rvLSpkG2+XKlbP6WfTs2VM1bdrU/Lhbt27Kz89PZWZm2v1ZTJw4UXl5ealLly5ZvW+5cuWs/vMT4m7k6GD7xRdftDnrqpRpkPvbb7+pP//80/x7/+yzz6qHH35YKWW6wfXAAw+oKlWqqGeeeabQvYENGzZUTZo0KfCcTp06qUqVKlntx9y4caPFIDo3Fj/11FMW5125ckUBaunSpUoppS5fvqw0TVPz5s2zigu5e9XPnTunlLrR0cybf0MppbZv327uKOe/RqdOnVStWrXM5+YOtvN3didOnKh8fHzMjydMmKA0TVOXL1+2+7NwJJYKcS8IDg5WgNVgeezYsQqwGpAeO3ZM7d+/3zwg/Oijj5S3t7eKi4tT586dU927d1eBgYGqe/fu6vz58wW+d1F+ZxcsWKAAdfjwYYvnY2NjFWAxiK5evbpq0KCB1TVCQ0NVnz59LB537tzZKgZ89dVXFjcmc2Pi8OHDLa5XnBj4f//3fxbXyI2BuasBtmzZogC1Y8cOuz8LR/qTomjKJBv55cuXeeaZZ9i+fTuZmZkWx5RSaJpmtUdKiLwuXLhAt27d8PLyYuvWrej1evOxq1evMn36dKZOnUrVqlULvVbuHphc33zzDbt27eLvv//m77//ZuDAgaxYsYIaNWrw+OOPU7VqVYYPH27zWnFxcVy9etVuZvRcp0+f5sEHH7R6vn79+ubjea9RrVo1i/Ny9zTl7mk+duwYAMOGDbP7nklJSRZ7ofJnVz927BhKKWrXrm3z9U5OThaPq1SpYs6AnLdd0dHR5sfHjx+nbt26GAz2Q82xY8dISkqiYsWKNo9funTJ7muFuBdt3ryZWbNmMXLkSMaPH2913MnJifvuu8/8+MiRI7z11lv8+OOPXLlyhW7dujFt2jTatm3L8OHDefHFF4mKirL7fsePH6dv374Ftun06dPUrl0bnc4yFUzemJZXYTHtn3/+QSnF7NmzmT17ts33vHTpEpUrVzY/thXTANq1a2fz9eXLl7d4nLuXM3+78uaOOH78OEFBQfj6+tq8Zu77OhJLhbjbubm5AVhURQAYNGgQK1as4KeffrL4falVq5b5zxkZGTz//PNERETg5+dHq1atCAwM5JNPPmHRokUMGjTIbiUHKNrv7OnTp9HpdBbvC1CpUiW8vb0LjV9gHSuOHTtGdHS0VUzJlb9vkz9+FScGFhZXc3PlFNRHLU5/UhSsTAbbo0aNYs+ePUyfPp0GDRpYJb0SoiBJSUl06dKFxMREvv/+e4KCgiyOv/LKK2RkZDBgwABOnToFYC4tkZCQwKlTpwgKCrL57y47O5tJkyYxbdo0KleuzLx582jRooV5cD127Fg2bNhgd7B9q+S9mZCXUgrAnGxj8eLFFp3svPInecv9zy+X0WhE0zR27txp8/3yv76wNhWV0WikYsWKbNiwweZxe/9RCXEv+vLLLxk6dCjdunVj+fLlRXrNs88+y5AhQ2jWrBnvvfcevr6+TJ8+HYAXXnih0MH2rVDUmDZlyhQeeeQRm+fm7xjbimkA7733ns1EdPlvAtprk6McjaVC3O2CgoL4888/CQgIsHg+9yZ7QclQX3/9dQwGA08//TRnz55l7969nDx5kho1avDyyy8THBzMuXPnHE76aEv+CQR7itL/MRqNdOzYkRdeeMHmuXXq1LF4bC9+ORIDS6JfVpz+pChYmQy2v/32W9544w2GDh1aFm8v7mBpaWn06NGDo0eP8tVXX9GgQQOrc86cOUNCQgINGza0OrZgwQIWLFjAb7/9ZjOIvP3221y7do0pU6YAEBMTYzGYDwoK4vz583bb5+/vT/ny5Tl06FCBn6N69er8/fffVs8fOXLEfNwRISEhgGmmpkOHDg69Nu81lFLUrFnT6j+B4goJCWHfvn1kZmbanc0JCQnhq6++omXLllb/2Qghbti3bx99+vShefPm/N///V+BK0Zyffrpp/z444/m2YqYmBgCAwPNxwuLaWD6HS1KTIuOjsZoNFrMbhc3pgUHBwOmWeCbiWlg6tAX9xq2rvnFF19w5coVuzNltyKWCnEnCwsL48svv+T8+fPUrVvX/HxMTAxg/6Z6bGws8+fPZ8uWLRgMBvP5uf2y3O/nz5+3O9guyu9s9erVMRqNHDt2zLwaB+DixYskJiY6HL9y3/f69evFjj0lEQNttQng0KFDVgP1/OfcTH9SWCpW6a8///yTgQMHmtPTHzx4EICZM2eyc+fOQl/v7e2Nn59fcd5a3MOys7MZMGAAP/30E1u2bOGhhx6yed7EiRPZsWOHxdeKFSsAU3mXHTt2WC3XAbhy5QoREREsXrwYV1dXAAICAsydRTCV2CmoVI9Op6N379588sknVmVg4Mbdxa5du/LLL7/w008/mY8lJyezcuVKatSoYfMmQkHCwsIICQnhlVde4fr161bHbZV+yO/RRx9Fr9cTFRVldRdUKcXly5cdahNA3759iY+P580337Q6lvse/fv3Jzs7m3nz5lmdk5WVRWJiosPvK8Td5q+//qJbt27UqFGDTz/9tEg3pjIyMnjuueeYNWuWeQYpICCAf/75h6ysLPN1Cys/1rdvX37//Xd27NhhdSxvTLtw4QKbN282H8vKymLZsmWUK1eO8PDwIn9WMA2Q27Rpw4oVK4iNjbU6XpSY9sgjj1C+fHkWLFhgtWWtqNfIr2/fviilbK4EyP1Z3IpYKsSdrH///gCsXr3a4vlVq1ZhMBho06aNzddNmzaN1q1b07lzZwDzzHhuvyy37GFBMawov7Ndu3YFYMmSJRbHX3vtNQC6detm9/r29O/fn59++okvvvjC6lhiYqI5BttTEjEwv06dOuHp6cnChQtJS0uzOJb7syiJ/qSw5PDM9pdffkm3bt0ICwtj8ODBzJ8/33zMycmJt956iy5duhR4jRdeeIFly5bRqVOnIt2ZFwLg+eef5+OPP6ZHjx5cuXKF999/3+J4bi3tZs2a0axZM4tjucvJGzZsSO/evW1ef/bs2TRu3JjHHnvM/Fzfvn2ZO3cu48ePp3r16qxYscIcfO1ZsGABu3btIjw8nDFjxlC/fn1iY2PZsmULe/fuxdvbm2nTprFx40a6dOnCxIkT8fX1Zd26dZw8eZJt27ZZ7XssjE6nY9WqVXTp0oWGDRsyfPhwKleuzPnz5/n2228pX748n3zySYHXCAkJYf78+UyfPp1Tp07Ru3dvPD09OXnyJDt27GDMmDHmGf+iGjp0KOvXr+e5557jl19+oVWrViQnJ/PVV1/x1FNP0atXL8LDwxk7diwLFy7kf//7H506dcLJyYljx46xZcsWli5dSr9+/Rx6XyHuFG+++SaJiYnmGZtPPvnEvO3lmWeewcvLi2vXrvHII4+QkJDA1KlT+eyzzyyuERISYvPm49KlSwGYNGmS+bmuXbsyYcIEBg0aRIsWLZg3bx6jRo0qsI1Tp05l69atPPbYY4wYMYKwsDCuXLnCxx9/zPLly2nSpAljxoxhxYoVPPnkkxw4cIAaNWqwdetWfvjhB5YsWYKnp6fDP5v//Oc/PPzwwzRu3JjRo0cTHBzMxYsX+emnnzh37hy///57ga8vX748b7/9Nk888QTNmjVj4MCB+Pv7c+bMGT777DNatmxp80ZgQdq2bcsTTzzBG2+8wbFjx+jcuTNGo5Hvv/+etm3b8vTTT9+SWCrEnaxp06aMGDGCNWvWkJWVRXh4OLt372bLli1Mnz7dajsgwC+//MLmzZst8sDUqFGD5s2b8+STTzJy5EhWrVrFgw8+WODMc1F+Z5s0acKwYcNYuXIliYmJhIeH88svv7Bu3Tp69+5N27ZtHf7MU6dO5eOPP6Z79+48+eSThIWFkZyczB9//MHWrVs5depUoROPNxsD8ytfvjyvv/46o0aN4v7772fQoEH4+Pjw+++/k5KSwrp160qkPynycTSjWlhYmLkWW2ZmptI0TR04cEAppdSHH36oKleuXOg1nn76aVWtWjVVrVo19cQTT6hnnnnG4stWen4hcstN2fsqSEHZyJUylQBzdnY214zN691331U1atRQFSpUUM8995xV5nNbTp8+rYYOHar8/f2Vi4uLCg4OVhMmTLDI+nv8+HHVr18/5e3trVxdXdUDDzygPv30U4vr5GYj37Jli83Pkz9z8W+//aYeffRRVaFCBeXi4qKqV6+u+vfvr77++mvzObnZyOPi4my2fdu2berhhx9WHh4eysPDQ9WrV09NmDBB/f333+ZzwsPDVcOGDa1eO2zYMFW9enWL51JSUtTMmTNVzZo1lZOTk6pUqZLq16+fOn78uMV5K1euVGFhYcrNzU15enqqxo0bqxdeeEHFxMTYbKcQd4PcMjK2vnLrQOf+vtv7GjZsmNV1L1y4oDw9PdXHH39sdWznzp2qXr16ytvbWw0dOlQlJycX2s7Lly+rp59+WlWuXFk5OzurKlWqqGHDhqn4+HjzORcvXlTDhw9Xfn5+ytnZWTVu3NgqRhUUiwEVERFh8dzx48fV0KFDVaVKlZSTk5OqXLmy6t69u9q6dav5nNxMvLbKLSpliqOPPPKI8vLyUq6uriokJEQ9+eSTav/+/eZzhg0bpjw8PKxemxsv88rKylKLFy9W9erVU87Ozsrf31916dLF3BfKVZRYKsS9IiMjQ0VGRqrq1asrJycnVatWLfX666/bPNdoNKoHH3xQPffcc1bH/vnnH9W6dWtVrlw51bp1a6u+hC1F+Z3NzMxUUVFR5r5K1apV1fTp0y3KbillitndunWzeo/w8HAVHh5u8dy1a9fU9OnTVa1atZSzs7Py8/NTLVq0UK+88orKyMhQShXeP72ZGJjbh/z2228tnv/4449VixYtlJubmypfvrx64IEH1MaNGy3OKUp/UhSNppRj2YxcXV355JNP6NixI9nZ2Tg5ObF//36aNWvGnj17eOSRR6yWJuRnawlvXpqmceLECUeaJYQQQgghhBBC3DYcXsPt6+trXu6W39GjRy0Sr9hz8uRJR99WCCGEEEIIIYS4YzicIK13795ERERYZFLWNI0LFy7wyiuvFFqL8070zz//MG7cOO677z4MBoPd+nSJiYlMnDiRoKAgXF1dCQkJ4dVXX7U4JyMjg6lTp1KpUiU8PDzo2LGjzazUQghxq0hME0LcTSSmCSFuVw7PbC9cuJBff/2V0NBQGjduDMCIESM4ceIEdevWJTIyssjX+ueffzh69KjNZeePPvqoo027Zf78808+++wzHnzwQYxGo7kGXV7Jycm0adMGg8HA66+/TkBAAEePHuXq1asW502cOJFNmzbx2muvUblyZV588UXat2/Pn3/+iZeXV2l9JCHEPUximhDibiIxTQhx2yrORu+MjAy1Zs0a9fjjj6uOHTuqAQMGqHfeecci+VNBkpKSVLt27ZROp1M6nU5pmqY0TTM/1ul0xWnWLZOdnW3+87Bhw2wmhpo1a5YKDg5W169ft3uds2fPKr1er1asWGF+7vLly8rDw0O99NJLJdtoIYSwQ2KaEOJuIjFNCHG7KladbScnJ4YPH84HH3zArl272LRpE6NGjcLZ2blIr//3v//NhQsX+P7771FKsWPHDnbv3s3IkSOpWbMmP//8c3GadcsUpQzTqlWrGDFiBB4eHnbP2bVrF0aj0aK0lK+vL506deLzzz8vkbYKIURhJKYJIe4mEtOEELcrhwfbv//+u92A8/nnn1vUw7Pnv//9LzNnzuTBBx8EICgoiNatW7Ny5Up69epltX/mdnfq1CkuXLiAn58fPXv2xMXFBV9fX0aPHm1REP7IkSNUrFgRHx8fi9fXr1+fI0eOlHazhRDCJolpQoi7icQ0IURZcXiw/eyzz/LTTz/ZPPbLL7/w/PPPF3qNS5cuUbVqVfR6PR4eHly+fNl8rGvXrvz3v/91tFll6sKFCwBMmTIFHx8fPv/8cxYsWMCWLVsYPXq0+byEhAS8vb2tXu/j48OVK1fsXj89PZ2rV6+av5KSkoiLi0M5VrVNCCGKRGKaEOJuIjFNCFFWHB5s/+9//6Nly5Y2jz300EMcPHiw0GtUrVqV+Ph4AGrXrs3HH39sPvbTTz/h6urqaLPKVG4ijjp16rBu3Trat2/PuHHjeOWVV9i0adNN1wxfuHAhXl5e5i9vb28qVqzItWvXSqL5QghhQWKaEOJuIjFNiNtf7MGDRGkasUUYS97O75Gfw4Pt9PR0MjIy7B6zlVk8v44dO/LVV18Bppny5cuXExYWxkMPPURERARDhw51tFllKne5Udu2bS2eb9++PWDKkpl7XlJSktXrExIS8PX1tXv96dOnk5SUZP46e/ZsSTVdCCGsSEwTQtxNJKYJIcqKw6W/mjZtyvr16+nZs6fVsfXr19OkSZNCr/HSSy+RkpICwBNPPEG5cuXYunUrqampvPnmm4wdO9bRZpWpkJAQXFxc7B7PvQFRr149Ll68SEJCgsV+oCNHjlCvXj27r3dxcSnw+kIIUZIkpgkh7iYS04QofddiYzmwYgVhY8fiGRhY1s0pMw7PbE+fPp0dO3bQrVs3tm7dyo8//sjWrVvp1q0bH374ITNnziz0Gu7u7vj5+Zkf9+nThw0bNrB9+3bGjx9fpKyStxNnZ2c6derE119/bfH8l19+CUCzZs0A6NSpEzqdjm3btpnPSUhIYNeuXXTt2rX0GiyEEAWQmCaEuJtITBOi9F2PjWVPVBTXY2PLuillyuGZ7W7duvHBBx8wdepU+vfvj6ZpKKWoUqUKH3zwAd26dSvytf766y/279/P2bNnGTFiBJUqVeKff/4hICAAT09PR5t2y6SkpJgzsJ8+fZqrV6+ydetWAMLDw/H39yciIoIWLVowePBghg0bxrFjx5g+fTqDBw8mJCQEgCpVqjBq1CimTp2KXq+ncuXKLFiwAC8vrztuNl8IceeSmCbEnU9mjW6QmCaEuG3dTJHuI0eOqB9++EEdOXLEodclJyerxx9/XOn1emUwGJROp1MHDhxQSinVr18/NXXq1JtpVok7efKkAmx+ffvtt+bzvvrqK9W8eXPl4uKiKlWqpJ5//nmVlpZmca20tDT1/PPPq4oVKyo3NzfVoUMH9ddffznUnqSkJAWopKSkkvh4Qoh7jMQ0Ie58MQcOqEhQMTn9p3uZxDQhbj+OxqjixLSrMTHq24gIdTUm5pa9x83SlCr9ugRPPfUU27dvZ/369bRq1QoPDw/2799Ps2bNWLt2La+//nqR6nXfq65evYqXlxdJSUmUL1++rJsjhBA3RWKaEPbZm8GOPXiQlWFhjDlwgMCcZdDi9iAxTQjHY1RxYlpx3mNtq1YM//77UoubDi8jB/j777/Ztm0b586ds8o+rmkaq1evLvD1W7duZfHixXTq1Ins7GyLYzVq1ODUqVPFaZYQQgghxF0ld99j3Z49rZaLO7m7l1GrhBDizqKUIiA0lBnJyRizslBKoWnaLX9fhwfb7733HsOHD8fV1ZXq1avj7Oxscbwojb5+/TqBdvYXJScnO9okIYQQQog7VmH7r/MPqsuq0yiEuDfdzjkiinLTURmNXIuJ4cCKFVw5fhzfkBDTZwkKQrvFibkdHmzPmzePfv36sWbNGtyLeUc1NDSUbdu20alTJ6tjn332Gc2bNy/WdYUQQggh7jT2Zq9tDapRqsw6jUKIe1NBK2zKSlFvOiqjkej33+fjkSMxZmWZn9+7aBE9V68mdMiQWxo7HR5sx8TE8Pbbbxd7oA0we/ZsevXqRUpKCo899hiapvHLL7+wceNG1qxZY84oKYQQjrid77wKIYQj8s/EVG3ZkvvHjy/TTqMQQuRV0v2uom6NKepMtcq5OZk/ZgIYs7L4eORIarZvb3rdLVod5HBEbt26NYcOHbqpN+3WrRubNm1i79699O7dG6UUTz31FJs3b2bDhg20b9/+pq4vhLg3XY+N5cfFi+/5mo5CiDtP3k5m7kzM0po1+W7+fA5t3IiTuztJZ84U2Gm8FhtLGeS9FULco0qqlnbeWeqA0NAC45it+Pjd/PksrVmT6PffRxmNFuceWLHCKmbmMmZlcWD5covXlDSHZ7YXLFjAkCFDcHV1pWPHjnh7e1ud4+vrW+h1+vXrR79+/Th69Cjx8fH4+vpSr149R5sjhBCA7GEUQtyZbMUuq5kYTaPRgAHsXbiw0E5jeGQkml5fip9ACCGKz5H91I7OVOv0eq4cP17g+yecOIHuFsZMhwfbzXLSpI8fP95uRzZ/hvGC1KlThzp16jjaDCHEPUophcrORmcwYMzKMnUqZQ+jEOIOZNXJrFWL8DlzrGZinNzccHJ3L/NOoxBCOKKwZeGO7qcu6kx17k1HY3Y2viEhBbbBJzgYY3b2LYudDg+216xZUyKzRWfPnuXDDz/k7NmzNsuHLV269KbfQwhxd5E9jEKIu4WtTqaTuztt5861GlRnpqaSmZJS5p1GIYQoiqKsNizOfmpHZ6o1nY6wsWPZu2iRzQG6zmAgbNy42ytB2pNPPnnTb/p///d/PPHEExiNRipWrGizfJgMtoUQednqmAZ37FjoHsZbnfhCCCGKKjeZUIsXXiDtyhWr2GV3UK0UhzZvpunIkWXaaRRCiMIUOXmZg7PUgMMz1Zqm4RkURM/Vq63irc5goOeaNXgGBt7SPmKZROQZM2bQu3dv4uPjOX/+PCdPnrT4OnHiRFk0SwhxmypoD+Nvq1eXaeILIYQoquuxseyZOxeDs7PtTmaeQbXOYDkfsm/JEjwrV6bHqlVWx0qr0yiEEAVxJHlZcfZT585U54+B5mvauOmo6XSEDhnCpFOnaD1rFo0HDaL1rFlMOnWK0MGDb7862wDfffcdK1eu5OjRo1ZLwAGio6MLfH1cXBxjxozBy8urOG8vhLjH2Lr7KXsYhRC3q4LK4bhXqIDOYLAbu/YtWULokCH0WLWKT0aNMse9i9HRfDR8OL3XrSO4QwcOLF9OwokT+AQHEzZunGmgLbPaQogy4uiy8OLspy7uTLWm0+EZFER4RIRFzp/SuDnpcFT+4osvaNeuHfHx8ezfv5+qVavi5+fH33//TXJyMs2bNy/0Gp07d+bnn38uVoOFEPceW3c/Hd3DKIQQpcVWOZzcPYxT4+IK7GRejI7mw6FDCR082GompsNLL5k7m+ERETy6YQPhERGSDFIIUeYcLbNVnFnq3NcVZ6Za0zQuRkezwMODi9HRpbYKyOHIHBERweTJk/nss88AmDdvHt988w1Hjx7FycmJdu3aFXqN5cuXs2fPHmbOnMk333zDwYMHrb6EEOJabCy7o6IwZmUVuIfR0UAthBClSRmNXDt/nj1RUWwbNIiLv/9eYCfz8NatpFy+bHdQXVadRiHE3e1abCy7IyO55mDdbE2nczx5WZ5Zake3xuSdqXb0pmNmSooDn+zmOdwD/euvv+jSpQu6nGCfnJwMQPXq1YmMjGT+/PmFXuPatWukpKSwcOFCOnbsyP3332/+at68Offff7/jn0QIcde5HhvLjy+/TFpios2OqexhFELczgxubjb3MH40fDgeAQEFxi4Pf/9CB9Wl3WkUQtwd7A2qba3KKQplNDq0LDzXzeynvlNuOjq8Z9vV1RWj0YimaQQGBnL8+HFatWoFgKenJ2fPni30GkOHDuXMmTMsW7aMOnXqWGUjF0KI/GUjNJ3Oao+O7GEUQtzOPPz9be5hzF0q3nv9+iLFLhlUCyFKUu6gum7PnlZ5JRyVW0u7uGW2bnY/9e0eHx0ebDdp0oS///6bjh070r59e1588UX8/PxwcnJi1qxZNG7cuNBr/PLLL3zwwQf07t27OG0WQtzlbJWNeHDyZEKHDKFm+/ZWHdO8exhLO/GFEELYpGm4enuzJ2crTH6HNm0i7vBheq5ZQ3hkJDq93mbsKhcYSHhEBOXydYjtPS+EELdC7qA6V/5JEaDYZbY0TeNCdDRrW7Vi+PffE9isWZHadCfEQYcH25MnT+bkyZMALFiwgB49etCzZ08AqlSpwo4dOwq9Ru3atcmys3leCHFvs1VPG2DvokX0376dOt262R1UX4+L47c1a2g6YsRN36kVQoibUVjWcTDNcP/82ms8umEDL/v58cSuXVadTM/AQNpERlq91t7zQghRkvIPqpVSkJN53FYtbXsTI0VZbejoLPWdEAcdHmx37drV/OfKlStz4MAB/vnnH1JTU6lXr16RloS/9tprTJkyhUaNGlGvXj1HmyCEuItci401D5DLVapUYNmI/3v0USadOoVnUBCA1V5Hz8BAWs+cWWptF0KI/IqadTyXT3AwxqwsUi9fLqUWCiHuBQWVICyq/CsNq7Zsyf3jx9udFOm5ejWhQ4bIasM8HN7MOHfuXGJiYsyPNU2jdu3ahIaGcvnyZebOnVvoNSZPnsy5c+do1KgR1apVIzQ01OKrSZMmjjZLCHEHUkrh4e9P65kz8fD3d7hshBBC3E4czTqeu4cxLTGxdBsqhLjrFTfZGdhP7ujk7k7SmTMF1tLOTbp2JyQvKw0Oz2xHRUXRuXNngnJmlvKKiYkhKiqKOXPmFHiNsLCwe/qHLoSwvlvqV68e4XPmOFQ2QgghylR8LGxbAf0noLwqWM32xP35J6P376fHqlV8MmqU3T2MKZcv3/b7DoUQ9w6byR01jUYDBrB34cJCJ0XCc5Z23+7Jy0qDw4NtpZTdgXJsbCze3t6FXuPdd9919G2FEHcRm/uyNY0WU6YUuWyEDLiFEGUuPhbeiUINePqmso57+Pvf9vsOhRD3CDvJHZ3c3HBydy/6pIhMrAJFXEa+ceNGevbsSc+ePdE0jeeff978OPerU6dODB06lBYtWtzqNt+2Pv74Yx588EE8PT0JDAykf//+nDhxwuq81atXU6dOHVxdXWnSpAmffvppGbRWiLKhcpJqWC1BUopDmzfTdOTIQpdcSjmv0iExTYiCJcfFgaahPLwst8Bomilzr6ZxaNMm3mnenOsXLhAeGcmjGzYQHhGBZ1CQxLJSJjFN3I3s1cwuLic3N5vJHTNTU8lMSSl6LW2lSqQ9d7oiRfmMjAyuXbvGtWvXUEqRnJxsfpz7pWkaQ4cOZcWKFbe6zbel3bt306dPHxo0aMCOHTtYsmQJv//+O506dSI1NdV83qZNmxg9ejQDBgxg586dPPTQQ/Tp04eff/65DFsvROkpaF/2viVL8KxcmR6rVlkNuAsrGyFKlsQ0IUwK6simxMeDVwV0Tk5cOX6cgNBQeq5Zw8zr15mRnMzM69fpuWYNAD+/9ho6vZ6X/fzu+T2MZUFimrhb3czebFsyU1MxZmVZD6plUqRYirSMfNiwYQwbNgyAtm3b8vbbb0sW8Xw2bdpE9erVWbNmjfk/0IoVK9KuXTv2799Pq1atAIiIiGDgwIHMmzcPMP08o6OjmTt3Lp9//nmZtV+I0qLT6+0uQcpdctnnvfcKXHIpbj2JaUKY5HZk6/bsaZnRVyn8uj8GfQajsrNp9+KLeFWpgrp0Hv26hXDuOIYqIYT2HEmTIUP4a8cOyTpehiSmCVFESpGWmEjY2LHsXbTIYnJk35IlhA4ZUmgeitv1ZmJZ1OV2eM/2t99+a/P5jIyMIpX9ultlZmbi6elp8Y/Ly8sLMC2bBThx4gRHjx7lpZdesnjtwIEDmTp1Kunp6bi4uJReo4UoA4WVwjm0aRNVH36Y5uPHS9mIMiQxTYgCGI2o+Bi0bSvg3HG0Ji3x7jcedr6Pbu5IyL7RAdW/uwg1exUN+j1BVnq6JEIrIxLThCgaJ3d3kuPi8Ktbl56rV1ts+7sYHc1Hw4fTe926O3JSpCzqcjv803jvvfdYtmyZ+fGhQ4eoXbs27u7utGnThkuXLhX4eqUUV65cIT093fHW3saefPJJDh8+zFtvvUVSUhInTpxgxowZNG3alJYtWwJw5MgRAKtVAfXr1ycjI4OTJ0+WeruFKA1KKYu9jIWVwqnXuzeapknZiDIkMU0IE11iHOGBpu+AaaC98320HjVh9Xz4YiO4uqNdOIOWb6ANQHYW2rxREB+Lk6srbSIji13zVhSfxDQhbrCKa5j6agGhocxITqZC7dqgaYQOGcKkU6doPWsWjQcNovWsWXR46SU0TTPX0pY8FAVz+CeyePFidHl+kM888wzOzs4sWbKE2NhYZsyYUeDrMzMzqVixIl999ZXjrb2NtWrVih07djBt2jS8vb0JCQnh4sWL7Ny5E31O1uSEhAQAq4ztPj4+AFy5csXmtdPT07l69arFlxC3I6WUKSkGphlspZRV3dn9b7+NZ1AQPVevLnRfdrnAQFpMnSqzQGVAYpoQJrqkeNoEmb6jlGlGO++gWtOg0wD4aLX1QDtXdhbatuWgjKXXcGFBYpoQN1jENbDqq+2JiuLa+fMApkH1nNmmQfWc2eZBtUyKFI3Dg+1Tp07RoEEDAOLj4/n+++959dVXefrpp5k7dy5ffPFFga93dnamSpUqZOd0yO8WP/74I0888QSjR4/mm2++YcuWLRiNRrp162aReKM4Fi5ciJeXl/mratWqJdRqIUpO3kD94fDh7F++HJQi+v33WVqzJt/Nn8+hjRvZ+fTT7Bg6lMaDB1vdLZ106hShgweb74zmLveRWaDSJzFN3HPiY2FFpOl7fq7uAChlNC0dzzuodnEzHT9XcDkczp8AnZQsLCsS08SdrqSzjuPqjr68t7kca96+2nfz57O0Zk2i338flCLxuy/hYQ8uf7rFalAttbQL5vCebZ1OR0ZGBmDav+3k5ETbtm0BCAwM5HIREn9MmDCB1157jU6dOuHq6upoE25LEydOpF27drz66qvm5/71r39RrVo13nvvPcaMGWO+M5qUlESlSpXM5+XeSfX19bV57enTp/Pcc8+ZH1+9elUCubitKKORo599RuqVy7SaNg2DuzvGzAwykpPZt3SpVebxPzZsIP6vv3jyu+8Ij4xEp9fLvuzbjMQ0cc/JqZlNeE/wM93gU0pRIScJWoXMDDSd3npQnZ4KaSlQpeByOFQOBmO2DLjLiMQ0caezm6zRQXnjmnd2tu1yrIAxK4uPR46kZvv2uIXUNcW5W6gskpeVBocH202aNOGtt96iSpUqvPHGG7Rr186cLOLMmTNUrFix0GucOXOGo0ePUq1aNdq0aUNAQIBFB1vTNJYuXepo08rU4cOH6dWrl8VzVapUwc/Pj+M5mZdz9wAdOXKEunXrms87cuQIzs7OBAcH27y2i4uLJOQQty2lFKkJCdTu3NkiC6+uSghOvUcz6uef2TF0KIc2bbJ4XezBg/ywaBHhOYkq7O3hFmVDYpq41ymjkWsxMRxYuZKks2fxqVmT8FkzrQfVSsGuzdBrJLy7yPZScr0B+o4DTfYzlhWJaULkiWsrVnDlxAl6rVljtxwrmAbcB5YvJ3zObPMKn6JydPBcFsnLSoPDvdsFCxbQvXt3QkND8fT0tNh7vWPHDh544IFCr/Hpp5+aA9Ovv/5qdfxOHGxXr16dgwcPWjx3+vRp4uPjqVGjBgDBwcHUqVOHLVu2WAT8zZs30759+3s6m7u4cymjETcvL/jvBnTzRll0NHU5WXj7rF9P3OHDXIyOtnhtwokT6PQyy3M7kpgm7jXJcXF4AKkpabjaWK2TlZKCUkCf0Wj5B9Ubl0DXITB7FeSLg+gNELHGNFsuK3fKjMQ0ca/JnwQtd7l47iy2k7s7hg0b7JZjBQgIDSW4QwdTX21vMn6ZGaYbjEWIZXfr4NlRDg+2W7ZsaZ6ZDgkJsUgiMXLkSGrVqlXoNe7GbI7jxo1j8uTJTJo0iR49enD58mXmz59PxYoV6d+/v/m8yMhIBg8eTEhICG3btmXz5s3s27eP7777rgxbL4SDlDIl+tHp0WkaKi7GlG3XThZeY7M2PDhpEh+PHGlx2Cc4GGN2tgy4b0MS08S9JiU+Hg9Xd6gQYHO1jqFKCOqxp6BiFdTsVZYx71g0RA1HRa6DBzqYkqGdP2FaOt53nGmgLVl6y5TENHGv0SXF0ybYnbikeJRSVsvFM1NTyUxJsSzHqmk4ubmRmZpKowED6LN+/Y18FueOo1UJgb5jwS9IYlpRKVEijEajevvtt1VoaKjy8PBQlSpVUn369FF//fWX1bmrVq1StWrVUs7Ozqpx48bqk08+cei9kpKSFKCSkpJKqvlCFF12tjJePKvUW7OUmjlIqfQ005/DsP/11iyVmZysIsH8NddgUEnnzimj0VjWn0jYIDFN3EuMRqPKzkhXSimVnZWljJmZyvjJu0o9YLCMZQ8YlPHgHmXMzlbZMadvxMG3Zqms86eUMStLGbOzlTEzw3TdjHSlJMbdFiSmiTtdzIEDKhJUzIEDhT5vEdMy0lV2Vpb6ZtYsi35YJKiDa9aohJMn1YpmzdTBNWtUZnKyUkqpzJQUUzyzEwfVp+uUys5Wlw4fttkmcYOmlFKFDchfe+01Bg8eTEBAAK+99lqB52qaxrPPPlvoIP/8+fMsWbKEvXv3cuXKFXx9fWnVqhWTJk2icuXKhb7+Xnb16lW8vLxISkqifPnyZd0ccS/JrS+bW/bG1R32JsPMQaZas/Z0HgTzN/CiuztZqanmEl95M4+Le5fENFGWlNFIZmoqBicDOmcXU5y7dB6tV7Dd/ddq5zmMnr5oyojO2QVjRjpZmVk4ubmh6XTE7diA/6tjiHt+Jf59Bpf+hxJlSmKauBViDx5kZVgYYw4cILBZM7vPW+zLPn4cv3r1CJ8zh22DBnFoo2VfLSA0lDEHDqBpGsYLZ9F/vNqUBHLIFJRvRbSeNe3nofjkFCk6Fxb7+1u1SdxQpGXkU6ZM4eGHHyYgIIApU6YUeG5RBtuHDh2idevWZGZm0rFjR+677z4uXrzI8uXLWb16Nd999x0NGzYs+qcQQpS8PEvFMWaDprOuL+tAFl5jRjr1+/TBJziYsHHjTLW0ZaAthChl12JjObBiBfdPmIB7hQqgFPrEOHQfrzYt/Z6zBm3HyoJrZm9+E93YSFR2znyFpuHk7m5ZTeEWZ+4VQoi8DG5uVvuyAdA0WkyZYrlcPL//bkCf27/TNJi9Cm3twgLjINuW4zY6ouQ/yF2mSD1do9FoTnxmNBoL/CpK/ewpU6YQEhLCmTNn2L59O2+//Tbbt2/n9OnTBAcHFzqgF0LcYkYjxJ037dGZOQhWRKGM2db1ZfNm4dXbuXenN6D6jkMzOPHohg2ER0biGRQkA20hRJlI+SsaVkahU0bTEzvfR/9obVg9H3Z/CM4uRaqZren0XN653WbtWbc6DTlVOxy3OjJxIMS9rDi1sYtbT9vD3992GS+lOLR5M01HjrxR+SXnBuGDkyejLp6znEhxcTOtXCxKHDQYMLi5OdTOe02Z9Hb37t3LrFmzzPUMc/n4+DBz5kz27t1bFs0SQoBpoL3zfehR09T5/GIjbHgVTW+wHXg3LoGKlU1ZePMPuHOy8Gp+N2axdVJLWwhxq+Um9Im37qzqkuJpE+KBawU/Uyczb6IzB2tmu/v4QFoK7n5+FofLNbyPGht3U67hfSXzeYQQd6Tc2tjXHRg4F+c1Th4euHp72y3jtW/JEjwrV+axbdvo9e5aZl6/zozkZO4bOtS0dDzvRIoDcVBlZZGVmlrkdt6LirSM3NEMjK1bty74TQ0G0tPTbR5LT09HL5mJhSgbSkF8DOS9wwkFB95j0RAxFKLWw/3tYPtKycIrhChTyX9F4/FOFMkNHsKj1Y0ar0opKnR/DPoMRjNmo334jv3VOkWome1RPxRGR5i+CyFEKVNKEdC4MTOuXwewLOOVJ7P4xeho9i9fzgMTJkBcDNq6hXDxHFrkWuuJFAfiYGpi4q37cHeJIg2227Rpg6Zp5OZSyzsrpZSymqUqbCl5hw4dmDlzJvfddx916tQxP3/s2DFmz55Nx44di/wBhBAlSBkh/1JxKDzwfrEJTh9FrdwDYyLR9Df2eUtdWSFEaUuJj8cjz3fgRtKglSu5fukSPZYvt79ap6g1s/0CYWzkrf9AQoi7Sm7uiLCxY/EMDCz8BTZYJEI7cYJea9bgGxJCQGgoD06eTOMBAzC4u5OVksI/u3ZRp1s3+Py9G6t5NA2m/cf2REoR46C6fJnwiAjKFfMz3AuKNNj+7bffzH++dOkSI0eOpG3btvTr14+AgAAuXrzIli1b2L17N6tXry70eq+99hrh4eE0aNCARo0aERAQwKVLl/jjjz+oVq1aoRnPhRAlKG8iNJ3e/h6dQgKvGjjJtMcnd3CtkxUqQogy5H1jabcyGjn62WekXrlMq2nTMLi7o7KzTTVj85PVOkKIWyx3qXjdnj0dHmzbS4QW3KEDD0ycSPicOahL59GvWwjnjmOoEkKdoS+gXblouW2moImUvHHwgQ6wbbnNOOjh70+byMgS+qncnYo02G7SpIn5z/369WPgwIG8/PLLFuf06NGDqVOn8vbbbxc6M12tWjX++OMP1qxZw969e0lISKBOnTqMGDGC4cOHU65cuWJ8FCGEw4xGU4bxbSvh0jmY/rb9PTq5gXfue6gHOqDlCbzZvUahC6gCIPuxhRBlSimFX8+B0GcwftnZKKVIv3aN2p07W3RAtSFTUI+ORStotc4738GYCDS9AZWZgWZwktU6QogyZS8R2j+ff859w4bB5++hyzuo1jR0w6fDdhsrFwuaSPlqK3QeDC27okbPQTM4SRwshiINtvP64osv2L59u81jnTp14tFHHy3SdcqVK8fEiROZOHGio00QQpQEoxG19zO0q5dh+DTTrHRWBgx9AX74HI4ctH7NV1tRzy/B6FMRbeQsc33Z7MwsdJomGcaFEGVKGY2m/YjbV5gG1FVCUAOexsXb37oDeuJPtPf2o2avspztAdNqnUGT0VzcuPLtTnwj+hMvNbOFEKVAlxhHeKDpe365idD2REVZJUKr1bUr6uJZyzgHBWcXzzuD3bwt7HjH5gx2yg9f4jH9UVIWbsej1SMl/ZHvag4PtsuVK8fXX39tc/b6yy+/lFlpIe4ESqGuJaC16AzJ5+GPhXD1OJQPgfpjYf0vEDEMdm648Rq9ATV7NXj5mWavjTeWizu5O8uMthCi9MXHmvJMPD4RVc7bcj9iDq1KCOr+dpb7FF3c4J8/IGIoWtR6q9U6qu84tJxOZvbVRKmZLYQoNbqkeNoEQVxSvPm5AhOhAWgajQcMQLfORm3swrKLf7EJThyGOWtQOXl38s9ge/j7Q1qK6btwiMOD7QkTJjBnzhwuXrxI7969qVixIpcuXWLHjh289957REVF2Xxd+fLl+fbbbwkLC8PT07PAjrmmaSQlJTnaNCFEQZQCjKDpUcqI5ukNx96H70aByhOY/7cIwlfD3PXQ+CGI/tG8VFzzDyItKQk3Hx+0nFqN5pqNQghRynKzjhufmIoWF2M9Q61p0LE/2tqFENwAHp8MnQaYZnnSUkz7FWcOQntymt1OphDizmYvGVlJJCkrroJmr/OzlwjNTNNwr1ABg7ud2euiZBc/cRgqVCLt7EnchjSRlTwlyOFe8qxZs/D29mbRokWsW7fOnKU8MDCQJUuW8Mwzz9h83fPPP09gzj/k559/XmbBhChNyggpMXB4BVw9jhY6BdwqWg+0wfR4z0gIagf9xkP/CWSlpHDo/zbj5udPna5d5fdXCHFbSImPx8O3IpqLK9q6FRZ7FHFxM313dQffivDefuuVPOEjTfsVt69Aqx8G7f2If3qpRSczt4Z2/lraQojbR0EDZ3vJyG4mSVlR39/eoNrW7LUFV3f05b3tJkJrOnIkxz7/nPufftqcddxu0kcocnbx1G934iYreUpUsaaknn76aZ566inOnTtHbGwsgYGBVKlSBV0B+zUjIiIA0zKIiRMn4uHhgYuLS/FaLYQoOmU0zWDvGZkzsNYgfBX8ttB6oG1+TRb8tQIVFsnHI0ZQvnJlwsaNwzMwUPZlCyFuC3kToWlgmtGpHWo5e52eAlmZ8NhT9lfytF4FfcehsjLRki5bDaqllrYQt7/SGDibt630HWvay1yE9y90UJ2PUooK3R+DPoPxzs62mQht35IlNHniCUb/8gvGC2eLlvTxWDREDS80u3imZmB3DNT3kpuLJaXY6z91Oh3VqlWjWrVqDr0uMzOTihUr8tFHH9GtW7fivr0QoiiUMs1omwfagMENDO6mmZ2CXDuBptPTa80ajNnZaDqdzGgLIW4LymiEtFQ0JwPo9WDMhqdehEpV4Hq+2esm/4b0RPsreb4bBVU6oBl8Aaz3JEotbSHuKfYGzrnbVpIbPIRHqxJYdu7qbvHQ1nLxAytWWCVCM/vvBvRzR5rin4sbnDyMtv5Xu0kfeSgnsZl/EGrUbDQnZ6ttM0Zvf/bEQl1vG3FwdITVTQZRuFLfbOns7EyVKlXIzs4u7bcW4u6XZ182KhsUpqXjeTuYWamQlWLqhBbEMxhlzEbT6dHppWa2EOL2oIxGQKFlxsGfq02D6oCW0HB8vlU8ABo0nW4dBy0umAWHl0NYRGl9BCHEHSglPh6PPN+LK+/sdYXMDJRSoJTFcnEnd3cMGzZYJ0IDHpw8GXXxHLqNS2HmSss8FL//gNZ5UIGz1wDxn27B/9UxVnuzywUGEh4RQbn8qwPkpmOxlUlmowkTJvDaa6/RqVMnXF1dy6IJQtx9lBGVlQo6gynJjzELdM5oxsz8J8LxzVBvpGkJpa0OqGZANRiHpsmScSFE2Uv+7Usy/2805SP/QnN2QTuab0l4lY5w/Uy+gTYOreRBZzDNDgkhhIOKmvDMYvb6+HF8Q0JoOW0aaQkJN5aLaxpoGpkpKZaJ0HQ63CtUoPGAAeh/+BTe/dk6D0WdkaABmemFJ320sTfbMzCQNpGRN/8DEWZlMtg+c+YMR48epVq1arRp04aAgACL5amaprF06dKyaJoQdyZlRKHIyIoj5sJqUlOP4+YWQlDQWJzvn492/TQc33Tj/D+WQO0hpr3be/ItrdQMqDZr0NwDJRuvEKJ02dkTmXFsHz71U1FOLmjXz+VbEq5ByADbeSgcWMlDdpapRI4QQjiowL3ZtpKdZWfj5OZGZloaD0+fzoEVK/Bv0IAHJ082JzwzZmbQ4oUXyEpPp9moUfjWCkHT5axcbN+34DwUtQaj6fU2kz6K0lUmg+1PP/0UFxcXXFxc+PXXX62Oy2BbiEJYLBc3ooCLF97n76OjUHmC7pkzi6hbdzUBbdejJRyGK9GmA1ei4duh0HY9VO5gWkJ57YRp6XiDcTkDbZnVFkKUruS/ovF4b7Hlnkil8O43HXSz0IzZcOQdB2avi7aShwbjICND9iQKcZsoy7JcJUYp/HKWi/tkZ5GZmsqxzz+n+8qV5gF1VkoKBjc3/Bo0IHzOHNSl8+jXLYKLZ9EFVMV52FQ6vLQIkmPQDkSa4lxhFWW+GwVB7VDuQWhJl8vko4sbSmSwnZKSQkxMDCEhIUVKoHTy5MmSeFsh7k3mMl4r4fo5VPhKMjJirAbaAEpl8fffI/Hxbodz48loe0bcOHhiK4QMQlXvBmGR5rulGjqZ0RZC3DJ2O9FK4f6vtrA3GffMjJybigqVHIP210pIuQjhK6wH1YXNXheykoc2ayD3BqPsSRSi5BWQxduekswu7ihHamDbZTSi4mPQtq0wZQqvEoJh4CT6fvAB6uJZdDkDakNAVVT/CTQaMAC+/xTdtSswfJppD3ZmGprBGXXsfTRHK8ocWSl5KG4TDg+2X3nlFZKTk82lvL7//nt69uzJ1atXqVmzJl988QUhIYUs1xJCFI8ywunPUOmXoek0NIM7qGxiYt+xGmibX6KyiIldQY06EXD1hHkGmzqjUJ5VTEnUcmexNUmEJoS4tWx2oo1GiI9B2/YOXLmA1rwtdOqPOv0ppF9B5cQ7pbIhdApawp83VuoUNnt9JRp2D7e5kocG424MtIUQt0Z8LLwTBeE9b3rlSEnOeBe7Brata2UnQBg4ldOZBto730fLmym8Wm10o+eg8g+o01LQLp1HOTmjtexiuQc7ZwZbK3ZFGft5KHJLHOYvdShKnsOD7VWrVjF16lTz4+eee46GDRsybdo05s+fz4wZM9i8eXOh14mPj+f1119n37595lrd//rXv5g0aRL++ctuCCFMszzpCahqnclIP0/M2YWkpZ2jfv21pKYWHHRTU0+gaQa4bxY4uUBmOsaMDDQFaEhJLyFEqTHEH2HY46bv0Mw00P7te1TFIBg3B03TmwbV2RlQrYs53plzUQSOxfnR/WjfDr2Ri6Kw2euqOSVv3IOg2RzQO0F2pikpmsQ/Ie4YdutZZ8QR3t30vaiKM6jOX67LfC1jIoRXw71+M9OMdv5M4VkZkJWF9nCXnPKEi+D6WShXFRpOQHPzgqPv5VkabmcG25GKMlkZaHbyUOSWOLQqdShKnMOD7bNnz1KrVi0Azp8/z4EDB9izZw+tWrUiKyuL8ePHF3qNffv20blzZ4xGIx06dKBOnTpcvHiRZcuWsWzZMnbt2sWDDz7o+KcR4m6jlGk2W5ezN9vZi4sXN+RZMq5Rp85/cHMrOOi6uQWjVDZKgQ4wKshCh5OmoelkRkcIUXoMiSeo0dmPhMQTphiXloxq1oqM9BhiTkWSmnocL6+WBAWN5+LF9/n775E2clGsssxFkTN7rdqsQyts9jo9Ho6sgXojTM8LIW47ji7l1mXG06YHxGU6MHC2d63sBHjI3fQ9V579136521xybtSpPHklnIzZaLFnYN3PloNq/+am8oT5VieqrBS4fh4No+UebLsz2EXPQ5F27gxSX6HsOdzLdnNz4+rVqwB8/fXXlCtXjhYtWgDg7e1NUlJSodeYMGECDRs25OzZs2zbto233nqLbdu2cebMGRo2bMjTTz/taLPuGEeOHKFjx454eHhQqVIlXnjhBTIyMsq6WeJ2ZDSisrNQOZMuStPIyIjNtzdbcenSZgIDR5pmrm3QNANBQeNAaaZBO4BOj5O7uwy0RYmQuHYHSomF/ZGm77fItdhYvnvxRa7F3ngPpRTej02HoXF4PzYdpRTKzYOLF9/j5301OX16PpcubUSncyc9/YzVQNt0jSz+/nsUGZmXUOFroNYgaDoL9eBLplU67kGmvYrtNpi+uwdZLhN3D4RmM2WgLeySmFb2cmeddflmnQschBtszzoXKN9MtVIKn96jYVkyPr1Hm2pgG42m5d4oANP3tBRTP00ZTTPN5jiVjQqqDhd+RF3YjWo6DdquRTUYjcpON61OrNaGU2cXcvjwIE6dXUiGmxvK1R+C+91oSEEz2H8sAY/Kppnv/H2/PHkoUo//7fjPQ5Q4h2e2H3jgARYtWoROp2Px4sV06dIFvd7UgT9+/DiVK1cu9Bp//vknW7ZsoXz58hbPe3l5MW3aNAYMGOBos+4ICQkJtGvXjtq1a7N9+3bOnz/Pc889R0pKCm+++WZZN0+UtZRYOLwCGk4AlwooDTKyLhJzdgWpqSeoV28NMbErrTqe584tISBgCHXrruLvvy2TpGmagbp11+DsHAho6AymX/nc70LcLIlrd6iUWDgYBTV63ppBp1KU869A65kzUVmmWSCFMs1ex64wLwmvWnUa2dkJ+WKXRsWKAzhzZmHBuShillOjRiS024DKzkDT5akjezkaPm4FPb8Hv2Yl//nEXUti2u3N5tJvpfBr8Ri0GoxftuWsM9gZoCuFX4+cmeq8MSojhpiYFZYlVJ2DwKADnamEtdJhGkFpgI2yq1UqT8YQ1IqMtBrmLTCFrtapk2+1TkEz2AVUlMm7kidTM7A7Bup72diX7Rco1RdKSbESpHXv3p0ePXpQvXp1XnzxRfOxzZs3m2e5C1KrVi0SExNtHktKSiI4ONjRZt0Rli9fztWrV9mxYwe+vr4AZGVl8dRTTzFjxgyCgoLKuIWiTOV2fkOfQ2lw8eJ75g6oTueOTrfB5t7s5ORojhwZSr166/H2bkts7Dukpp7AzS2YoKBxpoG2Ak0n+xJFyZO4JqwSFikjKivVtB8aQKehUDY6mRrVqk0nJmaFRcdTp3NDr3cvYi4KUx1Z7T+7oF6+QXVWSgl+SnGvkJh2h8mp0KIdNlUq0MqHQIOxFitadEnxtAl2vzFAz/+agJaohrYHwqmpJ6lffx0ZxsvEnLsxCK8c9BROuFmVXfXwCKV69TkWfTgAH5+OBa/WOToKH+82ODeeZEqIBgXnosipKEP1bqhmc9D0TqisdDS9s/lGg9Hbnz2xUNfbxr5sv0CpvlBKHF5D2qBBA06cOEFcXBwnT540798GePXVV3nllVcKvcbixYuJiIhgz549Fs/v3r2byMjIIl3jTrRz5046dOhgDt4A/fv3x2g0smvXrjJsmbhtuPqjDOXISI+xCNJGYyrZ2Sl292ZfurSJAweak5kZR40akTRosIEaNSIx6CrmDLRlubi4NSSu3WWKsbw87Y9vqXl6MZknfzMNtHNmek6dmc/hw4O4nvwH6ekxVp1Me4PqwuJdrtxcFPR/2np2xj0QmkXIUnHhMIlpdwZ9eW/ToPnY+/BBTfhtPhzfaPr+QU3T88p4YwZ7bzJ+PfrbfI0qV9lUQjVfjPLwCKVevbVcvPg+P/98Y5vL6dPzuXzlC9LTz1mVXa1SZTIZGedtrtaJjV1d8GqdC6sgZOCNJ3NnsGsNgkGnoOks87YZBp2C6t1A03Flxwp4xoMrH75jMaNfLjCQ8IgIyt2pdcrvEsVeS1qhQgWUUsTGxlKxYkUMBgONGzcu0munTp1KUlIS7dq1w8vLC39/f+Li4khKSsLHx4d///vf/Pvf/wZMWZJ///33Aq93+fJlfvnlF2JjY0lNTaVChQrUrVuX++6777bKsnzkyBFGjBhh8Zy3tzeBgYEcOXKkjFolbgdKKajQBG3opZxSXivyBeQbe7PPnFlkM1inpBzG2VCR3HtoymhaLn47/Q6Iu4/EtTuYrf2N9paX525zaTDW8nml8GvXF63TIJQxCwX5Zno06tZdZXNJuP1BdeHxzpyLAju1sd0DobmN54UohMS0O4N7rXqQEgN5y2LlUllwbpdpVjjl/I0Z7JxSWpav0aBaV2JOz7OKNbYHzqbXVKzY30Zcs70FxqHVOgZ30LtBdk4W8RNbodZgqNYVFRaJptOjjNlomu7GDLbeB35KwdjOx+J6noGBtImMLOQnKW61Yg22v/jiCyIiIvjtt9/Izs7ml19+oVmzZowZM4bw8HAGDx5c4OvDwsJuegCQlJTEunXrWLduHf/73/9Mg5U8NE2jXLly9OnTh9GjR9OyZcuber+SkJCQgLe3t9XzPj4+XLlyxe7r0tPTSU9PNz/OTVBXVEcvmM4P9nPHkLNX91JSGompGXi6OhHo7WZ1bjVvd1xdTefGX0/jyvUM3Jx1VPUtV6xzj1+6TrbRSJC3O+Vyzk1MTuPStQycDTpq+BXv3FPx18nIMlLR0xlvD1cArqdlEZOY4tC5ep2OkIo3zj175TqpGUZ8yznjV87xc9PSsjiTaFrCWKfSjdwEsYmpXEvLxNvNmYpepnOVMpr3MRZUyqvQvdl1VuPsEoimjKDpMSrFiYvXburvviT+ndj6+yyJfye5f583++8k/9/nzf47sfd3f7cqTlyTmFZ2Mc2/vAs+bs7gGwojkjFmZ3I9NZPybk7mc5Oy3ImPT8XLNe3Gv+vEs1w/uIKkch0JqZcz2M6/XFzTkZF+3mKmp+BOpv1BdVFzUWiaJjFNYlqJKouYBnd3XDudlIHO2R/P1Ey8c54rLK7pssA/J3lZ3n+v5QE0DZfKVeG3ebazcfuGQpu1cOy9PMuv7ZTSMrij6ZxtxCj7uSPsxbWSWa2ThRb6vHkPtmowDi1nD/aVbW+S9fNSzoU+S8P+Y8x/n5fTIM3Zn6tpkHfBuMQ1k7KOaw4Ptjdu3MiQIUPo378/o0ePZvTo0eZjISEhrF27ttDB9rvvvutwQ/NasGABr7zyCj4+Pjz22GNERETQpEkT/Pz8cHFxITExkVOnTrF//3527txJ+/btefjhh3njjTdo0KDBTb13WVi4cCFRUVHFfn2nJd8DsHpoGO0bVMp5bg+JqVk46TSOLehqdW5Uz/oMa2HaO99lyffEXc9Ar9M4buPcp9oE80Ln+gD0+c+PnE1IRdPg5MJu5nPbv2baMjCgeRVe6tcEgMdW7OPYpetowMlF1ud2rF+Rd4bdD8Dwdw/w29lEAE7lObfNK6ZzH6zpw+axpnwBT204wHfH4u2e2yioPJ9ObAXA9O3RfBIda3Vu65f3oICaFdz5dmpbABbv+ot1P56xOjd88R6MCip5ufDz9A4ArPnpFC9/8bf1dRd/i0Gnw91Zx4HZnVDKmG9fj/1SXpZ7s9sRG7vyxt7siqNwdglCXUtCK29a+paYlmX+O/q/cf/igRoVcn6+u7mWno2zXsfRF7uYr5977muPhfJoWFUAOr/xHVeSMzHoNP6x8Xf/wiN1eaqtaStJ92V7uZCUjk6DEzb+7oe1qEZUT9Pql8fe/omTl1Ps/t33CA1k2SDT/sshq3/lUMxVq59l7t9n69p+rB9pKhU49v2D7DuZYPfcplW92THBdOPt2c2/8eVfl6zObfuK6e++dsVyfPlcOADzPv2TzfvPWZ3bevEelIKqPm58/+92ALyx+xhv7T5hda64QWJa2cS0Hk2CeL1/KKScN81SXz2OrnwI7nXHgGtl8/7GR86/xYV3E6nktdcU05TCqWJT/MbE4pmZaUo+hDIvFzclBrKdxLGwTqa9QbUp3g2nfv11+Ph0ICZmuTneVQoch4tLoGlmB4lpEtPK3s3GNLi741r4jnhovZaW31xmQ1PTc+a4phSnpoaZt4KM33CQES1r0qtXf3jMVGZr35lEoj49zF+x1/j1QcDFDc3gbKMsVo7GkyH5vOU+Z7ultECpbKsYVdCNQntx7WZX6wQGjQP0qKaz0QzOpGdm8kn0BfqFmWKdUe/Dg/rX4bDGa3/GmuPaoD/Lc6X1Wgy/K/55/MY1Ja6ZlHVcc3iwPW/ePCZPnsyrr75Kdna2xWC7YcOGvP766yXaQFt2797N9u3badOmjc3jfn5++Pn50bx5c8aNG0dCQgJvvvkmu3fvLtPBto+Pj83SaAkJCRZ7g/KbPn06zz33nPnx1atXqVq16i1po7h1lFL8EdkRVycn0jMzUUpZ7c0uLCBfurSJlJSj3Hffd9SoHoGmM6DSU2DXZpSXP6pFF4v9OkLcasWJaxLTCudx9i+Ir1limWLrB3ryev9QtH82wHeWyy4N/1sE4atNSy71brg6GdCM0LFBgDmRkD5ncO5SPgTum4EyuFgsF7efxLHgmHZjUL3ealBtWiau4ewcRPVqs9HpnUnLzOTj32OpH3iVxpW9S+RnI0ReEtNKnqaBq0FvqiWd/xiK5L+i8WhlinWfTmiJiovBsHounDuOViWE+/uM4dMJLXl2SzSQCOmpqKwMUzI0G1ckZID1DLa9UlpZKaCMBAWOtohRBd8otBfXir9ap06e1Tpxn2xh4I/ZHNdXwFmvo19Ywf+WjHo9ZCmU9P9uS5rKv/66EK6urnz22We0b9+e7OxsnJyc2L9/P82aNePbb7+la9eupKam3qr23tFat25NhQoV2LFjh/m53H3qa9as4cknnyzSda5evYqXlxdJSUlW5dNsuZuXJt0py8iVMuYrJ1GLGjXmcOpUFKdPz7f4+/LwCCUsbD+XLn1gZ/nkagIChqDt+j/4eRdUrIzqOw78ArmaloWXuzNgyp56Ij7lpv7uZcnl7b006XZQEnFNYprlv7/MY38QOLkN5db9BPWa3VxMi4+FbStIHvgc7vqraBtr2l52WaEZ9PwO9C6gM2DMzkTT6dGOvW+1v1GNSicjI5af94VYJABq1eo6Z84sLHZMQwGaQtP0KJWN0aiRkpGNp5sTsQcP8k6rVrT/5Bv8G9SXmCYx7ZYpi5gGd3FcUwqVnYVmcEJlZaLpDaBpXE/L4vDWTVR7ayL6qcvw7zPYVLd65/toc0dCdp44pTeg5qyGLkNI+HYnvv/uTtq2f3Cp4GId0wzuMCIZvh5kSpiWV/gaCGoLm2pbvqbTDlT1HlaZxevWXYOPT1v27attdaPwRlzbaJFYraB4V7HiYFNm84wLFjcWA3NW6xiNCr1eT9yODRgWjePYM29TtXtf89993I4NpC1+ltinXiO030Dz3+fJYyf5cd1mHhg6gNp1apbY373EtZLh8GC7Ro0aTJ06lQkTJlgNtpcuXcrbb78tCSTsWLhwIQsWLODs2bPm/UCrVq1i3LhxnDlzpsjlJIoTxEXZMS0VtywnodO507p1MocPD+LSpY1Wr6lYcSD16q0nIyPWZikvY2YWOoMeTacHY7Zp+afc0RRloCTimsS0fI4chCFh8P4B63JWxbnWE83h5wxT4rPf5lufEzLQVK81JRb+ese0zDI3kZBVR9YDNTyJU6cirQbVBXVMc2NaZuYlq9nrG+UJdVz8+QuOrxxDyJiVBPzrEfPrrcqLCXGLSEwrQUYjxMfAthVw7jhUCYG+Y8EvCHQ64nZswP/FIcTNfB//3oMg7jz0qGk50M6lN8Anp0hNScWtX22uvPQpvu26oI69byqVlTfh2Yjrppnt/PHONxQe3Q//fGC5xNw3FB49gNI0MtLOEXNhFampJ/DyamG3NramGWjS5Bu8vFqSkRFrEdeqVHkWg8Hb6nlzvENDZWeiMzhjzMpA0ztZ5LKy+Ln0GVzo8+L25vAy8kGDBhEZGUm9evXMy7g1TePQoUO8/PLLjB8/vqTbWKC5c+faPabT6fDy8uK+++6jVatWpdgq28aNG8eyZcvo3bs3M2bM4Pz580ydOpVx48ZJ3ca7lFLKZjmJopTySk4+TL16a6hRI9I803Pln+Nci/me6q1a3SjnpdOXxkcRwiaJa3cAFzdTR9XW/kbfUNNA26LzaSeRUA5N0zucxDEubisVKw6mQoWuFjGNbKNFeUKjsz9frj1Dzact68JKVl1RWiSmlRCjEXa+D/lnqd9dBDmz1Pry3jeeV0bToNzWQBtMz29bjuuo2TdeooBag1GBbdGOrDQnFUMpqD8W/rfIMoblltJqux4qd4DDy2+8JuMquHjjrK9AjWqz0PQuqOx0yEonIGAIPj7tLWejK43B2akSaVev4Vo+iOpVZ6EzuGDMqXWtaZZbYIzZGWi6G4Pq+E+24P/qGC4/v9Jq4Ozu52fxXdzZHB5sR0ZG8ueff9KxY0cqVDAlXOrSpQtxcXF0796dadOmlXgjC/L666+TkZFhXrru6upKWloaAG5ubmRmZpKdnU2zZs34/PPP8fe3Udi9lPj4+PD111/zzDPP0Lt3bzw9PRk1ahQvvvhimbVJ3GpGYmLyl/GCIpfycq4ESuPT8ePw8PcnbNw4y4G2EGVM4todID3V1FG1tb/RwURCZKWgjBmOJ3GsNMY0o5OZAXon0ANGQG9ZnlDqwoqyJjGt+HJXoLR84QWcrl+xHmiD6fHckXB/e9xC6pqe0+tNEwfnCi6NxfkTaE7O4OKGW616pCYk4Fq+POi80e6bBU4ukJmO0juhubtC61Xw3SjLAXeeUlo0nQ0GZ9NrjMq0lSUrZ6GgHjQjqCwj6BSxPx+jygPTcXJzJzM1hT83b8bNz586XbuiaRpXPnyHCnv+TUL4S1To9zRgmoy8tOdb/h79KHXf2U5Au0csP09ais2P6ZEzVvHIN2YxevmxOwbqe8kg/E7i8GDb2dmZjz76iG+//ZYvv/yS+Ph4fH196dChAx06dHC4AWfPnuXs2bM0adIEDw8Ph1//zTffMGDAACIiIujVqxflypXj+vXr7Nixg7lz57J+/XpSUlIYMmQIU6dOvelM6Derfv36fPXVV2XaBlF67M0AQVFK26w2L6/svnw5xuxsNJ1O6maL247EtducUnAt0VQj22Kmx8FEQqaLwZnPCQoaW3gSx2pz0PRO5iSOePnBw924+utevGb2JX7CEqsZHZnBFrcDiWnFcz02lj1z5xI+a5Zjs9TZ2aYtcVUKLo1F5WBUZgZaRhouQdVM/aH/bkCbN8r0ehc3SEtBi1iLatUdLWQQVGoDR1fdmMGuMwrKBWFMTwe9Hh1gRCMzI4NPhj1JSKdONB44EIMTZGVmc27fL1R9+GF8a9Vm78JFXD13jvKVKxM2bhyegYE3VuXYqXVt9Pbn2xMp1Pa2HDgXOHvtFwijI6wSZLrXD4UxEabv4o7h8GD7zJkzBAYG0rZtW9q2bWtxLCsri5iYGKpVq1bodVauXElUVBQXLlwA4Ndff6VZs2b06dOHNm3aMGnSpCK1Z8KECTz//PMW5cbKlSvHE088QXJyMpMnT2bfvn3MmjWrwCXnQpQYpQBTrWtb5SRy5c4C1a//ns0svHn3MQLo9LJcXAhRTAlxUKOuKet47v5GuzPYCo5vhnojrZdhAtr+CJwfPUDduqtt7mOsUmUyer0b2pa34a8DaHmSOGo6HRkxZyExvhQ+tBCitDm5uaEZDA7NUgOm3DN9x5qWmdvbs913HGnnz+DmVQGdwYDxwhl080bdOD93pviD19G6DEb9+F+0pHjoOB1c3U3Hv9yM8vKDhzqz8v77uXLsGL61ajF6/35qdenCJ6NG8fGoUTi5uZGZkoLOYKD/jh3U6dqV8Nmz0Tk5YczMQDM43dTkh0f9UBgdYfqen18gjI20elpuRt6ZHF6LWrNmTX777Tebx37//Xdq1qxp81heS5Ys4ZlnnmHo0KF88cUX5M3R1qZNG7Zs2VLk9vz2229Ur17d5rEaNWrwxx9/ANCoUSObpRyEKFHKaKphuz8Svh0O6AiqNApNs31fKy5uK5kZ8Tg7B1GjRiQNGmygRo1InPUVLQbaQghRHMlxcabv586YOrO1h8CgU9B0FtToA9nptmew/1gCHpVNe7fzx6+Ew2gXfyIgYAj/evAk1avPomLFQVSvPot/PXCCAP/HITPDNMCOWIMaEwn+QTdmgHKWQhplKaQQd6RrsbHsjozkWmys1bHM1FRUVlaRZ6lJz6lgpGmmxGlzVpsG1nnpDfDKDvALxLVKdfgqDmU0ovtwle2B+bFoiBiK1rIL6sFOsHYRRI2AtQsxNm8PD3cj7epV6vboQb3evanbsyfp167R5IknmHTqFK1nzqRe7960njWLSadOmZaK63Rc/vT/4GEPLn+6xWqg7XBcyx1Ql1B5R3H7cnhmu6Dk5enp6bi4uBR6jWXLljF79mxmzZpFdna2xbG6devy999/F7k91atXZ9WqVXTu3Nnq2MqVK80D8cuXL+MniQbEraSMYFEmR0Nr9RbOLpWpW2eVRTkJuLFU3MnJD00ZTRPidvYxCiFEcaTEx+Ph6m76DqYBt3sQquksNIMLypiFZrW8nIITCdUdBZ5V0Y78hvM/0dToNB3Nxf3GcvHyftCqG+mx53AdFma1XNzo7c+eWKjrXXY5VIQQxXc9NpY9UVHU7dnTujqAUqQmJuJe1FnqvM/rdNBlCNzfHrYth/MnoHIwDHoWPL0hPgZt2wq4eA4tcm3Bs+dfbILAGmgTFpA1bBoGd3eyUlL4Y9Mmju/aRc/VqwmPiDDNkOeZqfYMCiJ8zmx0Ts62Z7Dt7LOWuCbsKdJg+8iRIxw+fNj8ePfu3Zw7d87inLS0NDZu3EhwcHCh1zt//jwtWrSweczJyYnr168XpVmAqURD//79qVu3Lt27d8ff35+4uDg+/fRTTpw4YZ4l//rrr2ndunWRryuEQ5SClJh89WgVHN+EVq07AQGD8PFuYy4nYUoYNApnlyC09CSUiw9awv/g80fQun4BfjdZ7kcIIZTCr/tj0GcwfpkZpjilaaBpJG5fjE/aUq4FvEj5TqMsl5fnOrEVQgaZEgk1mQHOpv2Q7NoEp/+G8S+iVagEaxbBpXNoFSuT3WsUuoAqAKQc+QNXG8vFJQmaEHe35Lg43OvWNc1S26iZTcQa8Ask9duduLm6W75YpwP/INSo2WhOzqjMTDS93jKzuabBtP8UPnuuN5CVmsqL5cpZLAvvuWYNTm5upprdEf0tMoJrmkb8p/YzhQvhqCINtjdv3kxUVBRg+kdoL+O4t7d3kRKQVa9enV9++YV27dpZHdu3bx916tQpSrMA6NOnD7/88gsLFy5kx44dxMbGEhgYyP3338/mzZu57777APjPf/5T5GsKUSR59majjHB4hXWZnD+WQO0haGd24px+mRoh09EM7qisFDi+Gc3FD1W9G6CBeyA0mGD6LoQQNyOnvq2WU99Wy1vfVtPw7jMVnGbhmZlhysBbazAEhFsmEqo3BtwqwewhphnrnORDZgHVUP3Go0bOROfsgjEjnezMLHSahqbTkX010WbTZN+hEHe3rNRU+7PUOfkb0DR8WneEvcmWNwMB8gx40zdE4+rmYjloV8oUk3qNLHD2XPUdh1EpWs+cScKJE/gEB1skNsvUDOw+kWKV3dvo5Wf/eckGLhxUpMH25MmTefLJJ1FKERwczPbt22natKnFOc7OzlSqVKlIS19Hjx5NZGQk/v7+PProowBkZmby2WefsXjxYofLKzRt2pT/+7//c+g1QtwUZTTNZB9eAdfPQdu1tsvk5FmKqaXEwm+LIPkcmkdlqDMK5VklZ292zmC7eWSpfxQhxF3GXn3bmJMQuc5yED5kCvhWhOd7Qf8J0CknkVBWBqSnw5P/giMHTa/PO9DWG1Cte5r+nKeD7OTubu4HSMdUiHuc1Sy1aVk2SkHceds3A/PmqklPxSWoKqyaZz2g3rgEug6B2asgb5I0MM+ea36BOGma3WXh9pZ+O/o8yIodYV+Rsi95eXlRvXp1atSowcmTJ+natSvVq1e3+AoMDCzyHtMpU6YwYsQIxowZY6573bJlS3r16sUTTzzBU089VawPc/bsWX788UeSk5OL9XohiiR3b/YHNeG3+XBsXQFlcoDjm2B7c0iNg7AIaLMG7puFcvYDNEmCJoSwln9pZQEskhUpBfEx1gPt2qEQsdY0CO9RE1bPNy0Hr1kPtq8wDajnjoRW5eBhD3jifnBxhYETbSYrUrNXQ8XKoGlc/nSLzaRBUqZGCJE7S83DHiR896UpRuWNQ19sNH3vUdP0vNF447VeFUwZy23tzc5JgkbnQfDRcRg5y/TnkbPgk1PQeTDklEu1F6NKUu6KHas97OKe53CCtLyZv1NSUkhLS7M6x9fXt9DrvPHGG0yePJkvv/ySy5cv4+vrS/v27aldu7ajTTKXEYuNjUXTtGKXEROiUHb3ZtsvkwNAwmFwCwBMQV7pDODqLEnQhBCWlIJaobA3GbKyLJdW2pHyVzSsjCKl9UN4BlS0Xd/28clw6bzlDJCLm2lQn7cjq5RpBju3Ixu1Hpq3hR3vmJeB5t2XrWma3SWXslxcCGGWloJ7rXq2bwaC6fHckXB/e5R/EBVy8k2o7GzTzLctX2yCE4dhjqnqgabX35g9zxM37cUoIUqDw1NqSinmzZtHlSpV8PT0xN/f3+qrqIKDgxk7diwzZsxg3LhxxRpo5y0jtmvXrpsqIyZE4QrYm22vTI5mgNarTXsfUfz4+utcv3RJBtpC3MNsls4xGiHuPLwTBTMHmb7Hnbec6bFBlxRPmyDQXU8And56FkjToNMA+Gi1ZQc3PdU0sC6oI/tEc0iIM5Xvmr8B48hZZHv5gXZjVU7u0kqjZOEVQtijaaYl4bZuBubKzjLt7zZms2fuPLYNGkT80aOovmOtV9jkOnEYVaESGRfPw8Mepln0/GW5yjBGyfJy4fDM9uuvv85rr73GCy+8wMyZM5k1axZ6vZ5NmzaRkZHBzJkzi3Sd7Oxs9u3bx7lz52zOjg8dOrRI1ynJMmJCFErTF7o3m6C28Nc7N5IM1RkFHkEYryWhlfehxbPPln67hRC3FavSOfb2Wb+7yJTRt8sQUk4c5dLscfjNWkK5hvdZXzQ7G4zZ1oNnWzPYULQkQzkdWbN8+7KFEKJIXNzsLwnP6/wJNL2BH199lazUVBr2749fzx6o2avQbOzNVrNXg18gKvac3bJcZUlW+AiHB9urV68mKiqKCRMmMHPmTHr37k2zZs2YPXs2PXv25J9//in0GgcPHuTRRx/l7NmzNut2a5pW5MF2SZYRE8ImpUzLmAwGlDEbraC92QmHIXwNhEWaZpjSUuDLzajyfmituhW6HFQIcQ+yt88aLJZWagYDNY7tIe7on7YH22Cqo52/vm1BM9iFJBlSc0wd2au/7sXr+S5SCkcIUTzpqaYl3oWV66ocTFZKiimjuaYR0qkTh7duo36fQRibtUH/0SqLLS2afxB/bd1K/T69S+VjCOEoh5eRnzp1ivvuuw+9Xo+TkxOJiYmmC+l0PPXUU0Uq/TV+/Hi8vLz45ptvuHjxIgkJCRZfV65cKXJ7csuI2eJoGTEhrBiNqLjzaO9EQeRwNE0HdUdZLxXPlXAY3CvB3/+DqBGwdiHZYe3g4a4AMhskhLCmjEVaWulauVrh19I08AsyDZJzl13mncHOvxQzT5Ih9ckpiyRD2Tv+QXV6nNTERJwDguzOGskySSFEoZQiPeas6WagvSXhegPZvUbxx6ZNADi5ueHk7s6RDz9kZfPmRP/3a7KGTYf5G8gaNp3o/37NyubN+fujj9A5OZtW8Qhxm3F4ZrtChQrm2eJq1apx8OBBc73s+Ph4UlIKX8Lx559/smXLFsLDwx19eyslXUZMCDOjEbXzfbTc2SZNg+lvmfZmt14F342y3LutGSDctDdb1amEFrHGqu6sEELkpel0tvdZ53f+hGkJZhE6kwqg82Cym4bfmAVKS0FVqgZzVt+Iabm+2orqNAge7krWkzMwuLmRlZLCH5s2sW/pUur27En4nNl230+WSQohiiLlnyO4tu1i2hqTPw7lrKTR/IPYt3QpAJmpqWSmpOAbEsKhjRv5eORIPh41Cic3NzLzjDfq9uyJMTMDXXpqaX8kIQrl8GC7ZcuW/Prrr3Tt2pVBgwYRGRnJhQsXcHJy4p133qF9+/aFXqNOnTpcvXq1WA3Ob8qUKZw5c4YxY8YwduxYcxsBnnrqqWKXERP3OKVQ8TGWnVKlTAmDWnWHkEFQqQ0cXWW1N1tdSwRPH9NrdHqc3CXruBDCNmU02t5nnV/lYNMSzEI6k0oprsXEsKlXL+6fMIHGw6ZjcHdHZWeTeOoUXp0ex5h3EF45GGPv0eAXyI4hQzi0ebNVR7Zio0bonJz5LsGNupLNVwhRTNlXE011tLsMgfvbm5Kh5cQh1Xcc+Aaw44knuBgdbXqBUhzavJmmI0eyd9EijDkVGvLGJ53BQNi4caSfP8OtnteWVTyiOBwebEdGRnL+/HkAZsyYQWJiIhs3biQ1NZWOHTuybNmyQq/x+uuvM2nSJJo0aUK9evUcb3U+JVlGTAgApYxotpZ15u5v/GEnXL0MHaebEg/l2ZtNyy4oo5GFnp4M//57Aps1K5PPIIS4Q9jaZ52X3gB9x5FWUGcypy63Mho5sGIFsQcPmmeB3CtUYGpcHN/MmkXcn3/y4KRJFoPwi//7Hx917mHu4GbmW6HmExyMMSsL4xMvSM1sIcTN0+nAPwg1ajaakzMqMwMMTiRfusThrVstTt23ZAmhQ4bQY9UqPhk1yjTgzr2MwUDPNWvwDAwk4dudt3ywLat4RHE4PNiuW7cudevWBcDFxYWlS5eyNGe5R0EaN25sMbsXGxtLo0aNCAoKwtvb2+JcTdP4/fffHWpXbhkxIUqCZm9ZZ97as/GxsHYRXDoHFSubE3WkXb2KwdWVFlOnyt1PIe5x12JjObBiBWFjx5qyjtuSs8/a3tJKItaAXyCptjqTSuGXU4/WLzMDTacjOzPT4njK5ct2l2J2efNNarZtS9zhwzabljtrpOn10skUQpQcTSP+0y34vzqG+JzEix7+/vRcvZqPR440D6ovRkfz0fDh9F63juAOHTiwfDkJJ07gExxM2LhxeAYGoul0ZGoGdscgtbTFbcfhwXZxhYWFldhS2u+++86h81u3bl0i7yvubtdiY/n9vfdoMnQonhX9C649e+IwzFmDGhOBpteTlZLCof/bjJufP3W6dkXT6aRjKoSwLvFlj52llfQdB36BoNOZlmDmZTSatrtsWwHnjqNVCUH1HUv7+fNJOn2aQzlJhgpailnUWSPZCiOEKC6jl5/9gXCexIuaTkfokCHUbN/ealCtaRqeQUGEz5mNzskZY2YGmsHJHJtya2nXLYFa2rJcXJSkYg22N23axJYtWzh79qxVjWx7s9JFyVJeVG3atEHTNHPZsLydAKWUVacgf/1tIfJTSlGuYkUefuEFVHY2Cg36jEYrpPbshf/9j1/+8x/KV65scYdVCCEclrO0ktERYDBAVhbo9VYlA/Xlva0TOObQ3l2EmrOaPuvXE3f4sHlpuL1BdVFnjYQQorgcGQhrOp1pUB0Rgc5gwJiVhabXm/v2ubPht7IMoSwXFyXJ4cH2jBkzWLRoEWFhYdSpUwdnZ2eH33TEiBHMnj2bmjVrWh07ffo0UVFRrFmzxu7rf/vtN/OfL126xMiRI2nbti39+vUjICCAixcvsmXLFnbv3s3q1asdbp+4tyijEeJi0LbnmR3q/zRUrIKavQrNVu3Z2abaswEVKtFrzRqr/wyEEKJYNA3+iYZRrWDV91AvX84HV3c86odaJ3DMlZ1ler55O/717GQ+Gj4CKHxQbZ41stPBFULcnextdSnSFphbRNM0LkRHs7ZVK9u5b+yUIRTiduTwYHvNmjXMnTuXWbNmFftN3333XcaNG2dzsB0fH8+6desKHGw3adLE/Od+/foxcOBAXn75ZYtzevTowdSpU3n77bfp2LFjsdsq7m7KaITP37MaUGvvLkIt/xq6PoExrC26D98xL+vM7jUKXUAVAHR6vem7odR2ZAgh7gX5O5N59mY7Z2ejrYwssC63tn0FTcZEkHD8hENLMQvs4Aoh7jr2troUeQvMzcpJ7mhL/mSNQtyJijVCePDBB2/6je3dLT927BgVKlQo8nW++OILtm/fbvNYp06dzLW3hQBM5buUEXT6GzPa+WeuwdRZHdcetfMcyi8Q48hZ6JxdpG62EKL05d2bffEcWuTaotXl1hvsDqoLWoopHVwhxK2mlKJCzg3ECpkZNreB3mqyN1uUBodHC6NGjeKDDz5w+I3efvttQkNDCQ0NRdM0Bg0aZH6c+1WnTh2GDh3q0Ex0uXLl+Prrr20e+/LLLylXrpzDbS2Oy5cvM27cOKpVq4aHhweNGjVi+fLlVufFxMTQt29fPD098fX1ZdSoUSVWc1wUwmiEuPOwIhJmDUbLyjQtHS9odmjzm+j0OlNpHgBNh5O7uwy0xV1PYtptwMXtxt7sHjVh9Xz4bJ1p1rsIdbkxZhP3wx6+C/Eg7vtvLTqyRi8/dp9IwSiZe8U9ROJa2XFyvzGDrYxGrp0/z56589g2aBB75s7j2vnzpkmQUpS7N7u0l8mLe4vDM9vz5s1j0qRJtGzZkvbt29ss2/Xss89avS4oKIiwsDAADh06RN26dfH3t0yU4OzsTP369Rk5cmSR2zNhwgTmzJnDxYsX6d27NxUrVuTSpUvs2LGD9957j6ioKEc/YrE89thjHDlyhAULFlCtWjU+//xzxo8fj16vZ/To0QBkZmbyyCOPAPDBBx+QkpLClClTGDRoEJ9++mmptPOeZTTCzvdvlNVxdYf5G4o2O6TTc/3iJX5bs4amI0ZIUBb3BIlptwG/QOu92UrBrs3Qa2SBdbmNfcagoWEsX4FvT6RQO19iopLM3CvEnULiWulTShEQGsqM5GSMWVkoo5Ho99+3KO8FsHfRInquXk3okCEyoSHuKg4Ptr/55hvWrVvHtWvX+Omnn6yO2xts9+rVi169epkfz5kzx+aebUfNmjULb29vFi1axLp168xZygMDA1myZAnPPPPMTb9HYS5cuMC3337L2rVrefLJJwFo164dv/76K5s2bTIH8K1bt/Lnn3/y119/mWuV+/j48Mgjj/DLL7/wwAMP3PK23pOUgvgYy/q16alFnh1S2dl4BgbSeubMW99WIW4DEtNuA5qGci+H9v6r1gPqjUug6xCYvQrsJHDUKla2ymJeFLKsUtytJK6VPmU0ci0mhgMrVnDl+HFaTJmCR8WKVgNtAGNWFh+PHEnN9u3xDAoqoxYLUfIcvnU0YcIEmjdvzh9//EF6ejpGo9HiqyhlttauXVsiA+1cTz/9NGfOnOHUqVP8+OOPnDp1irNnz5bKQBtMd0EBvLy8LJ738vIylycD2LlzJ6GhoebgDdCxY0d8fX35/PPPS6Wt9wqlFMacf4vKaIRt+ZaL550d0tu556Q3oPqOM5XjEeIeIjGtbCXHxYGrO5reYHv1zbFoiBgKnQfBR8dh5CzTn0fOInvHP9DFtAe7OPsfZVmluFtJXCtZeZeF52dwczPPYC+tWZPv5s/n0KZN+NWrx4EVK6wG2rmMWVkcWL681JeTC3ErOTyzffbsWZYtW0bDhg1vRXuK5O2332bEiBG4uLiYn9PpdFSrVo1q1arZfM0ff/xBXFwc7dq1K/H2VK1alU6dOrFgwQLq1q1L1apV2blzJ7t27WLDhg3m844cOUK9evUsXqtpGvXq1ePIkSMl3q57Vd47qUnnztF7rZ1kQoXNDs0xlfeS0jfiXiMxrWylxMfjAWDMtr/65otNcOIwzFmDGhOJptdLAkchCiBxrWRYLQvPl9jMyd0dD39/rsXEWMxgO7m54eTuzpXjBW/fSzhxwlTpxU7fy+jlx+4YqJ8v30RBq3JkxY4oSw4Pth9++GH+/vvvMi2n9e677xIVFcXjjz/OY489xv3334+Tk5PVeTExMezcuZONGzeyb98+3n333VvWpu3btzNgwADzTQi9Xs+yZcvo27ev+ZyEhASrPe5gWp505coVu9dOT08nPT3d/FiSdNyQvw6k1V4gnY5eq1ah2eqw5s4ORa2H+9vB9pXm8l6q7zjTQFs6rOIeJTGtjKWlmIon9B6Nzt7e7BOHURUCbnRKNc2UwFFuEAph062Ka/dKTMu/LNw3JMTU/woKAk27MQjPzmZPZKTFDHZmaiqZKSn4hhS8fc8nONi0MjHPaoO87OWbyF2VY0tBx4S41RwebC9YsIBhw4bh7OxMhw4dbAYkX1/fkmibXfv27WPHjh0sXbqUN954AycnJ+rUqYO/vz8uLi4kJiZy8uRJLl26hK+vL8OGDeP999+nUqVKN/3eSimLpfKapqHT6Rg+fDjHjh3jgw8+IDAwkC+//JLJkyfj4+PDwIEDb+o9Fy5cWGqJ3u4012Nj+XHxYur27Em5SpWs76S6uqLpdBh7j7LdYf1iE5w+ilq5B3Jmh1R2Nuh00mEV9wSJabcppUi/GINLpSqo2ausSxTm7M3GL4j02HO4Dqhvs4yXPTLTI+5mpR3X7oSYln9ywlH2EpslnDxJ73XruJ5vRaHVDLZSHNq8maYjR7J30SKbS8l1BgNh48bJRIe4qzg82L7//vsBGDdunN3BSFH2bd+sPn360KdPH06dOsVXX33F/v37iY2NJS0tjerVq9OpUydatmxJmzZtbM56F9eePXto27at+XF4eDhTpkxhy5YtREdH07hxYwDatGnDpUuXeP75580B3MfHh6SkJKtrJiQkULVqVbvvOX36dJ577jnz46tXrxZ4/r3CVobL/HuBMlNTyUxLw+Bf2X6HdeAkcHZFARqg6fWl/lmEKCsS08pOQXsecXUn5a9oXCpVhi5DyG7WBv1Hq8yrb7J7jUIXUAWAlCN/4Jpmuza2vUG1zPSIu1lpx7U7IaZdj41lT1QUdXv2dHiwrZSymswACAgNpdfatUS//z6fjBplOqZpdPvPf2zOYO9bsoTQIUPosWrVjfNz6AwGeq5Zg2egbN8TdxeHB9tr1qwpsV8CpRRHjx7lypUr+Pr6UqdOHYevXaNGDUaNGsWoUaNKpE2FCQsL49dffzU/9vT05KOPPkKv19OoUSOLc5s2bcqqVatISUnB3d2devXq8ccff1ico5QqdFm+i4uLxf50Yb2Uya9ePcLnzLF9J3XTJup0747bI4Mw2uiwav5BpF29ipuPT9l8GCHKkMS00lfQnkelFBW694c+g/HOzDQvEc/28kMbOQuds4vV3uzsq4l230sG1eJeVNpx7W6PabYmMwAenDyZa+fPWw6cC5jBvhgdzYdDh9J7/XqCO3TgwPLlJJw4gU9wMGHjxpkG2jKrLe4yDg+2c8sl3Ky33nqLuXPnEhcXZ36uYsWKzJkzh/Hjx5fIe9wKnp6eNG/e3OK56tWrk52dTXR0NE2aNDE/f+DAASpWrIh7zuxFly5deP/99zl27Bi1a9cG4Ouvv+by5ct07dq19D7EHc7mUiZNo8WUKQXeST26cydpVy7TaNh0DO7uZKWkcOj/NuPm50+drl3lTqq4J0lMK10F7nkEu8ec3N1RWaZsyrI3W4iCSVwrOZpOh06vt57M0DQaDRjA3oULrQbhBc1gH966lUaDB1Ona1fCIyLQGQwYs7LQ9HqJaeKu5PBguySsXLmSp59+mscff5wBAwYQEBDAxYsX2bx5M08//TROTk6lNlNdErp27Uq1atXo168fERERBAYGsmvXLnMit1z9+vVjwYIF9O3blwULFpCSksKUKVPo1q2b1G0sIntLmYp6JzX50iW+X7SIq+fOUb5yZbmTKoQNEtPsK+6+x7ylcPLHr2Off86oX37hjw0brI7tXbSInqtXEzpkCInffYlvRH+H9mYLIUwkrhWPMhoxZmdbTWYUlF08b7+rZtu2HHznHZsz2Bf+9z/WtmrF8O+/J7BZs9L6SEKUqiINtkNDQ/nggw9o1KgRjRs3LvDOk6Zp/P777wVe7/XXX2fixIksWbLE4vmePXvi7+/PK6+8ckcNtj09Pfn666+ZOXMm//73v0lMTKRmzZq89tprPP300+bznJyc+O9//8vEiRN5/PHHMRgMPProo7z++utl2Po7i72lTODgnVS9HmN2NpokQhPCisQ0++zteyxsEG6rFE6u+59+mqtnz9o8ZszK4uORI6nZvj1uIXXBxt5se6VwhBA3SFwrPk2nI2zsWIvJjMKyix/atIm4w4fpuWYN4ZGRpn6XjRnszBTb+SaEuFsUabAdFhaGh4eH+c83Ozg5efIk3bt3t3msW7duLF++/KauXxZq1arF5s2bCz2vcuXKbNu2rRRadPdQSqGMRnR6ve2lTDly76T2ee+9AvcC5f7r1UkiNCHskpjmmAKTD2kart7e7ImKsr5RWMBSzFzGrCwOLF9O+JzZto/bKYUjhLB0t8e1m804bo+maXgGBdFz9eobNwWLkF087vBhylWqRFpCAkuqV5cZbHFPKtJge+3ateY/l0St6sDAQH766Sc6dOhgdeznn38mUEqRiBwW+xtPnKDXmjUF1mg8tGkTVR9+mObjx9+4kyoz2EKIMuTk5obOYLB5o7CgpZh5JZw4gc7JGVzcblUzhRB3uJvJOF4YTacjdMgQarZvb57MyExJwataNctBeI682cXj//5bZrDFPcvhPdsjRoxg9uzZ1KxZ0+rY6dOniYqKYs2aNQVeY+TIkcydO5f09HT69etHQEAAly5dYsuWLSxevJg5c+Y42ixxF7K1vzG4Q4dCazTW690bLSdLL8gMthCibGWmpmLMyrJ5o7CwpZi5fIKDMWZmoEtPvVXNFEKIAmk6HZ5BQRaJzdA0q0F4/hWFWakSt8S9y+GsUO+++65FBvG84uPjWbduXaHXmDlzJs888wyLFy8mLCyMKlWq0KxZMxYvXswzzzzDjBkzHG2WuMvYS4S2b8kSPCtXpseqVegMlveKpEajEOK2pBRpiYmEjR1rFbfyLsW0OpZDZzAQNm4c6efPlEJjhRDCPk3TuBgdzQIPDy5GR5snN3IH4Y9u2EB4RASeQUGSfFYIijHYBuwOZI4dO0aFChWK9PpXX32VmJgYPvnkE9avX8+nn35KTEwMr7zyigyUhN1EaLn7shsPGsTEEydoPWsWjQcNovWsWUw6dYrQwYMluAshbitO7u4kx8WZ9zzmH1T/+uablK9a1eaxvDcRU4//bfP65QIDCY+IoJxswRJClJL8y8JtDcKFEEVcRv7222/z9ttvA6ZfpkGDBuHmZrlvLC0tjVOnTvHYY48Ver3169fTrVs3KlSoYFWz8MqVK3z66acMHTq0qJ9B3IUKSoSWm+Gy89KlBWa4FEKIsqSUIiA0lBnJyYUut9SKsBQzUzPYzDruGRhIm8jIsvmQQgiRx63emy03F8WdpkiD7aCgIMLCwgA4dOgQdevWxd/fMuups7Mz9evXZ+TIkYVeb/jw4fz00082Z8FPnjzJ8OHDZbB9D8qbddxWTce8LkZHc/Lrr6n28MN89+KLNB0xosSTgQgh7m63KnMv5EvuePw4viEhpvcJCrLa85j3RmFBxyTruBCiNDm5u5d1E6zIzUVxpynSYLtXr1706tXL/Hj27NkEBwcX+02VUnaPJSQk4OnpWexriztT/o5piylTrGo65pW7h1HT62k9c2YZtFgIcae7FZl7DW5uNpM7AuxdtIieq1cTOmQIl48d453mza1K4WiaxoXoaNa2aiVlcoQQZSL/qhyllKwcFKKYHM5GnrcMWK6UlBRiYmIICQmx+8u4c+dOdu7caX786quvEhAQYHFOWloa33zzDffdd5+jzRJ3MFsd07g//2T0/v30WLWKT0aNsltOQoK/EOJ24uHvbzO5I5jqZX88ciQ127fHw9+/wOWWto7J8kkhxK1W0KocyYkjhOMcHmy/8sorJCcnExERAcD3339Pz549uXr1KjVr1uSLL74gxMby36NHj/LJJ58Apjv333//PS4uLhbnODs706hRIxYsWFCczyLuQPayjucmQuu9fj3BHTrY3cMohBC3DU3D1dubPVFRNlfkgGnAfWD5csJz/g91hCyfFELcKkVdlVNafS+5uSjuFg4PtletWsXUqVPNj5977jkaNmzItGnTmD9/PjNmzGDz5s1Wr5s0aRKTJk0CoGbNmnz44Yc0adLkJpou7gb2so7DjURoPdeskURoQojbnpObGzqDwW5yx1wJJ06gMxgw5Es0KoQQZaWoq3I8g4JKpT1yc1HcLRy+PXX27Flq1aoFwPnz5zlw4AALFy6ke/fuTJs2je+++67Qa5w8eVIG2vcwpZQ5kBeUdRxMM9w/v/YaOr3edL7BIANtIcTtSdMwZmUVmNwRwCc4GGNWFlmpqaXUMCGEKEDOqhx7kx9wY1WOMhpLuXFC3NkcHmy7ublx9epVAL7++mvKlStHixYtAPD29iYpKalkWyjuKspo5Nr58+yJimLb4MFkpacXrWOanV1KLRRCiILlz9BrTiZ0/TrodISNHWtVLztXbnLHtMREu9eX5ZNCiNLk0KocvR5k0kOIInN4GfkDDzzAokWL0Ol0LF68mC5duqDPmXU8fvw4lStXLvFGiruDrb1AwR060HTkyMKzjsv+bCFEGbOVoZecvBO5yYSqtmzJ/ePH03P1aqvlmHmTO8b//bfd95Hlk0KI0pSZmlr0VTnZ2VBAVSEhhKViJUjr3r07PXr0oHr16rz44ovmY5s3bzbPcguRl71EaPuWLCF0yBDJOi6EuK3lz9CbO6jOfwPx0MaNnPvpJ3qvW0fN9u3tJneUJeRCiOK6FhvLgRUrTFnCS2IFjFKkJSYWreSqTH4I4RCHB9sNGjTgxIkTXL58mQoVKlgce/XVV6lUqVKJNU7cPewlQsubdbxmu3YcXLlSso4LIW4rNlfldOxI0pkzNpMJ/bFhA/F//cWT331HeEQEOoNBkjsKIUrM9dhY9kRFUbdnz5IZbAPJcXH41a1b6KociWFCOMbhwXauChUqoJQiNjaWihUrYjAYaNy4cUm2TdxFCkqElpt1vPPSpTeyjmdno+l0EtSFEGXK5qocTaPRgAHsXbjQbjKh2IMH+WHRIsIjIljg4cHw778nsFmzUmy5EEIUjZO7O1mpqWg6HaFDhhS4KkcI4Zhi/dZ88cUX/Otf/8LV1ZVq1aoRHR0NwJgxY9iwYUORrvHnn38ycOBAQkJCcHFx4eDBgwDMnDmTnTt3FqdZ4jailDInNTNmZ2PMzi5wL9DF6GhOfv21+bFOZoCEELcBW6tynNzccHJ3L3KJLyX7G4UQt6G8eSgCQkNRSqHpdHgGBREeEcGjGzYQHhGBZ1CQDLSFKCaHf3M2btxI165dqVmzJm+99RbGPCUAQkJCWLt2baHX+PLLL2natCmnT59m8ODBZGZmmo85OTnx1ltvOdoscRsxZxyPjGTboEHsiYwkKy2tSBl6JZgLIcratdhYvnvxRa5duGBzVU5maiqZKSlS4ksIcceyqA4zaBB7oqK4dv48ymhE0zQuRkezwMODi9HRMvkhxE1weGQzb948Jk+ezMaNG3nyySctjjVs2JBDhw4Veo3p06czcOBAfvrpJ+bMmWNxrGnTpvz222+ONkuUkfwz2Ll7G5fWrMl38+dzaONGvps/n3dbt6ZcYCA9V6+2GnDLXiAhxO1CKYWHvz+tZ87Ew8/P9qocpTi0eTNNR468qRJfQghRmpzc3TG4udntqy2tWZPo999HGY0Y3NzITEkp6yYLccdzeLB94sQJunbtavOYh4dHkepsHzp0iCeeeALAanDl7e1NfHy8o80SZSD/DPbF33+3mXEcTPsXPxw2jNAhQ5h06hStZ82i8aBBtJ41i0mnThE6eLDMagshypStmR57q3L2LVmCZ+XK9Fi1qsAbiMlxcaX5EYQQwkre5eIV6ta121czZmXx8ciRXIuNxcPfv4xaK8TdxeEEaZUqVeLIkSO0b9/e6lh0dDTVq1cv9Bq+vr7ExMTYPHb06FECSyizorh1rLLzaho9V60qMGHQHxs2UOWhh2g+frxk6BVC3DbyzvTk74Ae+/xzRv3yi1WG3ovR0Xw0fDi9160juEMHKfElhLgtWZQtPHGCXmvW2KwOk8uYlcWB5csJj4go5ZYKcXdyeCpx0KBBREZG8nWeZFaapnHo0CFefvllhgwZUug1evfuTUREBH///bfFNS5cuMArr7xC3759HW3WLfPWW2/RvXt3/P390TSNrVu32j33s88+o0WLFnh4eODj40Pbtm05d+6cxTk//vgjDz30EG5ublSvXp2XXnrpjkueYys7b1ETBp378Ud0Op15JkhnMMhAW4hSJDHNkpO7Ox7+/sValdPhpZfQNE2SCQlRxiSu2ZZ/ufjfH36IwcWlyMkdDW5ut7R95QIDCY+IoJxMsom7mMO9gcjISFq0aEHHjh3NNbW7dOlCk/9v787Doqr+P4C/LzAzwIDAsCOKS4ImQgqJkIkLmlum4gblbmqRS7m3gWlqP80s06JvuKaimPu+gWZgqWXuW4lhooICiso28/n9YdwYZ4AZYIYBP6/n4am5c+6559yR93C3c/z9ERgYiOnTp5dbx9y5c+Hs7Aw/Pz8EBQUBAEaMGAEfHx/Y2dkhJiZG32YZzKpVq5CZmVnqrfPFfvjhB/Tt2xft27fHjh07sHLlSgQGBiIvL08sc/XqVbzyyitwd3fHjh07MHHiRHz88cf4/PPPDd2NKqVtdF69Bgz69xlvxpjxcaY9UfK2SksHhzKv9JxZswbHv/lG/MPw6YNqHkyIserFuaZJ24URUxvc0dbdHe1jYqpsrnDGKuNBejqSYmLwID29SuvV+zZyqVSKrVu3IjExEfv370dmZiYUCgXCwsIQFhamUx12dnZITk7GDz/8gP3790OhUEChUCAqKgpDhgyBVCrVuyOGkvzvldjU1FSsWrVKa5l79+4hKioKixYtwltvvSUu79Wrl1q5+fPnw9HREfHx8ZBKpejUqRMyMjLw6aefYty4cZDJZAbtS1XROmd2iQGDjs6bp/WPVh5xnLHqx5mmfltlzo0b6L18uU535bSOikL6H39gedu2WufN5sGEGKsenGuatF0Y0edvNR7ckT1rctPTcXjmTPj06lWlJ4AqfNTToUMHzJkzB9999x3mzZun84F2MYlEguHDh2Pt2rXYt28f4uPjMWrUKJM60AYAMx0ODDds2AClUomRI0eWWW737t3o3bu3Wh8HDRqE7OxspKSkVLqthvT0qOPazorqOmAQX/VhrPo865n29G2Vf6xcqd9dOUR8UM2YiXnWc60kibU1BDMz7RdGUDWDO+p7+zffLs6eZdVyifGll17C0qVLkVFLRmk9duwYmjZtipUrV8LLywsWFhZ44YUXsHv3brHMw4cPkZaWhqZNm6qt27RpUwiCgIsXLxq72TrTNuq4ttF5b58+jS1DhqBFZCSPOM5YDVabMo2IxKs3qn+vaKs9m63HNF6cX4zVXDUx1/S5rbXkozEuvr6lXhgp+bfa+L/+KvVvtbJuIdf39m++XZw9y6rlLwd3d3dMnjwZdevWxSuvvIJVq1bhwYMH1dGUKnHr1i1cunQJH330EWbNmoXdu3ejQYMG6NWrF86dOwcAyP73dhx7e3u1daVSKaytrXHv3r1S68/Pz8f9+/fVfoxF21yMW4cPh9zVVetZ0fMbN+Lq3r2wdXdHaEzMk2cbY2J4wCDGapDakmlqU3m9/jpUhYVan82ujrty+EoPq8kM9WyjIRky1wyVacW3teaWs5/1mbYQAM7GxyOuTRtYKRQ8uCNjBqb3M9tVYePGjcjNzcWmTZuwfv16jBo1CmPHjkW3bt0QGRmJnj17Gv2ZGCKCssTAXYIgwNzcXKd1VSoVcnNzsWbNGvHZn/bt28Pb2xufffZZqc8P6Wru3LmYOXNmpeqoCG2DawD/nRXtvWpVmVPeFP9ZaqbjfmSMVZ1nPdOenspLYm0NizVrtN5WWTLTGnbogN/+9z+tmVaViq/0MFYTGerZxvKYaq5V199pFZm2EHhyEjFo4kRIrKyQeekS/hcYqHUcCsZY5VXb6SsbGxsMGTIEO3fuRHp6Or744gvcu3cPgwYNgqurq9Hbc/jwYUgkEvFH2zzipXFwcAAAdOzYUVwmkUjQrl078Wxp8VnSnJwctXULCgrw6NEjKBSKUuufMWMGcnJyxJ+0tDSd21YZWgfX+NfZ+Hj8LzAQubdu8RVsxkzQs5xpFRmFtzjTHmZk/JdpfKWHMZNiqrlWXX+nVXTawqdvF+dxKBgznGq5sv00R0dHvPTSS7h+/TouXbqE27dvG70NAQEBOH78uPja1tZW53WbN29e6nvF00nI5XLUq1dP43mfS5cugYg0ng8qSSaTVcvol6UNrlHs9unTOLZwIfquWSOWZ4yZhmc50yo6Cm/G+fOwcXNDXlYWFnl58ZUexkyMqeZatfydJgiwtLfH4Zkzy5y20DM4GIFvvYXQ6GiYWVhAVVQEwdzcIIPV8uMxzFAepKfjZGwsAsaMqXHP/lfodL1SqURycjI2bNiAVatWafzo6s8//8Snn36KFi1awN/fHytWrMCAAQOQnJxckWZViq2tLQIDA8UfHx8fndft2bMnAODAgQPisoKCAhw+fBgBAQHism7dumHr1q0oLCwUl61fvx729vYICQmpgl5UrdIG1yiJ581mzDQ9y5lW2VF4iQghU6bwH4yMmZhnOdeeJrGygpmFhU7TFpqZmeH2mTOYI5fj9unTBpsVhgdCY4ai6/gFxUxpXAm9r2z/9ttv6Nu3L9LS0kBEGu8LgoAhQ4aUWcfChQsRHx+PkydPws7ODuHh4fjyyy/Rvn17naZvMKYTJ04gNTVVHDn92LFjAABnZ2eEhoYCAFq1aoXw8HCMHj0a9+7dg7u7O5YsWYLbt29jypQpYl1TpkzBmjVrEBERgbfffhtnzpzB/Pnz8emnn5rclGcAIJiZIWDMGJ43m7FapDZn2oP0dJz87ju0++CDMkfh7b1qFRp27IjfvvtO67PZcmdnfp6asRqkNudaqQQBqqIinraQMS2qa1wJrUhPrVu3Jj8/P0pKSqI7d+5Qdna2xk955HI5RURE0LZt26igoEDfJhjV0KFDCYDGT2hoqFq53NxcGjduHDk7O5NMJqOQkBA6evSoRn0///wzBQUFkUwmI09PT5o7dy6pVCq92pSTk0MAKCcnpzJd04lKqaRTK1fSJxYWFAOIP59YWNCpVatIpVQavA2MsapTmzPt5smTFAPQw4wMyklL08it4p/YVq0oPzeXlIWFRESkLCzUuc3F27h58mSlljNWE9y/eZMSo6Pp/s2bastN7d+1qeVaVWdayf2sUqn+yy6lssys+8TCgnJu3CCVSsXZxWo0ff89VuTf782TJ+lTa+sq/zev95Xtc+fOISEhQTxTWBF37tyBtbV1hdc3phUrVmDFihXllpPL5fjqq6/w1VdflVkuJCREPONaEwhmZvB74w007NSp1FHHGWM1R23PNIm1NR5mZMDJx4dH4WWskkzq6lAZanuuFSOVCg9u3sTJ2Fjc+/NP1HvpJbz41lulZp0hpi1krDaiEvPUq4qKQERV9nuj98G2t7d3pecPrCkH2uwJwcwMth4eCI2JgZm5OVRK5ZOpvTi8GWMm4ukvSghCuScKq3IUXh4YiDFmKKVN8XV23TrcSElB75Ur+aIIYxX09EksRePGTwZiq6LZSPQ+2P7iiy8wYcIE+Pv7lzna7NPq1KmDxMREBAQEwNbWtswDNUEQNKZdYNVLEAQI/442zqOOM8ZMSVlflLYeHkYZhZfnzWaMGUpZU3ydWbMGmRcuYNiRI0bJOsZqk9LmqT86bx56xcXB7403Kn3ArffB9jvvvINbt27B19cXHh4e4pyExQRBwB9//KGx3qRJk+D+7xn/SZMmcQAwxhirNF2+KB9nZeHkd9+h5YgRRr8Vlq94M8YqRYcpvtJ/+w0/z5uH0OhozJHL+dEYxnRARKWexFIVFWHbyJFo2KnTkyvclThu1ftgOyAgoEIbjI6OFv8/hs/+M8YYqyR9vijbffBBtbSRr3gzxipD1ym+sv76C2YWFlpnCmKMaSKVCidjY0s9iaUqKsLJb79FaEyMeHdvReh9sK3LABTl6dixI5YuXar1NvTLly9j7NixOHToUKW3wxhjrPYy1hdlSXylmrEnJDz+jlEUPn6s+xRfRUUoevy4SrbLWcdqOzNzc91OYlXy74dqGTUhKSmp1EHW7t+/jyNHjhi5RYwxxmoaY31RllR8pdqUR2ZmzJBKDkbo6ufHV1INjQh52dkIGDMGZhbar5GZWVggYOxY5GVnV9lmOetYbadSKnWfp74S9L6yDQDZ2dnYuHEjLl++jLy8PI33y5tSAUCpt6InJyfDxcWlIs1ijDH2DNHni5IHdmSsYkpewTb0qL1Mu/KmMyye4ivz0qVqbCVjNYtgZoaAMWNwdN48rXfIFZ/EMvoAaVeuXEFISAjy8/Px8OFDODs74969eygqKoKDgwPs7Oy0HmzPnTsXc+fOBfDkQLtDhw4we6rx+fn5KCoqwttvv13B7jDGWNV4kJ6O35ctq5ZBtZhujPVFyVhNR0QgpVKvkao15p01wqi9TLuix48hmJnpNJ0hY0w3giDA1sPD4PPU632w/d577yEoKAgJCQmQy+XYtWsX/P39sX79erz//vtISEjQul5ISAgmTZoEIsInn3yCiIgIeHp6qpWRSqVo1qwZXn311Yr1hjHGqgARQe7sjHYffPDkj0winkHBBBnri5KxmkyXq9EP0tNxMjb2yXJ3d411QiZPhtzFxeCj9rKyCWZmRpvOkLFngS4nsSpL74PtX3/9FXFxcZDJZACAgoICmJubIzIyEpmZmRg/fjx+/vlnjfVCQ0MRGhoK4MkfSG+++SY8PDwq2XzGGKtafJtkzWKML0rGapLiA+cXo6Jg7eio09Xo3PR0HJ45E80HDoSNq6v6OoKAXt9/j6Nz5xp1MEKmnSAIuHX6NJa//DJP8cVYFTD0SSy9/wrJz89HnTp1YGZmBoVCgZs3b4rv+fr64tSpU+XWER0dzQfajDGTU3yb5JcNG+LI7Nk4u24djsyejS8bNsTpH34AqVTV3USmRckvyr5r1iA0OppPjrBnVvGBsyAI5U6N9yA9XRzgTGJtDbmzs8Y6EisrSKytjT4YIStb4aNH1d0ExirkQXo6kmJi8CA9Xa/19J0BQZ/ygiDg9unTmCOX4/bp01V6t4jeV7a9vb1x/fp1AEDLli2xdOlSdO7cGRYWFoiNjdX5IPrq1atYsWJFqYOsbdu2Td+mMcZYhekzZzPfsmd6+GoPYyUIAizt7XF45swyr0Zf3LIFgW+99d+z2UolDsfEqK1T+PgxCh894sEIGWNVoviEoE+vXjqNiaMxfkQ5j/bpW74kQ5zE0vtge9CgQTh16hQGDx6MWbNm4ZVXXoGDgwMEQQARYeXKleXWcfz4cYSGhsLLywuXL1+Gn58fcnJykJqaCk9PTzz33HMV6gxjjOmreCC0ttOmGX3OZla1bNzdETJlCs8Ly5551o6OMLOwKPNqtO+gQQgcMwa5/z42k3PjBnovX665DhHOrl+PliNH8mCEjDGj0vfRPlN8FLBCA6QVa9OmDc6ePYvdu3cjLy8PHTt2hK+vb7l1TJ06FQMGDEBcXBwkEgni4uLQqlUrJCcnIyIiAtOmTdO3WYwxpreSA6EB4Nska7jieWEZe1YVX9GZkpFR5tR4rn5+6L1qFU6vWYPto0aJz2b3WLJE6zq/LFoEvzfewKvff/9f+X/xYISMMUPQdwYEU50xodJbrFevHkaPHo3x48frdKANAH/88QciIiLEqb+KbyMPCQlBTEwMpk+fXtlmMcZYmUilwoN//sHhmTPx4+uvoyg/X+fbJBljzNSoZVpkJG7/8QcCxoyBmYXmdZWgiRPx4J9/1A+cS1zBfnqd26dPY8uQIWgRGYkJqalo9+GHaBEZiXYffogJqanwe/11vqptIPo+p8pYbaDLo30lx5zQt7wxVSgZCwsL8e2332LkyJHo0qULrly5AgBYv349Lly4UO76giBAKpVCEAS4uLiIz4ADgKenJy5fvlyRZjHGmFZEJB4kq5RKzYHQ1q7FmbVrtf6RWYxvk6x9bNzdERodzbedsxpP2+COW4cPh9zVFa9+/716rgkCfAcOxO9xcRp/lP6yaBFs69bVXAfA+Y0bcXXvXtj++3vDgxEaVsnnTl39/KrlIIExQynvJBKpVDo92lc8cK2+5Y1J79vI//rrL4SFhSEzMxMtW7bE0aNH8eDBAwDAkSNHsGfPHixfvrzMOp5//nn8+eef6NChA4KDg/H555+jRYsWkEgkmDdvHhqXc3WJMcZ0pet8sXyb5LOHbztntUFpV3SKr0b3XrUKjcLCxKnxHH18Sh1dvOQ6DTt0wG//+5/W6fRunTrFgxEakCk+d8pYVdB18DIzc3O9Hu3Tt7wx6X2wPX78eDg7O+PXX3+Fvb09pFKp+F5oaChmzJhRbh2jR48Wr2bPmTMHXbp0gb+/PwBALpdj48aN+jaLMcY0aDy/U8Z8sWp/ZHbsiN+++47nbGaMmbyyruicjY9Hxvnz6LVsGUJjYmBmbg5VUVGZz3OXts7T887y1FOGoctzpxZWVtXYQsYqRp+TSGVlVLGSMyDoW96Y9D7YTkpKwrp16+Dk5ATlU88uurm5IV2HOdMGDx4s/n+zZs1w4cIFpKSk4PHjx2jTpg1cXFz0bRZjjKnRdrWnvPlii//I7Prll2X+kckYY6aivCs6t0+fxrGFC9F3zZon5S0sQEQIGDOm1NHFM86fh42bG/KysrDIy4uvYBuJrlNQyp2dq6mFjFWMvoOXCWZmZWbU04/26VvemPTeosW/Ia3N7du3YWNjo3cjbGxs0LlzZ/Tq1YsPtBljVULb1R5d5ou9ffo0rh08CBDhyKef4mFGBh9oM8ZMlj5XdIoJggBbDw/0iovTeDa75GMzDzMy+Aq2Een63Kmlvb1xG8ZYJVRk8DJdM6r47zN9yxuT3le2Q0ND8fnnn6Nbt27iaOLFc2x/99136NSpk9b1Nm3apNd2+vbtq2/TGGNMpPVqjz7zxZqbi1OCMcaYqaroFR3BzAx+b7yBhp06ic9zP/3YTNHjx8bqBoMez51aWPCt5KzG0PUkUmhMDIQSt3jrklEl6VveWPQ+2P7ss88QEhKC559/Hr169YIgCFiyZAnOnj2LK1eu4Ndff9W6Xr9+/XTehiAIGreos/8Un/m5f/9+NbeEMdOlUioh8/RE3lPLkz7/HA169UKHxYux+5131K72mJmbo/uSJSC5XBz4sbrY2to+M1fUOdMYqxyysUHHr7/GrqgovTONbGzQ8t13YWZh8WTAInNzPMjNBQA8yM1F3r//lZf4/SxteXmelVyraKaV9r1VkrRuXWTfu4fcx4/1+lxUNjYInD4dKhsbtXZV9LNkTB83Ll4s89/1P5cuIffhQ63vlZVRVVG+WGm/I2XRJdMEqsBcAteuXUNMTAz279+PzMxMKBQKhIWFYebMmaWOJF5yei9deHl56dusZ8aNGzdQr1696m4GY8yAcnJyUKdOnepuhlFwpjH2bHhWco0zjbFngy6ZVqGDbVa9VCoVbt68aZAzxPfv30e9evWQlpZW478Qa0tfuB+mxVj9eFauAAGGzTSA/+2ZmtrSD6D29IVzrWpxpummtvQDqD194X7oR5ffcb1vI69Ke/bswfHjx5GWloYPP/wQ9evXx5EjR/Dcc8/Bw8OjOptm0szMzODp6WnQbdSpU6dG/5KVVFv6wv0wLbWlH6bAGJkG1J7PjPthempLX2pLP6obZ5p+aks/gNrTF+5H1dHpYHvEiBE6VygIAuLi4sosk5GRgd69e+PYsWPiWYexY8eifv36WLZsGeRyOZYsWaLzNhljjDHGGGOMMVOi08H2ihUrYGtri8aNG5c67VcxXW6XmThxIjIyMnD27Fk0adIEUqlUfC8sLAyzZ8/WpVmMMcYYY4wxxphJ0ulgOzg4GMeOHYNSqURkZCQGDRpUqQHMdu7cif/9739o1qyZxqjj9erVw40bNypcN6scmUyG6OhoyGSy6m5KpdWWvnA/TEtt6cezpLZ8ZtwP01Nb+lJb+vGsqC2fV23pB1B7+sL9qHo6D5D2999/Iz4+HmvXrsWZM2cQHByMyMhIDBgwAE5OTnpt1MbGBhs2bED37t2hVCohkUhw4sQJtGrVClu2bMGIESNw7969CnWIMcYYY4wxxhirbjrP7l2/fn1MnToVp06dwpkzZ9ChQwcsWrQIHh4e6NatG3bv3q3zRoOCgrBs2TKt78XHx+Oll17SuS7GGGOMMcYYY8zUVGrqr7y8PHz88cdYuHAhevXqhU2bNum0XkpKCjp06IDWrVujX79+ePfdd/HBBx/gwoUL2LlzJ44ePYpWrVpVtFmMMcYYY4wxxli10vtgW6lUYt++fYiPj8fWrVthYWGB8PBwjBo1Ci+++KLO9aSkpGD69OlITk6GUqmEIAgIDg7G/PnzERwcrHdHGGOMMcYYY4wxU6HzbeRHjhzBW2+9BVdXVwwYMABKpRJr1qzBrVu3EBsbq/OBdkFBATZt2gRXV1ccPnwY9+/fx40bN/DgwQMcPXqUD7QNaOnSpejZsyecnZ0hCAI2btxYatmdO3ciJCQEcrkcDg4O6NChg8bAdcnJyQgODoaVlRW8vLzw2WeflTtavaHcvXtXnD5OLpfD19cX3377rUa5mzdvIjw8HLa2tlAoFBg1ahTu379fDS0u38WLF9G5c2fI5XK4ublh6tSpKCgoqO5mlWvbtm0ICgqCra0t3N3dMWDAAPz1118a5eLi4uDt7Q1LS0v4+/tjx44d1dDaJ65evYqxY8fihRdegIWFBXx9fbWWy87Oxvjx4+Hh4QFLS0s0btwYn3/+uVqZgoICTJkyBW5ubpDL5ejcuTMuXbpkjG48czjTONOMgTONM82YONc41wyNM83ImUY68PT0JEtLS+rTpw9t2LCBHj9+rMtqpZLJZJSYmFipOpj+goKCKCgoiIYMGUIAKCEhQWu51atXk1QqpRkzZtChQ4do69atNHnyZLpy5YpY5sqVK2RjY0N9+vShAwcO0MKFC0kqldL8+fON1R01HTp0IHd3d1q+fDkdPHiQJk2aRADou+++E8sUFBSQr68v+fr60rZt2yg+Pp48PT2pR48e1dLmsty7d4/c3d2pXbt2tGfPHoqLiyM7OzuKioqq7qaVKTExkczMzGjYsGG0f/9+io+PJ29vb2rcuDE9evRILLdu3ToSBIE+/PBDOnToEI0ZM4YsLCwoJSWlWtq9ZcsW8vT0pPDwcGrRogU1b95co0xubi75+/tTQEAAxcfHU2JiIsXGxmr8mx8zZgzZ2dlRXFwc7dmzh15++WWqW7cuZWdnG6s7zwzONM40Q+NM40wzNs41zjVD4kwzfqbpdLAtCAJJpVKysbEhW1vbMn/q1KlTbn3+/v60cuXKSjee6UepVBIR0bVr10oN8Lt371KdOnVo6dKlZdY1evRo8vLyovz8fHHZjBkzyN7envLy8qq24eVIT08nALR8+XK15e3ataOOHTuKr9euXUuCINDFixfFZXv37iUA9MsvvxiruTqZM2cOyeVyunv3rrgsNjaWzM3N6Z9//qnGlpVtzJgx1LBhQ1KpVOKyQ4cOEQA6cuSIuMzb25siIiLU1g0ODqZu3boZra0lFf9uEBENHTpUa4h/+OGH1KhRI8rNzS21nrS0NDI3N6fY2Fhx2d27d0kul9Nnn31WtY1mnGmcaQbHmcaZZmyca5xrhsSZZvxM0+k28ujoaLz//vuYPHkyJk2aVObPe++9V259c+fOxezZs3HixAk9r8OzyjAzK//j3rBhA5RKJUaOHFlmud27d6N3796QSqXiskGDBiE7OxspKSmVbqs+CgsLAQB2dnZqy+3s7NRuldq9ezf8/Pzg4+MjLuvcuTMUCgV27dplnMbqaPfu3QgLC4NCoRCXDRgwACqVCvv27avGlpWtsLAQtra2EARBXFb8uRR/Fn/99RcuX76MAQMGqK07aNAgHDx4EPn5+cZr8L90+d34/vvvMWLECMjl8lLL7Nu3DyqVCv379xeXKRQKdOnSxeT+jdUGnGmcaYbGmcaZZmyca5xrhsSZZvxM0/lgW5+f8kydOhV3795FUFAQXFxc0KJFC/j5+Yk//v7+le4Yq5hjx46hadOmWLlyJby8vGBhYYEXXnhBbWq3hw8fIi0tDU2bNlVbt2nTphAEARcvXjRqm+vVq4cuXbpgzpw5OH/+PB48eIANGzZg3759iIqKEstdvHhRo82CIKBp06ZGb3N5tLXV3t4e7u7uJtfWkoYNG4bz589j6dKlyMnJwV9//YX3338fLVu2FKf0K27/0/1r1qwZCgoKcO3aNaO3uzypqam4desWnJyc0KtXL8hkMigUCrz55pvIzc0Vy128eBEuLi5wcHBQW79Zs2Ym/bnVZpxppoEzzbRwptVsnGumoSbmGmea8TPNwiC1liMgIACBgYHVsWlWjlu3buHSpUv46KOP8H//939wd3fHkiVL0KtXL5w6dQrNmzdHdnY2gCeBUpJUKoW1tTXu3btn9HZv2rQJAwcORPPmzQEA5ubmWLx4McLDw8UyWVlZGm0GAAcHh2ppc1lqUltLevnll7F582ZERkaKX54vvPAC9uzZA3NzcwBP+gZo/vspDj5T7N+tW7cAAJMnT0bfvn2xa9cuXLlyBdOnT0dubi7WrVsHoOZ+brUZZ5ppqEltLYkzrWZ+brUd55ppqEltLcaZZvzPrFoOtlesWFEdm31mEBGUSqX4WhAE8ReoPCqVCrm5uVizZg169eoFAGjfvj28vb3x2WefYdWqVQZps6609c3MzAzDhw/HlStXsHbtWri7u2P//v2YOHEiHBwcMGjQoGps8bMlOTkZgwcPxptvvomePXvi7t27mDVrFnr06IGffvoJVlZW1d3EClGpVAAAb29vrFy5EgDQqVMnWFhY4M0338Snn36KRo0aVWcTazXONM606sKZxgyFc41zrTpwphlftRxsM8M6fPgwOnToIL4ODQ1FUlKSTusWn7Xq2LGjuEwikaBdu3Y4e/YsgP/OdOXk5KitW1BQgEePHqk9u1LVtPVt8uTJSEhIwOnTp9GiRQsAT7507ty5g0mTJokB7uDgoNFm4MlZrnr16hmszRVRVlsNuX8ra/z48ejYsaPaNAtt2rRB/fr1sXr1aowePVr8N5aTkwM3NzexXPGZVFPsX3GbS/7bA54EOQCcO3cOjRo1qrGfm6njTONMqy6caTXzc6sJONc416oDZ5rxPzM+2K6FAgICcPz4cfG1ra2tzusW39qjTV5eHgBALpejXr16Gs82XLp0CUSk8YxHVdLWt61bt8Lc3Fxjzr2WLVvi+++/x6NHj2BtbY2mTZvizJkzamWICJcuXULnzp0N1uaK0PZsUk5ODtLT0w26fyvr/PnzeO2119SWeXp6wsnJCX/++SeA/54BunjxotoAKBcvXoRUKjXJqymNGzeGTCYr9f3i342mTZvi9u3byMrKUnseSNtzXUx3nGlPcKYZH2caZ5qhcK49wblmXJxpxs80nQZIYzWLra0tAgMDxZ+Svyjl6dmzJwDgwIED4rKCggIcPnwYAQEB4rJu3bph69at4uiSALB+/XrY29sjJCSkCnqhnba+eXl5QalU4vTp02plT548CRcXF1hbW4tt/uOPP3DlyhWxzMGDB3H37l10797dYG2uiG7duuHAgQPiM1cAkJCQADMzM3Tp0qX6GlYOLy8v/Pbbb2rLrl+/jszMTDRo0AAA0KhRI3h7eyMhIUGt3Pr169GpUye1UVNNhVQqRZcuXXDw4EG15fv37wcAtGrVCgDQpUsXmJmZ4ccffxTLZGVlYd++fSb3b6wm4Ux7gjPN+DjTONMMhXPtCc414+JMq4ZMM8iEYswkHT9+nBISEmjp0qUEgCZNmkQJCQmUlJSkVi48PJycnZ0pLi6Odu3aRT169CBLS0s6ffq0WObKlSskl8spPDycDh48SIsWLSKpVKoxcbwx3L9/n+rXr0/PPfccrV69mg4cOEBTp04lMzMzmjVrlliuoKCAfH19qUWLFrR9+3Zav3491atXj3r06GH0Npfn3r175O7uTqGhobR3715atmwZ2dvbU1RUVHU3rUyLFi0iADR+/Hjav38/xcfHk6+vL7m6ulJmZqZYrngezY8//pgSExNp7NixZGFhQcnJydXS7ocPH1JCQgIlJCRQ+/btqV69euLrO3fuEBHRiRMnSCqVUmRkJO3du5e+/vprsrW1pddff12trjFjxpC9vT0tW7aM9u7dS6GhoVS3bl3Kzs6ujq7VapxpnGmGxpnGmWZsnGuca4bEmWb8TOOD7WfI0KFDCYDGT2hoqFq53NxcGjduHDk7O5NMJqOQkBA6evSoRn0///wzBQUFkUwmI09PT5o7dy6pVCoj9UbdlStXaMCAAeTh4UHW1tbUvHlzWrRoERUVFamVu3HjBvXt25dsbGzI3t6eRowYQTk5OdXS5vKcP3+eOnXqRFZWVuTi4kKTJ0+m/Pz86m5WmVQqFX3zzTfk5+dHcrmc3NzcqE+fPnThwgWNst9//z0999xzJJVKxS/V6nLt2jWtvxsAKDExUSx34MABCgwMJJlMRm5ubjRp0iTKy8tTqysvL48mTZpELi4uZGVlRWFhYVr7zyqPM40zzdA40zjTjI1zjXPNkDjTjJ9pAlGJmeQZY4wxxhhjjDFWafzMNmOMMcYYY4wxVsX4YJsxxhhjjDHGGKtifLDNGGOMMcYYY4xVMT7YZowxxhhjjDHGqhgfbDPGGGOMMcYYY1WMD7YZY4wxxhhjjLEqxgfbjDHGGGOMMcZYFeODbaaTmJgYCIKAunXrQqVSabz/0ksvQRAEDBs2TK96s7OzERMTg/Pnz6stT01NhSAI2LhxY2WaXWmLFi2CIAji66SkJAiCgBMnThitDTExMUhOTtZYLggCFixYYLR2aLNlyxYIgoDU1FQAFfvcFi1ahF27dhmohYxpx5n2BGeaOs40VpNxrj3BuaaOc6168cE205lEIkFmZiaOHDmitvz69etISUmBjY2N3nVmZ2dj5syZGgHu7u6OlJQUdOzYsVJtrmqtWrVCSkoKmjVrZrRtzpw5U2uAp6Sk4PXXXzdaO3RRkc+NA5xVF840zrTycKaxmoZzjXOtPJxrxmVR3Q1gNYdUKkVYWBjWrVuH9u3bi8vj4+PRvHlzmJubV9m2ZDIZ2rRpU2X1VZU6deqU267Hjx/DysrK4G0xxf1jqp8bY9pwpnGmlcdUPzfGSsO5xrlWHlP93GorvrLN9BIREYGNGzeisLBQXLZ27VpERkZqLX/kyBGEhITAysoKTk5OGDFiBO7duwfgyW0sDRs2BAD0798fgiCIt7lou8VFpVJh9uzZaNCgAWQyGZo2bYrY2Fi17cXExMDGxgZnzpxB27ZtYW1tDV9fX+zdu7fcvt2/fx9DhgyBra0tnJ2dMXXqVBQVFamV0XZrkiAImDdvHqZNmwY3Nze4uLgAAIgICxYsgLe3N2QyGRo1aoQvvvhCY7sXLlxA3759oVAoYG1tDX9/f6xbt06sGwCmTJki7p+kpCTxvadvTYqNjYWPjw9kMhkaNGiA2bNnq91KtmLFCgiCgN9//x3dunWDXC5HkyZNsGrVqnL3T2FhISZOnAiFQgE7OzuMHDkSubm5amW0fW7btm1DYGAgbGxsYG9vj8DAQPHsaIMGDXD9+nUsWbJE7N+KFSsAAKtWrULbtm2hUCjg4OCA9u3b49dff1Xbnj6f96pVq9CyZUtYWlrCyckJ3bt3x/Xr18X3b9y4gTfeeANOTk6wsrJCu3btcPLkyXL3C6vZONM40zjTWG3Duca5xrlmOvhgm+nl1VdfRX5+Pvbt2wcAOH/+PE6fPo1BgwZplD158iQ6d+4MW1tbJCQk4LPPPsP27dvRrVs3KJVKuLu7Y9OmTQCAOXPmICUlBSkpKXB3d9e67SlTpiAmJgbDhg3D9u3b0aVLF4wdOxZff/21WrnCwkK8/vrrGDZsGDZv3gwXFxeEh4fj7t27ZfZtxIgR2Lx5M+bNm4eVK1fi/PnzWLRokU775csvv8Tly5cRFxeHH374AQAwYcIEfPzxxxg6dCh27tyJYcOGYdq0afj222/F9a5cuYLg4GBcuXIFX331FbZt24bhw4fj77//BvDk9iMAGDdunLh/WrVqpbUNixcvxtixY/HKK69g+/btGDZsGGJiYjB16lSNsq+//jq6dOmCLVu2oGXLlhg2bBguXLhQZh9nzJiBpUuXYsqUKdiwYQOUSiWmT59e5jp//vkn+vXrh+bNm2Pz5s1Yv349BgwYgKysLADA5s2b4ebmhn79+on969GjB4AnXwZDhgxBQkIC1q5di/r166Ndu3a4fPmy2jZ0+bznz5+PoUOHIiAgAJs2bUJcXByaNGmCjIwMAEBWVhbatm2LU6dOYfHixfjxxx8hl8vRsWNH3Llzp8w+spqNM007zjTtONNYTcC5ph3nmnacawZGjOkgOjqa5HI5ERFFRkbSG2+8QUREH374IQUHBxMRkb+/Pw0dOlRcp0+fPlS/fn0qKCgQl+3du5cA0LZt24iI6Nq1awSAEhIS1Lb39PKMjAySSCQ0ffp0tXIRERHk7OxMRUVFYjsB0M6dOzXqWr16dan9O3fuHAmCQHFxceKyoqIiatiwIZX8NUlMTCQAdPz4cXEZAHr++edJpVKJy65evUqCIFBsbKzadqZNm0Zubm6kVCrFfens7Ew5OTmltg0AzZ8/v8zlRUVF5OTkRIMGDVIrM2PGDJJKpZSZmUlERMuXLycAtGTJErFMbm4uWVtb06xZs0ptw927d8nKyoo++ugjteXt2rUjAHTt2jUi0vzcEhISCADdv3+/1Lq9vLwoKiqq1PeJiJRKJRUWFpKPjw/NmDFDXK7L552dnU3W1tY0evToUuv/+OOPyc7Ojm7fvi0uy8vLo/r169OUKVPKbBurmTjTnuBM40xjtQfn2hOca5xrpoSvbDO9RUREYOvWrXj8+DHi4+MRERGhtdxPP/2E1157DRKJRFzWpUsX2Nvb4+jRo3pt85dffkFhYSH69++vtnzgwIHIyMhQO4NmZmaGsLAw8XWDBg1gZWWFGzdulFr/8ePHQUTo06ePuMzc3By9e/fWqX3dunVTGwnzwIEDAIDw8HAUFRWJP2FhYbh16xbS0tIAAAcPHkS/fv1Qp04dnbZTmosXLyIzM1Pr/ikoKNC4padLly7i/8vlcnh5eZW5f86cOYPHjx+r7Z/i/pXFz88P5ubmiIyMxPbt25GTk6Nrl3DhwgX06dMHrq6uMDc3h0QiwaVLlzTOlpb3eaekpODRo0cYOXJkqdvat28fOnToAIVCIX5W5ubmCA0NxfHjx3VuM6uZONM0caZpx5nGagrONU2ca9pxrhkWD5DG9PbKK69AIpHg448/xrVr1zBgwACt5bKysuDq6qqx3NXVVXwWSFfFt7I8XV/x65L1WVlZQSqVqpWTSqXIy8srtf709HRIJBI4ODhorb88T5fLzMwEEcHJyUlr+bS0NHh5eeHu3bvw8PDQaRtl0Wf/AIC9vb3aa132DwDxGaen6y+Nt7c3duzYgTlz5qBPnz4wMzND165d8fXXX6N+/fqlrvfgwQN06dIFzs7OWLhwIby8vGBpaYlRo0ZptLO8z7v4FqWy9nNmZiaOHTum9sdGscaNG5fZR1bzcaZp4kzTjjON1RSca5o417TjXDMsPthmepNIJAgPD8fChQvRqVOnUn+JFQqF1mcobt++DYVCodc2i8vfuXMHdevWVaur5PsV5e7ujsLCQmRlZamFeHH95Sl5prS4PYIg4OjRoxrhAgA+Pj4AAEdHR9y8ebMSLf9vewA09ndV7p/i+rXt/7J07doVXbt2xf3797Fnzx68++67GD58OA4ePFjqOikpKbhx4wZ27NgBf39/cXlOTg48PT31arujoyMA4ObNm6Wuq1Ao0LVrV8yaNUvjPZlMptf2WM3DmaaJM610nGmsJuBc08S5VjrONcPh28hZhYwaNQqvvvoqJkyYUGqZtm3bYsuWLWqjRO7fvx/Z2dlo27YtAIjhVtaZOgBo3bo1JBIJEhIS1JZv2LABLi4u8Pb2rmhXAAAvvvgigCeDQBRTKpXYsmVLherr1KkTgCdn6gIDAzV+bG1tAQBhYWHYuHEjHjx4UGpdEomk3P3j4+MDZ2dnrftHKpWidevWFepHsRYtWsDKykpt/wDAjz/+qHMdderUwYABAzBo0CC1AT60nal9/Pix+F6x5ORkpKam6t324OBgWFtbY/ny5aWWCQsLw/nz59GsWTONz6pFixZ6b5PVPJxpZeNM08SZxkwd51rZONc0ca5VPb6yzSqkdevW5YbbBx98gJCQEPTs2RPjxo3D7du3MX36dLRu3Rrdu3cHALi5ucHe3h7r1q1Dw4YNIZPJ4Ofnp1GXk5MTxo0bh/nz58PS0hJt2rTBrl27sHbtWixevLjS80Y+//zz6NOnDyZOnIi8vDw0aNAAS5cuRUFBQYXq8/b2RlRUFAYPHowpU6YgKCgIhYWFuHz5MhITE8V9Fx0djR07dqBt27aYOnUq3N3dcf78eTx69EgcmbJZs2bYunUrXn75Zcjlcvj4+IhfAMXMzc3x0UcfYfz48XBxcUH37t1x7NgxfPbZZ5g4caJ4xrCiFAoFxo4di3nz5sHKygqtWrXCunXr8Oeff5a5XmxsLFJSUtC1a1e4u7vj2rVr+OGHH9SeQ2rWrBkOHTqE/fv3w8HBAQ0bNkSbNm1gY2ODqKgoTJ8+Hf/88w+io6PVztTqys7ODtHR0Zg2bRpUKhVee+01qFQqJCYmIiIiAoGBgXjvvfewZs0ahIaGYsKECahfvz4yMjLwyy+/wMPDA++++67e22U1C2da2TjTnuBMYzUJ51rZONee4FwzsOocnY3VHCVHuCzN0yNcEhElJSVRcHAwyWQyUigUNGzYMLp7965amc2bN1OzZs1IJpOJoyVqG/lSqVTSJ598QvXr1yeJREJNmjShb7/9Vqd22tnZUXR0dJntz8rKotdff53kcjk5OjrSe++9R/Pnz9dphEttI1CqVCpavHgx+fr6klQqJYVCQcHBwbRw4UK1cufOnaNevXpRnTp1yNraml544QWKj48X3//pp5+oVatWZGVlRQAoMTGx1O1+88031KRJE5JIJFS/fn2aNWuWOJom0X8jXGZkZKitp+2ze1p+fj6NGzeO7O3tqU6dOjR06FBavXp1mSNcJicnU48ePcjd3Z2kUinVr1+fJkyYoDbi5dmzZ+nll18mW1tbAkDLly8nIqLdu3dT8+bNydLSkvz8/GjXrl0UGhpKPXr0ENfV5/NetmwZtWjRgqRSKTk6OlLPnj3p+vXr4vvp6ek0cuRIsa2enp7Ur18/+vnnn8vcL6xm4kx7gjONM43VHpxrT3Cuca6ZEoGIyOBH9IwxxhhjjDHG2DOEn9lmjDHGGGOMMcaqGB9sM8YYY4wxxhhjVYwPthljjDHGGGOMsSrGB9uMMcYYY4wxxlgV44NtxhhjjDHGGGOsivHBNjOY1NRUCIKAjRs36rVeUlIS5syZo7E8JiYGNjY2VdW8ci1atAi7du2qsvq2bNmCpUuXaiwfNmwYfH19q2w7Vc3Y+50xU8a5po5zjbGajTNNHWcaq2p8sM1MTmkBPmrUKCQmJhqtHcYKcFNn7P3OWG3EuWZaONcYqxzONNPCmWa6LKq7AaxmISIUFBRAJpMZfduenp7w9PQ0+nafVfn5+ZBIJFW234vrMzPjc3zMtHCuPTs419izgDPt2cGZZvp4T7IyFd82s2vXLvj7+0Mmk2H79u0AgJSUFHTs2BFyuRx2dnaIjIzEnTt3yqxv1apVaNu2LRQKBRwcHNC+fXv8+uuv4vsxMTGYOXMmHj58CEEQIAgC2rdvL75XfIvMw4cPIZfLsWDBAo1t9OvXD8HBweLr7OxsvP3223B3d4dMJkNAQAD27dtXZjsbNGiA69evY8mSJWI7VqxYAQBQqVSYPXs2GjRoAJlMhqZNmyI2Nrbc/bhy5UqcO3dOrG/YsGFqZZKSktCyZUvI5XK0bt0aJ0+eVHufiLBgwQJ4e3tDJpOhUaNG+OKLL8rcbvG2fX19sXv3bvj6+sLS0hIBAQE4duyYRp/feecd/N///R+8vLxgZWWFe/fuab016fr16+jXrx/s7Owgl8vxyiuv4MyZMzrVV1YbDxw4AD8/P1hZWSE0NBSpqam4d+8eBgwYgDp16qBx48ZYv369xvo7d+5EUFAQrKys4OzsjLfeegsPHz4U33/48CHeeecd+Pj4wNraGg0aNMDYsWORk5Ojtc1LliyBl5cX7Ozs0Lt3b2RkZJS7n1nNwbnGuca5xrlWm3CmcaZxpplwphFjZRg6dCg5ODhQ48aNafny5XTw4EG6cuUKJScnk1Qqpd69e9P27dspPj6ennvuOWrTpo247rVr1wgAJSQkiMtmzpxJsbGxdODAAdq1axcNHjyYZDIZXbp0iYiI0tLSaOTIkWRlZUUpKSmUkpJC586dIyKi6OhoksvlYl2DBg2igIAAtfbev3+fLC0t6auvviIiovz8fAoMDKR69epRXFwc7dmzh9544w2ysLCg06dPl9rv3377jdzc3Khfv35iO+7cuUNERO+99x6Zm5tTdHQ07d27l8aNG0cAaPHixaXWd/XqVerevTs1atRIrO/q1aviPnZ0dKQWLVrQmjVraMeOHdSiRQuqV68eFRQUiHWMGzeOrKysaPbs2bR//36aOXMmSSQS+uabb8r9DBUKBTVo0IBWrFhBW7dupeDgYKpTpw7dvn1bLOfl5UVubm708ssv0+bNm2nbtm306NEjjf1+//59atCgATVq1IjWrl1LmzZtooCAALK3t6e///673PpKa6OjoyP5+flRfHw8/fjjj1S3bl0KCQmhsLAw+uSTT2jfvn3Uv39/srCwoNTUVHHdhIQEMjMzo5EjR9Lu3btp2bJl5OLiQgMHDhTL3Llzh8aOHUsJCQmUlJREq1evpqZNm1L79u3V2uHl5UX16tWjLl260Pbt22n58uVkb2+vVher+TjXONc41zjXahPONM40zjTTzTQ+2GZlGjp0KAGgY8eOqS1v164dhYSEkEqlEpedO3eOBEGgnTt3EpH2AC9JqVRSYWEh+fj40IwZM8TlTwdGacu3bt1KAOjy5cvispUrV5K5uTndunWLiIiWLVtGFhYW4pdAsaCgIOrfv3+Zfffy8qKoqCi1ZRkZGSSRSGj69OlqyyMiIsjZ2ZmKiopKrW/o0KHUvHlzrcsFQaCzZ8+KyxITEwkA/fTTT0T05AtAEASKjY1VW3fatGnk5uZGSqWyzO0CoIMHD4rLsrOzydbWVq0fXl5e5OjoSLm5uWrrP73fv/zySxIEgc6fPy8uu3v3LsnlcnrvvffKra+0Nj69DxYvXkwAaNq0aeKyrKwsMjc3p0WLFhERkUqlIi8vL4qIiFCrb/fu3Rr1lVRYWEhHjx4lAOIfD8Vt9vT0pLy8PLX+SySSMvcxq1k41zjXONc412oTzjTONM400800vo2clcvR0RFBQUHi60ePHuHnn39G//79oVQqUVRUhKKiInh7e6NevXo4fvx4qXVduHABffr0gaurK8zNzSGRSHDp0iVcvnxZ73Z17doV9vb2iI+PF5fFx8ejQ4cOcHV1BQDs27cPLVq0gLe3t9jOoqIidO7cucx2luaXX35BYWEh+vfvr7Z84MCByMjIqFA/AMDDwwPNmzcXXz///PMAgBs3bgAADhw4AAAIDw9X60dYWBhu3bqFtLS0Muu3s7NDx44d1V6HhYXhl19+USvXvn17yOXyMuv66aef4Ovri2bNmonLFAoFOnfujKNHj+pdX7Gn94G3tzcAICwsTFxmb28PFxcXsb+XL1/G9evXMWDAALX9EhoaCjMzM5w4cUJcd/Xq1WjZsiVsbGwgkUjQtm1bsY6SQkND1Z5ze/7551FYWFjubXesZuFc+w/nGucaq/k40/7DmcaZZkr4YJuVqzgMi2VlZUGpVOLdd9+FRCJR+/n7779LDZMHDx6gS5cuuH79OhYuXIiffvoJx48fh7+/P/Ly8vRul1QqRXh4uBjgd+/exf79+xEZGSmWyczMxO+//67RztmzZ5cbetpkZWUB0Nwnxa9Le86lPPb29mqvpVIpAIj7JTMzE0QEJycntX507twZAMrti7Ozs8YyV1dXpKena+1HWbKysrSWc3V11ei/LvUVK20faFtecr8AQJ8+fdT2i7W1NZRKpbhfNm/ejCFDhqB169bYsGEDjh07hs2bNwOAxr+98j4LVjtwrqn3HeBc41xjNRlnmnrfAc40zjTTwKORs3IJgqD22t7eHoIg4P3330fv3r01yjs5OWmtJyUlBTdu3MCOHTvg7+8vLs/JyanwCIoRERGIi4vD6dOnkZKSAnNzc/Tt21d8X6FQwM/PD3FxcRWq/2kKhQIAcOfOHdStW1dcfvv2bbX3q5pCoYAgCDh69KgYKCX5+PiUub62QSNu374Nd3d3tWVPf9alteXSpUta63u6/7rUVxnF2/v666/VzugX8/DwAAAkJCTghRdeUBsc5fDhwwZtGzNtnGv/4VzjXGM1H2fafzjTONNMCR9sM73J5XIEBwfjwoULmD17ts7rPX78GADUAig5ORmpqalqt6RIpVLk5+frVGf79u3h5uaGdevWISUlBd26dYOdnZ34flhYGHbt2gUPDw/xl1lXJc/KFWvdujUkEgkSEhLQsmVLcfmGDRvg4uIi3k6ja3266tSpE4AnZ4RfffVVvdfPycnBoUOHxNuTcnJycODAAURFReldV9u2bbFx40ZcunRJ/OLIysrCgQMHMHr0aL3rq4ymTZvC09MTf/31V5l9efz4scYX35o1awzdPFaDcK5xrnGusdqEM40zjTPNNPDBNquQ+fPno2PHjhg4cCAGDRoEBwcH3LhxA/v378fw4cPFKSBKatOmDWxsbBAVFYXp06fjn3/+QXR0tNpZRwBo1qwZioqK8OWXXyIkJAR16tQp9Wygubk5BgwYgBUrVuDOnTtqzwQBwJAhQxAbG4v27dtj8uTJ8Pb2RnZ2Nn7//XcUFBRg7ty5pfaxWbNmOHToEPbv3w8HBwc0bNgQTk5OGDduHObPnw9LS0u0adMGu3btwtq1a7F48WKYm5uXWd+yZcuwbt06NGnSBE5OTmjQoEHpO7kEb29vREVFYfDgwZgyZQqCgoJQWFiIy5cvIzExEVu2bClzfYVCgZEjR2LmzJmwt7fHvHnzQESYOHGiTtsvafjw4fjiiy/Qo0cPzJ49G5aWlvj0009hYWFRofoqQxAELFy4EJGRkXj48CF69OgBuVyO69evY+fOnZgzZw68vb3RuXNnREVFYdasWQgODsauXbtw8OBBo7aVmT7ONc41zjVWm3CmcaZxppmA6hydjZm+0kZlJCI6fvw4de/enezs7MjKyoqaNGlCY8eOpbS0NCLSPsLl7t27qXnz5mRpaUl+fn60a9cuCg0NpR49eohlCgsL6e233yZXV1cSBIFCQ0OJqPSRL1NSUggA2djYaJ2uICcnh959912qX78+SSQScnd3p+7du9OOHTvK7PvZs2fp5ZdfJltbWwJAy5cvJ6InI3N+8sknYn1NmjShb7/9tsy6itsxaNAgcnR0JAA0dOhQItK+j7OystS2SfRkNMfFixeTr68vSaVSUigUFBwcTAsXLixzu8X179ixg5o1a0ZSqZRatmxJP//8s1o5bSN6Emnf76mpqdS3b1+ytbUla2tr6ty5s8b0HKXVV1YbSyoe5fP48ePl1rtv3z4KDQ0luVxOcrmcmjdvTpMmTaLs7GwiIioqKqJJkyaRs7Mz2draUr9+/ejYsWMa/z611b1582YCQNeuXdOpL8z0ca5xrnGuca7VJpxpnGmcaaabaQIRkfEO7RljxjZs2DCcOHECZ8+ere6mMMZYleBcY4zVJpxptRePRs4YY4wxxhhjjFUxPthmjDHGGGOMMcaqGN9GzhhjjDHGGGOMVTG+ss0YY4wxxhhjjFUxPthmzMBat26NJUuWlPr+qVOnIAgCkpKSDLL9zp0749NPPzVI3YyxZw9nGmOstuFcY4bCB9uMGdDmzZuRmpqKESNGVFsb3n//fSxYsABZWVnV1gbGWO3AmcYYq20415gh8cE2Ywa0aNEiREREwMrKqtra0KFDBzg4OGDlypXV1gbGWO3AmcYYq20415gh8cE2YwZy7do1/PTTT+jXr5/a8tmzZ8PNzQ02Njbo27cv7ty5o7EuEWHBggXw9vaGTCZDo0aN8MUXX2iU27x5M3x8fGBpaYk2bdrgt99+g729PWJiYtTK9e/fnwOcMVYpnGmMsdqGc40ZGh9sM2YgBw8ehIWFBVq3bi0u+/rrr/HRRx9h8ODB+PHHH9GoUSOMHDlSY90JEybg448/xtChQ7Fz504MGzYM06ZNw7fffiuW+f3339G/f388//zz2LRpE4YOHYqBAwciPz9fo76QkBCcOnUKGRkZhuksY6zW40xjjNU2nGvM4IgxZhCjR4+m5s2bi6+LiorIw8ODBg8erFZu8ODBBIASExOJiOjq1askCALFxsaqlZs2bRq5ubmRUqkkIqL+/fvTc889J74mIlq9ejUBoOjoaLV1r127RgBox44dVdhDxtizhDONMVbbcK4xQ+Mr24wZSHp6OpydncXXN27cwM2bN9GnTx+1ck/funTgwAEAQHh4OIqKisSfsLAw3Lp1C2lpaQCA48ePo2fPnjAz++/X+LXXXtPaFicnJ7FNjDFWEZxpjLHahnONGZpFdTeAsdoqLy8PMplMfF0cni4uLmrlXF1d1V5nZmaCiMTQfVpaWhq8vLw0viAAwNbWFpaWlhrrFLfj8ePH+neEMcbAmcYYq30415ih8cE2YwaiUCiQmpoqvnZ3dwcAjUE2bt++rbGeIAg4evQopFKpRr0+Pj5ifU8/1/PgwQPk5eVprJOdnQ0AcHR01LsfjDEGcKYxxmofzjVmaHwbOWMG4uPjg2vXromvPT094e7ujs2bN6uV27hxo9rrTp06AQDu3r2LwMBAjR9bW1sAwIsvvogdO3ZApVKJ627ZskVrW4q/SIrDnzHG9MWZxhirbTjXmKHxlW3GDOSll17CJ598ghs3bsDT0xPm5uaYPn06JkyYAFdXV3Tu3Bn79u1DYmKi2nre3t6IiorC4MGDMWXKFAQFBaGwsBCXL19GYmKiGNIzZszAiy++iPDwcIwePRrXr1/HggULYGlpqfZsEACcOHECNjY2eOGFF4zUe8ZYbcOZxhirbTjXmMFV8wBtjNVa+fn55OjoSN999524TKVS0cyZM8nFxYWsra2pV69etGfPHrURLovLLV68mHx9fUkqlZJCoaDg4GBauHCh2jZ+/PFH8vb2JplMRgEBAXT06FGysLCgRYsWqZV79dVXNUbWZIwxfXCmMcZqG841ZmgCEVE1H+8zVmtNmjQJv//+Ow4dOmSU7R08eBBhYWFISkpCaGgoACArKwtubm7Yv38/2rVrZ5R2MMZqJ840xlhtw7nGDIkPthkzoPT0dDz33HNITk6Gv79/ldf/9ttvo1OnTnB0dMS5c+cwa9YseHh44MSJE+LtSZ988gmSkpKM9iXCGKu9ONMYY7UN5xozJH5mmzEDcnd3x4oVKzRGoqwqWVlZGDduHDIzM2FnZ4euXbtiwYIFas8BKRQKfPXVVwbZPmPs2cKZxhirbTjXmCHxlW3GGGOMMcYYY6yK8dRfjDHGGGOMMcZYFeODbcYYY4wxxhhjrIrxwTZjjDHGGGOMMVbF+GCbMcYYY4wxxhirYnywzRhjjDHGGGOMVTE+2GaMMcYYY4wxxqoYH2wzxhhjjDHGGGNVjA+2GWOMMcYYY4yxKsYH24wxxhhjjDHGWBX7fwQ1+pft7IhVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRmklEQVR4nOzdeXiMV/vA8e8zM9lFFolI7Il9iRJt31Jir30pRVFqp1q0pa89CYpWF6pvi1pKq/jZunurG60uWvRtqqrUToKEJMiezPn9McnIZGaSTERiuT/XlStmnmeeORNyO+c559y3ppRSCCGEEEIIIYQQosToyroBQgghhBBCCCHE3UYG20IIIYQQQgghRAmTwbYQQgghhBBCCFHCZLAthBBCCCGEEEKUMBlsCyGEEEIIIYQQJUwG20IIIYQQQgghRAmTwbYQQgghhBBCCFHCZLAthBBCCCGEEEKUMBlsCyGEEEIIIYQQJUwG20Lcxnbv3o2maWzdurWsmyKEEDft1KlTaJrGK6+8UtZNEUIIh9WoUYPu3buXdTPEHUQG2+KO8euvv/L000/TsGFDPDw8qFatGv379+fo0aMFvi4zM5MGDRrY7OAlJiYyePBgfHx8CA4OZvXq1Vav379/P+7u7pw8ebJEP48Q4t52/fp1IiIi6Ny5M76+vmiaxrvvvmt1ntFo5N1336Vnz55UrVoVDw8PGjVqxPz580lLS7M4Nz09nWeeeQZ/f3+qVKnC/Pnzra537tw5ypUrxw8//HCrPpoQQlg5ePAgPXv2xNfXF3d3dxo1asQbb7xhcc6KFSuoWbMmvr6+PPHEE1y9etXiuNFopGnTpixYsKA0my5EsRnKugFCFNVLL73EDz/8wGOPPUZoaCgXLlzgzTffpFmzZvz88880atTI5uuWLVvGmTNnbB6bMmUKu3fvJioqin/++YfRo0dTv359WrRoAYBSiokTJzJ58mRq1qx5yz6bEOLeEx8fz9y5c6lWrRpNmjRh9+7dNs9LSUlh+PDh/Otf/2LcuHFUrFiRn376iYiICL7++mu++eYbNE0DYPHixaxfv56ZM2dy7do15s6dS0hICI8//rj5elOnTqVnz560bNmyND6mEEKwa9cuevToQdOmTZk9ezblypXj+PHjnDt3znzO3r17GT9+PBMnTiQ4OJiFCxcydepUVqxYYT7nnXfeISkpieeff74sPoYQjlNC3CF++OEHlZ6ebvHc0aNHlYuLixo8eLDN11y8eFF5eXmpuXPnKkAtXrzY4nhAQIBat26d+XF4eLiaNm2a+fF7772ngoKC1LVr10rwkxTdt99+qwC1ZcuWW/o+169fv6XXF0JYS0tLU7GxsUoppX799VcFqLVr11qdl56ern744Qer56OiohSgvvzyS/NzDz74oIqKijI/HjZsmBo4cKD58ffff688PDzU2bNnS/CTFN3JkydtxuKSJjFNiNtHUlKSCggIUH369FHZ2dl2z/v3v/+t2rZta368du1aValSJfPjhIQE5efnp7Zt23ZL21uQ6tWrq27dut3S98jMzLTq74o7lywjF3eMFi1a4OzsbPFc7dq1adiwIX/99ZfN10ybNo26desyZMgQm8dTU1Px8fExP/b19SUlJQWA5ORkpk2bxsKFCylXrpxDbT1//jwjR44kKCgIFxcXatasyfjx48nIyDCfc+LECR577DHzcqp//etffPbZZzavZzQaefHFF6lSpQqurq60b9+ef/75x+q8ffv20blzZ7y8vHB3dyc8PNxqqWhkZCSapnH48GEGDRqEj48PDz/8sPn4+++/T1hYGG5ubvj6+jJw4EDOnj1rcY02bdrQqFEjDh8+TNu2bXF3d6dy5cq8/PLLVm1KS0sjMjKSOnXq4OrqSmBgII8++ijHjx+3+HxLliyhYcOGuLq6EhAQwNixY0lISCjaD1yIO5CLiwuVKlUq9DxnZ2fzapu8+vTpA2AR/wqKaUajkUmTJvHCCy9QpUoVh9qamJjIs88+S40aNXBxcaFKlSoMHTqU+Ph48zmXLl1i5MiRBAQE4OrqSpMmTVi3bp3da65cuZKQkBBcXFy4//77+fXXX63OOXLkCP369cPX1xdXV1eaN2/Oxx9/bHHOu+++i6Zp7Nmzh6eeeoqKFStafL6dO3fSqlUrPDw88PT0pFu3bvz5558W13jyyScpV64c58+fp3fv3pQrVw5/f3+mTJlCdna2xblGo5GlS5fSuHFjXF1d8ff3p3Pnzuzfv9/ivKLEUiHuBR988AEXL17kxRdfRKfTkZycjNFotDqvoPgFpv5L48aNefTRRx16/6L8zmZlZTFv3jxzTKpRowYzZswgPT3d5jX37t3LAw88gKurK8HBwaxfv97qnMTERCZPnkzVqlVxcXGhVq1avPTSSxafPW8eiyVLlpjf//Dhw4BjMfCHH37gueeew9/fHw8PD/r06UNcXJxVu3bu3El4eDienp6UL1+e+++/nw8++MDinKL0J0URlfVoX4ibYTQaVeXKlVWnTp2sju3bt0/pdDr1448/2p1Nad++vWrTpo06evSo+u9//6vc3NzU+++/r5RSasaMGeqBBx5QRqPRoTadP39eBQUFKXd3dzV58mS1fPlyNXv2bFW/fn2VkJCglFLqwoULKiAgQHl6eqqZM2eq1157TTVp0kTpdDq1fft287VyZ7abNm2qwsLC1Ouvv64iIyOVu7u7euCBByze9+uvv1bOzs7qoYceUq+++qp6/fXXVWhoqHJ2dlb79u0znxcREaEA1aBBA9WrVy/11ltvqf/85z9KKaXmz5+vNE1TAwYMUG+99ZaKiopSfn5+qkaNGua2K2VaARAUFKSqVq2qJk2apN566y3Vrl07BajPP//cfF5WVpZq3769AtTAgQPVm2++qRYuXKjatWunPvzwQ/N5o0aNUgaDQY0ePVotX75c/fvf/1YeHh7q/vvvVxkZGQ79/IW4ExU0s23Prl27FKA++OAD83MjR45UjRo1UtHR0erHH39UlSpVUvPnz1dKKbVy5UpVrVo1lZKS4lDbrl27pho1aqT0er0aPXq0evvtt9W8efPU/fffr3777TellFIpKSmqfv36ysnJST377LPqjTfeUK1atVKAWrJkiflaubG4adOmqlatWuqll15SL7/8svLz81NVqlSx+H0/dOiQ8vLyUg0aNFAvvfSSevPNN1Xr1q2VpmkWcXLt2rXmmBYeHq6WLVumFi1apJRSav369UrTNNW5c2e1bNky9dJLL6kaNWoob29vdfLkSfM1hg0bplxdXVXDhg3ViBEj1Ntvv6369u2rAPXWW29Z/DyefPJJBaguXbqoJUuWqFdeeUX16tVLLVu2zHxOUWOpEPeCvn37qvLly6svv/xS1alTRwHKw8NDjRs3TqWmpprPe++995S7u7v64osv1NGjR1Xr1q1Vhw4dlFJK/fnnn8rFxUX9/vvvDr9/UX5nhw0bpgDVr18/9Z///EcNHTpUAap3794W16pevbqqW7euCggIUDNmzFBvvvmmatasmdI0TR06dMh8XnJysgoNDVUVKlRQM2bMUMuXL1dDhw5VmqapSZMmmc/LjYkNGjRQwcHBatGiRer1119Xp0+fdjgGNm3aVLVr104tW7ZMPf/880qv16v+/ftbtH/t2rVK0zTVqFEj9eKLL6r//Oc/atSoUeqJJ54wn1PU/qQoGhlsizvae++9pwC1evVqi+eNRqN64IEH1OOPP66Usr90MTo6WlWpUkUBClB9+/ZV2dnZ6sSJE8rNzU399NNPDrdp6NChSqfTqV9//dXqWO7AffLkyQpQ33//vfnYtWvXVM2aNVWNGjXMy6xyB9v169e3WFK0dOlSBag//vjDfN3atWurRx55xOLmQEpKiqpZs6bq2LGj+bncwXbuzybXqVOnlF6vVy+++KLF83/88YcyGAwWz4eHhytArV+/3vxcenq6qlSpkurbt6/5uTVr1ihAvfbaa3Z/Ft9//70C1IYNGyyO//e//7X5vBB3o+IMtjt06KDKly9vMXg7e/asatiwoTmmtWrVSl27dk0lJiYqf39/tWnTJofbNmfOHAVYdO5y5f4eL1myRAHmm5VKKZWRkaEeeughVa5cOXX16lWl1I1YXKFCBXXlyhXzuR999JEC1CeffGJ+rn379qpx48YqLS3N4v1atGihateubX4ut6P58MMPq6ysLPPz165dU97e3mr06NEWbb5w4YLy8vKyeD63oz137lyLc3NvdOb65ptvFKAmTpxo92fhSCwV4l4QGhqq3N3dlbu7u3rmmWfUtm3b1DPPPGO+EZ8rKytLPfroo+b4VbVqVRUdHa2UUqpTp05q3LhxDr93UX5n//e//ylAjRo1yuL4lClTFKC++eYb83PVq1dXgPruu+/Mz126dEm5uLio559/3vzcvHnzlIeHhzp69KjFNadNm6b0er06c+aMUupGTCxfvry6dOmSxbmOxsAOHTpY9AGfffZZpdfrVWJiolJKqcTEROXp6akefPBBi5sceX8WjvQnRdGU+WD74sWL6vTp01ZfQhTmr7/+UuXLl1cPPfSQRQdLKdMgz83NzSqY2donmJqaqn799Vd17Ngx83N9+vRRQ4YMUUoptW3bNhUaGqpq1KihoqKiCpzpzs7OVuXLl1e9evUqsO116tSxmplWSqmFCxdaDKJzB9svv/yyxXkHDx5UgProo48sHq9bt07FxcVZfI0aNUq5uLiYB/C5g+09e/ZYXPO1115TmqapY8eOWV2jfv365rvLSpkG2+XKlbP6WfTs2VM1bdrU/Lhbt27Kz89PZWZm2v1ZTJw4UXl5ealLly5ZvW+5cuWs/vMT4m7k6GD7xRdftDnrqpRpkPvbb7+pP//80/x7/+yzz6qHH35YKWW6wfXAAw+oKlWqqGeeeabQvYENGzZUTZo0KfCcTp06qUqVKlntx9y4caPFIDo3Fj/11FMW5125ckUBaunSpUoppS5fvqw0TVPz5s2zigu5e9XPnTunlLrR0cybf0MppbZv327uKOe/RqdOnVStWrXM5+YOtvN3didOnKh8fHzMjydMmKA0TVOXL1+2+7NwJJYKcS8IDg5WgNVgeezYsQqwGpAeO3ZM7d+/3zwg/Oijj5S3t7eKi4tT586dU927d1eBgYGqe/fu6vz58wW+d1F+ZxcsWKAAdfjwYYvnY2NjFWAxiK5evbpq0KCB1TVCQ0NVnz59LB537tzZKgZ89dVXFjcmc2Pi8OHDLa5XnBj4f//3fxbXyI2BuasBtmzZogC1Y8cOuz8LR/qTomjKJBv55cuXeeaZZ9i+fTuZmZkWx5RSaJpmtUdKiLwuXLhAt27d8PLyYuvWrej1evOxq1evMn36dKZOnUrVqlULvVbuHphc33zzDbt27eLvv//m77//ZuDAgaxYsYIaNWrw+OOPU7VqVYYPH27zWnFxcVy9etVuZvRcp0+f5sEHH7R6vn79+ubjea9RrVo1i/Ny9zTl7mk+duwYAMOGDbP7nklJSRZ7ofJnVz927BhKKWrXrm3z9U5OThaPq1SpYs6AnLdd0dHR5sfHjx+nbt26GAz2Q82xY8dISkqiYsWKNo9funTJ7muFuBdt3ryZWbNmMXLkSMaPH2913MnJifvuu8/8+MiRI7z11lv8+OOPXLlyhW7dujFt2jTatm3L8OHDefHFF4mKirL7fsePH6dv374Ftun06dPUrl0bnc4yFUzemJZXYTHtn3/+QSnF7NmzmT17ts33vHTpEpUrVzY/thXTANq1a2fz9eXLl7d4nLuXM3+78uaOOH78OEFBQfj6+tq8Zu77OhJLhbjbubm5AVhURQAYNGgQK1as4KeffrL4falVq5b5zxkZGTz//PNERETg5+dHq1atCAwM5JNPPmHRokUMGjTIbiUHKNrv7OnTp9HpdBbvC1CpUiW8vb0LjV9gHSuOHTtGdHS0VUzJlb9vkz9+FScGFhZXc3PlFNRHLU5/UhSsTAbbo0aNYs+ePUyfPp0GDRpYJb0SoiBJSUl06dKFxMREvv/+e4KCgiyOv/LKK2RkZDBgwABOnToFYC4tkZCQwKlTpwgKCrL57y47O5tJkyYxbdo0KleuzLx582jRooV5cD127Fg2bNhgd7B9q+S9mZCXUgrAnGxj8eLFFp3svPInecv9zy+X0WhE0zR27txp8/3yv76wNhWV0WikYsWKbNiwweZxe/9RCXEv+vLLLxk6dCjdunVj+fLlRXrNs88+y5AhQ2jWrBnvvfcevr6+TJ8+HYAXXnih0MH2rVDUmDZlyhQeeeQRm+fm7xjbimkA7733ns1EdPlvAtprk6McjaVC3O2CgoL4888/CQgIsHg+9yZ7QclQX3/9dQwGA08//TRnz55l7969nDx5kho1avDyyy8THBzMuXPnHE76aEv+CQR7itL/MRqNdOzYkRdeeMHmuXXq1LF4bC9+ORIDS6JfVpz+pChYmQy2v/32W9544w2GDh1aFm8v7mBpaWn06NGDo0eP8tVXX9GgQQOrc86cOUNCQgINGza0OrZgwQIWLFjAb7/9ZjOIvP3221y7do0pU6YAEBMTYzGYDwoK4vz583bb5+/vT/ny5Tl06FCBn6N69er8/fffVs8fOXLEfNwRISEhgGmmpkOHDg69Nu81lFLUrFnT6j+B4goJCWHfvn1kZmbanc0JCQnhq6++omXLllb/2Qghbti3bx99+vShefPm/N///V+BK0Zyffrpp/z444/m2YqYmBgCAwPNxwuLaWD6HS1KTIuOjsZoNFrMbhc3pgUHBwOmWeCbiWlg6tAX9xq2rvnFF19w5coVuzNltyKWCnEnCwsL48svv+T8+fPUrVvX/HxMTAxg/6Z6bGws8+fPZ8uWLRgMBvP5uf2y3O/nz5+3O9guyu9s9erVMRqNHDt2zLwaB+DixYskJiY6HL9y3/f69evFjj0lEQNttQng0KFDVgP1/OfcTH9SWCpW6a8///yTgQMHmtPTHzx4EICZM2eyc+fOQl/v7e2Nn59fcd5a3MOys7MZMGAAP/30E1u2bOGhhx6yed7EiRPZsWOHxdeKFSsAU3mXHTt2WC3XAbhy5QoREREsXrwYV1dXAAICAsydRTCV2CmoVI9Op6N379588sknVmVg4Mbdxa5du/LLL7/w008/mY8lJyezcuVKatSoYfMmQkHCwsIICQnhlVde4fr161bHbZV+yO/RRx9Fr9cTFRVldRdUKcXly5cdahNA3759iY+P580337Q6lvse/fv3Jzs7m3nz5lmdk5WVRWJiosPvK8Td5q+//qJbt27UqFGDTz/9tEg3pjIyMnjuueeYNWuWeQYpICCAf/75h6ysLPN1Cys/1rdvX37//Xd27NhhdSxvTLtw4QKbN282H8vKymLZsmWUK1eO8PDwIn9WMA2Q27Rpw4oVK4iNjbU6XpSY9sgjj1C+fHkWLFhgtWWtqNfIr2/fviilbK4EyP1Z3IpYKsSdrH///gCsXr3a4vlVq1ZhMBho06aNzddNmzaN1q1b07lzZwDzzHhuvyy37GFBMawov7Ndu3YFYMmSJRbHX3vtNQC6detm9/r29O/fn59++okvvvjC6lhiYqI5BttTEjEwv06dOuHp6cnChQtJS0uzOJb7syiJ/qSw5PDM9pdffkm3bt0ICwtj8ODBzJ8/33zMycmJt956iy5duhR4jRdeeIFly5bRqVOnIt2ZFwLg+eef5+OPP6ZHjx5cuXKF999/3+J4bi3tZs2a0axZM4tjucvJGzZsSO/evW1ef/bs2TRu3JjHHnvM/Fzfvn2ZO3cu48ePp3r16qxYscIcfO1ZsGABu3btIjw8nDFjxlC/fn1iY2PZsmULe/fuxdvbm2nTprFx40a6dOnCxIkT8fX1Zd26dZw8eZJt27ZZ7XssjE6nY9WqVXTp0oWGDRsyfPhwKleuzPnz5/n2228pX748n3zySYHXCAkJYf78+UyfPp1Tp07Ru3dvPD09OXnyJDt27GDMmDHmGf+iGjp0KOvXr+e5557jl19+oVWrViQnJ/PVV1/x1FNP0atXL8LDwxk7diwLFy7kf//7H506dcLJyYljx46xZcsWli5dSr9+/Rx6XyHuFG+++SaJiYnmGZtPPvnEvO3lmWeewcvLi2vXrvHII4+QkJDA1KlT+eyzzyyuERISYvPm49KlSwGYNGmS+bmuXbsyYcIEBg0aRIsWLZg3bx6jRo0qsI1Tp05l69atPPbYY4wYMYKwsDCuXLnCxx9/zPLly2nSpAljxoxhxYoVPPnkkxw4cIAaNWqwdetWfvjhB5YsWYKnp6fDP5v//Oc/PPzwwzRu3JjRo0cTHBzMxYsX+emnnzh37hy///57ga8vX748b7/9Nk888QTNmjVj4MCB+Pv7c+bMGT777DNatmxp80ZgQdq2bcsTTzzBG2+8wbFjx+jcuTNGo5Hvv/+etm3b8vTTT9+SWCrEnaxp06aMGDGCNWvWkJWVRXh4OLt372bLli1Mnz7dajsgwC+//MLmzZst8sDUqFGD5s2b8+STTzJy5EhWrVrFgw8+WODMc1F+Z5s0acKwYcNYuXIliYmJhIeH88svv7Bu3Tp69+5N27ZtHf7MU6dO5eOPP6Z79+48+eSThIWFkZyczB9//MHWrVs5depUoROPNxsD8ytfvjyvv/46o0aN4v7772fQoEH4+Pjw+++/k5KSwrp160qkPynycTSjWlhYmLkWW2ZmptI0TR04cEAppdSHH36oKleuXOg1nn76aVWtWjVVrVo19cQTT6hnnnnG4stWen4hcstN2fsqSEHZyJUylQBzdnY214zN691331U1atRQFSpUUM8995xV5nNbTp8+rYYOHar8/f2Vi4uLCg4OVhMmTLDI+nv8+HHVr18/5e3trVxdXdUDDzygPv30U4vr5GYj37Jli83Pkz9z8W+//aYeffRRVaFCBeXi4qKqV6+u+vfvr77++mvzObnZyOPi4my2fdu2berhhx9WHh4eysPDQ9WrV09NmDBB/f333+ZzwsPDVcOGDa1eO2zYMFW9enWL51JSUtTMmTNVzZo1lZOTk6pUqZLq16+fOn78uMV5K1euVGFhYcrNzU15enqqxo0bqxdeeEHFxMTYbKcQd4PcMjK2vnLrQOf+vtv7GjZsmNV1L1y4oDw9PdXHH39sdWznzp2qXr16ytvbWw0dOlQlJycX2s7Lly+rp59+WlWuXFk5OzurKlWqqGHDhqn4+HjzORcvXlTDhw9Xfn5+ytnZWTVu3NgqRhUUiwEVERFh8dzx48fV0KFDVaVKlZSTk5OqXLmy6t69u9q6dav5nNxMvLbKLSpliqOPPPKI8vLyUq6uriokJEQ9+eSTav/+/eZzhg0bpjw8PKxemxsv88rKylKLFy9W9erVU87Ozsrf31916dLF3BfKVZRYKsS9IiMjQ0VGRqrq1asrJycnVatWLfX666/bPNdoNKoHH3xQPffcc1bH/vnnH9W6dWtVrlw51bp1a6u+hC1F+Z3NzMxUUVFR5r5K1apV1fTp0y3KbillitndunWzeo/w8HAVHh5u8dy1a9fU9OnTVa1atZSzs7Py8/NTLVq0UK+88orKyMhQShXeP72ZGJjbh/z2228tnv/4449VixYtlJubmypfvrx64IEH1MaNGy3OKUp/UhSNppRj2YxcXV355JNP6NixI9nZ2Tg5ObF//36aNWvGnj17eOSRR6yWJuRnawlvXpqmceLECUeaJYQQQgghhBBC3DYcXsPt6+trXu6W39GjRy0Sr9hz8uRJR99WCCGEEEIIIYS4YzicIK13795ERERYZFLWNI0LFy7wyiuvFFqL8070zz//MG7cOO677z4MBoPd+nSJiYlMnDiRoKAgXF1dCQkJ4dVXX7U4JyMjg6lTp1KpUiU8PDzo2LGjzazUQghxq0hME0LcTSSmCSFuVw7PbC9cuJBff/2V0NBQGjduDMCIESM4ceIEdevWJTIyssjX+ueffzh69KjNZeePPvqoo027Zf78808+++wzHnzwQYxGo7kGXV7Jycm0adMGg8HA66+/TkBAAEePHuXq1asW502cOJFNmzbx2muvUblyZV588UXat2/Pn3/+iZeXV2l9JCHEPUximhDibiIxTQhx2yrORu+MjAy1Zs0a9fjjj6uOHTuqAQMGqHfeecci+VNBkpKSVLt27ZROp1M6nU5pmqY0TTM/1ul0xWnWLZOdnW3+87Bhw2wmhpo1a5YKDg5W169ft3uds2fPKr1er1asWGF+7vLly8rDw0O99NJLJdtoIYSwQ2KaEOJuIjFNCHG7KladbScnJ4YPH84HH3zArl272LRpE6NGjcLZ2blIr//3v//NhQsX+P7771FKsWPHDnbv3s3IkSOpWbMmP//8c3GadcsUpQzTqlWrGDFiBB4eHnbP2bVrF0aj0aK0lK+vL506deLzzz8vkbYKIURhJKYJIe4mEtOEELcrhwfbv//+u92A8/nnn1vUw7Pnv//9LzNnzuTBBx8EICgoiNatW7Ny5Up69epltX/mdnfq1CkuXLiAn58fPXv2xMXFBV9fX0aPHm1REP7IkSNUrFgRHx8fi9fXr1+fI0eOlHazhRDCJolpQoi7icQ0IURZcXiw/eyzz/LTTz/ZPPbLL7/w/PPPF3qNS5cuUbVqVfR6PR4eHly+fNl8rGvXrvz3v/91tFll6sKFCwBMmTIFHx8fPv/8cxYsWMCWLVsYPXq0+byEhAS8vb2tXu/j48OVK1fsXj89PZ2rV6+av5KSkoiLi0M5VrVNCCGKRGKaEOJuIjFNCFFWHB5s/+9//6Nly5Y2jz300EMcPHiw0GtUrVqV+Ph4AGrXrs3HH39sPvbTTz/h6urqaLPKVG4ijjp16rBu3Trat2/PuHHjeOWVV9i0adNN1wxfuHAhXl5e5i9vb28qVqzItWvXSqL5QghhQWKaEOJuIjFNiNtf7MGDRGkasUUYS97O75Gfw4Pt9PR0MjIy7B6zlVk8v44dO/LVV18Bppny5cuXExYWxkMPPURERARDhw51tFllKne5Udu2bS2eb9++PWDKkpl7XlJSktXrExIS8PX1tXv96dOnk5SUZP46e/ZsSTVdCCGsSEwTQtxNJKYJIcqKw6W/mjZtyvr16+nZs6fVsfXr19OkSZNCr/HSSy+RkpICwBNPPEG5cuXYunUrqampvPnmm4wdO9bRZpWpkJAQXFxc7B7PvQFRr149Ll68SEJCgsV+oCNHjlCvXj27r3dxcSnw+kIIUZIkpgkh7iYS04QofddiYzmwYgVhY8fiGRhY1s0pMw7PbE+fPp0dO3bQrVs3tm7dyo8//sjWrVvp1q0bH374ITNnziz0Gu7u7vj5+Zkf9+nThw0bNrB9+3bGjx9fpKyStxNnZ2c6derE119/bfH8l19+CUCzZs0A6NSpEzqdjm3btpnPSUhIYNeuXXTt2rX0GiyEEAWQmCaEuJtITBOi9F2PjWVPVBTXY2PLuillyuGZ7W7duvHBBx8wdepU+vfvj6ZpKKWoUqUKH3zwAd26dSvytf766y/279/P2bNnGTFiBJUqVeKff/4hICAAT09PR5t2y6SkpJgzsJ8+fZqrV6+ydetWAMLDw/H39yciIoIWLVowePBghg0bxrFjx5g+fTqDBw8mJCQEgCpVqjBq1CimTp2KXq+ncuXKLFiwAC8vrztuNl8IceeSmCbEnU9mjW6QmCaEuG3dTJHuI0eOqB9++EEdOXLEodclJyerxx9/XOn1emUwGJROp1MHDhxQSinVr18/NXXq1JtpVok7efKkAmx+ffvtt+bzvvrqK9W8eXPl4uKiKlWqpJ5//nmVlpZmca20tDT1/PPPq4oVKyo3NzfVoUMH9ddffznUnqSkJAWopKSkkvh4Qoh7jMQ0Ie58MQcOqEhQMTn9p3uZxDQhbj+OxqjixLSrMTHq24gIdTUm5pa9x83SlCr9ugRPPfUU27dvZ/369bRq1QoPDw/2799Ps2bNWLt2La+//nqR6nXfq65evYqXlxdJSUmUL1++rJsjhBA3RWKaEPbZm8GOPXiQlWFhjDlwgMCcZdDi9iAxTQjHY1RxYlpx3mNtq1YM//77UoubDi8jB/j777/Ztm0b586ds8o+rmkaq1evLvD1W7duZfHixXTq1Ins7GyLYzVq1ODUqVPFaZYQQgghxF0ld99j3Z49rZaLO7m7l1GrhBDizqKUIiA0lBnJyRizslBKoWnaLX9fhwfb7733HsOHD8fV1ZXq1avj7Oxscbwojb5+/TqBdvYXJScnO9okIYQQQog7VmH7r/MPqsuq0yiEuDfdzjkiinLTURmNXIuJ4cCKFVw5fhzfkBDTZwkKQrvFibkdHmzPmzePfv36sWbNGtyLeUc1NDSUbdu20alTJ6tjn332Gc2bNy/WdYUQQggh7jT2Zq9tDapRqsw6jUKIe1NBK2zKSlFvOiqjkej33+fjkSMxZmWZn9+7aBE9V68mdMiQWxo7HR5sx8TE8Pbbbxd7oA0we/ZsevXqRUpKCo899hiapvHLL7+wceNG1qxZY84oKYQQjrid77wKIYQj8s/EVG3ZkvvHjy/TTqMQQuRV0v2uom6NKepMtcq5OZk/ZgIYs7L4eORIarZvb3rdLVod5HBEbt26NYcOHbqpN+3WrRubNm1i79699O7dG6UUTz31FJs3b2bDhg20b9/+pq4vhLg3XY+N5cfFi+/5mo5CiDtP3k5m7kzM0po1+W7+fA5t3IiTuztJZ84U2Gm8FhtLGeS9FULco0qqlnbeWeqA0NAC45it+Pjd/PksrVmT6PffRxmNFuceWLHCKmbmMmZlcWD5covXlDSHZ7YXLFjAkCFDcHV1pWPHjnh7e1ud4+vrW+h1+vXrR79+/Th69Cjx8fH4+vpSr149R5sjhBCA7GEUQtyZbMUuq5kYTaPRgAHsXbiw0E5jeGQkml5fip9ACCGKz5H91I7OVOv0eq4cP17g+yecOIHuFsZMhwfbzXLSpI8fP95uRzZ/hvGC1KlThzp16jjaDCHEPUophcrORmcwYMzKMnUqZQ+jEOIOZNXJrFWL8DlzrGZinNzccHJ3L/NOoxBCOKKwZeGO7qcu6kx17k1HY3Y2viEhBbbBJzgYY3b2LYudDg+216xZUyKzRWfPnuXDDz/k7NmzNsuHLV269KbfQwhxd5E9jEKIu4WtTqaTuztt5861GlRnpqaSmZJS5p1GIYQoiqKsNizOfmpHZ6o1nY6wsWPZu2iRzQG6zmAgbNy42ytB2pNPPnnTb/p///d/PPHEExiNRipWrGizfJgMtoUQednqmAZ37FjoHsZbnfhCCCGKKjeZUIsXXiDtyhWr2GV3UK0UhzZvpunIkWXaaRRCiMIUOXmZg7PUgMMz1Zqm4RkURM/Vq63irc5goOeaNXgGBt7SPmKZROQZM2bQu3dv4uPjOX/+PCdPnrT4OnHiRFk0SwhxmypoD+Nvq1eXaeILIYQoquuxseyZOxeDs7PtTmaeQbXOYDkfsm/JEjwrV6bHqlVWx0qr0yiEEAVxJHlZcfZT585U54+B5mvauOmo6XSEDhnCpFOnaD1rFo0HDaL1rFlMOnWK0MGDb7862wDfffcdK1eu5OjRo1ZLwAGio6MLfH1cXBxjxozBy8urOG8vhLjH2Lr7KXsYhRC3q4LK4bhXqIDOYLAbu/YtWULokCH0WLWKT0aNMse9i9HRfDR8OL3XrSO4QwcOLF9OwokT+AQHEzZunGmgLbPaQogy4uiy8OLspy7uTLWm0+EZFER4RIRFzp/SuDnpcFT+4osvaNeuHfHx8ezfv5+qVavi5+fH33//TXJyMs2bNy/0Gp07d+bnn38uVoOFEPceW3c/Hd3DKIQQpcVWOZzcPYxT4+IK7GRejI7mw6FDCR082GompsNLL5k7m+ERETy6YQPhERGSDFIIUeYcLbNVnFnq3NcVZ6Za0zQuRkezwMODi9HRpbYKyOHIHBERweTJk/nss88AmDdvHt988w1Hjx7FycmJdu3aFXqN5cuXs2fPHmbOnMk333zDwYMHrb6EEOJabCy7o6IwZmUVuIfR0UAthBClSRmNXDt/nj1RUWwbNIiLv/9eYCfz8NatpFy+bHdQXVadRiHE3e1abCy7IyO55mDdbE2nczx5WZ5Zake3xuSdqXb0pmNmSooDn+zmOdwD/euvv+jSpQu6nGCfnJwMQPXq1YmMjGT+/PmFXuPatWukpKSwcOFCOnbsyP3332/+at68Offff7/jn0QIcde5HhvLjy+/TFpios2OqexhFELczgxubjb3MH40fDgeAQEFxi4Pf/9CB9Wl3WkUQtwd7A2qba3KKQplNDq0LDzXzeynvlNuOjq8Z9vV1RWj0YimaQQGBnL8+HFatWoFgKenJ2fPni30GkOHDuXMmTMsW7aMOnXqWGUjF0KI/GUjNJ3Oao+O7GEUQtzOPPz9be5hzF0q3nv9+iLFLhlUCyFKUu6gum7PnlZ5JRyVW0u7uGW2bnY/9e0eHx0ebDdp0oS///6bjh070r59e1588UX8/PxwcnJi1qxZNG7cuNBr/PLLL3zwwQf07t27OG0WQtzlbJWNeHDyZEKHDKFm+/ZWHdO8exhLO/GFEELYpGm4enuzJ2crTH6HNm0i7vBheq5ZQ3hkJDq93mbsKhcYSHhEBOXydYjtPS+EELdC7qA6V/5JEaDYZbY0TeNCdDRrW7Vi+PffE9isWZHadCfEQYcH25MnT+bkyZMALFiwgB49etCzZ08AqlSpwo4dOwq9Ru3atcmys3leCHFvs1VPG2DvokX0376dOt262R1UX4+L47c1a2g6YsRN36kVQoibUVjWcTDNcP/82ms8umEDL/v58cSuXVadTM/AQNpERlq91t7zQghRkvIPqpVSkJN53FYtbXsTI0VZbejoLPWdEAcdHmx37drV/OfKlStz4MAB/vnnH1JTU6lXr16RloS/9tprTJkyhUaNGlGvXj1HmyCEuItci401D5DLVapUYNmI/3v0USadOoVnUBCA1V5Hz8BAWs+cWWptF0KI/IqadTyXT3AwxqwsUi9fLqUWCiHuBQWVICyq/CsNq7Zsyf3jx9udFOm5ejWhQ4bIasM8HN7MOHfuXGJiYsyPNU2jdu3ahIaGcvnyZebOnVvoNSZPnsy5c+do1KgR1apVIzQ01OKrSZMmjjZLCHEHUkrh4e9P65kz8fD3d7hshBBC3E4czTqeu4cxLTGxdBsqhLjrFTfZGdhP7ujk7k7SmTMF1tLOTbp2JyQvKw0Oz2xHRUXRuXNngnJmlvKKiYkhKiqKOXPmFHiNsLCwe/qHLoSwvlvqV68e4XPmOFQ2QgghylR8LGxbAf0noLwqWM32xP35J6P376fHqlV8MmqU3T2MKZcv3/b7DoUQ9w6byR01jUYDBrB34cJCJ0XCc5Z23+7Jy0qDw4NtpZTdgXJsbCze3t6FXuPdd9919G2FEHcRm/uyNY0WU6YUuWyEDLiFEGUuPhbeiUINePqmso57+Pvf9vsOhRD3CDvJHZ3c3HBydy/6pIhMrAJFXEa+ceNGevbsSc+ePdE0jeeff978OPerU6dODB06lBYtWtzqNt+2Pv74Yx588EE8PT0JDAykf//+nDhxwuq81atXU6dOHVxdXWnSpAmffvppGbRWiLKhcpJqWC1BUopDmzfTdOTIQpdcSjmv0iExTYiCJcfFgaahPLwst8Bomilzr6ZxaNMm3mnenOsXLhAeGcmjGzYQHhGBZ1CQxLJSJjFN3I3s1cwuLic3N5vJHTNTU8lMSSl6LW2lSqQ9d7oiRfmMjAyuXbvGtWvXUEqRnJxsfpz7pWkaQ4cOZcWKFbe6zbel3bt306dPHxo0aMCOHTtYsmQJv//+O506dSI1NdV83qZNmxg9ejQDBgxg586dPPTQQ/Tp04eff/65DFsvROkpaF/2viVL8KxcmR6rVlkNuAsrGyFKlsQ0IUwK6simxMeDVwV0Tk5cOX6cgNBQeq5Zw8zr15mRnMzM69fpuWYNAD+/9ho6vZ6X/fzu+T2MZUFimrhb3czebFsyU1MxZmVZD6plUqRYirSMfNiwYQwbNgyAtm3b8vbbb0sW8Xw2bdpE9erVWbNmjfk/0IoVK9KuXTv2799Pq1atAIiIiGDgwIHMmzcPMP08o6OjmTt3Lp9//nmZtV+I0qLT6+0uQcpdctnnvfcKXHIpbj2JaUKY5HZk6/bsaZnRVyn8uj8GfQajsrNp9+KLeFWpgrp0Hv26hXDuOIYqIYT2HEmTIUP4a8cOyTpehiSmCVFESpGWmEjY2LHsXbTIYnJk35IlhA4ZUmgeitv1ZmJZ1OV2eM/2t99+a/P5jIyMIpX9ultlZmbi6elp8Y/Ly8sLMC2bBThx4gRHjx7lpZdesnjtwIEDmTp1Kunp6bi4uJReo4UoA4WVwjm0aRNVH36Y5uPHS9mIMiQxTYgCGI2o+Bi0bSvg3HG0Ji3x7jcedr6Pbu5IyL7RAdW/uwg1exUN+j1BVnq6JEIrIxLThCgaJ3d3kuPi8Ktbl56rV1ts+7sYHc1Hw4fTe926O3JSpCzqcjv803jvvfdYtmyZ+fGhQ4eoXbs27u7utGnThkuXLhX4eqUUV65cIT093fHW3saefPJJDh8+zFtvvUVSUhInTpxgxowZNG3alJYtWwJw5MgRAKtVAfXr1ycjI4OTJ0+WeruFKA1KKYu9jIWVwqnXuzeapknZiDIkMU0IE11iHOGBpu+AaaC98320HjVh9Xz4YiO4uqNdOIOWb6ANQHYW2rxREB+Lk6srbSIji13zVhSfxDQhbrCKa5j6agGhocxITqZC7dqgaYQOGcKkU6doPWsWjQcNovWsWXR46SU0TTPX0pY8FAVz+CeyePFidHl+kM888wzOzs4sWbKE2NhYZsyYUeDrMzMzqVixIl999ZXjrb2NtWrVih07djBt2jS8vb0JCQnh4sWL7Ny5E31O1uSEhAQAq4ztPj4+AFy5csXmtdPT07l69arFlxC3I6WUKSkGphlspZRV3dn9b7+NZ1AQPVevLnRfdrnAQFpMnSqzQGVAYpoQJrqkeNoEmb6jlGlGO++gWtOg0wD4aLX1QDtXdhbatuWgjKXXcGFBYpoQN1jENbDqq+2JiuLa+fMApkH1nNmmQfWc2eZBtUyKFI3Dg+1Tp07RoEEDAOLj4/n+++959dVXefrpp5k7dy5ffPFFga93dnamSpUqZOd0yO8WP/74I0888QSjR4/mm2++YcuWLRiNRrp162aReKM4Fi5ciJeXl/mratWqJdRqIUpO3kD94fDh7F++HJQi+v33WVqzJt/Nn8+hjRvZ+fTT7Bg6lMaDB1vdLZ106hShgweb74zmLveRWaDSJzFN3HPiY2FFpOl7fq7uAChlNC0dzzuodnEzHT9XcDkczp8AnZQsLCsS08SdrqSzjuPqjr68t7kca96+2nfz57O0Zk2i338flCLxuy/hYQ8uf7rFalAttbQL5vCebZ1OR0ZGBmDav+3k5ETbtm0BCAwM5HIREn9MmDCB1157jU6dOuHq6upoE25LEydOpF27drz66qvm5/71r39RrVo13nvvPcaMGWO+M5qUlESlSpXM5+XeSfX19bV57enTp/Pcc8+ZH1+9elUCubitKKORo599RuqVy7SaNg2DuzvGzAwykpPZt3SpVebxPzZsIP6vv3jyu+8Ij4xEp9fLvuzbjMQ0cc/JqZlNeE/wM93gU0pRIScJWoXMDDSd3npQnZ4KaSlQpeByOFQOBmO2DLjLiMQ0caezm6zRQXnjmnd2tu1yrIAxK4uPR46kZvv2uIXUNcW5W6gskpeVBocH202aNOGtt96iSpUqvPHGG7Rr186cLOLMmTNUrFix0GucOXOGo0ePUq1aNdq0aUNAQIBFB1vTNJYuXepo08rU4cOH6dWrl8VzVapUwc/Pj+M5mZdz9wAdOXKEunXrms87cuQIzs7OBAcH27y2i4uLJOQQty2lFKkJCdTu3NkiC6+uSghOvUcz6uef2TF0KIc2bbJ4XezBg/ywaBHhOYkq7O3hFmVDYpq41ymjkWsxMRxYuZKks2fxqVmT8FkzrQfVSsGuzdBrJLy7yPZScr0B+o4DTfYzlhWJaULkiWsrVnDlxAl6rVljtxwrmAbcB5YvJ3zObPMKn6JydPBcFsnLSoPDvdsFCxbQvXt3QkND8fT0tNh7vWPHDh544IFCr/Hpp5+aA9Ovv/5qdfxOHGxXr16dgwcPWjx3+vRp4uPjqVGjBgDBwcHUqVOHLVu2WAT8zZs30759+3s6m7u4cymjETcvL/jvBnTzRll0NHU5WXj7rF9P3OHDXIyOtnhtwokT6PQyy3M7kpgm7jXJcXF4AKkpabjaWK2TlZKCUkCf0Wj5B9Ubl0DXITB7FeSLg+gNELHGNFsuK3fKjMQ0ca/JnwQtd7l47iy2k7s7hg0b7JZjBQgIDSW4QwdTX21vMn6ZGaYbjEWIZXfr4NlRDg+2W7ZsaZ6ZDgkJsUgiMXLkSGrVqlXoNe7GbI7jxo1j8uTJTJo0iR49enD58mXmz59PxYoV6d+/v/m8yMhIBg8eTEhICG3btmXz5s3s27eP7777rgxbL4SDlDIl+tHp0WkaKi7GlG3XThZeY7M2PDhpEh+PHGlx2Cc4GGN2tgy4b0MS08S9JiU+Hg9Xd6gQYHO1jqFKCOqxp6BiFdTsVZYx71g0RA1HRa6DBzqYkqGdP2FaOt53nGmgLVl6y5TENHGv0SXF0ybYnbikeJRSVsvFM1NTyUxJsSzHqmk4ubmRmZpKowED6LN+/Y18FueOo1UJgb5jwS9IYlpRKVEijEajevvtt1VoaKjy8PBQlSpVUn369FF//fWX1bmrVq1StWrVUs7Ozqpx48bqk08+cei9kpKSFKCSkpJKqvlCFF12tjJePKvUW7OUmjlIqfQ005/DsP/11iyVmZysIsH8NddgUEnnzimj0VjWn0jYIDFN3EuMRqPKzkhXSimVnZWljJmZyvjJu0o9YLCMZQ8YlPHgHmXMzlbZMadvxMG3Zqms86eUMStLGbOzlTEzw3TdjHSlJMbdFiSmiTtdzIEDKhJUzIEDhT5vEdMy0lV2Vpb6ZtYsi35YJKiDa9aohJMn1YpmzdTBNWtUZnKyUkqpzJQUUzyzEwfVp+uUys5Wlw4fttkmcYOmlFKFDchfe+01Bg8eTEBAAK+99lqB52qaxrPPPlvoIP/8+fMsWbKEvXv3cuXKFXx9fWnVqhWTJk2icuXKhb7+Xnb16lW8vLxISkqifPnyZd0ccS/JrS+bW/bG1R32JsPMQaZas/Z0HgTzN/CiuztZqanmEl95M4+Le5fENFGWlNFIZmoqBicDOmcXU5y7dB6tV7Dd/ddq5zmMnr5oyojO2QVjRjpZmVk4ubmh6XTE7diA/6tjiHt+Jf59Bpf+hxJlSmKauBViDx5kZVgYYw4cILBZM7vPW+zLPn4cv3r1CJ8zh22DBnFoo2VfLSA0lDEHDqBpGsYLZ9F/vNqUBHLIFJRvRbSeNe3nofjkFCk6Fxb7+1u1SdxQpGXkU6ZM4eGHHyYgIIApU6YUeG5RBtuHDh2idevWZGZm0rFjR+677z4uXrzI8uXLWb16Nd999x0NGzYs+qcQQpS8PEvFMWaDprOuL+tAFl5jRjr1+/TBJziYsHHjTLW0ZaAthChl12JjObBiBfdPmIB7hQqgFPrEOHQfrzYt/Z6zBm3HyoJrZm9+E93YSFR2znyFpuHk7m5ZTeEWZ+4VQoi8DG5uVvuyAdA0WkyZYrlcPL//bkCf27/TNJi9Cm3twgLjINuW4zY6ouQ/yF2mSD1do9FoTnxmNBoL/CpK/ewpU6YQEhLCmTNn2L59O2+//Tbbt2/n9OnTBAcHFzqgF0LcYkYjxJ037dGZOQhWRKGM2db1ZfNm4dXbuXenN6D6jkMzOPHohg2ER0biGRQkA20hRJlI+SsaVkahU0bTEzvfR/9obVg9H3Z/CM4uRaqZren0XN653WbtWbc6DTlVOxy3OjJxIMS9rDi1sYtbT9vD3992GS+lOLR5M01HjrxR+SXnBuGDkyejLp6znEhxcTOtXCxKHDQYMLi5OdTOe02Z9Hb37t3LrFmzzPUMc/n4+DBz5kz27t1bFs0SQoBpoL3zfehR09T5/GIjbHgVTW+wHXg3LoGKlU1ZePMPuHOy8Gp+N2axdVJLWwhxq+Um9Im37qzqkuJpE+KBawU/Uyczb6IzB2tmu/v4QFoK7n5+FofLNbyPGht3U67hfSXzeYQQd6Tc2tjXHRg4F+c1Th4euHp72y3jtW/JEjwrV+axbdvo9e5aZl6/zozkZO4bOtS0dDzvRIoDcVBlZZGVmlrkdt6LirSM3NEMjK1bty74TQ0G0tPTbR5LT09HL5mJhSgbSkF8DOS9wwkFB95j0RAxFKLWw/3tYPtKycIrhChTyX9F4/FOFMkNHsKj1Y0ar0opKnR/DPoMRjNmo334jv3VOkWome1RPxRGR5i+CyFEKVNKEdC4MTOuXwewLOOVJ7P4xeho9i9fzgMTJkBcDNq6hXDxHFrkWuuJFAfiYGpi4q37cHeJIg2227Rpg6Zp5OZSyzsrpZSymqUqbCl5hw4dmDlzJvfddx916tQxP3/s2DFmz55Nx44di/wBhBAlSBkh/1JxKDzwfrEJTh9FrdwDYyLR9Df2eUtdWSFEaUuJj8cjz3fgRtKglSu5fukSPZYvt79ap6g1s/0CYWzkrf9AQoi7Sm7uiLCxY/EMDCz8BTZYJEI7cYJea9bgGxJCQGgoD06eTOMBAzC4u5OVksI/u3ZRp1s3+Py9G6t5NA2m/cf2REoR46C6fJnwiAjKFfMz3AuKNNj+7bffzH++dOkSI0eOpG3btvTr14+AgAAuXrzIli1b2L17N6tXry70eq+99hrh4eE0aNCARo0aERAQwKVLl/jjjz+oVq1aoRnPhRAlKG8iNJ3e/h6dQgKvGjjJtMcnd3CtkxUqQogy5H1jabcyGjn62WekXrlMq2nTMLi7o7KzTTVj85PVOkKIWyx3qXjdnj0dHmzbS4QW3KEDD0ycSPicOahL59GvWwjnjmOoEkKdoS+gXblouW2moImUvHHwgQ6wbbnNOOjh70+byMgS+qncnYo02G7SpIn5z/369WPgwIG8/PLLFuf06NGDqVOn8vbbbxc6M12tWjX++OMP1qxZw969e0lISKBOnTqMGDGC4cOHU65cuWJ8FCGEw4xGU4bxbSvh0jmY/rb9PTq5gXfue6gHOqDlCbzZvUahC6gCIPuxhRBlSimFX8+B0GcwftnZKKVIv3aN2p07W3RAtSFTUI+ORStotc4738GYCDS9AZWZgWZwktU6QogyZS8R2j+ff859w4bB5++hyzuo1jR0w6fDdhsrFwuaSPlqK3QeDC27okbPQTM4SRwshiINtvP64osv2L59u81jnTp14tFHHy3SdcqVK8fEiROZOHGio00QQpQEoxG19zO0q5dh+DTTrHRWBgx9AX74HI4ctH7NV1tRzy/B6FMRbeQsc33Z7MwsdJomGcaFEGVKGY2m/YjbV5gG1FVCUAOexsXb37oDeuJPtPf2o2avspztAdNqnUGT0VzcuPLtTnwj+hMvNbOFEKVAlxhHeKDpe365idD2REVZJUKr1bUr6uJZyzgHBWcXzzuD3bwt7HjH5gx2yg9f4jH9UVIWbsej1SMl/ZHvag4PtsuVK8fXX39tc/b6yy+/lFlpIe4ESqGuJaC16AzJ5+GPhXD1OJQPgfpjYf0vEDEMdm648Rq9ATV7NXj5mWavjTeWizu5O8uMthCi9MXHmvJMPD4RVc7bcj9iDq1KCOr+dpb7FF3c4J8/IGIoWtR6q9U6qu84tJxOZvbVRKmZLYQoNbqkeNoEQVxSvPm5AhOhAWgajQcMQLfORm3swrKLf7EJThyGOWtQOXl38s9ge/j7Q1qK6btwiMOD7QkTJjBnzhwuXrxI7969qVixIpcuXWLHjh289957REVF2Xxd+fLl+fbbbwkLC8PT07PAjrmmaSQlJTnaNCFEQZQCjKDpUcqI5ukNx96H70aByhOY/7cIwlfD3PXQ+CGI/tG8VFzzDyItKQk3Hx+0nFqN5pqNQghRynKzjhufmIoWF2M9Q61p0LE/2tqFENwAHp8MnQaYZnnSUkz7FWcOQntymt1OphDizmYvGVlJJCkrroJmr/OzlwjNTNNwr1ABg7ud2euiZBc/cRgqVCLt7EnchjSRlTwlyOFe8qxZs/D29mbRokWsW7fOnKU8MDCQJUuW8Mwzz9h83fPPP09gzj/k559/XmbBhChNyggpMXB4BVw9jhY6BdwqWg+0wfR4z0gIagf9xkP/CWSlpHDo/zbj5udPna5d5fdXCHFbSImPx8O3IpqLK9q6FRZ7FHFxM313dQffivDefuuVPOEjTfsVt69Aqx8G7f2If3qpRSczt4Z2/lraQojbR0EDZ3vJyG4mSVlR39/eoNrW7LUFV3f05b3tJkJrOnIkxz7/nPufftqcddxu0kcocnbx1G934iYreUpUsaaknn76aZ566inOnTtHbGwsgYGBVKlSBV0B+zUjIiIA0zKIiRMn4uHhgYuLS/FaLYQoOmU0zWDvGZkzsNYgfBX8ttB6oG1+TRb8tQIVFsnHI0ZQvnJlwsaNwzMwUPZlCyFuC3kToWlgmtGpHWo5e52eAlmZ8NhT9lfytF4FfcehsjLRki5bDaqllrYQt7/SGDibt630HWvay1yE9y90UJ2PUooK3R+DPoPxzs62mQht35IlNHniCUb/8gvGC2eLlvTxWDREDS80u3imZmB3DNT3kpuLJaXY6z91Oh3VqlWjWrVqDr0uMzOTihUr8tFHH9GtW7fivr0QoiiUMs1omwfagMENDO6mmZ2CXDuBptPTa80ajNnZaDqdzGgLIW4LymiEtFQ0JwPo9WDMhqdehEpV4Hq+2esm/4b0RPsreb4bBVU6oBl8Aaz3JEotbSHuKfYGzrnbVpIbPIRHqxJYdu7qbvHQ1nLxAytWWCVCM/vvBvRzR5rin4sbnDyMtv5Xu0kfeSgnsZl/EGrUbDQnZ6ttM0Zvf/bEQl1vG3FwdITVTQZRuFLfbOns7EyVKlXIzs4u7bcW4u6XZ182KhsUpqXjeTuYWamQlWLqhBbEMxhlzEbT6dHppWa2EOL2oIxGQKFlxsGfq02D6oCW0HB8vlU8ABo0nW4dBy0umAWHl0NYRGl9BCHEHSglPh6PPN+LK+/sdYXMDJRSoJTFcnEnd3cMGzZYJ0IDHpw8GXXxHLqNS2HmSss8FL//gNZ5UIGz1wDxn27B/9UxVnuzywUGEh4RQbn8qwPkpmOxlUlmowkTJvDaa6/RqVMnXF1dy6IJQtx9lBGVlQo6gynJjzELdM5oxsz8J8LxzVBvpGkJpa0OqGZANRiHpsmScSFE2Uv+7Usy/2805SP/QnN2QTuab0l4lY5w/Uy+gTYOreRBZzDNDgkhhIOKmvDMYvb6+HF8Q0JoOW0aaQkJN5aLaxpoGpkpKZaJ0HQ63CtUoPGAAeh/+BTe/dk6D0WdkaABmemFJ320sTfbMzCQNpGRN/8DEWZlMtg+c+YMR48epVq1arRp04aAgACL5amaprF06dKyaJoQdyZlRKHIyIoj5sJqUlOP4+YWQlDQWJzvn492/TQc33Tj/D+WQO0hpr3be/ItrdQMqDZr0NwDJRuvEKJ02dkTmXFsHz71U1FOLmjXz+VbEq5ByADbeSgcWMlDdpapRI4QQjiowL3ZtpKdZWfj5OZGZloaD0+fzoEVK/Bv0IAHJ082JzwzZmbQ4oUXyEpPp9moUfjWCkHT5axcbN+34DwUtQaj6fU2kz6K0lUmg+1PP/0UFxcXXFxc+PXXX62Oy2BbiEJYLBc3ooCLF97n76OjUHmC7pkzi6hbdzUBbdejJRyGK9GmA1ei4duh0HY9VO5gWkJ57YRp6XiDcTkDbZnVFkKUruS/ovF4b7Hlnkil8O43HXSz0IzZcOQdB2avi7aShwbjICND9iQKcZsoy7JcJUYp/HKWi/tkZ5GZmsqxzz+n+8qV5gF1VkoKBjc3/Bo0IHzOHNSl8+jXLYKLZ9EFVMV52FQ6vLQIkmPQDkSa4lxhFWW+GwVB7VDuQWhJl8vko4sbSmSwnZKSQkxMDCEhIUVKoHTy5MmSeFsh7k3mMl4r4fo5VPhKMjJirAbaAEpl8fffI/Hxbodz48loe0bcOHhiK4QMQlXvBmGR5rulGjqZ0RZC3DJ2O9FK4f6vtrA3GffMjJybigqVHIP210pIuQjhK6wH1YXNXheykoc2ayD3BqPsSRSi5BWQxduekswu7ihHamDbZTSi4mPQtq0wZQqvEoJh4CT6fvAB6uJZdDkDakNAVVT/CTQaMAC+/xTdtSswfJppD3ZmGprBGXXsfTRHK8ocWSl5KG4TDg+2X3nlFZKTk82lvL7//nt69uzJ1atXqVmzJl988QUhIYUs1xJCFI8ywunPUOmXoek0NIM7qGxiYt+xGmibX6KyiIldQY06EXD1hHkGmzqjUJ5VTEnUcmexNUmEJoS4tWx2oo1GiI9B2/YOXLmA1rwtdOqPOv0ppF9B5cQ7pbIhdApawp83VuoUNnt9JRp2D7e5kocG424MtIUQt0Z8LLwTBeE9b3rlSEnOeBe7Brata2UnQBg4ldOZBto730fLmym8Wm10o+eg8g+o01LQLp1HOTmjtexiuQc7ZwZbK3ZFGft5KHJLHOYvdShKnsOD7VWrVjF16lTz4+eee46GDRsybdo05s+fz4wZM9i8eXOh14mPj+f1119n37595lrd//rXv5g0aRL++ctuCCFMszzpCahqnclIP0/M2YWkpZ2jfv21pKYWHHRTU0+gaQa4bxY4uUBmOsaMDDQFaEhJLyFEqTHEH2HY46bv0Mw00P7te1TFIBg3B03TmwbV2RlQrYs53plzUQSOxfnR/WjfDr2Ri6Kw2euqOSVv3IOg2RzQO0F2pikpmsQ/Ie4YdutZZ8QR3t30vaiKM6jOX67LfC1jIoRXw71+M9OMdv5M4VkZkJWF9nCXnPKEi+D6WShXFRpOQHPzgqPv5VkabmcG25GKMlkZaHbyUOSWOLQqdShKnMOD7bNnz1KrVi0Azp8/z4EDB9izZw+tWrUiKyuL8ePHF3qNffv20blzZ4xGIx06dKBOnTpcvHiRZcuWsWzZMnbt2sWDDz7o+KcR4m6jlGk2W5ezN9vZi4sXN+RZMq5Rp85/cHMrOOi6uQWjVDZKgQ4wKshCh5OmoelkRkcIUXoMiSeo0dmPhMQTphiXloxq1oqM9BhiTkWSmnocL6+WBAWN5+LF9/n775E2clGsssxFkTN7rdqsQyts9jo9Ho6sgXojTM8LIW47ji7l1mXG06YHxGU6MHC2d63sBHjI3fQ9V579136521xybtSpPHklnIzZaLFnYN3PloNq/+am8oT5VieqrBS4fh4No+UebLsz2EXPQ5F27gxSX6HsOdzLdnNz4+rVqwB8/fXXlCtXjhYtWgDg7e1NUlJSodeYMGECDRs25OzZs2zbto233nqLbdu2cebMGRo2bMjTTz/taLPuGEeOHKFjx454eHhQqVIlXnjhBTIyMsq6WeJ2ZDSisrNQOZMuStPIyIjNtzdbcenSZgIDR5pmrm3QNANBQeNAaaZBO4BOj5O7uwy0RYmQuHYHSomF/ZGm77fItdhYvnvxRa7F3ngPpRTej02HoXF4PzYdpRTKzYOLF9/j5301OX16PpcubUSncyc9/YzVQNt0jSz+/nsUGZmXUOFroNYgaDoL9eBLplU67kGmvYrtNpi+uwdZLhN3D4RmM2WgLeySmFb2cmeddflmnQschBtszzoXKN9MtVIKn96jYVkyPr1Hm2pgG42m5d4oANP3tBRTP00ZTTPN5jiVjQqqDhd+RF3YjWo6DdquRTUYjcpON61OrNaGU2cXcvjwIE6dXUiGmxvK1R+C+91oSEEz2H8sAY/Kppnv/H2/PHkoUo//7fjPQ5Q4h2e2H3jgARYtWoROp2Px4sV06dIFvd7UgT9+/DiVK1cu9Bp//vknW7ZsoXz58hbPe3l5MW3aNAYMGOBos+4ICQkJtGvXjtq1a7N9+3bOnz/Pc889R0pKCm+++WZZN0+UtZRYOLwCGk4AlwooDTKyLhJzdgWpqSeoV28NMbErrTqe584tISBgCHXrruLvvy2TpGmagbp11+DsHAho6AymX/nc70LcLIlrd6iUWDgYBTV63ppBp1KU869A65kzUVmmWSCFMs1ex64wLwmvWnUa2dkJ+WKXRsWKAzhzZmHBuShillOjRiS024DKzkDT5akjezkaPm4FPb8Hv2Yl//nEXUti2u3N5tJvpfBr8Ri0GoxftuWsM9gZoCuFX4+cmeq8MSojhpiYFZYlVJ2DwKADnamEtdJhGkFpgI2yq1UqT8YQ1IqMtBrmLTCFrtapk2+1TkEz2AVUlMm7kidTM7A7Bup72diX7Rco1RdKSbESpHXv3p0ePXpQvXp1XnzxRfOxzZs3m2e5C1KrVi0SExNtHktKSiI4ONjRZt0Rli9fztWrV9mxYwe+vr4AZGVl8dRTTzFjxgyCgoLKuIWiTOV2fkOfQ2lw8eJ75g6oTueOTrfB5t7s5ORojhwZSr166/H2bkts7Dukpp7AzS2YoKBxpoG2Ak0n+xJFyZO4JqwSFikjKivVtB8aQKehUDY6mRrVqk0nJmaFRcdTp3NDr3cvYi4KUx1Z7T+7oF6+QXVWSgl+SnGvkJh2h8mp0KIdNlUq0MqHQIOxFitadEnxtAl2vzFAz/+agJaohrYHwqmpJ6lffx0ZxsvEnLsxCK8c9BROuFmVXfXwCKV69TkWfTgAH5+OBa/WOToKH+82ODeeZEqIBgXnosipKEP1bqhmc9D0TqisdDS9s/lGg9Hbnz2xUNfbxr5sv0CpvlBKHF5D2qBBA06cOEFcXBwnT540798GePXVV3nllVcKvcbixYuJiIhgz549Fs/v3r2byMjIIl3jTrRz5046dOhgDt4A/fv3x2g0smvXrjJsmbhtuPqjDOXISI+xCNJGYyrZ2Sl292ZfurSJAweak5kZR40akTRosIEaNSIx6CrmDLRlubi4NSSu3WWKsbw87Y9vqXl6MZknfzMNtHNmek6dmc/hw4O4nvwH6ekxVp1Me4PqwuJdrtxcFPR/2np2xj0QmkXIUnHhMIlpdwZ9eW/ToPnY+/BBTfhtPhzfaPr+QU3T88p4YwZ7bzJ+PfrbfI0qV9lUQjVfjPLwCKVevbVcvPg+P/98Y5vL6dPzuXzlC9LTz1mVXa1SZTIZGedtrtaJjV1d8GqdC6sgZOCNJ3NnsGsNgkGnoOks87YZBp2C6t1A03Flxwp4xoMrH75jMaNfLjCQ8IgIyt2pdcrvEsVeS1qhQgWUUsTGxlKxYkUMBgONGzcu0munTp1KUlIS7dq1w8vLC39/f+Li4khKSsLHx4d///vf/Pvf/wZMWZJ///33Aq93+fJlfvnlF2JjY0lNTaVChQrUrVuX++6777bKsnzkyBFGjBhh8Zy3tzeBgYEcOXKkjFolbgdKKajQBG3opZxSXivyBeQbe7PPnFlkM1inpBzG2VCR3HtoymhaLn47/Q6Iu4/EtTuYrf2N9paX525zaTDW8nml8GvXF63TIJQxCwX5Zno06tZdZXNJuP1BdeHxzpyLAju1sd0DobmN54UohMS0O4N7rXqQEgN5y2LlUllwbpdpVjjl/I0Z7JxSWpav0aBaV2JOz7OKNbYHzqbXVKzY30Zcs70FxqHVOgZ30LtBdk4W8RNbodZgqNYVFRaJptOjjNlomu7GDLbeB35KwdjOx+J6noGBtImMLOQnKW61Yg22v/jiCyIiIvjtt9/Izs7ml19+oVmzZowZM4bw8HAGDx5c4OvDwsJuegCQlJTEunXrWLduHf/73/9Mg5U8NE2jXLly9OnTh9GjR9OyZcuber+SkJCQgLe3t9XzPj4+XLlyxe7r0tPTSU9PNz/OTVBXVEcvmM4P9nPHkLNX91JSGompGXi6OhHo7WZ1bjVvd1xdTefGX0/jyvUM3Jx1VPUtV6xzj1+6TrbRSJC3O+Vyzk1MTuPStQycDTpq+BXv3FPx18nIMlLR0xlvD1cArqdlEZOY4tC5ep2OkIo3zj175TqpGUZ8yznjV87xc9PSsjiTaFrCWKfSjdwEsYmpXEvLxNvNmYpepnOVMpr3MRZUyqvQvdl1VuPsEoimjKDpMSrFiYvXburvviT+ndj6+yyJfye5f583++8k/9/nzf47sfd3f7cqTlyTmFZ2Mc2/vAs+bs7gGwojkjFmZ3I9NZPybk7mc5Oy3ImPT8XLNe3Gv+vEs1w/uIKkch0JqZcz2M6/XFzTkZF+3mKmp+BOpv1BdVFzUWiaJjFNYlqJKouYBnd3XDudlIHO2R/P1Ey8c54rLK7pssA/J3lZ3n+v5QE0DZfKVeG3ebazcfuGQpu1cOy9PMuv7ZTSMrij6ZxtxCj7uSPsxbWSWa2ThRb6vHkPtmowDi1nD/aVbW+S9fNSzoU+S8P+Y8x/n5fTIM3Zn6tpkHfBuMQ1k7KOaw4Ptjdu3MiQIUPo378/o0ePZvTo0eZjISEhrF27ttDB9rvvvutwQ/NasGABr7zyCj4+Pjz22GNERETQpEkT/Pz8cHFxITExkVOnTrF//3527txJ+/btefjhh3njjTdo0KDBTb13WVi4cCFRUVHFfn2nJd8DsHpoGO0bVMp5bg+JqVk46TSOLehqdW5Uz/oMa2HaO99lyffEXc9Ar9M4buPcp9oE80Ln+gD0+c+PnE1IRdPg5MJu5nPbv2baMjCgeRVe6tcEgMdW7OPYpetowMlF1ud2rF+Rd4bdD8Dwdw/w29lEAE7lObfNK6ZzH6zpw+axpnwBT204wHfH4u2e2yioPJ9ObAXA9O3RfBIda3Vu65f3oICaFdz5dmpbABbv+ot1P56xOjd88R6MCip5ufDz9A4ArPnpFC9/8bf1dRd/i0Gnw91Zx4HZnVDKmG9fj/1SXpZ7s9sRG7vyxt7siqNwdglCXUtCK29a+paYlmX+O/q/cf/igRoVcn6+u7mWno2zXsfRF7uYr5977muPhfJoWFUAOr/xHVeSMzHoNP6x8Xf/wiN1eaqtaStJ92V7uZCUjk6DEzb+7oe1qEZUT9Pql8fe/omTl1Ps/t33CA1k2SDT/sshq3/lUMxVq59l7t9n69p+rB9pKhU49v2D7DuZYPfcplW92THBdOPt2c2/8eVfl6zObfuK6e++dsVyfPlcOADzPv2TzfvPWZ3bevEelIKqPm58/+92ALyx+xhv7T5hda64QWJa2cS0Hk2CeL1/KKScN81SXz2OrnwI7nXHgGtl8/7GR86/xYV3E6nktdcU05TCqWJT/MbE4pmZaUo+hDIvFzclBrKdxLGwTqa9QbUp3g2nfv11+Ph0ICZmuTneVQoch4tLoGlmB4lpEtPK3s3GNLi741r4jnhovZaW31xmQ1PTc+a4phSnpoaZt4KM33CQES1r0qtXf3jMVGZr35lEoj49zF+x1/j1QcDFDc3gbKMsVo7GkyH5vOU+Z7ultECpbKsYVdCNQntx7WZX6wQGjQP0qKaz0QzOpGdm8kn0BfqFmWKdUe/Dg/rX4bDGa3/GmuPaoD/Lc6X1Wgy/K/55/MY1Ja6ZlHVcc3iwPW/ePCZPnsyrr75Kdna2xWC7YcOGvP766yXaQFt2797N9u3badOmjc3jfn5++Pn50bx5c8aNG0dCQgJvvvkmu3fvLtPBto+Pj83SaAkJCRZ7g/KbPn06zz33nPnx1atXqVq16i1po7h1lFL8EdkRVycn0jMzUUpZ7c0uLCBfurSJlJSj3Hffd9SoHoGmM6DSU2DXZpSXP6pFF4v9OkLcasWJaxLTCudx9i+Ir1limWLrB3ryev9QtH82wHeWyy4N/1sE4atNSy71brg6GdCM0LFBgDmRkD5ncO5SPgTum4EyuFgsF7efxLHgmHZjUL3ealBtWiau4ewcRPVqs9HpnUnLzOTj32OpH3iVxpW9S+RnI0ReEtNKnqaBq0FvqiWd/xiK5L+i8WhlinWfTmiJiovBsHounDuOViWE+/uM4dMJLXl2SzSQCOmpqKwMUzI0G1ckZID1DLa9UlpZKaCMBAWOtohRBd8otBfXir9ap06e1Tpxn2xh4I/ZHNdXwFmvo19Ywf+WjHo9ZCmU9P9uS5rKv/66EK6urnz22We0b9+e7OxsnJyc2L9/P82aNePbb7+la9eupKam3qr23tFat25NhQoV2LFjh/m53H3qa9as4cknnyzSda5evYqXlxdJSUlW5dNsuZuXJt0py8iVMuYrJ1GLGjXmcOpUFKdPz7f4+/LwCCUsbD+XLn1gZ/nkagIChqDt+j/4eRdUrIzqOw78ArmaloWXuzNgyp56Ij7lpv7uZcnl7b006XZQEnFNYprlv7/MY38QOLkN5db9BPWa3VxMi4+FbStIHvgc7vqraBtr2l52WaEZ9PwO9C6gM2DMzkTT6dGOvW+1v1GNSicjI5af94VYJABq1eo6Z84sLHZMQwGaQtP0KJWN0aiRkpGNp5sTsQcP8k6rVrT/5Bv8G9SXmCYx7ZYpi5gGd3FcUwqVnYVmcEJlZaLpDaBpXE/L4vDWTVR7ayL6qcvw7zPYVLd65/toc0dCdp44pTeg5qyGLkNI+HYnvv/uTtq2f3Cp4GId0wzuMCIZvh5kSpiWV/gaCGoLm2pbvqbTDlT1HlaZxevWXYOPT1v27attdaPwRlzbaJFYraB4V7HiYFNm84wLFjcWA3NW6xiNCr1eT9yODRgWjePYM29TtXtf89993I4NpC1+ltinXiO030Dz3+fJYyf5cd1mHhg6gNp1apbY373EtZLh8GC7Ro0aTJ06lQkTJlgNtpcuXcrbb78tCSTsWLhwIQsWLODs2bPm/UCrVq1i3LhxnDlzpsjlJIoTxEXZMS0VtywnodO507p1MocPD+LSpY1Wr6lYcSD16q0nIyPWZikvY2YWOoMeTacHY7Zp+afc0RRloCTimsS0fI4chCFh8P4B63JWxbnWE83h5wxT4rPf5lufEzLQVK81JRb+ese0zDI3kZBVR9YDNTyJU6cirQbVBXVMc2NaZuYlq9nrG+UJdVz8+QuOrxxDyJiVBPzrEfPrrcqLCXGLSEwrQUYjxMfAthVw7jhUCYG+Y8EvCHQ64nZswP/FIcTNfB//3oMg7jz0qGk50M6lN8Anp0hNScWtX22uvPQpvu26oI69byqVlTfh2Yjrppnt/PHONxQe3Q//fGC5xNw3FB49gNI0MtLOEXNhFampJ/DyamG3NramGWjS5Bu8vFqSkRFrEdeqVHkWg8Hb6nlzvENDZWeiMzhjzMpA0ztZ5LKy+Ln0GVzo8+L25vAy8kGDBhEZGUm9evXMy7g1TePQoUO8/PLLjB8/vqTbWKC5c+faPabT6fDy8uK+++6jVatWpdgq28aNG8eyZcvo3bs3M2bM4Pz580ydOpVx48ZJ3ca7lFLKZjmJopTySk4+TL16a6hRI9I803Pln+Nci/me6q1a3SjnpdOXxkcRwiaJa3cAFzdTR9XW/kbfUNNA26LzaSeRUA5N0zucxDEubisVKw6mQoWuFjGNbKNFeUKjsz9frj1Dzact68JKVl1RWiSmlRCjEXa+D/lnqd9dBDmz1Pry3jeeV0bToNzWQBtMz29bjuuo2TdeooBag1GBbdGOrDQnFUMpqD8W/rfIMoblltJqux4qd4DDy2+8JuMquHjjrK9AjWqz0PQuqOx0yEonIGAIPj7tLWejK43B2akSaVev4Vo+iOpVZ6EzuGDMqXWtaZZbYIzZGWi6G4Pq+E+24P/qGC4/v9Jq4Ozu52fxXdzZHB5sR0ZG8ueff9KxY0cqVDAlXOrSpQtxcXF0796dadOmlXgjC/L666+TkZFhXrru6upKWloaAG5ubmRmZpKdnU2zZs34/PPP8fe3Udi9lPj4+PD111/zzDPP0Lt3bzw9PRk1ahQvvvhimbVJ3GpGYmLyl/GCIpfycq4ESuPT8ePw8PcnbNw4y4G2EGVM4todID3V1FG1tb/RwURCZKWgjBmOJ3GsNMY0o5OZAXon0ANGQG9ZnlDqwoqyJjGt+HJXoLR84QWcrl+xHmiD6fHckXB/e9xC6pqe0+tNEwfnCi6NxfkTaE7O4OKGW616pCYk4Fq+POi80e6bBU4ukJmO0juhubtC61Xw3SjLAXeeUlo0nQ0GZ9NrjMq0lSUrZ6GgHjQjqCwj6BSxPx+jygPTcXJzJzM1hT83b8bNz586XbuiaRpXPnyHCnv+TUL4S1To9zRgmoy8tOdb/h79KHXf2U5Au0csP09ais2P6ZEzVvHIN2YxevmxOwbqe8kg/E7i8GDb2dmZjz76iG+//ZYvv/yS+Ph4fH196dChAx06dHC4AWfPnuXs2bM0adIEDw8Ph1//zTffMGDAACIiIujVqxflypXj+vXr7Nixg7lz57J+/XpSUlIYMmQIU6dOvelM6Derfv36fPXVV2XaBlF67M0AQVFK26w2L6/svnw5xuxsNJ1O6maL247EtducUnAt0VQj22Kmx8FEQqaLwZnPCQoaW3gSx2pz0PRO5iSOePnBw924+utevGb2JX7CEqsZHZnBFrcDiWnFcz02lj1z5xI+a5Zjs9TZ2aYtcVUKLo1F5WBUZgZaRhouQdVM/aH/bkCbN8r0ehc3SEtBi1iLatUdLWQQVGoDR1fdmMGuMwrKBWFMTwe9Hh1gRCMzI4NPhj1JSKdONB44EIMTZGVmc27fL1R9+GF8a9Vm78JFXD13jvKVKxM2bhyegYE3VuXYqXVt9Pbn2xMp1Pa2HDgXOHvtFwijI6wSZLrXD4UxEabv4o7h8GD7zJkzBAYG0rZtW9q2bWtxLCsri5iYGKpVq1bodVauXElUVBQXLlwA4Ndff6VZs2b06dOHNm3aMGnSpCK1Z8KECTz//PMW5cbKlSvHE088QXJyMpMnT2bfvn3MmjWrwCXnQpQYpQBTrWtb5SRy5c4C1a//ns0svHn3MQLo9LJcXAhRTAlxUKOuKet47v5GuzPYCo5vhnojrZdhAtr+CJwfPUDduqtt7mOsUmUyer0b2pa34a8DaHmSOGo6HRkxZyExvhQ+tBCitDm5uaEZDA7NUgOm3DN9x5qWmdvbs913HGnnz+DmVQGdwYDxwhl080bdOD93pviD19G6DEb9+F+0pHjoOB1c3U3Hv9yM8vKDhzqz8v77uXLsGL61ajF6/35qdenCJ6NG8fGoUTi5uZGZkoLOYKD/jh3U6dqV8Nmz0Tk5YczMQDM43dTkh0f9UBgdYfqen18gjI20elpuRt6ZHF6LWrNmTX777Tebx37//Xdq1qxp81heS5Ys4ZlnnmHo0KF88cUX5M3R1qZNG7Zs2VLk9vz2229Ur17d5rEaNWrwxx9/ANCoUSObpRyEKFHKaKphuz8Svh0O6AiqNApNs31fKy5uK5kZ8Tg7B1GjRiQNGmygRo1InPUVLQbaQghRHMlxcabv586YOrO1h8CgU9B0FtToA9nptmew/1gCHpVNe7fzx6+Ew2gXfyIgYAj/evAk1avPomLFQVSvPot/PXCCAP/HITPDNMCOWIMaEwn+QTdmgHKWQhplKaQQd6RrsbHsjozkWmys1bHM1FRUVlaRZ6lJz6lgpGmmxGlzVpsG1nnpDfDKDvALxLVKdfgqDmU0ovtwle2B+bFoiBiK1rIL6sFOsHYRRI2AtQsxNm8PD3cj7epV6vboQb3evanbsyfp167R5IknmHTqFK1nzqRe7960njWLSadOmZaK63Rc/vT/4GEPLn+6xWqg7XBcyx1Ql1B5R3H7cnhmu6Dk5enp6bi4uBR6jWXLljF79mxmzZpFdna2xbG6devy999/F7k91atXZ9WqVXTu3Nnq2MqVK80D8cuXL+MniQbEraSMYFEmR0Nr9RbOLpWpW2eVRTkJuLFU3MnJD00ZTRPidvYxCiFEcaTEx+Ph6m76DqYBt3sQquksNIMLypiFZrW8nIITCdUdBZ5V0Y78hvM/0dToNB3Nxf3GcvHyftCqG+mx53AdFma1XNzo7c+eWKjrXXY5VIQQxXc9NpY9UVHU7dnTujqAUqQmJuJe1FnqvM/rdNBlCNzfHrYth/MnoHIwDHoWPL0hPgZt2wq4eA4tcm3Bs+dfbILAGmgTFpA1bBoGd3eyUlL4Y9Mmju/aRc/VqwmPiDDNkOeZqfYMCiJ8zmx0Ts62Z7Dt7LOWuCbsKdJg+8iRIxw+fNj8ePfu3Zw7d87inLS0NDZu3EhwcHCh1zt//jwtWrSweczJyYnr168XpVmAqURD//79qVu3Lt27d8ff35+4uDg+/fRTTpw4YZ4l//rrr2ndunWRryuEQ5SClJh89WgVHN+EVq07AQGD8PFuYy4nYUoYNApnlyC09CSUiw9awv/g80fQun4BfjdZ7kcIIZTCr/tj0GcwfpkZpjilaaBpJG5fjE/aUq4FvEj5TqMsl5fnOrEVQgaZEgk1mQHOpv2Q7NoEp/+G8S+iVagEaxbBpXNoFSuT3WsUuoAqAKQc+QNXG8vFJQmaEHe35Lg43OvWNc1S26iZTcQa8Ask9duduLm6W75YpwP/INSo2WhOzqjMTDS93jKzuabBtP8UPnuuN5CVmsqL5cpZLAvvuWYNTm5upprdEf0tMoJrmkb8p/YzhQvhqCINtjdv3kxUVBRg+kdoL+O4t7d3kRKQVa9enV9++YV27dpZHdu3bx916tQpSrMA6NOnD7/88gsLFy5kx44dxMbGEhgYyP3338/mzZu57777APjPf/5T5GsKUSR59majjHB4hXWZnD+WQO0haGd24px+mRoh09EM7qisFDi+Gc3FD1W9G6CBeyA0mGD6LoQQNyOnvq2WU99Wy1vfVtPw7jMVnGbhmZlhysBbazAEhFsmEqo3BtwqwewhphnrnORDZgHVUP3Go0bOROfsgjEjnezMLHSahqbTkX010WbTZN+hEHe3rNRU+7PUOfkb0DR8WneEvcmWNwMB8gx40zdE4+rmYjloV8oUk3qNLHD2XPUdh1EpWs+cScKJE/gEB1skNsvUDOw+kWKV3dvo5Wf/eckGLhxUpMH25MmTefLJJ1FKERwczPbt22natKnFOc7OzlSqVKlIS19Hjx5NZGQk/v7+PProowBkZmby2WefsXjxYofLKzRt2pT/+7//c+g1QtwUZTTNZB9eAdfPQdu1tsvk5FmKqaXEwm+LIPkcmkdlqDMK5VklZ292zmC7eWSpfxQhxF3GXn3bmJMQuc5yED5kCvhWhOd7Qf8J0CknkVBWBqSnw5P/giMHTa/PO9DWG1Cte5r+nKeD7OTubu4HSMdUiHuc1Sy1aVk2SkHceds3A/PmqklPxSWoKqyaZz2g3rgEug6B2asgb5I0MM+ea36BOGma3WXh9pZ+O/o8yIodYV+Rsi95eXlRvXp1atSowcmTJ+natSvVq1e3+AoMDCzyHtMpU6YwYsQIxowZY6573bJlS3r16sUTTzzBU089VawPc/bsWX788UeSk5OL9XohiiR3b/YHNeG3+XBsXQFlcoDjm2B7c0iNg7AIaLMG7puFcvYDNEmCJoSwln9pZQEskhUpBfEx1gPt2qEQsdY0CO9RE1bPNy0Hr1kPtq8wDajnjoRW5eBhD3jifnBxhYETbSYrUrNXQ8XKoGlc/nSLzaRBUqZGCJE7S83DHiR896UpRuWNQ19sNH3vUdP0vNF447VeFUwZy23tzc5JgkbnQfDRcRg5y/TnkbPgk1PQeTDklEu1F6NKUu6KHas97OKe53CCtLyZv1NSUkhLS7M6x9fXt9DrvPHGG0yePJkvv/ySy5cv4+vrS/v27aldu7ajTTKXEYuNjUXTtGKXEROiUHb3ZtsvkwNAwmFwCwBMQV7pDODqLEnQhBCWlIJaobA3GbKyLJdW2pHyVzSsjCKl9UN4BlS0Xd/28clw6bzlDJCLm2lQn7cjq5RpBju3Ixu1Hpq3hR3vmJeB5t2XrWma3SWXslxcCGGWloJ7rXq2bwaC6fHckXB/e5R/EBVy8k2o7GzTzLctX2yCE4dhjqnqgabX35g9zxM37cUoIUqDw1NqSinmzZtHlSpV8PT0xN/f3+qrqIKDgxk7diwzZsxg3LhxxRpo5y0jtmvXrpsqIyZE4QrYm22vTI5mgNarTXsfUfz4+utcv3RJBtpC3MNsls4xGiHuPLwTBTMHmb7Hnbec6bFBlxRPmyDQXU8And56FkjToNMA+Gi1ZQc3PdU0sC6oI/tEc0iIM5Xvmr8B48hZZHv5gXZjVU7u0kqjZOEVQtijaaYl4bZuBubKzjLt7zZms2fuPLYNGkT80aOovmOtV9jkOnEYVaESGRfPw8Mepln0/GW5yjBGyfJy4fDM9uuvv85rr73GCy+8wMyZM5k1axZ6vZ5NmzaRkZHBzJkzi3Sd7Oxs9u3bx7lz52zOjg8dOrRI1ynJMmJCFErTF7o3m6C28Nc7N5IM1RkFHkEYryWhlfehxbPPln67hRC3FavSOfb2Wb+7yJTRt8sQUk4c5dLscfjNWkK5hvdZXzQ7G4zZ1oNnWzPYULQkQzkdWbN8+7KFEKJIXNzsLwnP6/wJNL2BH199lazUVBr2749fzx6o2avQbOzNVrNXg18gKvac3bJcZUlW+AiHB9urV68mKiqKCRMmMHPmTHr37k2zZs2YPXs2PXv25J9//in0GgcPHuTRRx/l7NmzNut2a5pW5MF2SZYRE8ImpUzLmAwGlDEbraC92QmHIXwNhEWaZpjSUuDLzajyfmituhW6HFQIcQ+yt88aLJZWagYDNY7tIe7on7YH22Cqo52/vm1BM9iFJBlSc0wd2au/7sXr+S5SCkcIUTzpqaYl3oWV66ocTFZKiimjuaYR0qkTh7duo36fQRibtUH/0SqLLS2afxB/bd1K/T69S+VjCOEoh5eRnzp1ivvuuw+9Xo+TkxOJiYmmC+l0PPXUU0Uq/TV+/Hi8vLz45ptvuHjxIgkJCRZfV65cKXJ7csuI2eJoGTEhrBiNqLjzaO9EQeRwNE0HdUdZLxXPlXAY3CvB3/+DqBGwdiHZYe3g4a4AMhskhLCmjEVaWulauVrh19I08AsyDZJzl13mncHOvxQzT5Ih9ckpiyRD2Tv+QXV6nNTERJwDguzOGskySSFEoZQiPeas6WagvSXhegPZvUbxx6ZNADi5ueHk7s6RDz9kZfPmRP/3a7KGTYf5G8gaNp3o/37NyubN+fujj9A5OZtW8Qhxm3F4ZrtChQrm2eJq1apx8OBBc73s+Ph4UlIKX8Lx559/smXLFsLDwx19eyslXUZMCDOjEbXzfbTc2SZNg+lvmfZmt14F342y3LutGSDctDdb1amEFrHGqu6sEELkpel0tvdZ53f+hGkJZhE6kwqg82Cym4bfmAVKS0FVqgZzVt+Iabm+2orqNAge7krWkzMwuLmRlZLCH5s2sW/pUur27En4nNl230+WSQohiiLlnyO4tu1i2hqTPw7lrKTR/IPYt3QpAJmpqWSmpOAbEsKhjRv5eORIPh41Cic3NzLzjDfq9uyJMTMDXXpqaX8kIQrl8GC7ZcuW/Prrr3Tt2pVBgwYRGRnJhQsXcHJy4p133qF9+/aFXqNOnTpcvXq1WA3Ob8qUKZw5c4YxY8YwduxYcxsBnnrqqWKXERP3OKVQ8TGWnVKlTAmDWnWHkEFQqQ0cXWW1N1tdSwRPH9NrdHqc3CXruBDCNmU02t5nnV/lYNMSzEI6k0oprsXEsKlXL+6fMIHGw6ZjcHdHZWeTeOoUXp0ex5h3EF45GGPv0eAXyI4hQzi0ebNVR7Zio0bonJz5LsGNupLNVwhRTNlXE011tLsMgfvbm5Kh5cQh1Xcc+Aaw44knuBgdbXqBUhzavJmmI0eyd9EijDkVGvLGJ53BQNi4caSfP8OtnteWVTyiOBwebEdGRnL+/HkAZsyYQWJiIhs3biQ1NZWOHTuybNmyQq/x+uuvM2nSJJo0aUK9evUcb3U+JVlGTAgApYxotpZ15u5v/GEnXL0MHaebEg/l2ZtNyy4oo5GFnp4M//57Aps1K5PPIIS4Q9jaZ52X3gB9x5FWUGcypy63Mho5sGIFsQcPmmeB3CtUYGpcHN/MmkXcn3/y4KRJFoPwi//7Hx917mHu4GbmW6HmExyMMSsL4xMvSM1sIcTN0+nAPwg1ajaakzMqMwMMTiRfusThrVstTt23ZAmhQ4bQY9UqPhk1yjTgzr2MwUDPNWvwDAwk4dudt3ywLat4RHE4PNiuW7cudevWBcDFxYWlS5eyNGe5R0EaN25sMbsXGxtLo0aNCAoKwtvb2+JcTdP4/fffHWpXbhkxIUqCZm9ZZ97as/GxsHYRXDoHFSubE3WkXb2KwdWVFlOnyt1PIe5x12JjObBiBWFjx5qyjtuSs8/a3tJKItaAXyCptjqTSuGXU4/WLzMDTacjOzPT4njK5ct2l2J2efNNarZtS9zhwzabljtrpOn10skUQpQcTSP+0y34vzqG+JzEix7+/vRcvZqPR440D6ovRkfz0fDh9F63juAOHTiwfDkJJ07gExxM2LhxeAYGoul0ZGoGdscgtbTFbcfhwXZxhYWFldhS2u+++86h81u3bl0i7yvubtdiY/n9vfdoMnQonhX9C649e+IwzFmDGhOBpteTlZLCof/bjJufP3W6dkXT6aRjKoSwLvFlj52llfQdB36BoNOZlmDmZTSatrtsWwHnjqNVCUH1HUv7+fNJOn2aQzlJhgpailnUWSPZCiOEKC6jl5/9gXCexIuaTkfokCHUbN/ealCtaRqeQUGEz5mNzskZY2YGmsHJHJtya2nXLYFa2rJcXJSkYg22N23axJYtWzh79qxVjWx7s9JFyVJeVG3atEHTNHPZsLydAKWUVacgf/1tIfJTSlGuYkUefuEFVHY2Cg36jEYrpPbshf/9j1/+8x/KV65scYdVCCEclrO0ktERYDBAVhbo9VYlA/Xlva0TOObQ3l2EmrOaPuvXE3f4sHlpuL1BdVFnjYQQorgcGQhrOp1pUB0Rgc5gwJiVhabXm/v2ubPht7IMoSwXFyXJ4cH2jBkzWLRoEWFhYdSpUwdnZ2eH33TEiBHMnj2bmjVrWh07ffo0UVFRrFmzxu7rf/vtN/OfL126xMiRI2nbti39+vUjICCAixcvsmXLFnbv3s3q1asdbp+4tyijEeJi0LbnmR3q/zRUrIKavQrNVu3Z2abaswEVKtFrzRqr/wyEEKJYNA3+iYZRrWDV91AvX84HV3c86odaJ3DMlZ1ler55O/717GQ+Gj4CKHxQbZ41stPBFULcnextdSnSFphbRNM0LkRHs7ZVK9u5b+yUIRTiduTwYHvNmjXMnTuXWbNmFftN3333XcaNG2dzsB0fH8+6desKHGw3adLE/Od+/foxcOBAXn75ZYtzevTowdSpU3n77bfp2LFjsdsq7m7KaITP37MaUGvvLkIt/xq6PoExrC26D98xL+vM7jUKXUAVAHR6vem7odR2ZAgh7gX5O5N59mY7Z2ejrYwssC63tn0FTcZEkHD8hENLMQvs4Aoh7jr2troUeQvMzcpJ7mhL/mSNQtyJijVCePDBB2/6je3dLT927BgVKlQo8nW++OILtm/fbvNYp06dzLW3hQBM5buUEXT6GzPa+WeuwdRZHdcetfMcyi8Q48hZ6JxdpG62EKL05d2bffEcWuTaotXl1hvsDqoLWoopHVwhxK2mlKJCzg3ECpkZNreB3mqyN1uUBodHC6NGjeKDDz5w+I3efvttQkNDCQ0NRdM0Bg0aZH6c+1WnTh2GDh3q0Ex0uXLl+Prrr20e+/LLLylXrpzDbS2Oy5cvM27cOKpVq4aHhweNGjVi+fLlVufFxMTQt29fPD098fX1ZdSoUSVWc1wUwmiEuPOwIhJmDUbLyjQtHS9odmjzm+j0OlNpHgBNh5O7uwy0xV1PYtptwMXtxt7sHjVh9Xz4bJ1p1rsIdbkxZhP3wx6+C/Eg7vtvLTqyRi8/dp9IwSiZe8U9ROJa2XFyvzGDrYxGrp0/z56589g2aBB75s7j2vnzpkmQUpS7N7u0l8mLe4vDM9vz5s1j0qRJtGzZkvbt29ss2/Xss89avS4oKIiwsDAADh06RN26dfH3t0yU4OzsTP369Rk5cmSR2zNhwgTmzJnDxYsX6d27NxUrVuTSpUvs2LGD9957j6ioKEc/YrE89thjHDlyhAULFlCtWjU+//xzxo8fj16vZ/To0QBkZmbyyCOPAPDBBx+QkpLClClTGDRoEJ9++mmptPOeZTTCzvdvlNVxdYf5G4o2O6TTc/3iJX5bs4amI0ZIUBb3BIlptwG/QOu92UrBrs3Qa2SBdbmNfcagoWEsX4FvT6RQO19iopLM3CvEnULiWulTShEQGsqM5GSMWVkoo5Ho99+3KO8FsHfRInquXk3okCEyoSHuKg4Ptr/55hvWrVvHtWvX+Omnn6yO2xts9+rVi169epkfz5kzx+aebUfNmjULb29vFi1axLp168xZygMDA1myZAnPPPPMTb9HYS5cuMC3337L2rVrefLJJwFo164dv/76K5s2bTIH8K1bt/Lnn3/y119/mWuV+/j48Mgjj/DLL7/wwAMP3PK23pOUgvgYy/q16alFnh1S2dl4BgbSeubMW99WIW4DEtNuA5qGci+H9v6r1gPqjUug6xCYvQrsJHDUKla2ymJeFLKsUtytJK6VPmU0ci0mhgMrVnDl+HFaTJmCR8WKVgNtAGNWFh+PHEnN9u3xDAoqoxYLUfIcvnU0YcIEmjdvzh9//EF6ejpGo9HiqyhlttauXVsiA+1cTz/9NGfOnOHUqVP8+OOPnDp1irNnz5bKQBtMd0EBvLy8LJ738vIylycD2LlzJ6GhoebgDdCxY0d8fX35/PPPS6Wt9wqlFMacf4vKaIRt+ZaL550d0tu556Q3oPqOM5XjEeIeIjGtbCXHxYGrO5reYHv1zbFoiBgKnQfBR8dh5CzTn0fOInvHP9DFtAe7OPsfZVmluFtJXCtZeZeF52dwczPPYC+tWZPv5s/n0KZN+NWrx4EVK6wG2rmMWVkcWL681JeTC3ErOTyzffbsWZYtW0bDhg1vRXuK5O2332bEiBG4uLiYn9PpdFSrVo1q1arZfM0ff/xBXFwc7dq1K/H2VK1alU6dOrFgwQLq1q1L1apV2blzJ7t27WLDhg3m844cOUK9evUsXqtpGvXq1ePIkSMl3q57Vd47qUnnztF7rZ1kQoXNDs0xlfeS0jfiXiMxrWylxMfjAWDMtr/65otNcOIwzFmDGhOJptdLAkchCiBxrWRYLQvPl9jMyd0dD39/rsXEWMxgO7m54eTuzpXjBW/fSzhxwlTpxU7fy+jlx+4YqJ8v30RBq3JkxY4oSw4Pth9++GH+/vvvMi2n9e677xIVFcXjjz/OY489xv3334+Tk5PVeTExMezcuZONGzeyb98+3n333VvWpu3btzNgwADzTQi9Xs+yZcvo27ev+ZyEhASrPe5gWp505coVu9dOT08nPT3d/FiSdNyQvw6k1V4gnY5eq1ah2eqw5s4ORa2H+9vB9pXm8l6q7zjTQFs6rOIeJTGtjKWlmIon9B6Nzt7e7BOHURUCbnRKNc2UwFFuEAph062Ka/dKTMu/LNw3JMTU/woKAk27MQjPzmZPZKTFDHZmaiqZKSn4hhS8fc8nONi0MjHPaoO87OWbyF2VY0tBx4S41RwebC9YsIBhw4bh7OxMhw4dbAYkX1/fkmibXfv27WPHjh0sXbqUN954AycnJ+rUqYO/vz8uLi4kJiZy8uRJLl26hK+vL8OGDeP999+nUqVKN/3eSimLpfKapqHT6Rg+fDjHjh3jgw8+IDAwkC+//JLJkyfj4+PDwIEDb+o9Fy5cWGqJ3u4012Nj+XHxYur27Em5SpWs76S6uqLpdBh7j7LdYf1iE5w+ilq5B3Jmh1R2Nuh00mEV9wSJabcppUi/GINLpSqo2ausSxTm7M3GL4j02HO4Dqhvs4yXPTLTI+5mpR3X7oSYln9ywlH2EpslnDxJ73XruJ5vRaHVDLZSHNq8maYjR7J30SKbS8l1BgNh48bJRIe4qzg82L7//vsBGDdunN3BSFH2bd+sPn360KdPH06dOsVXX33F/v37iY2NJS0tjerVq9OpUydatmxJmzZtbM56F9eePXto27at+XF4eDhTpkxhy5YtREdH07hxYwDatGnDpUuXeP75580B3MfHh6SkJKtrJiQkULVqVbvvOX36dJ577jnz46tXrxZ4/r3CVobL/HuBMlNTyUxLw+Bf2X6HdeAkcHZFARqg6fWl/lmEKCsS08pOQXsecXUn5a9oXCpVhi5DyG7WBv1Hq8yrb7J7jUIXUAWAlCN/4Jpmuza2vUG1zPSIu1lpx7U7IaZdj41lT1QUdXv2dHiwrZSymswACAgNpdfatUS//z6fjBplOqZpdPvPf2zOYO9bsoTQIUPosWrVjfNz6AwGeq5Zg2egbN8TdxeHB9tr1qwpsV8CpRRHjx7lypUr+Pr6UqdOHYevXaNGDUaNGsWoUaNKpE2FCQsL49dffzU/9vT05KOPPkKv19OoUSOLc5s2bcqqVatISUnB3d2devXq8ccff1ico5QqdFm+i4uLxf50Yb2Uya9ePcLnzLF9J3XTJup0747bI4Mw2uiwav5BpF29ipuPT9l8GCHKkMS00lfQnkelFBW694c+g/HOzDQvEc/28kMbOQuds4vV3uzsq4l230sG1eJeVNpx7W6PabYmMwAenDyZa+fPWw6cC5jBvhgdzYdDh9J7/XqCO3TgwPLlJJw4gU9wMGHjxpkG2jKrLe4yDg+2c8sl3Ky33nqLuXPnEhcXZ36uYsWKzJkzh/Hjx5fIe9wKnp6eNG/e3OK56tWrk52dTXR0NE2aNDE/f+DAASpWrIh7zuxFly5deP/99zl27Bi1a9cG4Ouvv+by5ct07dq19D7EHc7mUiZNo8WUKQXeST26cydpVy7TaNh0DO7uZKWkcOj/NuPm50+drl3lTqq4J0lMK10F7nkEu8ec3N1RWaZsyrI3W4iCSVwrOZpOh06vt57M0DQaDRjA3oULrQbhBc1gH966lUaDB1Ona1fCIyLQGQwYs7LQ9HqJaeKu5PBguySsXLmSp59+mscff5wBAwYQEBDAxYsX2bx5M08//TROTk6lNlNdErp27Uq1atXo168fERERBAYGsmvXLnMit1z9+vVjwYIF9O3blwULFpCSksKUKVPo1q2b1G0sIntLmYp6JzX50iW+X7SIq+fOUb5yZbmTKoQNEtPsK+6+x7ylcPLHr2Off86oX37hjw0brI7tXbSInqtXEzpkCInffYlvRH+H9mYLIUwkrhWPMhoxZmdbTWYUlF08b7+rZtu2HHznHZsz2Bf+9z/WtmrF8O+/J7BZs9L6SEKUqiINtkNDQ/nggw9o1KgRjRs3LvDOk6Zp/P777wVe7/XXX2fixIksWbLE4vmePXvi7+/PK6+8ckcNtj09Pfn666+ZOXMm//73v0lMTKRmzZq89tprPP300+bznJyc+O9//8vEiRN5/PHHMRgMPProo7z++utl2Po7i72lTODgnVS9HmN2NpokQhPCisQ0++zteyxsEG6rFE6u+59+mqtnz9o8ZszK4uORI6nZvj1uIXXBxt5se6VwhBA3SFwrPk2nI2zsWIvJjMKyix/atIm4w4fpuWYN4ZGRpn6XjRnszBTb+SaEuFsUabAdFhaGh4eH+c83Ozg5efIk3bt3t3msW7duLF++/KauXxZq1arF5s2bCz2vcuXKbNu2rRRadPdQSqGMRnR6ve2lTDly76T2ee+9AvcC5f7r1UkiNCHskpjmmAKTD2kart7e7ImKsr5RWMBSzFzGrCwOLF9O+JzZto/bKYUjhLB0t8e1m804bo+maXgGBdFz9eobNwWLkF087vBhylWqRFpCAkuqV5cZbHFPKtJge+3ateY/l0St6sDAQH766Sc6dOhgdeznn38mUEqRiBwW+xtPnKDXmjUF1mg8tGkTVR9+mObjx9+4kyoz2EKIMuTk5obOYLB5o7CgpZh5JZw4gc7JGVzcblUzhRB3uJvJOF4YTacjdMgQarZvb57MyExJwataNctBeI682cXj//5bZrDFPcvhPdsjRoxg9uzZ1KxZ0+rY6dOniYqKYs2aNQVeY+TIkcydO5f09HT69etHQEAAly5dYsuWLSxevJg5c+Y42ixxF7K1vzG4Q4dCazTW690bLSdLL8gMthCibGWmpmLMyrJ5o7CwpZi5fIKDMWZmoEtPvVXNFEKIAmk6HZ5BQRaJzdA0q0F4/hWFWakSt8S9y+GsUO+++65FBvG84uPjWbduXaHXmDlzJs888wyLFy8mLCyMKlWq0KxZMxYvXswzzzzDjBkzHG2WuMvYS4S2b8kSPCtXpseqVegMlveKpEajEOK2pBRpiYmEjR1rFbfyLsW0OpZDZzAQNm4c6efPlEJjhRDCPk3TuBgdzQIPDy5GR5snN3IH4Y9u2EB4RASeQUGSfFYIijHYBuwOZI4dO0aFChWK9PpXX32VmJgYPvnkE9avX8+nn35KTEwMr7zyigyUhN1EaLn7shsPGsTEEydoPWsWjQcNovWsWUw6dYrQwYMluAshbitO7u4kx8WZ9zzmH1T/+uablK9a1eaxvDcRU4//bfP65QIDCY+IoJxswRJClJL8y8JtDcKFEEVcRv7222/z9ttvA6ZfpkGDBuHmZrlvLC0tjVOnTvHYY48Ver3169fTrVs3KlSoYFWz8MqVK3z66acMHTq0qJ9B3IUKSoSWm+Gy89KlBWa4FEKIsqSUIiA0lBnJyYUut9SKsBQzUzPYzDruGRhIm8jIsvmQQgiRx63emy03F8WdpkiD7aCgIMLCwgA4dOgQdevWxd/fMuups7Mz9evXZ+TIkYVeb/jw4fz00082Z8FPnjzJ8OHDZbB9D8qbddxWTce8LkZHc/Lrr6n28MN89+KLNB0xosSTgQgh7m63KnMv5EvuePw4viEhpvcJCrLa85j3RmFBxyTruBCiNDm5u5d1E6zIzUVxpynSYLtXr1706tXL/Hj27NkEBwcX+02VUnaPJSQk4OnpWexriztT/o5piylTrGo65pW7h1HT62k9c2YZtFgIcae7FZl7DW5uNpM7AuxdtIieq1cTOmQIl48d453mza1K4WiaxoXoaNa2aiVlcoQQZSL/qhyllKwcFKKYHM5GnrcMWK6UlBRiYmIICQmx+8u4c+dOdu7caX786quvEhAQYHFOWloa33zzDffdd5+jzRJ3MFsd07g//2T0/v30WLWKT0aNsltOQoK/EOJ24uHvbzO5I5jqZX88ciQ127fHw9+/wOWWto7J8kkhxK1W0KocyYkjhOMcHmy/8sorJCcnExERAcD3339Pz549uXr1KjVr1uSLL74gxMby36NHj/LJJ58Apjv333//PS4uLhbnODs706hRIxYsWFCczyLuQPayjucmQuu9fj3BHTrY3cMohBC3DU3D1dubPVFRNlfkgGnAfWD5csJz/g91hCyfFELcKkVdlVNafS+5uSjuFg4PtletWsXUqVPNj5977jkaNmzItGnTmD9/PjNmzGDz5s1Wr5s0aRKTJk0CoGbNmnz44Yc0adLkJpou7gb2so7DjURoPdeskURoQojbnpObGzqDwW5yx1wJJ06gMxgw5Es0KoQQZaWoq3I8g4JKpT1yc1HcLRy+PXX27Flq1aoFwPnz5zlw4AALFy6ke/fuTJs2je+++67Qa5w8eVIG2vcwpZQ5kBeUdRxMM9w/v/YaOr3edL7BIANtIcTtSdMwZmUVmNwRwCc4GGNWFlmpqaXUMCGEKEDOqhx7kx9wY1WOMhpLuXFC3NkcHmy7ublx9epVAL7++mvKlStHixYtAPD29iYpKalkWyjuKspo5Nr58+yJimLb4MFkpacXrWOanV1KLRRCiILlz9BrTiZ0/TrodISNHWtVLztXbnLHtMREu9eX5ZNCiNLk0KocvR5k0kOIInN4GfkDDzzAokWL0Ol0LF68mC5duqDPmXU8fvw4lStXLvFGiruDrb1AwR060HTkyMKzjsv+bCFEGbOVoZecvBO5yYSqtmzJ/ePH03P1aqvlmHmTO8b//bfd95Hlk0KI0pSZmlr0VTnZ2VBAVSEhhKViJUjr3r07PXr0oHr16rz44ovmY5s3bzbPcguRl71EaPuWLCF0yBDJOi6EuK3lz9CbO6jOfwPx0MaNnPvpJ3qvW0fN9u3tJneUJeRCiOK6FhvLgRUrTFnCS2IFjFKkJSYWreSqTH4I4RCHB9sNGjTgxIkTXL58mQoVKlgce/XVV6lUqVKJNU7cPewlQsubdbxmu3YcXLlSso4LIW4rNlfldOxI0pkzNpMJ/bFhA/F//cWT331HeEQEOoNBkjsKIUrM9dhY9kRFUbdnz5IZbAPJcXH41a1b6KociWFCOMbhwXauChUqoJQiNjaWihUrYjAYaNy4cUm2TdxFCkqElpt1vPPSpTeyjmdno+l0EtSFEGXK5qocTaPRgAHsXbjQbjKh2IMH+WHRIsIjIljg4cHw778nsFmzUmy5EEIUjZO7O1mpqWg6HaFDhhS4KkcI4Zhi/dZ88cUX/Otf/8LV1ZVq1aoRHR0NwJgxY9iwYUORrvHnn38ycOBAQkJCcHFx4eDBgwDMnDmTnTt3FqdZ4jailDInNTNmZ2PMzi5wL9DF6GhOfv21+bFOZoCEELcBW6tynNzccHJ3L3KJLyX7G4UQt6G8eSgCQkNRSqHpdHgGBREeEcGjGzYQHhGBZ1CQDLSFKCaHf3M2btxI165dqVmzJm+99RbGPCUAQkJCWLt2baHX+PLLL2natCmnT59m8ODBZGZmmo85OTnx1ltvOdoscRsxZxyPjGTboEHsiYwkKy2tSBl6JZgLIcratdhYvnvxRa5duGBzVU5maiqZKSlS4ksIcceyqA4zaBB7oqK4dv48ymhE0zQuRkezwMODi9HRMvkhxE1weGQzb948Jk+ezMaNG3nyySctjjVs2JBDhw4Veo3p06czcOBAfvrpJ+bMmWNxrGnTpvz222+ONkuUkfwz2Ll7G5fWrMl38+dzaONGvps/n3dbt6ZcYCA9V6+2GnDLXiAhxO1CKYWHvz+tZ87Ew8/P9qocpTi0eTNNR468qRJfQghRmpzc3TG4udntqy2tWZPo999HGY0Y3NzITEkp6yYLccdzeLB94sQJunbtavOYh4dHkepsHzp0iCeeeALAanDl7e1NfHy8o80SZSD/DPbF33+3mXEcTPsXPxw2jNAhQ5h06hStZ82i8aBBtJ41i0mnThE6eLDMagshypStmR57q3L2LVmCZ+XK9Fi1qsAbiMlxcaX5EYQQwkre5eIV6ta121czZmXx8ciRXIuNxcPfv4xaK8TdxeEEaZUqVeLIkSO0b9/e6lh0dDTVq1cv9Bq+vr7ExMTYPHb06FECSyizorh1rLLzaho9V60qMGHQHxs2UOWhh2g+frxk6BVC3DbyzvTk74Ae+/xzRv3yi1WG3ovR0Xw0fDi9160juEMHKfElhLgtWZQtPHGCXmvW2KwOk8uYlcWB5csJj4go5ZYKcXdyeCpx0KBBREZG8nWeZFaapnHo0CFefvllhgwZUug1evfuTUREBH///bfFNS5cuMArr7xC3759HW3WLfPWW2/RvXt3/P390TSNrVu32j33s88+o0WLFnh4eODj40Pbtm05d+6cxTk//vgjDz30EG5ublSvXp2XXnrpjkueYys7b1ETBp378Ud0Op15JkhnMMhAW4hSJDHNkpO7Ox7+/sValdPhpZfQNE2SCQlRxiSu2ZZ/ufjfH36IwcWlyMkdDW5ut7R95QIDCY+IoJxMsom7mMO9gcjISFq0aEHHjh3NNbW7dOlCk/9v787Doqr+P4C/LzAzwIDAsCOKS4ImQgqJkIkLmlum4gblbmqRS7m3gWlqP80s06JvuKaimPu+gWZgqWXuW4lhooICiso28/n9YdwYZ4AZYIYBP6/n4am5c+6559yR93C3c/z9ERgYiOnTp5dbx9y5c+Hs7Aw/Pz8EBQUBAEaMGAEfHx/Y2dkhJiZG32YZzKpVq5CZmVnqrfPFfvjhB/Tt2xft27fHjh07sHLlSgQGBiIvL08sc/XqVbzyyitwd3fHjh07MHHiRHz88cf4/PPPDd2NKqVtdF69Bgz69xlvxpjxcaY9UfK2SksHhzKv9JxZswbHv/lG/MPw6YNqHkyIserFuaZJ24URUxvc0dbdHe1jYqpsrnDGKuNBejqSYmLwID29SuvV+zZyqVSKrVu3IjExEfv370dmZiYUCgXCwsIQFhamUx12dnZITk7GDz/8gP3790OhUEChUCAqKgpDhgyBVCrVuyOGkvzvldjU1FSsWrVKa5l79+4hKioKixYtwltvvSUu79Wrl1q5+fPnw9HREfHx8ZBKpejUqRMyMjLw6aefYty4cZDJZAbtS1XROmd2iQGDjs6bp/WPVh5xnLHqx5mmfltlzo0b6L18uU535bSOikL6H39gedu2WufN5sGEGKsenGuatF0Y0edvNR7ckT1rctPTcXjmTPj06lWlJ4AqfNTToUMHzJkzB9999x3mzZun84F2MYlEguHDh2Pt2rXYt28f4uPjMWrUKJM60AYAMx0ODDds2AClUomRI0eWWW737t3o3bu3Wh8HDRqE7OxspKSkVLqthvT0qOPazorqOmAQX/VhrPo865n29G2Vf6xcqd9dOUR8UM2YiXnWc60kibU1BDMz7RdGUDWDO+p7+zffLs6eZdVyifGll17C0qVLkVFLRmk9duwYmjZtipUrV8LLywsWFhZ44YUXsHv3brHMw4cPkZaWhqZNm6qt27RpUwiCgIsXLxq72TrTNuq4ttF5b58+jS1DhqBFZCSPOM5YDVabMo2IxKs3qn+vaKs9m63HNF6cX4zVXDUx1/S5rbXkozEuvr6lXhgp+bfa+L/+KvVvtbJuIdf39m++XZw9y6rlLwd3d3dMnjwZdevWxSuvvIJVq1bhwYMH1dGUKnHr1i1cunQJH330EWbNmoXdu3ejQYMG6NWrF86dOwcAyP73dhx7e3u1daVSKaytrXHv3r1S68/Pz8f9+/fVfoxF21yMW4cPh9zVVetZ0fMbN+Lq3r2wdXdHaEzMk2cbY2J4wCDGapDakmlqU3m9/jpUhYVan82ujrty+EoPq8kM9WyjIRky1wyVacW3teaWs5/1mbYQAM7GxyOuTRtYKRQ8uCNjBqb3M9tVYePGjcjNzcWmTZuwfv16jBo1CmPHjkW3bt0QGRmJnj17Gv2ZGCKCssTAXYIgwNzcXKd1VSoVcnNzsWbNGvHZn/bt28Pb2xufffZZqc8P6Wru3LmYOXNmpeqoCG2DawD/nRXtvWpVmVPeFP9ZaqbjfmSMVZ1nPdOenspLYm0NizVrtN5WWTLTGnbogN/+9z+tmVaViq/0MFYTGerZxvKYaq5V199pFZm2EHhyEjFo4kRIrKyQeekS/hcYqHUcCsZY5VXb6SsbGxsMGTIEO3fuRHp6Or744gvcu3cPgwYNgqurq9Hbc/jwYUgkEvFH2zzipXFwcAAAdOzYUVwmkUjQrl078Wxp8VnSnJwctXULCgrw6NEjKBSKUuufMWMGcnJyxJ+0tDSd21YZWgfX+NfZ+Hj8LzAQubdu8RVsxkzQs5xpFRmFtzjTHmZk/JdpfKWHMZNiqrlWXX+nVXTawqdvF+dxKBgznGq5sv00R0dHvPTSS7h+/TouXbqE27dvG70NAQEBOH78uPja1tZW53WbN29e6nvF00nI5XLUq1dP43mfS5cugYg0ng8qSSaTVcvol6UNrlHs9unTOLZwIfquWSOWZ4yZhmc50yo6Cm/G+fOwcXNDXlYWFnl58ZUexkyMqeZatfydJgiwtLfH4Zkzy5y20DM4GIFvvYXQ6GiYWVhAVVQEwdzcIIPV8uMxzFAepKfjZGwsAsaMqXHP/lfodL1SqURycjI2bNiAVatWafzo6s8//8Snn36KFi1awN/fHytWrMCAAQOQnJxckWZViq2tLQIDA8UfHx8fndft2bMnAODAgQPisoKCAhw+fBgBAQHism7dumHr1q0oLCwUl61fvx729vYICQmpgl5UrdIG1yiJ581mzDQ9y5lW2VF4iQghU6bwH4yMmZhnOdeeJrGygpmFhU7TFpqZmeH2mTOYI5fj9unTBpsVhgdCY4ai6/gFxUxpXAm9r2z/9ttv6Nu3L9LS0kBEGu8LgoAhQ4aUWcfChQsRHx+PkydPws7ODuHh4fjyyy/Rvn17naZvMKYTJ04gNTVVHDn92LFjAABnZ2eEhoYCAFq1aoXw8HCMHj0a9+7dg7u7O5YsWYLbt29jypQpYl1TpkzBmjVrEBERgbfffhtnzpzB/Pnz8emnn5rclGcAIJiZIWDMGJ43m7FapDZn2oP0dJz87ju0++CDMkfh7b1qFRp27IjfvvtO67PZcmdnfp6asRqkNudaqQQBqqIinraQMS2qa1wJrUhPrVu3Jj8/P0pKSqI7d+5Qdna2xk955HI5RURE0LZt26igoEDfJhjV0KFDCYDGT2hoqFq53NxcGjduHDk7O5NMJqOQkBA6evSoRn0///wzBQUFkUwmI09PT5o7dy6pVCq92pSTk0MAKCcnpzJd04lKqaRTK1fSJxYWFAOIP59YWNCpVatIpVQavA2MsapTmzPt5smTFAPQw4wMyklL08it4p/YVq0oPzeXlIWFRESkLCzUuc3F27h58mSlljNWE9y/eZMSo6Pp/s2bastN7d+1qeVaVWdayf2sUqn+yy6lssys+8TCgnJu3CCVSsXZxWo0ff89VuTf782TJ+lTa+sq/zev95Xtc+fOISEhQTxTWBF37tyBtbV1hdc3phUrVmDFihXllpPL5fjqq6/w1VdflVkuJCREPONaEwhmZvB74w007NSp1FHHGWM1R23PNIm1NR5mZMDJx4dH4WWskkzq6lAZanuuFSOVCg9u3sTJ2Fjc+/NP1HvpJbz41lulZp0hpi1krDaiEvPUq4qKQERV9nuj98G2t7d3pecPrCkH2uwJwcwMth4eCI2JgZm5OVRK5ZOpvTi8GWMm4ukvSghCuScKq3IUXh4YiDFmKKVN8XV23TrcSElB75Ur+aIIYxX09EksRePGTwZiq6LZSPQ+2P7iiy8wYcIE+Pv7lzna7NPq1KmDxMREBAQEwNbWtswDNUEQNKZdYNVLEAQI/442zqOOM8ZMSVlflLYeHkYZhZfnzWaMGUpZU3ydWbMGmRcuYNiRI0bJOsZqk9LmqT86bx56xcXB7403Kn3ArffB9jvvvINbt27B19cXHh4e4pyExQRBwB9//KGx3qRJk+D+7xn/SZMmcQAwxhirNF2+KB9nZeHkd9+h5YgRRr8Vlq94M8YqRYcpvtJ/+w0/z5uH0OhozJHL+dEYxnRARKWexFIVFWHbyJFo2KnTkyvclThu1ftgOyAgoEIbjI6OFv8/hs/+M8YYqyR9vijbffBBtbSRr3gzxipD1ym+sv76C2YWFlpnCmKMaSKVCidjY0s9iaUqKsLJb79FaEyMeHdvReh9sK3LABTl6dixI5YuXar1NvTLly9j7NixOHToUKW3wxhjrPYy1hdlSXylmrEnJDz+jlEUPn6s+xRfRUUoevy4SrbLWcdqOzNzc91OYlXy74dqGTUhKSmp1EHW7t+/jyNHjhi5RYwxxmoaY31RllR8pdqUR2ZmzJBKDkbo6ufHV1INjQh52dkIGDMGZhbar5GZWVggYOxY5GVnV9lmOetYbadSKnWfp74S9L6yDQDZ2dnYuHEjLl++jLy8PI33y5tSAUCpt6InJyfDxcWlIs1ijDH2DNHni5IHdmSsYkpewTb0qL1Mu/KmMyye4ivz0qVqbCVjNYtgZoaAMWNwdN48rXfIFZ/EMvoAaVeuXEFISAjy8/Px8OFDODs74969eygqKoKDgwPs7Oy0HmzPnTsXc+fOBfDkQLtDhw4we6rx+fn5KCoqwttvv13B7jDGWNV4kJ6O35ctq5ZBtZhujPVFyVhNR0QgpVKvkao15p01wqi9TLuix48hmJnpNJ0hY0w3giDA1sPD4PPU632w/d577yEoKAgJCQmQy+XYtWsX/P39sX79erz//vtISEjQul5ISAgmTZoEIsInn3yCiIgIeHp6qpWRSqVo1qwZXn311Yr1hjHGqgARQe7sjHYffPDkj0winkHBBBnri5KxmkyXq9EP0tNxMjb2yXJ3d411QiZPhtzFxeCj9rKyCWZmRpvOkLFngS4nsSpL74PtX3/9FXFxcZDJZACAgoICmJubIzIyEpmZmRg/fjx+/vlnjfVCQ0MRGhoK4MkfSG+++SY8PDwq2XzGGKtafJtkzWKML0rGapLiA+cXo6Jg7eio09Xo3PR0HJ45E80HDoSNq6v6OoKAXt9/j6Nz5xp1MEKmnSAIuHX6NJa//DJP8cVYFTD0SSy9/wrJz89HnTp1YGZmBoVCgZs3b4rv+fr64tSpU+XWER0dzQfajDGTU3yb5JcNG+LI7Nk4u24djsyejS8bNsTpH34AqVTV3USmRckvyr5r1iA0OppPjrBnVvGBsyAI5U6N9yA9XRzgTGJtDbmzs8Y6EisrSKytjT4YIStb4aNH1d0ExirkQXo6kmJi8CA9Xa/19J0BQZ/ygiDg9unTmCOX4/bp01V6t4jeV7a9vb1x/fp1AEDLli2xdOlSdO7cGRYWFoiNjdX5IPrq1atYsWJFqYOsbdu2Td+mMcZYhekzZzPfsmd6+GoPYyUIAizt7XF45swyr0Zf3LIFgW+99d+z2UolDsfEqK1T+PgxCh894sEIGWNVoviEoE+vXjqNiaMxfkQ5j/bpW74kQ5zE0vtge9CgQTh16hQGDx6MWbNm4ZVXXoGDgwMEQQARYeXKleXWcfz4cYSGhsLLywuXL1+Gn58fcnJykJqaCk9PTzz33HMV6gxjjOmreCC0ttOmGX3OZla1bNzdETJlCs8Ly5551o6OMLOwKPNqtO+gQQgcMwa5/z42k3PjBnovX665DhHOrl+PliNH8mCEjDGj0vfRPlN8FLBCA6QVa9OmDc6ePYvdu3cjLy8PHTt2hK+vb7l1TJ06FQMGDEBcXBwkEgni4uLQqlUrJCcnIyIiAtOmTdO3WYwxpreSA6EB4Nska7jieWEZe1YVX9GZkpFR5tR4rn5+6L1qFU6vWYPto0aJz2b3WLJE6zq/LFoEvzfewKvff/9f+X/xYISMMUPQdwYEU50xodJbrFevHkaPHo3x48frdKANAH/88QciIiLEqb+KbyMPCQlBTEwMpk+fXtlmMcZYmUilwoN//sHhmTPx4+uvoyg/X+fbJBljzNSoZVpkJG7/8QcCxoyBmYXmdZWgiRPx4J9/1A+cS1zBfnqd26dPY8uQIWgRGYkJqalo9+GHaBEZiXYffogJqanwe/11vqptIPo+p8pYbaDLo30lx5zQt7wxVSgZCwsL8e2332LkyJHo0qULrly5AgBYv349Lly4UO76giBAKpVCEAS4uLiIz4ADgKenJy5fvlyRZjHGmFZEJB4kq5RKzYHQ1q7FmbVrtf6RWYxvk6x9bNzdERodzbedsxpP2+COW4cPh9zVFa9+/716rgkCfAcOxO9xcRp/lP6yaBFs69bVXAfA+Y0bcXXvXtj++3vDgxEaVsnnTl39/KrlIIExQynvJBKpVDo92lc8cK2+5Y1J79vI//rrL4SFhSEzMxMtW7bE0aNH8eDBAwDAkSNHsGfPHixfvrzMOp5//nn8+eef6NChA4KDg/H555+jRYsWkEgkmDdvHhqXc3WJMcZ0pet8sXyb5LOHbztntUFpV3SKr0b3XrUKjcLCxKnxHH18Sh1dvOQ6DTt0wG//+5/W6fRunTrFgxEakCk+d8pYVdB18DIzc3O9Hu3Tt7wx6X2wPX78eDg7O+PXX3+Fvb09pFKp+F5oaChmzJhRbh2jR48Wr2bPmTMHXbp0gb+/PwBALpdj48aN+jaLMcY0aDy/U8Z8sWp/ZHbsiN+++47nbGaMmbyyruicjY9Hxvnz6LVsGUJjYmBmbg5VUVGZz3OXts7T887y1FOGoctzpxZWVtXYQsYqRp+TSGVlVLGSMyDoW96Y9D7YTkpKwrp16+Dk5ATlU88uurm5IV2HOdMGDx4s/n+zZs1w4cIFpKSk4PHjx2jTpg1cXFz0bRZjjKnRdrWnvPlii//I7Prll2X+kckYY6aivCs6t0+fxrGFC9F3zZon5S0sQEQIGDOm1NHFM86fh42bG/KysrDIy4uvYBuJrlNQyp2dq6mFjFWMvoOXCWZmZWbU04/26VvemPTeosW/Ia3N7du3YWNjo3cjbGxs0LlzZ/Tq1YsPtBljVULb1R5d5ou9ffo0rh08CBDhyKef4mFGBh9oM8ZMlj5XdIoJggBbDw/0iovTeDa75GMzDzMy+Aq2Een63Kmlvb1xG8ZYJVRk8DJdM6r47zN9yxuT3le2Q0ND8fnnn6Nbt27iaOLFc2x/99136NSpk9b1Nm3apNd2+vbtq2/TGGNMpPVqjz7zxZqbi1OCMcaYqaroFR3BzAx+b7yBhp06ic9zP/3YTNHjx8bqBoMez51aWPCt5KzG0PUkUmhMDIQSt3jrklEl6VveWPQ+2P7ss88QEhKC559/Hr169YIgCFiyZAnOnj2LK1eu4Ndff9W6Xr9+/XTehiAIGreos/8Un/m5f/9+NbeEMdOlUioh8/RE3lPLkz7/HA169UKHxYux+5131K72mJmbo/uSJSC5XBz4sbrY2to+M1fUOdMYqxyysUHHr7/GrqgovTONbGzQ8t13YWZh8WTAInNzPMjNBQA8yM1F3r//lZf4/SxteXmelVyraKaV9r1VkrRuXWTfu4fcx4/1+lxUNjYInD4dKhsbtXZV9LNkTB83Ll4s89/1P5cuIffhQ63vlZVRVVG+WGm/I2XRJdMEqsBcAteuXUNMTAz279+PzMxMKBQKhIWFYebMmaWOJF5yei9deHl56dusZ8aNGzdQr1696m4GY8yAcnJyUKdOnepuhlFwpjH2bHhWco0zjbFngy6ZVqGDbVa9VCoVbt68aZAzxPfv30e9evWQlpZW478Qa0tfuB+mxVj9eFauAAGGzTSA/+2ZmtrSD6D29IVzrWpxpummtvQDqD194X7oR5ffcb1vI69Ke/bswfHjx5GWloYPP/wQ9evXx5EjR/Dcc8/Bw8OjOptm0szMzODp6WnQbdSpU6dG/5KVVFv6wv0wLbWlH6bAGJkG1J7PjPthempLX2pLP6obZ5p+aks/gNrTF+5H1dHpYHvEiBE6VygIAuLi4sosk5GRgd69e+PYsWPiWYexY8eifv36WLZsGeRyOZYsWaLzNhljjDHGGGOMMVOi08H2ihUrYGtri8aNG5c67VcxXW6XmThxIjIyMnD27Fk0adIEUqlUfC8sLAyzZ8/WpVmMMcYYY4wxxphJ0ulgOzg4GMeOHYNSqURkZCQGDRpUqQHMdu7cif/9739o1qyZxqjj9erVw40bNypcN6scmUyG6OhoyGSy6m5KpdWWvnA/TEtt6cezpLZ8ZtwP01Nb+lJb+vGsqC2fV23pB1B7+sL9qHo6D5D2999/Iz4+HmvXrsWZM2cQHByMyMhIDBgwAE5OTnpt1MbGBhs2bED37t2hVCohkUhw4sQJtGrVClu2bMGIESNw7969CnWIMcYYY4wxxhirbjrP7l2/fn1MnToVp06dwpkzZ9ChQwcsWrQIHh4e6NatG3bv3q3zRoOCgrBs2TKt78XHx+Oll17SuS7GGGOMMcYYY8zUVGrqr7y8PHz88cdYuHAhevXqhU2bNum0XkpKCjp06IDWrVujX79+ePfdd/HBBx/gwoUL2LlzJ44ePYpWrVpVtFmMMcYYY4wxxli10vtgW6lUYt++fYiPj8fWrVthYWGB8PBwjBo1Ci+++KLO9aSkpGD69OlITk6GUqmEIAgIDg7G/PnzERwcrHdHGGOMMcYYY4wxU6HzbeRHjhzBW2+9BVdXVwwYMABKpRJr1qzBrVu3EBsbq/OBdkFBATZt2gRXV1ccPnwY9+/fx40bN/DgwQMcPXqUD7QNaOnSpejZsyecnZ0hCAI2btxYatmdO3ciJCQEcrkcDg4O6NChg8bAdcnJyQgODoaVlRW8vLzw2WeflTtavaHcvXtXnD5OLpfD19cX3377rUa5mzdvIjw8HLa2tlAoFBg1ahTu379fDS0u38WLF9G5c2fI5XK4ublh6tSpKCgoqO5mlWvbtm0ICgqCra0t3N3dMWDAAPz1118a5eLi4uDt7Q1LS0v4+/tjx44d1dDaJ65evYqxY8fihRdegIWFBXx9fbWWy87Oxvjx4+Hh4QFLS0s0btwYn3/+uVqZgoICTJkyBW5ubpDL5ejcuTMuXbpkjG48czjTONOMgTONM82YONc41wyNM83ImUY68PT0JEtLS+rTpw9t2LCBHj9+rMtqpZLJZJSYmFipOpj+goKCKCgoiIYMGUIAKCEhQWu51atXk1QqpRkzZtChQ4do69atNHnyZLpy5YpY5sqVK2RjY0N9+vShAwcO0MKFC0kqldL8+fON1R01HTp0IHd3d1q+fDkdPHiQJk2aRADou+++E8sUFBSQr68v+fr60rZt2yg+Pp48PT2pR48e1dLmsty7d4/c3d2pXbt2tGfPHoqLiyM7OzuKioqq7qaVKTExkczMzGjYsGG0f/9+io+PJ29vb2rcuDE9evRILLdu3ToSBIE+/PBDOnToEI0ZM4YsLCwoJSWlWtq9ZcsW8vT0pPDwcGrRogU1b95co0xubi75+/tTQEAAxcfHU2JiIsXGxmr8mx8zZgzZ2dlRXFwc7dmzh15++WWqW7cuZWdnG6s7zwzONM40Q+NM40wzNs41zjVD4kwzfqbpdLAtCAJJpVKysbEhW1vbMn/q1KlTbn3+/v60cuXKSjee6UepVBIR0bVr10oN8Lt371KdOnVo6dKlZdY1evRo8vLyovz8fHHZjBkzyN7envLy8qq24eVIT08nALR8+XK15e3ataOOHTuKr9euXUuCINDFixfFZXv37iUA9MsvvxiruTqZM2cOyeVyunv3rrgsNjaWzM3N6Z9//qnGlpVtzJgx1LBhQ1KpVOKyQ4cOEQA6cuSIuMzb25siIiLU1g0ODqZu3boZra0lFf9uEBENHTpUa4h/+OGH1KhRI8rNzS21nrS0NDI3N6fY2Fhx2d27d0kul9Nnn31WtY1mnGmcaQbHmcaZZmyca5xrhsSZZvxM0+k28ujoaLz//vuYPHkyJk2aVObPe++9V259c+fOxezZs3HixAk9r8OzyjAzK//j3rBhA5RKJUaOHFlmud27d6N3796QSqXiskGDBiE7OxspKSmVbqs+CgsLAQB2dnZqy+3s7NRuldq9ezf8/Pzg4+MjLuvcuTMUCgV27dplnMbqaPfu3QgLC4NCoRCXDRgwACqVCvv27avGlpWtsLAQtra2EARBXFb8uRR/Fn/99RcuX76MAQMGqK07aNAgHDx4EPn5+cZr8L90+d34/vvvMWLECMjl8lLL7Nu3DyqVCv379xeXKRQKdOnSxeT+jdUGnGmcaYbGmcaZZmyca5xrhsSZZvxM0/lgW5+f8kydOhV3795FUFAQXFxc0KJFC/j5+Yk//v7+le4Yq5hjx46hadOmWLlyJby8vGBhYYEXXnhBbWq3hw8fIi0tDU2bNlVbt2nTphAEARcvXjRqm+vVq4cuXbpgzpw5OH/+PB48eIANGzZg3759iIqKEstdvHhRo82CIKBp06ZGb3N5tLXV3t4e7u7uJtfWkoYNG4bz589j6dKlyMnJwV9//YX3338fLVu2FKf0K27/0/1r1qwZCgoKcO3aNaO3uzypqam4desWnJyc0KtXL8hkMigUCrz55pvIzc0Vy128eBEuLi5wcHBQW79Zs2Ym/bnVZpxppoEzzbRwptVsnGumoSbmGmea8TPNwiC1liMgIACBgYHVsWlWjlu3buHSpUv46KOP8H//939wd3fHkiVL0KtXL5w6dQrNmzdHdnY2gCeBUpJUKoW1tTXu3btn9HZv2rQJAwcORPPmzQEA5ubmWLx4McLDw8UyWVlZGm0GAAcHh2ppc1lqUltLevnll7F582ZERkaKX54vvPAC9uzZA3NzcwBP+gZo/vspDj5T7N+tW7cAAJMnT0bfvn2xa9cuXLlyBdOnT0dubi7WrVsHoOZ+brUZZ5ppqEltLYkzrWZ+brUd55ppqEltLcaZZvzPrFoOtlesWFEdm31mEBGUSqX4WhAE8ReoPCqVCrm5uVizZg169eoFAGjfvj28vb3x2WefYdWqVQZps6609c3MzAzDhw/HlStXsHbtWri7u2P//v2YOHEiHBwcMGjQoGps8bMlOTkZgwcPxptvvomePXvi7t27mDVrFnr06IGffvoJVlZW1d3EClGpVAAAb29vrFy5EgDQqVMnWFhY4M0338Snn36KRo0aVWcTazXONM606sKZxgyFc41zrTpwphlftRxsM8M6fPgwOnToIL4ODQ1FUlKSTusWn7Xq2LGjuEwikaBdu3Y4e/YsgP/OdOXk5KitW1BQgEePHqk9u1LVtPVt8uTJSEhIwOnTp9GiRQsAT7507ty5g0mTJokB7uDgoNFm4MlZrnr16hmszRVRVlsNuX8ra/z48ejYsaPaNAtt2rRB/fr1sXr1aowePVr8N5aTkwM3NzexXPGZVFPsX3GbS/7bA54EOQCcO3cOjRo1qrGfm6njTONMqy6caTXzc6sJONc416oDZ5rxPzM+2K6FAgICcPz4cfG1ra2tzusW39qjTV5eHgBALpejXr16Gs82XLp0CUSk8YxHVdLWt61bt8Lc3Fxjzr2WLVvi+++/x6NHj2BtbY2mTZvizJkzamWICJcuXULnzp0N1uaK0PZsUk5ODtLT0w26fyvr/PnzeO2119SWeXp6wsnJCX/++SeA/54BunjxotoAKBcvXoRUKjXJqymNGzeGTCYr9f3i342mTZvi9u3byMrKUnseSNtzXUx3nGlPcKYZH2caZ5qhcK49wblmXJxpxs80nQZIYzWLra0tAgMDxZ+Svyjl6dmzJwDgwIED4rKCggIcPnwYAQEB4rJu3bph69at4uiSALB+/XrY29sjJCSkCnqhnba+eXl5QalU4vTp02plT548CRcXF1hbW4tt/uOPP3DlyhWxzMGDB3H37l10797dYG2uiG7duuHAgQPiM1cAkJCQADMzM3Tp0qX6GlYOLy8v/Pbbb2rLrl+/jszMTDRo0AAA0KhRI3h7eyMhIUGt3Pr169GpUye1UVNNhVQqRZcuXXDw4EG15fv37wcAtGrVCgDQpUsXmJmZ4ccffxTLZGVlYd++fSb3b6wm4Ux7gjPN+DjTONMMhXPtCc414+JMq4ZMM8iEYswkHT9+nBISEmjp0qUEgCZNmkQJCQmUlJSkVi48PJycnZ0pLi6Odu3aRT169CBLS0s6ffq0WObKlSskl8spPDycDh48SIsWLSKpVKoxcbwx3L9/n+rXr0/PPfccrV69mg4cOEBTp04lMzMzmjVrlliuoKCAfH19qUWLFrR9+3Zav3491atXj3r06GH0Npfn3r175O7uTqGhobR3715atmwZ2dvbU1RUVHU3rUyLFi0iADR+/Hjav38/xcfHk6+vL7m6ulJmZqZYrngezY8//pgSExNp7NixZGFhQcnJydXS7ocPH1JCQgIlJCRQ+/btqV69euLrO3fuEBHRiRMnSCqVUmRkJO3du5e+/vprsrW1pddff12trjFjxpC9vT0tW7aM9u7dS6GhoVS3bl3Kzs6ujq7VapxpnGmGxpnGmWZsnGuca4bEmWb8TOOD7WfI0KFDCYDGT2hoqFq53NxcGjduHDk7O5NMJqOQkBA6evSoRn0///wzBQUFkUwmI09PT5o7dy6pVCoj9UbdlStXaMCAAeTh4UHW1tbUvHlzWrRoERUVFamVu3HjBvXt25dsbGzI3t6eRowYQTk5OdXS5vKcP3+eOnXqRFZWVuTi4kKTJ0+m/Pz86m5WmVQqFX3zzTfk5+dHcrmc3NzcqE+fPnThwgWNst9//z0999xzJJVKxS/V6nLt2jWtvxsAKDExUSx34MABCgwMJJlMRm5ubjRp0iTKy8tTqysvL48mTZpELi4uZGVlRWFhYVr7zyqPM40zzdA40zjTjI1zjXPNkDjTjJ9pAlGJmeQZY4wxxhhjjDFWafzMNmOMMcYYY4wxVsX4YJsxxhhjjDHGGKtifLDNGGOMMcYYY4xVMT7YZowxxhhjjDHGqhgfbDPGGGOMMcYYY1WMD7YZY4wxxhhjjLEqxgfbjDHGGGOMMcZYFeODbaaTmJgYCIKAunXrQqVSabz/0ksvQRAEDBs2TK96s7OzERMTg/Pnz6stT01NhSAI2LhxY2WaXWmLFi2CIAji66SkJAiCgBMnThitDTExMUhOTtZYLggCFixYYLR2aLNlyxYIgoDU1FQAFfvcFi1ahF27dhmohYxpx5n2BGeaOs40VpNxrj3BuaaOc6168cE205lEIkFmZiaOHDmitvz69etISUmBjY2N3nVmZ2dj5syZGgHu7u6OlJQUdOzYsVJtrmqtWrVCSkoKmjVrZrRtzpw5U2uAp6Sk4PXXXzdaO3RRkc+NA5xVF840zrTycKaxmoZzjXOtPJxrxmVR3Q1gNYdUKkVYWBjWrVuH9u3bi8vj4+PRvHlzmJubV9m2ZDIZ2rRpU2X1VZU6deqU267Hjx/DysrK4G0xxf1jqp8bY9pwpnGmlcdUPzfGSsO5xrlWHlP93GorvrLN9BIREYGNGzeisLBQXLZ27VpERkZqLX/kyBGEhITAysoKTk5OGDFiBO7duwfgyW0sDRs2BAD0798fgiCIt7lou8VFpVJh9uzZaNCgAWQyGZo2bYrY2Fi17cXExMDGxgZnzpxB27ZtYW1tDV9fX+zdu7fcvt2/fx9DhgyBra0tnJ2dMXXqVBQVFamV0XZrkiAImDdvHqZNmwY3Nze4uLgAAIgICxYsgLe3N2QyGRo1aoQvvvhCY7sXLlxA3759oVAoYG1tDX9/f6xbt06sGwCmTJki7p+kpCTxvadvTYqNjYWPjw9kMhkaNGiA2bNnq91KtmLFCgiCgN9//x3dunWDXC5HkyZNsGrVqnL3T2FhISZOnAiFQgE7OzuMHDkSubm5amW0fW7btm1DYGAgbGxsYG9vj8DAQPHsaIMGDXD9+nUsWbJE7N+KFSsAAKtWrULbtm2hUCjg4OCA9u3b49dff1Xbnj6f96pVq9CyZUtYWlrCyckJ3bt3x/Xr18X3b9y4gTfeeANOTk6wsrJCu3btcPLkyXL3C6vZONM40zjTWG3Duca5xrlmOvhgm+nl1VdfRX5+Pvbt2wcAOH/+PE6fPo1BgwZplD158iQ6d+4MW1tbJCQk4LPPPsP27dvRrVs3KJVKuLu7Y9OmTQCAOXPmICUlBSkpKXB3d9e67SlTpiAmJgbDhg3D9u3b0aVLF4wdOxZff/21WrnCwkK8/vrrGDZsGDZv3gwXFxeEh4fj7t27ZfZtxIgR2Lx5M+bNm4eVK1fi/PnzWLRokU775csvv8Tly5cRFxeHH374AQAwYcIEfPzxxxg6dCh27tyJYcOGYdq0afj222/F9a5cuYLg4GBcuXIFX331FbZt24bhw4fj77//BvDk9iMAGDdunLh/WrVqpbUNixcvxtixY/HKK69g+/btGDZsGGJiYjB16lSNsq+//jq6dOmCLVu2oGXLlhg2bBguXLhQZh9nzJiBpUuXYsqUKdiwYQOUSiWmT59e5jp//vkn+vXrh+bNm2Pz5s1Yv349BgwYgKysLADA5s2b4ebmhn79+on969GjB4AnXwZDhgxBQkIC1q5di/r166Ndu3a4fPmy2jZ0+bznz5+PoUOHIiAgAJs2bUJcXByaNGmCjIwMAEBWVhbatm2LU6dOYfHixfjxxx8hl8vRsWNH3Llzp8w+spqNM007zjTtONNYTcC5ph3nmnacawZGjOkgOjqa5HI5ERFFRkbSG2+8QUREH374IQUHBxMRkb+/Pw0dOlRcp0+fPlS/fn0qKCgQl+3du5cA0LZt24iI6Nq1awSAEhIS1Lb39PKMjAySSCQ0ffp0tXIRERHk7OxMRUVFYjsB0M6dOzXqWr16dan9O3fuHAmCQHFxceKyoqIiatiwIZX8NUlMTCQAdPz4cXEZAHr++edJpVKJy65evUqCIFBsbKzadqZNm0Zubm6kVCrFfens7Ew5OTmltg0AzZ8/v8zlRUVF5OTkRIMGDVIrM2PGDJJKpZSZmUlERMuXLycAtGTJErFMbm4uWVtb06xZs0ptw927d8nKyoo++ugjteXt2rUjAHTt2jUi0vzcEhISCADdv3+/1Lq9vLwoKiqq1PeJiJRKJRUWFpKPjw/NmDFDXK7L552dnU3W1tY0evToUuv/+OOPyc7Ojm7fvi0uy8vLo/r169OUKVPKbBurmTjTnuBM40xjtQfn2hOca5xrpoSvbDO9RUREYOvWrXj8+DHi4+MRERGhtdxPP/2E1157DRKJRFzWpUsX2Nvb4+jRo3pt85dffkFhYSH69++vtnzgwIHIyMhQO4NmZmaGsLAw8XWDBg1gZWWFGzdulFr/8ePHQUTo06ePuMzc3By9e/fWqX3dunVTGwnzwIEDAIDw8HAUFRWJP2FhYbh16xbS0tIAAAcPHkS/fv1Qp04dnbZTmosXLyIzM1Pr/ikoKNC4padLly7i/8vlcnh5eZW5f86cOYPHjx+r7Z/i/pXFz88P5ubmiIyMxPbt25GTk6Nrl3DhwgX06dMHrq6uMDc3h0QiwaVLlzTOlpb3eaekpODRo0cYOXJkqdvat28fOnToAIVCIX5W5ubmCA0NxfHjx3VuM6uZONM0caZpx5nGagrONU2ca9pxrhkWD5DG9PbKK69AIpHg448/xrVr1zBgwACt5bKysuDq6qqx3NXVVXwWSFfFt7I8XV/x65L1WVlZQSqVqpWTSqXIy8srtf709HRIJBI4ODhorb88T5fLzMwEEcHJyUlr+bS0NHh5eeHu3bvw8PDQaRtl0Wf/AIC9vb3aa132DwDxGaen6y+Nt7c3duzYgTlz5qBPnz4wMzND165d8fXXX6N+/fqlrvfgwQN06dIFzs7OWLhwIby8vGBpaYlRo0ZptLO8z7v4FqWy9nNmZiaOHTum9sdGscaNG5fZR1bzcaZp4kzTjjON1RSca5o417TjXDMsPthmepNIJAgPD8fChQvRqVOnUn+JFQqF1mcobt++DYVCodc2i8vfuXMHdevWVaur5PsV5e7ujsLCQmRlZamFeHH95Sl5prS4PYIg4OjRoxrhAgA+Pj4AAEdHR9y8ebMSLf9vewA09ndV7p/i+rXt/7J07doVXbt2xf3797Fnzx68++67GD58OA4ePFjqOikpKbhx4wZ27NgBf39/cXlOTg48PT31arujoyMA4ObNm6Wuq1Ao0LVrV8yaNUvjPZlMptf2WM3DmaaJM610nGmsJuBc08S5VjrONcPh28hZhYwaNQqvvvoqJkyYUGqZtm3bYsuWLWqjRO7fvx/Z2dlo27YtAIjhVtaZOgBo3bo1JBIJEhIS1JZv2LABLi4u8Pb2rmhXAAAvvvgigCeDQBRTKpXYsmVLherr1KkTgCdn6gIDAzV+bG1tAQBhYWHYuHEjHjx4UGpdEomk3P3j4+MDZ2dnrftHKpWidevWFepHsRYtWsDKykpt/wDAjz/+qHMdderUwYABAzBo0CC1AT60nal9/Pix+F6x5ORkpKam6t324OBgWFtbY/ny5aWWCQsLw/nz59GsWTONz6pFixZ6b5PVPJxpZeNM08SZxkwd51rZONc0ca5VPb6yzSqkdevW5YbbBx98gJCQEPTs2RPjxo3D7du3MX36dLRu3Rrdu3cHALi5ucHe3h7r1q1Dw4YNIZPJ4Ofnp1GXk5MTxo0bh/nz58PS0hJt2rTBrl27sHbtWixevLjS80Y+//zz6NOnDyZOnIi8vDw0aNAAS5cuRUFBQYXq8/b2RlRUFAYPHowpU6YgKCgIhYWFuHz5MhITE8V9Fx0djR07dqBt27aYOnUq3N3dcf78eTx69EgcmbJZs2bYunUrXn75Zcjlcvj4+IhfAMXMzc3x0UcfYfz48XBxcUH37t1x7NgxfPbZZ5g4caJ4xrCiFAoFxo4di3nz5sHKygqtWrXCunXr8Oeff5a5XmxsLFJSUtC1a1e4u7vj2rVr+OGHH9SeQ2rWrBkOHTqE/fv3w8HBAQ0bNkSbNm1gY2ODqKgoTJ8+Hf/88w+io6PVztTqys7ODtHR0Zg2bRpUKhVee+01qFQqJCYmIiIiAoGBgXjvvfewZs0ahIaGYsKECahfvz4yMjLwyy+/wMPDA++++67e22U1C2da2TjTnuBMYzUJ51rZONee4FwzsOocnY3VHCVHuCzN0yNcEhElJSVRcHAwyWQyUigUNGzYMLp7965amc2bN1OzZs1IJpOJoyVqG/lSqVTSJ598QvXr1yeJREJNmjShb7/9Vqd22tnZUXR0dJntz8rKotdff53kcjk5OjrSe++9R/Pnz9dphEttI1CqVCpavHgx+fr6klQqJYVCQcHBwbRw4UK1cufOnaNevXpRnTp1yNraml544QWKj48X3//pp5+oVatWZGVlRQAoMTGx1O1+88031KRJE5JIJFS/fn2aNWuWOJom0X8jXGZkZKitp+2ze1p+fj6NGzeO7O3tqU6dOjR06FBavXp1mSNcJicnU48ePcjd3Z2kUinVr1+fJkyYoDbi5dmzZ+nll18mW1tbAkDLly8nIqLdu3dT8+bNydLSkvz8/GjXrl0UGhpKPXr0ENfV5/NetmwZtWjRgqRSKTk6OlLPnj3p+vXr4vvp6ek0cuRIsa2enp7Ur18/+vnnn8vcL6xm4kx7gjONM43VHpxrT3Cuca6ZEoGIyOBH9IwxxhhjjDHG2DOEn9lmjDHGGGOMMcaqGB9sM8YYY4wxxhhjVYwPthljjDHGGGOMsSrGB9uMMcYYY4wxxlgV44NtxhhjjDHGGGOsivHBNjOY1NRUCIKAjRs36rVeUlIS5syZo7E8JiYGNjY2VdW8ci1atAi7du2qsvq2bNmCpUuXaiwfNmwYfH19q2w7Vc3Y+50xU8a5po5zjbGajTNNHWcaq2p8sM1MTmkBPmrUKCQmJhqtHcYKcFNn7P3OWG3EuWZaONcYqxzONNPCmWa6LKq7AaxmISIUFBRAJpMZfduenp7w9PQ0+nafVfn5+ZBIJFW234vrMzPjc3zMtHCuPTs419izgDPt2cGZZvp4T7IyFd82s2vXLvj7+0Mmk2H79u0AgJSUFHTs2BFyuRx2dnaIjIzEnTt3yqxv1apVaNu2LRQKBRwcHNC+fXv8+uuv4vsxMTGYOXMmHj58CEEQIAgC2rdvL75XfIvMw4cPIZfLsWDBAo1t9OvXD8HBweLr7OxsvP3223B3d4dMJkNAQAD27dtXZjsbNGiA69evY8mSJWI7VqxYAQBQqVSYPXs2GjRoAJlMhqZNmyI2Nrbc/bhy5UqcO3dOrG/YsGFqZZKSktCyZUvI5XK0bt0aJ0+eVHufiLBgwQJ4e3tDJpOhUaNG+OKLL8rcbvG2fX19sXv3bvj6+sLS0hIBAQE4duyYRp/feecd/N///R+8vLxgZWWFe/fuab016fr16+jXrx/s7Owgl8vxyiuv4MyZMzrVV1YbDxw4AD8/P1hZWSE0NBSpqam4d+8eBgwYgDp16qBx48ZYv369xvo7d+5EUFAQrKys4OzsjLfeegsPHz4U33/48CHeeecd+Pj4wNraGg0aNMDYsWORk5Ojtc1LliyBl5cX7Ozs0Lt3b2RkZJS7n1nNwbnGuca5xrlWm3CmcaZxpplwphFjZRg6dCg5ODhQ48aNafny5XTw4EG6cuUKJScnk1Qqpd69e9P27dspPj6ennvuOWrTpo247rVr1wgAJSQkiMtmzpxJsbGxdODAAdq1axcNHjyYZDIZXbp0iYiI0tLSaOTIkWRlZUUpKSmUkpJC586dIyKi6OhoksvlYl2DBg2igIAAtfbev3+fLC0t6auvviIiovz8fAoMDKR69epRXFwc7dmzh9544w2ysLCg06dPl9rv3377jdzc3Khfv35iO+7cuUNERO+99x6Zm5tTdHQ07d27l8aNG0cAaPHixaXWd/XqVerevTs1atRIrO/q1aviPnZ0dKQWLVrQmjVraMeOHdSiRQuqV68eFRQUiHWMGzeOrKysaPbs2bR//36aOXMmSSQS+uabb8r9DBUKBTVo0IBWrFhBW7dupeDgYKpTpw7dvn1bLOfl5UVubm708ssv0+bNm2nbtm306NEjjf1+//59atCgATVq1IjWrl1LmzZtooCAALK3t6e///673PpKa6OjoyP5+flRfHw8/fjjj1S3bl0KCQmhsLAw+uSTT2jfvn3Uv39/srCwoNTUVHHdhIQEMjMzo5EjR9Lu3btp2bJl5OLiQgMHDhTL3Llzh8aOHUsJCQmUlJREq1evpqZNm1L79u3V2uHl5UX16tWjLl260Pbt22n58uVkb2+vVher+TjXONc41zjXahPONM40zjTTzTQ+2GZlGjp0KAGgY8eOqS1v164dhYSEkEqlEpedO3eOBEGgnTt3EpH2AC9JqVRSYWEh+fj40IwZM8TlTwdGacu3bt1KAOjy5cvispUrV5K5uTndunWLiIiWLVtGFhYW4pdAsaCgIOrfv3+Zfffy8qKoqCi1ZRkZGSSRSGj69OlqyyMiIsjZ2ZmKiopKrW/o0KHUvHlzrcsFQaCzZ8+KyxITEwkA/fTTT0T05AtAEASKjY1VW3fatGnk5uZGSqWyzO0CoIMHD4rLsrOzydbWVq0fXl5e5OjoSLm5uWrrP73fv/zySxIEgc6fPy8uu3v3LsnlcnrvvffKra+0Nj69DxYvXkwAaNq0aeKyrKwsMjc3p0WLFhERkUqlIi8vL4qIiFCrb/fu3Rr1lVRYWEhHjx4lAOIfD8Vt9vT0pLy8PLX+SySSMvcxq1k41zjXONc412oTzjTONM400800vo2clcvR0RFBQUHi60ePHuHnn39G//79oVQqUVRUhKKiInh7e6NevXo4fvx4qXVduHABffr0gaurK8zNzSGRSHDp0iVcvnxZ73Z17doV9vb2iI+PF5fFx8ejQ4cOcHV1BQDs27cPLVq0gLe3t9jOoqIidO7cucx2luaXX35BYWEh+vfvr7Z84MCByMjIqFA/AMDDwwPNmzcXXz///PMAgBs3bgAADhw4AAAIDw9X60dYWBhu3bqFtLS0Muu3s7NDx44d1V6HhYXhl19+USvXvn17yOXyMuv66aef4Ovri2bNmonLFAoFOnfujKNHj+pdX7Gn94G3tzcAICwsTFxmb28PFxcXsb+XL1/G9evXMWDAALX9EhoaCjMzM5w4cUJcd/Xq1WjZsiVsbGwgkUjQtm1bsY6SQkND1Z5ze/7551FYWFjubXesZuFc+w/nGucaq/k40/7DmcaZZkr4YJuVqzgMi2VlZUGpVOLdd9+FRCJR+/n7779LDZMHDx6gS5cuuH79OhYuXIiffvoJx48fh7+/P/Ly8vRul1QqRXh4uBjgd+/exf79+xEZGSmWyczMxO+//67RztmzZ5cbetpkZWUB0Nwnxa9Le86lPPb29mqvpVIpAIj7JTMzE0QEJycntX507twZAMrti7Ozs8YyV1dXpKena+1HWbKysrSWc3V11ei/LvUVK20faFtecr8AQJ8+fdT2i7W1NZRKpbhfNm/ejCFDhqB169bYsGEDjh07hs2bNwOAxr+98j4LVjtwrqn3HeBc41xjNRlnmnrfAc40zjTTwKORs3IJgqD22t7eHoIg4P3330fv3r01yjs5OWmtJyUlBTdu3MCOHTvg7+8vLs/JyanwCIoRERGIi4vD6dOnkZKSAnNzc/Tt21d8X6FQwM/PD3FxcRWq/2kKhQIAcOfOHdStW1dcfvv2bbX3q5pCoYAgCDh69KgYKCX5+PiUub62QSNu374Nd3d3tWVPf9alteXSpUta63u6/7rUVxnF2/v666/VzugX8/DwAAAkJCTghRdeUBsc5fDhwwZtGzNtnGv/4VzjXGM1H2fafzjTONNMCR9sM73J5XIEBwfjwoULmD17ts7rPX78GADUAig5ORmpqalqt6RIpVLk5+frVGf79u3h5uaGdevWISUlBd26dYOdnZ34flhYGHbt2gUPDw/xl1lXJc/KFWvdujUkEgkSEhLQsmVLcfmGDRvg4uIi3k6ja3266tSpE4AnZ4RfffVVvdfPycnBoUOHxNuTcnJycODAAURFReldV9u2bbFx40ZcunRJ/OLIysrCgQMHMHr0aL3rq4ymTZvC09MTf/31V5l9efz4scYX35o1awzdPFaDcK5xrnGusdqEM40zjTPNNPDBNquQ+fPno2PHjhg4cCAGDRoEBwcH3LhxA/v378fw4cPFKSBKatOmDWxsbBAVFYXp06fjn3/+QXR0tNpZRwBo1qwZioqK8OWXXyIkJAR16tQp9Wygubk5BgwYgBUrVuDOnTtqzwQBwJAhQxAbG4v27dtj8uTJ8Pb2RnZ2Nn7//XcUFBRg7ty5pfaxWbNmOHToEPbv3w8HBwc0bNgQTk5OGDduHObPnw9LS0u0adMGu3btwtq1a7F48WKYm5uXWd+yZcuwbt06NGnSBE5OTmjQoEHpO7kEb29vREVFYfDgwZgyZQqCgoJQWFiIy5cvIzExEVu2bClzfYVCgZEjR2LmzJmwt7fHvHnzQESYOHGiTtsvafjw4fjiiy/Qo0cPzJ49G5aWlvj0009hYWFRofoqQxAELFy4EJGRkXj48CF69OgBuVyO69evY+fOnZgzZw68vb3RuXNnREVFYdasWQgODsauXbtw8OBBo7aVmT7ONc41zjVWm3CmcaZxppmA6hydjZm+0kZlJCI6fvw4de/enezs7MjKyoqaNGlCY8eOpbS0NCLSPsLl7t27qXnz5mRpaUl+fn60a9cuCg0NpR49eohlCgsL6e233yZXV1cSBIFCQ0OJqPSRL1NSUggA2djYaJ2uICcnh959912qX78+SSQScnd3p+7du9OOHTvK7PvZs2fp5ZdfJltbWwJAy5cvJ6InI3N+8sknYn1NmjShb7/9tsy6itsxaNAgcnR0JAA0dOhQItK+j7OystS2SfRkNMfFixeTr68vSaVSUigUFBwcTAsXLixzu8X179ixg5o1a0ZSqZRatmxJP//8s1o5bSN6Emnf76mpqdS3b1+ytbUla2tr6ty5s8b0HKXVV1YbSyoe5fP48ePl1rtv3z4KDQ0luVxOcrmcmjdvTpMmTaLs7GwiIioqKqJJkyaRs7Mz2draUr9+/ejYsWMa/z611b1582YCQNeuXdOpL8z0ca5xrnGuca7VJpxpnGmcaaabaQIRkfEO7RljxjZs2DCcOHECZ8+ere6mMMZYleBcY4zVJpxptRePRs4YY4wxxhhjjFUxPthmjDHGGGOMMcaqGN9GzhhjjDHGGGOMVTG+ss0YY4wxxhhjjFUxPthmzMBat26NJUuWlPr+qVOnIAgCkpKSDLL9zp0749NPPzVI3YyxZw9nGmOstuFcY4bCB9uMGdDmzZuRmpqKESNGVFsb3n//fSxYsABZWVnV1gbGWO3AmcYYq20415gh8cE2Ywa0aNEiREREwMrKqtra0KFDBzg4OGDlypXV1gbGWO3AmcYYq20415gh8cE2YwZy7do1/PTTT+jXr5/a8tmzZ8PNzQ02Njbo27cv7ty5o7EuEWHBggXw9vaGTCZDo0aN8MUXX2iU27x5M3x8fGBpaYk2bdrgt99+g729PWJiYtTK9e/fnwOcMVYpnGmMsdqGc40ZGh9sM2YgBw8ehIWFBVq3bi0u+/rrr/HRRx9h8ODB+PHHH9GoUSOMHDlSY90JEybg448/xtChQ7Fz504MGzYM06ZNw7fffiuW+f3339G/f388//zz2LRpE4YOHYqBAwciPz9fo76QkBCcOnUKGRkZhuksY6zW40xjjNU2nGvM4IgxZhCjR4+m5s2bi6+LiorIw8ODBg8erFZu8ODBBIASExOJiOjq1askCALFxsaqlZs2bRq5ubmRUqkkIqL+/fvTc889J74mIlq9ejUBoOjoaLV1r127RgBox44dVdhDxtizhDONMVbbcK4xQ+Mr24wZSHp6OpydncXXN27cwM2bN9GnTx+1ck/funTgwAEAQHh4OIqKisSfsLAw3Lp1C2lpaQCA48ePo2fPnjAz++/X+LXXXtPaFicnJ7FNjDFWEZxpjLHahnONGZpFdTeAsdoqLy8PMplMfF0cni4uLmrlXF1d1V5nZmaCiMTQfVpaWhq8vLw0viAAwNbWFpaWlhrrFLfj8ePH+neEMcbAmcYYq30415ih8cE2YwaiUCiQmpoqvnZ3dwcAjUE2bt++rbGeIAg4evQopFKpRr0+Pj5ifU8/1/PgwQPk5eVprJOdnQ0AcHR01LsfjDEGcKYxxmofzjVmaHwbOWMG4uPjg2vXromvPT094e7ujs2bN6uV27hxo9rrTp06AQDu3r2LwMBAjR9bW1sAwIsvvogdO3ZApVKJ627ZskVrW4q/SIrDnzHG9MWZxhirbTjXmKHxlW3GDOSll17CJ598ghs3bsDT0xPm5uaYPn06JkyYAFdXV3Tu3Bn79u1DYmKi2nre3t6IiorC4MGDMWXKFAQFBaGwsBCXL19GYmKiGNIzZszAiy++iPDwcIwePRrXr1/HggULYGlpqfZsEACcOHECNjY2eOGFF4zUe8ZYbcOZxhirbTjXmMFV8wBtjNVa+fn55OjoSN999524TKVS0cyZM8nFxYWsra2pV69etGfPHrURLovLLV68mHx9fUkqlZJCoaDg4GBauHCh2jZ+/PFH8vb2JplMRgEBAXT06FGysLCgRYsWqZV79dVXNUbWZIwxfXCmMcZqG841ZmgCEVE1H+8zVmtNmjQJv//+Ow4dOmSU7R08eBBhYWFISkpCaGgoACArKwtubm7Yv38/2rVrZ5R2MMZqJ840xlhtw7nGDIkPthkzoPT0dDz33HNITk6Gv79/ldf/9ttvo1OnTnB0dMS5c+cwa9YseHh44MSJE+LtSZ988gmSkpKM9iXCGKu9ONMYY7UN5xozJH5mmzEDcnd3x4oVKzRGoqwqWVlZGDduHDIzM2FnZ4euXbtiwYIFas8BKRQKfPXVVwbZPmPs2cKZxhirbTjXmCHxlW3GGGOMMcYYY6yK8dRfjDHGGGOMMcZYFeODbcYYY4wxxhhjrIrxwTZjjDHGGGOMMVbF+GCbMcYYY4wxxhirYnywzRhjjDHGGGOMVTE+2GaMMcYYY4wxxqoYH2wzxhhjjDHGGGNVjA+2GWOMMcYYY4yxKsYH24wxxhhjjDHGWBX7fwQ1+pft7IhVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1492,13 +1492,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVzUlEQVR4nOydd3hT1fvAPzdJN6WDltKyy15FKMJPFMqWJVtUptiyRAUVVGZbQMDFcAJSZA8BURx8xQWCAwRHGbJBoC3QQgulO8n5/ZEmNM1oUspoOZ/n6XObe88999zk5s15z7sUIYRAIpFIJBKJRCKRSCQSSYmhutsDkEgkEolEIpFIJBKJpKwhlW2JRCKRSCQSiUQikUhKGKlsSyQSiUQikUgkEolEUsJIZVsikUgkEolEIpFIJJISRirbEolEIpFIJBKJRCKRlDBS2ZZIJBKJRCKRSCQSiaSEkcq2RCKRSCQSiUQikUgkJYxUtiUSiUQikUgkEolEIilhpLItkUgkEolEIpFIJBJJCSOVbYnkHmbnzp0oisLmzZvv9lAkEonkljl79iyKovD222/f7aFIJBKJ09SoUYOePXve7WFIShFS2ZaUGv744w+ee+45GjVqhJeXF9WqVWPgwIEcP37c7nl5eXk0bNjQ6gQvLS2NwYMH4+fnR2hoKHFxcRbn79+/H09PT86cOVOi9yORSO5vbty4QXR0NF27dsXf3x9FUVixYoVFO71ez4oVK+jVqxdVq1bFy8uLxo0bM3v2bLKzs83a5uTk8PzzzxMYGEiVKlWYPXu2RX8XLlygXLly/PLLL7fr1iQSicSCP//8k169euHv74+npyeNGzfm3XffNWuzZMkSatasib+/P0OHDuX69etmx/V6Pc2aNWPOnDl3cugSSbHR3O0BSCSO8sYbb/DLL7/w+OOPExYWxsWLF3n//fdp3rw5v//+O40bN7Z63nvvvce5c+esHps4cSI7d+4kNjaWkydPMnLkSBo0aEDr1q0BEELwwgsvMGHCBGrWrHnb7k0ikdx/pKSkMHPmTKpVq0bTpk3ZuXOn1XaZmZmMGDGC//u//2PMmDFUrFiR3377jejoaH744Qd+/PFHFEUB4K233mLVqlVMnTqV9PR0Zs6cSa1atXjqqadM/U2aNIlevXrx8MMP34nblEgkEnbs2MFjjz1Gs2bNmD59OuXKlePUqVNcuHDB1GbPnj2MHTuWF154gdDQUObOncukSZNYsmSJqc3HH3/MtWvXePnll+/GbUgkziMkklLCL7/8InJycsz2HT9+XLi5uYnBgwdbPefSpUvCx8dHzJw5UwDirbfeMjseFBQkVq5caXodEREhXnvtNdPr1atXi5CQEJGenl6Cd+I4P/30kwDEpk2bbut1bty4cVv7l0gklmRnZ4ukpCQhhBB//PGHAMQnn3xi0S4nJ0f88ssvFvtjY2MFIL777jvTvlatWonY2FjT6+HDh4snn3zS9Hr37t3Cy8tLnD9/vgTvxHHOnDljVRaXNFKmSST3DteuXRNBQUGib9++QqfT2Wz36quvivbt25tef/LJJ6JSpUqm16mpqSIgIEBs2bLlto7XHtWrVxc9evS4rdfIy8uzmO9KSi/SjVxSamjdujWurq5m++rUqUOjRo34999/rZ7z2muvUa9ePYYMGWL1eFZWFn5+fqbX/v7+ZGZmApCRkcFrr73G3LlzKVeunFNjTUhIIDIykpCQENzc3KhZsyZjx44lNzfX1Ob06dM8/vjjJneq//u//+Prr7+22p9er+f111+nSpUquLu707FjR06ePGnRbu/evXTt2hUfHx88PT2JiIiwcBWNiYlBURSOHDnCoEGD8PPz45FHHjEdX7NmDeHh4Xh4eODv78+TTz7J+fPnzfpo164djRs35siRI7Rv3x5PT08qV67Mm2++aTGm7OxsYmJiqFu3Lu7u7gQHB9OvXz9OnTpldn8LFy6kUaNGuLu7ExQUxOjRo0lNTXXsDZdISiFubm5UqlSpyHaurq4mb5uC9O3bF8BM/tmTaXq9nvHjx/PKK69QpUoVp8aalpbGiy++SI0aNXBzc6NKlSoMGzaMlJQUU5vLly8TGRlJUFAQ7u7uNG3alJUrV9rsc+nSpdSqVQs3NzcefPBB/vjjD4s2R48eZcCAAfj7++Pu7k6LFi3Ytm2bWZsVK1agKAq7du3i2WefpWLFimb3t337dtq0aYOXlxfe3t706NGDw4cPm/Xx9NNPU65cORISEujTpw/lypUjMDCQiRMnotPpzNrq9XoWLVpEkyZNcHd3JzAwkK5du7J//36zdo7IUonkfmDdunVcunSJ119/HZVKRUZGBnq93qKdPfkFhvlLkyZN6Nevn1PXd+Q7q9VqmTVrlkkm1ahRgylTppCTk2O1zz179tCyZUvc3d0JDQ1l1apVFm3S0tKYMGECVatWxc3Njdq1a/PGG2+Y3XvBPBYLFy40Xf/IkSOAczLwl19+4aWXXiIwMBAvLy/69u1LcnKyxbi2b99OREQE3t7elC9fngcffJB169aZtXFkPilxkLut7Uskt4JerxeVK1cWXbp0sTi2d+9eoVKpxK+//mrTmtKxY0fRrl07cfz4cfG///1PeHh4iDVr1gghhJgyZYpo2bKl0Ov1To0pISFBhISECE9PTzFhwgSxePFiMX36dNGgQQORmpoqhBDi4sWLIigoSHh7e4upU6eK+fPni6ZNmwqVSiU+++wzU19Gy3azZs1EeHi4WLBggYiJiRGenp6iZcuWZtf94YcfhKurq3jooYfEO++8IxYsWCDCwsKEq6ur2Lt3r6lddHS0AETDhg1F7969xYcffig++OADIYQQs2fPFoqiiCeeeEJ8+OGHIjY2VgQEBIgaNWqYxi6EwQMgJCREVK1aVYwfP158+OGHokOHDgIQ33zzjamdVqsVHTt2FIB48sknxfvvvy/mzp0rOnToID7//HNTu6ioKKHRaMTIkSPF4sWLxauvviq8vLzEgw8+KHJzc516/yWS0og9y7YtduzYIQCxbt06077IyEjRuHFjER8fL3799VdRqVIlMXv2bCGEEEuXLhXVqlUTmZmZTo0tPT1dNG7cWKjVajFy5Ejx0UcfiVmzZokHH3xQ/PXXX0IIITIzM0WDBg2Ei4uLePHFF8W7774r2rRpIwCxcOFCU19GWdysWTNRu3Zt8cYbb4g333xTBAQEiCpVqph93w8dOiR8fHxEw4YNxRtvvCHef/990bZtW6Eoipmc/OSTT0wyLSIiQrz33nti3rx5QgghVq1aJRRFEV27dhXvvfeeeOONN0SNGjWEr6+vOHPmjKmP4cOHC3d3d9GoUSPxzDPPiI8++kj0799fAOLDDz80ez+efvppAYhu3bqJhQsXirffflv07t1bvPfee6Y2jspSieR+oH///qJ8+fLiu+++E3Xr1hWA8PLyEmPGjBFZWVmmdqtXrxaenp7i22+/FcePHxdt27YVnTp1EkIIcfjwYeHm5ib++ecfp6/vyHd2+PDhAhADBgwQH3zwgRg2bJgARJ8+fcz6ql69uqhXr54ICgoSU6ZMEe+//75o3ry5UBRFHDp0yNQuIyNDhIWFiQoVKogpU6aIxYsXi2HDhglFUcT48eNN7YwysWHDhiI0NFTMmzdPLFiwQPz3339Oy8BmzZqJDh06iPfee0+8/PLLQq1Wi4EDB5qN/5NPPhGKoojGjRuL119/XXzwwQciKipKDB061NTG0fmkxDGksi0p1axevVoAIi4uzmy/Xq8XLVu2FE899ZQQwrbrYnx8vKhSpYoABCD69+8vdDqdOH36tPDw8BC//fab02MaNmyYUKlU4o8//rA4ZlTcJ0yYIACxe/du07H09HRRs2ZNUaNGDZOblVHZbtCggZlL0aJFiwQgDh48aOq3Tp064tFHHzVbHMjMzBQ1a9YUnTt3Nu0zKtvG98bI2bNnhVqtFq+//rrZ/oMHDwqNRmO2PyIiQgBi1apVpn05OTmiUqVKon///qZ9y5cvF4CYP3++zfdi9+7dAhBr1641O/6///3P6n6JpCxSHGW7U6dOonz58mbK2/nz50WjRo1MMq1NmzYiPT1dpKWlicDAQLFhwwanxzZjxgwBmE3ujBi/xwsXLhSAabFSCCFyc3PFQw89JMqVKyeuX78uhLgpiytUqCCuXr1qavvFF18IQHz55ZemfR07dhRNmjQR2dnZZtdr3bq1qFOnjmmfcaL5yCOPCK1Wa9qfnp4ufH19xciRI83GfPHiReHj42O23zjRnjlzpllb40KnkR9//FEA4oUXXrD5XjgjSyWS+4GwsDDh6ekpPD09xfPPPy+2bNkinn/+edNCvBGtViv69etnkl9Vq1YV8fHxQgghunTpIsaMGeP0tR35zv79998CEFFRUWbHJ06cKADx448/mvZVr15dAOLnn3827bt8+bJwc3MTL7/8smnfrFmzhJeXlzh+/LhZn6+99ppQq9Xi3LlzQoibMrF8+fLi8uXLZm2dlYGdOnUymwO++OKLQq1Wi7S0NCGEEGlpacLb21u0atXKbJGj4HvhzHxS4hh3Xdm+dOmS+O+//yz+JJKi+Pfff0X58uXFQw89ZDbBEsKg5Hl4eFgIM2txgllZWeKPP/4QJ06cMO3r27evGDJkiBBCiC1btoiwsDBRo0YNERsba9fSrdPpRPny5UXv3r3tjr1u3boWlmkhhJg7d66ZEm1Utt98802zdn/++acAxBdffGH2euXKlSI5OdnsLyoqSri5uZkUeKOyvWvXLrM+58+fLxRFESdOnLDoo0GDBqbVZSEMyna5cuUs3otevXqJZs2amV736NFDBAQEiLy8PJvvxQsvvCB8fHzE5cuXLa5brlw5ix8/iaQs4qyy/frrr1u1ugphUHL/+usvcfjwYdP3/sUXXxSPPPKIEMKwwNWyZUtRpUoV8fzzzxcZG9ioUSPRtGlTu226dOkiKlWqZBGPuX79ejMl2iiLn332WbN2V69eFYBYtGiREEKIK1euCEVRxKxZsyzkgjFW/cKFC0KImxPNgvk3hBDis88+M02UC/fRpUsXUbt2bVNbo7JdeLL7wgsvCD8/P9PrcePGCUVRxJUrV2y+F87IUonkfiA0NFQAFsry6NGjBWChkJ44cULs37/fpBB+8cUXwtfXVyQnJ4sLFy6Inj17iuDgYNGzZ0+RkJBg99qOfGfnzJkjAHHkyBGz/UlJSQIwU6KrV68uGjZsaNFHWFiY6Nu3r9nrrl27WsiA77//3mxh0igTR4wYYdZfcWTgp59+ataHUQYavQE2bdokALF161ab74Uz80mJY9yVbORXrlzh+eef57PPPiMvL8/smBACRVEsYqQkkoJcvHiRHj164OPjw+bNm1Gr1aZj169fZ/LkyUyaNImqVasW2ZcxBsbIjz/+yI4dOzh27BjHjh3jySefZMmSJdSoUYOnnnqKqlWrMmLECKt9JScnc/36dZuZ0Y38999/tGrVymJ/gwYNTMcL9lGtWjWzdsaYJmNM84kTJwAYPny4zWteu3bNLBaqcHb1EydOIISgTp06Vs93cXExe12lShVTBuSC44qPjze9PnXqFPXq1UOjsS1qTpw4wbVr16hYsaLV45cvX7Z5rkRyP7Jx40amTZtGZGQkY8eOtTju4uLCAw88YHp99OhRPvzwQ3799VeuXr1Kjx49eO2112jfvj0jRozg9ddfJzY21ub1Tp06Rf/+/e2O6b///qNOnTqoVOapYArKtIIUJdNOnjyJEILp06czffp0q9e8fPkylStXNr22JtMAOnToYPX88uXLm702xnIWHlfB3BGnTp0iJCQEf39/q30ar+uMLJVIyjoeHh4AZlURAAYNGsSSJUv47bffzL4vtWvXNv2fm5vLyy+/THR0NAEBAbRp04bg4GC+/PJL5s2bx6BBg2xWcgDHvrP//fcfKpXK7LoAlSpVwtfXt0j5BZay4sSJE8THx1vIFCOF5zaF5VdxZGBRctWYK8feHLU480mJfe6Ksh0VFcWuXbuYPHkyDRs2tEh6JZHY49q1a3Tr1o20tDR2795NSEiI2fG3336b3NxcnnjiCc6ePQtgKi2RmprK2bNnCQkJsfrc6XQ6xo8fz2uvvUblypWZNWsWrVu3NinXo0ePZu3atTaV7dtFwcWEggghAEzJNt566y2zSXZBCid5M/74GdHr9SiKwvbt261er/D5RY3JUfR6PRUrVmTt2rVWj9v6oZJI7ke+++47hg0bRo8ePVi8eLFD57z44osMGTKE5s2bs3r1avz9/Zk8eTIAr7zySpHK9u3AUZk2ceJEHn30UattC0+Mrck0gNWrV1tNRFd4EdDWmJzFWVkqkZR1QkJCOHz4MEFBQWb7jYvs9pKhLliwAI1Gw3PPPcf58+fZs2cPZ86coUaNGrz55puEhoZy4cIFp5M+WqOwAcEWjsx/9Ho9nTt35pVXXrHatm7dumavbckvZ2RgSczLijOflNjnrijbP/30E++++y7Dhg27G5eXlGKys7N57LHHOH78ON9//z0NGza0aHPu3DlSU1Np1KiRxbE5c+YwZ84c/vrrL6tC5KOPPiI9PZ2JEycCkJiYaKbMh4SEkJCQYHN8gYGBlC9fnkOHDtm9j+rVq3Ps2DGL/UePHjUdd4ZatWoBBktNp06dnDq3YB9CCGrWrGnxI1BcatWqxd69e8nLy7NpzalVqxbff/89Dz/8sMWPjUQiucnevXvp27cvLVq04NNPP7XrMWLkq6++4tdffzVZKxITEwkODjYdL0qmgeE76ohMi4+PR6/Xm1m3iyvTQkNDAYMV+FZkGhgm9MXtw1qf3377LVevXrVpKbsdslQiKc2Eh4fz3XffkZCQQL169Uz7ExMTAduL6klJScyePZtNmzah0WhM7Y3zMuM2ISHBprLtyHe2evXq6PV6Tpw4YfLGAbh06RJpaWlOyy/jdW/cuFFs2VMSMtDamAAOHTpkoagXbnMr80mJOcUq/XX48GGefPJJU3r6P//8E4CpU6eyffv2Is/39fUlICCgOJeW3MfodDqeeOIJfvvtNzZt2sRDDz1ktd0LL7zA1q1bzf6WLFkCGMq7bN261cJdB+Dq1atER0fz1ltv4e7uDkBQUJBpsgiGEjv2SvWoVCr69OnDl19+aVEGBm6uLnbv3p19+/bx22+/mY5lZGSwdOlSatSoYXURwR7h4eHUqlWLt99+mxs3blgct1b6oTD9+vVDrVYTGxtrsQoqhODKlStOjQmgf//+pKSk8P7771scM15j4MCB6HQ6Zs2aZdFGq9WSlpbm9HUlkrLGv//+S48ePahRowZfffWVQwtTubm5vPTSS0ybNs1kQQoKCuLkyZNotVpTv0WVH+vfvz///PMPW7dutThWUKZdvHiRjRs3mo5ptVree+89ypUrR0REhMP3CgYFuV27dixZsoSkpCSL447ItEcffZTy5cszZ84ci5A1R/soTP/+/RFCWPUEML4Xt0OWSiSlmYEDBwIQFxdntn/ZsmVoNBratWtn9bzXXnuNtm3b0rVrVwCTZdw4LzOWPbQnwxz5znbv3h2AhQsXmh2fP38+AD169LDZvy0GDhzIb7/9xrfffmtxLC0tzSSDbVESMrAwXbp0wdvbm7lz55KdnW12zPhelMR8UmKO05bt7777jh49ehAeHs7gwYOZPXu26ZiLiwsffvgh3bp1s9vHK6+8wnvvvUeXLl0cWpmXSABefvlltm3bxmOPPcbVq1dZs2aN2XFjLe3mzZvTvHlzs2NGd/JGjRrRp08fq/1Pnz6dJk2a8Pjjj5v29e/fn5kzZzJ27FiqV6/OkiVLTMLXFnPmzGHHjh1EREQwatQoGjRoQFJSEps2bWLPnj34+vry2muvsX79erp168YLL7yAv78/K1eu5MyZM2zZssUi7rEoVCoVy5Yto1u3bjRq1IgRI0ZQuXJlEhIS+Omnnyhfvjxffvml3T5q1arF7NmzmTx5MmfPnqVPnz54e3tz5swZtm7dyqhRo0wWf0cZNmwYq1at4qWXXmLfvn20adOGjIwMvv/+e5599ll69+5NREQEo0ePZu7cufz999906dIFFxcXTpw4waZNm1i0aBEDBgxw6roSSWnh/fffJy0tzWSx+fLLL01hL88//zw+Pj6kp6fz6KOPkpqayqRJk/j666/N+qhVq5bVxcdFixYBMH78eNO+7t27M27cOAYNGkTr1q2ZNWsWUVFRdsc4adIkNm/ezOOPP84zzzxDeHg4V69eZdu2bSxevJimTZsyatQolixZwtNPP82BAweoUaMGmzdv5pdffmHhwoV4e3s7/d588MEHPPLIIzRp0oSRI0cSGhrKpUuX+O2337hw4QL//POP3fPLly/PRx99xNChQ2nevDlPPvkkgYGBnDt3jq+//pqHH37Y6kKgPdq3b8/QoUN59913OXHiBF27dkWv17N7927at2/Pc889d1tkqURSmmnWrBnPPPMMy5cvR6vVEhERwc6dO9m0aROTJ0+2CAcE2LdvHxs3bjTLA1OjRg1atGjB008/TWRkJMuWLaNVq1Z2Lc+OfGebNm3K8OHDWbp0KWlpaURERLBv3z5WrlxJnz59aN++vdP3PGnSJLZt20bPnj15+umnCQ8PJyMjg4MHD7J582bOnj1bpOHxVmVgYcqXL8+CBQuIioriwQcfZNCgQfj5+fHPP/+QmZnJypUrS2Q+KSmEsxnVwsPDTbXY8vLyhKIo4sCBA0IIIT7//HNRuXLlIvt47rnnRLVq1US1atXE0KFDxfPPP2/2Zy09v0RiLDdl688e9rKRC2EoAebq6mqqGVuQFStWiBo1aogKFSqIl156ySLzuTX+++8/MWzYMBEYGCjc3NxEaGioGDdunFnW31OnTokBAwYIX19f4e7uLlq2bCm++uors36M2cg3bdpk9X4KZy7+66+/RL9+/USFChWEm5ubqF69uhg4cKD44YcfTG2M2ciTk5Otjn3Lli3ikUceEV5eXsLLy0vUr19fjBs3Thw7dszUJiIiQjRq1Mji3OHDh4vq1aub7cvMzBRTp04VNWvWFC4uLqJSpUpiwIAB4tSpU2btli5dKsLDw4WHh4fw9vYWTZo0Ea+88opITEy0Ok6JpCxgLCNj7c9YB9r4fbf1N3z4cIt+L168KLy9vcW2bdssjm3fvl3Ur19f+Pr6imHDhomMjIwix3nlyhXx3HPPicqVKwtXV1dRpUoVMXz4cJGSkmJqc+nSJTFixAgREBAgXF1dRZMmTSxklD1ZDIjo6GizfadOnRLDhg0TlSpVEi4uLqJy5cqiZ8+eYvPmzaY2xky81sotCmGQo48++qjw8fER7u7uolatWuLpp58W+/fvN7UZPny48PLysjjXKC8LotVqxVtvvSXq168vXF1dRWBgoOjWrZtpLmTEEVkqkdwv5ObmipiYGFG9enXh4uIiateuLRYsWGC1rV6vF61atRIvvfSSxbGTJ0+Ktm3binLlyom2bdtazCWs4ch3Ni8vT8TGxprmKlWrVhWTJ082K7slhEFm9+jRw+IaERERIiIiwmxfenq6mDx5sqhdu7ZwdXUVAQEBonXr1uLtt98Wubm5Qoii56e3IgONc8iffvrJbP+2bdtE69athYeHhyhfvrxo2bKlWL9+vVkbR+aTEsdQhHAum5G7uztffvklnTt3RqfT4eLiwv79+2nevDm7du3i0UcftXBNKIw1F96CKIrC6dOnnRmWRCKRSCQSiUQikUgk9wxO+3D7+/ub3N0Kc/z4cbPEK7Y4c+aMs5eVSCQSiUQikUgkEomk1OB0grQ+ffoQHR1tlklZURQuXrzI22+/XWQtztLIyZMnGTNmDA888AAajcZmfbq0tDReeOEFQkJCcHd3p1atWrzzzjtmbXJzc5k0aRKVKlXCy8uLzp07W81KLZFIJLcLKdMkEklZQso0iURyr+K0ZXvu3Ln88ccfhIWF0aRJEwCeeeYZTp8+Tb169YiJiXG4r5MnT3L8+HGrbuf9+vVzdmi3jcOHD/P111/TqlUr9Hq9qQZdQTIyMmjXrh0ajYYFCxYQFBTE8ePHuX79ulm7F154gQ0bNjB//nwqV67M66+/TseOHTl8+DA+Pj536pYkEsl9jJRpEomkLCFlmkQiuWcpTqB3bm6uWL58uXjqqadE586dxRNPPCE+/vhjs+RP9rh27Zro0KGDUKlUQqVSCUVRhKIoptcqlao4w7pt6HQ60//Dhw+3mhhq2rRpIjQ0VNy4ccNmP+fPnxdqtVosWbLEtO/KlSvCy8tLvPHGGyU7aIlEIrGBlGkSiaQsIWWaRCK5VylWnW0XFxdGjBjBunXr2LFjBxs2bCAqKgpXV1eHzn/11Ve5ePEiu3fvRgjB1q1b2blzJ5GRkdSsWZPff/+9OMO6bThShmnZsmU888wzeHl52WyzY8cO9Hq9WWkpf39/unTpwjfffFMiY5VIJJKikDJNIpGUJaRMk0gk9ypOK9v//POPTYHzzTffmNXDs8X//vc/pk6dSqtWrQAICQmhbdu2LF26lN69e1vEz9zrnD17losXLxIQEECvXr1wc3PD39+fkSNHmhWEP3r0KBUrVsTPz8/s/AYNGnD06NE7PWyJRCKxipRpEomkLCFlmkQiuVs4rWy/+OKL/Pbbb1aP7du3j5dffrnIPi5fvkzVqlVRq9V4eXlx5coV07Hu3bvzv//9z9lh3VUuXrwIwMSJE/Hz8+Obb75hzpw5bNq0iZEjR5rapaam4uvra3G+n58fV69etdl/Tk4O169fN/1du3aN5ORkhHNV2yQSicQhpEyTSCRlCSnTJBLJ3cJpZfvvv//m4YcftnrsoYce4s8//yyyj6pVq5KSkgJAnTp12LZtm+nYb7/9hru7u7PDuqsYE3HUrVuXlStX0rFjR8aMGcPbb7/Nhg0bbrlm+Ny5c/Hx8TH9+fr6UrFiRdLT00ti+BKJRGKGlGkSiWMk/fknsYpCkgNzn7J07dJGaZVp8jOW3CukJyWxMyaG9KSk23aNsvq8O61s5+TkkJuba/OYtczihencuTPff/89YLCUL168mPDwcB566CGio6MZNmyYs8O6qxjdjdq3b2+2v2PHjoAhS6ax3bVr1yzOT01Nxd/f32b/kydP5tq1a6a/8+fPl9TQJRKJxAIp0yQSSVlCyjSJ5Na4kZTErthYbtxGZbus4nTpr2bNmrFq1Sp69eplcWzVqlU0bdq0yD7eeOMNMjMzARg6dCjlypVj8+bNZGVl8f777zN69Ghnh3VXqVWrFm5ubjaPGxcg6tevz6VLl0hNTTWLBzp69Cj169e3eb6bm5vd/iUSiaQkkTJNIpGUJaRMk0gkdwunLduTJ09m69at9OjRg82bN/Prr7+yefNmevToweeff87UqVOL7MPT05OAgADT6759+7J27Vo+++wzxo4d61BWyXsJV1dXunTpwg8//GC2/7vvvgOgefPmAHTp0gWVSsWWLVtMbVJTU9mxYwfdu3e/cwOWSCQSO0iZJpHcO9wJ982yTlmTafKZkEhKD05btnv06MG6deuYNGkSAwcORFEUhBBUqVKFdevW0aNHD4f7+vfff9m/fz/nz5/nmWeeoVKlSpw8eZKgoCC8vb2dHdptIzMz05SB/b///uP69ets3rwZgIiICAIDA4mOjqZ169YMHjyY4cOHc+LECSZPnszgwYOpVasWAFWqVCEqKopJkyahVqupXLkyc+bMwcfHp9RZ8yUSSelFyjSJpPRgdN+s16sX3sHBd3s49yT3m0yTz4REUoq4lSLdR48eFb/88os4evSoU+dlZGSIp556SqjVaqHRaIRKpRIHDhwQQggxYMAAMWnSpFsZVolz5swZAVj9++mnn0ztvv/+e9GiRQvh5uYmKlWqJF5++WWRnZ1t1ld2drZ4+eWXRcWKFYWHh4fo1KmT+Pfff50az7Vr1wQgrl27VhK3J5FI7jOkTJNISobEAwdEDIjE/DnMnbzGnbh2aaGsyjT52UvuFe6mrCvtOG3ZLki9evWKdd7EiRP58ccf+eabb2jTpg1eXl6mY927d2fBggW8+eabtzK0EqVGjRoOlW/o2LEjf/zxh902bm5uvP3227z99tslNTyJRCJxCinTJBJJWULKNInk9qJKSyYi2LCVOEexlO1jx46xZcsWLly4YJF9XFEU4uLi7J6/efNm3nrrLbp06YJOpzM7VqNGDc6ePVucYUkkEolEIpFIJBKJpARRXUuhXQgkX0u520MpdTitbK9evZoRI0bg7u5O9erVcXV1NTuuKEqRfdy4cYNgGzEmGRkZzg5JIpFIJBKJpNSSnpTEgSVLCB89WsbgSiSSMoGUawacVrZnzZrFgAEDWL58OZ6ensW6aFhYGFu2bKFLly4Wx77++mtatGhRrH4lEolEIpFIShsy4ZVEIilrSLlmwGllOzExkY8++qjYijbA9OnT6d27N5mZmTz++OMoisK+fftYv349y5cvN2WUlEgkEmdIT0rir+XLafbMM/e1YJdIJBKJRCKR3H2cLmjdtm1bDh06dEsX7dGjBxs2bGDPnj306dMHIQTPPvssGzduZO3atXTs2PGW+pdIJPcfQgi8AgNpO3UqXoGBDiXLkUgkkiJJSYIlMYatRHKHcbkF45ZEIrn7OG3ZnjNnDkOGDMHd3Z3OnTvj6+tr0cbf37/IfgYMGMCAAQM4fvw4KSkp+Pv7U79+fWeHI5FIJAi9nvTERA4sWcLVU6fwr1XLECMUEoKicnpNUSKRSG6SkgQfx0JELwi4tzxmpCJWdhFCEBQWxpSMDPRaLUIIh/IiSSSSewunle3mzZsDMHbsWJtf+sIZxu1Rt25d6tat6+wwJBKJBDAo2vFr1rAtMhK9Vmvav2fePHrFxRE2ZIhUuCUSyR3ldicGkopY2UYuIEskZQenle3ly5eXiEA/f/48n3/+OefPn7daPmzRokW3fA2JRFK2EUKQnphooWgD6LVatkVGUrNjR8MERU5EJRLJHcJWYqCSUMKlIla2cWQBWePhcRdHKJFInMFpZfvpp5++5Yt++umnDB06FL1eT8WKFa2WD5PKtkQiKQqh13NgyRILRduIXqvlwOLFRMTEoKjVd3h0EolEYs6tZOfVeHhIT54yjqMLyF6BgXdphBKJxFnuikSeMmUKffr0ISUlhYSEBM6cOWP2d/r06bsxLIlEUspQqdVcPXXKbpvU06dRSUVbIpGUcrwCA4tUxNKTkmRyyFKMowvI7lbyJUkkknsTpy3bAD///DNLly7l+PHjFi7gAPHx8XbPT05OZtSoUfj4+BTn8hKJ5D5GCIHQ61Gp1eh1Ovxr1bLb3i80FL1OJxVuiURSelEU3H192RUbKz15yjAOLyBrNNKVXCIpJTht2f7222/p0KEDKSkp7N+/n6pVqxIQEMCxY8fIyMigRYsWRfbRtWtXfv/992INWCKR3L8IvZ70hAR2xcSwZdAgLv3zD+GjR6PSWF83VGk0hI8ZI90qJRJJqcbFwwOVRiM9eco4Di8ga7Vos7Lu0KgkEsmt4LRlOzo6mgkTJvDGG2/g4uLCrFmzaN68Of/99x+PPvooHTp0KLKPxYsX88QTT5CZmUnHjh2tlg8zZj2XSCQSsJ40JvnwYUbu389jy5bxZVSUmcVHpdHQa/lyvIODZXI0iURSbDKSk/Eybu9ShdK8rCz0Wq305CnjKCoV4aNHs2fePKseDMYF5Oy0tDs/OMn9QUoSbFkC/Uffc6UOSytOm3v+/fdfunXrhkqlQlEUMjIyAKhevToxMTHMnj27yD7S09PJzMxk7ty5dO7cmQcffND016JFCx588EHn70QikZRK0pOS2BkTQ3pSks02tpLGXIqP5/Nhw2gyaBDjz56l7bRpNBk0iLbTpjH+7FnCBg+WVm2JRHJLZKakmG0dQZWWTESwYVsiCEF2Wpr05CnjKIqCd0gIveLiLD7nggvIGckl9FxJ7ltszr1SkuDjWMNWUiI4bdl2d3dHr9ejKArBwcGcOnWKNm3aAODt7c358+eL7GPYsGGcO3eO9957j7p161pkI5dIJGWLwnHWSv5iHdjOzlvwHHtJYw5t2EDykSP0Wr6ciJgYwzW0WhS1Wlq0JRLJXUF1LYV2IZB8zXEF3cXT0+7xjORkAurVo1dcnMXCo/TkKTsoKhVhQ4ZQs2NHDixeTOrp0/iFhhI+Zozh81WppAu5xDHsWKlvpTKCxDmcVrabNm3KsWPH6Ny5Mx07duT1118nICAAFxcXpk2bRpMmTYrsY9++faxbt44+ffoUZ8wSiaQUUZyasAXPuXbhAn0++cRurOKl+Hh+nz+ffmvXAti0/EgkEoktSqIGdnEQQhAUFsaUjAz0Wi1CCKsKszYryyFFTFL6UVQqvENCiIiORqXRyAVkSfEwWqkjekmX8LuI0zPSCRMmcObMGQDmzJnDY489Rq9evQCoUqUKW7duLbKPOnXqoLWRTVMikZQdHKkJWzijqsU5ikKPDz6QsYoSieS2UhxLz626izu6GFnQ6i0VsfsDRVG4GB/PJ23aMGL3boJlLiOJpFTi9BJo9+7dGTduHACVK1fmwIEDHDt2jL///puTJ08SHh5eZB/z58/n9ddf5+jRo86PWCKR3NOkJyXx8+uvk5uZ6VBNWK/AQNNE0mpsthAc2riRZpGRMlZRIpHcU6iupdAu1BOVNXdxd9tu4RoPD9PC4qKaNfl59mwOrV/Pz7Nns6hmTeLXrEHo9WZW76CwMFMNbUVRuBQfzxwvLy7Fx0tFuwyTl5l5t4cgkdjEkbw79ztOz0xnzpxJYmKi6bWiKNSpU4ewsDCuXLnCzJkzi+xjwoQJXLhwgcaNG1OtWjXCwsLM/po2berssCQSyT2AEAKvgADaTp2Kxs3NZpw1QGDDhmRcuoS7n9/NiaSN2Oy9CxfiXbkyjy1bZjdpjJxwSiSSO4UQggo9H4c9GVTo+bhJEUYIAvL3B/R8HIz7C+AVGGh3MfLUjh0AhlKHsbFsGTSIXbGxpCckIPR6U1upiEkkkruJ0SPohlS2beK0G3lsbCxdu3YlJCTE4lhiYiKxsbHMmDHDbh/h4eFyUiyRlHYKJd5wJs668ZNP0mfVKtITE9kVE8PVU6cIqF+fiBkzrJ5jzDreZ9UqarZvz58ffyxjFSUSyV3Dmvt3qwkT8PDzQ0lJRNmyBC6cQqlSK19GhoBRRikK7r6+7IqNtboYGRQWRu9PPuGf1astShraC8GRSCQSyb2H08q2rcQdAElJSVZrZhdmxYoVzl5WIpHca6Qkweq3oMsTCP+gm3HWOh0unp4246yDwsLos2oVB9etM59IKgqtJ060GZttNet4oczmEolEUhS3mgjNWi6KoLAwImbMgG9Ww6wo0BVQolfMgxlx0M2gILt4eKDSaGwuRraaMIH0hAQLRRtuhuDU7NgRr8BAp8cukUgkkjuLQ6ag9evX06tXL3r16oWiKLz88sum18a/Ll26MGzYMFq3bn27x3zPsm3bNlq1aoW3tzfBwcEMHDiQ06dPW7SLi4ujbt26uLu707RpU7766qu7MFqJpGhsxuIIgajdBPZkIKrVIS8rixPffEPPpUuZeuMGU27cQO2iofUrr1gkdbE5kXQgNjv5yBHKVapksmKrZFKg24qUaZKyyK24PVrNK4FBronLCSiFFW0wvJ4ZCSmGHBV5WVnotVrrC4uKQuMnnuCvuDibITh6rZYDixfj7oBxQ2KOlGkSieRO45CynZubS3p6Ounp6QghyMjIML02/imKwrBhw1iyZMntHvM9yc6dO+nbty8NGzZk69atLFy4kH/++YcuXbqQVaAe4oYNGxg5ciRPPPEE27dv56GHHqJv3778/vvvd3H0Eol1rE5K9XpITkD5eCZMHYSyNBZNbhb9162jadcOaFbOhamDUC2bhWvmNUbu20eTwYMN5xYxkZSx2fcOUqZJJJZYzSuhKDR54gnU2+IsFW0jOi1sWYyHry8IQXZaGuGjR1vIORcPD1w8Pe2WOgRIPX0alUYjXcmdQMo0iURyN3DIjXz48OEMHz4cgPbt2/PRRx9Rv3792zqw0saGDRuoXr06y5cvNykCFStWpEOHDuzfv582bdoAEB0dzZNPPsmsWbMAw/sZHx/PzJkz+eabb+7a+CUSa6jSkmkf6nmzrI1eD9vXGKw0xkllnTBUI2cgvlmNqpBVR1kxDzEjjr6rVlHloYdIOnDA7kTSGJvdd/VqQjt1knVk7yJSpkkkhVCrUanVFvLLxcMDjacnXLCvIJNwGiVfQc5ITiagXj16xcWZWcnzsrLIy8x0rNShVou2gJIosY+UaRKJ5G7gdMz2Tz/9ZHV/bm4urq6utzyg0kpeXh7e3t5mFjcfHx8AU4bS06dPc/z4cd544w2zc5988kkmTZpETk4Obm5ud27QEokdhBAEtmlP0KkM9Hm5hnwNKYnmijbAUxPAjvukMjMS8WAHHhw7FkWlQq/T2Z1IHtqwgaqPPEKLsWNlbPZdRMo0iaQQOp1V+ZWXlYU2MxNNFfsKMpVDEVotiqKgzcpCUakIGzKEmh07mi0sCiEIHz2aPfPmWfUAMpY6zE5LK8GbK/tImSaRSO4GTpuIVq9ezXvvvWd6fejQIerUqYOnpyft2rXj8uXLds8XQnD16lVycnKcH+09zNNPP82RI0f48MMPuXbtGqdPn2bKlCk0a9aMhx9+GMBUV7ywV0CDBg3Izc3lzJkzd3zcEok1hF5vKDkzc5ah5Mys2aDXGbKP68zdJ+nyBHxh331S2bIEyK8Pq1JZdZ80otJoqN+nD4qioFKrDftkbPYdR8o0icQSq/JLCA5u3IiuVySobdgw1BpE/zGgUpnVzFZUKrxDQoiIjqbf2rVEREfj4umJd0gIveLi7IbTZCQn38Y7LXtImSaRSO4GTivbb731FqoCbpzPP/88rq6uLFy4kKSkJKZMmWL3/Ly8PCpWrMj333/v/GjvYdq0acPWrVt57bXX8PX1pVatWly6dInt27ejzlcYUlNTASwytvv5+QFw9epVq33n5ORw/fp1sz+J5HZhzLS7qGZNfp49m0Pr1/PbO++gqDWWbpJuHuDuoPukyvA9UBTFoYmkVK7vLlKmSSSW2JJfexcuRKlYGTF9maXCrdYgopdDQDB/fPSRRc1sRVG4FB/PHC8vLsXHoyiKyeo9/uxZ2k6bRpNBg2g7bRrjz54lbPBgFJVKupA7SVmTaS6enrf9GhKJGe63/5kri8+1027kZ8+epWHDhgCkpKSwe/duvvrqK7p27UpgYCATJ060e76rqytVqlRBp9MVb8T3KL/++itDhw5l5MiR9OzZkytXrjBr1ix69OjB7t278biFJCZz584lNja2BEcrkVjHVqZdm26SOVmQnQkOuE+i14FR4bbhPinjsu8dpEyTSApQYJJpS35lp6fj0X0oomUnlC2LIeG0wXW8/xioUImtw4ZxcO1aUz+Fa2bnZWaaXbKg1Vul0aDXalGkl0+xKSsyTQhBUFgYUzIy0Gu1dkvySiQlgRCCCj0fh76DqWAMKyzhZ64sP9dOK9sqlYrc3FzAEL/t4uJC+/btAQgODubKlStF9jFu3Djmz59Ply5dcHd3d3YI9yQvvPACHTp04J133jHt+7//+z+qVavG6tWrGTVqlGll9Nq1a1SqVMnUzriS6u/vb7XvyZMn89JLL5leX79+napVq96O25Dc51jNtAsmN8mmfaJQrZh302VcCNixEXpHGmrJWnMlV2ug/xhQzBVoOZG8t5EyTSKxPck0ya8Z01G5uKLPy0XRuIAQ5Hn6oImchsrVDaHVkpedzYqWLUn680+zvh2pma0oChfj4/mkTRtG7N5tUUpR4jhlQaYJvZ70xEQOLFnC1VOn8K9Vy1AvPiRELlJLLMhITsbLuC1mXmuh15OXlYXGJV9lFIK8zExcPDxK7Jkr68+108p206ZN+fDDD6lSpQrvvvsuHTp0MCWLOHfuHBUrViyyj3PnznH8+HGqVatGu3btCAoKMptgK4rCokWLnB3aXeXIkSP07t3bbF+VKlUICAjgVH7mUmMM0NGjR6lXr56p3dGjR3F1dSU0NNRq325ubjIhh+SOYC3TrpGT33zDA8OHI6YvM0+Gtn4hdB9iuR8Mina++yRWlGg5kbx3kTJNcr9RuPqCaQK4dCnXzp/Hp2pVwkeNMk0AC0o0RVFACI5//TWf9uuHXqfDxdOTSZcv88sbb1go2kaMNbMjoqPtjq2w1VviPKVZpmk8PEwhXoU9zwp6SJQFxURScmSmpOBVYOsUboZnDiFQpyWj2hYHF06hqlILda9IcK+K0OuLLD9YlFv4/fBcO61sz5kzh549exIWFoa3t7dZ7PXWrVtp2bJlkX189dVXJsH0xx9/WBwvjcp29erV+bPQj+l///1HSkoKNWrUACA0NJS6deuyadMmM4G/ceNGOnbseF9nc5fcG9jLFF67e3cyr1zB49FB6Ju3Q/3FMpObpD49DcWK+yT9xxgU7SIEpZxI3ntImSa5nzCvvpCH0Os5/vXXZF29QpvXXkPj6Yk2M5NDmz6lYuMmBDdrhpKSaEj+eOEUSpVaiH6jqdO1Kw0HDODQhg0ghKyZfQ9RmmWaV2Cg1RAvMPeQcPfz49c33zRYBYOD78pYJbeP9KQkDixZckc+X1Eh37Nj+xrUhQwp6hXzDPkpug+lXAEPELPz7biFG++j9SuvkH31apHPtXdISKn2enRa2X744YdNlulatWqZJZGIjIykdu3aRfZRFrM5jhkzhgkTJjB+/Hgee+wxrly5wuzZs6lYsSIDBw40tYuJiWHw4MHUqlWL9u3bs3HjRvbu3cvPP/98F0cvkRgwZtq1KDmjKDR+4gn2zJ3LsW3baDV+PE2GTzZNQA9u2MDJ7dt55LXXqDQqBkWtBq0W1GqrFm3JvY+UaZL7hcIujK0nTsSnenXqdO2KuJyAeuVcuHAKTZVaNOk3BlVgMGxfY1EGUVkxD6Yvo++qVSQfOcKlgwdlzex7iFIr0xQFd19fdsXGWi0FB+YeErtiY6nXq5dUtssgN5KS7sznqyhQzgdx6QIqW2VdZ0Whb9EB94qVLU4vyi38RlISu2bOpO20adZDF/MxPdcx+fPKUorTyjaAt7c34eHhFvu7d+9+ywMqrbzwwgu4ubnx0UcfERcXh7e3Nw899BCbNm2iQoUKpnZPPfUUmZmZzJs3j3nz5lGvXj22bt3KQw89dBdHL5EYKJhpt+BKo4uHh8lCcyk+nm2RkWyLisKlUFIftasr/dauhY4B8MEOqF+0W3i54GAioqMpJycG9xRSpknKOlZdcxWFXnFxaFxc4H9rLSaa6iq1EA92QCmkaAM3J6DN29Fq/Hi2RUZyaONGmkVGyprZ9wClVaa5eHig0mikh0QZozhWalVaMhHBmEJdbhvunigIlM8/tlvWVbV1KYyOMXvmHHEL13h4OPdcl2JFGxxUtufPn8/gwYMJCgpi/vz5dtsqisKLL75YZJ8JCQksXLiQPXv2cPXqVfz9/WnTpg3jx4+ncmXLVZJ7HUVRGDNmDGPGjCmybWRkJJGRkXdgVBKJYxQW+haZdmvVQq/Vmlto8pNkFMRooVFdKzpRohHv4GDaxcSU0J1ISgop0ySlgVtxq7Tmmuvi4YGLuzv6i+csLTqKAp0Honwy1+4EVP3FMpoMn8y2yEj2LlxI2JAhPLZsGV9GRZlNPguWOkw5dszpe5c4R2mVaXlZWZa/v1aQHhKli+JYqVXXUmgXAsnXUm7z6DBUj3GgrKuxygzYrmgDlgkhnXqudbpSrXA7pGxPnDiRRx55hKCgoCJLezmibB86dIi2bduSl5dH586deeCBB7h06RKLFy8mLi6On3/+mUaNGjl+FxKJ5JYoLPStZtpVq627mOdjtNAoebkwMtoQqy2RSCS3kWJNWNOSiQhRcPfxYdeiReZlDrOzEXo9qs+XWSrUbh6GEmAOTEA1np5oPDy4FB/P58OG0WfVKkI7dbJZ6lAqSBKbCEF2WppDv7/SQ+I+JSUJtiyB/qNLZu6VnYnQaVEcKOsqdDqT/LJZ0SYfs4SQTjzXpT1BmkOj1+v1psRner3e7p8j9bMnTpxIrVq1OHfuHJ999hkfffQRn332Gf/99x+hoaFFKvQSiaRkseaapOT/Ffzf6GKu0piv0xW00CgenjA6RirbEonknkR1LYV2NT1QubhYuDC6uLsbYgOtKdQ5WZCdCQ5MQLWZmaYJ6JHNmzn57bd454fM9Fu7lojo6DJT1kZy+8lITnbo9zcj+Ta7F0vuCOlJSeyMiSE9KcmxE1KS4ONYw7YkEAIl8wai/2hDVRlrqDWI/mPIvn4dMOT8sVfRxkjBcAdHn+vSnBwNihmzfavs2bOHtWvXmuoZGvHz82Pq1KkMHTr0bgxLIrlvsXBN0uuhUKZd+o9GCQixdDEvZKGRSCSSe56cLPR5uRYujHlZWWizstBYU6iFgB0boXckrJhn3ZU8fwKa/O+/NBk0yEI+Xvz7b1nqUOI02qwsFJWqyN9fex4SdzKT9W2lpK249yCZ/8bD0lgy2z509z6rlCSU6vUQM+Isc1SoNYjo5SgBwdzID4ERer3dijZGCoY7OPpcl3YcUradzcDYtm1b+xfVaMjJybF6LCcnB3Up9suXSEoz6vK+BkXbSqZdVsyDGXEo3YYYXMyjo1FpNOi1WhS1utSvPEokkvsINw9yEs9bujAKwcENG2jaJwqVNYV6/ULoPgRmxFnKSLUGopdDQDBB/kH0W7vWqnyUpQ4lxcUU4lWM3987lsn6dmO04kb0Mle2y5ASfkdjs22RkwUqFUq3IYgHO5qVdRX9x6Dkl3XVZmWZamnbrGiTj61wh1t5rksDDi0XtGvXjvbt29OuXTvT/8a/wq/bt29fZH+dOnVi6tSpHD9+3Gz/iRMnmD59Op07dy7e3UgkEvukJMGSGOuuRu6eeNauDymJlpNIMLyeGWlY7QQuxcczx8uLS/HxZUYgSiSSssGNw39z9ql23Dj8t9l+IQQVej4OezJwC6lm1YVx78KFEBCCmB5n6UJ5+ggc/B26DYEvz0LkNOg6yLD98ix0HYyiUt0R+SgrOdyfKIoif3+tUdKu1PcBRiXZLioVSmAIImo6zF6LiJqOEhgCKpVZLe2gsDDAsXBDa+EOZfm5dsiy/ddff5n+v3z5MpGRkbRv354BAwYQFBTEpUuX2LRpEzt37iQuLq7I/ubPn09ERAQNGzakcePGBAUFcfnyZQ4ePEi1atWKzHgukUiKiZUVYdPks+9g3HQ6WBpjN9MuWxYbYrKRFhqJRHJvknX8MDVO7CL5+GHKNXoAsF77tdWECVZdGLPT0/HoPgRadjTIvHyLDv3HGGSnSgX5E1DFxRWRl4uicTFkLM/HGflYHMVZVnK4v5G/v3eeUumK726pUBdUkvVaLUII+8qtopDy1SYC3xlFystLCew72G4t7VsJdyiLz7VDynbTpk1N/w8YMIAnn3ySN99806zNY489xqRJk/joo4+KtExXq1aNgwcPsnz5cvbs2UNqaip169blmWeeYcSIEZQrV64YtyKRSJxF6PXkZWWhcTGIApuJgQpiLPVQhlYdJRJJ2cZe7deBn31G3R49iJgxA5WLi6H6gsbFMPm0p1BbmYAWF6k4SyT3PiXpin/ba2YLQUC+ISUgL9eQc0JR7CrJRcZHZ2eiLu/rUC3tsuwW7ixOR51/++23NpXpLl268N133znUT7ly5XjhhRf49NNP+e6779i4cSPPP/+8VLQlkjuBmwdCrwchUKclo4qbDdMGQ26OQ5l20esMglsikUjucSxqvyqKwX1SUdBrteyKiSEvKwtFZZgIFqzEYFSoecTLsLU2Wcwue5YYiURSMtjKLG6My1bdjrhsvR6SE1CWzYKpgwzb5ASEXs+5PXtYVLMmP8+ezaH16/l59mwW1axJ/Jo1hnmhm4fdrj1q1y+ylrbxXsuqW7izOK1slytXjh9++MHqse+++04qyxLJvY67J6JCJcP/29eg7lcHlr8OOz+H/60zZNq1U+qB/mNAKf3ZISUSSenB6VI4BTDWfg1s2JBey5cz9cYNpmRkMPXGDYb/9BNRv/+O5voVlKWxZhNT9PqbnUiFWiKR2MNGThyjNfxGMWSX07h53Exy+1hNiJsN3643bB+rCdvXUPWhhwhs2NDstIJKsvALtN2/ouAWUtWhWtoiX36WRbdwZ3F6xjxu3DjefPNNRowYwRdffMFvv/3GF198wdNPP80777zDuHHjrJ5Xvnx5Dhw4AIC3tzfly5e3+efj43NrdyWR3Mfk5CRx5kwMOTmFBLsQUDsM9mRAOR/DqueGd2HqUth9w7C/65NQqSq8ucVS4S6QaRdFkcl5JBLJHaPYE1a1GpVajWfFiozav5+wLu3RrJwHMSPQfPUJ1du2QdmxHlWfWlYnpuj1hioNEolEYo+7maAtJxnCgfLedpPcKjMjEcmJtBo/3qILk5Jcztf2ddw8ULm4OlZLWy3DDY04XWd72rRp+Pr6Mm/ePFauXImiKAghCA4OZuHChTz//PNWz3v55ZcJzp+Uv/zyy/e1O4FEcjvJzU3iv/9iCQjohZtbviKcXzebLUsg4TTKjOUQ/xus+B0yEuDgXLh+CsrXgnpR0LYn7LgI6xZaTwyEjDGUSCSlAJ0OvU5Hy7Fj4ZdvUKVfhRGvGZIGaXNRsjJh/SLb1Rce7IhHrXp3Z+wSieTucC+XEbOS8IzcFAhXwKcifDzLbpJb9RfLaDJ8MtsiIy0Op54+bcgi7lPB+vk5Wejzch2rpa2T4YZGnFa2AZ577jmeffZZLly4QFJSEsHBwVSpUgWVncD66OhowBA79cILL+Dl5YWbm1vxRi2RSByncN1sd0+YvRY69IOTa+HnKBAFBPPf86DtMqgzxJB1XKUGrRbkKqVEcme4lyd6txlb2X7tJROyVr5GpUuFhzxR6VINSX+uX0V5uJvl4mL9kYZFx+hh8O0G807yqy+4R00v8fuUSCR3EGdlqq1a3neRgpVjKuTlWmYQ13iAxtWhJLcaT080Hh5mWcGDwsJ46OWXETodyg8phnlfflK1AoMgJ/G8Q7W0i0y2dh9R7HdCpVJRrVo1WrVqRbVq1ewq2gXJy8ujYsWKfP/998W9tEQisUdaMiqVJ6QlGwRlYZeinCzQ5kFmoqWiDYbXP0dBRiICBR7xgpPxUtGWSO4U93G9WFvu4taSCRWu8SryrShCCPx6j4T3MgxboUcp5wOn1sGndeCv2XBqvWG7oZZhf+wqqBNmOaCE0ygurkUmDZJIbgcyXKuEKOUyVej1pCcksGvmLLYMGsSumbNIT0gwxUUbUECb61CSW21mppmi3fjJJxm1fz+VKldEWRoDUwcZ3q/CuSuArJNHHaqlLT2Yb1Isy/at4OrqSpUqVdDpdHf60hJJmUcIgVfl9rStmoFen7/yufMLKy5FAo5+bKlomw5r4ehSlPAYmRhIIpHcc9iqme3h52dWzhABiqKCG+fsLy5WagdPjTcsTBakcqih5FeO7bqwEsntQoZr3d8UVWbLWLZQaTYQHhxsqBTTfzSsmGfdlVytQfQbzaFPN5p2BYWF0XfVKpRv16HMijI/b8U8mBEH3YaYclforqehqFRF1tKW3OSOK9tgSLI2f/58unTpgru7+90YgkRS5hBCT25uIomJS8jKOoWHRy1CQkbj2n80yj97brpIuuW7Gl0vwtUoPb+etrToSCSSewRbk8+gsDAioqNBCDToya/ihUoxyEbl2DL7i4vHl0GXyebKdn71heyEc9xNKSitmxLJnSUjORkv47b+zf23vTZ2ISzKbCkKLh4e5GVl0XDAAOp07QrZWWBcXNTrICAE3voMJvUzV5yNSW4DQ6jdrTttp00j9fRpHnr5ZZSrlywVbbCbu0JRqWQtbQe5K8r2uXPnOH78ONWqVaNdu3YEBQWZfTiKorBo0aK7MTSJpNRgjG18cNw4PAMqcOnSGo4di0QUmFCeOzePenWXERS7CuX0ETgRb3Ajz840xCvawzvUIGilRUciKXtkJsGRJdBwNHiWHiXOVo3XdrGx+dYUgUp7BY7EGRYUfeujhM9wbHHR3dOwuJiTZVZ9Ieun7XdV2ZbWTYnk1rClPNsiMyUFrwJbI8ZwlmQnamPbUtAL5pWwOEeXCi0MZbZ+nzmLwIYNaTVhAk2eeAKNpyfarCzUbm6AQMlMhsNx5klu2/SAHZdg3QKLJLeKSoVXxYpEzJiOysXVEKO9NMZuUjVbuSsUReFifDyftGnDiN27CW7e3OH35X7irijbX331FW5ubri5ufHHH39YHJfKtkRSNMbYxpbPPUdubqKFog0ghJZjx6Pw822P61PjUWZGGuK4d2yEiEhDMjRr1h5FAw3HQHranbkZiURyZ8lMgj9joUav26ds20pKZEfRtzsxbe1lmnyaJeZRFOr26AEKKMfXFHIXV6DpRMcWF/NyoH1fi+oLuutpxX8PJBLJncFY/irH0upsS3nO+Os78j4dicvAj/Fq1vmWLm/TGm5NQRcC/94jYcBz+OflWCQiU+nToKWhzJaxbKG4nIB65Vy4cApN5HREzXpW5B03k9zWHYoYFY2i1hhCYTQupmsoikLKV5sI/GACyvfJDiVVs5e7QtbStk+JONVnZmZy8uRJU3KSojhz5ozdv9OnT5fEsCSSso+i4O7vS2LiEgtF24gQWhIvfgxdnzIIWndP2LAIvCojIpYZFGuzPjXQbrlhEpx6Z1ylJBJJGcRGUqLMgzvhz1jDthCaqydo95hha8I4MX33Biq1mpodOxIUlp/MTFHwDAhApVaj3LhgJS5bwKmNUD/SUtYZyV9cFCoNzF6LiJoOgSGmMocSiaQUkJtiULZzHbc6557Yi2/N/8g9sdeh9ipdKoRj1RqdmZJitrWJXo9ITkBZNhumDkJZNhthJREZWkOZrZZjx6J8uw51vzoQNxt2bIBqtW3IO27mobiRAIpBhon8PwuuXUHkOZZUTeTllqino7UqEmUVp39J3n77bWJjY02vd+/eTeXKlalXrx516tThVBGFziUSScnh4uGBSqUhK8v+9y4r6zSKqwf8mgV7MmDlXoNlqM5QxKCz0Gwa1B5k2A46C7UHG4S0dCGXSCQlTM5/p8y2BVHp0wyTWX2aYYdeD8kJKMteh5gRsCSWavVCGbV/P8N/+ompGTeYdPkydpM+HlwIXpWhiMXF1J3/g0e8SPlqk8PVF/Q+AexMNGwlEol10pOS2BkTQ3qS49nAi3NOSWFLqbaQT0705VJOZVC0t69BeaymQXH+dj3EzUZ5rCZi+xpzhVvjgchOhysXb8ZTKwr4BoBa5ViSW0Xw+dNP28hejqmUF/1HG0JnrFEgd0VJYKuKRFnGaWV72bJlVKlSxfT6pZdeolGjRnzxxRcEBAQwZcoUh/pJSUlh6tSpdOrUiUaNGtGpUyemTZtGcrK0pEkkjqBKS6a1XzZC6PDwsL8q6eERarB8/z0bfhgEf89GyUtG6HSkXcpBhMdAh7WIZtPBM8S0GiqRSCTFxo5bp100nqh9Khomnnu+hn3fw4jXIOYTGPEaqqQzKGoV1VvURnNoLvw0wpDM0VZc9tV4+GmYYRHRzuKi7nqa1eoLngEBZtuC6H0D2ZVk2EokEutk/hsPS2MNWwexVQbwTlBspdpKDLaxL88GzREpiYZwPqPi7O5p2Oq0KDMjEfklW337ToJnMlB5+qJ8tgRCG8KM5bD7Bnx3GRQ78s5I+mlQ1Bz+9FN+nj2bRTVrEr9mjYXCnXnyqCGp2ow4S4W7YO6KU8ccfi9sYSphFhtrKGEWG2t9EaCM4XTM9vnz56lduzYACQkJHDhwgF27dtGmTRu0Wi1jx44tso+9e/fStWtX9Ho9nTp1om7duly6dIn33nuP9957jx07dtCqVSvn70YiuY/QXD1Bu2FVEagIqRTFuXPzrLqSK4qGkODRcHy1oa6scX9+XI9P7cEoKjV0DCDluUUE9h18J29DIpGUdmzEZmddOoFHeP6WR83P0Vi6EAoh8Ok7CVym4a3TItJTUVp3hYwEODgPbpyHwBbQbAzKibWwKzLfsqNAmw/sx2Wf2gBBj0DDsYhm01A0bghtDoratUgrtldgoNn2VpCZxSX3I6prKbQL9XQqsVixsCJX7ghFxGCj8cIluBbK0liD4vzUBOjyhEHZzs405NH57yiKTwWDi/mWpXD1EsrUJeBfEVbvz5eDc+H6aYM3jgN5KPTaXFM9bb1Wy7bISGp27Ih3SIipme56miFkptsQeLAjbFlskVTtVnNXaDw87JYw6xUXR9iQIWg8ymb1G6fNVx4eHly/fh2AH374gXLlytG6dWsAfH19uXbtWpF9jBs3jkaNGnH+/Hm2bNnChx9+yJYtWzh37hyNGjXiueeec3ZYpYajR4/SuXNnvLy8qFSpEq+88gq5ubl3e1iS0oYQ+PcbC3POogg9rm6VqVd3GUohF0lF0VCv3nJcXYNQDi4s1IcW5ecoyExC6PWcrdgYj7qN7tw9SMoMUq7d59iIzc5OSzPbAgarTT+D1ca33yTDpBSDxcNQOiZfhikKircvXNiOuLgT0ew1aP8JouFIRF4mHFxUwIXSwbjsmn1AUUj77C1Y7mXY3uEyNcbM4t5S2b6nkTKteFh1/RaCgJ6Pw54Mw7ag23BKEiyJsZAd9sjI94DNKOgJKwQ0exyeyTBsnXFNdlZBL1fN/HWhUBdl2etgjME2ybsbKCoFHn0K1uyHiPYGxfmHQYZtu/bw3Fw4/g+K0ZNn6hJDKa/Hn4VT6+DTOgaDyal1cHJdkfJONBzD8a++Nh+qVsuBxYutW5JVKkOuipHRMHutYVtCuSu8AgOtVpEwjmlbZCTpSUklsqB5L+K0Zbtly5bMmzcPlUrFW2+9Rbdu3VCr1QCcOnWKypUrF9nH4cOH2bRpE+XLlzfb7+Pjw2uvvcYTTzzh7LBKBampqXTo0IE6derw2WefkZCQwEsvvURmZibvv//+3R6e5F4lJQm+WA69nzGsMAo9ZCSi/LvUYOlp/DyKd3WCggbh59uOxIvLyMo6jYdHKCEhY3B1CUL5aajBlbIwQovq6FJEeAw11u+847cmKf1IuVbGsJEp3FhqMHz0aEtF0Z67eMGJrNBDZiLKkSVw/RRK+VrQcDTCMwQUUOVcQvk3/1jYRPCujqjWjdycBBLPzyUr6xQeHrUICR6Ja9/fUX4aZrBYgyEuu84QQ1z2rkJJgwomfTQq11rn3MVtIS3VZQ8p0wzY/c7bwOj6Xa9XL8M5ej2kJKJsWQIXTqFUqZXvAZOvxBkX6iJ6mVcssENmSgpe7p43M4vnX4P8a1D4GrYwKsKaafhqrVij3QMKNRf4DpgMqmn46nUIIVCEMIS6XL9iUJCNluojfxjuJzMR5cjSm145jcbCiTX5Xjk60HiANsuQQbznD1D/EahcId+CfQrCJoJHRctEaEXIO9FuOcI9iJ3RMRa3nXr6NCq1GvJ1NzMUBU7GQ1QbWLYb6pdAKS9Fwd3Xl12xsRaKthHjIkBEdPStX+8exGll++2336Znz5489thjVK9enddff910bOPGjSYrtz1q165NWsGV7gJcu3aN0NBQZ4dVKli8eDHXr19n69at+Pv7A6DVann22WeZMmUKIQXcOiSlnJKqYSsEwrcCSuRUhDYPRejhv68QOVeh2WsoGk+ENgtUrihJu3G9cYYatSbn788EtQfKvsk3J6TWSD9tcCO3RkCwYXXTwR9Byf2HlGullNRkgyKcmgwF55Q2SoJl/hcPB2LJ/O8hy4m3tSzAZhPZXIOibW2See4b6LsPTq5FMR3zhIg4hMqFS5fWcux4lFmIzLlz86hXdxlB7VehpB4xLCQa47Lbr4KQ9vDvx4aYRe9QQxlDz+Aic1EUx11c1sAue0iZZsBCcXYCjYeHQQnevgaMMcpGVswzxAd3G2KzlJRNjFbyvoMJyMtz7BpGhdu96IU/PEMAxUypRggEwszIoZSrimgwCuEVgvJwN8M8TKNGAYSrBpq1QUncjbhx5uZcTZ8LeRko575BtF0KtZ64OVe7sAMl6KECMjI/PCZiGfw11zIRmpm86wD/LjXJO9FgNMI9iK1DhnIp3tLI4hcail6nA53O9vtsJXdFcXHx8ECl0XC1iATaqadPo9JoyqQrudPKdsOGDTl9+jRXrlyhQoUKZsfeeecdKlWqVGQfb731FuPGjaNq1apERESY9u/cuZOYmJgyu3K4fft2OnXqZBLeAAMHDmTMmDHs2LGDp59++u4NTlKyFKeGbWYSHF0O9Z8xnKPXQ04WisbwNVVUashJtW7pqRSFa0hblJww+GseZFxA8aoC4TNA5WL/ut6hhgmuYkXhDgiG0THO3bvkvkLKtduEu5Oujc4gBKJme5Q6GQhtrsE6YxZfaHltVV4K7fp6kpxnI+aykAXbsAiYP8VQqRDaLOuTzBsXULIuwsFF5seEntycBAtF2zB8LceOR+Hn2w7XJuMNSjoYFhVTj0DEckR4DIpKbTUuW6/yhQOg7+xbjDfPMaTFu/QiZdqt4xUYaLA2F1aCwfB6ZqQhPtjPCbfhwlbyIRMN8cz2rvHQo+BX0VxBN1v4K3Be+hlotxKyblqjlcAWiEZj4b+vIecKwmTkyIQL36N4hiBUCrn6KySeizPNyapUnoAmpA252TXM5mpVKo9H03EdudnnLb11FBXKhR03x6TxMMhVW4nQjPKu9SJoEQOKGqHXkpeZzYpW/0fSn39anKLSaAgfMwblDpY1zMvKQq/V4l/Lfoy5X2goeq3WFGNelnBa2TZSoUIFhBAkJSVRsWJFNBoNTZo0cejcSZMmce3aNTp06ICPjw+BgYEkJydz7do1/Pz8ePXVV3n11VcBQ+H1f/75x25/V65cYd++fSQlJZGVlUWFChWoV68eDzzwAModjseyx9GjR3nmmWfM9vn6+hIcHMzRo0fv0qgkdxRbFm8hwD0Qmk8FvTa//INAqPSgwrBaqghw8+XSxTW2LT2VhqCERxsy8+blIHR6aDDakAzNWomI/PqyxUjfIJEAUq6VOEJA7TBDiT6t1tK18Zb7t2/REX5NUJ7JQOjybirhQhDw0OPQZjAB2lzzMQkBzR+HBweDzjCRFQhytckkXowrepIZMhpXl0rQdy+5ORfyj52mfv3lJCYttZr00XBZLYkXl1Gj1mTDpNlI6hFwr2gY13Iv0spNxm/gNLNz9Wo/g7Ld1a/k3tdCSIt36UXKtFtEUfDw9TW4hxdWgo3otIZEXCOLdhu2aiVXFJi+DD6Ze/MaimKwlOdkGb7/nQaATwVDPPWWpXDpPMqTz0OVipaKtn8YtPsEzn1t7jmozwVdDlTramHkqBzyLC4KFnMyL68wqlefwaVLqzl2rOj9kD+Hq7eMoHafoFw9aLBca7MM4S72EqFdjYeEHyCoNawsj9LyU1wadqPV+PEW8dEqjYZey5fjHRx8Z3UjIchOSyN89Gj2zJtn1ZXcuAiQbcPrubRTLGX722+/JTo6mr/++gudTse+ffto3rw5o0aNIiIigsGD7WczDg8Pv+UP+tq1a6xcuZKVK1fy999/W9RpUxSFcuXK0bdvX0aOHMnDDz98S9crCVJTU/H19bXY7+fnx9WrV22el5OTQ05Ojum1MUGdoxy/aGgfGuCJJt9KevlaNmlZuXi7uxDs62HRtpqvJ+7uhrYpN7K5eiMXD1cVVf3LFavtqcs30On1hPh6Ui6/bVpGNpfTc3HVqKgRULy2Z1NukKvVU9HbFV8vdwBuZGtJTMt0qq1apaJWxZttz1+9QVauHv9yrgSUc75tdq6WG9ryXEvJolYBF81Ll/5DvW8BokJXAmsalG1hisE2TH4JehgajUWA2Wpp1aoTcXGpaN/S49ceV7eqKIA2T8fJHTuo27MHRMTlu2jajmO09nmWxHNi7fMsiefE+Hne6nNS+PO81eckO1vLuTSDC1bdSuZ5KcoixZFrUqbZaKvXI5ITDaVeCsQeioAQLl7PJkerL/ZzffFaJkHl3eHEGktZYGbRuamEiyYTUNz87CjnIArmj2j6CsKvnsOTT4ArV74hPHwfly6t49ixSITQolJ5olKtJSvLvtthVtZpFI0nqD1Al2WQaW3jwDMYRa0h6S9fEh/0p1G21kymnVb78stVbx4qUBv7+MXrKKk5VEeNa/4+42fvmZ5LlQLXlTKtbHM3ZBo4J9dOp+WR6leZ7AKKS8qNbE6n5ZFeLsBqvy6F2hb1vJruJVtL+sXrDsm169laMkJqGTzyLhRRmirhNGg0XPQOoaBPrPF55dJFIoKhnI+3QS4WtGC7eRi8fy6cgjphltm9f98Bj/SAPd9A+tWb8dR6HRyIsTQ+NJkAOWkWnoM+Pg8TEjKWS5fWmOSTEXf3Wvj5dbCYk1WpMoHc3AQLWWdrP+TP4Y5F4edT0FunQOLHIgwm2ZfPcSNbgz7lChVVKsKGDKFmx44cWLyY1NOn8QsNJXzMGLyDg0nP1XIxLZucbCjoV2D6PLO1GD/lgs+Ju7W2Djwn18pX5NjpJB5o0YhecXF2FwEO/XmYVL/KXM/WYjRHlQW55rSyvX79eoYMGcLAgQMZOXIkI0eONB2rVasWn3zySZHK9ooVK5weaEHmzJnD22+/jZ+fH48//jjR0dE0bdqUgIAA3NzcSEtL4+zZs+zfv5/t27fTsWNHHnnkEd59910aNmx4S9e+G8ydO5fY2Nhin99l4W4A4oaF07Fhpfx9u0jL0uKiUjgxp7tF29heDRje2hA7323hbpJv5KJWKZyy0vbZdqG80rUBAH0/+JXzqVkoCpyZ28PUtuP8XQA80aIKbwxoCsDjS/Zy4vINFODMPMu2nRtU5OPhDwIwYsUB/jqfBsDZAm3bvW1o26qmHxtHG/IFPLv2AD+fSLHZtnFIeb56oQ0Akz+L58v4JIu2bd/chQBqVvDkp0ntAXhrx7+s/PWcRduIt3ahF1DJx43fJ3cCYN3facw8tw5WpHJ23s3PokPcRdxcN1NudRI/z8DkzqQUjGOsNRCBKDRhVahXbxnnzs21b+lJ+pgaNWKY41WevMxMVBoNQ3/4kepthkDljnBksSmuR1t/NJpyN2tqGz/P+Y+H0S+8KgBd3/2Zqxl5aFQKJ6189q88Wo9n2xtKAfZ8bw8Xr+WgUuC0lc9+eOtqxPYyeL88/tFvnLmSafOzfywsmPcGGRJzDIn7g0OJ121+nm3rBLAq0lAqcPSaP9l7JtVm22ZVfdk6zrDw9uLGv/ju38sWbdu/bfjs61Qsx3cvGcJcZn11mI37L1i0bfvWLoSAqn4e7H61AwDv7jzBhztPW7SV3ETKNCsyLd9yo1iLPZweR8Wug+n5wS9sH9/WdMgZmbb7xBX61gWNLYvOyTXmiXb8w1DCZ8CJ1ZYJeIxx1ue+MXettOH6bW+SWbnyc+TknDebyOr1Weh0mXh42Hc79PAIRehyUGr2NYTD1I0CrxD48TNEuz485LkEjijMP5xUSKaB0n81vxaojW387N+q1I7H8/cZZZoaQUG1Qco0SWFuVaaBc3Jt8I4UGLWEWqezeb6lYZ9RriljlvGylX6H1vc0TfodkWsT8tMnjdl5lTPbdjsk117ak8qRoQuZlZuHW5UiSlNVDiUnN4+HWi7mTIHdJrnmkc1XlRVEYEWUZbPM5WJOlkGpbtcHYlcWKIt1ymAJDh9pSAD2SHe4ccFw7MYFaP+JFbdsBWo9aTVHhJ9fZ3Jyzlko2qBQseJAK3MyhYoVn3Bi/02seus4mPhx7Mrv+OncOjzP53KkHSgqFd4hITw0bQbubi7k5eahcdGgKApdFvycL9fKW5VrUXVdMPoCFZRr+1pZtn0sLJgp9Q37nv85lePbDM9aQTnx2Zg4PvvsHK9keDDWziKAolLx2OZzMGoJJ/ak8nV+CrCyINecVrZnzZrFhAkTeOedd9DpdGbKdqNGjViwYEGJDtAaO3fu5LPPPqNdu3ZWjwcEBBAQEECLFi0YM2YMqampvP/+++zcufOuKtt+fn5WS6OlpqaaxQYVZvLkybz00kum19evX6dq1aq3ZYyS24cQgkOzHkNR1AiRn8kyOxnFgVhFlcoDtdrTMUuPoqbRwIGUr1KFpqNGUz44mPOpWVTzC0E0n46idiUnL48v4y8yIFy6j0tujeLINSnTCiGE3fhGZVYkokUHRrSu4XTX6UlJHFi6lF5TpqD5e6Z1i05GguVEztZ+gMbPQc5VhJlrpS3Xb3uTTFvHBJcvbyQ4OJJz5+ZZnZwqioaQ4NEgVNBhbX6t2g3w6QcwfxvZCeecfq8kEpAy7VYRArbFX+Tx/qMNi4XWXMnVGnT9RvPFP0WU/HLzQHFxtbSSC2GwXnfqD8fXWGbrNi4InlpnnnCszQeWbtkaD4Tandzsc4UWCm3LLltzMmf3F8bCW6dAIjRRuRNKAYOJvsEYVF6GxI+nLqWByR6dP3pFoUH0t7i7aBhVMY0Xn3/S7rVvN7+fvsKz7WvjHRJC6+kzcHN1ITsnDzdXzT0V8ns7UERh/+sicHd35+uvv6Zjx47odDpcXFzYv38/zZs356effqJ79+5klcHg9pKgbdu2VKhQga1bt5r2GePUly9f7nDSjevXr+Pj48O1a9csyqdZo8y6XHIPu5En7uPGV7251nYzteo/nK9AJ5KYtKRQrGIwIAyxihfjTBPW//6bzX//zS7wKSq0aXODc+fmFtpvTvXq06hRIwZFUaPPyyU9D1Izc6ni645GoyHj328RvwzibKNVVGjQocjPXrqR39uuSfcCJSHX7nuZ5u9hqDUbZ/u7TeQ0xKgYlALlWhx5VpP+/JNP2rRhSkaGoabrqfUFOlXgmRuGbLd/zXZgv/FYhoUVSKXypG3bDI4cGcTlyzevYWt/Uce8vMIID9/P5cvrLCziiqKhXr3lBAU8iTLsQTh3wqBsqzUQvRy6DubqT9vJmD6CpGfnEzbgSTOZduLAP3zeuysv7fqB4OYGa/Pxi9chNZnqP67C7YkxEBB80438/BGqjH0I1hyA+s2lTCvj3A2ZBs7JtV9+3MumAf0Z/7/PqNnSYNpOuZHNsX3/sLV3T17e9a35sw24nDvKqlatGHXgAC51Gxb5vKYfiWdpeDhP/rIXJbS+Q3Lt2K/7+KhnPyJ3bKdJ80bWM4Xnf09F18GcO3gQt7HtqbT8e1OZKePzqtr9JbXfHIr4Ndtg2S4sH9/eCi1awPqalguCEcsNVQk21DE/ZnW/CjEyl7NnY8zmV/bkk+05mbP7zalefRo1qk5GWe5V4FQNostWlGrdETotisYVvTYXPRo0GoPBJPm3r9GuHIpq6GqCHr5ppd23Zg3BH76E8tICqgwweB0bZVXOT1/S5J0hJE9dQ2DfwTc/z4tHKRfVCtYcIKXKzefEfdcXBL5uaH/94d4OPSdJf/7JW+270X/rNpq2Djd7TuIGDmbA2rW0jGh5c7y79rGubz/GfvUZ9Vob9pcFuea0ZbtSpUocPXqUjh07WhyLj4+nevXqJTKwski3bt2YM2cOaWlppnigTZs2oVKp6NKly227rrWHqKKPOxV93B1qG1DO3fRwFrdtwYfeiK+Xu+kLUty2BQW/kXLuGqtjc6ZtwR8fp9sKgXul5riPSiJAr0UIfQnEKjpm6QkOHo3QgxLhxZWXlxLYdzA+nq6mNl6BgaC/SuM6wVDghxtu33Ni7fMsiefE2ud5Lzwn7jballXuhlwrkzLNgfhGpVBdVEef1bysLMMkzYpFx2q2W3tZcG1YgWy5fttzCbd3LCMjnqNHh1G//ip8fTuQlLSUrKzTeHiEEhIyBlfXYJTradDmMUPsZ+VQ6G9QklGp0F1Po2puMu5eiknRBsNzovN1odyNNLPr1a1UHiqVhwY3XYFNn32aq1lbKdPKNqVhrhbq64JfagLumpvPdkA5d/J8XfC+kWK136RE87ZFPa/p+dvy7hqCrYzN2rNd3l2DX2oCAao8Q8mtbkMMWce3LLb4nioqFdXddJCbataH8XlN1gBCkJN4HvfCVnJFgf/rYnAPt+IxQ60nrJfMsuaWrXFHUdQW8y774Sy25mTO7i8wakVDSMgYg9W+2bSbpbwajkHJL12Y9tmb+N2Yy7VCiR8D/YJhfypMMK9+UNNLITA3meQCPx3Gzz7ZHbOqF6bPM836c5JcoF9nnhOf65cJ9XUxKdrGtl4JJ6nqba6GVvU2PD/lC7QtC3LNaWV70KBBxMTEUL9+fZMbt6IoHDp0iDfffJOxY8eW9BjtMnPmTJvHVCoVPj4+PPDAA7Rp0+YOjso6Y8aM4b333qNPnz5MmTKFhIQEJk2axJgxY+6buo1lnvxMv+QnExKt3yVXyS6RWMULFxYSFDSEevWWWbf01I3DzS2E7ORk9p7OpEGB5D8mPIOhefSt1f6WSApwv8m19KQkDixZQvjo0U7XnrWJXmdIhmaPyqGGdiorJfqKQgiyUtPwbDjaPNGOrWy39rLgarMBPYkXlzno+m1vkml/Anr58gYyM4/zwAM/mzx2hNABKoPbYXk/RNR0FBdXRF4uisbFlCXdo24jztaJIKBuI+ffL8l9zf0m024rKhUEhtj8njpC5smjuLfvZqibbbSSGxOk2VgQtLlYaFafuj38+zGkn0Hoc63Mu+zLp5tzsjizeZytuVqRc7h6yw2LiCiIZtNQNG5WSxeiLYEa2Gb1ygtVmJCUOE4r2zExMRw+fJjOnTub6mx369aN5ORkevbsyWuvvVbig7THggULyM3NNbmuu7u7k52dDYCHhwd5eXnodDqaN2/ON998Q2CgEzX9Shg/Pz9++OEHnn/+efr06YO3tzdRUVG8/vrrd21MkhLEonajCjqsJvFsTInEKha09Pj5dSIxcbHJ0lOpYhRuHlVAgF5RwahoPBuEWY7RM9hQj1EiKSHuN7l2IymJXbGx1OvVq+SUbUUFRcQ30n+MKZlhcchITsazfj2IiCsgo2xlu7WTBdeGFQiKN8lMSHifSpWGWUxYwTABrVJlAmq1B+k7llH+0lTS3MfftOgoCilfbSLwnVGk5HvyGCnX6AHKrd9p9b1wugZ2QLChRFGAXKS8HyjtMs3F07PoRncSO99TR9BdT7O0kieegbwcGwuCRZTMMtanjlgO4TGGBUxtHiHBoyzmXfZkV2bmEa5f/52goCH4+XU0m5PpdOkEBQ3Fz6c9iRc/vrk/N82wv9AczuStky/j0z57C78bc62WLrxlCtcrz696QUCI4X2WlDhOK9uurq588cUX/PTTT3z33XekpKTg7+9Pp06d6NSpk9MDOH/+POfPn6dp06Z4eXkVfUIhfvzxR5544gmio6Pp3bs35cqV48aNG2zdupWZM2eyatUqMjMzGTJkCJMmTbrlTOi3SoMGDfj+++/v6hgkJYixbnbTVyD3qnntRnd/m5NSe8ky7An35OTNVKw4mAoVulOt6nTUGld0eTnocrUoKCgqFV6BgbK+q+SOIuXaLaIoholOQcuNEWMcckDwLVketFlZBmW9zhDzygR5mVCuWiElHNtZcLVZCG2W067fOu1165PM4DGAQlDFwRYT1oIT0BylHGf/l4LX06GWN5ftnKXH6RrYAcEw2on2klJPaZRpQgiCwsKYkpGBXqs1JGF1QGbcFm+dQuh9Athpy+PO3cHFgcJWcp0OpbC3DuBQyazUI+AaAF+thDefR6laG9fV+6lXd5lZeIxBpo2gQYOVNhVkBCh5PlSrMg21ixs6bS4qlQb+3I1r4mlqdJmM4uaJyMmEHRtRKofi+kAbqlebhkrthj7fem3xWZWEBbswheuVG1kxz/D7022IwWvA2qk+AexMxPpnKLGL08r2uXPnCA4Opn379rRv397smFarJTExkWrVqhXZz9KlS4mNjeXixYsA/PHHHzRv3py+ffvSrl07xo8f79B4xo0bx8svv2xWbqxcuXIMHTqUjIwMJkyYwN69e5k2bZpdl3OJpFhkJsGfM6H5NIPSXVCoZ19FCF2JxioGVxqFq2swupxcVPmxWgoqXDw9y3w2R4mkTFNEfGOJWRwUFXiGmLspolgq4d6hkJsOdYZC5U7m+4WekJDRRbh+76JGNUP1A5GTCf/bgHL2KC5jZ5u5hF85cYqdMwbRddEivCqGUL3qNFQaywmoNqA+K9fDqIn1S+Z9kEjKEEKvJz0xkQNLlnD11Cn8a9UyKM8hISgFZIc1q/dt8dYphN43kF1JUK9AuT2EgNphsCcDtFrHXJkLWMlTYz/Fv0M3y4VCgEPvQ51h1o8pGmgbZygTuH6RYbHuRDxK9DCCYlfh5299QdDV1VI+IQTxa9YYakfrdLh4eJCXmUmTwYPpu3IlVK2NsnweXL6AUrGyWbx64mcvcSpgBbVShlO534eOvY8qXzgA+s6+jr71Nymi6gUzIw2/P37WPYCtfoZF4LQXURnFaWW7Zs2a/Pbbb7Rs2dLi2D///EPLli3R6XR2+1i4cCGvvvoqL730Eh07djRLONGuXTs2bdrksLL9119/MWPGDKvHatSowcGDBwFo3Lix1VIOEskt414BVBor8UF6uHaKkGBrk1JHYxV3mSameVmZHN64EY+AQOp2707KsWN83KIFI3bvNmUdlUgkpZh8yw0jo0GjMUxA1epbsmir0pKJCDZsTSiKFTdFpZASnouSb50h8TR0nmywQOVkoiguuLoEW1iBDF3nu37jhjLUkClcyc8ULmbEAQpLmrcg/cIFMlNSUGk09Fq+HK/AQBRF4dKOt8nOnYO76xQqdZ9a5P15BgSYbSWS+wGjElO+alWEXn9T4dPe/C7umTePXnFxhA0ZAopSLKv3bSPflZl8V2acdWXOzjS4l1vz1vEOhYZjDHKzzhBE5Y5mJbNEwzHgUQklejiciL/Z5/eb4dFBuDzcnaohU9C4eRjmXRs24lEhgLo9epD200dcz5iKp/Y5AvvPIz0x0ex9z8s0WKMPrl1Lyr//8vTPP+MyagaKWmMRry6Ucuj1mQjF2+G3zT2oDhwA9yF1HD7HhNAb3m9roUpg2L9lseH3xwnsKdROexGVUZxWtu1VCsvJycHNza3IPt577z2mT5/OtGnTLBTzevXqcezYMYfHU716dZYtW0bXrl0tji1dutSUHf3KlSsEyB9jSUkiBPiHwbBkQ+IiK/FByh9Tce20sXixipXHo1Z7kvLvUX59+23KV65M+JgxeAcbVkW1WVkmwS6RSMoIigIn4yGqDSzbbSqHU1xU11JoFwLJ11KKblxACc9t/wtuXgHwbKebVg83D4MVaMZylDY9CQochF/5diReXnbTClRpJK7uVaBQpnB9n5EoQVXITkujXs+epJ4+jV9oqJlMA1D8W3D29UwaTG3h0P155edh8bqL+VgkkjuNUYkRQpCekGChaAPotVpO7dhB2JAhpCckFGn1vhNoPDwcc2U2jssRF3Nr3jr5ScWEXk+e8EHzwDRULm4InRZdnhaVTo9+7OuoQ2qaZJToPwbhV5GtQ4ZwaONGk5UaQKXRMP7sWTxrd8F/3otc6WxY5DiwZInF+24k6c8/+WXePCJmTEeJ8LKIV1cpVam+A1QtHa/HblPeFZVXQq02xKY7UPUCjcaqK7ktpVoq1EXjkLJ99OhRjhw5Ynq9c+dOLly4YNYmOzub9evXExpqJZ6qEAkJCbRu3drqMRcXF27cuOHIsACYO3cuAwcOpF69evTs2ZPAwECSk5P56quvOH36NJs2bQLghx9+oG3btg73K5HYpVDWccImQgMrsUNnNqMc/oCgRuOsxvuAQlDQYPy8I8wnrBWjcM1PeFahXj16L1+OXqtFUaulu7hEcj/gZByyUwiBb99J4DIN37wcS/dNbRauVRrCslk3J8NC3BzT+oXQfQjKL9txvX7FIiaRyqHwQBv0kdNRubqiz81Bm6fFBfDw8yNixnRULq7o8y09BWWa3jWQXV9BvVgHlWeZvExyH2NP4QsKC6P3J5/wz+rVfBkVZdPqrfGwHqN7O/AKDCzalfmhR8GvonPZsq1465hZ/HU6XDw9mXT5MnvmzuXYtm20Gj+eJsMno/H0ROh0XPz7b77o3J1L8QZrd0Fjhl6r5cDixUTMmG5w4+4RgEqt5uop+8pr6unTqFwM7uaFUZevw38roEGnYlipC1NUXgmdzvGqF1ot5GRZHJJKdfFxSNneuHEjsbGG2pOKotjMOO7r6+tQArLq1auzb98+OnToYHFs79691K1b15FhAdC3b1/27dvH3Llz2bp1K0lJSQQHB/Pggw+yceNGHnjgAQA++OADh/uUSOxikXUcSD0M/fZbJhMC+O0lFL8wXIPbmJevOX8KdEehen1cFH9qVL25KitychE6Pdnp6Wjc3fl9wQKaPfPMbYunkkgk9wlFZKLVq3zhWAUUF1fbVpAT8RA9DGJXo1y9BAViEoUxxlxRwDg3VhSzvBLGmMsrxchMbIFMXia5j7Gn8LWaMIH0hAQLRRsMyuO2yEhqdux457xCFAUPX1/4ONa2K3OnAeBTAZITipctOz+pmBDCwsUbIXDx9OTqqVNcio9nW2Qk26Ki8KxQgUnJyfz6zjsmRdsaJsXZzQN0OvQ6Hf617CuvfqGh6PNyUVlRXu3FQN9SbLYtHK16cSOt5K4pARxUtidMmMDTTz+NEILQ0FA+++wzmjVrZtbG1dWVSpUqOWR1GzlyJDExMQQGBtKvXz8A8vLy+Prrr3nrrbecLq/QrFkzPv30U6fOkUiKhRAGi3bhhBsFazcWTibUYAy4V0SZPhi++xTK+6Ok5bt0qjWIby6QeuUaPlWqoNGALlfHoU2bTbHZikpF26lFxy5KJJIyTkqSIeau/2inLbnq8r5Fum+KbkPw6z0aBjxnyPRrzwry7QZo+gj6vqPQD38Njacn2sxMDn1aIL7x5+/wjx5oXam+nZZ7ieQ+wabCpyg0fuIJ9syda9PN2WStjXYuRre4eFaogKLR2F7EqxMGsatg+1qYFWXTxVxd3rdI93JrFv+8/NA7s/dLCDKvXLHcb4XCirOiUhE+ejR75s2z+h6rNBrCx4whJ+EczvoO6NV+BmW7q5+TZ9rB0aoX/zkeylvSlNWEag4p2z4+Pvj4+ABw5swZgoODcXV1LfZFJ06cyLlz5xg1ahSjR48G4OGHHwbg2Wef5dlnny1Wv7daRkwisUlKEmxZCiOnWmYdN2KtdqNeB8f+hpndbybiSCsQO6nTonz6Pv6jotkZO5PrFy5YxGZLJBIJQMa/8Xh9HEtGw4fwauPcZMSzdn2HMtFeOn+Rve+/T5/ly9H3iUJlxwqie6Qn8atXsy0qymp8o0etek4r1WV1siWR3A5sKXwuHh4mK649Uk+fRqXROO1K7ky5MGNJsknJyfYX8Z6aAJcTLBVtMMko8WBH/Np1hT0ZVMjLtUz0pvEEtYt1i78QHNq4kWaRkebvl639BbCmOCuKgndICL3i4ixi5o2JH72Dg0n9abvTyvZtw5GqF1as8HeKsuqq7vRMvnr16iZFOzMzk6tXr1r8OcK7777LiRMn+OCDD5g9ezbvv/8+//77L++++66zQ2Lp0qVUrlyZ6tWr06ZNG1OCtb59+7Jo0SKn+5NILEhJgtVv2sg6XoCr8XBwvkHR7lHNsF3zjnnGy8IknEZRa4iYMYPey5cTER19VxKXSCSSkic9KYmdMTGkJyXdcl+ZKSlmWxMpSbAkxrC1hqLgFlK1yEy0ypbFBDZowJFNm8jLzkYJrIyYvsxg9ShIfmZxJTCEvYsWgRBW4xvdKlsvA2qs16q3Uq/VONmSITMSSdEUVPiM5UDBhhXXCn6hoei1WrRZzilYxnJhN4qQa0KvJz0hgV2xsWwZNIiL//yD6DfaUqYoCnR5Ar6IK1JGCZ2WLYMGsWvmLNITEhB6PUIIfPpOgmcy8Ok1wabFf+/ChXhXrsxjy5aZvV+29oO54px5+bKZ7FJUKsKGDGH82bO0nTaNJoMG0XbaNMafPUvY4MEoKpUha3pJ4WSOCquytmDVi9lrDdtAB7PAS4pFsbKRz549myVLlpBk40tWVOkvI6GhoSbLdnEpyTJiEoldcrIMPwJWso6b4R1qsOZcvmDYOpKQQq8jIzmZv5Yvdzg2W1qAJJJ7nztRw5aUJEMcZEQv65MwNw/7MdhgcOFs2QmNuxtTbtxAn5eLNi8PdddB6Ju3Q/3FMjMriPAPYuvQoTZjHM3iGwtRnHqtEonEOkaFr2bHjhxYvNiU6V8I4ZCbc3ZaWomPSePhYbUkWfLhw4zavx+mL0MpaMF28zC4hjuQLVvl6sbRzz9Hm5VF6pkz9Fm5khuFaow//NprVu/9Unw8nw8bRp9Vqwjt1Mns/cpJT6fp0KEW+wt6GuZq3C1kl6JS4R0SYjfxY4nhZI4Km7K2hKteSOzjtLK9YMEC5s+fzyuvvMLUqVOZNm0aarWaDRs2kJuby1QHY0t1Oh179+7lwoULZGdnWxwfNmyYQ/2UZBkxicQubh6QngYNrWQdN6JooG4U7NhgiO/esRF6R9pNSKHvOwoFBe/gYKdis8uqu41EIilhcrIMNV5tLfw9+qQhVtJoIb9wClWVWij9DLHh546foUp+1l5tZiYqFxf2L1nCoQ0bbF7SXmIgiURSspgUvuhoVBqNqXqJi4dHkW7OKbdhnuwVGGiZoAyDsrt12DD6rloFLTuhmFyZaxnmSA4YJ7SZmWizskzZ1uPXrLFIAnfim2+I2rfP6r0f2byZxoMHU7d7dyJmzEDl4mKmIBdHcVYUhcu7f+LYyH7U+/gzgjo8Wrw37k4jc2fcEZxWtuPi4oiNjWXcuHFMnTqVPn360Lx5c6ZPn06vXr04efJkkX38+eef9OvXj/Pnz1ut260oisPKdkmWEZNIrCIE1A6DPRmGkghqlfWs44oG0W45lK+Kkp0FXQdBdiaiUjWYEYdiJSGFmB6HUrGy/ZIWEolEcisIQU7iedytZaI1JiX63zqLWEllxTzEjDiqdxvCHx99RNKBA5SvXJmHX3uN+r178+2ECSWeGMgW0pNHIrGPoihcjI/nkzZtGLF7N8HNm4OiWLV6F7TWOutC7sBAcPf1ZVdsrFX5cGjDBpKPHKH38uVUGhWDolYbFgNV6iKzZet6R3Ewf5HPXrb1pD//5PPhw+m7apXde0/5Yr1FZQRFUYpVMUHvG8hPpzOpIz12JIVwWtk+e/YsDzzwAGq1GhcXF9Ly3U9UKhXPPvssUVFRzJkzx24fY8eOxcfHh5UrV9KwYcNbSrZWkmXEJBIL8svkkF+CgiETIaQ6hA6CoHZwfNnNrON1o1DKhaDPyUH0HYlq4Di0WVmoAKXrYHTNIsxcMXW9o1AFVQGQtbMlEsltJediAm4PPmLpvllEUiJlZiTiwQ48OHYsikplsvQ4YjErycRA0pNHInGMgvkTwLbV+3bNO1w8PFBpNHaTs12Kj+e3+fPpt3YtdAwg5blFBPYdjAgIsZRRcNM4YcwT4UC29YNr11LloYdoMXasfUu1Feuu3ieAnaczaWAlr4SzGOOmnemrOOdI7l2cjoavUKGCyVpcrVo1/vzzT9OxlJQUMjOLdkk4fPgw8+bNIyIigsDAQFO284J/jjJy5Ehmz55NXFwc169fB8zLiN1qTLjkPsZYJuexmhA32+AaXrM+rFsIQ1vArh+gyWTosNaw3fUDDGmB6pM56PO0zPHy4nVPT7YOHoxer0dXvgL6yGkwey36yGnofAJAUWQiNIlEcttxrVSZrNRUxKOD0G09CZHToNtggwdOkUmJloDQwyNeXPlqE0q+3CpuYiBppZZI7iyKonApPp45Xl5cio+/vQv8ioJeq3W4lBbXrgCGnFAWMqrrIIichv6L04hHn2LrsGFcio93ONv6hV9/RaVScWX7Z2byqyiMsc76ErBS2+rLnhwsyetL7j5OW7Yffvhh/vjjD7p3786gQYOIiYnh4sWLuLi48PHHH9OxY8ci+6hbt65JMb5VblcZMcl9jhCWZXIKJvA4EW84NivKsL/gymitxmg8PU0hEkaXqV7Ll1PpgQcMbVRqXDxdpUVbIrlPsVc6JyM5GS/jtn4JXCw/G/mumbM4tm0brcaPp0l+DDbgUFIiRa0xyMWC3ZoSAxnjHvNQNBqTXPMMCDDbGpFWaonk7lDY6l2SGEt8TblxA71e73QNaqHXs3fhQgsZpc/LJS87h5X/938k5Rv4nMq2rtOhL+dXYpbqkkLKwfsHp01qMTExtGnTBoApU6YQGRnJ+vXrWbJkCR07duSjjz4qso8FCxYwd+5cjh496vyIrVCSZcQkEsBgxSlcJicnyzK7uBCWLkgFEngYST5yhHKVKqHk5kDc66jSkqWiLZHcx9grnXMjD3YmGrYlQlBVVC6uXD11ikvx8WyLjOT1cuWYU64c2kzHKiaIvFyr9VcVReHSwYMGi9nBg2ZyzatBGIyMNmwlEkmpw8W4IFcEhUt87f/oI6slycA81CTrVH5yNrXaVBvbTEZ5ebG0xYNo3N1p+cILN/sqUBu7cP8FrxM+Zowh/MWGpdheGUKJpKRw2rJdr1496tWrB4CbmxuLFi1yqJZ1kyZNzH6Ek5KSaNy4MSEhIfj6+pq1VRSFf/75x6lxlUQZMYnEhEptae1xMLt4wQQeYP7DoqhUEOl4xnGJRHL/UazSWO6Wk2IhBAG9noS+gxE6Ha0nTiT58GFDuS4hyMvI4ODGjYT1ikRtR6bRfwzZRSQ7s2oxc7JMjUQiuTcwWakzMtBrtQghrBoIbJX4OrR+PRd++40+K1faTVBmCjXR6SxrYwtBXmamWbmumh068OfSpaSePk1eZiY+1aoVmTvCnmHjTpQhLE7YjAy1KVs4rWwXl/Dw8BKz5P38889OtW/btm2JXFdyH6HXWbf2rF8I3YfA9GWWCYXUGkT0clSVqpKXlUWTQYMsflgkEomkRClcLUEIUBSEXg/JiSifGZI7KlVqUanfaEbt38/WYcNMZbv2LlxI0yFDEDaSEhG9HAKCySrBZGcSieTeRej1pBeqWx0+ejTeISEW8xhbJb7AkKAs5d9/efrnnx1KzqaoVDZdzw9t2MCV48fN+8rLdSjbeklSHCW4OO7iJeVifq8q7ffquG4XxVK2N2zYwKZNmzh//rxFjWxbVukVK1YUa4DWaNeuHYqimGJiC35pra2+Fa6/LbmPEcLgIq5SGxRqRWW97JaiQvQfjVLY2nMiHqKHQewqhFmNSEN2cSUwhGtnz9JizBhajht327N+SiSS+5jC1RKq1IInnkP4BsI3a1BmRVqU8mL6MvquWkXykSNcio83WI1GjKDvypUWMo3+YwzWaZWKPEUjs+NKJGUYW1ZqgD3z5tErLo6wIUNuKrBFlPgCQwmuX+bNIyI6mjleXjdLklnBWOPalqW61YQJuHh4kPrTdvyjB94sy2WsjX0Hsq2Xtjjre3W89+q4bhdOK9tTpkxh3rx5hIeHU7du3WKV7XrmmWeYPn06NWvWtDj233//ERsby/Lly22e/9dff5n+v3z5MpGRkbRv354BAwYQFBTEpUuX2LRpEzt37iQuLs7p8UnKKNYmpv1HQ0CIQeEuoIQLRQUBIdatPd9vRnQZBI90R/v0FDQeHmgzMzm4YQN7Fy2iYuPG9Fu7ljcDAhi6Y4fNHxaJRCJxGndP1OV9b1ZLmGmuUFOlFjzYwULRBgyZxWdFQctO9F6+nN/mzzdZgVAUlMAQRNR0FBdXQ91bjYtpMfJOuFtKJJK7hz0rtV6rZVtkJDU7dsQ7JARwrMQXQOrp06g0GpOBzB7GKgdFup4XypVjtca4RHKP4LSyvXz5cmbOnMm0adOKfdEVK1YwZswYq8p2SkoKK1eutKtsN23a1PT/gAEDePLJJ3nzzTfN2jz22GNMmjSJjz76iM6dOxd7rJIygq2JaeIZiFlpXQmvEIzoOhh983Zm9bH1fUdBhUpsHTKEQxs34uLhYRavWK9XL/RaLVlXrtyFG5VIJGUSIQjo+Tj0HYyfTmdZLQEMinHngSifzC2ilNdiKo2Kod/atRZ1Z1O+2kTgO6NIMVqNJBJJ2ccBK7Veq+XA4sVE5Fsk87KyHC/xpdWaJY21OxRTlQM7tbFtcDuzrUskxaVYwQytWrW65Qvb+tKcOHGCChUqONzPt99+a1OZ7tKlC999912xxicpQ1gr4wVQJwyiPzGvpf3teoibjfJYTcN+ITix70+0wycb6mNHTSfPy5dl//d/hpjH/AQeRozZL7W5ufdVPIpEcj/haIbeEkOvh+QElGWzYNpgFJ3WsloCmJcntEfCaRS1GrpXtV53tnCFBYlEUqZxykqtVud7Awqy09IIHz26yIzg2WlpTo1HURSufLXJqdrYkhIiIBhGRhu2khLBaWU7KiqKdevWOX2hjz76iLCwMMLCwlAUhUGDBpleG//q1q3LsGHDnLJElytXjh9++MHqse+++45y5co5PdbicOXKFcaMGUO1atXw8vKicePGLF682KJdYmIi/fv3x9vbG39/f6Kiokqs5rjEBtbKeAE8NQEuJ1gmOgOTu6VITiTraqr9EhT5FMx+6erpSbuYGIv6uRJJaeF+lmnpSUnsjIkhvVBZroIZeoPCwhxyi7wVNB4eN71yjAuCOz8HVzfrCrW18oTWqByK0Ong8oXbMm6J5F7lfpZr9nDKSq3TGYwYQEZyskMlvjKSk4s3MCsLf7Jc123GWEVCKtslhtNu5LNmzWL8+PE8/PDDdOzY0WrZrhdffNHivJCQEMLDwwE4dOgQ9erVIzDQPPbL1dWVBg0aEBkZ6fB4xo0bx4wZM7h06RJ9+vShYsWKXL58ma1bt7J69WpiY2OdvcVi8fjjj3P06FHmzJlDtWrV+Oabbxg7dixqtZqRI0cCkJeXx6OPPgrAunXryMzMZOLEiQwaNIivvvrqjozzvsRaGS9FgS5PQBHuluovltFk+GS2RUZalKAI7dTpjmS/lEjuBvezTDPWwK7Xq5dpwcyZDL0lhVdgoKVXjj2F2sHyhKL/GHSZN+5cORKJ5B7hfpZrdilgpbaWDRzM61Yb0WZlORRn7agLuSPI/BGS0obTv7U//vgjK1euJD09nd9++83iuC1lu3fv3vTu3dv0esaMGVZjtp1l2rRp+Pr6Mm/ePFauXGnKUh4cHMzChQt5/vnnb/kaRXHx4kV++uknPvnkE55++mkAOnTowB9//MGGDRtMAnzz5s0cPnyYf//911Sr3M/Pj0cffZR9+/bRsmXL2z7W+xJrZbyccLfUeHoakqDl/1gc2byZxoMHU7d79zuS/VIiudNImWaOUxl6SwpFwcPXFz6ONVeai1Ko88sTihlxKIVDZ9QaxIw4CAgm4489+DgxnPutVIuk7CHlmm1cPD3JSE4moF69YtWtNsVZ38dzIikjJbZwenYwbtw4WrRowcGDB8nJyUGv15v9OVJm65NPPikRRdvIc889x7lz5zh79iy//vorZ8+e5fz583dE0QbDKiiAj4/51MXHx8fMzXD79u2EhYWZhDdA586d8ff355tvvrkjY71XsOWmeVtQVIaEZ+oCa0tOuVtqaf3yyzQZNIi206Yx/uxZ6nbvjqJSkZGczM+vv05GcvJ99aMiKdtImXYTIUSRGXrTk5JK3KXcxcMDRaOxviC4fiFUrAzTl5nLNYDTR+Dg79BtCOLLsxA5DboOgshphtfdDAsDuYnnnRqPsVSLtdAYOcmUlAakXLOkYGhMhTp1THWrx589S9tp08zmPWGDB9tdVFQUhUvx8czx8uJSfLxDc6Ky5BJuT0ZK7m+ctmyfP3+e9957j0aNGt2O8TjERx99xDPPPIObm5tpn0qlolq1alSrVs3qOQcPHiQ5OZkOHTqU+HiqVq1Kly5dmDNnDvXq1aNq1aps376dHTt2sHbtWlO7o0ePUr9+fbNzFUWhfv36HD16tMTHdS9jzU3ztqEohjJeBS09TrhbolITERODSq1Gr9OhqFSmHxHv4GDaTp16e8cvkdxhpEy7idDrObBkiUMZehW1usSum5eVhdBqUawtCJ6Ih+hhELsKHuwAny21qI2tqFSIwBDEKMO4hE4HBWRXSXK/1UyVlE6kXDPHXmjMrVipnckIrvcN5NdrnlZdwo2KeIMyoIjfk8hEaHcMpy3bjzzyCMeOHbsdY3GYFStWUL16dV588UV+/fVX02plYRITE4mLi6NTp060bt2a1NTU2zamzz77jKCgIBo1akT58uUZNGgQCxYsoH///qY2qampFjHuYHBPunr1qs2+c3JyuH79utmfxICjFnIB0HUwuq0nb1p6sjMRlaoZ3CoLW4fUGsT0OJMQUuVPolX3mVuU5P5FyjSDa6RKrXY8Q29JIgRZaWmWXjlGvt0AT/8flPdHjIqG2WsRUdMhMATyrU+KopCybQN0CiRl2wYpuyT3PbdLrpUWmQaGxIvG0JhFNWvy8+zZHFq/np9nz2ZRzZrErzFUYrly4oRTVmpnKSrhpDE2Wy9js28PMhHaHcNpy/acOXMYPnw4rq6udOrUyapA8vf3L4mx2WTv3r1s3bqVRYsW8e677+Li4kLdunUJDAzEzc2NtLQ0zpw5w+XLl/H392f48OGsWbOGSpUq3fK1hRBmrvKKoqBSqRgxYgQnTpxg3bp1BAcH89133zFhwgT8/Px48sknb+mac+fOvWOJ3kobtizkQgiEXm+wRuv13EhMZEPv3jw4bhxNhk9G4+mJ0OlIO3sWny5PoW8WYVZLW9c7CiUwhH83b6ZB//4larGSSO4l7meZlp6UxIElSwzWHCseNkKvR6/TOZyhtyQVbmMMpWe9ejAjzrJ0oVoDgyYg3DwQOh2KOn9REbCYFqelWPQvrUaSssydlmv3ikxzBK/AwCJDY2p27IhXYOBtq1t9NxJOWkOGwEjuBE4r2w8++CAAY8aMsbnS5Ujc9q3St29f+vbty9mzZ/n+++/Zv38/SUlJZGdnU716dbp06cLDDz9Mu3btcHFxKbHr7tq1i/bt25teR0REMHHiRDZt2kR8fDxNmjQBoF27dly+fJmXX37ZJMD9/Py4du2aRZ+pqalUrVrV5jUnT57MSy+9ZHp9/fp1u+3LIkVNigtiJsRPn6b38uUcWLKEpD//ZFtkJNuiovCsUIFJycn8OG0ayYcP02r8eJMSrs3M5OCGDexdtIiKjRvTaODAO3SXEsmd536WaY6EsygqldMZem+FgtYevVaLUBToNgQe7IiyZbFpQVDku4tnpaayd+FCpyestjL6SiVcUha403LtXpFpRaIouPv6sis2tujQmOjoEr98Qav6HU04aQNbITBSCZeUJE4r28uXLy8xdxIhBMePH+fq1av4+/tTt25dp/uuUaMGUVFRREVFlciYiiI8PJw//vjD9Nrb25svvvgCtVpN48aNzdo2a9aMZcuWkZmZiaenJ/Xr1+fgwYNmbYQQHDt2zG5tcTc3N7P49PsRe5NiF09P0/+FhbiLpyeatWvN3UCFIPPKFfIyM/GvVYtD69eblHAXDw+zldx6vXqVuMVKIrmXkDLNPoqimOrIOpuhtygKyi6wtPZUffhhHhw7luNff03WlRQaGxcEs7JQubpy/Kuv2NS/f4lOWD0bhMGoaMNWIiml3Gm5VlpkmouHByqNxrHQGI0GjYdHiV7fUau6d0hIiV7XWWQeCklJ4rSybSyXcKt8+OGHzJw5k+QChe4rVqzIjBkzGDt2bIlc43bg7e1NixYtzPZVr14dnU5HfHw8TZs2Ne0/cOAAFStWxDN/QtWtWzfWrFnDiRMnqFOnDgA//PADV65coXv37nfuJkopFhPTwhYgK1mD87KyTEp1oZM5tHEjzSIjb1qshDBTtEvaYiWR3ItImVY0jtSRtYcjsgshLKw9oZ07c+3cOT7t1w+9VssXz0Ti4uFBt/ffp2b79haKNtz6hFVOMiVlASnXrJOXlYVeq3UsNEarLdH62E5Z1aUMkpQh7ooWsXTpUp577jk6duzI1q1b+fXXX9m6dSsdOnTgueeeY9myZXdjWMWme/fuVKtWjQEDBrBmzRp++OEHXn31VVasWGFWfmzAgAE0atSI/v3789VXX/Hpp5/yzDPP0KNHjzJZt7GksJZEQ+j1pCcksCs2li2DBrFr5kyETmeZNbiAUq3SmK8t7V24EO/KlXls2TKLY7dqsZJISjNSpllSsI5sv7VriYiOLtJd2yHZFRtLXmampbVHUWj8xBP8FRd3c58Q5GVlWe4vhHHCKvT6kn4bJJJSi5RrgBBkp6URPnq0xbzHiNHQkJ2WZrerwouIReGUVV2tNlSSKSGkW7jkbuKQZTssLIx169bRuHFjmjRpYlf5UBSFf/75x25/CxYs4IUXXmDhwoVm+3v16kVgYCBvv/32HXMLLwm8vb354YcfmDp1Kq+++ippaWnUrFmT+fPn89xzz5naubi48L///Y8XXniBp556Co1GQ79+/ViwYMFdHP29jS23ysIWIBdPT9rPnGlViO9duJCwIUN4bNkyvoyKMp1zKT6eL0aMoM/KlYR26lQsi5VEUhaRMs06iqJwMT6eT9q0YcTu3QQ3b26zraOyC0XhkcmTLRYKXTw8cPH0tJBptvYXxjRhlSEwEgkg5ZqRjORkAurVKzI0JsVG5SFrnjmOGCWcsqrrdIYSrSWE9NiR3E0cUrbDw8Px8vIy/X+rlr4zZ87Qs2dPq8d69OjB4sWLb6n/u0Ht2rXZuHFjke0qV67Mli1b7sCISj/WkmgY3SoL/0DYdBfHoFR/PmwYfVatomaHDvy5dKmZUm2MySxuTUmJpCwiZZptisrQ64zssqU825Jp9mRdQUwT1juQsFQiKS1IuQbarCyHQmOsuZDfUhbxAlb1O5VwUiK5F3BI2f7kk09M/69YseKWLxocHMxvv/1Gp06dLI79/vvvBEs3j/sea/HXRrfKPXPnWgppazHYBTi0YQNXjh/n6Z9/JiImxlASTKdDUalMSrWjFiuJRCKxhbOyy6m8Evb2F0BOWCUSSVEUDI1xxNDgSBbxohKqOWpVl8YOSVnC6V/iZ5555v/bu/O4qMr9D+CfwzIDDAgMuyG4FLgg5HJVyMQFLJcsRc0l9zJvXtMytzLRNK00s0zLfrlXopi7kiuaBpZaXnO3Aq/mCgKuyPb9/eHlXMcZYAbZ/bxfr3nVnDnnOc9zxvkwz5xzngdJSUkmXzt79iwGDx5cZBlDhgzB1KlTMXHiRBw+fBgXL17Ev//9b0ycOBHTpk2rVJeQU+mQvDyzL6vMV9Q92M1Hjbp3z9B/L6u0euCPiqOPD8LGjOE9PURUbBZnVzHGleB4E0RUEhRFweUjRzBdp8PlI0cK7mib+hHxv/IHZbxx8SJ0Hh4mt893/1n1kcnJaDVxIhr26YNWEydiZHIygvv2LfJHwoLuv+Z92VRRWTwa+ZIlSzBs2DDUqlXL6LWUlBQsXboUixYtKrSMd955B2lpaZg5cyZmzJjxv8rY2GDEiBF4++23La0WVTFW1tZmX1aZL/9y8a7LlxfrHmze00NED6s42VWccSXu3riBkH79ON4EET00c26NMRqA9j6Wzs1t6Vn1+xX0XY3f4aiisrizDaDAD8OZM2fg5uZm1vYff/wx3n77bfz8889IS0uDXq9Hs2bNzNqeqobCRrLMy801/7LK+xxfvRrPzJlzL8QLuFyciKi0FCe78jvVXZctM9l5VseVmPQurGw1yMvOgmJjy/EmiKjUKVZWJn9EfJClc3NbMuAkUWVm1k/fX3zxBYKDgxEcHAxFUdCnTx/1ef4jICAA/fv3R2RkZJHlLVu2DKmpqXBzc0PHjh3Rt29fdOjQAW5ubrh27RqWLVv20A2jisvUdDj5bly8iB/ffx85d++anJrCnMsndR4eUBSlwMvFiYhKi2JlVazsqvPMMwBQ4PRiiqIgdVMs0FKH1E2xaqaZexkoEVFxSF6e6R8RH1DY3NyFXeJd1Fl1osrOrDPb1atXR5MmTQAAR48eRWBgIDweuC9Do9GgXr16GDJkSJHlDRo0CImJiSbPYiclJWHQoEHo37+/OVWjSqawkSyhKNB5eKDVO+8gLycHTtWrGw2iwem6iKgiyz/b/DDZVejZnkzTX0wt/cLK+xuJyFz5PyIWNShjQXNz8xJvepSZ1dl+/vnn8fzzz6vP3333XdSuXbvYO5VC5s5LS0uDk5NTscumiqugkSzTkpLwwtKluPlAJ7z5qFEFTk3ByyeJyFw3Ll7EoQUL7v2wV0qdywf38bDZVVJne/Kc3bH7AlDP2d1gOb/8EpG5CvoRETBvbm6iR5nF92zfPw1Yvtu3b+PChQuoU6dOgZ2duLg4xMXFqc8//vhjeHl5GayTmZmJXbt24cknn7S0WlTBFTSSpVdwMJ5fvBhHvvnGYGAg4N50Ej3XrEFAp04FfjHl/T5EVJSbFy9iz5QpCOzSpdQ62w/uo6gBgMoqu/JcPLDnIhDoUvgowUREhSnu3NxEjzqLO9uzZs3CrVu3EP3fEQf37t2LLl264Pr166hVqxa2bt2KOibu6zh9+jQ2btwI4N4vZHv37oVWqzVYR6PRICgoCNOnTy9OW6gCK2gky+ajRuHG338bdbSBe6NbrurWDSOTk2Gj1WKOv7/JL6a834eIKqKiBgBidhFRZfIwo4gTPaosvrn166+/hq+vr/r8zTffRIMGDbB+/Xq4u7sXOG3XyJEjkZSUhKSkJPj5+SEuLk59nv84deoU1q1bh/r16xe/RVQhmRzJUlEQ9OKL+G3hwiKnk7BzceEXUyKqlEr6kvC8By4JJyIqKxyUkcgyFp/ZPnfuHB5//HEAwN9//41Dhw5hz549ePrpp5GTk4N//vOfRZaRlJRkeU2pUjM1kqWtvT1sHRzMnk6izbRpHMyHiMpEYVMTlpeCLgnnYGdEVNZ4AoTIPBaf2ba3t8f169cBADt37oSjoyPCwsIAAC4uLsjIyCjZGlKVYGo6nOw7d5B9+7Z500nk5qLVO+8Y3W/JL5lEVJIKm5qwosof7Ky07kcnosqvsn1fqmz1JSqIxWe2mzVrhg8++ABWVlaYOXMmOnToAOv/zmf8559/4rHHHivxSlLlZ3IkSxEcXbkSjYYMKXI6iYKm8+KIukRUUgqbmpBTChJRRVdYB7WyfV+qbPUlKkixBkjr3LkznnvuOfj7++P9999XX1u5cqV6lpvoQaZGssy+fRvOfn5FTifBe4KIqLTY2NsXODXhvg8+QJeFCxH80kuVssPNs0NEjw52UIkqHos72/Xr18dff/2F1NRUuLm5Gbz28ccfw9vbu8QqR1WPqZEsoShFTidBRFRadB4eJqcmBO4N0rhhyBDUatcOTtWrl1MNi49fvomorPDHPSJjFne287m5uUFEcPHiRXh6esLGxgYNGzYsybpRFWVyOpz/XmbO6SSIqEwpCuxcXLBnypQiZ0UIZ6eViKhA/HGPyFixThlu3boVLVq0gJ2dHfz8/HDkyBEAwNChQ/Htt9+aVcaxY8fQq1cv1KlTB1qtFr/++isA4J133kFcXFxxqkWVzIMjWSqKog6gZmVjw442EZU6W3t7WNnYmDcrgrU1wFwiIiIiM1nc2V6xYgU6duyIWrVqYf78+cjLy1Nfq1OnDhYvXlxkGdu3b0ejRo1w9uxZ9O3bF9nZ2eprtra2mD9/vqXVIiIislj2nTvIy8kxe1YEVILRyYmIiKhisLizPXXqVIwaNQorVqzAwIEDDV5r0KABjh49WmQZEyZMQK9evZCYmIhJkyYZvNaoUSP89ttvllaLiIjIciLITE83mprwfkXNipCvpObm5n2PRFTemENEJcPizvZff/2Fjh07mnxNp9OZNc/20aNH0a9fPwAwulTYxcUFKSkpllaLiIioWG5dvapOTfhgh9ucWRFKem5uzptNROWNOURUMiweIM3b2xsnT55Eu3btjF47cuQI/P39iyxDr9fjwoULJl87ffo0fPjBJiKiMpJz547JqQnNmRWBc3MTERFRQSz+JtCnTx9MnjwZO3fuVJcpioKjR4/io48+wksvvVRkGS+88AKio6Nx6tQpgzIuXbqEWbNmISoqytJqlZr58+ejc+fO8PDwgKIoWL16dYHrbt68GWFhYdDpdHB1dUWbNm1w/vx5g3USEhIQGhoKe3t7+Pv748MPP3zosyBEROZiphXs/qkJu337LcKjowvsNN8/N/entWrhx2nTcHTFCvw4bRo+rVULR775BpKXBxt7+3JoCdGjhblGRBWVxZ3tyZMnIywsDJGRkeqc2h06dEBISAiaNm2K8ePHF1nGjBkz4OHhgeDgYDRv3hwAMHjwYAQGBsLZ2RmTK9C0AcuWLUNKSkqBl87n++abb9CtWze0bt0amzZtwtKlS9G0aVNkZmaq6/zxxx945pln4OPjg02bNmHUqFGYNGkSPv7449JuBhERAGbagx68z1pRFFw+cgTTdTpcPnLE6NLx/PsYnf39i5yb+8bFi9B5eJjcL++HJCo5zDUiqqgsvoxco9Fg/fr1iI+Px/bt25GSkgK9Xo+IiAhERESYVYazszMSEhLwzTffYPv27dDr9dDr9Rg+fDj69+8PjUZjcUNKS0JCAqysrJCcnIxly5aZXOfatWsYPnw45syZg3/+85/q8i5duhisN3PmTLi5uSEmJgYajQbt2rXD1atX8f7772PEiBHQarWl2hYiImbaPfffZ52XkwMRMehYPzg1Yb78+xjzcnNxaMGCoufmjo4utBwienjMNSKqqCzubOdr06YN2rRpU+wd29raYtCgQRg0aFCxyygLVmbcc7dq1Srk5uZiyJAhha4XFxeHbt26GfyY0KtXL8yYMQOJiYlo3br1w1aXiKhQj2qm3X8GuyTus7aytjZvbm4bmxK7lJxnw4lMe1RzjYgqvnIZveWpp57C/PnzcfXq1fLYfYnbv38/6tati6VLl8Lf3x82NjZ48sknERcXp65z69YtnDt3DnXr1jXYtm7dulAUBSdPnizrahMRmVSVMs1opPASus86LzfXvLm5c3KQc+dOibSFowMTFV9VyjUiqjzKpbPt4+ODt956C4899hieeeYZLFu2DDdu3CiPqpSIS5cu4dSpU3j33XcxdepUxMXFoWbNmujSpQuOHTsGAEhPTwdwb2qz+2k0Gjg4OODatWsFln/37l1cv37d4EFEVFqqSqZJXh5u/P039kyZgu/79MHlI0ce6j7r+ylWVmbNzZ353+NEROWrNHOtMn9P4xUzRKWrXDrbq1evxpUrV/D111/DxsYGL7/8Mry8vBAVFYXvv/8ed+/eLfM6iQhycnLUR25urtnb5uXl4ebNm/jqq6/Qv39/REZGIjY2Fr6+vvjwww8fum4zZsyAs7Oz+qhRo8ZDl0lEVdujnmlGZ7BjYuBet65Z91nbPfBF2xRFUcyam/tWFbmCi6giqKi5Vpm/p5XnFTPs6NOjoNwmAXV0dET//v2xefNmXLx4EZ988gmuXbuGXr16wcvLq8zrs2fPHtja2qoPU/OIF8TV1RUA0LZtW3WZra0tWrVqpf5amv8raUZGhsG2WVlZuH37NvR6fYHlT5gwARkZGerj3LlzZtetomLAEpWuRznTRMToDLatvT1sHRxK9D7r/Lm5RyYno9XEiWjYpw9aTZyIkcnJCO7bF4qVVYldQk5EFTfXquL3tLLAW2PoUVDsAdJKkpubG5566imcPXsWp06dwuXLl8u8Dk2aNMGBAwfU505OTmZv26BBgwJfy59OQqfToUaNGkb3+5w6dQoiYnR/0P20Wm2VG/2SI/ESla5HOdMkL8/oDHb2nTvIvn27xO+zvn9ubisbG+Tl5ECxtjaaMoyIHl5FzbWq+D2NiEpGsc5s5+bmIiEhAatWrcKyZcuMHub6888/8f7776Nhw4YICQnBkiVL0LNnTyQkJBSnWg/FyckJTZs2VR+BgYFmb9u5c2cAwI4dO9RlWVlZ2LNnD5o0aaIu69ChA9avX4/s7Gx12cqVK+Hi4oKwsLASaAUR0T2PcqaZHClcBEdXrkSjIUNK/D7roubmJqKS8SjnGhFVThaf2f7111/RrVs3nDt3DiJi9LqiKOjfv3+hZcyePRsxMTE4dOgQnJ2dERUVhU8//RStW7c2a/qGsnTw4EEkJyerI6fv378fAODh4YHw8HAAQOPGjREVFYWhQ4fi2rVr8PHxwbx583D58mWMGTNGLWvMmDH49ttv0bt3b7z22mv4/fffMXPmTLz//vsVam5xIqq6HoVMK2ik8J/nzEHwSy/hua+/xsaXXzY4833/fdYpp04Va78Fzc1NRKXrUcg1IqqkxELNmjWT4OBg2b17t1y5ckXS09ONHkXR6XTSu3dv2bBhg2RlZVlahTI1YMAAAWD0CA8PN1jv5s2bMmLECPHw8BCtVithYWGyb98+o/J++uknad68uWi1WvH19ZUZM2ZIXl6eRXXKyMgQAJKRkfEwTSOiR9CjkGl5eXmSce6cvGdjI5MBg8fqXr0kJytLMs6fl10TJ8r3ffrIrokTJeP8ecnLzRURkQuHDslkQC4cOmT2Pgva5vqFCxIfHS3XL1wokbYRkbGKlmtV/XtacTKS6FGliJg4PV0IR0dHxMbGokOHDsXu4N++fRsODg7F3v5Rd/36dTg7OyMjIwPVqlUr7+oQET2U0si0/NHIH5zmy8rGBj3XrkVAx46QvDyT91lf/PVXfNWkCYYeOgSfxo3N2l9xtiGiqqmqf09j3hGZz+LLyAMCAh56/kB2tImIqDTljxReq107HPryS6T99Rdca9dGk2HD4OTjA8XKCpcOH8bip5/GoL17+YWRiIiISpzFne1PPvkEI0eOREhISKGjzT6oWrVqiI+PR5MmTeDk5FToADKKohhNu0BERGQJc0YK533WRESW4fStROazuLP9r3/9C5cuXUJQUBCqV6+uzkmYT1EU/Pvf/zbabvTo0fD574dy9OjRHK2ViIhKnaIouHTkCM9gExGVEE7fSmQ+izvbTZo0KVZHOTo6Wv3/yfyAEhFRGeIZbCIiIiprFne2lyxZ8tA7bdu2LebPn2/yMvTTp09j2LBh2LVr10Pvh4iIiIiIiKg8lMuk1rt37y5wkLXr16/jxx9/LOMaEREREREREZUci89sA0B6ejpWr16N06dPIzMz0+j1zz77rMgyCroUPSEhAZ6ensWpFhEREREREVGFYHFn+8yZMwgLC8Pdu3dx69YteHh44Nq1a8jJyYGrqyucnZ1NdrZnzJiBGTNmALjX0W7Tpg2srAxPrN+9exc5OTl47bXXitkcIiKissfReYmIiOhBFne233zzTTRv3hyxsbHQ6XTYsmULQkJCsHLlSrz99tuIjY01uV1YWBhGjx4NEcF7772H3r17w9fX12AdjUaDevXq4bnnnitea4iIiMoBR+clIiKiB1nc2f7ll1+wcOFCaLVaAEBWVhasra3Rp08fpKSk4PXXX8dPP/1ktF14eDjCw8MB3Duz/corr6B69eoPWX0iIiIiIiKiisfiAdLu3r2LatWqwcrKCnq9HhcuXFBfCwoKwuHDh4ssIzo6mh1tIiIiIiIiqrIsPrMdEBCAs2fPAgAaNWqE+fPnIzIyEjY2NliwYIHZneg//vgDS5YsKXCQtQ0bNlhaNSIioofG+6+JiIioJFjc2e7VqxcOHz6Mfv36YerUqXjmmWfg6uoKRVEgIli6dGmRZRw4cADh4eHw9/fH6dOnERwcjIyMDCQnJ8PX1xePP/54sRpDRET0sHj/NREREZWEYg2Qlq9FixY4evQo4uLikJmZibZt2yIoKKjIMsaOHYuePXti4cKFsLW1xcKFC9G4cWMkJCSgd+/eGDdunKXVIiIiIiIiIqowijXP9v1q1KiBoUOHWrTNv//9b4wfP16d+iv/MvKwsDBMnjwZ48ePxzPPPPOwVSMiIiIiIiIqFxYPkAYA2dnZ+PLLLzFkyBC0b98eZ86cAQCsXLkSJ06cKHJ7RVGg0WigKAo8PT3Ve8ABwNfXF6dPny5OtYiIiIiIiIgqBIs723/99RcCAwMxduxY/PHHH9i5cydu3LgBAPjxxx/x0UcfFVlG/fr18eeffwIAQkND8fHHH+Po0aM4deoUPvjgA9SpU8fSahERERERERFVGBZfRv7666/Dw8MDv/zyC1xcXKDRaNTXwsPDMWHChCLLGDp0qHo2e/r06Wjfvj1CQkIAADqdDqtXr7a0WkREREREREQVhsWd7d27d2PFihVwd3dHbm6uwWve3t64ePFikWX069dP/f969erhxIkTSExMxJ07d9CiRQt4enpaWi0iIiIiIiKiCsPizraNjQ1ExORrly9fhqOjo8WVcHR0RGRkpMXbEREREREREVVEFne2w8PD8fHHH6NDhw7qaOL5c2x/9dVXaNeuncnt1qxZY9F+unXrZmnViIiIiIiIiCoEizvbH374IcLCwlC/fn106dIFiqJg3rx5OHr0KM6cOYNffvnF5Hbdu3c3ex+Kohhdok7/k39lwfXr18u5JkRUWpycnKAoSnlXo0yUdqblOTqi6fjxyHN0NNjHjZs3kfnf/+qYp0Sl7lHJNX5PI3o0mJNpihR0TXghkpKSMHnyZGzfvh0pKSnQ6/WIiIjAlClTChxJ/P7pvczh7+9vabUeGefPn0eNGjXKuxpEVIoyMjJQrVq18q5GmWCmET0aHpVcY6YRPRrMybRidbapfOXl5eHChQul8gvx9evXUaNGDZw7d67S/0GsKm1hOyqWsmrHo3IGCCjdTAP4b6+iqSrtAKpOW5hrJYuZZp6q0g6g6rSF7bCMOZ9xiy8jL0k//PADDhw4gHPnzmHixInw8/PDjz/+iMcffxzVq1cvz6pVaFZWVvD19S3VfVSrVq1Sf8juV1XawnZULFWlHRVBWWQaUHXeM7aj4qkqbakq7ShvzDTLVJV2AFWnLWxHyTGrsz148GCzC1QUBQsXLix0natXr+KFF17A/v371V8dhg0bBj8/PyxatAg6nQ7z5s0ze59EREREREREFYlZne0lS5bAyckJderUKXDar3zmXC4zatQoXL16FUePHsUTTzwBjUajvhYREYFp06aZUy0iIiIiIiKiCsmsznZoaCj279+P3Nxc9OnTB7169XqoAcw2b96M//u//0O9evWMRh2vUaMGzp8/X+yy6eFotVpER0dDq9WWd1UeWlVpC9tRsVSVdjxKqsp7xnZUPFWlLVWlHY+KqvJ+VZV2AFWnLWxHyTN7gLT//Oc/iImJwXfffYfff/8doaGh6NOnD3r27Al3d3eLduro6IhVq1ahY8eOyM3Nha2tLQ4ePIjGjRtj3bp1GDx4MK5du1asBhERERERERGVNytzV/Tz88PYsWNx+PBh/P7772jTpg3mzJmD6tWro0OHDoiLizN7p82bN8eiRYtMvhYTE4OnnnrK7LKIiIiIiIiIKpqHmvorMzMTkyZNwuzZs9GlSxesWbPGrO0SExPRpk0bNGvWDN27d8cbb7yBd955BydOnMDmzZuxb98+NG7cuLjVIiIiIiIiIipXFne2c3NzsW3bNsTExGD9+vWwsbFBVFQUXn75ZfzjH/8wu5zExESMHz8eCQkJyM3NhaIoCA0NxcyZMxEaGmpxQ4iIiIiIiIgqCrMvI//xxx/xz3/+E15eXujZsydyc3Px7bff4tKlS1iwYIHZHe2srCysWbMGXl5e2LNnD65fv47z58/jxo0b2LdvHzvapWj+/Pno3LkzPDw8oCgKVq9eXeC6mzdvRlhYGHQ6HVxdXdGmTRujgesSEhIQGhoKe3t7+Pv748MPPyxytPrSkpqaqk4fp9PpEBQUhC+//NJovQsXLiAqKgpOTk7Q6/V4+eWXcf369XKocdFOnjyJyMhI6HQ6eHt7Y+zYscjKyirvahVpw4YNaN68OZycnODj44OePXvir7/+Mlpv4cKFCAgIgJ2dHUJCQrBp06ZyqO09f/zxB4YNG4Ynn3wSNjY2CAoKMrleeno6Xn/9dVSvXh12dnaoU6cOPv74Y4N1srKyMGbMGHh7e0On0yEyMhKnTp0qi2Y8cphpzLSywExjppUl5hpzrbQx08o408QMvr6+YmdnJ127dpVVq1bJnTt3zNmsQFqtVuLj4x+qDLJc8+bNpXnz5tK/f38BILGxsSbXW758uWg0GpkwYYLs2rVL1q9fL2+99ZacOXNGXefMmTPi6OgoXbt2lR07dsjs2bNFo9HIzJkzy6o5Btq0aSM+Pj6yePFi2blzp4wePVoAyFdffaWuk5WVJUFBQRIUFCQbNmyQmJgY8fX1lU6dOpVLnQtz7do18fHxkVatWskPP/wgCxcuFGdnZxk+fHh5V61Q8fHxYmVlJQMHDpTt27dLTEyMBAQESJ06deT27dvqeitWrBBFUWTixImya9cuefXVV8XGxkYSExPLpd7r1q0TX19fiYqKkoYNG0qDBg2M1rl586aEhIRIkyZNJCYmRuLj42XBggVG/+ZfffVVcXZ2loULF8oPP/wgTz/9tDz22GOSnp5eVs15ZDDTmGmljZnGTCtrzDXmWmlippV9ppnV2VYURTQajTg6OoqTk1Ohj2rVqhVZXkhIiCxduvShK0+Wyc3NFRGRpKSkAgM8NTVVqlWrJvPnzy+0rKFDh4q/v7/cvXtXXTZhwgRxcXGRzMzMkq14ES5evCgAZPHixQbLW7VqJW3btlWff/fdd6Ioipw8eVJdtnXrVgEgP//8c1lV1yzTp08XnU4nqamp6rIFCxaItbW1/P333+VYs8K9+uqrUqtWLcnLy1OX7dq1SwDIjz/+qC4LCAiQ3r17G2wbGhoqHTp0KLO63i//syEiMmDAAJMhPnHiRKldu7bcvHmzwHLOnTsn1tbWsmDBAnVZamqq6HQ6+fDDD0u20sRMY6aVOmYaM62sMdeYa6WJmVb2mWbWZeTR0dF4++238dZbb2H06NGFPt58880iy5sxYwamTZuGgwcPWngenh6GlVXRb/eqVauQm5uLIUOGFLpeXFwcXnjhBWg0GnVZr169kJ6ejsTExIeuqyWys7MBAM7OzgbLnZ2dDS6ViouLQ3BwMAIDA9VlkZGR0Ov12LJlS9lU1kxxcXGIiIiAXq9Xl/Xs2RN5eXnYtm1bOdascNnZ2XBycoKiKOqy/Pcl/73466+/cPr0afTs2dNg2169emHnzp24e/du2VX4v8z5bHz99dcYPHgwdDpdgets27YNeXl56NGjh7pMr9ejffv2Fe7fWFXATGOmlTZmGjOtrDHXmGuliZlW9plmdmfbkkdRxo4di9TUVDRv3hyenp5o2LAhgoOD1UdISMhDN4yKZ//+/ahbty6WLl0Kf39/2NjY4MknnzSY2u3WrVs4d+4c6tata7Bt3bp1oSgKTp48WaZ1rlGjBtq3b4/p06fj+PHjuHHjBlatWoVt27Zh+PDh6nonT540qrOiKKhbt26Z17kopurq4uICHx+fClfX+w0cOBDHjx/H/PnzkZGRgb/++gtvv/02GjVqpE7pl1//B9tXr149ZGVlISkpqczrXZTk5GRcunQJ7u7u6NKlC7RaLfR6PV555RXcvHlTXe/kyZPw9PSEq6urwfb16tWr0O9bVcZMqxiYaRULM61yY65VDJUx15hpZZ9pNqVSahGaNGmCpk2blseuqQiXLl3CqVOn8O677+Kjjz6Cj48P5s2bhy5duuDw4cNo0KAB0tPTAdwLlPtpNBo4ODjg2rVrZV7vNWvW4MUXX0SDBg0AANbW1pg7dy6ioqLUddLS0ozqDACurq7lUufCVKa63u/pp5/G2rVr0adPH/WP55NPPokffvgB1tbWAO61DTD+95MffBWxfZcuXQIAvPXWW+jWrRu2bNmCM2fOYPz48bh58yZWrFgBoPK+b1UZM61iqEx1vR8zrXK+b1Udc61iqEx1zcdMK/v3rFw620uWLCmP3T4yRAS5ubnqc0VR1A9QUfLy8nDz5k18++236NKlCwCgdevWCAgIwIcffohly5aVSp3NZaptVlZWGDRoEM6cOYPvvvsOPj4+2L59O0aNGgVXV1f06tWrHGv8aElISEC/fv3wyiuvoHPnzkhNTcXUqVPRqVMn7N27F/b29uVdxWLJy8sDAAQEBGDp0qUAgHbt2sHGxgavvPIK3n//fdSuXbs8q1ilMdOYaeWFmUalhbnGXCsPzLSyVy6dbSpde/bsQZs2bdTn4eHh2L17t1nb5v9q1bZtW3WZra0tWrVqhaNHjwL43y9dGRkZBttmZWXh9u3bBveulDRTbXvrrbcQGxuLI0eOoGHDhgDu/dG5cuUKRo8erQa4q6urUZ2Be79y1ahRo9TqXByF1bU0j+/Dev3119G2bVuDaRZatGgBPz8/LF++HEOHDlX/jWVkZMDb21tdL/+X1IrYvvw63/9vD7gX5ABw7Ngx1K5du9K+bxUdM42ZVl6YaZXzfasMmGvMtfLATCv794yd7SqoSZMmOHDggPrcycnJ7G3zL+0xJTMzEwCg0+lQo0YNo3sbTp06BRExusejJJlq2/r162FtbW00516jRo3w9ddf4/bt23BwcEDdunXx+++/G6wjIjh16hQiIyNLrc7FYerepIyMDFy8eLFUj+/DOn78OJ5//nmDZb6+vnB3d8eff/4J4H/3AJ08edJgAJSTJ09Co9FUyLMpderUgVarLfD1/M9G3bp1cfnyZaSlpRncD2Tqvi4yHzPtHmZa2WOmMdNKC3PtHuZa2WKmlX2mmTVAGlUuTk5OaNq0qfq4/4NSlM6dOwMAduzYoS7LysrCnj170KRJE3VZhw4dsH79enV0SQBYuXIlXFxcEBYWVgKtMM1U2/z9/ZGbm4sjR44YrHvo0CF4enrCwcFBrfO///1vnDlzRl1n586dSE1NRceOHUutzsXRoUMH7NixQ73nCgBiY2NhZWWF9u3bl1/FiuDv749ff/3VYNnZs2eRkpKCmjVrAgBq166NgIAAxMbGGqy3cuVKtGvXzmDU1IpCo9Ggffv22Llzp8Hy7du3AwAaN24MAGjfvj2srKzw/fffq+ukpaVh27ZtFe7fWGXCTLuHmVb2mGnMtNLCXLuHuVa2mGnlkGmlMqEYVUgHDhyQ2NhYmT9/vgCQ0aNHS2xsrOzevdtgvaioKPHw8JCFCxfKli1bpFOnTmJnZydHjhxR1zlz5ozodDqJioqSnTt3ypw5c0Sj0RhNHF8Wrl+/Ln5+fvL444/L8uXLZceOHTJ27FixsrKSqVOnqutlZWVJUFCQNGzYUDZu3CgrV66UGjVqSKdOncq8zkW5du2a+Pj4SHh4uGzdulUWLVokLi4uMnz48PKuWqHmzJkjAOT111+X7du3S0xMjAQFBYmXl5ekpKSo6+XPozlp0iSJj4+XYcOGiY2NjSQkJJRLvW/duiWxsbESGxsrrVu3lho1aqjPr1y5IiIiBw8eFI1GI3369JGtW7fK559/Lk5OTtK3b1+Dsl599VVxcXGRRYsWydatWyU8PFwee+wxSU9PL4+mVWnMNGZaaWOmMdPKGnONuVaamGlln2nsbD9CBgwYIACMHuHh4Qbr3bx5U0aMGCEeHh6i1WolLCxM9u3bZ1TeTz/9JM2bNxetViu+vr4yY8YMycvLK6PWGDpz5oz07NlTqlevLg4ODtKgQQOZM2eO5OTkGKx3/vx56datmzg6OoqLi4sMHjxYMjIyyqXORTl+/Li0a9dO7O3txdPTU9566y25e/dueVerUHl5efLFF19IcHCw6HQ68fb2lq5du8qJEyeM1v3666/l8ccfF41Go/5RLS9JSUkmPxsAJD4+Xl1vx44d0rRpU9FqteLt7S2jR4+WzMxMg7IyMzNl9OjR4unpKfb29hIREWGy/fTwmGnMtNLGTGOmlTXmGnOtNDHTyj7TFJH7ZpInIiIiIiIioofGe7aJiIiIiIiIShg720REREREREQljJ1tIiIiIiIiohLGzjYRERERERFRCWNnm4iIiIiIiKiEsbNNREREREREVMLY2SYiIiIiIiIqYexsk1kmT54MRVHw2GOPIS8vz+j1p556CoqiYODAgRaVm56ejsmTJ+P48eMGy5OTk6EoClavXv0w1X5oc+bMgaIo6vPdu3dDURQcPHiwzOowefJkJCQkGC1XFAWzZs0qs3qYsm7dOiiKguTkZADFe9/mzJmDLVu2lFINiUxjpt3DTDPETKPKjLl2D3PNEHOtfLGzTWaztbVFSkoKfvzxR4PlZ8+eRWJiIhwdHS0uMz09HVOmTDEKcB8fHyQmJqJt27YPVeeS1rhxYyQmJqJevXplts8pU6aYDPDExET07du3zOphjuK8bwxwKi/MNGZaUZhpVNkw15hrRWGulS2b8q4AVR4ajQYRERFYsWIFWrdurS6PiYlBgwYNYG1tXWL70mq1aNGiRYmVV1KqVatWZL3u3LkDe3v7Uq9LRTw+FfV9IzKFmcZMK0pFfd+ICsJcY64VpaK+b1UVz2yTRXr37o3Vq1cjOztbXfbdd9+hT58+Jtf/8ccfERYWBnt7e7i7u2Pw4MG4du0agHuXsdSqVQsA0KNHDyiKol7mYuoSl7y8PEybNg01a9aEVqtF3bp1sWDBAoP9TZ48GY6Ojvj999/RsmVLODg4ICgoCFu3bi2ybdevX0f//v3h5OQEDw8PjB07Fjk5OQbrmLo0SVEUfPDBBxg3bhy8vb3h6ekJABARzJo1CwEBAdBqtahduzY++eQTo/2eOHEC3bp1g16vh4ODA0JCQrBixQq1bAAYM2aMenx2796tvvbgpUkLFixAYGAgtFotatasiWnTphlcSrZkyRIoioLffvsNHTp0gE6nwxNPPIFly5YVeXyys7MxatQo6PV6ODs7Y8iQIbh586bBOqbetw0bNqBp06ZwdHSEi4sLmjZtqv46WrNmTZw9exbz5s1T27dkyRIAwLJly9CyZUvo9Xq4urqidevW+OWXXwz2Z8n7vWzZMjRq1Ah2dnZwd3dHx44dcfbsWfX18+fP46WXXoK7uzvs7e3RqlUrHDp0qMjjQpUbM42Zxkyjqoa5xlxjrlUc7GyTRZ577jncvXsX27ZtAwAcP34cR44cQa9evYzWPXToECIjI+Hk5ITY2Fh8+OGH2LhxIzp06IDc3Fz4+PhgzZo1AIDp06cjMTERiYmJ8PHxMbnvMWPGYPLkyRg4cCA2btyI9u3bY9iwYfj8888N1svOzkbfvn0xcOBArF27Fp6enoiKikJqamqhbRs8eDDWrl2LDz74AEuXLsXx48cxZ84cs47Lp59+itOnT2PhwoX45ptvAAAjR47EpEmTMGDAAGzevBkDBw7EuHHj8OWXX6rbnTlzBqGhoThz5gw+++wzbNiwAYMGDcJ//vMfAPcuPwKAESNGqMencePGJuswd+5cDBs2DM888ww2btyIgQMHYvLkyRg7dqzRun379kX79u2xbt06NGrUCAMHDsSJEycKbeOECRMwf/58jBkzBqtWrUJubi7Gjx9f6DZ//vknunfvjgYNGmDt2rVYuXIlevbsibS0NADA2rVr4e3tje7du6vt69SpE4B7fwz69++P2NhYfPfdd/Dz80OrVq1w+vRpg32Y837PnDkTAwYMQJMmTbBmzRosXLgQTzzxBK5evQoASEtLQ8uWLXH48GHMnTsX33//PXQ6Hdq2bYsrV64U2kaq3JhppjHTTGOmUWXAXDONuWYac62UCZEZoqOjRafTiYhInz595KWXXhIRkYkTJ0poaKiIiISEhMiAAQPUbbp27Sp+fn6SlZWlLtu6dasAkA0bNoiISFJSkgCQ2NhYg/09uPzq1atia2sr48ePN1ivd+/e4uHhITk5OWo9AcjmzZuNylq+fHmB7Tt27JgoiiILFy5Ul+Xk5EitWrXk/o9JfHy8AJADBw6oywBI/fr1JS8vT132xx9/iKIosmDBAoP9jBs3Try9vSU3N1c9lh4eHpKRkVFg3QDIzJkzC12ek5Mj7u7u0qtXL4N1JkyYIBqNRlJSUkREZPHixQJA5s2bp65z8+ZNcXBwkKlTpxZYh9TUVLG3t5d3333XYHmrVq0EgCQlJYmI8fsWGxsrAOT69esFlu3v7y/Dhw8v8HURkdzcXMnOzpbAwECZMGGCutyc9zs9PV0cHBxk6NChBZY/adIkcXZ2lsuXL6vLMjMzxc/PT8aMGVNo3ahyYqbdw0xjplHVwVy7h7nGXKtIeGabLNa7d2+sX78ed+7cQUxMDHr37m1yvb179+L555+Hra2tuqx9+/ZwcXHBvn37LNrnzz//jOzsbPTo0cNg+YsvvoirV68a/IJmZWWFiIgI9XnNmjVhb2+P8+fPF1j+gQMHICLo2rWrusza2hovvPCCWfXr0KGDwUiYO3bsAABERUUhJydHfURERODSpUs4d+4cAGDnzp3o3r07qlWrZtZ+CnLy5EmkpKSYPD5ZWVlGl/S0b99e/X+dTgd/f/9Cj8/vv/+OO3fuGByf/PYVJjg4GNbW1ujTpw82btyIjIwMc5uEEydOoGvXrvDy8oK1tTVsbW1x6tQpo19Li3q/ExMTcfv2bQwZMqTAfW3btg1t2rSBXq9X3ytra2uEh4fjwIEDZteZKidmmjFmmmnMNKosmGvGmGumMddKFwdII4s988wzsLW1xaRJk5CUlISePXuaXC8tLQ1eXl5Gy728vNR7gcyVfynLg+XlP7+/PHt7e2g0GoP1NBoNMjMzCyz/4sWLsLW1haurq8nyi/LgeikpKRARuLu7m1z/3Llz8Pf3R2pqKqpXr27WPgpjyfEBABcXF4Pn5hwfAOo9Tg+WX5CAgABs2rQJ06dPR9euXWFlZYVnn30Wn3/+Ofz8/Arc7saNG2jfvj08PDwwe/Zs+Pv7w87ODi+//LJRPYt6v/MvUSrsOKekpGD//v0GXzby1alTp9A2UuXHTDPGTDONmUaVBXPNGHPNNOZa6WJnmyxma2uLqKgozJ49G+3atSvwQ6zX603eQ3H58mXo9XqL9pm//pUrV/DYY48ZlHX/68Xl4+OD7OxspKWlGYR4fvlFuf+X0vz6KIqCffv2GYULAAQGBgIA3NzccOHChYeo+f/2B8DoeJfk8ckv39TxL8yzzz6LZ599FtevX8cPP/yAN954A4MGDcLOnTsL3CYxMRHnz5/Hpk2bEBISoi7PyMiAr6+vRXV3c3MDAFy4cKHAbfV6PZ599llMnTrV6DWtVmvR/qjyYaYZY6YVjJlGlQFzzRhzrWDMtdLDy8ipWF5++WU899xzGDlyZIHrtGzZEuvWrTMYJXL79u1IT09Hy5YtAUANt8J+qQOAZs2awdbWFrGxsQbLV61aBU9PTwQEBBS3KQCAf/zjHwDuDQKRLzc3F+vWrStWee3atQNw75e6pk2bGj2cnJwAABEREVi9ejVu3LhRYFm2trZFHp/AwEB4eHiYPD4ajQbNmjUrVjvyNWzYEPb29gbHBwC+//57s8uoVq0aevbsiV69ehkM8GHql9o7d+6or+VLSEhAcnKyxXUPDQ2Fg4MDFi9eXOA6EREROH78OOrVq2f0XjVs2NDifVLlw0wrHDPNGDONKjrmWuGYa8aYayWPZ7apWJo1a1ZkuL3zzjsICwtD586dMWLECFy+fBnjx49Hs2bN0LFjRwCAt7c3XFxcsGLFCtSqVQtarRbBwcFGZbm7u2PEiBGYOXMm7Ozs0KJFC2zZsgXfffcd5s6d+9DzRtavXx9du3bFqFGjkJmZiZo1a2L+/PnIysoqVnkBAQEYPnw4+vXrhzFjxqB58+bIzs7G6dOnER8frx676OhobNq0CS1btsTYsWPh4+OD48eP4/bt2+rIlPXq1cP69evx9NNPQ6fTITAwUP0DkM/a2hrvvvsuXn/9dXh6eqJjx47Yv38/PvzwQ4waNUr9xbC49Ho9hg0bhg8++AD29vZo3LgxVqxYgT///LPQ7RYsWIDExEQ8++yz8PHxQVJSEr755huD+5Dq1auHXbt2Yfv27XB1dUWtWrXQokULODo6Yvjw4Rg/fjz+/vtvREdHG/xSay5nZ2dER0dj3LhxyMvLw/PPP4+8vDzEx8ejd+/eaNq0Kd588018++23CA8Px8iRI+Hn54erV6/i559/RvXq1fHGG29YvF+qXJhphWOm3cNMo8qEuVY45to9zLVSVp6js1Hlcf8IlwV5cIRLEZHdu3dLaGioaLVa0ev1MnDgQElNTTVYZ+3atVKvXj3RarXqaImmRr7Mzc2V9957T/z8/MTW1laeeOIJ+fLLL82qp7Ozs0RHRxda/7S0NOnbt6/odDpxc3OTN998U2bOnGnWCJemRqDMy8uTuXPnSlBQkGg0GtHr9RIaGiqzZ882WO/YsWPSpUsXqVatmjg4OMiTTz4pMTEx6ut79+6Vxo0bi729vQCQ+Pj4Avf7xRdfyBNPPCG2trbi5+cnU6dOVUfTFPnfCJdXr1412M7Ue/egu3fvyogRI8TFxUWqVasmAwYMkOXLlxc6wmVCQoJ06tRJfHx8RKPRiJ+fn4wcOdJgxMujR4/K008/LU5OTgJAFi9eLCIicXFx0qBBA7Gzs5Pg4GDZsmWLhIeHS6dOndRtLXm/Fy1aJA0bNhSNRiNubm7SuXNnOXv2rPr6xYsXZciQIWpdfX19pXv37vLTTz8VelyocmKm3cNMY6ZR1cFcu4e5xlyrSBQRkVLv0RMRERERERE9QnjPNhEREREREVEJY2ebiIiIiIiIqISxs01ERERERERUwtjZJiIiIiIiIiph7GwTERERERERlTB2tqnUJCcnQ1EUrF692qLtdu/ejenTpxstnzx5MhwdHUuqekWaM2cOtmzZUmLlrVu3DvPnzzdaPnDgQAQFBZXYfkpaWR93ooqMuWaIuUZUuTHTDDHTqKSxs00VTkEB/vLLLyM+Pr7M6lFWAV7RlfVxJ6qKmGsVC3ON6OEw0yoWZlrFZVPeFaDKRUSQlZUFrVZb5vv29fWFr69vme/3UXX37l3Y2tqW2HHPL8/Kir/xUcXCXHt0MNfoUcBMe3Qw0yo+HkkqVP5lM1u2bEFISAi0Wi02btwIAEhMTETbtm2h0+ng7OyMPn364MqVK4WWt2zZMrRs2RJ6vR6urq5o3bo1fvnlF/X1yZMnY8qUKbh16xYURYGiKGjdurX6Wv4lMrdu3YJOp8OsWbOM9tG9e3eEhoaqz9PT0/Haa6/Bx8cHWq0WTZo0wbZt2wqtZ82aNXH27FnMmzdPrceSJUsAAHl5eZg2bRpq1qwJrVaLunXrYsGCBUUex6VLl+LYsWNqeQMHDjRYZ/fu3WjUqBF0Oh2aNWuGQ4cOGbwuIpg1axYCAgKg1WpRu3ZtfPLJJ4XuN3/fQUFBiIuLQ1BQEOzs7NCkSRPs37/fqM3/+te/8NFHH8Hf3x/29va4du2ayUuTzp49i+7du8PZ2Rk6nQ7PPPMMfv/9d7PKK6yOO3bsQHBwMOzt7REeHo7k5GRcu3YNPXv2RLVq1VCnTh2sXLnSaPvNmzejefPmsLe3h4eHB/75z3/i1q1b6uu3bt3Cv/71LwQGBsLBwQE1a9bEsGHDkJGRYbLO8+bNg7+/P5ydnfHCCy/g6tWrRR5nqjyYa8w15hpzrSphpjHTmGkVONOEqBADBgwQV1dXqVOnjixevFh27twpZ86ckYSEBNFoNPLCCy/Ixo0bJSYmRh5//HFp0aKFum1SUpIAkNjYWHXZlClTZMGCBbJjxw7ZsmWL9OvXT7RarZw6dUpERM6dOydDhgwRe3t7SUxMlMTERDl27JiIiERHR4tOp1PL6tWrlzRp0sSgvtevXxc7Ozv57LPPRETk7t270rRpU6lRo4YsXLhQfvjhB3nppZfExsZGjhw5UmC7f/31V/H29pbu3bur9bhy5YqIiLz55ptibW0t0dHRsnXrVhkxYoQAkLlz5xZY3h9//CEdO3aU2rVrq+X98ccf6jF2c3OThg0byrfffiubNm2Shg0bSo0aNSQrK0stY8SIEWJvby/Tpk2T7du3y5QpU8TW1la++OKLIt9DvV4vNWvWlCVLlsj69eslNDRUqlWrJpcvX1bX8/f3F29vb3n66adl7dq1smHDBrl9+7bRcb9+/brUrFlTateuLd99952sWbNGmjRpIi4uLvKf//ynyPIKqqObm5sEBwdLTEyMfP/99/LYY49JWFiYREREyHvvvSfbtm2THj16iI2NjSQnJ6vbxsbGipWVlQwZMkTi4uJk0aJF4unpKS+++KK6zpUrV2TYsGESGxsru3fvluXLl0vdunWldevWBvXw9/eXGjVqSPv27WXjxo2yePFicXFxMSiLKj/mGnONucZcq0qYacw0ZlrFzTR2tqlQAwYMEACyf/9+g+WtWrWSsLAwycvLU5cdO3ZMFEWRzZs3i4jpAL9fbm6uZGdnS2BgoEyYMEFd/mBgFLR8/fr1AkBOnz6tLlu6dKlYW1vLpUuXRERk0aJFYmNjo/4RyNe8eXPp0aNHoW339/eX4cOHGyy7evWq2Nrayvjx4w2W9+7dWzw8PCQnJ6fA8gYMGCANGjQwuVxRFDl69Ki6LD4+XgDI3r17ReTeHwBFUWTBggUG244bN068vb0lNze30P0CkJ07d6rL0tPTxcnJyaAd/v7+4ubmJjdv3jTY/sHj/umnn4qiKHL8+HF1WWpqquh0OnnzzTeLLK+gOj54DObOnSsAZNy4ceqytLQ0sba2ljlz5oiISF5envj7+0vv3r0NyouLizMq737Z2dmyb98+AaB+ecivs6+vr2RmZhq039bWttBjTJULc425xlxjrlUlzDRmGjOt4mYaLyOnIrm5uaF58+bq89u3b+Onn35Cjx49kJubi5ycHOTk5CAgIAA1atTAgQMHCizrxIkT6Nq1K7y8vGBtbQ1bW1ucOnUKp0+ftrhezz77LFxcXBATE6Mui4mJQZs2beDl5QUA2LZtGxo2bIiAgAC1njk5OYiMjCy0ngX5+eefkZ2djR49ehgsf/HFF3H16tVitQMAqlevjgYNGqjP69evDwA4f/48AGDHjh0AgKioKIN2RERE4NKlSzh37lyh5Ts7O6Nt27YGzyMiIvDzzz8brNe6dWvodLpCy9q7dy+CgoJQr149dZler0dkZCT27dtncXn5HjwGAQEBAICIiAh1mYuLCzw9PdX2nj59GmfPnkXPnj0Njkt4eDisrKxw8OBBddvly5ejUaNGcHR0hK2tLVq2bKmWcb/w8HCD+9zq16+P7OzsIi+7o8qFufY/zDXmGlV+zLT/YaYx0yoSdrapSPlhmC8tLQ25ubl44403YGtra/D4z3/+U2CY3LhxA+3bt8fZs2cxe/Zs7N27FwcOHEBISAgyMzMtrpdGo0FUVJQa4Kmpqdi+fTv69OmjrpOSkoLffvvNqJ7Tpk0rMvRMSUtLA2B8TPKfF3SfS1FcXFwMnms0GgBQj0tKSgpEBO7u7gbtiIyMBIAi2+Lh4WG0zMvLCxcvXjTZjsKkpaWZXM/Ly8uo/eaUl6+gY2Bq+f3HBQC6du1qcFwcHByQm5urHpe1a9eif//+aNasGVatWoX9+/dj7dq1AGD0b6+o94KqBuaaYdsB5hpzjSozZpph2wFmGjOtYuBo5FQkRVEMnru4uEBRFLz99tt44YUXjNZ3d3c3WU5iYiLOnz+PTZs2ISQkRF2ekZFR7BEUe/fujYULF+LIkSNITEyEtbU1unXrpr6u1+sRHByMhQsXFqv8B+n1egDAlStX8Nhjj6nLL1++bPB6SdPr9VAUBfv27VMD5X6BgYGFbm9q0IjLly/Dx8fHYNmD73VBdTl16pTJ8h5svznlPYz8/X3++ecGv+jnq169OgAgNjYWTz75pMHgKHv27CnVulHFxlz7H+Yac40qP2ba/zDTmGkVCTvbZDGdTofQ0FCcOHEC06ZNM3u7O3fuAIBBACUkJCA5OdngkhSNRoO7d++aVWbr1q3h7e2NFStWIDExER06dICzs7P6ekREBLZs2YLq1aurH2Zz3f+rXL5mzZrB1tYWsbGxaNSokbp81apV8PT0VC+nMbc8c7Vr1w7AvV+En3vuOYu3z8jIwK5du9TLkzIyMrBjxw4MHz7c4rJatmyJ1atX49SpU+ofjrS0NOzYsQNDhw61uLyHUbduXfj6+uKvv/4qtC137twx+sP37bfflnb1qBJhrjHXmGtUlTDTmGnMtIqBnW0qlpkzZ6Jt27Z48cUX0atXL7i6uuL8+fPYvn07Bg0apE4Bcb8WLVrA0dERw4cPx/jx4/H3338jOjra4FdHAKhXrx5ycnLw6aefIiwsDNWqVSvw10Bra2v07NkTS5YswZUrVwzuCQKA/v37Y8GCBWjdujXeeustBAQEID09Hb/99huysrIwY8aMAttYr1497Nq1C9u3b4erqytq1aoFd3d3jBgxAjNnzoSdnR1atGiBLVu24LvvvsPcuXNhbW1daHmLFi3CihUr8MQTT8Dd3R01a9Ys+CDfJyAgAMOHD0e/fv0wZswYNG/eHNnZ2Th9+jTi4+Oxbt26QrfX6/UYMmQIpkyZAhcXF3zwwQcQEYwaNcqs/d9v0KBB+OSTT9CpUydMmzYNdnZ2eP/992FjY1Os8h6GoiiYPXs2+vTpg1u3bqFTp07Q6XQ4e/YsNm/ejOnTpyMgIACRkZEYPnw4pk6ditDQUGzZsgU7d+4s07pSxcdcY64x16gqYaYx05hpFUB5js5GFV9BozKKiBw4cEA6duwozs7OYm9vL0888YQMGzZMzp07JyKmR7iMi4uTBg0aiJ2dnQQHB8uWLVskPDxcOnXqpK6TnZ0tr732mnh5eYmiKBIeHi4iBY98mZiYKADE0dHR5HQFGRkZ8sYbb4ifn5/Y2tqKj4+PdOzYUTZt2lRo248ePSpPP/20ODk5CQBZvHixiNwbmfO9995Ty3viiSfkyy+/LLSs/Hr06tVL3NzcBIAMGDBAREwf47S0NIN9itwbzXHu3LkSFBQkGo1G9Hq9hIaGyuzZswvdb375mzZtknr16olGo5FGjRrJTz/9ZLCeqRE9RUwf9+TkZOnWrZs4OTmJg4ODREZGGk3PUVB5hdXxfvmjfB44cKDIcrdt2ybh4eGi0+lEp9NJgwYNZPTo0ZKeni4iIjk5OTJ69Gjx8PAQJycn6d69u+zfv9/o36epsteuXSsAJCkpyay2UMXHXGOuMdeYa1UJM42ZxkyruJmmiIiUXdeeiMrawIEDcfDgQRw9erS8q0JEVCKYa0RUlTDTqi6ORk5ERERERERUwtjZJiIiIiIiIiphvIyciIiIiIiIqITxzDYRERERERFRCWNnm6iUNWvWDPPmzSvw9cOHD0NRFOzevbtU9h8ZGYn333+/VMomokcPM42IqhrmGpUWdraJStHatWuRnJyMwYMHl1sd3n77bcyaNQtpaWnlVgciqhqYaURU1TDXqDSxs01UiubMmYPevXvD3t6+3OrQpk0buLq6YunSpeVWByKqGphpRFTVMNeoNLGzTVRKkpKSsHfvXnTv3t1g+bRp0+Dt7Q1HR0d069YNV65cMdpWRDBr1iwEBARAq9Widu3a+OSTT4zWW7t2LQIDA2FnZ4cWLVrg119/hYuLCyZPnmywXo8ePRjgRPRQmGlEVNUw16i0sbNNVEp27twJGxsbNGvWTF32+eef491330W/fv3w/fffo3bt2hgyZIjRtiNHjsSkSZMwYMAAbN68GQMHDsS4cePw5Zdfquv89ttv6NGjB+rXr481a9ZgwIABePHFF3H37l2j8sLCwnD48GFcvXq1dBpLRFUeM42IqhrmGpU6IaJSMXToUGnQoIH6PCcnR6pXry79+vUzWK9fv34CQOLj40VE5I8//hBFUWTBggUG640bN068vb0lNzdXRER69Oghjz/+uPpcRGT58uUCQKKjow22TUpKEgCyadOmEmwhET1KmGlEVNUw16i08cw2USm5ePEiPDw81Ofnz5/HhQsX0LVrV4P1Hrx0aceOHQCAqKgo5OTkqI+IiAhcunQJ586dAwAcOHAAnTt3hpXV/z7Gzz//vMm6uLu7q3UiIioOZhoRVTXMNSptNuVdAaKqKjMzE1qtVn2eH56enp4G63l5eRk8T0lJgYioofugc+fOwd/f3+gPBAA4OTnBzs7OaJv8ety5c8fyhhARgZlGRFUPc41KGzvbRKVEr9cjOTlZfe7j4wMARoNsXL582Wg7RVGwb98+aDQao3IDAwPV8h68r+fGjRvIzMw02iY9PR0A4ObmZnE7iIgAZhoRVT3MNSptvIycqJQEBgYiKSlJfe7r6wsfHx+sXbvWYL3Vq1cbPG/Xrh0AIDU1FU2bNjV6ODk5AQD+8Y9/YNOmTcjLy1O3Xbduncm65P8hyQ9/IiJLMdOIqKphrlFp45ltolLy1FNP4b333sP58+fh6+sLa2trjB8/HiNHjoSXlxciIyOxbds2xMfHG2wXEBCA4cOHo1+/fhgzZgyaN2+O7OxsnD59GvHx8WpIT5gwAf/4xz8QFRWFoUOH4uzZs5g1axbs7OwM7g0CgIMHD8LR0RFPPvlkGbWeiKoaZhoRVTXMNSp15TxAG1GVdffuXXFzc5OvvvpKXZaXlydTpkwRT09PcXBwkC5dusgPP/xgMMJl/npz586VoKAg0Wg0otfrJTQ0VGbPnm2wj++//14CAgJEq9VKkyZNZN++fWJjYyNz5swxWO+5554zGlmTiMgSzDQiqmqYa1TaFBGRcu7vE1VZo0ePxm+//YZdu3aVyf527tyJiIgI7N69G+Hh4QCAtLQ0eHt7Y/v27WjVqlWZ1IOIqiZmGhFVNcw1Kk3sbBOVoosXL+Lxxx9HQkICQkJCSrz81157De3atYObmxuOHTuGqVOnonr16jh48KB6edJ7772H3bt3l9kfESKquphpRFTVMNeoNPGebaJS5OPjgyVLlhiNRFlS0tLSMGLECKSkpMDZ2RnPPvssZs2aZXAfkF6vx2effVYq+yeiRwszjYiqGuYalSae2SYiIiIiIiIqYZz6i4iIiIiIiKiEsbNNREREREREVMLY2SYiIiIiIiIqYexsExEREREREZUwdraJiIiIiIiIShg720REREREREQljJ1tIiIiIiIiohLGzjYRERERERFRCWNnm4iIiIiIiKiE/T9crCmOSQLmNgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVzUlEQVR4nOydd3hT1fvAPzdJN6WDltKyy15FKMJPFMqWJVtUptiyRAUVVGZbQMDFcAJSZA8BURx8xQWCAwRHGbJBoC3QQgulO8n5/ZEmNM1oUspoOZ/n6XObe88999zk5s15z7sUIYRAIpFIJBKJRCKRSCQSSYmhutsDkEgkEolEIpFIJBKJpKwhlW2JRCKRSCQSiUQikUhKGKlsSyQSiUQikUgkEolEUsJIZVsikUgkEolEIpFIJJISRirbEolEIpFIJBKJRCKRlDBS2ZZIJBKJRCKRSCQSiaSEkcq2RCKRSCQSiUQikUgkJYxUtiUSiUQikUgkEolEIilhpLItkUgkEolEIpFIJBJJCSOVbYnkHmbnzp0oisLmzZvv9lAkEonkljl79iyKovD222/f7aFIJBKJ09SoUYOePXve7WFIShFS2ZaUGv744w+ee+45GjVqhJeXF9WqVWPgwIEcP37c7nl5eXk0bNjQ6gQvLS2NwYMH4+fnR2hoKHFxcRbn79+/H09PT86cOVOi9yORSO5vbty4QXR0NF27dsXf3x9FUVixYoVFO71ez4oVK+jVqxdVq1bFy8uLxo0bM3v2bLKzs83a5uTk8PzzzxMYGEiVKlWYPXu2RX8XLlygXLly/PLLL7fr1iQSicSCP//8k169euHv74+npyeNGzfm3XffNWuzZMkSatasib+/P0OHDuX69etmx/V6Pc2aNWPOnDl3cugSSbHR3O0BSCSO8sYbb/DLL7/w+OOPExYWxsWLF3n//fdp3rw5v//+O40bN7Z63nvvvce5c+esHps4cSI7d+4kNjaWkydPMnLkSBo0aEDr1q0BEELwwgsvMGHCBGrWrHnb7k0ikdx/pKSkMHPmTKpVq0bTpk3ZuXOn1XaZmZmMGDGC//u//2PMmDFUrFiR3377jejoaH744Qd+/PFHFEUB4K233mLVqlVMnTqV9PR0Zs6cSa1atXjqqadM/U2aNIlevXrx8MMP34nblEgkEnbs2MFjjz1Gs2bNmD59OuXKlePUqVNcuHDB1GbPnj2MHTuWF154gdDQUObOncukSZNYsmSJqc3HH3/MtWvXePnll+/GbUgkziMkklLCL7/8InJycsz2HT9+XLi5uYnBgwdbPefSpUvCx8dHzJw5UwDirbfeMjseFBQkVq5caXodEREhXnvtNdPr1atXi5CQEJGenl6Cd+I4P/30kwDEpk2bbut1bty4cVv7l0gklmRnZ4ukpCQhhBB//PGHAMQnn3xi0S4nJ0f88ssvFvtjY2MFIL777jvTvlatWonY2FjT6+HDh4snn3zS9Hr37t3Cy8tLnD9/vgTvxHHOnDljVRaXNFKmSST3DteuXRNBQUGib9++QqfT2Wz36quvivbt25tef/LJJ6JSpUqm16mpqSIgIEBs2bLlto7XHtWrVxc9evS4rdfIy8uzmO9KSi/SjVxSamjdujWurq5m++rUqUOjRo34999/rZ7z2muvUa9ePYYMGWL1eFZWFn5+fqbX/v7+ZGZmApCRkcFrr73G3LlzKVeunFNjTUhIIDIykpCQENzc3KhZsyZjx44lNzfX1Ob06dM8/vjjJneq//u//+Prr7+22p9er+f111+nSpUquLu707FjR06ePGnRbu/evXTt2hUfHx88PT2JiIiwcBWNiYlBURSOHDnCoEGD8PPz45FHHjEdX7NmDeHh4Xh4eODv78+TTz7J+fPnzfpo164djRs35siRI7Rv3x5PT08qV67Mm2++aTGm7OxsYmJiqFu3Lu7u7gQHB9OvXz9OnTpldn8LFy6kUaNGuLu7ExQUxOjRo0lNTXXsDZdISiFubm5UqlSpyHaurq4mb5uC9O3bF8BM/tmTaXq9nvHjx/PKK69QpUoVp8aalpbGiy++SI0aNXBzc6NKlSoMGzaMlJQUU5vLly8TGRlJUFAQ7u7uNG3alJUrV9rsc+nSpdSqVQs3NzcefPBB/vjjD4s2R48eZcCAAfj7++Pu7k6LFi3Ytm2bWZsVK1agKAq7du3i2WefpWLFimb3t337dtq0aYOXlxfe3t706NGDw4cPm/Xx9NNPU65cORISEujTpw/lypUjMDCQiRMnotPpzNrq9XoWLVpEkyZNcHd3JzAwkK5du7J//36zdo7IUonkfmDdunVcunSJ119/HZVKRUZGBnq93qKdPfkFhvlLkyZN6Nevn1PXd+Q7q9VqmTVrlkkm1ahRgylTppCTk2O1zz179tCyZUvc3d0JDQ1l1apVFm3S0tKYMGECVatWxc3Njdq1a/PGG2+Y3XvBPBYLFy40Xf/IkSOAczLwl19+4aWXXiIwMBAvLy/69u1LcnKyxbi2b99OREQE3t7elC9fngcffJB169aZtXFkPilxkLut7Uskt4JerxeVK1cWXbp0sTi2d+9eoVKpxK+//mrTmtKxY0fRrl07cfz4cfG///1PeHh4iDVr1gghhJgyZYpo2bKl0Ov1To0pISFBhISECE9PTzFhwgSxePFiMX36dNGgQQORmpoqhBDi4sWLIigoSHh7e4upU6eK+fPni6ZNmwqVSiU+++wzU19Gy3azZs1EeHi4WLBggYiJiRGenp6iZcuWZtf94YcfhKurq3jooYfEO++8IxYsWCDCwsKEq6ur2Lt3r6lddHS0AETDhg1F7969xYcffig++OADIYQQs2fPFoqiiCeeeEJ8+OGHIjY2VgQEBIgaNWqYxi6EwQMgJCREVK1aVYwfP158+OGHokOHDgIQ33zzjamdVqsVHTt2FIB48sknxfvvvy/mzp0rOnToID7//HNTu6ioKKHRaMTIkSPF4sWLxauvviq8vLzEgw8+KHJzc516/yWS0og9y7YtduzYIQCxbt06077IyEjRuHFjER8fL3799VdRqVIlMXv2bCGEEEuXLhXVqlUTmZmZTo0tPT1dNG7cWKjVajFy5Ejx0UcfiVmzZokHH3xQ/PXXX0IIITIzM0WDBg2Ei4uLePHFF8W7774r2rRpIwCxcOFCU19GWdysWTNRu3Zt8cYbb4g333xTBAQEiCpVqph93w8dOiR8fHxEw4YNxRtvvCHef/990bZtW6Eoipmc/OSTT0wyLSIiQrz33nti3rx5QgghVq1aJRRFEV27dhXvvfeeeOONN0SNGjWEr6+vOHPmjKmP4cOHC3d3d9GoUSPxzDPPiI8++kj0799fAOLDDz80ez+efvppAYhu3bqJhQsXirffflv07t1bvPfee6Y2jspSieR+oH///qJ8+fLiu+++E3Xr1hWA8PLyEmPGjBFZWVmmdqtXrxaenp7i22+/FcePHxdt27YVnTp1EkIIcfjwYeHm5ib++ecfp6/vyHd2+PDhAhADBgwQH3zwgRg2bJgARJ8+fcz6ql69uqhXr54ICgoSU6ZMEe+//75o3ry5UBRFHDp0yNQuIyNDhIWFiQoVKogpU6aIxYsXi2HDhglFUcT48eNN7YwysWHDhiI0NFTMmzdPLFiwQPz3339Oy8BmzZqJDh06iPfee0+8/PLLQq1Wi4EDB5qN/5NPPhGKoojGjRuL119/XXzwwQciKipKDB061NTG0fmkxDGksi0p1axevVoAIi4uzmy/Xq8XLVu2FE899ZQQwrbrYnx8vKhSpYoABCD69+8vdDqdOH36tPDw8BC//fab02MaNmyYUKlU4o8//rA4ZlTcJ0yYIACxe/du07H09HRRs2ZNUaNGDZOblVHZbtCggZlL0aJFiwQgDh48aOq3Tp064tFHHzVbHMjMzBQ1a9YUnTt3Nu0zKtvG98bI2bNnhVqtFq+//rrZ/oMHDwqNRmO2PyIiQgBi1apVpn05OTmiUqVKon///qZ9y5cvF4CYP3++zfdi9+7dAhBr1641O/6///3P6n6JpCxSHGW7U6dOonz58mbK2/nz50WjRo1MMq1NmzYiPT1dpKWlicDAQLFhwwanxzZjxgwBmE3ujBi/xwsXLhSAabFSCCFyc3PFQw89JMqVKyeuX78uhLgpiytUqCCuXr1qavvFF18IQHz55ZemfR07dhRNmjQR2dnZZtdr3bq1qFOnjmmfcaL5yCOPCK1Wa9qfnp4ufH19xciRI83GfPHiReHj42O23zjRnjlzpllb40KnkR9//FEA4oUXXrD5XjgjSyWS+4GwsDDh6ekpPD09xfPPPy+2bNkinn/+edNCvBGtViv69etnkl9Vq1YV8fHxQgghunTpIsaMGeP0tR35zv79998CEFFRUWbHJ06cKADx448/mvZVr15dAOLnn3827bt8+bJwc3MTL7/8smnfrFmzhJeXlzh+/LhZn6+99ppQq9Xi3LlzQoibMrF8+fLi8uXLZm2dlYGdOnUymwO++OKLQq1Wi7S0NCGEEGlpacLb21u0atXKbJGj4HvhzHxS4hh3Xdm+dOmS+O+//yz+JJKi+Pfff0X58uXFQw89ZDbBEsKg5Hl4eFgIM2txgllZWeKPP/4QJ06cMO3r27evGDJkiBBCiC1btoiwsDBRo0YNERsba9fSrdPpRPny5UXv3r3tjr1u3boWlmkhhJg7d66ZEm1Utt98802zdn/++acAxBdffGH2euXKlSI5OdnsLyoqSri5uZkUeKOyvWvXLrM+58+fLxRFESdOnLDoo0GDBqbVZSEMyna5cuUs3otevXqJZs2amV736NFDBAQEiLy8PJvvxQsvvCB8fHzE5cuXLa5brlw5ix8/iaQs4qyy/frrr1u1ugphUHL/+usvcfjwYdP3/sUXXxSPPPKIEMKwwNWyZUtRpUoV8fzzzxcZG9ioUSPRtGlTu226dOkiKlWqZBGPuX79ejMl2iiLn332WbN2V69eFYBYtGiREEKIK1euCEVRxKxZsyzkgjFW/cKFC0KImxPNgvk3hBDis88+M02UC/fRpUsXUbt2bVNbo7JdeLL7wgsvCD8/P9PrcePGCUVRxJUrV2y+F87IUonkfiA0NFQAFsry6NGjBWChkJ44cULs37/fpBB+8cUXwtfXVyQnJ4sLFy6Inj17iuDgYNGzZ0+RkJBg99qOfGfnzJkjAHHkyBGz/UlJSQIwU6KrV68uGjZsaNFHWFiY6Nu3r9nrrl27WsiA77//3mxh0igTR4wYYdZfcWTgp59+ataHUQYavQE2bdokALF161ab74Uz80mJY9yVbORXrlzh+eef57PPPiMvL8/smBACRVEsYqQkkoJcvHiRHj164OPjw+bNm1Gr1aZj169fZ/LkyUyaNImqVasW2ZcxBsbIjz/+yI4dOzh27BjHjh3jySefZMmSJdSoUYOnnnqKqlWrMmLECKt9JScnc/36dZuZ0Y38999/tGrVymJ/gwYNTMcL9lGtWjWzdsaYJmNM84kTJwAYPny4zWteu3bNLBaqcHb1EydOIISgTp06Vs93cXExe12lShVTBuSC44qPjze9PnXqFPXq1UOjsS1qTpw4wbVr16hYsaLV45cvX7Z5rkRyP7Jx40amTZtGZGQkY8eOtTju4uLCAw88YHp99OhRPvzwQ3799VeuXr1Kjx49eO2112jfvj0jRozg9ddfJzY21ub1Tp06Rf/+/e2O6b///qNOnTqoVOapYArKtIIUJdNOnjyJEILp06czffp0q9e8fPkylStXNr22JtMAOnToYPX88uXLm702xnIWHlfB3BGnTp0iJCQEf39/q30ar+uMLJVIyjoeHh4AZlURAAYNGsSSJUv47bffzL4vtWvXNv2fm5vLyy+/THR0NAEBAbRp04bg4GC+/PJL5s2bx6BBg2xWcgDHvrP//fcfKpXK7LoAlSpVwtfXt0j5BZay4sSJE8THx1vIFCOF5zaF5VdxZGBRctWYK8feHLU480mJfe6Ksh0VFcWuXbuYPHkyDRs2tEh6JZHY49q1a3Tr1o20tDR2795NSEiI2fG3336b3NxcnnjiCc6ePQtgKi2RmprK2bNnCQkJsfrc6XQ6xo8fz2uvvUblypWZNWsWrVu3NinXo0ePZu3atTaV7dtFwcWEggghAEzJNt566y2zSXZBCid5M/74GdHr9SiKwvbt261er/D5RY3JUfR6PRUrVmTt2rVWj9v6oZJI7ke+++47hg0bRo8ePVi8eLFD57z44osMGTKE5s2bs3r1avz9/Zk8eTIAr7zySpHK9u3AUZk2ceJEHn30UattC0+Mrck0gNWrV1tNRFd4EdDWmJzFWVkqkZR1QkJCOHz4MEFBQWb7jYvs9pKhLliwAI1Gw3PPPcf58+fZs2cPZ86coUaNGrz55puEhoZy4cIFp5M+WqOwAcEWjsx/9Ho9nTt35pVXXrHatm7dumavbckvZ2RgSczLijOflNjnrijbP/30E++++y7Dhg27G5eXlGKys7N57LHHOH78ON9//z0NGza0aHPu3DlSU1Np1KiRxbE5c+YwZ84c/vrrL6tC5KOPPiI9PZ2JEycCkJiYaKbMh4SEkJCQYHN8gYGBlC9fnkOHDtm9j+rVq3Ps2DGL/UePHjUdd4ZatWoBBktNp06dnDq3YB9CCGrWrGnxI1BcatWqxd69e8nLy7NpzalVqxbff/89Dz/8sMWPjUQiucnevXvp27cvLVq04NNPP7XrMWLkq6++4tdffzVZKxITEwkODjYdL0qmgeE76ohMi4+PR6/Xm1m3iyvTQkNDAYMV+FZkGhgm9MXtw1qf3377LVevXrVpKbsdslQiKc2Eh4fz3XffkZCQQL169Uz7ExMTAduL6klJScyePZtNmzah0WhM7Y3zMuM2ISHBprLtyHe2evXq6PV6Tpw4YfLGAbh06RJpaWlOyy/jdW/cuFFs2VMSMtDamAAOHTpkoagXbnMr80mJOcUq/XX48GGefPJJU3r6P//8E4CpU6eyffv2Is/39fUlICCgOJeW3MfodDqeeOIJfvvtNzZt2sRDDz1ktd0LL7zA1q1bzf6WLFkCGMq7bN261cJdB+Dq1atER0fz1ltv4e7uDkBQUJBpsgiGEjv2SvWoVCr69OnDl19+aVEGBm6uLnbv3p19+/bx22+/mY5lZGSwdOlSatSoYXURwR7h4eHUqlWLt99+mxs3blgct1b6oTD9+vVDrVYTGxtrsQoqhODKlStOjQmgf//+pKSk8P7771scM15j4MCB6HQ6Zs2aZdFGq9WSlpbm9HUlkrLGv//+S48ePahRowZfffWVQwtTubm5vPTSS0ybNs1kQQoKCuLkyZNotVpTv0WVH+vfvz///PMPW7dutThWUKZdvHiRjRs3mo5ptVree+89ypUrR0REhMP3CgYFuV27dixZsoSkpCSL447ItEcffZTy5cszZ84ci5A1R/soTP/+/RFCWPUEML4Xt0OWSiSlmYEDBwIQFxdntn/ZsmVoNBratWtn9bzXXnuNtm3b0rVrVwCTZdw4LzOWPbQnwxz5znbv3h2AhQsXmh2fP38+AD169LDZvy0GDhzIb7/9xrfffmtxLC0tzSSDbVESMrAwXbp0wdvbm7lz55KdnW12zPhelMR8UmKO05bt7777jh49ehAeHs7gwYOZPXu26ZiLiwsffvgh3bp1s9vHK6+8wnvvvUeXLl0cWpmXSABefvlltm3bxmOPPcbVq1dZs2aN2XFjLe3mzZvTvHlzs2NGd/JGjRrRp08fq/1Pnz6dJk2a8Pjjj5v29e/fn5kzZzJ27FiqV6/OkiVLTMLXFnPmzGHHjh1EREQwatQoGjRoQFJSEps2bWLPnj34+vry2muvsX79erp168YLL7yAv78/K1eu5MyZM2zZssUi7rEoVCoVy5Yto1u3bjRq1IgRI0ZQuXJlEhIS+Omnnyhfvjxffvml3T5q1arF7NmzmTx5MmfPnqVPnz54e3tz5swZtm7dyqhRo0wWf0cZNmwYq1at4qWXXmLfvn20adOGjIwMvv/+e5599ll69+5NREQEo0ePZu7cufz999906dIFFxcXTpw4waZNm1i0aBEDBgxw6roSSWnh/fffJy0tzWSx+fLLL01hL88//zw+Pj6kp6fz6KOPkpqayqRJk/j666/N+qhVq5bVxcdFixYBMH78eNO+7t27M27cOAYNGkTr1q2ZNWsWUVFRdsc4adIkNm/ezOOPP84zzzxDeHg4V69eZdu2bSxevJimTZsyatQolixZwtNPP82BAweoUaMGmzdv5pdffmHhwoV4e3s7/d588MEHPPLIIzRp0oSRI0cSGhrKpUuX+O2337hw4QL//POP3fPLly/PRx99xNChQ2nevDlPPvkkgYGBnDt3jq+//pqHH37Y6kKgPdq3b8/QoUN59913OXHiBF27dkWv17N7927at2/Pc889d1tkqURSmmnWrBnPPPMMy5cvR6vVEhERwc6dO9m0aROTJ0+2CAcE2LdvHxs3bjTLA1OjRg1atGjB008/TWRkJMuWLaNVq1Z2Lc+OfGebNm3K8OHDWbp0KWlpaURERLBv3z5WrlxJnz59aN++vdP3PGnSJLZt20bPnj15+umnCQ8PJyMjg4MHD7J582bOnj1bpOHxVmVgYcqXL8+CBQuIioriwQcfZNCgQfj5+fHPP/+QmZnJypUrS2Q+KSmEsxnVwsPDTbXY8vLyhKIo4sCBA0IIIT7//HNRuXLlIvt47rnnRLVq1US1atXE0KFDxfPPP2/2Zy09v0RiLDdl688e9rKRC2EoAebq6mqqGVuQFStWiBo1aogKFSqIl156ySLzuTX+++8/MWzYMBEYGCjc3NxEaGioGDdunFnW31OnTokBAwYIX19f4e7uLlq2bCm++uors36M2cg3bdpk9X4KZy7+66+/RL9+/USFChWEm5ubqF69uhg4cKD44YcfTG2M2ciTk5Otjn3Lli3ikUceEV5eXsLLy0vUr19fjBs3Thw7dszUJiIiQjRq1Mji3OHDh4vq1aub7cvMzBRTp04VNWvWFC4uLqJSpUpiwIAB4tSpU2btli5dKsLDw4WHh4fw9vYWTZo0Ea+88opITEy0Ok6JpCxgLCNj7c9YB9r4fbf1N3z4cIt+L168KLy9vcW2bdssjm3fvl3Ur19f+Pr6imHDhomMjIwix3nlyhXx3HPPicqVKwtXV1dRpUoVMXz4cJGSkmJqc+nSJTFixAgREBAgXF1dRZMmTSxklD1ZDIjo6GizfadOnRLDhg0TlSpVEi4uLqJy5cqiZ8+eYvPmzaY2xky81sotCmGQo48++qjw8fER7u7uolatWuLpp58W+/fvN7UZPny48PLysjjXKC8LotVqxVtvvSXq168vXF1dRWBgoOjWrZtpLmTEEVkqkdwv5ObmipiYGFG9enXh4uIiateuLRYsWGC1rV6vF61atRIvvfSSxbGTJ0+Ktm3binLlyom2bdtazCWs4ch3Ni8vT8TGxprmKlWrVhWTJ082K7slhEFm9+jRw+IaERERIiIiwmxfenq6mDx5sqhdu7ZwdXUVAQEBonXr1uLtt98Wubm5Qoii56e3IgONc8iffvrJbP+2bdtE69athYeHhyhfvrxo2bKlWL9+vVkbR+aTEsdQhHAum5G7uztffvklnTt3RqfT4eLiwv79+2nevDm7du3i0UcftXBNKIw1F96CKIrC6dOnnRmWRCKRSCQSiUQikUgk9wxO+3D7+/ub3N0Kc/z4cbPEK7Y4c+aMs5eVSCQSiUQikUgkEomk1OB0grQ+ffoQHR1tlklZURQuXrzI22+/XWQtztLIyZMnGTNmDA888AAajcZmfbq0tDReeOEFQkJCcHd3p1atWrzzzjtmbXJzc5k0aRKVKlXCy8uLzp07W81KLZFIJLcLKdMkEklZQso0iURyr+K0ZXvu3Ln88ccfhIWF0aRJEwCeeeYZTp8+Tb169YiJiXG4r5MnT3L8+HGrbuf9+vVzdmi3jcOHD/P111/TqlUr9Hq9qQZdQTIyMmjXrh0ajYYFCxYQFBTE8ePHuX79ulm7F154gQ0bNjB//nwqV67M66+/TseOHTl8+DA+Pj536pYkEsl9jJRpEomkLCFlmkQiuWcpTqB3bm6uWL58uXjqqadE586dxRNPPCE+/vhjs+RP9rh27Zro0KGDUKlUQqVSCUVRhKIoptcqlao4w7pt6HQ60//Dhw+3mhhq2rRpIjQ0VNy4ccNmP+fPnxdqtVosWbLEtO/KlSvCy8tLvPHGGyU7aIlEIrGBlGkSiaQsIWWaRCK5VylWnW0XFxdGjBjBunXr2LFjBxs2bCAqKgpXV1eHzn/11Ve5ePEiu3fvRgjB1q1b2blzJ5GRkdSsWZPff/+9OMO6bThShmnZsmU888wzeHl52WyzY8cO9Hq9WWkpf39/unTpwjfffFMiY5VIJJKikDJNIpGUJaRMk0gk9ypOK9v//POPTYHzzTffmNXDs8X//vc/pk6dSqtWrQAICQmhbdu2LF26lN69e1vEz9zrnD17losXLxIQEECvXr1wc3PD39+fkSNHmhWEP3r0KBUrVsTPz8/s/AYNGnD06NE7PWyJRCKxipRpEomkLCFlmkQiuVs4rWy/+OKL/Pbbb1aP7du3j5dffrnIPi5fvkzVqlVRq9V4eXlx5coV07Hu3bvzv//9z9lh3VUuXrwIwMSJE/Hz8+Obb75hzpw5bNq0iZEjR5rapaam4uvra3G+n58fV69etdl/Tk4O169fN/1du3aN5ORkhHNV2yQSicQhpEyTSCRlCSnTJBLJ3cJpZfvvv//m4YcftnrsoYce4s8//yyyj6pVq5KSkgJAnTp12LZtm+nYb7/9hru7u7PDuqsYE3HUrVuXlStX0rFjR8aMGcPbb7/Nhg0bbrlm+Ny5c/Hx8TH9+fr6UrFiRdLT00ti+BKJRGKGlGkSiWMk/fknsYpCkgNzn7J07dJGaZVp8jOW3CukJyWxMyaG9KSk23aNsvq8O61s5+TkkJuba/OYtczihencuTPff/89YLCUL168mPDwcB566CGio6MZNmyYs8O6qxjdjdq3b2+2v2PHjoAhS6ax3bVr1yzOT01Nxd/f32b/kydP5tq1a6a/8+fPl9TQJRKJxAIp0yQSSVlCyjSJ5Na4kZTErthYbtxGZbus4nTpr2bNmrFq1Sp69eplcWzVqlU0bdq0yD7eeOMNMjMzARg6dCjlypVj8+bNZGVl8f777zN69Ghnh3VXqVWrFm5ubjaPGxcg6tevz6VLl0hNTTWLBzp69Cj169e3eb6bm5vd/iUSiaQkkTJNIpGUJaRMk0gkdwunLduTJ09m69at9OjRg82bN/Prr7+yefNmevToweeff87UqVOL7MPT05OAgADT6759+7J27Vo+++wzxo4d61BWyXsJV1dXunTpwg8//GC2/7vvvgOgefPmAHTp0gWVSsWWLVtMbVJTU9mxYwfdu3e/cwOWSCQSO0iZJpHcO9wJ982yTlmTafKZkEhKD05btnv06MG6deuYNGkSAwcORFEUhBBUqVKFdevW0aNHD4f7+vfff9m/fz/nz5/nmWeeoVKlSpw8eZKgoCC8vb2dHdptIzMz05SB/b///uP69ets3rwZgIiICAIDA4mOjqZ169YMHjyY4cOHc+LECSZPnszgwYOpVasWAFWqVCEqKopJkyahVqupXLkyc+bMwcfHp9RZ8yUSSelFyjSJpPRgdN+s16sX3sHBd3s49yT3m0yTz4REUoq4lSLdR48eFb/88os4evSoU+dlZGSIp556SqjVaqHRaIRKpRIHDhwQQggxYMAAMWnSpFsZVolz5swZAVj9++mnn0ztvv/+e9GiRQvh5uYmKlWqJF5++WWRnZ1t1ld2drZ4+eWXRcWKFYWHh4fo1KmT+Pfff50az7Vr1wQgrl27VhK3J5FI7jOkTJNISobEAwdEDIjE/DnMnbzGnbh2aaGsyjT52UvuFe6mrCvtOG3ZLki9evWKdd7EiRP58ccf+eabb2jTpg1eXl6mY927d2fBggW8+eabtzK0EqVGjRoOlW/o2LEjf/zxh902bm5uvP3227z99tslNTyJRCJxCinTJBJJWULKNInk9qJKSyYi2LCVOEexlO1jx46xZcsWLly4YJF9XFEU4uLi7J6/efNm3nrrLbp06YJOpzM7VqNGDc6ePVucYUkkEolEIpFIJBKJpARRXUuhXQgkX0u520MpdTitbK9evZoRI0bg7u5O9erVcXV1NTuuKEqRfdy4cYNgGzEmGRkZzg5JIpFIJBKJpNSSnpTEgSVLCB89WsbgSiSSMoGUawacVrZnzZrFgAEDWL58OZ6ensW6aFhYGFu2bKFLly4Wx77++mtatGhRrH4lEolEIpFIShsy4ZVEIilrSLlmwGllOzExkY8++qjYijbA9OnT6d27N5mZmTz++OMoisK+fftYv349y5cvN2WUlEgkEmdIT0rir+XLafbMM/e1YJdIJBKJRCKR3H2cLmjdtm1bDh06dEsX7dGjBxs2bGDPnj306dMHIQTPPvssGzduZO3atXTs2PGW+pdIJPcfQgi8AgNpO3UqXoGBDiXLkUgkkiJJSYIlMYatRHKHcbkF45ZEIrn7OG3ZnjNnDkOGDMHd3Z3OnTvj6+tr0cbf37/IfgYMGMCAAQM4fvw4KSkp+Pv7U79+fWeHI5FIJAi9nvTERA4sWcLVU6fwr1XLECMUEoKicnpNUSKRSG6SkgQfx0JELwi4tzxmpCJWdhFCEBQWxpSMDPRaLUIIh/IiSSSSewunle3mzZsDMHbsWJtf+sIZxu1Rt25d6tat6+wwJBKJBDAo2vFr1rAtMhK9Vmvav2fePHrFxRE2ZIhUuCUSyR3ldicGkopY2UYuIEskZQenle3ly5eXiEA/f/48n3/+OefPn7daPmzRokW3fA2JRFK2EUKQnphooWgD6LVatkVGUrNjR8MERU5EJRLJHcJWYqCSUMKlIla2cWQBWePhcRdHKJFInMFpZfvpp5++5Yt++umnDB06FL1eT8WKFa2WD5PKtkQiKQqh13NgyRILRduIXqvlwOLFRMTEoKjVd3h0EolEYs6tZOfVeHhIT54yjqMLyF6BgXdphBKJxFnuikSeMmUKffr0ISUlhYSEBM6cOWP2d/r06bsxLIlEUspQqdVcPXXKbpvU06dRSUVbIpGUcrwCA4tUxNKTkmRyyFKMowvI7lbyJUkkknsTpy3bAD///DNLly7l+PHjFi7gAPHx8XbPT05OZtSoUfj4+BTn8hKJ5D5GCIHQ61Gp1eh1Ovxr1bLb3i80FL1OJxVuiURSelEU3H192RUbKz15yjAOLyBrNNKVXCIpJTht2f7222/p0KEDKSkp7N+/n6pVqxIQEMCxY8fIyMigRYsWRfbRtWtXfv/992INWCKR3L8IvZ70hAR2xcSwZdAgLv3zD+GjR6PSWF83VGk0hI8ZI90qJRJJqcbFwwOVRiM9eco4Di8ga7Vos7Lu0KgkEsmt4LRlOzo6mgkTJvDGG2/g4uLCrFmzaN68Of/99x+PPvooHTp0KLKPxYsX88QTT5CZmUnHjh2tlg8zZj2XSCQSsJ40JvnwYUbu389jy5bxZVSUmcVHpdHQa/lyvIODZXI0iURSbDKSk/Eybu9ShdK8rCz0Wq305CnjKCoV4aNHs2fePKseDMYF5Oy0tDs/OMn9QUoSbFkC/Uffc6UOSytOm3v+/fdfunXrhkqlQlEUMjIyAKhevToxMTHMnj27yD7S09PJzMxk7ty5dO7cmQcffND016JFCx588EHn70QikZRK0pOS2BkTQ3pSks02tpLGXIqP5/Nhw2gyaBDjz56l7bRpNBk0iLbTpjH+7FnCBg+WVm2JRHJLZKakmG0dQZWWTESwYVsiCEF2Wpr05CnjKIqCd0gIveLiLD7nggvIGckl9FxJ7ltszr1SkuDjWMNWUiI4bdl2d3dHr9ejKArBwcGcOnWKNm3aAODt7c358+eL7GPYsGGcO3eO9957j7p161pkI5dIJGWLwnHWSv5iHdjOzlvwHHtJYw5t2EDykSP0Wr6ciJgYwzW0WhS1Wlq0JRLJXUF1LYV2IZB8zXEF3cXT0+7xjORkAurVo1dcnMXCo/TkKTsoKhVhQ4ZQs2NHDixeTOrp0/iFhhI+Zozh81WppAu5xDHsWKlvpTKCxDmcVrabNm3KsWPH6Ny5Mx07duT1118nICAAFxcXpk2bRpMmTYrsY9++faxbt44+ffoUZ8wSiaQUUZyasAXPuXbhAn0++cRurOKl+Hh+nz+ffmvXAti0/EgkEoktSqIGdnEQQhAUFsaUjAz0Wi1CCKsKszYryyFFTFL6UVQqvENCiIiORqXRyAVkSfEwWqkjekmX8LuI0zPSCRMmcObMGQDmzJnDY489Rq9evQCoUqUKW7duLbKPOnXqoLWRTVMikZQdHKkJWzijqsU5ikKPDz6QsYoSieS2UhxLz626izu6GFnQ6i0VsfsDRVG4GB/PJ23aMGL3boJlLiOJpFTi9BJo9+7dGTduHACVK1fmwIEDHDt2jL///puTJ08SHh5eZB/z58/n9ddf5+jRo86PWCKR3NOkJyXx8+uvk5uZ6VBNWK/AQNNE0mpsthAc2riRZpGRMlZRIpHcU6iupdAu1BOVNXdxd9tu4RoPD9PC4qKaNfl59mwOrV/Pz7Nns6hmTeLXrEHo9WZW76CwMFMNbUVRuBQfzxwvLy7Fx0tFuwyTl5l5t4cgkdjEkbw79ztOz0xnzpxJYmKi6bWiKNSpU4ewsDCuXLnCzJkzi+xjwoQJXLhwgcaNG1OtWjXCwsLM/po2berssCQSyT2AEAKvgADaTp2Kxs3NZpw1QGDDhmRcuoS7n9/NiaSN2Oy9CxfiXbkyjy1bZjdpjJxwSiSSO4UQggo9H4c9GVTo+bhJEUYIAvL3B/R8HIz7C+AVGGh3MfLUjh0AhlKHsbFsGTSIXbGxpCckIPR6U1upiEkkkruJ0SPohlS2beK0G3lsbCxdu3YlJCTE4lhiYiKxsbHMmDHDbh/h4eFyUiyRlHYKJd5wJs668ZNP0mfVKtITE9kVE8PVU6cIqF+fiBkzrJ5jzDreZ9UqarZvz58ffyxjFSUSyV3Dmvt3qwkT8PDzQ0lJRNmyBC6cQqlSK19GhoBRRikK7r6+7IqNtboYGRQWRu9PPuGf1astShraC8GRSCQSyb2H08q2rcQdAElJSVZrZhdmxYoVzl5WIpHca6Qkweq3oMsTCP+gm3HWOh0unp4246yDwsLos2oVB9etM59IKgqtJ060GZttNet4oczmEolEUhS3mgjNWi6KoLAwImbMgG9Ww6wo0BVQolfMgxlx0M2gILt4eKDSaGwuRraaMIH0hAQLRRtuhuDU7NgRr8BAp8cukUgkkjuLQ6ag9evX06tXL3r16oWiKLz88sum18a/Ll26MGzYMFq3bn27x3zPsm3bNlq1aoW3tzfBwcEMHDiQ06dPW7SLi4ujbt26uLu707RpU7766qu7MFqJpGhsxuIIgajdBPZkIKrVIS8rixPffEPPpUuZeuMGU27cQO2iofUrr1gkdbE5kXQgNjv5yBHKVapksmKrZFKg24qUaZKyyK24PVrNK4FBronLCSiFFW0wvJ4ZCSmGHBV5WVnotVrrC4uKQuMnnuCvuDibITh6rZYDixfj7oBxQ2KOlGkSieRO45CynZubS3p6Ounp6QghyMjIML02/imKwrBhw1iyZMntHvM9yc6dO+nbty8NGzZk69atLFy4kH/++YcuXbqQVaAe4oYNGxg5ciRPPPEE27dv56GHHqJv3778/vvvd3H0Eol1rE5K9XpITkD5eCZMHYSyNBZNbhb9162jadcOaFbOhamDUC2bhWvmNUbu20eTwYMN5xYxkZSx2fcOUqZJJJZYzSuhKDR54gnU2+IsFW0jOi1sWYyHry8IQXZaGuGjR1vIORcPD1w8Pe2WOgRIPX0alUYjXcmdQMo0iURyN3DIjXz48OEMHz4cgPbt2/PRRx9Rv3792zqw0saGDRuoXr06y5cvNykCFStWpEOHDuzfv582bdoAEB0dzZNPPsmsWbMAw/sZHx/PzJkz+eabb+7a+CUSa6jSkmkf6nmzrI1eD9vXGKw0xkllnTBUI2cgvlmNqpBVR1kxDzEjjr6rVlHloYdIOnDA7kTSGJvdd/VqQjt1knVk7yJSpkkkhVCrUanVFvLLxcMDjacnXLCvIJNwGiVfQc5ITiagXj16xcWZWcnzsrLIy8x0rNShVou2gJIosY+UaRKJ5G7gdMz2Tz/9ZHV/bm4urq6utzyg0kpeXh7e3t5mFjcfHx8AU4bS06dPc/z4cd544w2zc5988kkmTZpETk4Obm5ud27QEokdhBAEtmlP0KkM9Hm5hnwNKYnmijbAUxPAjvukMjMS8WAHHhw7FkWlQq/T2Z1IHtqwgaqPPEKLsWNlbPZdRMo0iaQQOp1V+ZWXlYU2MxNNFfsKMpVDEVotiqKgzcpCUakIGzKEmh07mi0sCiEIHz2aPfPmWfUAMpY6zE5LK8GbK/tImSaRSO4GTpuIVq9ezXvvvWd6fejQIerUqYOnpyft2rXj8uXLds8XQnD16lVycnKcH+09zNNPP82RI0f48MMPuXbtGqdPn2bKlCk0a9aMhx9+GMBUV7ywV0CDBg3Izc3lzJkzd3zcEok1hF5vKDkzc5ah5Mys2aDXGbKP68zdJ+nyBHxh331S2bIEyK8Pq1JZdZ80otJoqN+nD4qioFKrDftkbPYdR8o0icQSq/JLCA5u3IiuVySobdgw1BpE/zGgUpnVzFZUKrxDQoiIjqbf2rVEREfj4umJd0gIveLi7IbTZCQn38Y7LXtImSaRSO4GTivbb731FqoCbpzPP/88rq6uLFy4kKSkJKZMmWL3/Ly8PCpWrMj333/v/GjvYdq0acPWrVt57bXX8PX1pVatWly6dInt27ejzlcYUlNTASwytvv5+QFw9epVq33n5ORw/fp1sz+J5HZhzLS7qGZNfp49m0Pr1/PbO++gqDWWbpJuHuDuoPukyvA9UBTFoYmkVK7vLlKmSSSW2JJfexcuRKlYGTF9maXCrdYgopdDQDB/fPSRRc1sRVG4FB/PHC8vLsXHoyiKyeo9/uxZ2k6bRpNBg2g7bRrjz54lbPBgFJVKupA7SVmTaS6enrf9GhKJGe63/5kri8+1027kZ8+epWHDhgCkpKSwe/duvvrqK7p27UpgYCATJ060e76rqytVqlRBp9MVb8T3KL/++itDhw5l5MiR9OzZkytXrjBr1ix69OjB7t278biFJCZz584lNja2BEcrkVjHVqZdm26SOVmQnQkOuE+i14FR4bbhPinjsu8dpEyTSApQYJJpS35lp6fj0X0oomUnlC2LIeG0wXW8/xioUImtw4ZxcO1aUz+Fa2bnZWaaXbKg1Vul0aDXalGkl0+xKSsyTQhBUFgYUzIy0Gu1dkvySiQlgRCCCj0fh76DqWAMKyzhZ64sP9dOK9sqlYrc3FzAEL/t4uJC+/btAQgODubKlStF9jFu3Djmz59Ply5dcHd3d3YI9yQvvPACHTp04J133jHt+7//+z+qVavG6tWrGTVqlGll9Nq1a1SqVMnUzriS6u/vb7XvyZMn89JLL5leX79+napVq96O25Dc51jNtAsmN8mmfaJQrZh302VcCNixEXpHGmrJWnMlV2ug/xhQzBVoOZG8t5EyTSKxPck0ya8Z01G5uKLPy0XRuIAQ5Hn6oImchsrVDaHVkpedzYqWLUn680+zvh2pma0oChfj4/mkTRtG7N5tUUpR4jhlQaYJvZ70xEQOLFnC1VOn8K9Vy1AvPiRELlJLLMhITsbLuC1mXmuh15OXlYXGJV9lFIK8zExcPDxK7Jkr68+108p206ZN+fDDD6lSpQrvvvsuHTp0MCWLOHfuHBUrViyyj3PnznH8+HGqVatGu3btCAoKMptgK4rCokWLnB3aXeXIkSP07t3bbF+VKlUICAjgVH7mUmMM0NGjR6lXr56p3dGjR3F1dSU0NNRq325ubjIhh+SOYC3TrpGT33zDA8OHI6YvM0+Gtn4hdB9iuR8Mina++yRWlGg5kbx3kTJNcr9RuPqCaQK4dCnXzp/Hp2pVwkeNMk0AC0o0RVFACI5//TWf9uuHXqfDxdOTSZcv88sbb1go2kaMNbMjoqPtjq2w1VviPKVZpmk8PEwhXoU9zwp6SJQFxURScmSmpOBVYOsUboZnDiFQpyWj2hYHF06hqlILda9IcK+K0OuLLD9YlFv4/fBcO61sz5kzh549exIWFoa3t7dZ7PXWrVtp2bJlkX189dVXJsH0xx9/WBwvjcp29erV+bPQj+l///1HSkoKNWrUACA0NJS6deuyadMmM4G/ceNGOnbseF9nc5fcG9jLFF67e3cyr1zB49FB6Ju3Q/3FMpObpD49DcWK+yT9xxgU7SIEpZxI3ntImSa5nzCvvpCH0Os5/vXXZF29QpvXXkPj6Yk2M5NDmz6lYuMmBDdrhpKSaEj+eOEUSpVaiH6jqdO1Kw0HDODQhg0ghKyZfQ9RmmWaV2Cg1RAvMPeQcPfz49c33zRYBYOD78pYJbeP9KQkDixZckc+X1Eh37Nj+xrUhQwp6hXzDPkpug+lXAEPELPz7biFG++j9SuvkH31apHPtXdISKn2enRa2X744YdNlulatWqZJZGIjIykdu3aRfZRFrM5jhkzhgkTJjB+/Hgee+wxrly5wuzZs6lYsSIDBw40tYuJiWHw4MHUqlWL9u3bs3HjRvbu3cvPP/98F0cvkRgwZtq1KDmjKDR+4gn2zJ3LsW3baDV+PE2GTzZNQA9u2MDJ7dt55LXXqDQqBkWtBq0W1GqrFm3JvY+UaZL7hcIujK0nTsSnenXqdO2KuJyAeuVcuHAKTZVaNOk3BlVgMGxfY1EGUVkxD6Yvo++qVSQfOcKlgwdlzex7iFIr0xQFd19fdsXGWi0FB+YeErtiY6nXq5dUtssgN5KS7sznqyhQzgdx6QIqW2VdZ0Whb9EB94qVLU4vyi38RlISu2bOpO20adZDF/MxPdcx+fPKUorTyjaAt7c34eHhFvu7d+9+ywMqrbzwwgu4ubnx0UcfERcXh7e3Nw899BCbNm2iQoUKpnZPPfUUmZmZzJs3j3nz5lGvXj22bt3KQw89dBdHL5EYKJhpt+BKo4uHh8lCcyk+nm2RkWyLisKlUFIftasr/dauhY4B8MEOqF+0W3i54GAioqMpJycG9xRSpknKOlZdcxWFXnFxaFxc4H9rLSaa6iq1EA92QCmkaAM3J6DN29Fq/Hi2RUZyaONGmkVGyprZ9wClVaa5eHig0mikh0QZozhWalVaMhHBmEJdbhvunigIlM8/tlvWVbV1KYyOMXvmHHEL13h4OPdcl2JFGxxUtufPn8/gwYMJCgpi/vz5dtsqisKLL75YZJ8JCQksXLiQPXv2cPXqVfz9/WnTpg3jx4+ncmXLVZJ7HUVRGDNmDGPGjCmybWRkJJGRkXdgVBKJYxQW+haZdmvVQq/Vmlto8pNkFMRooVFdKzpRohHv4GDaxcSU0J1ISgop0ySlgVtxq7Tmmuvi4YGLuzv6i+csLTqKAp0Honwy1+4EVP3FMpoMn8y2yEj2LlxI2JAhPLZsGV9GRZlNPguWOkw5dszpe5c4R2mVaXlZWZa/v1aQHhKli+JYqVXXUmgXAsnXUm7z6DBUj3GgrKuxygzYrmgDlgkhnXqudbpSrXA7pGxPnDiRRx55hKCgoCJLezmibB86dIi2bduSl5dH586deeCBB7h06RKLFy8mLi6On3/+mUaNGjl+FxKJ5JYoLPStZtpVq627mOdjtNAoebkwMtoQqy2RSCS3kWJNWNOSiQhRcPfxYdeiReZlDrOzEXo9qs+XWSrUbh6GEmAOTEA1np5oPDy4FB/P58OG0WfVKkI7dbJZ6lAqSBKbCEF2WppDv7/SQ+I+JSUJtiyB/qNLZu6VnYnQaVEcKOsqdDqT/LJZ0SYfs4SQTjzXpT1BmkOj1+v1psRner3e7p8j9bMnTpxIrVq1OHfuHJ999hkfffQRn332Gf/99x+hoaFFKvQSiaRkseaapOT/Ffzf6GKu0piv0xW00CgenjA6RirbEonknkR1LYV2NT1QubhYuDC6uLsbYgOtKdQ5WZCdCQ5MQLWZmaYJ6JHNmzn57bd454fM9Fu7lojo6DJT1kZy+8lITnbo9zcj+Ta7F0vuCOlJSeyMiSE9KcmxE1KS4ONYw7YkEAIl8wai/2hDVRlrqDWI/mPIvn4dMOT8sVfRxkjBcAdHn+vSnBwNihmzfavs2bOHtWvXmuoZGvHz82Pq1KkMHTr0bgxLIrlvsXBN0uuhUKZd+o9GCQixdDEvZKGRSCSSe56cLPR5uRYujHlZWWizstBYU6iFgB0boXckrJhn3ZU8fwKa/O+/NBk0yEI+Xvz7b1nqUOI02qwsFJWqyN9fex4SdzKT9W2lpK249yCZ/8bD0lgy2z509z6rlCSU6vUQM+Isc1SoNYjo5SgBwdzID4ERer3dijZGCoY7OPpcl3YcUradzcDYtm1b+xfVaMjJybF6LCcnB3Up9suXSEoz6vK+BkXbSqZdVsyDGXEo3YYYXMyjo1FpNOi1WhS1utSvPEokkvsINw9yEs9bujAKwcENG2jaJwqVNYV6/ULoPgRmxFnKSLUGopdDQDBB/kH0W7vWqnyUpQ4lxcUU4lWM3987lsn6dmO04kb0Mle2y5ASfkdjs22RkwUqFUq3IYgHO5qVdRX9x6Dkl3XVZmWZamnbrGiTj61wh1t5rksDDi0XtGvXjvbt29OuXTvT/8a/wq/bt29fZH+dOnVi6tSpHD9+3Gz/iRMnmD59Op07dy7e3UgkEvukJMGSGOuuRu6eeNauDymJlpNIMLyeGWlY7QQuxcczx8uLS/HxZUYgSiSSssGNw39z9ql23Dj8t9l+IQQVej4OezJwC6lm1YVx78KFEBCCmB5n6UJ5+ggc/B26DYEvz0LkNOg6yLD98ix0HYyiUt0R+SgrOdyfKIoif3+tUdKu1PcBRiXZLioVSmAIImo6zF6LiJqOEhgCKpVZLe2gsDDAsXBDa+EOZfm5dsiy/ddff5n+v3z5MpGRkbRv354BAwYQFBTEpUuX2LRpEzt37iQuLq7I/ubPn09ERAQNGzakcePGBAUFcfnyZQ4ePEi1atWKzHgukUiKiZUVYdPks+9g3HQ6WBpjN9MuWxYbYrKRFhqJRHJvknX8MDVO7CL5+GHKNXoAsF77tdWECVZdGLPT0/HoPgRadjTIvHyLDv3HGGSnSgX5E1DFxRWRl4uicTFkLM/HGflYHMVZVnK4v5G/v3eeUumK726pUBdUkvVaLUII+8qtopDy1SYC3xlFystLCew72G4t7VsJdyiLz7VDynbTpk1N/w8YMIAnn3ySN99806zNY489xqRJk/joo4+KtExXq1aNgwcPsnz5cvbs2UNqaip169blmWeeYcSIEZQrV64YtyKRSJxF6PXkZWWhcTGIApuJgQpiLPVQhlYdJRJJ2cZe7deBn31G3R49iJgxA5WLi6H6gsbFMPm0p1BbmYAWF6k4SyT3PiXpin/ba2YLQUC+ISUgL9eQc0JR7CrJRcZHZ2eiLu/rUC3tsuwW7ixOR51/++23NpXpLl268N133znUT7ly5XjhhRf49NNP+e6779i4cSPPP/+8VLQlkjuBmwdCrwchUKclo4qbDdMGQ26OQ5l20esMglsikUjucSxqvyqKwX1SUdBrteyKiSEvKwtFZZgIFqzEYFSoecTLsLU2Wcwue5YYiURSMtjKLG6My1bdjrhsvR6SE1CWzYKpgwzb5ASEXs+5PXtYVLMmP8+ezaH16/l59mwW1axJ/Jo1hnmhm4fdrj1q1y+ylrbxXsuqW7izOK1slytXjh9++MHqse+++04qyxLJvY67J6JCJcP/29eg7lcHlr8OOz+H/60zZNq1U+qB/mNAKf3ZISUSSenB6VI4BTDWfg1s2JBey5cz9cYNpmRkMPXGDYb/9BNRv/+O5voVlKWxZhNT9PqbnUiFWiKR2MNGThyjNfxGMWSX07h53Exy+1hNiJsN3643bB+rCdvXUPWhhwhs2NDstIJKsvALtN2/ouAWUtWhWtoiX36WRbdwZ3F6xjxu3DjefPNNRowYwRdffMFvv/3GF198wdNPP80777zDuHHjrJ5Xvnx5Dhw4AIC3tzfly5e3+efj43NrdyWR3Mfk5CRx5kwMOTmFBLsQUDsM9mRAOR/DqueGd2HqUth9w7C/65NQqSq8ucVS4S6QaRdFkcl5JBLJHaPYE1a1GpVajWfFiozav5+wLu3RrJwHMSPQfPUJ1du2QdmxHlWfWlYnpuj1hioNEolEYo+7maAtJxnCgfLedpPcKjMjEcmJtBo/3qILk5Jcztf2ddw8ULm4OlZLWy3DDY04XWd72rRp+Pr6Mm/ePFauXImiKAghCA4OZuHChTz//PNWz3v55ZcJzp+Uv/zyy/e1O4FEcjvJzU3iv/9iCQjohZtbviKcXzebLUsg4TTKjOUQ/xus+B0yEuDgXLh+CsrXgnpR0LYn7LgI6xZaTwyEjDGUSCSlAJ0OvU5Hy7Fj4ZdvUKVfhRGvGZIGaXNRsjJh/SLb1Rce7IhHrXp3Z+wSieTucC+XEbOS8IzcFAhXwKcifDzLbpJb9RfLaDJ8MtsiIy0Op54+bcgi7lPB+vk5Wejzch2rpa2T4YZGnFa2AZ577jmeffZZLly4QFJSEsHBwVSpUgWVncD66OhowBA79cILL+Dl5YWbm1vxRi2RSByncN1sd0+YvRY69IOTa+HnKBAFBPPf86DtMqgzxJB1XKUGrRbkKqVEcme4lyd6txlb2X7tJROyVr5GpUuFhzxR6VINSX+uX0V5uJvl4mL9kYZFx+hh8O0G807yqy+4R00v8fuUSCR3EGdlqq1a3neRgpVjKuTlWmYQ13iAxtWhJLcaT080Hh5mWcGDwsJ46OWXETodyg8phnlfflK1AoMgJ/G8Q7W0i0y2dh9R7HdCpVJRrVo1WrVqRbVq1ewq2gXJy8ujYsWKfP/998W9tEQisUdaMiqVJ6QlGwRlYZeinCzQ5kFmoqWiDYbXP0dBRiICBR7xgpPxUtGWSO4U93G9WFvu4taSCRWu8SryrShCCPx6j4T3MgxboUcp5wOn1sGndeCv2XBqvWG7oZZhf+wqqBNmOaCE0ygurkUmDZJIbgcyXKuEKOUyVej1pCcksGvmLLYMGsSumbNIT0gwxUUbUECb61CSW21mppmi3fjJJxm1fz+VKldEWRoDUwcZ3q/CuSuArJNHHaqlLT2Yb1Isy/at4OrqSpUqVdDpdHf60hJJmUcIgVfl9rStmoFen7/yufMLKy5FAo5+bKlomw5r4ehSlPAYmRhIIpHcc9iqme3h52dWzhABiqKCG+fsLy5WagdPjTcsTBakcqih5FeO7bqwEsntQoZr3d8UVWbLWLZQaTYQHhxsqBTTfzSsmGfdlVytQfQbzaFPN5p2BYWF0XfVKpRv16HMijI/b8U8mBEH3YaYclforqehqFRF1tKW3OSOK9tgSLI2f/58unTpgru7+90YgkRS5hBCT25uIomJS8jKOoWHRy1CQkbj2n80yj97brpIuuW7Gl0vwtUoPb+etrToSCSSewRbk8+gsDAioqNBCDToya/ihUoxyEbl2DL7i4vHl0GXyebKdn71heyEc9xNKSitmxLJnSUjORkv47b+zf23vTZ2ISzKbCkKLh4e5GVl0XDAAOp07QrZWWBcXNTrICAE3voMJvUzV5yNSW4DQ6jdrTttp00j9fRpHnr5ZZSrlywVbbCbu0JRqWQtbQe5K8r2uXPnOH78ONWqVaNdu3YEBQWZfTiKorBo0aK7MTSJpNRgjG18cNw4PAMqcOnSGo4di0QUmFCeOzePenWXERS7CuX0ETgRb3Ajz840xCvawzvUIGilRUciKXtkJsGRJdBwNHiWHiXOVo3XdrGx+dYUgUp7BY7EGRYUfeujhM9wbHHR3dOwuJiTZVZ9Ieun7XdV2ZbWTYnk1rClPNsiMyUFrwJbI8ZwlmQnamPbUtAL5pWwOEeXCi0MZbZ+nzmLwIYNaTVhAk2eeAKNpyfarCzUbm6AQMlMhsNx5klu2/SAHZdg3QKLJLeKSoVXxYpEzJiOysXVEKO9NMZuUjVbuSsUReFifDyftGnDiN27CW7e3OH35X7irijbX331FW5ubri5ufHHH39YHJfKtkRSNMbYxpbPPUdubqKFog0ghJZjx6Pw822P61PjUWZGGuK4d2yEiEhDMjRr1h5FAw3HQHranbkZiURyZ8lMgj9joUav26ds20pKZEfRtzsxbe1lmnyaJeZRFOr26AEKKMfXFHIXV6DpRMcWF/NyoH1fi+oLuutpxX8PJBLJncFY/irH0upsS3nO+Os78j4dicvAj/Fq1vmWLm/TGm5NQRcC/94jYcBz+OflWCQiU+nToKWhzJaxbKG4nIB65Vy4cApN5HREzXpW5B03k9zWHYoYFY2i1hhCYTQupmsoikLKV5sI/GACyvfJDiVVs5e7QtbStk+JONVnZmZy8uRJU3KSojhz5ozdv9OnT5fEsCSSso+i4O7vS2LiEgtF24gQWhIvfgxdnzIIWndP2LAIvCojIpYZFGuzPjXQbrlhEpx6Z1ylJBJJGcRGUqLMgzvhz1jDthCaqydo95hha8I4MX33Biq1mpodOxIUlp/MTFHwDAhApVaj3LhgJS5bwKmNUD/SUtYZyV9cFCoNzF6LiJoOgSGmMocSiaQUkJtiULZzHbc6557Yi2/N/8g9sdeh9ipdKoRj1RqdmZJitrWJXo9ITkBZNhumDkJZNhthJREZWkOZrZZjx6J8uw51vzoQNxt2bIBqtW3IO27mobiRAIpBhon8PwuuXUHkOZZUTeTllqino7UqEmUVp39J3n77bWJjY02vd+/eTeXKlalXrx516tThVBGFziUSScnh4uGBSqUhK8v+9y4r6zSKqwf8mgV7MmDlXoNlqM5QxKCz0Gwa1B5k2A46C7UHG4S0dCGXSCQlTM5/p8y2BVHp0wyTWX2aYYdeD8kJKMteh5gRsCSWavVCGbV/P8N/+ompGTeYdPkydpM+HlwIXpWhiMXF1J3/g0e8SPlqk8PVF/Q+AexMNGwlEol10pOS2BkTQ3qS49nAi3NOSWFLqbaQT0705VJOZVC0t69BeaymQXH+dj3EzUZ5rCZi+xpzhVvjgchOhysXb8ZTKwr4BoBa5ViSW0Xw+dNP28hejqmUF/1HG0JnrFEgd0VJYKuKRFnGaWV72bJlVKlSxfT6pZdeolGjRnzxxRcEBAQwZcoUh/pJSUlh6tSpdOrUiUaNGtGpUyemTZtGcrK0pEkkjqBKS6a1XzZC6PDwsL8q6eERarB8/z0bfhgEf89GyUtG6HSkXcpBhMdAh7WIZtPBM8S0GiqRSCTFxo5bp100nqh9Khomnnu+hn3fw4jXIOYTGPEaqqQzKGoV1VvURnNoLvw0wpDM0VZc9tV4+GmYYRHRzuKi7nqa1eoLngEBZtuC6H0D2ZVk2EokEutk/hsPS2MNWwexVQbwTlBspdpKDLaxL88GzREpiYZwPqPi7O5p2Oq0KDMjEfklW337ToJnMlB5+qJ8tgRCG8KM5bD7Bnx3GRQ78s5I+mlQ1Bz+9FN+nj2bRTVrEr9mjYXCnXnyqCGp2ow4S4W7YO6KU8ccfi9sYSphFhtrKGEWG2t9EaCM4XTM9vnz56lduzYACQkJHDhwgF27dtGmTRu0Wi1jx44tso+9e/fStWtX9Ho9nTp1om7duly6dIn33nuP9957jx07dtCqVSvn70YiuY/QXD1Bu2FVEagIqRTFuXPzrLqSK4qGkODRcHy1oa6scX9+XI9P7cEoKjV0DCDluUUE9h18J29DIpGUdmzEZmddOoFHeP6WR83P0Vi6EAoh8Ok7CVym4a3TItJTUVp3hYwEODgPbpyHwBbQbAzKibWwKzLfsqNAmw/sx2Wf2gBBj0DDsYhm01A0bghtDoratUgrtldgoNn2VpCZxSX3I6prKbQL9XQqsVixsCJX7ghFxGCj8cIluBbK0liD4vzUBOjyhEHZzs405NH57yiKTwWDi/mWpXD1EsrUJeBfEVbvz5eDc+H6aYM3jgN5KPTaXFM9bb1Wy7bISGp27Ih3SIipme56miFkptsQeLAjbFlskVTtVnNXaDw87JYw6xUXR9iQIWg8ymb1G6fNVx4eHly/fh2AH374gXLlytG6dWsAfH19uXbtWpF9jBs3jkaNGnH+/Hm2bNnChx9+yJYtWzh37hyNGjXiueeec3ZYpYajR4/SuXNnvLy8qFSpEq+88gq5ubl3e1iS0oYQ+PcbC3POogg9rm6VqVd3GUohF0lF0VCv3nJcXYNQDi4s1IcW5ecoyExC6PWcrdgYj7qN7tw9SMoMUq7d59iIzc5OSzPbAgarTT+D1ca33yTDpBSDxcNQOiZfhikKircvXNiOuLgT0ew1aP8JouFIRF4mHFxUwIXSwbjsmn1AUUj77C1Y7mXY3uEyNcbM4t5S2b6nkTKteFh1/RaCgJ6Pw54Mw7ag23BKEiyJsZAd9sjI94DNKOgJKwQ0exyeyTBsnXFNdlZBL1fN/HWhUBdl2etgjME2ybsbKCoFHn0K1uyHiPYGxfmHQYZtu/bw3Fw4/g+K0ZNn6hJDKa/Hn4VT6+DTOgaDyal1cHJdkfJONBzD8a++Nh+qVsuBxYutW5JVKkOuipHRMHutYVtCuSu8AgOtVpEwjmlbZCTpSUklsqB5L+K0Zbtly5bMmzcPlUrFW2+9Rbdu3VCr1QCcOnWKypUrF9nH4cOH2bRpE+XLlzfb7+Pjw2uvvcYTTzzh7LBKBampqXTo0IE6derw2WefkZCQwEsvvURmZibvv//+3R6e5F4lJQm+WA69nzGsMAo9ZCSi/LvUYOlp/DyKd3WCggbh59uOxIvLyMo6jYdHKCEhY3B1CUL5aajBlbIwQovq6FJEeAw11u+847cmKf1IuVbGsJEp3FhqMHz0aEtF0Z67eMGJrNBDZiLKkSVw/RRK+VrQcDTCMwQUUOVcQvk3/1jYRPCujqjWjdycBBLPzyUr6xQeHrUICR6Ja9/fUX4aZrBYgyEuu84QQ1z2rkJJgwomfTQq11rn3MVtIS3VZQ8p0wzY/c7bwOj6Xa9XL8M5ej2kJKJsWQIXTqFUqZXvAZOvxBkX6iJ6mVcssENmSgpe7p43M4vnX4P8a1D4GrYwKsKaafhqrVij3QMKNRf4DpgMqmn46nUIIVCEMIS6XL9iUJCNluojfxjuJzMR5cjSm145jcbCiTX5Xjk60HiANsuQQbznD1D/EahcId+CfQrCJoJHRctEaEXIO9FuOcI9iJ3RMRa3nXr6NCq1GvJ1NzMUBU7GQ1QbWLYb6pdAKS9Fwd3Xl12xsRaKthHjIkBEdPStX+8exGll++2336Znz5489thjVK9enddff910bOPGjSYrtz1q165NWsGV7gJcu3aN0NBQZ4dVKli8eDHXr19n69at+Pv7A6DVann22WeZMmUKIQXcOiSlnJKqYSsEwrcCSuRUhDYPRejhv68QOVeh2WsoGk+ENgtUrihJu3G9cYYatSbn788EtQfKvsk3J6TWSD9tcCO3RkCwYXXTwR9Byf2HlGullNRkgyKcmgwF55Q2SoJl/hcPB2LJ/O8hy4m3tSzAZhPZXIOibW2See4b6LsPTq5FMR3zhIg4hMqFS5fWcux4lFmIzLlz86hXdxlB7VehpB4xLCQa47Lbr4KQ9vDvx4aYRe9QQxlDz+Aic1EUx11c1sAue0iZZsBCcXYCjYeHQQnevgaMMcpGVswzxAd3G2KzlJRNjFbyvoMJyMtz7BpGhdu96IU/PEMAxUypRggEwszIoZSrimgwCuEVgvJwN8M8TKNGAYSrBpq1QUncjbhx5uZcTZ8LeRko575BtF0KtZ64OVe7sAMl6KECMjI/PCZiGfw11zIRmpm86wD/LjXJO9FgNMI9iK1DhnIp3tLI4hcail6nA53O9vtsJXdFcXHx8ECl0XC1iATaqadPo9JoyqQrudPKdsOGDTl9+jRXrlyhQoUKZsfeeecdKlWqVGQfb731FuPGjaNq1apERESY9u/cuZOYmJgyu3K4fft2OnXqZBLeAAMHDmTMmDHs2LGDp59++u4NTlKyFKeGbWYSHF0O9Z8xnKPXQ04WisbwNVVUashJtW7pqRSFa0hblJww+GseZFxA8aoC4TNA5WL/ut6hhgmuYkXhDgiG0THO3bvkvkLKtduEu5Oujc4gBKJme5Q6GQhtrsE6YxZfaHltVV4K7fp6kpxnI+aykAXbsAiYP8VQqRDaLOuTzBsXULIuwsFF5seEntycBAtF2zB8LceOR+Hn2w7XJuMNSjoYFhVTj0DEckR4DIpKbTUuW6/yhQOg7+xbjDfPMaTFu/QiZdqt4xUYaLA2F1aCwfB6ZqQhPtjPCbfhwlbyIRMN8cz2rvHQo+BX0VxBN1v4K3Be+hlotxKyblqjlcAWiEZj4b+vIecKwmTkyIQL36N4hiBUCrn6KySeizPNyapUnoAmpA252TXM5mpVKo9H03EdudnnLb11FBXKhR03x6TxMMhVW4nQjPKu9SJoEQOKGqHXkpeZzYpW/0fSn39anKLSaAgfMwblDpY1zMvKQq/V4l/Lfoy5X2goeq3WFGNelnBa2TZSoUIFhBAkJSVRsWJFNBoNTZo0cejcSZMmce3aNTp06ICPjw+BgYEkJydz7do1/Pz8ePXVV3n11VcBQ+H1f/75x25/V65cYd++fSQlJZGVlUWFChWoV68eDzzwAModjseyx9GjR3nmmWfM9vn6+hIcHMzRo0fv0qgkdxRbFm8hwD0Qmk8FvTa//INAqPSgwrBaqghw8+XSxTW2LT2VhqCERxsy8+blIHR6aDDakAzNWomI/PqyxUjfIJEAUq6VOEJA7TBDiT6t1tK18Zb7t2/REX5NUJ7JQOjybirhQhDw0OPQZjAB2lzzMQkBzR+HBweDzjCRFQhytckkXowrepIZMhpXl0rQdy+5ORfyj52mfv3lJCYttZr00XBZLYkXl1Gj1mTDpNlI6hFwr2gY13Iv0spNxm/gNLNz9Wo/g7Ld1a/k3tdCSIt36UXKtFtEUfDw9TW4hxdWgo3otIZEXCOLdhu2aiVXFJi+DD6Ze/MaimKwlOdkGb7/nQaATwVDPPWWpXDpPMqTz0OVipaKtn8YtPsEzn1t7jmozwVdDlTramHkqBzyLC4KFnMyL68wqlefwaVLqzl2rOj9kD+Hq7eMoHafoFw9aLBca7MM4S72EqFdjYeEHyCoNawsj9LyU1wadqPV+PEW8dEqjYZey5fjHRx8Z3UjIchOSyN89Gj2zJtn1ZXcuAiQbcPrubRTLGX722+/JTo6mr/++gudTse+ffto3rw5o0aNIiIigsGD7WczDg8Pv+UP+tq1a6xcuZKVK1fy999/W9RpUxSFcuXK0bdvX0aOHMnDDz98S9crCVJTU/H19bXY7+fnx9WrV22el5OTQ05Ojum1MUGdoxy/aGgfGuCJJt9KevlaNmlZuXi7uxDs62HRtpqvJ+7uhrYpN7K5eiMXD1cVVf3LFavtqcs30On1hPh6Ui6/bVpGNpfTc3HVqKgRULy2Z1NukKvVU9HbFV8vdwBuZGtJTMt0qq1apaJWxZttz1+9QVauHv9yrgSUc75tdq6WG9ryXEvJolYBF81Ll/5DvW8BokJXAmsalG1hisE2TH4JehgajUWA2Wpp1aoTcXGpaN/S49ceV7eqKIA2T8fJHTuo27MHRMTlu2jajmO09nmWxHNi7fMsiefE+Hne6nNS+PO81eckO1vLuTSDC1bdSuZ5KcoixZFrUqbZaKvXI5ITDaVeCsQeioAQLl7PJkerL/ZzffFaJkHl3eHEGktZYGbRuamEiyYTUNz87CjnIArmj2j6CsKvnsOTT4ArV74hPHwfly6t49ixSITQolJ5olKtJSvLvtthVtZpFI0nqD1Al2WQaW3jwDMYRa0h6S9fEh/0p1G21kymnVb78stVbx4qUBv7+MXrKKk5VEeNa/4+42fvmZ5LlQLXlTKtbHM3ZBo4J9dOp+WR6leZ7AKKS8qNbE6n5ZFeLsBqvy6F2hb1vJruJVtL+sXrDsm169laMkJqGTzyLhRRmirhNGg0XPQOoaBPrPF55dJFIoKhnI+3QS4WtGC7eRi8fy6cgjphltm9f98Bj/SAPd9A+tWb8dR6HRyIsTQ+NJkAOWkWnoM+Pg8TEjKWS5fWmOSTEXf3Wvj5dbCYk1WpMoHc3AQLWWdrP+TP4Y5F4edT0FunQOLHIgwm2ZfPcSNbgz7lChVVKsKGDKFmx44cWLyY1NOn8QsNJXzMGLyDg0nP1XIxLZucbCjoV2D6PLO1GD/lgs+Ju7W2Djwn18pX5NjpJB5o0YhecXF2FwEO/XmYVL/KXM/WYjRHlQW55rSyvX79eoYMGcLAgQMZOXIkI0eONB2rVasWn3zySZHK9ooVK5weaEHmzJnD22+/jZ+fH48//jjR0dE0bdqUgIAA3NzcSEtL4+zZs+zfv5/t27fTsWNHHnnkEd59910aNmx4S9e+G8ydO5fY2Nhin99l4W4A4oaF07Fhpfx9u0jL0uKiUjgxp7tF29heDRje2hA7323hbpJv5KJWKZyy0vbZdqG80rUBAH0/+JXzqVkoCpyZ28PUtuP8XQA80aIKbwxoCsDjS/Zy4vINFODMPMu2nRtU5OPhDwIwYsUB/jqfBsDZAm3bvW1o26qmHxtHG/IFPLv2AD+fSLHZtnFIeb56oQ0Akz+L58v4JIu2bd/chQBqVvDkp0ntAXhrx7+s/PWcRduIt3ahF1DJx43fJ3cCYN3facw8tw5WpHJ23s3PokPcRdxcN1NudRI/z8DkzqQUjGOsNRCBKDRhVahXbxnnzs21b+lJ+pgaNWKY41WevMxMVBoNQ3/4kepthkDljnBksSmuR1t/NJpyN2tqGz/P+Y+H0S+8KgBd3/2Zqxl5aFQKJ6189q88Wo9n2xtKAfZ8bw8Xr+WgUuC0lc9+eOtqxPYyeL88/tFvnLmSafOzfywsmPcGGRJzDIn7g0OJ121+nm3rBLAq0lAqcPSaP9l7JtVm22ZVfdk6zrDw9uLGv/ju38sWbdu/bfjs61Qsx3cvGcJcZn11mI37L1i0bfvWLoSAqn4e7H61AwDv7jzBhztPW7SV3ETKNCsyLd9yo1iLPZweR8Wug+n5wS9sH9/WdMgZmbb7xBX61gWNLYvOyTXmiXb8w1DCZ8CJ1ZYJeIxx1ue+MXettOH6bW+SWbnyc+TknDebyOr1Weh0mXh42Hc79PAIRehyUGr2NYTD1I0CrxD48TNEuz485LkEjijMP5xUSKaB0n81vxaojW387N+q1I7H8/cZZZoaQUG1Qco0SWFuVaaBc3Jt8I4UGLWEWqezeb6lYZ9RriljlvGylX6H1vc0TfodkWsT8tMnjdl5lTPbdjsk117ak8qRoQuZlZuHW5UiSlNVDiUnN4+HWi7mTIHdJrnmkc1XlRVEYEWUZbPM5WJOlkGpbtcHYlcWKIt1ymAJDh9pSAD2SHe4ccFw7MYFaP+JFbdsBWo9aTVHhJ9fZ3Jyzlko2qBQseJAK3MyhYoVn3Bi/02seus4mPhx7Mrv+OncOjzP53KkHSgqFd4hITw0bQbubi7k5eahcdGgKApdFvycL9fKW5VrUXVdMPoCFZRr+1pZtn0sLJgp9Q37nv85lePbDM9aQTnx2Zg4PvvsHK9keDDWziKAolLx2OZzMGoJJ/ak8nV+CrCyINecVrZnzZrFhAkTeOedd9DpdGbKdqNGjViwYEGJDtAaO3fu5LPPPqNdu3ZWjwcEBBAQEECLFi0YM2YMqampvP/+++zcufOuKtt+fn5WS6OlpqaaxQYVZvLkybz00kum19evX6dq1aq3ZYyS24cQgkOzHkNR1AiRn8kyOxnFgVhFlcoDtdrTMUuPoqbRwIGUr1KFpqNGUz44mPOpWVTzC0E0n46idiUnL48v4y8yIFy6j0tujeLINSnTCiGE3fhGZVYkokUHRrSu4XTX6UlJHFi6lF5TpqD5e6Z1i05GguVEztZ+gMbPQc5VhJlrpS3Xb3uTTFvHBJcvbyQ4OJJz5+ZZnZwqioaQ4NEgVNBhbX6t2g3w6QcwfxvZCeecfq8kEpAy7VYRArbFX+Tx/qMNi4XWXMnVGnT9RvPFP0WU/HLzQHFxtbSSC2GwXnfqD8fXWGbrNi4InlpnnnCszQeWbtkaD4Tandzsc4UWCm3LLltzMmf3F8bCW6dAIjRRuRNKAYOJvsEYVF6GxI+nLqWByR6dP3pFoUH0t7i7aBhVMY0Xn3/S7rVvN7+fvsKz7WvjHRJC6+kzcHN1ITsnDzdXzT0V8ns7UERh/+sicHd35+uvv6Zjx47odDpcXFzYv38/zZs356effqJ79+5klcHg9pKgbdu2VKhQga1bt5r2GePUly9f7nDSjevXr+Pj48O1a9csyqdZo8y6XHIPu5En7uPGV7251nYzteo/nK9AJ5KYtKRQrGIwIAyxihfjTBPW//6bzX//zS7wKSq0aXODc+fmFtpvTvXq06hRIwZFUaPPyyU9D1Izc6ni645GoyHj328RvwzibKNVVGjQocjPXrqR39uuSfcCJSHX7nuZ5u9hqDUbZ/u7TeQ0xKgYlALlWhx5VpP+/JNP2rRhSkaGoabrqfUFOlXgmRuGbLd/zXZgv/FYhoUVSKXypG3bDI4cGcTlyzevYWt/Uce8vMIID9/P5cvrLCziiqKhXr3lBAU8iTLsQTh3wqBsqzUQvRy6DubqT9vJmD6CpGfnEzbgSTOZduLAP3zeuysv7fqB4OYGa/Pxi9chNZnqP67C7YkxEBB80438/BGqjH0I1hyA+s2lTCvj3A2ZBs7JtV9+3MumAf0Z/7/PqNnSYNpOuZHNsX3/sLV3T17e9a35sw24nDvKqlatGHXgAC51Gxb5vKYfiWdpeDhP/rIXJbS+Q3Lt2K/7+KhnPyJ3bKdJ80bWM4Xnf09F18GcO3gQt7HtqbT8e1OZKePzqtr9JbXfHIr4Ndtg2S4sH9/eCi1awPqalguCEcsNVQk21DE/ZnW/CjEyl7NnY8zmV/bkk+05mbP7zalefRo1qk5GWe5V4FQNostWlGrdETotisYVvTYXPRo0GoPBJPm3r9GuHIpq6GqCHr5ppd23Zg3BH76E8tICqgwweB0bZVXOT1/S5J0hJE9dQ2DfwTc/z4tHKRfVCtYcIKXKzefEfdcXBL5uaH/94d4OPSdJf/7JW+270X/rNpq2Djd7TuIGDmbA2rW0jGh5c7y79rGubz/GfvUZ9Vob9pcFuea0ZbtSpUocPXqUjh07WhyLj4+nevXqJTKwski3bt2YM2cOaWlppnigTZs2oVKp6NKly227rrWHqKKPOxV93B1qG1DO3fRwFrdtwYfeiK+Xu+kLUty2BQW/kXLuGqtjc6ZtwR8fp9sKgXul5riPSiJAr0UIfQnEKjpm6QkOHo3QgxLhxZWXlxLYdzA+nq6mNl6BgaC/SuM6wVDghxtu33Ni7fMsiefE2ud5Lzwn7jballXuhlwrkzLNgfhGpVBdVEef1bysLMMkzYpFx2q2W3tZcG1YgWy5fttzCbd3LCMjnqNHh1G//ip8fTuQlLSUrKzTeHiEEhIyBlfXYJTradDmMUPsZ+VQ6G9QklGp0F1Po2puMu5eiknRBsNzovN1odyNNLPr1a1UHiqVhwY3XYFNn32aq1lbKdPKNqVhrhbq64JfagLumpvPdkA5d/J8XfC+kWK136RE87ZFPa/p+dvy7hqCrYzN2rNd3l2DX2oCAao8Q8mtbkMMWce3LLb4nioqFdXddJCbataH8XlN1gBCkJN4HvfCVnJFgf/rYnAPt+IxQ60nrJfMsuaWrXFHUdQW8y774Sy25mTO7i8wakVDSMgYg9W+2bSbpbwajkHJL12Y9tmb+N2Yy7VCiR8D/YJhfypMMK9+UNNLITA3meQCPx3Gzz7ZHbOqF6bPM836c5JcoF9nnhOf65cJ9XUxKdrGtl4JJ6nqba6GVvU2PD/lC7QtC3LNaWV70KBBxMTEUL9+fZMbt6IoHDp0iDfffJOxY8eW9BjtMnPmTJvHVCoVPj4+PPDAA7Rp0+YOjso6Y8aM4b333qNPnz5MmTKFhIQEJk2axJgxY+6buo1lnvxMv+QnExKt3yVXyS6RWMULFxYSFDSEevWWWbf01I3DzS2E7ORk9p7OpEGB5D8mPIOhefSt1f6WSApwv8m19KQkDixZQvjo0U7XnrWJXmdIhmaPyqGGdiorJfqKQgiyUtPwbDjaPNGOrWy39rLgarMBPYkXlzno+m1vkml/Anr58gYyM4/zwAM/mzx2hNABKoPbYXk/RNR0FBdXRF4uisbFlCXdo24jztaJIKBuI+ffL8l9zf0m024rKhUEhtj8njpC5smjuLfvZqibbbSSGxOk2VgQtLlYaFafuj38+zGkn0Hoc63Mu+zLp5tzsjizeZytuVqRc7h6yw2LiCiIZtNQNG5WSxeiLYEa2Gb1ygtVmJCUOE4r2zExMRw+fJjOnTub6mx369aN5ORkevbsyWuvvVbig7THggULyM3NNbmuu7u7k52dDYCHhwd5eXnodDqaN2/ON998Q2CgEzX9Shg/Pz9++OEHnn/+efr06YO3tzdRUVG8/vrrd21MkhLEonajCjqsJvFsTInEKha09Pj5dSIxcbHJ0lOpYhRuHlVAgF5RwahoPBuEWY7RM9hQj1EiKSHuN7l2IymJXbGx1OvVq+SUbUUFRcQ30n+MKZlhcchITsazfj2IiCsgo2xlu7WTBdeGFQiKN8lMSHifSpWGWUxYwTABrVJlAmq1B+k7llH+0lTS3MfftOgoCilfbSLwnVGk5HvyGCnX6AHKrd9p9b1wugZ2QLChRFGAXKS8HyjtMs3F07PoRncSO99TR9BdT7O0kieegbwcGwuCRZTMMtanjlgO4TGGBUxtHiHBoyzmXfZkV2bmEa5f/52goCH4+XU0m5PpdOkEBQ3Fz6c9iRc/vrk/N82wv9AczuStky/j0z57C78bc62WLrxlCtcrz696QUCI4X2WlDhOK9uurq588cUX/PTTT3z33XekpKTg7+9Pp06d6NSpk9MDOH/+POfPn6dp06Z4eXkVfUIhfvzxR5544gmio6Pp3bs35cqV48aNG2zdupWZM2eyatUqMjMzGTJkCJMmTbrlTOi3SoMGDfj+++/v6hgkJYixbnbTVyD3qnntRnd/m5NSe8ky7An35OTNVKw4mAoVulOt6nTUGld0eTnocrUoKCgqFV6BgbK+q+SOIuXaLaIoholOQcuNEWMcckDwLVketFlZBmW9zhDzygR5mVCuWiElHNtZcLVZCG2W067fOu1165PM4DGAQlDFwRYT1oIT0BylHGf/l4LX06GWN5ftnKXH6RrYAcEw2on2klJPaZRpQgiCwsKYkpGBXqs1JGF1QGbcFm+dQuh9Athpy+PO3cHFgcJWcp0OpbC3DuBQyazUI+AaAF+thDefR6laG9fV+6lXd5lZeIxBpo2gQYOVNhVkBCh5PlSrMg21ixs6bS4qlQb+3I1r4mlqdJmM4uaJyMmEHRtRKofi+kAbqlebhkrthj7fem3xWZWEBbswheuVG1kxz/D7022IwWvA2qk+AexMxPpnKLGL08r2uXPnCA4Opn379rRv397smFarJTExkWrVqhXZz9KlS4mNjeXixYsA/PHHHzRv3py+ffvSrl07xo8f79B4xo0bx8svv2xWbqxcuXIMHTqUjIwMJkyYwN69e5k2bZpdl3OJpFhkJsGfM6H5NIPSXVCoZ19FCF2JxioGVxqFq2swupxcVPmxWgoqXDw9y3w2R4mkTFNEfGOJWRwUFXiGmLspolgq4d6hkJsOdYZC5U7m+4WekJDRRbh+76JGNUP1A5GTCf/bgHL2KC5jZ5u5hF85cYqdMwbRddEivCqGUL3qNFQaywmoNqA+K9fDqIn1S+Z9kEjKEEKvJz0xkQNLlnD11Cn8a9UyKM8hISgFZIc1q/dt8dYphN43kF1JUK9AuT2EgNphsCcDtFrHXJkLWMlTYz/Fv0M3y4VCgEPvQ51h1o8pGmgbZygTuH6RYbHuRDxK9DCCYlfh5299QdDV1VI+IQTxa9YYakfrdLh4eJCXmUmTwYPpu3IlVK2NsnweXL6AUrGyWbx64mcvcSpgBbVShlO534eOvY8qXzgA+s6+jr71Nymi6gUzIw2/P37WPYCtfoZF4LQXURnFaWW7Zs2a/Pbbb7Rs2dLi2D///EPLli3R6XR2+1i4cCGvvvoqL730Eh07djRLONGuXTs2bdrksLL9119/MWPGDKvHatSowcGDBwFo3Lix1VIOEskt414BVBor8UF6uHaKkGBrk1JHYxV3mSameVmZHN64EY+AQOp2707KsWN83KIFI3bvNmUdlUgkpZh8yw0jo0GjMUxA1epbsmir0pKJCDZsTSiKFTdFpZASnouSb50h8TR0nmywQOVkoiguuLoEW1iBDF3nu37jhjLUkClcyc8ULmbEAQpLmrcg/cIFMlNSUGk09Fq+HK/AQBRF4dKOt8nOnYO76xQqdZ9a5P15BgSYbSWS+wGjElO+alWEXn9T4dPe/C7umTePXnFxhA0ZAopSLKv3bSPflZl8V2acdWXOzjS4l1vz1vEOhYZjDHKzzhBE5Y5mJbNEwzHgUQklejiciL/Z5/eb4dFBuDzcnaohU9C4eRjmXRs24lEhgLo9epD200dcz5iKp/Y5AvvPIz0x0ex9z8s0WKMPrl1Lyr//8vTPP+MyagaKWmMRry6Ucuj1mQjF2+G3zT2oDhwA9yF1HD7HhNAb3m9roUpg2L9lseH3xwnsKdROexGVUZxWtu1VCsvJycHNza3IPt577z2mT5/OtGnTLBTzevXqcezYMYfHU716dZYtW0bXrl0tji1dutSUHf3KlSsEyB9jSUkiBPiHwbBkQ+IiK/FByh9Tce20sXixipXHo1Z7kvLvUX59+23KV65M+JgxeAcbVkW1WVkmwS6RSMoIigIn4yGqDSzbbSqHU1xU11JoFwLJ11KKblxACc9t/wtuXgHwbKebVg83D4MVaMZylDY9CQochF/5diReXnbTClRpJK7uVaBQpnB9n5EoQVXITkujXs+epJ4+jV9oqJlMA1D8W3D29UwaTG3h0P155edh8bqL+VgkkjuNUYkRQpCekGChaAPotVpO7dhB2JAhpCckFGn1vhNoPDwcc2U2jssRF3Nr3jr5ScWEXk+e8EHzwDRULm4InRZdnhaVTo9+7OuoQ2qaZJToPwbhV5GtQ4ZwaONGk5UaQKXRMP7sWTxrd8F/3otc6WxY5DiwZInF+24k6c8/+WXePCJmTEeJ8LKIV1cpVam+A1QtHa/HblPeFZVXQq02xKY7UPUCjcaqK7ktpVoq1EXjkLJ99OhRjhw5Ynq9c+dOLly4YNYmOzub9evXExpqJZ6qEAkJCbRu3drqMRcXF27cuOHIsACYO3cuAwcOpF69evTs2ZPAwECSk5P56quvOH36NJs2bQLghx9+oG3btg73K5HYpVDWccImQgMrsUNnNqMc/oCgRuOsxvuAQlDQYPy8I8wnrBWjcM1PeFahXj16L1+OXqtFUaulu7hEcj/gZByyUwiBb99J4DIN37wcS/dNbRauVRrCslk3J8NC3BzT+oXQfQjKL9txvX7FIiaRyqHwQBv0kdNRubqiz81Bm6fFBfDw8yNixnRULq7o8y09BWWa3jWQXV9BvVgHlWeZvExyH2NP4QsKC6P3J5/wz+rVfBkVZdPqrfGwHqN7O/AKDCzalfmhR8GvonPZsq1465hZ/HU6XDw9mXT5MnvmzuXYtm20Gj+eJsMno/H0ROh0XPz7b77o3J1L8QZrd0Fjhl6r5cDixUTMmG5w4+4RgEqt5uop+8pr6unTqFwM7uaFUZevw38roEGnYlipC1NUXgmdzvGqF1ot5GRZHJJKdfFxSNneuHEjsbGG2pOKotjMOO7r6+tQArLq1auzb98+OnToYHFs79691K1b15FhAdC3b1/27dvH3Llz2bp1K0lJSQQHB/Pggw+yceNGHnjgAQA++OADh/uUSOxikXUcSD0M/fZbJhMC+O0lFL8wXIPbmJevOX8KdEehen1cFH9qVL25KitychE6Pdnp6Wjc3fl9wQKaPfPMbYunkkgk9wlFZKLVq3zhWAUUF1fbVpAT8RA9DGJXo1y9BAViEoUxxlxRwDg3VhSzvBLGmMsrxchMbIFMXia5j7Gn8LWaMIH0hAQLRRsMyuO2yEhqdux457xCFAUPX1/4ONa2K3OnAeBTAZITipctOz+pmBDCwsUbIXDx9OTqqVNcio9nW2Qk26Ki8KxQgUnJyfz6zjsmRdsaJsXZzQN0OvQ6Hf617CuvfqGh6PNyUVlRXu3FQN9SbLYtHK16cSOt5K4pARxUtidMmMDTTz+NEILQ0FA+++wzmjVrZtbG1dWVSpUqOWR1GzlyJDExMQQGBtKvXz8A8vLy+Prrr3nrrbecLq/QrFkzPv30U6fOkUiKhRAGi3bhhBsFazcWTibUYAy4V0SZPhi++xTK+6Ok5bt0qjWIby6QeuUaPlWqoNGALlfHoU2bTbHZikpF26lFxy5KJJIyTkqSIeau/2inLbnq8r5Fum+KbkPw6z0aBjxnyPRrzwry7QZo+gj6vqPQD38Njacn2sxMDn1aIL7x5+/wjx5oXam+nZZ7ieQ+wabCpyg0fuIJ9syda9PN2WStjXYuRre4eFaogKLR2F7EqxMGsatg+1qYFWXTxVxd3rdI93JrFv+8/NA7s/dLCDKvXLHcb4XCirOiUhE+ejR75s2z+h6rNBrCx4whJ+EczvoO6NV+BmW7q5+TZ9rB0aoX/zkeylvSlNWEag4p2z4+Pvj4+ABw5swZgoODcXV1LfZFJ06cyLlz5xg1ahSjR48G4OGHHwbg2Wef5dlnny1Wv7daRkwisUlKEmxZCiOnWmYdN2KtdqNeB8f+hpndbybiSCsQO6nTonz6Pv6jotkZO5PrFy5YxGZLJBIJQMa/8Xh9HEtGw4fwauPcZMSzdn2HMtFeOn+Rve+/T5/ly9H3iUJlxwqie6Qn8atXsy0qymp8o0etek4r1WV1siWR3A5sKXwuHh4mK649Uk+fRqXROO1K7ky5MGNJsknJyfYX8Z6aAJcTLBVtMMko8WBH/Np1hT0ZVMjLtUz0pvEEtYt1i78QHNq4kWaRkebvl639BbCmOCuKgndICL3i4ixi5o2JH72Dg0n9abvTyvZtw5GqF1as8HeKsuqq7vRMvnr16iZFOzMzk6tXr1r8OcK7777LiRMn+OCDD5g9ezbvv/8+//77L++++66zQ2Lp0qVUrlyZ6tWr06ZNG1OCtb59+7Jo0SKn+5NILEhJgtVv2sg6XoCr8XBwvkHR7lHNsF3zjnnGy8IknEZRa4iYMYPey5cTER19VxKXSCSSkic9KYmdMTGkJyXdcl+ZKSlmWxMpSbAkxrC1hqLgFlK1yEy0ypbFBDZowJFNm8jLzkYJrIyYvsxg9ShIfmZxJTCEvYsWgRBW4xvdKlsvA2qs16q3Uq/VONmSITMSSdEUVPiM5UDBhhXXCn6hoei1WrRZzilYxnJhN4qQa0KvJz0hgV2xsWwZNIiL//yD6DfaUqYoCnR5Ar6IK1JGCZ2WLYMGsWvmLNITEhB6PUIIfPpOgmcy8Ok1wabFf+/ChXhXrsxjy5aZvV+29oO54px5+bKZ7FJUKsKGDGH82bO0nTaNJoMG0XbaNMafPUvY4MEoKpUha3pJ4WSOCquytmDVi9lrDdtAB7PAS4pFsbKRz549myVLlpBk40tWVOkvI6GhoSbLdnEpyTJiEoldcrIMPwJWso6b4R1qsOZcvmDYOpKQQq8jIzmZv5Yvdzg2W1qAJJJ7nztRw5aUJEMcZEQv65MwNw/7MdhgcOFs2QmNuxtTbtxAn5eLNi8PdddB6Ju3Q/3FMjMriPAPYuvQoTZjHM3iGwtRnHqtEonEOkaFr2bHjhxYvNiU6V8I4ZCbc3ZaWomPSePhYbUkWfLhw4zavx+mL0MpaMF28zC4hjuQLVvl6sbRzz9Hm5VF6pkz9Fm5khuFaow//NprVu/9Unw8nw8bRp9Vqwjt1Mns/cpJT6fp0KEW+wt6GuZq3C1kl6JS4R0SYjfxY4nhZI4Km7K2hKteSOzjtLK9YMEC5s+fzyuvvMLUqVOZNm0aarWaDRs2kJuby1QHY0t1Oh179+7lwoULZGdnWxwfNmyYQ/2UZBkxicQubh6QngYNrWQdN6JooG4U7NhgiO/esRF6R9pNSKHvOwoFBe/gYKdis8uqu41EIilhcrIMNV5tLfw9+qQhVtJoIb9wClWVWij9DLHh546foUp+1l5tZiYqFxf2L1nCoQ0bbF7SXmIgiURSspgUvuhoVBqNqXqJi4dHkW7OKbdhnuwVGGiZoAyDsrt12DD6rloFLTuhmFyZaxnmSA4YJ7SZmWizskzZ1uPXrLFIAnfim2+I2rfP6r0f2byZxoMHU7d7dyJmzEDl4mKmIBdHcVYUhcu7f+LYyH7U+/gzgjo8Wrw37k4jc2fcEZxWtuPi4oiNjWXcuHFMnTqVPn360Lx5c6ZPn06vXr04efJkkX38+eef9OvXj/Pnz1ut260oisPKdkmWEZNIrCIE1A6DPRmGkghqlfWs44oG0W45lK+Kkp0FXQdBdiaiUjWYEYdiJSGFmB6HUrGy/ZIWEolEcisIQU7iedytZaI1JiX63zqLWEllxTzEjDiqdxvCHx99RNKBA5SvXJmHX3uN+r178+2ECSWeGMgW0pNHIrGPoihcjI/nkzZtGLF7N8HNm4OiWLV6F7TWOutC7sBAcPf1ZVdsrFX5cGjDBpKPHKH38uVUGhWDolYbFgNV6iKzZet6R3Ewf5HPXrb1pD//5PPhw+m7apXde0/5Yr1FZQRFUYpVMUHvG8hPpzOpIz12JIVwWtk+e/YsDzzwAGq1GhcXF9Ly3U9UKhXPPvssUVFRzJkzx24fY8eOxcfHh5UrV9KwYcNbSrZWkmXEJBIL8svkkF+CgiETIaQ6hA6CoHZwfNnNrON1o1DKhaDPyUH0HYlq4Di0WVmoAKXrYHTNIsxcMXW9o1AFVQGQtbMlEsltJediAm4PPmLpvllEUiJlZiTiwQ48OHYsikplsvQ4YjErycRA0pNHInGMgvkTwLbV+3bNO1w8PFBpNHaTs12Kj+e3+fPpt3YtdAwg5blFBPYdjAgIsZRRcNM4YcwT4UC29YNr11LloYdoMXasfUu1Feuu3ieAnaczaWAlr4SzGOOmnemrOOdI7l2cjoavUKGCyVpcrVo1/vzzT9OxlJQUMjOLdkk4fPgw8+bNIyIigsDAQFO284J/jjJy5Ehmz55NXFwc169fB8zLiN1qTLjkPsZYJuexmhA32+AaXrM+rFsIQ1vArh+gyWTosNaw3fUDDGmB6pM56PO0zPHy4nVPT7YOHoxer0dXvgL6yGkwey36yGnofAJAUWQiNIlEcttxrVSZrNRUxKOD0G09CZHToNtggwdOkUmJloDQwyNeXPlqE0q+3CpuYiBppZZI7iyKonApPp45Xl5cio+/vQv8ioJeq3W4lBbXrgCGnFAWMqrrIIichv6L04hHn2LrsGFcio93ONv6hV9/RaVScWX7Z2byqyiMsc76ErBS2+rLnhwsyetL7j5OW7Yffvhh/vjjD7p3786gQYOIiYnh4sWLuLi48PHHH9OxY8ci+6hbt65JMb5VblcZMcl9jhCWZXIKJvA4EW84NivKsL/gymitxmg8PU0hEkaXqV7Ll1PpgQcMbVRqXDxdpUVbIrlPsVc6JyM5GS/jtn4JXCw/G/mumbM4tm0brcaPp0l+DDbgUFIiRa0xyMWC3ZoSAxnjHvNQNBqTXPMMCDDbGpFWaonk7lDY6l2SGEt8TblxA71e73QNaqHXs3fhQgsZpc/LJS87h5X/938k5Rv4nMq2rtOhL+dXYpbqkkLKwfsHp01qMTExtGnTBoApU6YQGRnJ+vXrWbJkCR07duSjjz4qso8FCxYwd+5cjh496vyIrVCSZcQkEsBgxSlcJicnyzK7uBCWLkgFEngYST5yhHKVKqHk5kDc66jSkqWiLZHcx9grnXMjD3YmGrYlQlBVVC6uXD11ikvx8WyLjOT1cuWYU64c2kzHKiaIvFyr9VcVReHSwYMGi9nBg2ZyzatBGIyMNmwlEkmpw8W4IFcEhUt87f/oI6slycA81CTrVH5yNrXaVBvbTEZ5ebG0xYNo3N1p+cILN/sqUBu7cP8FrxM+Zowh/MWGpdheGUKJpKRw2rJdr1496tWrB4CbmxuLFi1yqJZ1kyZNzH6Ek5KSaNy4MSEhIfj6+pq1VRSFf/75x6lxlUQZMYnEhEptae1xMLt4wQQeYP7DoqhUEOl4xnGJRHL/UazSWO6Wk2IhBAG9noS+gxE6Ha0nTiT58GFDuS4hyMvI4ODGjYT1ikRtR6bRfwzZRSQ7s2oxc7JMjUQiuTcwWakzMtBrtQghrBoIbJX4OrR+PRd++40+K1faTVBmCjXR6SxrYwtBXmamWbmumh068OfSpaSePk1eZiY+1aoVmTvCnmHjTpQhLE7YjAy1KVs4rWwXl/Dw8BKz5P38889OtW/btm2JXFdyH6HXWbf2rF8I3YfA9GWWCYXUGkT0clSVqpKXlUWTQYMsflgkEomkRClcLUEIUBSEXg/JiSifGZI7KlVqUanfaEbt38/WYcNMZbv2LlxI0yFDEDaSEhG9HAKCySrBZGcSieTeRej1pBeqWx0+ejTeISEW8xhbJb7AkKAs5d9/efrnnx1KzqaoVDZdzw9t2MCV48fN+8rLdSjbeklSHCW4OO7iJeVifq8q7ffquG4XxVK2N2zYwKZNmzh//rxFjWxbVukVK1YUa4DWaNeuHYqimGJiC35pra2+Fa6/LbmPEcLgIq5SGxRqRWW97JaiQvQfjVLY2nMiHqKHQewqhFmNSEN2cSUwhGtnz9JizBhajht327N+SiSS+5jC1RKq1IInnkP4BsI3a1BmRVqU8mL6MvquWkXykSNcio83WI1GjKDvypUWMo3+YwzWaZWKPEUjs+NKJGUYW1ZqgD3z5tErLo6wIUNuKrBFlPgCQwmuX+bNIyI6mjleXjdLklnBWOPalqW61YQJuHh4kPrTdvyjB94sy2WsjX0Hsq2Xtjjre3W89+q4bhdOK9tTpkxh3rx5hIeHU7du3WKV7XrmmWeYPn06NWvWtDj233//ERsby/Lly22e/9dff5n+v3z5MpGRkbRv354BAwYQFBTEpUuX2LRpEzt37iQuLs7p8UnKKNYmpv1HQ0CIQeEuoIQLRQUBIdatPd9vRnQZBI90R/v0FDQeHmgzMzm4YQN7Fy2iYuPG9Fu7ljcDAhi6Y4fNHxaJRCJxGndP1OV9b1ZLmGmuUFOlFjzYwULRBgyZxWdFQctO9F6+nN/mzzdZgVAUlMAQRNR0FBdXQ91bjYtpMfJOuFtKJJK7hz0rtV6rZVtkJDU7dsQ7JARwrMQXQOrp06g0GpOBzB7GKgdFup4XypVjtca4RHKP4LSyvXz5cmbOnMm0adOKfdEVK1YwZswYq8p2SkoKK1eutKtsN23a1PT/gAEDePLJJ3nzzTfN2jz22GNMmjSJjz76iM6dOxd7rJIygq2JaeIZiFlpXQmvEIzoOhh983Zm9bH1fUdBhUpsHTKEQxs34uLhYRavWK9XL/RaLVlXrtyFG5VIJGUSIQjo+Tj0HYyfTmdZLQEMinHngSifzC2ilNdiKo2Kod/atRZ1Z1O+2kTgO6NIMVqNJBJJ2ccBK7Veq+XA4sVE5Fsk87KyHC/xpdWaJY21OxRTlQM7tbFtcDuzrUskxaVYwQytWrW65Qvb+tKcOHGCChUqONzPt99+a1OZ7tKlC999912xxicpQ1gr4wVQJwyiPzGvpf3teoibjfJYTcN+ITix70+0wycb6mNHTSfPy5dl//d/hpjH/AQeRozZL7W5ufdVPIpEcj/haIbeEkOvh+QElGWzYNpgFJ3WsloCmJcntEfCaRS1GrpXtV53tnCFBYlEUqZxykqtVud7Awqy09IIHz26yIzg2WlpTo1HURSufLXJqdrYkhIiIBhGRhu2khLBaWU7KiqKdevWOX2hjz76iLCwMMLCwlAUhUGDBpleG//q1q3LsGHDnLJElytXjh9++MHqse+++45y5co5PdbicOXKFcaMGUO1atXw8vKicePGLF682KJdYmIi/fv3x9vbG39/f6Kiokqs5rjEBtbKeAE8NQEuJ1gmOgOTu6VITiTraqr9EhT5FMx+6erpSbuYGIv6uRJJaeF+lmnpSUnsjIkhvVBZroIZeoPCwhxyi7wVNB4eN71yjAuCOz8HVzfrCrW18oTWqByK0Ong8oXbMm6J5F7lfpZr9nDKSq3TGYwYQEZyskMlvjKSk4s3MCsLf7Jc123GWEVCKtslhtNu5LNmzWL8+PE8/PDDdOzY0WrZrhdffNHivJCQEMLDwwE4dOgQ9erVIzDQPPbL1dWVBg0aEBkZ6fB4xo0bx4wZM7h06RJ9+vShYsWKXL58ma1bt7J69WpiY2OdvcVi8fjjj3P06FHmzJlDtWrV+Oabbxg7dixqtZqRI0cCkJeXx6OPPgrAunXryMzMZOLEiQwaNIivvvrqjozzvsRaGS9FgS5PQBHuluovltFk+GS2RUZalKAI7dTpjmS/lEjuBvezTDPWwK7Xq5dpwcyZDL0lhVdgoKVXjj2F2sHyhKL/GHSZN+5cORKJ5B7hfpZrdilgpbaWDRzM61Yb0WZlORRn7agLuSPI/BGS0obTv7U//vgjK1euJD09nd9++83iuC1lu3fv3vTu3dv0esaMGVZjtp1l2rRp+Pr6Mm/ePFauXGnKUh4cHMzChQt5/vnnb/kaRXHx4kV++uknPvnkE55++mkAOnTowB9//MGGDRtMAnzz5s0cPnyYf//911Sr3M/Pj0cffZR9+/bRsmXL2z7W+xJrZbyccLfUeHoakqDl/1gc2byZxoMHU7d79zuS/VIiudNImWaOUxl6SwpFwcPXFz6ONVeai1Ko88sTihlxKIVDZ9QaxIw4CAgm4489+DgxnPutVIuk7CHlmm1cPD3JSE4moF69YtWtNsVZ38dzIikjJbZwenYwbtw4WrRowcGDB8nJyUGv15v9OVJm65NPPikRRdvIc889x7lz5zh79iy//vorZ8+e5fz583dE0QbDKiiAj4/51MXHx8fMzXD79u2EhYWZhDdA586d8ff355tvvrkjY71XsOWmeVtQVIaEZ+oCa0tOuVtqaf3yyzQZNIi206Yx/uxZ6nbvjqJSkZGczM+vv05GcvJ99aMiKdtImXYTIUSRGXrTk5JK3KXcxcMDRaOxviC4fiFUrAzTl5nLNYDTR+Dg79BtCOLLsxA5DboOgshphtfdDAsDuYnnnRqPsVSLtdAYOcmUlAakXLOkYGhMhTp1THWrx589S9tp08zmPWGDB9tdVFQUhUvx8czx8uJSfLxDc6Ky5BJuT0ZK7m+ctmyfP3+e9957j0aNGt2O8TjERx99xDPPPIObm5tpn0qlolq1alSrVs3qOQcPHiQ5OZkOHTqU+HiqVq1Kly5dmDNnDvXq1aNq1aps376dHTt2sHbtWlO7o0ePUr9+fbNzFUWhfv36HD16tMTHdS9jzU3ztqEohjJeBS09TrhbolITERODSq1Gr9OhqFSmHxHv4GDaTp16e8cvkdxhpEy7idDrObBkiUMZehW1usSum5eVhdBqUawtCJ6Ih+hhELsKHuwAny21qI2tqFSIwBDEKMO4hE4HBWRXSXK/1UyVlE6kXDPHXmjMrVipnckIrvcN5NdrnlZdwo2KeIMyoIjfk8hEaHcMpy3bjzzyCMeOHbsdY3GYFStWUL16dV588UV+/fVX02plYRITE4mLi6NTp060bt2a1NTU2zamzz77jKCgIBo1akT58uUZNGgQCxYsoH///qY2qampFjHuYHBPunr1qs2+c3JyuH79utmfxICjFnIB0HUwuq0nb1p6sjMRlaoZ3CoLW4fUGsT0OJMQUuVPolX3mVuU5P5FyjSDa6RKrXY8Q29JIgRZaWmWXjlGvt0AT/8flPdHjIqG2WsRUdMhMATyrU+KopCybQN0CiRl2wYpuyT3PbdLrpUWmQaGxIvG0JhFNWvy8+zZHFq/np9nz2ZRzZrErzFUYrly4oRTVmpnKSrhpDE2Wy9js28PMhHaHcNpy/acOXMYPnw4rq6udOrUyapA8vf3L4mx2WTv3r1s3bqVRYsW8e677+Li4kLdunUJDAzEzc2NtLQ0zpw5w+XLl/H392f48OGsWbOGSpUq3fK1hRBmrvKKoqBSqRgxYgQnTpxg3bp1BAcH89133zFhwgT8/Px48sknb+mac+fOvWOJ3kobtizkQgiEXm+wRuv13EhMZEPv3jw4bhxNhk9G4+mJ0OlIO3sWny5PoW8WYVZLW9c7CiUwhH83b6ZB//4larGSSO4l7meZlp6UxIElSwzWHCseNkKvR6/TOZyhtyQVbmMMpWe9ejAjzrJ0oVoDgyYg3DwQOh2KOn9REbCYFqelWPQvrUaSssydlmv3ikxzBK/AwCJDY2p27IhXYOBtq1t9NxJOWkOGwEjuBE4r2w8++CAAY8aMsbnS5Ujc9q3St29f+vbty9mzZ/n+++/Zv38/SUlJZGdnU716dbp06cLDDz9Mu3btcHFxKbHr7tq1i/bt25teR0REMHHiRDZt2kR8fDxNmjQBoF27dly+fJmXX37ZJMD9/Py4du2aRZ+pqalUrVrV5jUnT57MSy+9ZHp9/fp1u+3LIkVNigtiJsRPn6b38uUcWLKEpD//ZFtkJNuiovCsUIFJycn8OG0ayYcP02r8eJMSrs3M5OCGDexdtIiKjRvTaODAO3SXEsmd536WaY6EsygqldMZem+FgtYevVaLUBToNgQe7IiyZbFpQVDku4tnpaayd+FCpyestjL6SiVcUha403LtXpFpRaIouPv6sis2tujQmOjoEr98Qav6HU04aQNbITBSCZeUJE4r28uXLy8xdxIhBMePH+fq1av4+/tTt25dp/uuUaMGUVFRREVFlciYiiI8PJw//vjD9Nrb25svvvgCtVpN48aNzdo2a9aMZcuWkZmZiaenJ/Xr1+fgwYNmbYQQHDt2zG5tcTc3N7P49PsRe5NiF09P0/+FhbiLpyeatWvN3UCFIPPKFfIyM/GvVYtD69eblHAXDw+zldx6vXqVuMVKIrmXkDLNPoqimOrIOpuhtygKyi6wtPZUffhhHhw7luNff03WlRQaGxcEs7JQubpy/Kuv2NS/f4lOWD0bhMGoaMNWIiml3Gm5VlpkmouHByqNxrHQGI0GjYdHiV7fUau6d0hIiV7XWWQeCklJ4rSybSyXcKt8+OGHzJw5k+QChe4rVqzIjBkzGDt2bIlc43bg7e1NixYtzPZVr14dnU5HfHw8TZs2Ne0/cOAAFStWxDN/QtWtWzfWrFnDiRMnqFOnDgA//PADV65coXv37nfuJkopFhPTwhYgK1mD87KyTEp1oZM5tHEjzSIjb1qshDBTtEvaYiWR3ItImVY0jtSRtYcjsgshLKw9oZ07c+3cOT7t1w+9VssXz0Ti4uFBt/ffp2b79haKNtz6hFVOMiVlASnXrJOXlYVeq3UsNEarLdH62E5Z1aUMkpQh7ooWsXTpUp577jk6duzI1q1b+fXXX9m6dSsdOnTgueeeY9myZXdjWMWme/fuVKtWjQEDBrBmzRp++OEHXn31VVasWGFWfmzAgAE0atSI/v3789VXX/Hpp5/yzDPP0KNHjzJZt7GksJZEQ+j1pCcksCs2li2DBrFr5kyETmeZNbiAUq3SmK8t7V24EO/KlXls2TKLY7dqsZJISjNSpllSsI5sv7VriYiOLtJd2yHZFRtLXmampbVHUWj8xBP8FRd3c58Q5GVlWe4vhHHCKvT6kn4bJJJSi5RrgBBkp6URPnq0xbzHiNHQkJ2WZrerwouIReGUVV2tNlSSKSGkW7jkbuKQZTssLIx169bRuHFjmjRpYlf5UBSFf/75x25/CxYs4IUXXmDhwoVm+3v16kVgYCBvv/32HXMLLwm8vb354YcfmDp1Kq+++ippaWnUrFmT+fPn89xzz5naubi48L///Y8XXniBp556Co1GQ79+/ViwYMFdHP29jS23ysIWIBdPT9rPnGlViO9duJCwIUN4bNkyvoyKMp1zKT6eL0aMoM/KlYR26lQsi5VEUhaRMs06iqJwMT6eT9q0YcTu3QQ3b26zraOyC0XhkcmTLRYKXTw8cPH0tJBptvYXxjRhlSEwEgkg5ZqRjORkAurVKzI0JsVG5SFrnjmOGCWcsqrrdIYSrSWE9NiR3E0cUrbDw8Px8vIy/X+rlr4zZ87Qs2dPq8d69OjB4sWLb6n/u0Ht2rXZuHFjke0qV67Mli1b7sCISj/WkmgY3SoL/0DYdBfHoFR/PmwYfVatomaHDvy5dKmZUm2MySxuTUmJpCwiZZptisrQ64zssqU825Jp9mRdQUwT1juQsFQiKS1IuQbarCyHQmOsuZDfUhbxAlb1O5VwUiK5F3BI2f7kk09M/69YseKWLxocHMxvv/1Gp06dLI79/vvvBEs3j/sea/HXRrfKPXPnWgppazHYBTi0YQNXjh/n6Z9/JiImxlASTKdDUalMSrWjFiuJRCKxhbOyy6m8Evb2F0BOWCUSSVEUDI1xxNDgSBbxohKqOWpVl8YOSVnC6V/iZ5555v/bu/O4qMr9D+CfwzIDDAgMuyG4FLgg5HJVyMQFLJcsRc0l9zJvXtMytzLRNK00s0zLfrlXopi7kiuaBpZaXnO3Aq/mCgKuyPb9/eHlXMcZYAbZ/bxfr3nVnDnnOc9zxvkwz5xzngdJSUkmXzt79iwGDx5cZBlDhgzB1KlTMXHiRBw+fBgXL17Ev//9b0ycOBHTpk2rVJeQU+mQvDyzL6vMV9Q92M1Hjbp3z9B/L6u0euCPiqOPD8LGjOE9PURUbBZnVzHGleB4E0RUEhRFweUjRzBdp8PlI0cK7mib+hHxv/IHZbxx8SJ0Hh4mt893/1n1kcnJaDVxIhr26YNWEydiZHIygvv2LfJHwoLuv+Z92VRRWTwa+ZIlSzBs2DDUqlXL6LWUlBQsXboUixYtKrSMd955B2lpaZg5cyZmzJjxv8rY2GDEiBF4++23La0WVTFW1tZmX1aZL/9y8a7LlxfrHmze00NED6s42VWccSXu3riBkH79ON4EET00c26NMRqA9j6Wzs1t6Vn1+xX0XY3f4aiisrizDaDAD8OZM2fg5uZm1vYff/wx3n77bfz8889IS0uDXq9Hs2bNzNqeqobCRrLMy801/7LK+xxfvRrPzJlzL8QLuFyciKi0FCe78jvVXZctM9l5VseVmPQurGw1yMvOgmJjy/EmiKjUKVZWJn9EfJClc3NbMuAkUWVm1k/fX3zxBYKDgxEcHAxFUdCnTx/1ef4jICAA/fv3R2RkZJHlLVu2DKmpqXBzc0PHjh3Rt29fdOjQAW5ubrh27RqWLVv20A2jisvUdDj5bly8iB/ffx85d++anJrCnMsndR4eUBSlwMvFiYhKi2JlVazsqvPMMwBQ4PRiiqIgdVMs0FKH1E2xaqaZexkoEVFxSF6e6R8RH1DY3NyFXeJd1Fl1osrOrDPb1atXR5MmTQAAR48eRWBgIDweuC9Do9GgXr16GDJkSJHlDRo0CImJiSbPYiclJWHQoEHo37+/OVWjSqawkSyhKNB5eKDVO+8gLycHTtWrGw2iwem6iKgiyz/b/DDZVejZnkzTX0wt/cLK+xuJyFz5PyIWNShjQXNz8xJvepSZ1dl+/vnn8fzzz6vP3333XdSuXbvYO5VC5s5LS0uDk5NTscumiqugkSzTkpLwwtKluPlAJ7z5qFEFTk3ByyeJyFw3Ll7EoQUL7v2wV0qdywf38bDZVVJne/Kc3bH7AlDP2d1gOb/8EpG5CvoRETBvbm6iR5nF92zfPw1Yvtu3b+PChQuoU6dOgZ2duLg4xMXFqc8//vhjeHl5GayTmZmJXbt24cknn7S0WlTBFTSSpVdwMJ5fvBhHvvnGYGAg4N50Ej3XrEFAp04FfjHl/T5EVJSbFy9iz5QpCOzSpdQ62w/uo6gBgMoqu/JcPLDnIhDoUvgowUREhSnu3NxEjzqLO9uzZs3CrVu3EP3fEQf37t2LLl264Pr166hVqxa2bt2KOibu6zh9+jQ2btwI4N4vZHv37oVWqzVYR6PRICgoCNOnTy9OW6gCK2gky+ajRuHG338bdbSBe6NbrurWDSOTk2Gj1WKOv7/JL6a834eIKqKiBgBidhFRZfIwo4gTPaosvrn166+/hq+vr/r8zTffRIMGDbB+/Xq4u7sXOG3XyJEjkZSUhKSkJPj5+SEuLk59nv84deoU1q1bh/r16xe/RVQhmRzJUlEQ9OKL+G3hwiKnk7BzceEXUyKqlEr6kvC8By4JJyIqKxyUkcgyFp/ZPnfuHB5//HEAwN9//41Dhw5hz549ePrpp5GTk4N//vOfRZaRlJRkeU2pUjM1kqWtvT1sHRzMnk6izbRpHMyHiMpEYVMTlpeCLgnnYGdEVNZ4AoTIPBaf2ba3t8f169cBADt37oSjoyPCwsIAAC4uLsjIyCjZGlKVYGo6nOw7d5B9+7Z500nk5qLVO+8Y3W/JL5lEVJIKm5qwosof7Ky07kcnosqvsn1fqmz1JSqIxWe2mzVrhg8++ABWVlaYOXMmOnToAOv/zmf8559/4rHHHivxSlLlZ3IkSxEcXbkSjYYMKXI6iYKm8+KIukRUUgqbmpBTChJRRVdYB7WyfV+qbPUlKkixBkjr3LkznnvuOfj7++P9999XX1u5cqV6lpvoQaZGssy+fRvOfn5FTifBe4KIqLTY2NsXODXhvg8+QJeFCxH80kuVssPNs0NEjw52UIkqHos72/Xr18dff/2F1NRUuLm5Gbz28ccfw9vbu8QqR1WPqZEsoShFTidBRFRadB4eJqcmBO4N0rhhyBDUatcOTtWrl1MNi49fvomorPDHPSJjFne287m5uUFEcPHiRXh6esLGxgYNGzYsybpRFWVyOpz/XmbO6SSIqEwpCuxcXLBnypQiZ0UIZ6eViKhA/HGPyFixThlu3boVLVq0gJ2dHfz8/HDkyBEAwNChQ/Htt9+aVcaxY8fQq1cv1KlTB1qtFr/++isA4J133kFcXFxxqkWVzIMjWSqKog6gZmVjw442EZU6W3t7WNnYmDcrgrU1wFwiIiIiM1nc2V6xYgU6duyIWrVqYf78+cjLy1Nfq1OnDhYvXlxkGdu3b0ejRo1w9uxZ9O3bF9nZ2eprtra2mD9/vqXVIiIislj2nTvIy8kxe1YEVILRyYmIiKhisLizPXXqVIwaNQorVqzAwIEDDV5r0KABjh49WmQZEyZMQK9evZCYmIhJkyYZvNaoUSP89ttvllaLiIjIciLITE83mprwfkXNipCvpObm5n2PRFTemENEJcPizvZff/2Fjh07mnxNp9OZNc/20aNH0a9fPwAwulTYxcUFKSkpllaLiIioWG5dvapOTfhgh9ucWRFKem5uzptNROWNOURUMiweIM3b2xsnT55Eu3btjF47cuQI/P39iyxDr9fjwoULJl87ffo0fPjBJiKiMpJz547JqQnNmRWBc3MTERFRQSz+JtCnTx9MnjwZO3fuVJcpioKjR4/io48+wksvvVRkGS+88AKio6Nx6tQpgzIuXbqEWbNmISoqytJqlZr58+ejc+fO8PDwgKIoWL16dYHrbt68GWFhYdDpdHB1dUWbNm1w/vx5g3USEhIQGhoKe3t7+Pv748MPP3zosyBEROZiphXs/qkJu337LcKjowvsNN8/N/entWrhx2nTcHTFCvw4bRo+rVULR775BpKXBxt7+3JoCdGjhblGRBWVxZ3tyZMnIywsDJGRkeqc2h06dEBISAiaNm2K8ePHF1nGjBkz4OHhgeDgYDRv3hwAMHjwYAQGBsLZ2RmTK9C0AcuWLUNKSkqBl87n++abb9CtWze0bt0amzZtwtKlS9G0aVNkZmaq6/zxxx945pln4OPjg02bNmHUqFGYNGkSPv7449JuBhERAGbagx68z1pRFFw+cgTTdTpcPnLE6NLx/PsYnf39i5yb+8bFi9B5eJjcL++HJCo5zDUiqqgsvoxco9Fg/fr1iI+Px/bt25GSkgK9Xo+IiAhERESYVYazszMSEhLwzTffYPv27dDr9dDr9Rg+fDj69+8PjUZjcUNKS0JCAqysrJCcnIxly5aZXOfatWsYPnw45syZg3/+85/q8i5duhisN3PmTLi5uSEmJgYajQbt2rXD1atX8f7772PEiBHQarWl2hYiImbaPfffZ52XkwMRMehYPzg1Yb78+xjzcnNxaMGCoufmjo4utBwienjMNSKqqCzubOdr06YN2rRpU+wd29raYtCgQRg0aFCxyygLVmbcc7dq1Srk5uZiyJAhha4XFxeHbt26GfyY0KtXL8yYMQOJiYlo3br1w1aXiKhQj2qm3X8GuyTus7aytjZvbm4bmxK7lJxnw4lMe1RzjYgqvnIZveWpp57C/PnzcfXq1fLYfYnbv38/6tati6VLl8Lf3x82NjZ48sknERcXp65z69YtnDt3DnXr1jXYtm7dulAUBSdPnizrahMRmVSVMs1opPASus86LzfXvLm5c3KQc+dOibSFowMTFV9VyjUiqjzKpbPt4+ODt956C4899hieeeYZLFu2DDdu3CiPqpSIS5cu4dSpU3j33XcxdepUxMXFoWbNmujSpQuOHTsGAEhPTwdwb2qz+2k0Gjg4OODatWsFln/37l1cv37d4EFEVFqqSqZJXh5u/P039kyZgu/79MHlI0ce6j7r+ylWVmbNzZ353+NEROWrNHOtMn9P4xUzRKWrXDrbq1evxpUrV/D111/DxsYGL7/8Mry8vBAVFYXvv/8ed+/eLfM6iQhycnLUR25urtnb5uXl4ebNm/jqq6/Qv39/REZGIjY2Fr6+vvjwww8fum4zZsyAs7Oz+qhRo8ZDl0lEVdujnmlGZ7BjYuBet65Z91nbPfBF2xRFUcyam/tWFbmCi6giqKi5Vpm/p5XnFTPs6NOjoNwmAXV0dET//v2xefNmXLx4EZ988gmuXbuGXr16wcvLq8zrs2fPHtja2qoPU/OIF8TV1RUA0LZtW3WZra0tWrVqpf5amv8raUZGhsG2WVlZuH37NvR6fYHlT5gwARkZGerj3LlzZtetomLAEpWuRznTRMToDLatvT1sHRxK9D7r/Lm5RyYno9XEiWjYpw9aTZyIkcnJCO7bF4qVVYldQk5EFTfXquL3tLLAW2PoUVDsAdJKkpubG5566imcPXsWp06dwuXLl8u8Dk2aNMGBAwfU505OTmZv26BBgwJfy59OQqfToUaNGkb3+5w6dQoiYnR/0P20Wm2VG/2SI/ESla5HOdMkL8/oDHb2nTvIvn27xO+zvn9ubisbG+Tl5ECxtjaaMoyIHl5FzbWq+D2NiEpGsc5s5+bmIiEhAatWrcKyZcuMHub6888/8f7776Nhw4YICQnBkiVL0LNnTyQkJBSnWg/FyckJTZs2VR+BgYFmb9u5c2cAwI4dO9RlWVlZ2LNnD5o0aaIu69ChA9avX4/s7Gx12cqVK+Hi4oKwsLASaAUR0T2PcqaZHClcBEdXrkSjIUNK/D7roubmJqKS8SjnGhFVThaf2f7111/RrVs3nDt3DiJi9LqiKOjfv3+hZcyePRsxMTE4dOgQnJ2dERUVhU8//RStW7c2a/qGsnTw4EEkJyerI6fv378fAODh4YHw8HAAQOPGjREVFYWhQ4fi2rVr8PHxwbx583D58mWMGTNGLWvMmDH49ttv0bt3b7z22mv4/fffMXPmTLz//vsVam5xIqq6HoVMK2ik8J/nzEHwSy/hua+/xsaXXzY4833/fdYpp04Va78Fzc1NRKXrUcg1IqqkxELNmjWT4OBg2b17t1y5ckXS09ONHkXR6XTSu3dv2bBhg2RlZVlahTI1YMAAAWD0CA8PN1jv5s2bMmLECPHw8BCtVithYWGyb98+o/J++uknad68uWi1WvH19ZUZM2ZIXl6eRXXKyMgQAJKRkfEwTSOiR9CjkGl5eXmSce6cvGdjI5MBg8fqXr0kJytLMs6fl10TJ8r3ffrIrokTJeP8ecnLzRURkQuHDslkQC4cOmT2Pgva5vqFCxIfHS3XL1wokbYRkbGKlmtV/XtacTKS6FGliJg4PV0IR0dHxMbGokOHDsXu4N++fRsODg7F3v5Rd/36dTg7OyMjIwPVqlUr7+oQET2U0si0/NHIH5zmy8rGBj3XrkVAx46QvDyT91lf/PVXfNWkCYYeOgSfxo3N2l9xtiGiqqmqf09j3hGZz+LLyAMCAh56/kB2tImIqDTljxReq107HPryS6T99Rdca9dGk2HD4OTjA8XKCpcOH8bip5/GoL17+YWRiIiISpzFne1PPvkEI0eOREhISKGjzT6oWrVqiI+PR5MmTeDk5FToADKKohhNu0BERGQJc0YK533WRESW4fStROazuLP9r3/9C5cuXUJQUBCqV6+uzkmYT1EU/Pvf/zbabvTo0fD574dy9OjRHK2ViIhKnaIouHTkCM9gExGVEE7fSmQ+izvbTZo0KVZHOTo6Wv3/yfyAEhFRGeIZbCIiIiprFne2lyxZ8tA7bdu2LebPn2/yMvTTp09j2LBh2LVr10Pvh4iIiIiIiKg8lMuk1rt37y5wkLXr16/jxx9/LOMaEREREREREZUci89sA0B6ejpWr16N06dPIzMz0+j1zz77rMgyCroUPSEhAZ6ensWpFhEREREREVGFYHFn+8yZMwgLC8Pdu3dx69YteHh44Nq1a8jJyYGrqyucnZ1NdrZnzJiBGTNmALjX0W7Tpg2srAxPrN+9exc5OTl47bXXitkcIiKissfReYmIiOhBFne233zzTTRv3hyxsbHQ6XTYsmULQkJCsHLlSrz99tuIjY01uV1YWBhGjx4NEcF7772H3r17w9fX12AdjUaDevXq4bnnnitea4iIiMoBR+clIiKiB1nc2f7ll1+wcOFCaLVaAEBWVhasra3Rp08fpKSk4PXXX8dPP/1ktF14eDjCw8MB3Duz/corr6B69eoPWX0iIiIiIiKiisfiAdLu3r2LatWqwcrKCnq9HhcuXFBfCwoKwuHDh4ssIzo6mh1tIiIiIiIiqrIsPrMdEBCAs2fPAgAaNWqE+fPnIzIyEjY2NliwYIHZneg//vgDS5YsKXCQtQ0bNlhaNSIioofG+6+JiIioJFjc2e7VqxcOHz6Mfv36YerUqXjmmWfg6uoKRVEgIli6dGmRZRw4cADh4eHw9/fH6dOnERwcjIyMDCQnJ8PX1xePP/54sRpDRET0sHj/NREREZWEYg2Qlq9FixY4evQo4uLikJmZibZt2yIoKKjIMsaOHYuePXti4cKFsLW1xcKFC9G4cWMkJCSgd+/eGDdunKXVIiIiIiIiIqowijXP9v1q1KiBoUOHWrTNv//9b4wfP16d+iv/MvKwsDBMnjwZ48ePxzPPPPOwVSMiIiIiIiIqFxYPkAYA2dnZ+PLLLzFkyBC0b98eZ86cAQCsXLkSJ06cKHJ7RVGg0WigKAo8PT3Ve8ABwNfXF6dPny5OtYiIiIiIiIgqBIs723/99RcCAwMxduxY/PHHH9i5cydu3LgBAPjxxx/x0UcfFVlG/fr18eeffwIAQkND8fHHH+Po0aM4deoUPvjgA9SpU8fSahERERERERFVGBZfRv7666/Dw8MDv/zyC1xcXKDRaNTXwsPDMWHChCLLGDp0qHo2e/r06Wjfvj1CQkIAADqdDqtXr7a0WkREREREREQVhsWd7d27d2PFihVwd3dHbm6uwWve3t64ePFikWX069dP/f969erhxIkTSExMxJ07d9CiRQt4enpaWi0iIiIiIiKiCsPizraNjQ1ExORrly9fhqOjo8WVcHR0RGRkpMXbEREREREREVVEFne2w8PD8fHHH6NDhw7qaOL5c2x/9dVXaNeuncnt1qxZY9F+unXrZmnViIiIiIiIiCoEizvbH374IcLCwlC/fn106dIFiqJg3rx5OHr0KM6cOYNffvnF5Hbdu3c3ex+Kohhdok7/k39lwfXr18u5JkRUWpycnKAoSnlXo0yUdqblOTqi6fjxyHN0NNjHjZs3kfnf/+qYp0Sl7lHJNX5PI3o0mJNpihR0TXghkpKSMHnyZGzfvh0pKSnQ6/WIiIjAlClTChxJ/P7pvczh7+9vabUeGefPn0eNGjXKuxpEVIoyMjJQrVq18q5GmWCmET0aHpVcY6YRPRrMybRidbapfOXl5eHChQul8gvx9evXUaNGDZw7d67S/0GsKm1hOyqWsmrHo3IGCCjdTAP4b6+iqSrtAKpOW5hrJYuZZp6q0g6g6rSF7bCMOZ9xiy8jL0k//PADDhw4gHPnzmHixInw8/PDjz/+iMcffxzVq1cvz6pVaFZWVvD19S3VfVSrVq1Sf8juV1XawnZULFWlHRVBWWQaUHXeM7aj4qkqbakq7ShvzDTLVJV2AFWnLWxHyTGrsz148GCzC1QUBQsXLix0natXr+KFF17A/v371V8dhg0bBj8/PyxatAg6nQ7z5s0ze59EREREREREFYlZne0lS5bAyckJderUKXDar3zmXC4zatQoXL16FUePHsUTTzwBjUajvhYREYFp06aZUy0iIiIiIiKiCsmsznZoaCj279+P3Nxc9OnTB7169XqoAcw2b96M//u//0O9evWMRh2vUaMGzp8/X+yy6eFotVpER0dDq9WWd1UeWlVpC9tRsVSVdjxKqsp7xnZUPFWlLVWlHY+KqvJ+VZV2AFWnLWxHyTN7gLT//Oc/iImJwXfffYfff/8doaGh6NOnD3r27Al3d3eLduro6IhVq1ahY8eOyM3Nha2tLQ4ePIjGjRtj3bp1GDx4MK5du1asBhERERERERGVNytzV/Tz88PYsWNx+PBh/P7772jTpg3mzJmD6tWro0OHDoiLizN7p82bN8eiRYtMvhYTE4OnnnrK7LKIiIiIiIiIKpqHmvorMzMTkyZNwuzZs9GlSxesWbPGrO0SExPRpk0bNGvWDN27d8cbb7yBd955BydOnMDmzZuxb98+NG7cuLjVIiIiIiIiIipXFne2c3NzsW3bNsTExGD9+vWwsbFBVFQUXn75ZfzjH/8wu5zExESMHz8eCQkJyM3NhaIoCA0NxcyZMxEaGmpxQ4iIiIiIiIgqCrMvI//xxx/xz3/+E15eXujZsydyc3Px7bff4tKlS1iwYIHZHe2srCysWbMGXl5e2LNnD65fv47z58/jxo0b2LdvHzvapWj+/Pno3LkzPDw8oCgKVq9eXeC6mzdvRlhYGHQ6HVxdXdGmTRujgesSEhIQGhoKe3t7+Pv748MPPyxytPrSkpqaqk4fp9PpEBQUhC+//NJovQsXLiAqKgpOTk7Q6/V4+eWXcf369XKocdFOnjyJyMhI6HQ6eHt7Y+zYscjKyirvahVpw4YNaN68OZycnODj44OePXvir7/+Mlpv4cKFCAgIgJ2dHUJCQrBp06ZyqO09f/zxB4YNG4Ynn3wSNjY2CAoKMrleeno6Xn/9dVSvXh12dnaoU6cOPv74Y4N1srKyMGbMGHh7e0On0yEyMhKnTp0qi2Y8cphpzLSywExjppUl5hpzrbQx08o408QMvr6+YmdnJ127dpVVq1bJnTt3zNmsQFqtVuLj4x+qDLJc8+bNpXnz5tK/f38BILGxsSbXW758uWg0GpkwYYLs2rVL1q9fL2+99ZacOXNGXefMmTPi6OgoXbt2lR07dsjs2bNFo9HIzJkzy6o5Btq0aSM+Pj6yePFi2blzp4wePVoAyFdffaWuk5WVJUFBQRIUFCQbNmyQmJgY8fX1lU6dOpVLnQtz7do18fHxkVatWskPP/wgCxcuFGdnZxk+fHh5V61Q8fHxYmVlJQMHDpTt27dLTEyMBAQESJ06deT27dvqeitWrBBFUWTixImya9cuefXVV8XGxkYSExPLpd7r1q0TX19fiYqKkoYNG0qDBg2M1rl586aEhIRIkyZNJCYmRuLj42XBggVG/+ZfffVVcXZ2loULF8oPP/wgTz/9tDz22GOSnp5eVs15ZDDTmGmljZnGTCtrzDXmWmlippV9ppnV2VYURTQajTg6OoqTk1Ohj2rVqhVZXkhIiCxduvShK0+Wyc3NFRGRpKSkAgM8NTVVqlWrJvPnzy+0rKFDh4q/v7/cvXtXXTZhwgRxcXGRzMzMkq14ES5evCgAZPHixQbLW7VqJW3btlWff/fdd6Ioipw8eVJdtnXrVgEgP//8c1lV1yzTp08XnU4nqamp6rIFCxaItbW1/P333+VYs8K9+uqrUqtWLcnLy1OX7dq1SwDIjz/+qC4LCAiQ3r17G2wbGhoqHTp0KLO63i//syEiMmDAAJMhPnHiRKldu7bcvHmzwHLOnTsn1tbWsmDBAnVZamqq6HQ6+fDDD0u20sRMY6aVOmYaM62sMdeYa6WJmVb2mWbWZeTR0dF4++238dZbb2H06NGFPt58880iy5sxYwamTZuGgwcPWngenh6GlVXRb/eqVauQm5uLIUOGFLpeXFwcXnjhBWg0GnVZr169kJ6ejsTExIeuqyWys7MBAM7OzgbLnZ2dDS6ViouLQ3BwMAIDA9VlkZGR0Ov12LJlS9lU1kxxcXGIiIiAXq9Xl/Xs2RN5eXnYtm1bOdascNnZ2XBycoKiKOqy/Pcl/73466+/cPr0afTs2dNg2169emHnzp24e/du2VX4v8z5bHz99dcYPHgwdDpdgets27YNeXl56NGjh7pMr9ejffv2Fe7fWFXATGOmlTZmGjOtrDHXmGuliZlW9plmdmfbkkdRxo4di9TUVDRv3hyenp5o2LAhgoOD1UdISMhDN4yKZ//+/ahbty6WLl0Kf39/2NjY4MknnzSY2u3WrVs4d+4c6tata7Bt3bp1oSgKTp48WaZ1rlGjBtq3b4/p06fj+PHjuHHjBlatWoVt27Zh+PDh6nonT540qrOiKKhbt26Z17kopurq4uICHx+fClfX+w0cOBDHjx/H/PnzkZGRgb/++gtvv/02GjVqpE7pl1//B9tXr149ZGVlISkpqczrXZTk5GRcunQJ7u7u6NKlC7RaLfR6PV555RXcvHlTXe/kyZPw9PSEq6urwfb16tWr0O9bVcZMqxiYaRULM61yY65VDJUx15hpZZ9pNqVSahGaNGmCpk2blseuqQiXLl3CqVOn8O677+Kjjz6Cj48P5s2bhy5duuDw4cNo0KAB0tPTAdwLlPtpNBo4ODjg2rVrZV7vNWvW4MUXX0SDBg0AANbW1pg7dy6ioqLUddLS0ozqDACurq7lUufCVKa63u/pp5/G2rVr0adPH/WP55NPPokffvgB1tbWAO61DTD+95MffBWxfZcuXQIAvPXWW+jWrRu2bNmCM2fOYPz48bh58yZWrFgBoPK+b1UZM61iqEx1vR8zrXK+b1Udc61iqEx1zcdMK/v3rFw620uWLCmP3T4yRAS5ubnqc0VR1A9QUfLy8nDz5k18++236NKlCwCgdevWCAgIwIcffohly5aVSp3NZaptVlZWGDRoEM6cOYPvvvsOPj4+2L59O0aNGgVXV1f06tWrHGv8aElISEC/fv3wyiuvoHPnzkhNTcXUqVPRqVMn7N27F/b29uVdxWLJy8sDAAQEBGDp0qUAgHbt2sHGxgavvPIK3n//fdSuXbs8q1ilMdOYaeWFmUalhbnGXCsPzLSyVy6dbSpde/bsQZs2bdTn4eHh2L17t1nb5v9q1bZtW3WZra0tWrVqhaNHjwL43y9dGRkZBttmZWXh9u3bBveulDRTbXvrrbcQGxuLI0eOoGHDhgDu/dG5cuUKRo8erQa4q6urUZ2Be79y1ahRo9TqXByF1bU0j+/Dev3119G2bVuDaRZatGgBPz8/LF++HEOHDlX/jWVkZMDb21tdL/+X1IrYvvw63/9vD7gX5ABw7Ngx1K5du9K+bxUdM42ZVl6YaZXzfasMmGvMtfLATCv794yd7SqoSZMmOHDggPrcycnJ7G3zL+0xJTMzEwCg0+lQo0YNo3sbTp06BRExusejJJlq2/r162FtbW00516jRo3w9ddf4/bt23BwcEDdunXx+++/G6wjIjh16hQiIyNLrc7FYerepIyMDFy8eLFUj+/DOn78OJ5//nmDZb6+vnB3d8eff/4J4H/3AJ08edJgAJSTJ09Co9FUyLMpderUgVarLfD1/M9G3bp1cfnyZaSlpRncD2Tqvi4yHzPtHmZa2WOmMdNKC3PtHuZa2WKmlX2mmTVAGlUuTk5OaNq0qfq4/4NSlM6dOwMAduzYoS7LysrCnj170KRJE3VZhw4dsH79enV0SQBYuXIlXFxcEBYWVgKtMM1U2/z9/ZGbm4sjR44YrHvo0CF4enrCwcFBrfO///1vnDlzRl1n586dSE1NRceOHUutzsXRoUMH7NixQ73nCgBiY2NhZWWF9u3bl1/FiuDv749ff/3VYNnZs2eRkpKCmjVrAgBq166NgIAAxMbGGqy3cuVKtGvXzmDU1IpCo9Ggffv22Llzp8Hy7du3AwAaN24MAGjfvj2srKzw/fffq+ukpaVh27ZtFe7fWGXCTLuHmVb2mGnMtNLCXLuHuVa2mGnlkGmlMqEYVUgHDhyQ2NhYmT9/vgCQ0aNHS2xsrOzevdtgvaioKPHw8JCFCxfKli1bpFOnTmJnZydHjhxR1zlz5ozodDqJioqSnTt3ypw5c0Sj0RhNHF8Wrl+/Ln5+fvL444/L8uXLZceOHTJ27FixsrKSqVOnqutlZWVJUFCQNGzYUDZu3CgrV66UGjVqSKdOncq8zkW5du2a+Pj4SHh4uGzdulUWLVokLi4uMnz48PKuWqHmzJkjAOT111+X7du3S0xMjAQFBYmXl5ekpKSo6+XPozlp0iSJj4+XYcOGiY2NjSQkJJRLvW/duiWxsbESGxsrrVu3lho1aqjPr1y5IiIiBw8eFI1GI3369JGtW7fK559/Lk5OTtK3b1+Dsl599VVxcXGRRYsWydatWyU8PFwee+wxSU9PL4+mVWnMNGZaaWOmMdPKGnONuVaamGlln2nsbD9CBgwYIACMHuHh4Qbr3bx5U0aMGCEeHh6i1WolLCxM9u3bZ1TeTz/9JM2bNxetViu+vr4yY8YMycvLK6PWGDpz5oz07NlTqlevLg4ODtKgQQOZM2eO5OTkGKx3/vx56datmzg6OoqLi4sMHjxYMjIyyqXORTl+/Li0a9dO7O3txdPTU9566y25e/dueVerUHl5efLFF19IcHCw6HQ68fb2lq5du8qJEyeM1v3666/l8ccfF41Go/5RLS9JSUkmPxsAJD4+Xl1vx44d0rRpU9FqteLt7S2jR4+WzMxMg7IyMzNl9OjR4unpKfb29hIREWGy/fTwmGnMtNLGTGOmlTXmGnOtNDHTyj7TFJH7ZpInIiIiIiIioofGe7aJiIiIiIiIShg720REREREREQljJ1tIiIiIiIiohLGzjYRERERERFRCWNnm4iIiIiIiKiEsbNNREREREREVMLY2SYiIiIiIiIqYexsk1kmT54MRVHw2GOPIS8vz+j1p556CoqiYODAgRaVm56ejsmTJ+P48eMGy5OTk6EoClavXv0w1X5oc+bMgaIo6vPdu3dDURQcPHiwzOowefJkJCQkGC1XFAWzZs0qs3qYsm7dOiiKguTkZADFe9/mzJmDLVu2lFINiUxjpt3DTDPETKPKjLl2D3PNEHOtfLGzTWaztbVFSkoKfvzxR4PlZ8+eRWJiIhwdHS0uMz09HVOmTDEKcB8fHyQmJqJt27YPVeeS1rhxYyQmJqJevXplts8pU6aYDPDExET07du3zOphjuK8bwxwKi/MNGZaUZhpVNkw15hrRWGulS2b8q4AVR4ajQYRERFYsWIFWrdurS6PiYlBgwYNYG1tXWL70mq1aNGiRYmVV1KqVatWZL3u3LkDe3v7Uq9LRTw+FfV9IzKFmcZMK0pFfd+ICsJcY64VpaK+b1UVz2yTRXr37o3Vq1cjOztbXfbdd9+hT58+Jtf/8ccfERYWBnt7e7i7u2Pw4MG4du0agHuXsdSqVQsA0KNHDyiKol7mYuoSl7y8PEybNg01a9aEVqtF3bp1sWDBAoP9TZ48GY6Ojvj999/RsmVLODg4ICgoCFu3bi2ybdevX0f//v3h5OQEDw8PjB07Fjk5OQbrmLo0SVEUfPDBBxg3bhy8vb3h6ekJABARzJo1CwEBAdBqtahduzY++eQTo/2eOHEC3bp1g16vh4ODA0JCQrBixQq1bAAYM2aMenx2796tvvbgpUkLFixAYGAgtFotatasiWnTphlcSrZkyRIoioLffvsNHTp0gE6nwxNPPIFly5YVeXyys7MxatQo6PV6ODs7Y8iQIbh586bBOqbetw0bNqBp06ZwdHSEi4sLmjZtqv46WrNmTZw9exbz5s1T27dkyRIAwLJly9CyZUvo9Xq4urqidevW+OWXXwz2Z8n7vWzZMjRq1Ah2dnZwd3dHx44dcfbsWfX18+fP46WXXoK7uzvs7e3RqlUrHDp0qMjjQpUbM42Zxkyjqoa5xlxjrlUc7GyTRZ577jncvXsX27ZtAwAcP34cR44cQa9evYzWPXToECIjI+Hk5ITY2Fh8+OGH2LhxIzp06IDc3Fz4+PhgzZo1AIDp06cjMTERiYmJ8PHxMbnvMWPGYPLkyRg4cCA2btyI9u3bY9iwYfj8888N1svOzkbfvn0xcOBArF27Fp6enoiKikJqamqhbRs8eDDWrl2LDz74AEuXLsXx48cxZ84cs47Lp59+itOnT2PhwoX45ptvAAAjR47EpEmTMGDAAGzevBkDBw7EuHHj8OWXX6rbnTlzBqGhoThz5gw+++wzbNiwAYMGDcJ//vMfAPcuPwKAESNGqMencePGJuswd+5cDBs2DM888ww2btyIgQMHYvLkyRg7dqzRun379kX79u2xbt06NGrUCAMHDsSJEycKbeOECRMwf/58jBkzBqtWrUJubi7Gjx9f6DZ//vknunfvjgYNGmDt2rVYuXIlevbsibS0NADA2rVr4e3tje7du6vt69SpE4B7fwz69++P2NhYfPfdd/Dz80OrVq1w+vRpg32Y837PnDkTAwYMQJMmTbBmzRosXLgQTzzxBK5evQoASEtLQ8uWLXH48GHMnTsX33//PXQ6Hdq2bYsrV64U2kaq3JhppjHTTGOmUWXAXDONuWYac62UCZEZoqOjRafTiYhInz595KWXXhIRkYkTJ0poaKiIiISEhMiAAQPUbbp27Sp+fn6SlZWlLtu6dasAkA0bNoiISFJSkgCQ2NhYg/09uPzq1atia2sr48ePN1ivd+/e4uHhITk5OWo9AcjmzZuNylq+fHmB7Tt27JgoiiILFy5Ul+Xk5EitWrXk/o9JfHy8AJADBw6oywBI/fr1JS8vT132xx9/iKIosmDBAoP9jBs3Try9vSU3N1c9lh4eHpKRkVFg3QDIzJkzC12ek5Mj7u7u0qtXL4N1JkyYIBqNRlJSUkREZPHixQJA5s2bp65z8+ZNcXBwkKlTpxZYh9TUVLG3t5d3333XYHmrVq0EgCQlJYmI8fsWGxsrAOT69esFlu3v7y/Dhw8v8HURkdzcXMnOzpbAwECZMGGCutyc9zs9PV0cHBxk6NChBZY/adIkcXZ2lsuXL6vLMjMzxc/PT8aMGVNo3ahyYqbdw0xjplHVwVy7h7nGXKtIeGabLNa7d2+sX78ed+7cQUxMDHr37m1yvb179+L555+Hra2tuqx9+/ZwcXHBvn37LNrnzz//jOzsbPTo0cNg+YsvvoirV68a/IJmZWWFiIgI9XnNmjVhb2+P8+fPF1j+gQMHICLo2rWrusza2hovvPCCWfXr0KGDwUiYO3bsAABERUUhJydHfURERODSpUs4d+4cAGDnzp3o3r07qlWrZtZ+CnLy5EmkpKSYPD5ZWVlGl/S0b99e/X+dTgd/f/9Cj8/vv/+OO3fuGByf/PYVJjg4GNbW1ujTpw82btyIjIwMc5uEEydOoGvXrvDy8oK1tTVsbW1x6tQpo19Li3q/ExMTcfv2bQwZMqTAfW3btg1t2rSBXq9X3ytra2uEh4fjwIEDZteZKidmmjFmmmnMNKosmGvGmGumMddKFwdII4s988wzsLW1xaRJk5CUlISePXuaXC8tLQ1eXl5Gy728vNR7gcyVfynLg+XlP7+/PHt7e2g0GoP1NBoNMjMzCyz/4sWLsLW1haurq8nyi/LgeikpKRARuLu7m1z/3Llz8Pf3R2pqKqpXr27WPgpjyfEBABcXF4Pn5hwfAOo9Tg+WX5CAgABs2rQJ06dPR9euXWFlZYVnn30Wn3/+Ofz8/Arc7saNG2jfvj08PDwwe/Zs+Pv7w87ODi+//LJRPYt6v/MvUSrsOKekpGD//v0GXzby1alTp9A2UuXHTDPGTDONmUaVBXPNGHPNNOZa6WJnmyxma2uLqKgozJ49G+3atSvwQ6zX603eQ3H58mXo9XqL9pm//pUrV/DYY48ZlHX/68Xl4+OD7OxspKWlGYR4fvlFuf+X0vz6KIqCffv2GYULAAQGBgIA3NzccOHChYeo+f/2B8DoeJfk8ckv39TxL8yzzz6LZ599FtevX8cPP/yAN954A4MGDcLOnTsL3CYxMRHnz5/Hpk2bEBISoi7PyMiAr6+vRXV3c3MDAFy4cKHAbfV6PZ599llMnTrV6DWtVmvR/qjyYaYZY6YVjJlGlQFzzRhzrWDMtdLDy8ipWF5++WU899xzGDlyZIHrtGzZEuvWrTMYJXL79u1IT09Hy5YtAUANt8J+qQOAZs2awdbWFrGxsQbLV61aBU9PTwQEBBS3KQCAf/zjHwDuDQKRLzc3F+vWrStWee3atQNw75e6pk2bGj2cnJwAABEREVi9ejVu3LhRYFm2trZFHp/AwEB4eHiYPD4ajQbNmjUrVjvyNWzYEPb29gbHBwC+//57s8uoVq0aevbsiV69ehkM8GHql9o7d+6or+VLSEhAcnKyxXUPDQ2Fg4MDFi9eXOA6EREROH78OOrVq2f0XjVs2NDifVLlw0wrHDPNGDONKjrmWuGYa8aYayWPZ7apWJo1a1ZkuL3zzjsICwtD586dMWLECFy+fBnjx49Hs2bN0LFjRwCAt7c3XFxcsGLFCtSqVQtarRbBwcFGZbm7u2PEiBGYOXMm7Ozs0KJFC2zZsgXfffcd5s6d+9DzRtavXx9du3bFqFGjkJmZiZo1a2L+/PnIysoqVnkBAQEYPnw4+vXrhzFjxqB58+bIzs7G6dOnER8frx676OhobNq0CS1btsTYsWPh4+OD48eP4/bt2+rIlPXq1cP69evx9NNPQ6fTITAwUP0DkM/a2hrvvvsuXn/9dXh6eqJjx47Yv38/PvzwQ4waNUr9xbC49Ho9hg0bhg8++AD29vZo3LgxVqxYgT///LPQ7RYsWIDExEQ8++yz8PHxQVJSEr755huD+5Dq1auHXbt2Yfv27XB1dUWtWrXQokULODo6Yvjw4Rg/fjz+/vtvREdHG/xSay5nZ2dER0dj3LhxyMvLw/PPP4+8vDzEx8ejd+/eaNq0Kd588018++23CA8Px8iRI+Hn54erV6/i559/RvXq1fHGG29YvF+qXJhphWOm3cNMo8qEuVY45to9zLVSVp6js1Hlcf8IlwV5cIRLEZHdu3dLaGioaLVa0ev1MnDgQElNTTVYZ+3atVKvXj3RarXqaImmRr7Mzc2V9957T/z8/MTW1laeeOIJ+fLLL82qp7Ozs0RHRxda/7S0NOnbt6/odDpxc3OTN998U2bOnGnWCJemRqDMy8uTuXPnSlBQkGg0GtHr9RIaGiqzZ882WO/YsWPSpUsXqVatmjg4OMiTTz4pMTEx6ut79+6Vxo0bi729vQCQ+Pj4Avf7xRdfyBNPPCG2trbi5+cnU6dOVUfTFPnfCJdXr1412M7Ue/egu3fvyogRI8TFxUWqVasmAwYMkOXLlxc6wmVCQoJ06tRJfHx8RKPRiJ+fn4wcOdJgxMujR4/K008/LU5OTgJAFi9eLCIicXFx0qBBA7Gzs5Pg4GDZsmWLhIeHS6dOndRtLXm/Fy1aJA0bNhSNRiNubm7SuXNnOXv2rPr6xYsXZciQIWpdfX19pXv37vLTTz8VelyocmKm3cNMY6ZR1cFcu4e5xlyrSBQRkVLv0RMRERERERE9QnjPNhEREREREVEJY2ebiIiIiIiIqISxs01ERERERERUwtjZJiIiIiIiIiph7GwTERERERERlTB2tqnUJCcnQ1EUrF692qLtdu/ejenTpxstnzx5MhwdHUuqekWaM2cOtmzZUmLlrVu3DvPnzzdaPnDgQAQFBZXYfkpaWR93ooqMuWaIuUZUuTHTDDHTqKSxs00VTkEB/vLLLyM+Pr7M6lFWAV7RlfVxJ6qKmGsVC3ON6OEw0yoWZlrFZVPeFaDKRUSQlZUFrVZb5vv29fWFr69vme/3UXX37l3Y2tqW2HHPL8/Kir/xUcXCXHt0MNfoUcBMe3Qw0yo+HkkqVP5lM1u2bEFISAi0Wi02btwIAEhMTETbtm2h0+ng7OyMPn364MqVK4WWt2zZMrRs2RJ6vR6urq5o3bo1fvnlF/X1yZMnY8qUKbh16xYURYGiKGjdurX6Wv4lMrdu3YJOp8OsWbOM9tG9e3eEhoaqz9PT0/Haa6/Bx8cHWq0WTZo0wbZt2wqtZ82aNXH27FnMmzdPrceSJUsAAHl5eZg2bRpq1qwJrVaLunXrYsGCBUUex6VLl+LYsWNqeQMHDjRYZ/fu3WjUqBF0Oh2aNWuGQ4cOGbwuIpg1axYCAgKg1WpRu3ZtfPLJJ4XuN3/fQUFBiIuLQ1BQEOzs7NCkSRPs37/fqM3/+te/8NFHH8Hf3x/29va4du2ayUuTzp49i+7du8PZ2Rk6nQ7PPPMMfv/9d7PKK6yOO3bsQHBwMOzt7REeHo7k5GRcu3YNPXv2RLVq1VCnTh2sXLnSaPvNmzejefPmsLe3h4eHB/75z3/i1q1b6uu3bt3Cv/71LwQGBsLBwQE1a9bEsGHDkJGRYbLO8+bNg7+/P5ydnfHCCy/g6tWrRR5nqjyYa8w15hpzrSphpjHTmGkVONOEqBADBgwQV1dXqVOnjixevFh27twpZ86ckYSEBNFoNPLCCy/Ixo0bJSYmRh5//HFp0aKFum1SUpIAkNjYWHXZlClTZMGCBbJjxw7ZsmWL9OvXT7RarZw6dUpERM6dOydDhgwRe3t7SUxMlMTERDl27JiIiERHR4tOp1PL6tWrlzRp0sSgvtevXxc7Ozv57LPPRETk7t270rRpU6lRo4YsXLhQfvjhB3nppZfExsZGjhw5UmC7f/31V/H29pbu3bur9bhy5YqIiLz55ptibW0t0dHRsnXrVhkxYoQAkLlz5xZY3h9//CEdO3aU2rVrq+X98ccf6jF2c3OThg0byrfffiubNm2Shg0bSo0aNSQrK0stY8SIEWJvby/Tpk2T7du3y5QpU8TW1la++OKLIt9DvV4vNWvWlCVLlsj69eslNDRUqlWrJpcvX1bX8/f3F29vb3n66adl7dq1smHDBrl9+7bRcb9+/brUrFlTateuLd99952sWbNGmjRpIi4uLvKf//ynyPIKqqObm5sEBwdLTEyMfP/99/LYY49JWFiYREREyHvvvSfbtm2THj16iI2NjSQnJ6vbxsbGipWVlQwZMkTi4uJk0aJF4unpKS+++KK6zpUrV2TYsGESGxsru3fvluXLl0vdunWldevWBvXw9/eXGjVqSPv27WXjxo2yePFicXFxMSiLKj/mGnONucZcq0qYacw0ZlrFzTR2tqlQAwYMEACyf/9+g+WtWrWSsLAwycvLU5cdO3ZMFEWRzZs3i4jpAL9fbm6uZGdnS2BgoEyYMEFd/mBgFLR8/fr1AkBOnz6tLlu6dKlYW1vLpUuXRERk0aJFYmNjo/4RyNe8eXPp0aNHoW339/eX4cOHGyy7evWq2Nrayvjx4w2W9+7dWzw8PCQnJ6fA8gYMGCANGjQwuVxRFDl69Ki6LD4+XgDI3r17ReTeHwBFUWTBggUG244bN068vb0lNze30P0CkJ07d6rL0tPTxcnJyaAd/v7+4ubmJjdv3jTY/sHj/umnn4qiKHL8+HF1WWpqquh0OnnzzTeLLK+gOj54DObOnSsAZNy4ceqytLQ0sba2ljlz5oiISF5envj7+0vv3r0NyouLizMq737Z2dmyb98+AaB+ecivs6+vr2RmZhq039bWttBjTJULc425xlxjrlUlzDRmGjOt4mYaLyOnIrm5uaF58+bq89u3b+Onn35Cjx49kJubi5ycHOTk5CAgIAA1atTAgQMHCizrxIkT6Nq1K7y8vGBtbQ1bW1ucOnUKp0+ftrhezz77LFxcXBATE6Mui4mJQZs2beDl5QUA2LZtGxo2bIiAgAC1njk5OYiMjCy0ngX5+eefkZ2djR49ehgsf/HFF3H16tVitQMAqlevjgYNGqjP69evDwA4f/48AGDHjh0AgKioKIN2RERE4NKlSzh37lyh5Ts7O6Nt27YGzyMiIvDzzz8brNe6dWvodLpCy9q7dy+CgoJQr149dZler0dkZCT27dtncXn5HjwGAQEBAICIiAh1mYuLCzw9PdX2nj59GmfPnkXPnj0Njkt4eDisrKxw8OBBddvly5ejUaNGcHR0hK2tLVq2bKmWcb/w8HCD+9zq16+P7OzsIi+7o8qFufY/zDXmGlV+zLT/YaYx0yoSdrapSPlhmC8tLQ25ubl44403YGtra/D4z3/+U2CY3LhxA+3bt8fZs2cxe/Zs7N27FwcOHEBISAgyMzMtrpdGo0FUVJQa4Kmpqdi+fTv69OmjrpOSkoLffvvNqJ7Tpk0rMvRMSUtLA2B8TPKfF3SfS1FcXFwMnms0GgBQj0tKSgpEBO7u7gbtiIyMBIAi2+Lh4WG0zMvLCxcvXjTZjsKkpaWZXM/Ly8uo/eaUl6+gY2Bq+f3HBQC6du1qcFwcHByQm5urHpe1a9eif//+aNasGVatWoX9+/dj7dq1AGD0b6+o94KqBuaaYdsB5hpzjSozZpph2wFmGjOtYuBo5FQkRVEMnru4uEBRFLz99tt44YUXjNZ3d3c3WU5iYiLOnz+PTZs2ISQkRF2ekZFR7BEUe/fujYULF+LIkSNITEyEtbU1unXrpr6u1+sRHByMhQsXFqv8B+n1egDAlStX8Nhjj6nLL1++bPB6SdPr9VAUBfv27VMD5X6BgYGFbm9q0IjLly/Dx8fHYNmD73VBdTl16pTJ8h5svznlPYz8/X3++ecGv+jnq169OgAgNjYWTz75pMHgKHv27CnVulHFxlz7H+Yac40qP2ba/zDTmGkVCTvbZDGdTofQ0FCcOHEC06ZNM3u7O3fuAIBBACUkJCA5OdngkhSNRoO7d++aVWbr1q3h7e2NFStWIDExER06dICzs7P6ekREBLZs2YLq1aurH2Zz3f+rXL5mzZrB1tYWsbGxaNSokbp81apV8PT0VC+nMbc8c7Vr1w7AvV+En3vuOYu3z8jIwK5du9TLkzIyMrBjxw4MHz7c4rJatmyJ1atX49SpU+ofjrS0NOzYsQNDhw61uLyHUbduXfj6+uKvv/4qtC137twx+sP37bfflnb1qBJhrjHXmGtUlTDTmGnMtIqBnW0qlpkzZ6Jt27Z48cUX0atXL7i6uuL8+fPYvn07Bg0apE4Bcb8WLVrA0dERw4cPx/jx4/H3338jOjra4FdHAKhXrx5ycnLw6aefIiwsDNWqVSvw10Bra2v07NkTS5YswZUrVwzuCQKA/v37Y8GCBWjdujXeeustBAQEID09Hb/99huysrIwY8aMAttYr1497Nq1C9u3b4erqytq1aoFd3d3jBgxAjNnzoSdnR1atGiBLVu24LvvvsPcuXNhbW1daHmLFi3CihUr8MQTT8Dd3R01a9Ys+CDfJyAgAMOHD0e/fv0wZswYNG/eHNnZ2Th9+jTi4+Oxbt26QrfX6/UYMmQIpkyZAhcXF3zwwQcQEYwaNcqs/d9v0KBB+OSTT9CpUydMmzYNdnZ2eP/992FjY1Os8h6GoiiYPXs2+vTpg1u3bqFTp07Q6XQ4e/YsNm/ejOnTpyMgIACRkZEYPnw4pk6ditDQUGzZsgU7d+4s07pSxcdcY64x16gqYaYx05hpFUB5js5GFV9BozKKiBw4cEA6duwozs7OYm9vL0888YQMGzZMzp07JyKmR7iMi4uTBg0aiJ2dnQQHB8uWLVskPDxcOnXqpK6TnZ0tr732mnh5eYmiKBIeHi4iBY98mZiYKADE0dHR5HQFGRkZ8sYbb4ifn5/Y2tqKj4+PdOzYUTZt2lRo248ePSpPP/20ODk5CQBZvHixiNwbmfO9995Ty3viiSfkyy+/LLSs/Hr06tVL3NzcBIAMGDBAREwf47S0NIN9itwbzXHu3LkSFBQkGo1G9Hq9hIaGyuzZswvdb375mzZtknr16olGo5FGjRrJTz/9ZLCeqRE9RUwf9+TkZOnWrZs4OTmJg4ODREZGGk3PUVB5hdXxfvmjfB44cKDIcrdt2ybh4eGi0+lEp9NJgwYNZPTo0ZKeni4iIjk5OTJ69Gjx8PAQJycn6d69u+zfv9/o36epsteuXSsAJCkpyay2UMXHXGOuMdeYa1UJM42ZxkyruJmmiIiUXdeeiMrawIEDcfDgQRw9erS8q0JEVCKYa0RUlTDTqi6ORk5ERERERERUwtjZJiIiIiIiIiphvIyciIiIiIiIqITxzDYRERERERFRCWNnm6iUNWvWDPPmzSvw9cOHD0NRFOzevbtU9h8ZGYn333+/VMomokcPM42IqhrmGpUWdraJStHatWuRnJyMwYMHl1sd3n77bcyaNQtpaWnlVgciqhqYaURU1TDXqDSxs01UiubMmYPevXvD3t6+3OrQpk0buLq6YunSpeVWByKqGphpRFTVMNeoNLGzTVRKkpKSsHfvXnTv3t1g+bRp0+Dt7Q1HR0d069YNV65cMdpWRDBr1iwEBARAq9Widu3a+OSTT4zWW7t2LQIDA2FnZ4cWLVrg119/hYuLCyZPnmywXo8ePRjgRPRQmGlEVNUw16i0sbNNVEp27twJGxsbNGvWTF32+eef491330W/fv3w/fffo3bt2hgyZIjRtiNHjsSkSZMwYMAAbN68GQMHDsS4cePw5Zdfquv89ttv6NGjB+rXr481a9ZgwIABePHFF3H37l2j8sLCwnD48GFcvXq1dBpLRFUeM42IqhrmGpU6IaJSMXToUGnQoIH6PCcnR6pXry79+vUzWK9fv34CQOLj40VE5I8//hBFUWTBggUG640bN068vb0lNzdXRER69Oghjz/+uPpcRGT58uUCQKKjow22TUpKEgCyadOmEmwhET1KmGlEVNUw16i08cw2USm5ePEiPDw81Ofnz5/HhQsX0LVrV4P1Hrx0aceOHQCAqKgo5OTkqI+IiAhcunQJ586dAwAcOHAAnTt3hpXV/z7Gzz//vMm6uLu7q3UiIioOZhoRVTXMNSptNuVdAaKqKjMzE1qtVn2eH56enp4G63l5eRk8T0lJgYioofugc+fOwd/f3+gPBAA4OTnBzs7OaJv8ety5c8fyhhARgZlGRFUPc41KGzvbRKVEr9cjOTlZfe7j4wMARoNsXL582Wg7RVGwb98+aDQao3IDAwPV8h68r+fGjRvIzMw02iY9PR0A4ObmZnE7iIgAZhoRVT3MNSptvIycqJQEBgYiKSlJfe7r6wsfHx+sXbvWYL3Vq1cbPG/Xrh0AIDU1FU2bNjV6ODk5AQD+8Y9/YNOmTcjLy1O3Xbduncm65P8hyQ9/IiJLMdOIqKphrlFp45ltolLy1FNP4b333sP58+fh6+sLa2trjB8/HiNHjoSXlxciIyOxbds2xMfHG2wXEBCA4cOHo1+/fhgzZgyaN2+O7OxsnD59GvHx8WpIT5gwAf/4xz8QFRWFoUOH4uzZs5g1axbs7OwM7g0CgIMHD8LR0RFPPvlkGbWeiKoaZhoRVTXMNSp15TxAG1GVdffuXXFzc5OvvvpKXZaXlydTpkwRT09PcXBwkC5dusgPP/xgMMJl/npz586VoKAg0Wg0otfrJTQ0VGbPnm2wj++//14CAgJEq9VKkyZNZN++fWJjYyNz5swxWO+5554zGlmTiMgSzDQiqmqYa1TaFBGRcu7vE1VZo0ePxm+//YZdu3aVyf527tyJiIgI7N69G+Hh4QCAtLQ0eHt7Y/v27WjVqlWZ1IOIqiZmGhFVNcw1Kk3sbBOVoosXL+Lxxx9HQkICQkJCSrz81157De3atYObmxuOHTuGqVOnonr16jh48KB6edJ7772H3bt3l9kfESKquphpRFTVMNeoNPGebaJS5OPjgyVLlhiNRFlS0tLSMGLECKSkpMDZ2RnPPvssZs2aZXAfkF6vx2effVYq+yeiRwszjYiqGuYalSae2SYiIiIiIiIqYZz6i4iIiIiIiKiEsbNNREREREREVMLY2SYiIiIiIiIqYexsExEREREREZUwdraJiIiIiIiIShg720REREREREQljJ1tIiIiIiIiohLGzjYRERERERFRCWNnm4iIiIiIiKiE/T9crCmOSQLmNgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1510,13 +1510,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjE0lEQVR4nOydeXxMV/vAv3dmsieyyCIJQoLY1VJ9uxAEtbT2qtpJlFZb2tJWbQmKLq9SXVC0dqrqrbb8SrW0umjpEkvtexIkJET2mTm/P24yMpmZZCZCLOf7+cznmHvPPffcmcnjPOfZFCGEQCKRSCQSiUQikUgkEkm5oanoCUgkEolEIpFIJBKJRHK3IZVtiUQikUgkEolEIpFIyhmpbEskEolEIpFIJBKJRFLOSGVbIpFIJBKJRCKRSCSSckYq2xKJRCKRSCQSiUQikZQzUtmWSCQSiUQikUgkEomknJHKtkQikUgkEolEIpFIJOWMVLYlEolEIpFIJBKJRCIpZ6SyLZFIJBKJRCKRSCQSSTkjlW2J5DZmx44dKIrC559/XtFTkUgkkhvm1KlTKIrCO++8U9FTkUgkEoepUaMGjz32WEVPQ3IHIZVtyR3DH3/8wXPPPUeDBg3w8PCgevXq9O3blyNHjpR4XX5+PvXr17e6wEtPT2fAgAH4+voSHh7OkiVLLK7fs2cP7u7unDx5slyfRyKR3Ntcu3aNqVOn0qlTJ/z8/FAUhU8//dSin9Fo5NNPP6Vbt25Uq1YNDw8PGjZsyIwZM8jJyTHrm5uby/PPP09AQABVq1ZlxowZFuOdO3cOT09Pfv7555v1aBKJRGLBn3/+Sbdu3fDz88Pd3Z2GDRvy3nvvmfVZuHAhNWvWxM/Pj0GDBnH16lWz80ajkaZNmzJz5sxbOXWJpMzoKnoCEom9vPnmm/z888888cQTNG7cmPPnz/P+++/TrFkzfvvtNxo2bGj1uvnz53PmzBmr58aNG8eOHTuIj4/n2LFjjBgxgnr16vHQQw8BIITghRdeYOzYsdSsWfOmPZtEIrn3SE1NZdq0aVSvXp0mTZqwY8cOq/2ysrIYNmwY//nPfxg1ahSBgYH8+uuvTJ06le3bt/P999+jKAoAb7/9NsuXL2fixIlkZGQwbdo0IiIieOqpp0zjjR8/nm7duvHwww/fiseUSCQStm7dyuOPP07Tpk2ZPHkynp6eHD9+nHPnzpn67Nq1i2eeeYYXXniB8PBwZs2axfjx41m4cKGpz8cff8yVK1d4+eWXK+IxJBLHERLJHcLPP/8scnNzzY4dOXJEuLi4iAEDBli95sKFC8Lb21tMmzZNAOLtt982Ox8UFCSWLVtmeh8VFSVee+010/sVK1aIkJAQkZGRUY5PYj8//PCDAMT69etv6n2uXbt2U8eXSCSW5OTkiOTkZCGEEH/88YcAxCeffGLRLzc3V/z8888Wx+Pj4wUgtm3bZjr2wAMPiPj4eNP7IUOGiH79+pne//TTT8LDw0OcPXu2HJ/Efk6ePGlVFpc3UqZJJLcPV65cEUFBQaJnz57CYDDY7Pfqq6+Ktm3bmt5/8sknokqVKqb3aWlpwt/fX2zYsOGmzrckwsLCRNeuXW/qPfLz8y3Wu5I7F+lGLrljeOihh3B2djY7Vrt2bRo0aMC///5r9ZrXXnuNyMhIBg4caPV8dnY2vr6+pvd+fn5kZWUBkJmZyWuvvcasWbPw9PR0aK6JiYnExMQQEhKCi4sLNWvW5JlnniEvL8/U58SJEzzxxBMmd6r//Oc/fPPNN1bHMxqNvPHGG1StWhVXV1eio6M5duyYRb/du3fTqVMnvL29cXd3JyoqysJVNC4uDkVROHjwIP3798fX15dHHnnEdH7lypU0b94cNzc3/Pz86NevH2fPnjUbo02bNjRs2JCDBw/Stm1b3N3dCQ0N5a233rKYU05ODnFxcdSpUwdXV1eCg4Pp1asXx48fN3u+uXPn0qBBA1xdXQkKCmLkyJGkpaXZ94FLJHcgLi4uVKlSpdR+zs7OJm+bovTs2RPATP6VJNOMRiNjxozhlVdeoWrVqg7NNT09nRdffJEaNWrg4uJC1apVGTx4MKmpqaY+Fy9eJCYmhqCgIFxdXWnSpAnLli2zOeaiRYuIiIjAxcWF+++/nz/++MOiz6FDh+jTpw9+fn64urrSokULNm3aZNbn008/RVEUdu7cybPPPktgYKDZ823ZsoVWrVrh4eGBl5cXXbt25cCBA2ZjDB06FE9PTxITE+nRoweenp4EBAQwbtw4DAaDWV+j0ci8efNo1KgRrq6uBAQE0KlTJ/bs2WPWzx5ZKpHcC6xevZoLFy7wxhtvoNFoyMzMxGg0WvQrSX6Bun5p1KgRvXr1cuj+9vzN6vV6pk+fbpJJNWrU4PXXXyc3N9fqmLt27aJly5a4uroSHh7O8uXLLfqkp6czduxYqlWrhouLC7Vq1eLNN980e/aieSzmzp1ruv/BgwcBx2Tgzz//zEsvvURAQAAeHh707NmTlJQUi3lt2bKFqKgovLy8qFSpEvfffz+rV68262PPelJiJxWt7UskN4LRaBShoaGiY8eOFud2794tNBqN+OWXX2xaU6Kjo0WbNm3EkSNHxP/93/8JNzc3sXLlSiGEEK+//rpo2bKlMBqNDs0pMTFRhISECHd3dzF27FixYMECMXnyZFGvXj2RlpYmhBDi/PnzIigoSHh5eYmJEyeKOXPmiCZNmgiNRiO++OIL01iFlu2mTZuK5s2bi3fffVfExcUJd3d30bJlS7P7bt++XTg7O4sHH3xQ/Pe//xXvvvuuaNy4sXB2dha7d+829Zs6daoARP369UX37t3Fhx9+KD744AMhhBAzZswQiqKIJ598Unz44YciPj5e+Pv7ixo1apjmLoTqARASEiKqVasmxowZIz788EPRrl07AYjNmzeb+un1ehEdHS0A0a9fP/H++++LWbNmiXbt2on//e9/pn6xsbFCp9OJESNGiAULFohXX31VeHh4iPvvv1/k5eU59PlLJHciJVm2bbF161YBiNWrV5uOxcTEiIYNG4qEhATxyy+/iCpVqogZM2YIIYRYtGiRqF69usjKynJobhkZGaJhw4ZCq9WKESNGiI8++khMnz5d3H///eKvv/4SQgiRlZUl6tWrJ5ycnMSLL74o3nvvPdGqVSsBiLlz55rGKpTFTZs2FbVq1RJvvvmmeOutt4S/v7+oWrWq2d/7/v37hbe3t6hfv7548803xfvvvy9at24tFEUxk5OffPKJSaZFRUWJ+fPni9mzZwshhFi+fLlQFEV06tRJzJ8/X7z55puiRo0awsfHR5w8edI0xpAhQ4Srq6to0KCBGD58uPjoo49E7969BSA+/PBDs89j6NChAhCdO3cWc+fOFe+8847o3r27mD9/vqmPvbJUIrkX6N27t6hUqZLYtm2bqFOnjgCEh4eHGDVqlMjOzjb1W7FihXB3dxfffvutOHLkiGjdurVo3769EEKIAwcOCBcXF/HPP/84fH97/maHDBkiANGnTx/xwQcfiMGDBwtA9OjRw2yssLAwERkZKYKCgsTrr78u3n//fdGsWTOhKIrYv3+/qV9mZqZo3LixqFy5snj99dfFggULxODBg4WiKGLMmDGmfoUysX79+iI8PFzMnj1bvPvuu+L06dMOy8CmTZuKdu3aifnz54uXX35ZaLVa0bdvX7P5f/LJJ0JRFNGwYUPxxhtviA8++EDExsaKQYMGmfrYu56U2IdUtiV3NCtWrBCAWLJkidlxo9EoWrZsKZ566ikhhG3XxYSEBFG1alUBCED07t1bGAwGceLECeHm5iZ+/fVXh+c0ePBgodFoxB9//GFxrlBxHzt2rADETz/9ZDqXkZEhatasKWrUqGFysypUtuvVq2fmUjRv3jwBiH379pnGrV27tnj00UfNNgeysrJEzZo1RYcOHUzHCpXtws+mkFOnTgmtViveeOMNs+P79u0TOp3O7HhUVJQAxPLly03HcnNzRZUqVUTv3r1Nx5YuXSoAMWfOHJufxU8//SQAsWrVKrPz//d//2f1uERyN1IWZbt9+/aiUqVKZsrb2bNnRYMGDUwyrVWrViIjI0Okp6eLgIAAsXbtWofnNmXKFAGYLe4KKfw7njt3rgBMm5VCCJGXlycefPBB4enpKa5evSqEuC6LK1euLC5fvmzq++WXXwpAfPXVV6Zj0dHRolGjRiInJ8fsfg899JCoXbu26VjhQvORRx4Rer3edDwjI0P4+PiIESNGmM35/Pnzwtvb2+x44UJ72rRpZn0LNzoL+f777wUgXnjhBZufhSOyVCK5F2jcuLFwd3cX7u7u4vnnnxcbNmwQzz//vGkjvhC9Xi969eplkl/VqlUTCQkJQgghOnbsKEaNGuXwve35m/37778FIGJjY83Ojxs3TgDi+++/Nx0LCwsTgPjxxx9Nxy5evChcXFzEyy+/bDo2ffp04eHhIY4cOWI25muvvSa0Wq04c+aMEOK6TKxUqZK4ePGiWV9HZWD79u3N1oAvvvii0Gq1Ij09XQghRHp6uvDy8hIPPPCA2SZH0c/CkfWkxD4qXNm+cOGCOH36tMVLIimNf//9V1SqVEk8+OCDZgssIVQlz83NzUKYWYsTzM7OFn/88Yc4evSo6VjPnj3FwIEDhRBCbNiwQTRu3FjUqFFDxMfHl2jpNhgMolKlSqJ79+4lzr1OnToWlmkhhJg1a5aZEl2obL/11ltm/f78808BiC+//NLs/bJly0RKSorZKzY2Vri4uJgU+EJle+fOnWZjzpkzRyiKIo4ePWoxRr169Uy7y0Koyranp6fFZ9GtWzfRtGlT0/uuXbsKf39/kZ+fb/OzeOGFF4S3t7e4ePGixX09PT0t/vOTSO5GHFW233jjDatWVyFUJfevv/4SBw4cMP3dv/jii+KRRx4RQqgbXC1bthRVq1YVzz//fKmxgQ0aNBBNmjQpsU/Hjh1FlSpVLOIx16xZY6ZEF8riZ5991qzf5cuXBSDmzZsnhBDi0qVLQlEUMX36dAu5UBirfu7cOSHE9YVm0fwbQgjxxRdfmBbKxcfo2LGjqFWrlqlvobJdfLH7wgsvCF9fX9P70aNHC0VRxKVLl2x+Fo7IUonkXiA8PFwAFsryyJEjBWChkB49elTs2bPHpBB++eWXwsfHR6SkpIhz586Jxx57TAQHB4vHHntMJCYmlnhve/5mZ86cKQBx8OBBs+PJyckCMFOiw8LCRP369S3GaNy4sejZs6fZ+06dOlnIgO+++85sY7JQJg4bNsxsvLLIwM8++8xsjEIZWOgNsH79egGIjRs32vwsHFlPSuyjQrKRX7p0ieeff54vvviC/Px8s3NCCBRFsYiRkkiKcv78ebp27Yq3tzeff/45Wq3WdO7q1atMmDCB8ePHU61atVLHKoyBKeT7779n69atHD58mMOHD9OvXz8WLlxIjRo1eOqpp6hWrRrDhg2zOlZKSgpXr161mRm9kNOnT/PAAw9YHK9Xr57pfNExqlevbtavMKapMKb56NGjAAwZMsTmPa9cuWIWC1U8u/rRo0cRQlC7dm2r1zs5OZm9r1q1qikDctF5JSQkmN4fP36cyMhIdDrboubo0aNcuXKFwMBAq+cvXrxo81qJ5F5k3bp1TJo0iZiYGJ555hmL805OTtx3332m94cOHeLDDz/kl19+4fLly3Tt2pXXXnuNtm3bMmzYMN544w3i4+Nt3u/48eP07t27xDmdPn2a2rVro9GYp4IpKtOKUppMO3bsGEIIJk+ezOTJk63e8+LFi4SGhpreW5NpAO3atbN6faVKlczeF8ZyFp9X0dwRx48fJyQkBD8/P6tjFt7XEVkqkdztuLm5AZhVRQDo378/Cxcu5NdffzX7e6lVq5bp33l5ebz88stMnToVf39/WrVqRXBwMF999RWzZ8+mf//+Nis5gH1/s6dPn0aj0ZjdF6BKlSr4+PiUKr/AUlYcPXqUhIQEC5lSSPG1TXH5VRYZWJpcLcyVU9IatSzrSUnJVIiyHRsby86dO5kwYQL169e3SHolkZTElStX6Ny5M+np6fz000+EhISYnX/nnXfIy8vjySef5NSpUwCm0hJpaWmcOnWKkJAQq787g8HAmDFjeO211wgNDWX69Ok89NBDJuV65MiRrFq1yqayfbMouplQFCEEgCnZxttvv222yC5K8SRvhf/5FWI0GlEUhS1btli9X/HrS5uTvRiNRgIDA1m1apXV87b+o5JI7kW2bdvG4MGD6dq1KwsWLLDrmhdffJGBAwfSrFkzVqxYgZ+fHxMmTADglVdeKVXZvhnYK9PGjRvHo48+arVv8YWxNZkGsGLFCquJ6IpvAtqak6M4KkslkrudkJAQDhw4QFBQkNnxwk32kpKhvvvuu+h0Op577jnOnj3Lrl27OHnyJDVq1OCtt94iPDycc+fOOZz00RrFDQi2sGf9YzQa6dChA6+88orVvnXq1DF7b0t+OSIDy2NdVpb1pKRkKkTZ/uGHH3jvvfcYPHhwRdxecgeTk5PD448/zpEjR/juu++oX7++RZ8zZ86QlpZGgwYNLM7NnDmTmTNn8tdff1kVIh999BEZGRmMGzcOgKSkJDNlPiQkhMTERJvzCwgIoFKlSuzfv7/E5wgLC+Pw4cMWxw8dOmQ67wgRERGAaqlp3769Q9cWHUMIQc2aNS3+EygrERER7N69m/z8fJvWnIiICL777jsefvhhi/9sJBLJdXbv3k3Pnj1p0aIFn332WYkeI4V8/fXX/PLLLyZrRVJSEsHBwabzpck0UP9G7ZFpCQkJGI1GM+t2WWVaeHg4oFqBb0SmgbqgL+sY1sb89ttvuXz5sk1L2c2QpRLJnUzz5s3Ztm0biYmJREZGmo4nJSUBtjfVk5OTmTFjBuvXr0en05n6F67LCtvExESbyrY9f7NhYWEYjUaOHj1q8sYBuHDhAunp6Q7Lr8L7Xrt2rcyypzxkoLU5Aezfv99CUS/e50bWkxJzylT668CBA/Tr18+Unv7PP/8EYOLEiWzZsqXU6318fPD39y/LrSX3MAaDgSeffJJff/2V9evX8+CDD1rt98ILL7Bx40az18KFCwG1vMvGjRst3HUALl++zNSpU3n77bdxdXUFICgoyLRYBLXETkmlejQaDT169OCrr76yKAMD13cXu3Tpwu+//86vv/5qOpeZmcmiRYuoUaOG1U2EkmjevDkRERG88847XLt2zeK8tdIPxenVqxdarZb4+HiLXVAhBJcuXXJoTgC9e/cmNTWV999/3+Jc4T369u2LwWBg+vTpFn30ej3p6ekO31ciudv4999/6dq1KzVq1ODrr7+2a2MqLy+Pl156iUmTJpksSEFBQRw7dgy9Xm8at7TyY7179+aff/5h48aNFueKyrTz58+zbt060zm9Xs/8+fPx9PQkKirK7mcFVUFu06YNCxcuJDk52eK8PTLt0UcfpVKlSsycOdMiZM3eMYrTu3dvhBBWPQEKP4ubIUslkjuZvn37ArBkyRKz44sXL0an09GmTRur17322mu0bt2aTp06AZgs44XrssKyhyXJMHv+Zrt06QLA3Llzzc7PmTMHgK5du9oc3xZ9+/bl119/5dtvv7U4l56ebpLBtigPGVicjh074uXlxaxZs8jJyTE7V/hZlMd6UmKOw5btbdu20bVrV5o3b86AAQOYMWOG6ZyTkxMffvghnTt3LnGMV155hfnz59OxY0e7duYlEoCXX36ZTZs28fjjj3P58mVWrlxpdr6wlnazZs1o1qyZ2blCd/IGDRrQo0cPq+NPnjyZRo0a8cQTT5iO9e7dm2nTpvHMM88QFhbGwoULTcLXFjNnzmTr1q1ERUXx9NNPU69ePZKTk1m/fj27du3Cx8eH1157jTVr1tC5c2deeOEF/Pz8WLZsGSdPnmTDhg0WcY+lodFoWLx4MZ07d6ZBgwYMGzaM0NBQEhMT+eGHH6hUqRJfffVViWNEREQwY8YMJkyYwKlTp+jRowdeXl6cPHmSjRs38vTTT5ss/vYyePBgli9fzksvvcTvv/9Oq1atyMzM5LvvvuPZZ5+le/fuREVFMXLkSGbNmsXff/9Nx44dcXJy4ujRo6xfv5558+bRp08fh+4rkdwpvP/++6Snp5ssNl999ZUp7OX555/H29ubjIwMHn30UdLS0hg/fjzffPON2RgRERFWNx/nzZsHwJgxY0zHunTpwujRo+nfvz8PPfQQ06dPJzY2tsQ5jh8/ns8//5wnnniC4cOH07x5cy5fvsymTZtYsGABTZo04emnn2bhwoUMHTqUvXv3UqNGDT7//HN+/vln5s6di5eXl8OfzQcffMAjjzxCo0aNGDFiBOHh4Vy4cIFff/2Vc+fO8c8//5R4faVKlfjoo48YNGgQzZo1o1+/fgQEBHDmzBm++eYbHn74YasbgSXRtm1bBg0axHvvvcfRo0fp1KkTRqORn376ibZt2/Lcc8/dFFkqkdzJNG3alOHDh7N06VL0ej1RUVHs2LGD9evXM2HCBItwQIDff/+ddevWmeWBqVGjBi1atGDo0KHExMSwePFiHnjggRItz/b8zTZp0oQhQ4awaNEi0tPTiYqK4vfff2fZsmX06NGDtm3bOvzM48ePZ9OmTTz22GMMHTqU5s2bk5mZyb59+/j88885depUqYbHG5WBxalUqRLvvvsusbGx3H///fTv3x9fX1/++ecfsrKyWLZsWbmsJyXFcDSjWvPmzU212PLz84WiKGLv3r1CCCH+97//idDQ0FLHeO6550T16tVF9erVxaBBg8Tzzz9v9rKWnl8iKSw3ZetVEiVlIxdCLQHm7OxsqhlblE8//VTUqFFDVK5cWbz00ksWmc+tcfr0aTF48GAREBAgXFxcRHh4uBg9erRZ1t/jx4+LPn36CB8fH+Hq6ipatmwpvv76a7NxCrORr1+/3urzFM9c/Ndff4levXqJypUrCxcXFxEWFib69u0rtm/fbupTmI08JSXF6tw3bNggHnnkEeHh4SE8PDxE3bp1xejRo8Xhw4dNfaKiokSDBg0srh0yZIgICwszO5aVlSUmTpwoatasKZycnESVKlVEnz59xPHjx836LVq0SDRv3ly4ubkJLy8v0ahRI/HKK6+IpKQkq/OUSO4GCsvIWHsV1oEu/Hu39RoyZIjFuOfPnxdeXl5i06ZNFue2bNki6tatK3x8fMTgwYNFZmZmqfO8dOmSeO6550RoaKhwdnYWVatWFUOGDBGpqammPhcuXBDDhg0T/v7+wtnZWTRq1MhCRpUkiwExdepUs2PHjx8XgwcPFlWqVBFOTk4iNDRUPPbYY+Lzzz839SnMxGut3KIQqhx99NFHhbe3t3B1dRURERFi6NChYs+ePaY+Q4YMER4eHhbXFsrLouj1evH222+LunXrCmdnZxEQECA6d+5sWgsVYo8slUjuFfLy8kRcXJwICwsTTk5OolatWuLdd9+12tdoNIoHHnhAvPTSSxbnjh07Jlq3bi08PT1F69atLdYS1rDnbzY/P1/Ex8eb1irVqlUTEyZMMCu7JYQqs7t27Wpxj6ioKBEVFWV2LCMjQ0yYMEHUqlVLODs7C39/f/HQQw+Jd955R+Tl5QkhSl+f3ogMLFxD/vDDD2bHN23aJB566CHh5uYmKlWqJFq2bCnWrFlj1see9aTEPhQhHMtm5OrqyldffUWHDh0wGAw4OTmxZ88emjVrxs6dO3n00UctXBOKY82FtyiKonDixAlHpiWRSCQSiUQikUgkEsltg8M+3H5+fiZ3t+IcOXLELPGKLU6ePOnobSUSiUQikUgkEolEIrljcDhBWo8ePZg6dapZJmVFUTh//jzvvPNOqbU470SOHTvGqFGjuO+++9DpdDbr06Wnp/PCCy8QEhKCq6srERER/Pe//zXrk5eXx/jx46lSpQoeHh506NDBalZqiUQiuVlImSaRSO4mpEyTSCS3Kw5btmfNmsUff/xB48aNadSoEQDDhw/nxIkTREZGEhcXZ/dYx44d48iRI1bdznv16uXo1G4aBw4c4JtvvuGBBx7AaDSaatAVJTMzkzZt2qDT6Xj33XcJCgriyJEjXL161azfCy+8wNq1a5kzZw6hoaG88cYbREdHc+DAAby9vW/VI0kkknsYKdMkEsndhJRpEonktqUsgd55eXli6dKl4qmnnhIdOnQQTz75pPj444/Nkj+VxJUrV0S7du2ERqMRGo1GKIoiFEUxvddoNGWZ1k3DYDCY/j1kyBCriaEmTZokwsPDxbVr12yOc/bsWaHVasXChQtNxy5duiQ8PDzEm2++Wb6TlkgkEhtImSaRSO4mpEyTSCS3K2Wqs+3k5MSwYcNYvXo1W7duZe3atcTGxuLs7GzX9a+++irnz5/np59+QgjBxo0b2bFjBzExMdSsWZPffvutLNO6adhThmnx4sUMHz4cDw8Pm322bt2K0Wg0Ky3l5+dHx44d2bx5c7nMVSKRSEpDyjSJRHI3IWWaRCK5XXFY2f7nn39sCpzNmzeb1cOzxf/93/8xceJEHnjgAQBCQkJo3bo1ixYtonv37hbxM7c7p06d4vz58/j7+9OtWzdcXFzw8/NjxIgRZgXhDx06RGBgIL6+vmbX16tXj0OHDt3qaUskEolVpEyTSCR3E1KmSSSSisJhZfvFF1/k119/tXru999/5+WXXy51jIsXL1KtWjW0Wi0eHh5cunTJdK5Lly783//9n6PTqlDOnz8PwLhx4/D19WXz5s3MnDmT9evXM2LECFO/tLQ0fHx8LK739fXl8uXLNsfPzc3l6tWrpteVK1dISUlBOFa1TSKRSOxCyjSJRHI3IWWaRCKpKBxWtv/++28efvhhq+cefPBB/vzzz1LHqFatGqmpqQDUrl2bTZs2mc79+uuvuLq6OjqtCqUwEUedOnVYtmwZ0dHRjBo1infeeYe1a9fecM3wWbNm4e3tbXr5+PgQGBhIRkZGeUxfIpFIzJAyTSKR3E1ImSaR3ByS//yTeEUh2Yr+Z+uco8fvdBxWtnNzc8nLy7N5zlpm8eJ06NCB7777DlAt5QsWLKB58+Y8+OCDTJ06lcGDBzs6rQql0N2obdu2Zsejo6MBNUtmYb8rV65YXJ+Wloafn5/N8SdMmMCVK1dMr7Nnz5bX1CUSicQCKdMkEsndhJRpEomkonC49FfTpk1Zvnw53bp1szi3fPlymjRpUuoYb775JllZWQAMGjQIT09PPv/8c7Kzs3n//fcZOXKko9OqUCIiInBxcbF5vnADom7duly4cIG0tDSzeKBDhw5Rt25dm9e7uLiUOL5EIpGUJ1KmSSSSuwkp0yQSSUXhsGV7woQJbNy4ka5du/L555/zyy+/8Pnnn9O1a1f+97//MXHixFLHcHd3x9/f3/S+Z8+erFq1ii+++IJnnnnGrqyStxPOzs507NiR7du3mx3ftm0bAM2aNQOgY8eOaDQaNmzYYOqTlpbG1q1b6dKly62bsEQikZSAlGkSieRuQso0ieTGyEhOZkdcHBnJyRU9lTsOhy3bXbt2ZfXq1YwfP56+ffuiKApCCKpWrcrq1avp2rWr3WP9+++/7Nmzh7NnzzJ8+HCqVKnCsWPHCAoKwsvLy9Gp3TSysrJMGdhPnz7N1atX+fzzzwGIiooiICCAqVOn8tBDDzFgwACGDBnC0aNHmTBhAgMGDCAiIgKAqlWrEhsby/jx49FqtYSGhjJz5ky8vb3vOGu+RCK5c5EyTSKR3E1ImSaR3FyuJSezMz6eyG7d8AoOrujp3FncSJHuQ4cOiZ9//lkcOnTIoesyMzPFU089JbRardDpdEKj0Yi9e/cKIYTo06ePGD9+/I1Mq9w5efKkAKy+fvjhB1O/7777TrRo0UK4uLiIKlWqiJdfflnk5OSYjZWTkyNefvllERgYKNzc3ET79u3Fv//+69B8rly5IgBx5cqV8ng8iURyjyFlmkRye3E1KUn8MHWquJqUVNFTuSORMk0iubkk7d0r4kAkFehrpR0vyzUljXUn47BluyiRkZFlum7cuHF8//33bN68mVatWuHh4WE616VLF959913eeuutG5lauVKjRg27yjdER0fzxx9/lNjHxcWFd955h3feeae8pieRSCQOIWWaRHJ7Ia1GN4aUaRLJ3YGTu3tFT6HcKZOyffjwYTZs2MC5c+csso8risKSJUtKvP7zzz/n7bffpmPHjhgMBrNzNWrU4NSpU2WZlkQikUgkEsldRUZyMnsXLqT5yJFSEZdIJHcU9irPQgiCGjfm9cxMjHo9QggURbnJs7s1OKxsr1ixgmHDhuHq6kpYWBjOzs5m5+35YK5du0awjf8wMjMzHZ2SRCKRSCQSyV2JtHpLJJI7DUeUZ2E0kpGUxN6FC7l8/Dh+ERHq5mJICModljTbGg4r29OnT6dPnz4sXboU9zKa+hs3bsyGDRvo2LGjxblvvvmGFi1alGlciUQikUgkEolEIpE4Tnl40tirPOvc3BBGIwkrV7IpJgajXm86t2v2bLotWULjgQPveIXbYWU7KSmJjz76qMyKNsDkyZPp3r07WVlZPPHEEyiKwu+//86aNWtYunSpKaOkRCKROIJ0t5RIJBKJRCIpGzfqSWOP8qxzcwPAIyCAjKQki74ARr2eTTEx1IyOVpX0O9il3OGtgtatW7N///4bumnXrl1Zu3Ytu3btokePHgghePbZZ1m3bh2rVq0iOjr6hsaXSCT3JteSk/nl7be5JutASiSSu4i7MWmQRHJPk5UMe+LU9kavsXH8VtfGFkKUqjxnJCfjERAAioKrjw97Fy606Fv0mr0LFiCMxlsx/ZuGw8r2zJkz+fjjj1m4cCEnTpzg8uXLFi976NOnDydPnuTQoUPs2rWLgwcPcubMGfr06ePwQ0gkEknR+KCgxo3tykwrkUgktzNSrkkkdylZyfBnvOPKtpVrMk8nwJ/xaluEQiu1NQPEtQN/c+qpNlw78HdZZm9G4WagMBrtUp5dfXxwcnNDo9Nx+fjxEsdOO3ECjVZ7w3OsSBx2I2/WrBkAzzzzjE2TfvEM4yVRp04d6tSp4+g0JBKJxMTdnlxDIpHce0i5JpFI7CErNRWPIq09ZB85QI2jO0k5cgDPBveV6b7Fk6BptFr7lGedDoGqfPtFRJTY3zc8HKPBcEcr3A4r20uXLi0Xv/mzZ8/yv//9j7Nnz1otHzZv3rwbvodEIrn7uReSa0gkkrsDe/NKSLkmkUhuZyw2A2vVImrKFPuUZ70efVYWOenpNB85kl2zZ1u1hmt0OpqPGnXHyzqHle2hQ4fe8E0/++wzBg0ahNFoJDAw0Gr5MKlsSySS0rAnPuhuSK4hkUhuAanJsGEh9B4J/jcnwaI9yYekXJNIJLcrJWUQ9w0Pp9mIEaUqzznp6Ti5u5OZkoJ/ZCTdliyxGEuj09Ft6VK8goPveDlXIVsFr7/+Oj169CA1NZXExEROnjxp9jpx4kRFTEsikdxh2BsfdKcn15BIJLeA1GT4OF5tKxAp1yQSiVXSUszbCqCkDOK/vfsunsHBdFuyBI3O3J6r0enou3EjXsHBuPr48HpmJpVr1wZFofHAgYw5dYrWkybRqH9/Wk+axJhTp2g8YMAdb9WGMli2AX788UcWLVrEkSNHLFzAARISEqxcdZ2UlBSefvppvL29y3J7iUQiAbA/PugOjvWRSCT3DopGI+WaRCKxTnqqeXurKcggvjM+3upm4IWEBP43eDA9V6ygZnQ0excsIO3ECXzDw3ngxRdx8/GxmYfCKySEqKlT0eh0GPV6FK32jrdoF+Kwsv3tt9/StWtX2rdvz549e+jcuTPZ2dn8/PPPVK1alaioqFLH6NSpE7/99pss8SWRSG4Io8FwTyTXkEgk9wbCaJRyTSKR3JbYk0F8/9q1+NSoQbuZM82VZ42m1DwUl44e5eMWLRj2008EFyTkvhtw2DY/depUxo4dyzfffAPA9OnT+f777zly5AhOTk60a9eu1DEWLFjAzp07mThxIt9//z1//vmnxUsikUhsUVg7Up+bS/ORIy3clQq5W5JrSCSSO4sbqW+raDRSrkkkktuO/OxsuzKIa3Q6hNHIhYQEZnp4kJOebnf97fysrJv5CBWCw5L633//pXPnzmg0GhRFITMzE4CwsDDi4uKYMWNGqWNkZGSQlZXFrFmz6NChA/fff7/p1aJFC+6//37Hn0QikdwzFCYZunL6NF4hITbjg+6W5BoSieT2xJZSXVJ9W1sU1qpVFEXKNYnkXiYrGfbEOVaD+1YghCmDuL2bgfnZ2bj6+Nhdf/tuxGE3cldXV4xGI4qiEBwczPHjx2nVqhUAXl5enD17ttQxBg8ezJkzZ5g/fz516tSxyEYukUgkpeHk7o4+OxtFo6HxwIEW8UHNR41SF6TS+iORSG4S9mQXL43itWqFEFKuSSR3C2f/hs1joctcqHbf9eNFk535F7smKxn+jIca3cD95lRGKCuOZhC3x/Ucrtff1rm53dT5VwQOK9tNmjTh8OHDdOjQgejoaN544w38/f1xcnJi0qRJNGrUqNQxfv/9d1avXk2PHj3KMmeJRHIPY2thejcn15BIJHcPhRZssFKrtkjCICnXJJI7n9ykXST57yQkaRcuRZXtkpKd2VDEs9PScCvSFqLJSDNrTcfTU4gKVtvywlEjh72u56b629nZ5TbX2wWHt0bHjh1rEvQzZ87Ey8uLbt260blzZy5dusQHH3xQ6hi1a9dGb8OVQCKRSGwhjEYyEhPZGR/Phv792RkfT0ZiIqLA26YwPuhCQoJckEok9zKpybAwrsLLeBWl6EZhUOPGplq182rW5McZM9i/Zg0/zpjBvJo1SVi5Uso1ieR2oyS5YsP1O0+kc7qy2tqNDUU8Jz3drC1Ecy3drDUdv5JKmxC1LW+Kbgb2WrWKqKlTTZuEZjjgel78ue4WHFa2u3TpwujRowEIDQ1l7969HD58mL///ptjx47RvHnzUseYM2cOb7zxBocOHXJ8xhKJ5J7EnoWpzs3trkyuIZFIHOQ2qZldSPGNwgsJCXYlDBJCAEi5JpHcDpQkVwpdv8shzjo7Lc2svV2xdzMwMyXFrjwUmSkVVz/8ZuKwG/m0adOIjY0lJCQEUD/o2rVrA5CcnMzHH3/MlClTShxj7NixnD9/noYNGxISEoJPsYB4RVH4559/HJ2aRCK5SxFClLowrRkdjXdYGFFTp+JZxthJiUQiKS+c3N3RubmZNgpN8ktR6LZ4MbtmzSo1YVBUXNytnbREIqlwctLTcSvS3u6Uthlor+v53ehCDmVQtuPj4+nUqZNJ2S5KUlIS8fHxpSrbzZs3l65QEonEboTRaFcmy6i4ONrIxalEIimBjORk9i5cqMZGF9mYy0xJwaOwrVv28c3yShTEZBfdKHRyc8PJ3d2+hEFaLcj1kkQiuQ0omm+iLNyreSgcVraFEDY/lOTkZAsrtTU+/fRTR28rkUjuMYQQCKMRjVaLRqu1f2EqkUgkJWArg3hWaioeRdqyYJbw7MQJui9darFRmJ+dTX5Wln0JgwwGKHAll0gkkgpBCKo0bsTrmZkIfb4qk8qoICuKwvmEBD5p1YphP/1EcLNm5TzZ2w+7YrbXrFlDt27d6NatG4qi8PLLL5veF746duzI4MGDeeihh272nG9bNm3axAMPPICXlxfBwcH07duXEydOWPRbsmQJderUwdXVlSZNmvD1119XwGwlktsXU3xjXBwbBgxAn5tr/8JUUm5ImSaR2K6lXUhxd/HCvBKH//c/dC4ulhuFQrB/3TqaxsTYVavWMzhYhseUE1KmSSQOYjRCSiLKx9NgYn+1TUlUj98A91IeCruU7by8PDIyMsjIyEAIQWZmpul94UtRFAYPHszChQtv9pxvS3bs2EHPnj2pX78+GzduZO7cufzzzz907NiR7CIxCGvXrmXEiBE8+eSTbNmyhQcffJCePXvy22+/VeDsJZKKQQhhUpCNBoPJmm2WCG31avatXm33wlRSPkiZJrmTKUy0Ux4Jdwot4deKKdtF3cUrR0aau4srCiiKTQv27rlz8QoN5fHFi0tMGKQoCl7BwbSJiytzHW+JipRpEon96NzcVIV6y0p4vCYsmQHfrlHbx2uqxwsS00pKxi438iFDhjBkyBAA2rZty0cffUTdujcQ0HQXsnbtWsLCwli6dKnJzT4wMJB27dqxZ88eWrVqBcDUqVPp168f06dPB9TPMyEhgWnTprF58+YKm79EUm6kJsOGhdB7JPjbXhxaqy/78GuvkZOWZpEIbffcuTQeOJDHFy/mq9hYs3PFF6aS8kHKNMmdTHm4hJeESX4tWsSVc+d47KOP2LtwIQH16/PA2LE0evJJdO7uGPPzeOiVVzi6eTPJf/5puv5CQgL/GzyYHsuXE96+fam1aiU3jpRpkhsmNwWaF7R3MU7u7ngEBEBqEkyLAUOxfDkGvXr8/mi1n6REHI7Z/uGHH6wez8vLw9nZ+YYndKeSn5+Pl5eX2WLf29sbwFS648SJExw5coQ333zT7Np+/foxfvx4cnNzcXFxuXWTlkhuBqnJsOJtiOpmU9m2yM4LoCg8MmGC1URoRRemNdu1489Fi+TC9CYjZZrktsLWJp6dm3t241p6AiBhNHLkm2/IvnyJVq+9hs7dHYwGGj71FFFTpiAuJqJdNgvOHUdTNQLnXiMZ8fvvbBwyhH2rVpnGOfj55zQcMIA6XbrccwmDKgIp0yQ3TF6qqmznlX/d6tuCorHZBgMsirNUtAsx6GHDAtxGTL2lU7wTcXh1umLFCubPn296v3//fmrXro27uztt2rTh4sWLJV4vhODy5cvk5uY6PtvbmKFDh3Lw4EE+/PBDrly5wokTJ3j99ddp2rQpDz/8MICprnhxr4B69eqRl5fHyZMnb/m8JZJyRQio1Rh2ZaptkcQ+GcnJ/PjGG+RlZVkt41Vaht79a9fycYsWpB0/TlRcHL1WrSJq6lS8QkKkon0TkDJNcjuR+W8CfByvtkVJTFBr2yYmWL/QXoTA/7EnYFem2tpISiaEIDstjdqdOtGofRt0y2bBxP7w+QL869ZF2boGba/aZi6XSrea8H+r6Ll8OZ3ff59G/fvTetIkxpw6RZ0uXVA0Grtq1UpuDCnTJDeT3PwUTlZWW7PjGRlmrem4MU3tb6zAWtpFNxeLxmbHDUPRauFcyYlpSTyBotNJV/JScHiF+vbbb6MpsrB9/vnncXZ2Zu7cuSQnJ/P666+XeH1+fj6BgYF89913js/2NqZVq1Zs3LiR1157DR8fHyIiIrhw4QJbtmxBW5AhOa2gOH3xjO2+vr4AXL582erYubm5XL161ewlkdx2FAhqPo5XF58fx5uSaAgh8AgIoPXEiehcXKxar+3J0HshIYGT27eDEHJhepORMk1SIWQlw544tS1CzoWj0LygLUp5WJoKF5mLp6sJgBZPt0gAVFjyRhiNuHl7o3y72lypdnVHOX8GxYbLpTItBlKTuf+ZZ2xuFN5LCYMqAinTJDeTPH0qpyurbVFsKdt5Il3tL9Idu5HOhveNrePWMNtc7GsZm/3NMsjJgqolJ6YlNBxhMNy19bHLC4eV7VOnTlG/fn0AUlNT+emnn/jvf//Lc889x7Rp0/j2229LvN7Z2ZmqVatiuMuyBv/yyy8MGjSIESNG8P3337N+/XqMRiNdu3Y1S7xRFmbNmoW3t7fpVa1atXKatURSTpSQRENsWQlCsGfhQv43bJjtMl4OZOjV5+Xx0PjxMjvvTUTKNEmFkJWsWqqLKdsaYzo0L2hvEE1eClGPgbMup9QEQMJoJKiR6lYZ1KgRGo0GkZKIMj32ulKtKNDxSfhySYkul8qGBWA0yo3CCkLKNInd2Nj0q1CEwKfXeBieqbYF3jdCCLx7qse9e443hUTYpPjm4rF9kFIsNlsI2LoOuseA1kbEsVaHsefTZS4Bdi/hsLKt0WjIy8sD1PhtJycn2rZtC0BwcDCXLl0qdYzRo0czZ84ccnJyHL39bcsLL7xAu3bt+O9//0vbtm3p06cP33zzDX/++ScrVqwAru+MXrlyxezawp1UPz8/q2NPmDCBK1eumF5nz569iU8ikdhHYTmc/KysEpNoKNNiMJ4/i5ObG/8sW1ai9dreDL3O7u4yO+9NRso0ye1EviaDk5XVtijZBb+1wtYeNPmptHkcPAKDSk4AtGYe5GZfV4qFEWE0ovnfYvP+Lm6qO6adLpelLoYlNwUp0yR2Y2PTr0Suppm35YkwQlYiyl8zYHt/tc1KRAgj2Zcvs3PaDDb078/OaTPISExE2CrLVXxzcetaqFkXvlhoKQPXzIXAUJi82FLh1uoQk5eAv5ovR7qRl4zDCdKaNGnChx9+SNWqVXnvvfdo166dKVnEmTNnCAwMLHWMM2fOcOTIEapXr06bNm0ICgoy2+FVFIV58+Y5OrUK5eDBg3Tv3t3sWNWqVfH39+d4gRWvMAbo0KFDREZGmvodOnQIZ2dnwsPDrY7t4uIiE3JIbjuuJSfzyzvvEDVpkpqgqASLjvbLxTQaMoFNMTEm6/Wu2bOtJkL7ctgwesoMvRWOlGmSiiA3P4WkyhCSn0LRX0i+JoPTflD7srmynZOejluR1n4UXPyrwcfTrcuuR/tB/HKU1GTY+LGa7KxGXRgxxVKpzs223+VSr5culxWElGmSm0pGunlbCrkZGeCktl42+mi9A1VF++hK2BkDoois+ns2RC3GNbw/hzdt4kKCmrdi1+zZdFuyhMYDB6Kt5HO9vxCWm4slbRQeTYCpgyF+ObRoq8rBxBMQGo6heyxKQAj/fvEF9Xr1kjKtFBxWtmfOnMljjz1G48aN8fLyMou93rhxIy1btix1jK+//tokmP744w+L83eish0WFsafRcp6AJw+fZrU1FRq1KgBQHh4OHXq1GH9+vVmAn/dunVER0ff09ncJXcWpvqy166pB+yw6Ojc3dG5uZVaxivi0UcB8AoJISouDo1Wi9FgQNFopNvlLUTKNMlNIysZDi6E+iPB3dw7pTDu0V+fyk1VXVwro+icrcuu2o3VBeb/rYbi7uKDxlkq1UVdLj+dbV151+qg9yiy09PL/VEk9iFlmuRGyTWmqZuBxrQblk+5GRngZxnLXRSXOi0hK8lS0QYQepSdsRgD2/DAmDFsef558rOzMer1bIqJoWZ0NG4RkdeToAmjpWGktI3Cb9fCiYMwZSni6TgUrRZ9Vhb71q7ljw8+oN+mTeRImVYqDivbDz/8sMkyHRERYZZEIiYmhlq1apU6xt2YzXHUqFGMHTuWMWPG8Pjjj3Pp0iVmzJhBYGAgffv2NfWLi4tjwIABRERE0LZtW9atW8fu3bv58ccfK3D2EokNUpPhy6XQfbiprI5ZfewTJ+j5yVI0dlh09FlZ6LOzzct4tW3Lnx9/bNN6rRQkrdEUtJJbh5RpkptGoYtmjW4WyvbNRghB5f88Aa0GIAwGFGuy66mxcDHRXNFWL7atVK+ZC10Gqi6Xxa/T6mDqUvAPJvPw4Zv1aJJSkDJNcqMUJjXzF+k3dzMQAAXnavXgrxmWinYhvvXR5l/ivqFDaDp8OPrsLPatXcexzZvJvHCBKk2aqEnQ8vNAYyW7uD0bhScOYvD2J2HZMlWhz8oyC+tLlTKtVBxWtgG8vLxo3ry5xfEuXbrc8ITuVF544QVcXFz46KOPWLJkCV5eXjz44IOsX7+eypUrm/o99dRTZGVlMXv2bGbPnk1kZCQbN27kwQcfrMDZSyRWEAJ8AiBmIuj1IARCCIv62OHt29OkRyyaEiw6hu6x7Fu71nRo/9q1pBw8SLelS6X1+jZFyjTJ3YbZRuHx4zw0bhxVeo1EKSq7CpOdfTLLujyzpVQfTYD4YRC3DFq2hw0LTC6X9B6lblZqNNLdsgKRMk1yR6FzQ9G5wFUbnoMR/aDtcshMQtkbB1ePo6sUQZPesdw3dAhcSUNZFAfnjqNUrYV4eor1zcVSNgrF1KVoqlQjPzubuj16WBhGpEwrHbuU7Tlz5jBgwACCgoKYM2dOiX0VReHFF18sdczExETmzp3Lrl27uHz5Mn5+frRq1YoxY8YQGhpq3+xvIxRFYdSoUYwaNarUvjExMcTExNyCWUkkZcRoVGN7NixUd0KrRiB6jwT/EI5v3Wrm+n1s82buGzIEMXmxeYZeMCXRUAJC2F0sNCTl4EE8q1QxWbGl9fr2Qso0yd2EMBotNgqN+fn0WbfOXHaVluzMFMe4wrpSrSgQEIIYMVVNhqbXqx46chOxwpEyTXJnoSD0uSiVrCjIfo1VRfvYatgZa2b51vw9GxG1GCW8P/y4SZVZgFI1HNFzhPnmIpjFZouW7dWqCUVjswNDMObl0WLkSFqOHo2xQKbZYxjxDA4maurUe75yjF3K9rhx43jkkUcICgpi3LhxJfa1R9nev38/rVu3Jj8/nw4dOnDfffdx4cIFFixYwJIlS/jxxx9p0KCB/U8hkUhujKxkOLQU6j0NLpXVbJXFMvQqn85GTF5Mj08+4eK+faZkHLW6dCHr0iXcHu2PsVkbtF8uNglq0XsUVK7C/4YMMfUH88zi0pItkdxb2EqCVu4UxCoKIchISjJTtMGG7Eo6CXm5JSc7+3YtNHkE0ecZGDEFReeE0OejaHUmpfp8QgKftGrFsJ9+IrhZM9OlcvEpkUhUFDQad6DYGqiwxJduEhj1am6Lv2ebu5I3GguZiRaKtnq9GstNUBt4aoy6lgNY/S5K5wGIKUtQildg+O5zxKP94eEu6Ie+js7NDX1WFvs/W4ebfwB1unQh9fBhPm7RwkKmlYRXcDBt4uIc/FzuPuxSto1FUsgbbaWTd4Bx48YRERHB1q1bTWUWQC2t0LFjR8aNG8eWLVtu+D4SicQOhADXAGg2URXsudlqyRtrZbymx2Jspibj2BQbi5O7Ow2ffJJds2ZxeNMmHhgzhkZDJqBzd0eflcW53bup9kgg0bNm4VuzpswsLpFIbn4SNCHwf/wJ6DkAf30eCMGhL780r36gKDZll1GvR+k90tICVIhWh2jTA0VRSE7YZ1Opfmj8eAulWi4+JZLbCBvJGnNTD6kbgqmHcPG3T7F0CCEI6TaHUN0HCH2uug5TlIISX0koBxfC1eMoQQ9Dg2cgakmRJGkKRDwJf82yHcst9HBkMXSccF3ZLrBgK9NWIO6PNrNgG3uMQAmqSnZaGrvnzePquXNUCg21cBfPz8oq/8/iHqBMMds3yq5du1i1apWZog1qfcOJEycyaNCgipiWRHLvUSDYKRDsVIqAuiPg099Ut6Jv15r3N+jR7vqaJoOeplG/fujc3cFooGZ0NIc3bWJTTIyqhLu5mYRyUOPGdJo373pstgMuSBKJROIQwogoulitFAH1R9Ji1EjO7trF/rVrQVFwr1wZJ3d3Lh8/zoWEBDPZ5VerFk/v3QvWLEAFMYyKf7DJim1tASqVaonkDsBGssaMs/9wujJ4nf0Hl7r9y/eexRXqShHQ8DnV6FG8xNfxNXDxV0SbZRAajXJwgWrR1rnbjuU2PcQJ1bvHxU01ooC6pguugTJ6JvoihpF9a9dyfOtWui1ZQtSUKWh0ugpZq92tnj92KduOZmBs3bp1yTfV6cjNzbV6Ljc3F62M3ZRIyk5qshpr3XukKYM4oO6cCqOakdJoUBeKtmo3tl6slr45cdAU7wOotWd7jURz+TyaIvHc1XuM4Ok9e9g4eDD71641W3xeSEjg5PbtVH/kEX584w2aDh+O110mSCUSiQNcTTNvy4HCerTi6EoUKzJNab2YnsuX06Dfk9Tq2BGdmzvCaOChceNIOXBADXMRgvysLC4kJLBx0CB6Ll8O97dD2bDQLDRGKUh2JpFI7k5sleWypza2LXTeobZrZleKgNB21kt8HVuFkvYvPLYDmk4GnbO6hrMWy10Ur3C1rFdusQRmWh367Gze8PQ0GUYKQ/uc3NzK5C5eXtytm5R2Kdtt2rRBURSEEABmuxxCCItdD4PBUOJ47du3Z+LEidx3333UqVPHdPzo0aNMnjyZDh062P0AEomkGKnJ8HE8RHW7rmwLI2Qmwb8FFuzG48At0GbtRn6MhSptzON9TLVnV1lkrNQUxHP3XL6clIMHLeKzm48ahaLV0nrixJv88BKJ5HYnN+msumBNOotXeaRn0bnj2iBKtWjbqkebuA3qDCSyXTOU/bNMFqUq9Uby9N49bBykbhQWsn/tWi4dOcLQH3/E6empKFodIj8PReckk51JJPco9tTGtkSNzfas0dZGzWwFIvqW7BZ+6U9IeAsaTYA2vrD6L6hnJZbbNKQO6sTC1mLeiVodovcojELQeuJEq6F9jrqL363W6PLELmX7r7/+Mv374sWLxMTE0LZtW/r06UNQUBAXLlxg/fr17NixgyVLlpQ63pw5c4iKiqJ+/fo0bNiQoKAgLl68yL59+6hevXqpGc8lEokDCCMcXVEkkYYCUYsdj/exVXsWLOO5C7K4ykRoEsm9S25uMklJCwkJGYmLS5F4yDItWK0gBD49x4PTJJyMBrX8jTWZ5tcY2nyCcnSlRUIh5e/ZELWEnivMNwo1Oh0PjB2Lk5sbl/f8xoGnOhD58RcEtXv0xuZsA7lglUjuPoQQBBfGZgsDIvUfFN/6cLmIx6DOzTG3cICgaqBzUr0QfyyWJE3RqTHeHiFq/p1CCqrD4B+Mk6IQNWUyGidnjAWbiGVdo92t1ujyxC5lu0mTJqZ/9+nTh379+vHWW2+Z9Xn88ccZP348H330UamW6erVq7Nv3z6WLl3Krl27SEtLo06dOgwfPpxhw4bh6elZhkeRSCQmfPzVVgjVol10gemoYHdxg7yckmvPghrP/eVimsRM4uT27TIRmkRyj5OXl8zp0/H4+3czU7ZLIjstzdR6VSt6pljmXqMRcrNRdOoyRtFobcu0UjP3xkBoNN2XLuXXOXMsZFeezpUfTmRR2yfA7md3FLlglUjuLoQwkpeXRFLSQrKzj+PmFkFIlVice+1B+WEwHC+wOuuzQZ9lv1s4qOuydfPVcoNV2qjGkYwTap+6I8CzKly5DK27QURDUxkvTVBVQPVQTv16PQH/fZpLLy8ioOeAm/dBSBxPkPbtt9/yxRdfWD3XsWNHevXqZdc4np6evPDCC7zwwguOTkEikdhACAGRTVC+S0EIAwiBcupL8wWmI4I9Pxfa9oSwyJJrzxaSeAKNswu9Vq3CaDCgaDTSoi2R3KvkpFxv7QxwzEs8C24FbeOCg0Uz9xpyVUUbAXkpsH8JXD0BbZbakGn2Ze5VDi6gSvM4VXbdoKVHIpHcm2g07mjcAxHCyIULKzl8OAZRRO6cOTObyDqLCWq7HCXtYIGFW8DxdVA3xj638NxsVem+fBEGtVDD/TpOUNdoOVlqn5+3wNDXEE/HoWi1GPNyMeTr0SiKufEjR2YXvxU4bG7y9PRk+/btVs9t27ZNWqUlkgpCCCN5uYmcOhXHwYP9OXUqjrz8JET9kRDRr2jP64JdsbHfpuig3kiE1glmrEI/YBzG/LySa88ChIariTsAjcw4LpHc2+Skmrd2oGRnmLVq5t5ElL9mwPb+KP8uVo3bx1bBZ7XhrxlwfDUcW21dpjngyaNotBDtz6Wv15vJrpJcvKX7t0Ry55KZkmLWlhkh8Lx/PK1bZ+LecDh5eUkWirbaTc/hI7Hk5SYhGo1RZRMK7JsLHqGq+3dxGabooHURt3AhYOs66B6jJrGdFgOtPOERD/U1LQZ2/A9RuUqRMRSc3N2ll2EF4fCnPnr0aN566y2GDRvGl19+ya+//sqXX37J0KFD+e9//8vo0aOtXlepUiX27t0LgJeXF5UqVbL58vb2vrGnkkjuBVKTYWEcXL2s7qKeX8Fvu2ty+vQMLl5cw+nTM/jtt5pcuLgK0Xa5GrdYiEmwL7Yp2IVHMIc3bWKmhwdveHiQsHo1oucI0NpQ0LU61aVJkcJcIpHcGGaZe1fXLFCq14CTO1w7Y5lkyJZMc8CTRxgNcOWS5akCF29rVRRKOieRSG5vck4eNWvLROGG4J8zYPsAwEhS0kILRbsQd/f65OkvQZ0hMDwTMfwaotGLcGkf1B4ITx6DppOgVn+17X8Kag+A+GHXq8OsmQuBoYjJi9W1lxDXrdRaHRSUJ0zb8X/wiIfFBqLk1uKwG/mkSZPw8fFh9uzZLFu2zJSlPDg4mLlz5/L8889bve7ll18muOA/o5dffll+6RLJjVKQdVwMfY283CQOH4m1vot6OBZf7zY4NxqjxiaC6rr0w2BouxxC28PBBdfjferEIryqglC4mphI3R498A0Pp1anzhAQAFOWqDunxWrPMnWpmv1c/m1LJPcWtsoN3gCeEdYy95bgEl5UpoW0g38XXZdpQpSeubfuCBRFo8ZCSiSSewLNtXSztnSK5Y4oXspL546iWUV2tnVPmsDAftStu5y8vCROnYq7HssdNhJnlxCUb9cW5Mgp4hZ+YDc0CYTnZkFIzetlCDMzoMsgaNkeNiwwHaf3KFUOazQYrqZLV/HbAIeVbYDnnnuOZ599lnPnzpGcnExwcDBVq1ZFU4J7wtSpUwE1pvSFF17Aw8MDFxeXss1aIpGoaDTg7ETSKdu7qELoSTq/mBoRE9T/EAo58Tmi1gCo3gWlsHZjfi7GvDwUASjQYtQoWo4ebR5/3Xkg3B9tU7hLJJJ7DGvlBqGM9bQ16HQBuFdrAX9ON1eOS3MJP74W0g7CQ/OgRRwoWsjNAsUJ3INtZ+5tvQTcQxB6PUrxmrQSiUQCau6Ix+cQ6vQBIj9X3cQrviGoz0EIA25ulp40Hh6NqVt3ORcvrubw4Vjrsdzt+6MMaqFWfXFxu64o124M4+bByDjQaBEGAxSuyQJCELGTUJxcEPm5KDpnafS4zSjzylij0VC9enUeeOABqlevXqKiXZT8/HwCAwP57rvvynpriUQC5BpSON3ND0XR2txFLSQ7+wSKzh2ax5tck0T/U1C9C8Z8PUajAMAoQI8GCpJoaLRaoFj8tUYDASHw9FSYsUptA0Kkoi2R3KvkpkDzgrbo4aSzZm1pCCEI6TmPRx65qC4oQ6OLhL8o6qs0l/DLCZC4HXJz1fjFhz1g80o1M29Ef+hbzEWz7zGIeAquXSUn8bTjzy6RSO5+jEZISURZPAMm9kdZ/AYIAxxcWGxD0BXQEFIlFqVYiF7VqmPJy0u0ULShWCz3U2PM3cJBdR//fbuqZC8PIH3DrOtrMkUhfePbsNRDbaWifdtRJsv2jeDs7EzVqlUxGAy3+tYSyV1FnjGVk49cprqNXdSiuLmFq9nJm05E0WgRRgOXjx0n5+qfhDRrhhBGtaNWi5OTc+lhHopyPXbbVgy3RCK5N8hLVZXtPPNEaI7U01YTPCaRlFykTE7wCJx77YHzP0NgSxSdO8KYB01eQTmzGS79aTlQ0ay9hYvVNXOhy0D45f/gSip0KOKiuW0d+ATAw13I3vMr0olcIpEUovMOVRXtLSvNw+dc3eGZaZZeNvpsFEMOzi6hRNZZXCS8TyEw8EnOnJlVshfixcXUeHSCeq+iaHWI3qMwZmegzUkFVysD6O8cd/F7LbFkhaySR48ezZw5c+jYsSOurtZ+MRKJxB40GleMedmEhIzkzJnZVoW4ougICRmF0SD4cfp0Mi9cwCMggOajRuFXq5bqHl7g5KKRirNEIrnFqGVyVlhYfLKzT1Kv3jLyKtci6eys60p4yEice/2O8sMQNSt5IYoOEbUEpTBrbyEnDsK+3+CRrqrL+yez4eI5CAy1jG+USCSSAjwj2kJqkmWemsLyWxZeNgKOr0Wp/hhBQf3x9WlD0vnF5OQkotW62+eF6OKuupAXhrRodYjJS8AvCKXQMHKHU5hY8l6hQlbWZ86c4ciRI1SvXp02bdoQFBRkZklTFIV58+aVMIJEcm8jhMCj/hO01g5AGPU4KyHFdlFVFEVHZOQSnJ2DAYWoyZPR6HQY9XoUWZpLIpFUCNeTDAkh1ASPxRRtNb7xk4JatVbiGyOXqLVqAx+Ei7+o2cTrjQSPEMTVdJTW3SCioWVOiYAQROxEGd8okdxLlCmJo4J7aHNYPMNc0Ybr5beirNTG3jcXag9EObMF59xL1IiYoHrl2OuFaNSjDHzZlBPH0D0WJSCEPQsW0PK550Ar/W/uNCpE2f76669xcXHBxcWFP/74w+K8VLYlEtsIYSQvL4mkpOvullVDxxBUZRC+vm1JSv6Y7OwTuLmFE1IlVs1weeJzRM3eXEhI4JNWrRj2008EN2tW0Y8ikUjuNYQgpNscQnUfIPS5gJGkZMsEj6XGNx6Owdc3Guf6z6A0HI0xPxd9nh4nAUolX0TsZBQnZ0R+HorO6bpCXRDf6HttFumeE/DtO+kWPbhEIrmplKRQ20riWAIajRuKkwucs2GNLgxPKZ548XIC7BgGbZahZJ+Hv2ZD5jlo8BwhwSV7IQYHPc2lYyfwGTIBnbs7+qws9q1dy+5584js1g1jfi4ag0zieKdRLsp2VlYWSUlJRERE2GUpO3nyZHncViK5Nyj8D6TvaIRP5QJLT4yFpadB/Q1UrtyVGtVeR9G5IfRZqjvTvnng1xAloi+ewcE8NH78PRMnI5FIbiOEEbKSUA4uhKvHUfwaQdMJVlwr7YxvTFpAjRpxpmNO7u6mNUjq1+sJ+O/TpL68iICeAywHsBLfaPT2Z0cS1PP2L+sTSiSSiqIMCnVJGI3ZqvdLVRvW6KMJMHUwTFsBVYuVUK0/Su1z6Cg0eg1c3VFys3F2ciYyconFGk71QlyKk3MVPn+iBRf27cPJzY38LFVOaXQ6+m/eTP7Zf5F1nO48HE4f/M477xAfH296/9NPPxEaGkpkZCS1a9fm+PGS4xEkEomDpCbDircROify8pIshDSoC88DB3uTl3sOjq+BpR4oSz3UutqXEwpqzRpMcTJeUtmWSCSOkJUMe+LUthjZaWlmbXF03qHX69Gurgl/zVDl1B+TrLpWajRu9sc3KlpY5s+VjW9bbvY7WF/W6BPAzmS1lUgk9zqCrMS9qqXcVj6b7z6HK5fU0oFNJ0G7VWrrHgIoiGq11RwR8cNh6UzIuEJQ0ED+859ThIVNIjCwP2Fhk/jPf04RFDSAc7/8SsrBgyCEmaLdbelSvIKDyT36+617fEm54bCyvXjxYqpWrWp6/9JLL9GgQQO+/PJL/P39ef311+0aJzU1lYkTJ9K+fXsaNGhA+/btmTRpEikpKaVfLJHcjaQmw8I4tS1ECKjVGHZlgqcXSUml19Mmop+51UbRYaz7NELIuESJRFJGspLhz3irynZOerpZWxzPiLaW9WgBMMKV44QEjzQrk2M0ZmMwZNkV32jU50LuJYcexdXHx6yVSCQSa1w7/gP4h8CUJarCrShqJvLCiixTl4JPAAIQBdeIIq98d2+MMRNh6lKMMZPI1zqDAGfnEMKqTaJ+/VWEVZuEs3MIiqKh+iOPMObUKVpPmkSj/v1pPWkSY06dovGAASgaDYYrFyvss5CUHYfdyM+ePUutWrUASExMZO/evezcuZNWrVqh1+t55plnSh1j9+7ddOrUCaPRSPv27alTpw4XLlxg/vz5zJ8/n61bt/LAAw84/jQSyR1M5r8JeHwcT2b9B/FoFayWm0hNUl3ILyaiTF1qfz1trRsYstXsvK2XoHiGotaplUgkkluJgnvV5qo126RoK6BzU8vk/DER5/briIxcXCQ+W3Dx4jqCg2NKrbJQFrdKN19fOFXQFuFeK0cjkUhsoSZx1F9OUhMrdh4I7XqDTgdOLpCfC3o9uLghFMjLSzTLoxMSMhInp2C+HjWKfatXm1zCNTod3ZYsofHAgaTsfIfDTjOJSB1CaK8P1btqNHiFhBA1ZRIaJxeMBUkcZTLbOxuHLdtubm5cvXoVgO3bt+Pp6clDDz0EgI+PD1euXCl1jNGjR9OgQQPOnj3Lhg0b+PDDD9mwYQNnzpyhQYMGPPfcc45O647h0KFDdOjQAQ8PD6pUqcIrr7xCXl5eRU9LchuQlarWqM3N01+v6/h4TVgyA7avtz+TpSEXavaEppMw9D0GtQeAQApryU1DyjWJLTQaNxSdi1qP1q8xImopYvg1GJ6JGH4NUb0LyvG1BAUNMnOtNBqzcHGpTmTkEjOrN1yPb3R2Dib3SPm5VcowG0khUqbdxljzAixPCpI4tm6dSUi3OaqHoQIY0+DvGbC9v9pyDaHAhQsr+e23mpw+PYOLF9dw+vQMfvutJhcurKT7p58Q1KiRySXcqNezKSaGjORkPCPaYjRahrooisKVjW/DUg/r4TGSOw6HLdstW7Zk9uzZaDQa3n77bTp37oxWqwXg+PHjhIaGljrGgQMHWL9+PZUqVTI77u3tzWuvvcaTTz7p6LTuCNLS0mjXrh21a9fmiy++IDExkZdeeomsrCzef//9ip6e5HbA1R33WnUt6zoKAWgIqRJbsqUneCRonKDdKoz5uRjy9GhQUDQO76tJJHYh5ZokX5PBycrgITIszhmN2QhjPkqNHoi2y8jLTTSvmV09BmeXUJQLv+Ec+AA1asShKFqEMMClCwQFDsDXN5qkpAXXqyyEjMLZORhFkW6VkvJHyrTbnLIkQstNgeYFbUkUT+IY9DA0eEbNN7EzBoTB5JUjKkWQF9bOZh6dI0di8fFqwwNjxrApJsZ0zqjXs3fBAqKmTIJTJczFShJHR5FJH28PHFa233nnHR577DEef/xxwsLCeOONN0zn1q1bZ7Jyl0StWrVItxHbdeXKFcLDwx2d1h3BggULuHr1Khs3bsTPzw8AvV7Ps88+y+uvv05ISEgFz1BSYQiB/2NPQM8BuBgMsCjuuqKt0aiZLA16nF1CS6mnXeX6LiyKWXZeieRmIOWaJF+TwWk/qH3ZUtkGQCiI8D5cOL/CQnadOTObyDqLCaoyCHJzUT6ZDWkXUHwD1PqyBiMaUZkaYVNQNE4Y9bko2ht0q6zSAESU2kokxZAy7S4kL1VVtvNSrZ7WegdeT+JYNLdE1Q5w7Qzsm4dovQginlRrZuuzQKMj6fT0EvPonE9ZTMOnJpgp2wBpJ06gcXJBo7m5NbMLkz5GWkn6KBXxW4fD5q769etz4sQJUlJSOHnypCl+G+C///0v77zzTqljvP3220ydOpWdO3eaHd+xYwdxcXF2jXEnsmXLFtq3b28S3gB9+/bFaDSydevWCpyZpEIxGhEpiSiLp0PcMBStVq3rGN0H8cVhxO482HYRodWAUU9QUH/+0/KYeSbLlscICnwK8tQQD5Z6kH3sB6loS246Uq5JbKOg01UGjVatpHDERs3sI7Hk5SWDiyv6Ia/C6wvQD5nAvq3fc/Tbb9E5O3Pxh7f48UcPkje9eONyrdp9MHKH2kokxZAy7Q6lBOt1aRUTXOq0tJLEUYGIJ+Hi74iev5FXvS2nzs7i4MH+nD73DorG2a48Ok5u7ujczJVq3/BwjPm5GI0VVzNbVl+4dZS5znblypURQpCcnExgYCA6nY5GjRrZde348eO5cuUK7dq1w9vbm4CAAFJSUrhy5Qq+vr68+uqrvPrqq4Aau/DPP/+UON6lS5f4/fffSU5OJjs7m8qVKxMZGcl99913Wykbhw4dYvjw4WbHfHx8CA4O5tChQxU0K0mFYjQitqxEKXQZVxR47QPo9zyi4QPk5SaRdCrOLOmGszYY57ST1Kg24foO6/F14BoA1buAPhcaj8cjrHFFP53kHkDKNYlVCuIeQ3UfIISh9EoKBTWzf5o9m6vnzlEpNJTmo0bhFRyMotGgv5KI0e/G3SolktKQMu0OpQTrdU56Om5FWnMUnKvVK5bEEdVdXOeOqNmLCxdWFdssVKhWbZxdeXQM+jz02deVao1OR/NRo8hO3FuGh7SOq48PpMsKC7crZVK2v/32W6ZOncpff/2FwWDg999/p1mzZjz99NNERUUxYMCAEq9v3rz5DSvBV65cYdmyZSxbtoy///4bIYTZeUVR8PT0pGfPnowYMYKHH374hu5XHqSlpeFj5Q/B19eXy5cv27wuNzeX3Nxc0/vCBHX2cuS82j/c3x2dTv3KL17JIT07Dy9XJ4J93Cz6Vvdxx9VV7Zt6LYfL1/Jwc9ZQzc+zTH2PX7yGwWgkxMcdz4K+6Zk5XMzIw1mnoYZ/2fqeSr1Gnt5IoJczPh6uAFzL0ZOUnuVQX61GQ0Tg9b5nL18jO8+In6cz/p6O983J0XMmXV0Y1qlyPTdBcno2GTn5+Lg5E1jJBZGaZK5ou7jBvt8QLdpw4cKKItl5Vc6cmU1k5BKCggeiHPgIUveieIQi6j4NHiEIARonN2gRh16v58QNfvfl8Tux9n2Wx++k8Pu80d9J8e/zRn8ntr77u5WyyDUp025jmZaVzMU/FnClxkB8K1e7/rvO03NNX4krqdlEFPE6TE7PJjlHh954fTkhhBH02aBRjymK1u6a2a0nT0Tr5IIhP5dr+Qppmfn4ebkUjAvJOToyz181++6vGV05k6MjJz3b9N27+/tz1jmANGcfvHL0UqZJmWY3FSHTQMo1e/pqNRqKqrdmv9eCY5n5gsTzVy1+21f07pzJ0WG4lmP6becaIZUg/AuTOBZFr+abyMtLtuKVY2fFhCpPoxQpu1pYM9szOJiUHz5F4+SO0ahY/e6tyTWjxofkP31JesiPBkXkWqarN5n6ShidK5ltJpxIzyfNN5Qc/fX5FX73GdfM51z4fXr5BpiqMhT9nfgUqdYg5ZpjOKxsr1mzhoEDB9K3b19GjBjBiBEjTOciIiL45JNPSlW2P/30U4cnWpSZM2fyzjvv4OvryxNPPMHUqVNp0qQJ/v7+uLi4kJ6ezqlTp9izZw9btmwhOjqaRx55hPfee4/69evf0L0rglmzZhEfH1/m6zvO/QmAJYObE12/SsGxnaRn63HSKByd2cWib3y3egx5SI2d7zz3J1Ku5aHVKBy30vfZNuG80qkeAD0/+IWzadkoCpyc1dXUN3qOGjLwZIuqvNmnCQBPLNzN0YvXUICTsy37dqgXyMdD7gdg2Kd7+etsOgCnivRt847a94GavqwbqeYLeHbVXn48mmqzb8OQSnz9QisAJnyRwFcJyRZ9W7+1EwHUrOzOD+PbAvD21n9Z9ssZi75Rb+/EKKCKtwu/TWgPwNJfT/HWt4ct+rZ66wf0RkFlDyf2TIxG2bAQwusjnhoLjz6J4uKOMBpUl8vDNlwuD8fg6xuNc/1nUDQajPm55OfmozXCq18k8N++9wGQnqM3fUefjfoPLWtULvh8d5CRa8BZq+HIG51NYxf2nfNEY3o1rwZAp/d+5HJmPjqNwjEr3/0rj0bybFs1lOSx+bs4fyUXjQInrHz3Qx6qTnw31fvliY9+5eSlLJvf/eONg5nfvxkAA5f8wf6kqza/z9a1/Vkeo5YKHLnyT3afTLPZt2k1HzaOVjfeXlz3F9v+vWjRt+076ndfO9CTbS9FATD96wOs23POom/rt3ciBFTzdeOnV9sB8N6Oo3y444RFX8l1pEy7jWVaVjLdtoZz3nCEKt6nTTJt9d/pTDuzGj5N49Ts69+FKtMepW9uIo2qh6pxjwjy9CkknV9CdvYJ6tZdal8lBWHgwuZXOeb7MRO+n0diTjBuThr+na7KKYPQ0ifhUUj4yUymxSRPZXduI5wP7zDJNI+AABq0Wgo/wZwqyVKmIWXazeRGZRpIuVa8r025NvR6UjQzudZGPfbRfgPvb/rJYtxHEz/kvMGfKom7THLtfxe9eDN5MYfy83GpZE1GCZKSP7aqTJ87N5egoIHFyhaqKIqOyDpL1ESOWh33DR1KpapVue/pkXgFB7PndBrNW48jyGkihvxcvvjnIkt/Pkl89wYlyjWj1pcHvZfDQYU5B67LtV7bnTmTuxr3s3kcbHN9jgO2psLTCwk+msWrLdVjhXJNAYYWeR4zuRYXB0C3t38wk2ttCo43eu0bQMo1e3E4Znv69OmMHTuWNWvWMHToULNzDRo0YP/+/eU1N5vs2LGDL774guPHjzN79my6detGWFgYHh4e6HQ6/P39adGiBaNGjeLLL78kOTmZqKgoduzYcdPnVhK+vr5WS6OlpaWZxQYVZ8KECVy5csX0Onv27M2cpuQW4OqkRdFowS8QsWIPedFtOZU0i4MHByDQ2+VyiXLdm+Prw2k8/sHPbN53k0phSCQ2KItckzLtzkOTlWnznKKAk86FSnUfQwAXzq/kt99rF5TCWc2FC6sJDo6xKOF1/XodwVVGIoSCMORZLYcjkdwqpEy7txACdh5NhfojoaiM0rmVGJedmZnAoUODCQoaYFa2MCxsEv9pcYyggKdQvv8CYTDQ/ZNPiJoyiSP5qt25ljaLH6fNYEP//vw4bQbRgfDV6Ifx83C+FY8sucUoorj/dSm4urryzTffEB0djcFgwMnJiT179tCsWTN++OEHunTpQnZ2xQX83860bt2aypUrs3HjRtOxwjj1pUuXWmxe2OLq1at4e3tz5coVi/Jp1pCuSaX3rRA3ci8nBMIsFkijcad160wOHuzPxYtrbH6ngYH9qV9/FXSpRsqI2Yh2vUnPzlPH9VbnoNfrOZGadUPfvXS5vL1dk24HykOuSZl2G8m01D+58lkrUtttxbtq8+u/619Xcu2v0Vyt8x7h7YeYxs3K1eOqMaBxckEYjeTlneO33RFmm4UeHo1p3nwPFy+utmkBCqoyUHUT/99zHPX7iMDzo9G1mWmSaYlfPMsR34/wSn6eSu1mmL777K3vYzgxnrOBb+PTLub6d3/oT84O70TOf7+kWtP7pUyTMs1uKkKmgZRrFn3z0/HZvBR6j+SaZ8D13+vlIzCwOazcy9nAOtd/r/9ugL8GktlwBYnh3cx+22mfzUCTOotTnpMJ7TXW9Ns+v3YGuqsf4NRpJ97VasGRFfBjbEHstoIYfo1TZ2dx+vQMm99b7drvExL0NBjyVe/E3Cz4di3KZx8g5mwiM/M0f57tQGT+6wS0ncC+lSvZFBODsYhrt0ano9uSJTQeOBBFoyHtsxk4XX6D4+5TCew2xvTdp2xcRc7bL5L87Bwa9+l3/fv8cQXsfw5j/fkEthlsGvfn73ezvk9vxvzfF9Rs2dLsuzemXeL8umU0H6la26Vcu3k47EZepUoVDh06RHR0tMW5hIQEwsLCymVidyOdO3dm5syZpKenm+KB1q9fj0ajoWPHjjftvtZ+RIHerialrLS+/p6uph9nWfsW/dEX4uPhavoDKWvfon+khXi66qzOzZG+RYVKWfq62ugb7ONGcEFEjbowNY8FMhqzMRiy7Ha5VC6ew93fHw8r36dOZ30Ojnz35fE7sfZ9lsfvxNr3eTv8Tmx993crFSHXpExzvK/dMi0tBW9dFt7aa1DkuV11Cq66q/h7F1k2GI24XzkPGxbCxUSY8rFVl8tCC1Ddusvx8WlHcvIiU83sKoGxuLhVBQEazXVnO29nI6HF5qYoEOyqNzvuVrM2nMqhXqPa4ONm1r9aXgr4uoDr9TlLmVZyXynT5FqtOOUi18iALxdC75HgobqBe7rqCBaZ7H1/IZULFD4o8ns9dMxUT9vTP/j6cxQJm7f2e/VwUqw+s7cui+quenwLn1sIgvqMR9FNQhgNkHQaavWHKm3gyGLIOAFphwgJHlliXLZ/5e5QmOjWxQ0lJwu0Opi6FMU/mMx9n2LUZuEZ0ZZrSUkWijaotbc3xcRQMzoar4LScp6aHHW+VuSaq4diUrQB/N00oLsKHlqzvuE+TvimJeKqK9K38LuvUom6BW7hIOXazcRhZbt///7ExcVRt25d2rRpA6jJyPbv389bb73FM888U95zLJFp06bZPKfRaPD29ua+++6jVatWt3BW1hk1ahTz58+nR48evP766yQmJjJ+/HhGjRol6zbeK6QmqwvT3iOhciBJycXdxe1MuhEyCvLVcx4BsmyDpOKQcu0uIz3VvLWF0QhbVkJhgkd3T5SpS226XF68uJbMzIPUqjWPGjXiUBQthvxcDHl6FBSUAkVbuHmZtYUIxcusNeEbYN5KJDeIlGk3gdRkk+KM//WY62vJyeyMjyeyWzeTsn1LEEbISkI5uBCuHkepFAGRsSCAYyeg0QRwdUfJzcbZyZnIOostkqQpio7IyKU4u4SgPNwFhk+ExBMQGg69R6nPWVBJAT8F19Dm/DhthoWiXYhRr2fvggVExcVh1PjAXjB28DHr4+7vb9aa8PE3byW3FQ4r23FxcRw4cIAOHTpQubIaxN+5c2dSUlJ47LHHeO2118p9kiXx7rvvkpeXZ3Jdd3V1JScnBwA3Nzfy8/MxGAw0a9aMzZs3E1CBiomvry/bt2/n+eefp0ePHnh5eREbG8sbb7xRYXOS3Foy/03A4+N4Mhs+gsfDwVYXpqUm3YgsSLqRdOoWzlwisY6Ua/cgQkBq0nVFu+CYEIYSvXIyMxNIT9+Oj4+6+a0ATu7uZtVJjB5eYCxoi2DUepm1JtyDodlUtZVIygEp0+5etN6BqqJ9dGWxmtrA37Oh9WJo0h8G3w9njkJOFsqj/QiKX46vTzuSzlv3ysE3EBE7CcXJBZGfi6JzVl1xCtBo3NA6uXD5eMlVGdJOnECj1WJ09leV7U6+ZucLjSsWRha56Xhb47Cy7ezszJdffskPP/zAtm3bSE1Nxc/Pj/bt29O+fXuHJ3D27FnOnj1LkyZN8PDwcPj677//nieffJKpU6fSvXt3PD09uXbtGhs3bmTatGksX76crKwsBg4cyPjx4284E/qNUq9ePb777rsKnYOk4shKTcUDyLp4AXcbC9OSXC5DQkapiraiUcuEjZhqtksskVQEUq7dYwij6qFjKLJQzckCgyAkpGSXy5CQUSAUfvzJg4jUIYT2+vDG5uIeDC3ibmwMiaQYUqZVPJkpKXgUtnXLZ0yXOi0hK8lS0Qb1/Y+xqht5vxfgredVhfnbtSinj+C0cAfVq01Gq3MmPzuL/WvW8scHH9Bv0ya8QkJI+uoljvt/alWuGY3ZGPJz8YsoOUTQNzwco8EABkP5PLDktsBhZfvMmTMEBwfTtm1b2rZta3ZOr9eTlJRE9erVSx1n0aJFxMfHc/78eQD++OMPmjVrRs+ePWnTpg1jxoyxaz6jR4/m5ZdfNis35unpyaBBg8jMzGTs2LHs3r2bSZMmlehyLpHcCvKVNE52BBclDVAICR5hdWF68eJasrKOcN99O00ul0IYAM11K5B/MIyMu9WPIJFI7kGy09JwA7KvZuCm0cK5YhYaIVB2fY1zVDciI5dw+HCMdZdL52D0WWky47hEIikRk3GioC2k7Eq4gnO1evDXDEtFuxDf+oi8S/D4EJRuw9VkZ9s+A6/K4OzKxy3u5/LRo+RnXZdfha7fIEqQa4KcxL00HzmSXbNnW3Ul1+h0NB81yhRS4xDSw+e2xuFvtGbNmvz1119Wz/3zzz/UrFmz1DHmzp3L888/z+DBg/n2228pmhC9TZs2rF+/3u75/PXXXzaTstWoUYN9+/YB0LBhQ6ulHCSSW4lek87ZTu4YnDJRFA3OziFE1llsURJHUXRUrToGrcYVRdHyyy/VSdn3kZm7pUQikdwqctLT1fZSKhgNULWIhUZRwNUdFsWhGI0EBQ7gPw+cMC+F88AJggL7g4Cr+7+omIeQSCR3PFmpqWatGTp32xfq3FB0LnDVhit3RD9Erz3keVbm1Kk4Dh7sz6mkWeS1bw+tu/LHggVc+OcfM0Ubrrt+K1qnEud97fgPeIWE0G3JEjQ68zWfRqej29KleAUHl22dV+jhI5Xt2xKHLdslVQrLzc3FxcWl1DHmz5/P5MmTmTRpEoZirhKRkZEcPnzY7vmEhYWxePFiOnXqZHFu0aJFJkX80qVL+BdPKCCR3CSunfyb1C/G4t9rLp417wPUv53QzuOp7jQJQ34uwmhAOfkFQTX74+vThqTzi6+7i1eJVZNunPwCUbMHeXlncfP1LfmmEolEcitQNGqSx583Q9/noOOTqrKdkwV/70Jp8jDOwo8a1Sah6FwQ+tyChI5qIrScxL/AerliXH184HJBK5FIbksykpPZu3ChqWxUhSMENH0C7h8A+jz1fXGlVZ+N0OeqydCK49cY0XY5Fy6stkiEdubMbOrUWUyLZ0bx1+LFXEhIMLu00PVbGPJLnKL+SiKKRkPjgQOpGR3N3gULSDtxAt/wcJqPGqUq2qVZtf2DZfjgHYhdyvahQ4c4ePCg6f2OHTs4d+6cWZ+cnBzWrFlDeHh4qeMlJiby0EMPWT3n5OTEtWvX7JkWALNmzaJv375ERkby2GOPERAQQEpKCl9//TUnTpwwWcm3b99O69at7R5XIrkRss8doIbXTlLOHcCz5n0Io5H87Gx0TuqfnCLAaDCiqfIQysb/4NxwNDUiJqDo3BH6LDi+FmX/B9BpE/rci+qgrnKzSCKRlA/XDvxN6oyx+E+ai2eD+xy7WFEQ/iGw/HfIzwKdFgUQTlpo2Bw0BTklCjfnFR24OttlsXHz9YXLWGwuuvr4gFEq4RLJ7YCjWcRvRvy1CaNRTdi4YaEa3lI1Qt0M9A9RZZEJQd7Zf3GpP1JNhlZEoRaNxpKXm2ihaAMIoefIkVh8vNrwwJgxbIqJMZ0zd/1W0GjcUVM/2kbRaPAKCSFqyiQ0Ti4YCxKq2WXRdjB80DM4mKipU/G8HTZE7mHsUrbXrVtHfHw8oJb5spVx3MfHx64EZGFhYfz++++0a9fO4tzu3bupU6eOPdMCoGfPnvz+++/MmjWLjRs3kpycTHBwMPfffz/r1q3jvvvuA+CDDz6we0yJpLzQevggjEYQAm16CppNS+DccTRVIzD0GgWBIYhGY1B2xsDOWNXNSZ+lLk7bLAX3YET+JcLCpuJcqXFFP45EIqlIipYOtNeyYeOa7CMHqHF0JylHDtivbBe4aAohTOvJPOMlks4sITv7OG5uEYRUicFZUfvlJO9j78kO1Lz4xA0nQnOrWRuOF7QSieSOwlb89Y2greRjWYKwkE9nw5Ql0HmgmcKdn3wMlxqNIWqxuuYSqscNEU+SdHaW1cSOoCrc51MW0/CpCSZlu6jrN0CVx+cQ6vSB6rkoRInKs6IopG98G99rs7jiOQHfvpNu+POwhldwMG2K1NKWVAx2Kdtjx45l6NChCCEIDw/niy++oGnTpmZ9nJ2dqVKlil07MyNGjCAuLo6AgAB69eoFQH5+Pt988w1vv/22w+UVmjZtymeffebQNRLJTUfnjnv1AgV5y0q002PVLL6V/GDbOrSfzkZ8tB2aDkSERqMcXAAZJ8ArHOqPUmNvFA3OzgHUrBlXoY8ikUhuA2zUqi33a4ojBD69xoNuEj763AIXTbhwfqVVl8vIOosJqjII1yoN0R8tpV63vfgEmLcSieSexr1WXcsShIUY9Orx+6MhoKA2us4dp+BacDUNwvtDUBs4shgyE1F07lZLsRYlO/sETm7u3Dd0KJWqVjW5fgNkJCayd+FCLh8/jl9EhOpeHxJSulu4XiaKvBewS9n29vbG29sbgJMnTxIcHIyzs3OZbzpu3DjOnDnD008/zciRIwF4+OGHAXj22Wd59tlnyzTujZYRk0jKAyEElf/zBLQagIvRiLhwDs0vWxDrD0C1iOuZxc8eR1kwBWP1Oih+wYjmk1E0zghjHoriZBlvJJFIJLcaYYSsJJSDC+HqcZRKtRDN48jLPWfT5fLwkVh8fdvh7BKKRuPm0O2cdf6EXQLnSBk2I5FIbKAouIRUg8XTryvaiqKGr+RmqxuCBj3s+B/0eQafnuPBaRLOBgMsioMfN8FTY6DjBHB1R9goxVoUN7dwhDDQ/ZNPTK7fCEHCypVsiokxyzC+a/Zsui1ZQuOBA3HzqkPYJXASXjfv85Dc1jicjTwsLMykaGdlZXH58mWLlz289957HD16lA8++IAZM2bw/vvv8++///Lee+85OiUWLVpEaGgoYWFhtGrVypRgrWfPnsybN8/h8SSSsiKMxoJMlWqsooJA4+KKeGM1eYHu1zNcnoojL9Ad8cZqNMknURDkXdjJqf95kHfhB6loSySSisXNR1W0j66E1TXVcjnH18C+OaAIkpI/LtHlMil5EYVy0BFcnAKoeUlti+LsHKyG0zjbaZ2XiYQkkrsXFzcUJ2c1Rrt2Y5iyFH66Brsy1XbKUhjyCvQaCalJKItnQNwwFG1B2cKjCarlu5UnPOIBXy0nJDDGojJMIYqiIyRkFFmnd/Pjjx4kf/UiABlJSRaKNoBRr2dTTAwZycl4RLSh5iVwMtqvbBu9/dmRpLaSO58yZSOfMWMGCxcuJDk52Wqf4hnGbREeHm6ybJeVuXPn8uqrr/LSSy8RHR1Nx44dTecKy4jZW7NbInEIIQAjKFoQBoRQAIE2PwXNwSVqeYmwboiIvly4sILDh624W0YuJqjhIBRFg4uTPzUuZoGTdJOUSCQVTFBdyEqCnTEWNWkVRWuXy6WiaB2/r416sS4uwY6F0ziYSEgikdw4tyxLeW42Ij8PpU0PiF8GmYmwb5a67qoUAW1iwGsI/LULnolWrdyKAq99YF62UAjIyUJZMxfnLgOJrLPYwmNHUXRERi7F2TmY9OOfYtRmAQrCaGTvwoVWa2aDqnDvXbCAqCmOx2MbfQLYmQyRMmzmrsBhZfvdd99lzpw5vPLKK0ycOJFJkyah1WpZu3YteXl5TJw40a5xDAYDu3fv5ty5c+Tk5FicHzx4sF3jlGcZMYnEbgpcKylwrSToYWjwDBxdhbbI4lR1t0yyULShwN3ycCy+vu1xdgpGca9idZEpkUgk5Y3GkAbNC1oLFPCrDn9Os1C00WchjHn2uVwa9RiN2Y5NrLBerEQiueNwNEt5mRGCvJQLuLTvA0dWwI+x5rLq79kQtQQaPwXh9VVLthCwdR10j1ETqBWN8z6agDJ1MEHxy/H1bU9S8oLrpVhDRuHsHIyiaNBfSQQ/ULROaLRaLh8vedMx7cQJNE4uoLUMpzFqfGAvGDv4lM9nIrltcVjZXrJkCfHx8YwePZqJEyfSo0cPmjVrxuTJk+nWrRvHjh0rdYw///yTXr16cfbsWat1uxVFsVvZLs8yYhKJXRS6Vha1+FTtgHLtTDErkAa8I0g6FVeyu2XSAmrUiJOLTIlEcsvQGNNVZduYbnY8Oy0NN9fKoHVSNxItEHBmMyEhIzlzZrZV2Vbocpl9fv9NmbtEIpEAqtGjuKIN6vudMRAUpcZmTyso17VmLnQZCJMXw/RYc4X7u8+hY3+cW3WlRo04FEWLUZ+LorUsyyUM+RgNBvwiSt509A0Px5ifh+b3bAulWu9Xmx1fQb0nZYWFux2HY7ZPnTrFfffdh1arxcnJifT0dHUgjYZnn33WrtJfzzzzDN7e3nz//fdcuHCBtLQ0s5e9cd9wvYyYNRwtIyaRlIoQVlwr1bIRHFpiLvBd/W6uu6VEIpGUQmZKillbIkLg2nYEDE5BGA2qO6YVlD1TcXaqQmTkEosYx6Iulxn/fmP9Nm5eZq1EIpE4hKLgHBikehfaMGYg9Gq28Y79rh87mgBTB0On/vDlcYiZpP47ZhKGjccQD3UiOz39emz2phdtVFkSKBoNzUeORKOzbrcsrMGdm3hGtWBrfc3OF7qKG6Wr+F2Pw8p25cqVTdbi6tWr8+eff5rOpaamkpVVehr7AwcOMHv2bKKioggICDBlOy/6spcRI0YwY8YMlixZwtWrVwHzMmI3GhMukZhjtBTuOje1/mxxK1DOZYcyXEokEgmglutaGKe2RXBIcS4gKzXVrLWJ0QgpidcTCSkaiIwFawmDLieg7BhKUNBA/vOfU4SFTSIwsD9hYZP4z39OERQ04LrLpRX03tXMWolEInEIFzc1G7hV75siZJwAV3c1S3kh366FQS0gLQXxdBzMWIV+yAT2bf2eo99+i5uPD9eO/4DRWLI+oygKXiEhdFuyxELhLlqDO/u4DGe913HYjfzhhx/mjz/+oEuXLvTv35+4uDjOnz+Pk5MTH3/8MdHR0aWOUadOHZNifKPcrDJiEolVFK2lcNdnq7USLaxARrhynJDg0t0ty7DvJZFI7lZs1MbOSk3Fo0hbHmi9A1VFe8tK1dXSaFAXpxM+BI9QaL3Y0k1T0UFoRxSjEWenYMKqTUKjc7Hpclkc4eQLeQWtRCKROEpuNkKfh2LD+8aEVzjkZKnlwIpy4iCichXO//03v3/wAZVCQ011sxXN9djs0lA0GhoPHEjN6Gj2LlhA2okT+IaHm41luJpe5seU3B04rGzHxcWRmKjuVr/++uukp6ezZs0asrOz6dChA/Pnzy91jHfffZcxY8bQpEkT6tat6/isi/Hee+8xduxYtm3bxqVLl/Dz8yM6OpratWUchKScEdZcKwUcXwd1Y9SkHEWzWP4xEef264iMXGyRJE11t1xSkHhDlvqSSCS3GJ07LnVaQmoSrJkHExdBxydVZVufB/n5UKs/VGmjumNmnFAXr3ViwSMErl1FqeRL0qaXOO7/KRGpQwjt9WFFP5VEIrnbEYLcxLO41h9pse4yoeig3kjYts78uFYHU5eCfzBBvgF0X7rUVDe7LGsxRaPBKySE1lMmoXVywZCfi6bIWIVlvOo5UMbLMziYqKlT8byZSeYktwyHle3IyEgiIyMBcHFxYd68eXbVsm7UqJHZjzg5OZmGDRsSEhKCj4+PWV9FUfjnn38cmld5lBGTSEpHowrv4sJ931yoPRCiFsPOIlagk5+jHPyIoPrPqBkuk6xnuJRIJJKy4nC5HSHw6TUedJNwNhog+Qws+w2uFSufU28kOAfDsZPQaIKqhOdkwbZ1CG9/eKRrwf/rolSXS4lEcntyy8p1lTNZxw7hWr2zmnW8eIlCRQdtlqqbgg93UWOzE09AaDj0HgX+qtU5/fO38L02iyueE/Dt63iJLtPtFIXELW9zymcWNdInUL3b9bHKUsbLKziYNnFxZZ6P5PbCYWW7rDRv3rzcrHc//vijQ/1bt25dLveV3MOkJsOGRRA7EdyqWLpWXk6AHcOgzTIIbQ8HF1y3AlV9DMVgwFnvZcpwqcZoa6RFWyKR3DAOldspKFuoFJQtVIIehgaj4OgqywVrYfmcZgNh/Ufw714IDMXQPRYlIISc9HTcfB13BXf394fMglYikVQot6xcV3ni6q66Zysa1dARGm2+7qo/Sq3womjANxAROwnFyQVRYMGm6NpLb/9GYWnJHeWmo8QaZVK2165dy/r16zl79qxFjWxbVml7spTbS5s2bVAUxVQ2rKjCIoSwUGCK19+WSBwmNRnWvw8jp8K6+erOaHHXyroj1NjHQ0fMrUBb18KaeSgRDWHGKn75pTp1Mp/Cv8ObFf1UEonEQe5UK5C2ko/NsoVcO2upaMP18jkh7RB9nlFjGbOy2Ld2LbvnzSOyWzeiymB98QlpTBhT8QlpfMPPJZFI7lw06SlEBautXQiB/2NPQM8B+OfnqRViFA24hyCaTkLRuSAKckeYFGpFIX3j2/hem0X6DVqwjR5eYCxoJRI7cVjZfv3115k9ezbNmzenTp06ODs7O3zT4cOHM3nyZGrWrGlx7vTp08THx7N06VKb1//111+mf1+8eJGYmBjatm1Lnz59CAoK4sKFC6xfv54dO3awZMkSh+cnkZghBKJWI5TvUhAGA8rli2omy6fGQMcCpdpogMN/w7TH1dISiqJmv8wpssvZuhvCkEde3llcat5XUU8jkUhugNvRCmTPgtW9Vl3bZQv/mlVy+Zx/FyKaTmaWly/5RSqOBDZsiEarRdE6Wb/UhhXIxSWYmjXj7H4+iURyd6K5kkqbEEi5Ukq1BFCNGalJKBsWwrnjKFUjoPdI8A8BjYb0L8pHoZZIyhuHle2lS5cybdo0Jk0q+w/5008/ZdSoUVaV7dTUVJYtW1aist2kSRPTv/v06UO/fv146623zPo8/vjjjB8/no8++ogOHTqUea6Se5ziwn3gOESvkSifzlYz906PVZXqV96HFm3hxEH1OiHMFW2tDnqPQm8oyMIfFHnrn0Uikdw0KtLiXeqC1c0Dl9Bq8Nd0+8oWFifjBBqds8mbrBDf8HCMBgPCkG/1Mqea98H5glYikUjKgLaSj3nFBEMRGfbpbJiyBDoPVCsrpFu6cQsh8O45Hpwm4Z2fa9UDViK5mZQpM9MDDzxwwze29UM/evQolStXtnucb7/91qYy3bFjR7Zt21am+UkkJuH+eE1YMgO+XQPThqFUDkJMXqwq0IVK9Zq5EBh6/XhRimS+zMu3vz6uRCK5cyi0eF9LNq+NnZGczI64ODKKHb8lFLpc/nTNek1am2ULi+EVjj47C3329fI5Gp2O5qNGoWhsLyPcQyPNWolEUnFUqCy6Adxr1VUrJhRXtEF9Py0GUpNxqd3S4lphNJKRmMjOaTPY0L8/O6fNICMxEWE03qLZSyRlULZjY2NZvXq1wzf66KOPaNy4MY0bN0ZRFPr37296X/iqU6cOgwcPdsgS7enpyfbt262e27ZtG56eng7PtSxcunSJUaNGUb16dTw8PGjYsCELFiyw6JeUlETv3r3x8vLCz8+P2NjYcqs5LrkxMpKT+fGNN9T/iISwLtyPJsDUwSid+iO+OqVmuOzUH1p3w5iRDl0GmR+PmQRfnYJOA0CjwWjMtn5zieQ2Q8q08sGWEn7TMRohJRFl8XSYNADyc0suW6jYcHRTdBjqxLJvzVrTIY1OR7elS9U6stJCJLmDuJflWoXJotJwdbd9TlFwCakGGxZaKtqFGPSwYQHO1eqpnjoFCKORhJUrmVezJj/OmMH+NWv4ccYM5tWsScLKlQijUbWGSyQ3GYfdyKdPn86YMWN4+OGHiY6Otlq268UXX7S4LiQkhObNmwOwf/9+IiMjCQgwT4Pv7OxMvXr1iImJsXs+o0ePZsqUKVy4cIEePXoQGBjIxYsX2bhxIytWrCA+Pt7RRywTTzzxBIcOHWLmzJlUr16dzZs388wzz6DVahkxYgQA+fn5PProowCsXr2arKwsxo0bR//+/fn6669vyTwl1hFC4BEQQOuJEzHq9QhhVF3HrQn3b9fCiYMoU5Yino5D0WrRZ2Wx/7N1+NQMJ6xVKxgxBXROaq1arZMpUYezczBhYVNxdr49Yj0lEltImXabUtLCtBBrLpct20ObWPvLFgIoOkSbpWi8qpGfnU2j/v3xDQ+n+ahRqqJdglUbpLyT3H5IuXb7IISgckGys8r5edbdu70rozg5w7lSQl0ST6A4ucDwTJOreEZSEptiYjDqzddxRr2eTTEx1IyOVq3hp8vneXRGH8K2gq6lj9lxWTNb4rCy/f3337Ns2TIyMjL49ddfLc7bUra7d+9O9+7dTe+nTJliNWbbUSZNmoSPjw+zZ89m2bJlpizlwcHBzJ07l+eff/6G71Ea58+f54cffuCTTz5h6NChALRr144//viDtWvXmgT4559/zoEDB/j3339Ntcp9fX159NFH+f3332nZ0tIFRnLzEUYjGUlJ7F24kMvHj+Nfty5RU6aULNyPJsCqOSgzVvH1yJF4BAaaL0D3bYPFvSD2C2jyqOkymRhIcicgZdptiNUsvEUWpoVKuC2vnJ83w+NDLJXqgrKFoqBsoVKkfI6hdiyKZwiXDh2ixahRtBw9GmNB6RyzKiAyEZrkDkDKtduH4usuv4gINd9FSIi6hioi74TBoCZDK4nQcIx5uWwcOgy/WrWImjKFvQsXWijahRj1evYuWEDUlPJLpOYkfAnZCin3m5dDlDWzJQ4r26NHj6ZFixa899571KlTBycn61lIS+KTTz5x+JqSeO6553j22Wc5d+4cycnJBAcHU7VqVTSl7LqXF/n5anIYb29vs+Pe3t5cu3bN9H7Lli00btzYJLwBOnTogJ+fH5s3b5YCvAIodDMy2/3UaGg9caJdwl0YDDxWINAVrfb6AtQlAH7NgtEBJY8hkdyGSJl283EooVpJWXgVpZgSbrTucvlwF0i/BOH9IaiNednCOrEoRiNC54ex6WQ0Omf02VnsW1OkxNeUSbCsElesZPqV5XAkdwJSrjnGzUj6qK3kY33dBeyaPZvB27dT/ZFHUGwlprXmbajVYegeS8LKVexfswYnd3faTpvG5eNFDCaKgpObG/nZ2eqGJJB24gQaJxfQupXLs0kktnBY2T579izz58+nQYMGN2M+dvHRRx8xfPhwXFxcTMc0Gg3Vq1enevXqVq/Zt28fKSkptGvXrtznU61aNTp27MjMmTOJjIykWrVqbNmyha1bt7Jq1SpTv0OHDlG3bl2zaxVFoW7duhw6dKjc5yUpGVtuRk6urigaDcYesWhKEO7GHiPQaDS85e/PoK1bCW7W7BbOXiK5eUiZdvOxq4SYi5vtLLxJJyFumbkSXqOuGsJS3CtHUaDjk/DJLPhxk3nZwpws2LoW1sxDad0Nw5AJzPa+XuJLo9PRf/Nm8s/+i4veMtOvRHKnIOWaY5R7mUNXd9xq1bXp3h1Qvz7VHnzQUt6dOICyYg9i8mKU6bHmclCrQ0xeghIQwu558wDIz84mPysLv4gIgho35oGxY2nU70l0bu7qJuLadeyeO1etppCfi8ZgmUtHKF5mbSE6fAi7BLoAH4trjN7+7EiCet7+N/AhSe5GHFa2H3nkEQ4fPlyh5bQ+/fRT4uPjeeqpp3jiiSe4//77rVrYk5KS2LJlC2vWrGH37t18+umnN21OX3zxBU8++aRpE0Kr1TJ//nx69+5t6pOWlmYR4w6qe9Lly5dtjp2bm0tubq7p/Z2epON2QRiN5m5GhTufOTnk5+SgCwgtVbgbDQayL12qmAeQSG4iUqbdBvgGWHcJr90Ypn6iLkqLyidFgUHjoLhXjoubqlifO66GwBQtW1i0RGFEQ3Tu7qYSX0UToWVs+wYXJJI7m5sl16RMK4EiLuGuBgPp//xDQP36XEhIMLM4PzB2rLp5aCsxbfxyRMv2KBsWQOIJ1XW859NQuQobBw9Wxyu43/5162j5wgtETZ2CuJaIdv8suHocXaUIGveMocmggeRczVA3Ea1M2aj1MmsLcVJ8CbkEKYG+ltf4BLAzGSJ9pEfjraQiy27ai8PK9syZMxkyZAjOzs60b9/eqkDy8/Mrj7nZZPfu3WzcuJF58+bx3nvv4eTkRJ06dQgICMDFxYX09HROnjzJxYsX8fPzY8iQIaxcuZIqVarc8L2FEBgMBtN7RVHQaDQMGzaMo0ePsnr1aoKDg9m2bRtjx47F19eXfv363dA9Z82adcsSvd31CKG6WWq0aBSoGR1N6qFD1OrShUZPPonO3R19VhZXzp7Fzd8f10f7Y2zWBu2Xi03C3dA9FiUghJyrV1WrkzX8g2HEVLWVSG5jpEy7/chMScFDURCe3igfz7P0rnlqLFxMNFe0QZVvW9dB9xi1/mzhudxsVakuqoQXli0sSkHcY72ePS0SoRmuXLQ5X1cfH7hc0EoktwG3Wq5JmWYDKyEwQT1ieXrPHs78/DNVW7Y0rbs0Tk5oFk+zOzEtRgNnfvyJ/xvz2HVFu4Bjmzdz39AhcHQFmmKJH7V/z0ZELcat9iAyD30vNxHvcMrdA+Mm4LCyff/99wMwatQomyU/igq4m0XPnj3p2bMnp06d4rvvvmPPnj0kJyeTk5NDWFgYHTt25OGHH6ZNmzZliiu3xc6dO2nbtq3pfVRUFOPGjWP9+vUkJCTQqFEjANq0acPFixd5+eWXTQLc19eXK1euWIyZlpZGtWrVbN5zwoQJvPTSS6b3V69eLbH/nUCF7EQVCH0KhD5VI6jebwxh69YhLpxFs2wWnDuOrmoEvt1jUHx8SPrrL1L2JdBwyATTfwj7P1uHm38Adbp0IevSJetZJv2DYWTcrXkuieQGkDLt9iMrNRUPFzcUnVPJLuHWFqVr5kKXgTB58XVl3JYSXhStDtF7FIpWS69Vq6wmQrOFm68vXC5oJZLbgFst16RMM0fnZjsERpN0EhG3jLB6tVAK1122QmCKUiQx7VsBAbx4+jQnt2+3ULQBanXpgsg4a6FoAyD0KDtjIbQ9TlVqwX7LWxk9fcxa03Enf3Z8BfUaS1dxif04rGwvXbq03OpqCiE4cuQIly9fxs/Pjzp16jg8do0aNYiNjSU2NrZc5lQazZs3548//jC99/Ly4ssvv0Sr1dKwYUOzvk2bNmXx4sVkZWXh7u5O3bp12bdvn1kfIUSpbvkuLi5m8el3A7d8J8qa0K/dGM2IKYjNK9AUsxBpPp2NmLyYkC6D8K5alZ9mz+bquXNUCg01s/Z4BATILJOSOxop025TcrMR+XmWiRqLuoRbo8DlkvgVarmvQpfLnCxElWowZYmlm6ZWB1OXovgHc3XbYiolvmg1EZotnHX+hF0C50i5AJXcHtxquXYvyjQnd9tlCD0CSg6BUewNgSlOaDj6rCyyU1PZv24dTWNi2DV7tnn8t6LQqN+TaPbPslS0CxF6OLgA56bWZZzw8oXMgrYIRucAdn4NkfHSVVxiPw4r24XlEm6UDz/8kGnTppGSkmI6FhgYyJQpU3jmmWfK5R43Ay8vL1q0aGF2LCwsDIPBQEJCAk2aNDEd37t3L4GBgbgXCKTOnTuzcuVKjh49Su3atQHYvn07ly5dokuXLrfuIe41bJXCKXDFtIjJBjDoUabHIlq2xyMwhKjJk9E4OWHMz0fR6cptw0kiqWikTLtNcXEjN+ksrr1Hlu4SXpxv10KTRzD2fBpjEa+ccz/9RFinAYj7o83iHuk9SvXGKXQXt5IIzejpA+mWlh4AF6cAal4CnOQCVHJ7IOXazUMIQVDjxryemYlRr7esj60ouPn4wMfxNx4CU5SCrOP71q4FYPfcuTQeOJDHFy/mq9hYk8Lt5OaGzs0drpZSmzvjBIpOZiOX3HxuTW2sYixatIjnnnuO6OhoNm7cyC+//MLGjRtp164dzz33HIsXL66IaZWZLl26UL16dfr06cPKlSvZvn07r776Kp9++qlZne8+ffrQoEEDevfuzddff81nn33G8OHD6dq16z1TSuJWIYTAWBDOIIxWSuEUumJ+ucS6UAdV4d6wAEUYubBvHzM9PLiwb59UtCV3PVKmVSCFyYR2ZeISUl0t7zVliWp9LjhvWpRqbeyXa3WINj3Q5+Xx0+zZfDl8OD/NmoVfrdqgKCgBIYjYyTBjldoGhEAppTKNBRYeo5d0FZfcmUi5duMIo5GMxER2xsezoX9/dsbHk5GYqK6zCnByc0PR6WyHwNhad62ZC4GhaghMcdmm1SGmLkVTpRr52dk06t+fyG7dyM3IoMmgQYw5dYrWkyb9f3v3HdbU+fYB/HtCEkZAIMwgihMcgFWsClVxgHWVqqhV3GLV1jpaa9U6wLpfR22tVvoTZ1UUZx24d8VWba3F3QpWKyogoCg7z/sH5pSYQQIJBLg/18WlOTk55zkJuTnPuh/4hIXBf/JkMHkBUKOEXnKbemAFuYCabOSEGJJOPdu+vr7YunUrvL294ePjo7WywXEc/vjjD63H+/rrrzFhwgSsWLFCaXtISAicnJywdOnSchsWbgg2NjY4ceIEZsyYgalTpyIjIwN169bF8uXL8cknn/D7iUQiHD58GBMmTMDAgQMhFArRp08ffP311xVY+sqLMQZWWAiBUKi0zjWTy/Hi0SNciYpC5sOH6LV+vWrQL2kopsK/9wCBGaxlMgRMmaI6N5uQKohiWgVRt5522CSwboOB4r3ROa/AXGtrHBLOZkUDDq4QchwCZ82EQCSGPD8PnFDE//1OPRALp2WjkTr5Bzj1HlRBF0xI+aG4Vjba1scOiY6G7+DBEL7OLM4KCgw3BUaRmNbZDfK8PLQcMwatxo1Timk2bm4InD2Lj3XgzIAmY4Cri9QPJeeEQJOxyPtHfTZyQgxJp8q2n58fJBIJ//+y9uwlJiaiZ8+eap/r0aMH1qxZU6bjV4QGDRpg+/btJe5Xs2ZN7Nq1qxxKVLW8mVCteIX62d9/Q1q/Pt7+5BNInJyU/xgIBHh/7VrVoK/LUEygaIilvBA2MhnNzSbVCsW0cqZpPe0Ni4D/2wW07YGC4V9CaGkJeX4eCnNzYfbuQMibB6pfLSEzE5b29nylOk1dpfrNbOSEVHEU10qHMaZxfWx5QQF+Cg9H3c6di+ZqM4bcrCyYh44BZ6ApMMUT06afioM0or9STOM4DqkXY+F0dzTSGv4Ap3aDACs3IDAaOBOuXOHmhECHdYCVDLl31S9paOXoCLx8/W8x1jKZ+qS4hGihU2V7/fr1/P8NsVa1TCZDfHw8goKCVJ67ePEiZPRLTN6QlZyMC0uWoOkHH8DaxUVt66p9/fqo26mT0naRhQU4gQDyXqMgKB70dZwfhNCxAFchsy0IIdWFprwSQNF0li9CUbjnL/x5+ATixo+HtEEDfHj5Mu4cikPOszSNqyXwDeNUqSaElAGTy3ElKkqloq0gLyjAlTVrEBgRUbQ/Y4CjG9istf/lxdF1VYTXU2B+XrxYbWLawucZmmNa8XwTnABoOBio2Rm4sQZ4cQ+wqQc0GQtYyQBOgPwXecAVQB5sp3QYK0cn4P7rf4uhjhdSGnrXIkaOHInExES1z92/fx8jR44s8Rjh4eGYO3cuZs6ciatXryI5ORl//PEHZs6ciXnz5lWqIeTEsF4kJ+Ps/Pl4kZzMbyuejMPBy0t96yrHoWn//vjtf/9T2p6fnY38nBxwTjXB3pwH9Hp+kMp2gM/OC0dZ0TwjQggxFqYmr0RxhQUw27cWPgMGIP/VKzy5dg17hw5Fw27dULdzkNK87HrBXYoq2iXMwdaXYskbuYgyjhNSnXACAQRmZnj2t/Zpd+n37kEgFEJoZQVzGxvc2LkT7N0wFO75CwifCXQN41dFYMXzUCgUWxVBZGWFwFkz8f66dQicPQs2bm4lxjS1MYoTAFZuYM1nAp22FP1r5cZ3osjN7Isq22bln4uCesmrD72zkW/YsAFjx45F3bp1VZ5LTU3Fxo0bsW7dOq3HmDFjBtLT07FkyRIsXLjwv8IIhRg/fjy+/PJLfYtFqgDGGCROTmg/Ywaf4RKvhy5diYrCs3v38P66dWpbV0WWlhBZWan+MWAMCTEx8OzZE5bvhkHeooPSkEv5iwxw3YeAtQrSmJ2XEELKQtMSOSIrq6IbSIGZTvkjhFZWEFpaoiA7GwkxMUi5cQNdv/kGgREREJiZqczLLg0LOzsg4/W/xVh5+AJ+EUX/vslKBrSIKPqXEGIwb06hqwhMLoe8sBDS+tqn3dnXq1eUPweAQCjErb17cW7+fLSeOBE+xVdFOHsOtbsMBGvRAYK9/1N738UB2qfAqKFxWS6OQ8buJbDPWogMPZY0NDbqJa8+9K5sA9D4h/zu3btwcHDQ6fXLli3Dl19+iV9++QXp6emQSqVo1aqVTq8nVc+bc7BrvfMO3v7oI6Xh4iIrKwi3bFHbupqfnY38V6/U/jFQLA9xJ079kEu7uvXg0a4dMDqiqGW1oAAwM6MebUJImWhaIkdle2Ghal6JN71eX7Yg+7/MuU+uXUPiiROo/U4AEFhD55tSbSzrNgSSXv9bjNYbQysZ0FLDc4SQUstKTsaZOXPgFRKiU2XbWJVzTiCA35gxqmtavyYQCuE3dixyMjKQn50NeUEBpPXrI2HbNvwUHo6fRo2CyNIS+a+Khnm7+Pri/XXr4Do6EpyZGdjrhkKV+y5DToFRs6QhqX4qogFLp26777//Hr6+vvD19QXHcQgLC+MfK348PT0xdOhQBAcHl3i8TZs2IS0tDQ4ODujevTsGDRqEbt26wcHBAc+ePcOmTZvKfGHE9Ile99IoMlx+U7cuzs6bh4Rt2yCyskLmP/8oDRfXVqEGY0jYvh3Nw8MhECq3IRUfclkvuIvKkEuPdu2KepfuXgPaSoC/rlFFmxCit+I92OqWyMl+9kxl+7kFC/i8EtqW8iq+vqyC4gY3999/DHdTau+k/C8hpNJQVM6zik3FMwRFxu+Q6GiVeyyBUIiQdetgI5PhZUoKwBhyMjLgN2bMf/syxle0ASDlxg1IXF2R8yARaCtB6oFYuu8i5cJY3xFtdOrZdnNzg5+fHwAgISEBXl5ecHJS/kMsFovRuHFjhIeHl3i8ESNGID4+Xm0vdmJiIkaMGIGhQ4fqUjRSCSn16rzu0Vaag81x8P7gA5xfuFC5BbVYhVpd66qiBzskOlplTveNnTvhPWgQPLt3R+Ds2SrLhQEoGr40ZErRv4QQoiOVnmo1S+S4+Pqi/ezZ+GPzZuwfNUop3gVMmQLh67wSfDIhBTMh2OxocE5u+OWbb/jNxW9w00/FwbI8L5gQUqVomupSHCcQwHfwYNTt3BlX1qxB+r17sK9XTyl5mWLkzcuUFDh6eam9H1OJXRWYwFFu64jTj4DGtpSLghiPTpXt999/H++//z7/eNasWahXr16pT8oY0/hceno6bGxsSn1sYtqUhotrmIOtcf41/qtQv7d2rfINK4paSh9evFjiH4OsJ0/w+7p1aD5ypPIQEkcZMCbSmJdPCKli3pwCE/D555A4O6vcYLaeNAkv/v1XJW6VmFei14fgXNyRk5EBr5AQOHt7q8S0fE5IN4yEEL1pmuqiCScQFK1pHRGhvtPitYLsbJ0q54XPM4x8hUXk1nZAxut/i2+3c8KZZMDLjkbyEOPRe8528WXAFF69eoVHjx6hfv36Gr+kcXFxiIuL4x8vW7YMLi4uSvvk5OTg5MmTeOutt/QtFqkE3uzt0TQHW9twccWQ8F6bNqFup0747Ycf1AZwGzc3BEZGFiUNKiwEJxDwv5s2Mhnaz5hRLtdMCKmaik+B4SvWHIeQtWtVR+VoGq3zmq55JQJnz4ZAJFJJhEY3jIQQfb3ZUCitX79oHmsJmb85jsPja9ewvl07jDh3DrIWLTTvq7gfmz0LApHYIEkcS0NuY6/0LyHlSe/K9tKlS/Hy5UtEvF5L79y5cwgJCcHz589Rt25dHDlyBPXVVJLu3LmD/fv3Ayj6op47dw7m5spLyYvFYnh7e2PBggWluRZiwtjrrOI6zcEuYbh4QkwM0u7cwfCzZzW2rnIcB87MDAAgeP0vIYQYisTJSSWmaRqVo220DvBfI2LvzZuR9eQJzi1apHZ92dR92/TKzksIIW9S21D42vlFixASHQ3fwYMhtNQ+OaX4HGxtOI7TO7N4ZURLeRFN9F7XaO3atXB3d+cff/bZZ2jatCn27dsHR0dHjct2TZw4EYmJiUhMTETt2rURFxfHP1b83L59G3v37kWTJk1Kf0XEJDG5XHXJLi1JzX5ZsQI2NWvivbVr1SbjaD1pEkSWlshOT8fZ+fPxMiWl3FtKCSHVFMfBws5OJaZpakDUmtzxtYSYGFyOiiq6YdO2vqye8xutHB2V/iWEVG/qGgoV5AUF+Ck8HC+SkyFxKt1IGY3zvytwbrYmhqwgK1ZsqKgl2ojp0ruy/eDBAzRo0AAA8O+//+LKlStYuHAhevbsiWnTpuHs2bMlHiMxMRHNmjXTv7Sk0hKYmWmcg62uUv3k2jXsGzECvoMHY2JSEtrPnAmfsDC0nzkTE5OS4DtoEDiBgF+Xm4IbIaS8iCwtIRAKVWOapgZELQ2LCgKhEI169QLHcUg7EAu0lSDtQGyZGxEVN8ylvXEmhFQhGhoKi5MXFODKmjWwsLPT69DF53+7+Ppqzc9kKjRVkMViGTw8IiAW070lKTu9h5FbWlri+fPnAIATJ07A2toaAQEBAAA7OztkZmYatoSkSpAXFpZqDrZiuYmSknEQQkh5Kb6O7Js0JXHUltyxeHZePrYZqhfIUQZ8GKGyyoLGHm8rGdAiouhfQkiVorGh8A3p9+5BIBSWOJRcobTzv02VubkMdetGVnQxiI50yaZfkfSubLdq1QqLFi2CQCDAkiVL0K1bN5i9nhP7999/o2bNmgYvJKn8OIEAfmPGlHoOtq7JOAghxOiKrSP7Zkwr3oBYLyhIKQtv7osXaDZkiMr24vOyDU7DKgsae7ytZEBL1f0JIabjRXIyrkRFFVVo9RjZp62hsDj7evWK7sNK6NjQdf63WQ07nctIiK70zaZfUfT+y7506VIkJyfjvffeQ1ZWFubPn88/t337dr6Xm1RvjDHICwsBgP/Xxs0NIdHRWudgp929iwUSCZ5cu6b0hbGWyRAwZQolniCEmISXKSkaY9qNnTvx15EjsHk9H7DPli0IjIiApb290tI5iu1l7f2hxDyEVC9Zyck4M2cOspKT9XthsYZCTVNaZC1a4J1p0wCgxCHhus7/tqzvpV85CSkBk8vx4t9/cWbOHOwKC8OZOXPw4t9/weTyii6aCr17tps0aYJ79+4hLS0NDg4OSs8tW7YMrq6uBiscqZy0DScqac1FCzs7tZVqxbwaQgjRl769QCXtL7Ky0nkd2cdXr6qMytFn6RxdlCo+ahheTgip2l6mpMDRywsh0dEqlWSfQYPQa+NGZL2OgVqHhL+e/31mzpwS538Hzp6l/nlbR5x+BDS2pQSORHe6jKYwpekLele2FRwcHMAYQ3JyMpydnSEUCuHj42PIspFKSJcvgLY52FSpJoQYmqIXyCskRKfKtqb91Q5ZK9ZTrSmvhKYlcjRtL5cM4hqGl5PqqbTDkknloq2h0D0gAG9/9JHOlRi95n+LxIC56vxvuZ0TziQDXnaUwJHoRt1SwgqK0RR1O3cuahwykSHlpar2HzlyBG3atIGFhQVq166Na9euAQBGjx6NLVu26HSM69evY8CAAahfvz7Mzc3x22+/AQBmzJiBuLi40hSLVJAXyck4HRmJvFevdBpOBBTNa1Q3XJwQQkyRtiFrHMcZNKZRBnFS3ko9LJlUCuoyhb85paXlRx/pdA+nGFKu1/zv/DwgN9to10eqD7VLCRejGE1hSsPJ9a5sb9u2Dd27d0fdunWxevVqyItdTP369bF+/foSj3Hs2DE0b94c9+/fx6BBg5Cfn88/JxKJsHr1an2LRSpQVnIyznz1FYRisV5fAE29OoQQUtGKZzdVjNj5pm5dnJ03DwnbtuHsvHn4pm5dXPvxRzC5HEJLS4pphBCTo1NDobU1oG8lRof53wKhEH5jxyL333+MdXk8yl1RPWhaSri49Hv3IHidvNsU6F3Znjt3LiZNmoRt27Zh+PDhSs81bdoUCQkJJR5j+vTpGDBgAOLj4zF79myl55o3b47ff/9d32KRCmbl4KD7cCIzM4B6swkhJkhdD5AuvT3l0QutmN8op/mNhBAd6NpQCMZKdQ+nLVFk8SUNs/++bbRrVNC0ZjapWjQtJVycfb16fHJmU6B3ZfvevXvo3r272uckEolO62wnJCRgyJAhAKAy3M7Ozg6pqan6FotUEMWN6ZSUFP2+ABoyWxJCSEVR6QH66iuwwkKdenss7OyMXj7F/EY5zW8khGigGJWjT0OhXkPCi93DFZ//PTEpCe1nzoRPWBjaz5yJiUlJ8B00CJxAgMLnGUa5VlL9KJYSLmk0hSklSNO7JK6urrh165ba565duwYPD48SjyGVSvHo0SO1z925cwcyapWqFN68MX3yxx+V7gtACCGA+h6g+GXLdO/tEQqLeogIMVGK/CovaF52laQyKkfHYeEWdnZ6DQlXdw9njCUNCVGH4zidRlOYUj4ovb8FYWFhiIyMxIkTJ/htHMchISEB//d//4fBgweXeIxevXohIiICt2//N6yE4zg8fvwYS5cuRWhoqL7FMprVq1ejZ8+ecHJyAsdx2Llzp8Z9Dx48iICAAEgkEtjb26Njx454+PCh0j4XLlyAv78/LC0t4eHhgcWLF2tcv9CUqbsx3TdiBCQuLnhv7dpK8wUgpLqhmPafkpI75mdnI//VK916ewoKUJBNCYCI6arKSdCqe1x7s/Pj3IIFus9tfd1QqOuQcE33cIZOFKlJuazWQEyaLqMpTInepYmMjERAQACCg4P5NbW7deuGZs2aoWXLlpg2bVqJx1i4cCGcnJzg6+uL1q1bAwBGjhwJLy8v2NraItKEln7atGkTUlNTNQ6dV/jxxx/Rp08fdOjQAQcOHMDGjRvRsmVL5OTk8Pv89ddfePfddyGTyXDgwAFMmjQJs2fPxrJly4x9GQalaWjSk2vXsHfoUPiEhVWaLwAh1Q3FtP+UmNyRMSRs347m4eEl9vbkZGQYv8CE6KA69mBX17gmtLRU2/lxOjJS74ZCXYeEl8TYiSJptQYClG00RfEEqOVB73W2xWIx9u3bh1OnTuHYsWNITU2FVCpFUFAQgoKCdDqGra0tLly4gB9//BHHjh2DVCqFVCrFuHHjMHToUIjFYr0vxFguXLgAgUCApKQkbNq0Se0+z549w7hx47BixQp89NFH/PaQkBCl/ZYsWQIHBwfExMRALBajc+fOSElJwfz58zF+/HiYm5sb9VrK6kVyMn5ftw5tp07VODQpISYGKTduIGTdOgRGRkJgZgZ5YSE4gYB6tAkxARTTlJW0VuwvK1bAd/BgvLd2LfaPGqUU94r39qTeNn4CIEJ0oe+68lVBVY5r2ioGEicn9fOyizUUnl+0SO39mqaGwuKVGIFQCHlBATgzM9O5h3OUAR9GFP2rI+oNr5o4jsPja9ewvl07jDh3DrIWLbTuX3yqhbygoGgJvHL4vS51N2PHjh2xYMEC/PDDD1i0aJHOFW0FkUiEESNGYOvWrTh69ChiYmIwatQok6poA4BAhxaSHTt2oLCwEOHh4Vr3i4uLQ69evZSuccCAAcjIyEB8fHyZy2pMjDFInJzQfsaMEucwPrl2DReXL+fT7gtMKUgTUs1RTFNWUmIgxYgd30GDtPb20BByQipOVYxr6lZGUMJxsLCz09j58cuKFbCpWbPEqX0vU1JUXlteQ8JLtVyXowwYE6lXZZt6wys/bSN2dBlNoW0JPGOrkDG977zzDlavXo0UNV/wyujixYto1KgRNm7cCA8PDwiFQrz11luIi4vj93n58iUePHiARo0aKb22UaNG4DhOY9I5U6D0CzpoEApycytd2n1CiO6qekwrTmRpWWJioBs7d+JVWlr5JQAqRc8NIUS7yhTXdKkYlDQqxxANhcYeEk7LdRFdlSXnhC5L4BlThVS2ZTIZPv/8c9SsWRPvvvsuNm3ahBcvXlREUQzi8ePHuH37NmbNmoW5c+ciLi4OderUQUhICK5fvw4AyHg9TMfujeVhxGIxrKys8OzZM43Hz83NxfPnz5V+yovKL+jWrfhz61ad5jBquwktVWsmIaRcVOWYplC818jCzq7ExECS14mXDNXbozUGlqLnhhCinTHjmiFjmq5rY+uyXFdCTAwuR0Xx8YYyhZPqRtcl8IyZALFCvmk7d+7E06dPsXbtWgiFQowaNQouLi4IDQ3Frl27kJubW+5lYoyhoKCA/ynUo1dWLpcjKysLP/zwA4YOHYrg4GDExsbC3d0dixcvLnPZFi5cCFtbW/6nVq1aZT6mLjT9guo6NEnbjSi1ZhJiXBTTNFPXa5Sdnq5zYiBD9PaUJgZSIyWp7kw1rhkqpumzNrauy3U16tWr3IaFG5KlZ1MkNQyEpWfTii4KqcR0XQLPmL3bFdasZW1tjaFDh+LgwYNITk7G119/jWfPnmHAgAFwcXEp9/KcOXMGIpGI/+ncubPOr7W3twcAdOrUid8mEonQvn17vrVU0UqamZmp9Nq8vDy8evUKUqlU4/GnT5+OzMxM/ufBgwc6l60sNP2CFs86PuHePco6TogJqo4xraQszJoy956dNw/LXF1x5+BB2JhwDxA1UpLyZmqZzU01rhkqpum1Njag93Jdxh4WbkjWTd9CnW2nYd30rYouCqnEdF4Cz8zMaPFO72zkxuDg4IB33nkH9+/fx+3bt/HkyZNyL4Ofnx8uXbrEP7axsdH5tU2bam51UywnIZFIUKtWLZX5Prdv3wZjTGV+UHHm5uYVktVX2y+oIut412+++S/ruKllrCSkGquOMU1bFmaRlZXmzL0ouond0acPJiYlQWhujhUeHjplNy0J9UaTyszUMpubalwzVEzTd23s4st11e3cGVfWrEH6vXuwr1cPfmPHFlW0TaSxkJCKIC8s1DnPlLHiXam+gYWFhbhw4QJ27NiBTZs2qfzo6u+//8b8+fPh4+ODZs2aYcOGDejfvz8uXLhQmmKViY2NDVq2bMn/eHl56fzanj17AgCOHz/Ob8vLy8OZM2fg5+fHb+vWrRv27duH/Px8ftv27dthZ2eHgIAAA1yFYZX0C/rk2jUknjgBMFaphiYRUh1QTCuiNDfb3l7nXiND9QBRbzSpLHRde5YxxidAlRcWGnWu45uqelzTuWLwem1shbKsOUxIVcYJBCVOtSgpz1RZ6d2z/dtvv6FPnz548OCB2gDLcRyGDh2q9RjLly9HTEwMrly5AltbW4SGhuKbb75Bhw4ddFq+oTxdvnwZSUlJfOb0ixcvAgCcnJwQGBgIAGjRogVCQ0MxevRoPHv2DDKZDKtWrcKTJ08wZcoU/lhTpkzBli1bMHDgQHz88cf4888/sWTJEsyfP9/kljwD/vsF1WWNxso0NImQ6qw6xTQml+PFo0e4EhWFzIcP0Wv9er16jQipDvRZe7b4d+rZ339DWr8+/MaMqfCKXVWJa/rcd6m8Vs81hwmpDjiO46davDmqTdc8U2Wld2X7o48+gq2tLTZu3IgmTZqUKvDMnj0bISEhmDVrFrp27QqRSKT3McrLd999h40bN/KPly1bBgAIDAzE6dOn+e0bN27E9OnTMW3aNDx//hx+fn44fvw4fHx8+H0aNGiAo0eP4rPPPkP37t3h5OSEOXPmYPLkyeV2PfrQ9Rf0VVoaDZMkpJKo6jFNZGWlNDebj10chx6rVpWq14iQqkrXyrPa79Rr5xctQkh0NHwHD66wCndViWu63nel3r6t8RjU+UFIUb6JK1FRRfFMJqvQqRZ6V7avX7+O2NhYvqWwNJ4+fQorHYcrVbQNGzZgw4YNJe4nkUjw7bff4ttvv9W6X0BAAN/iWhnoMhdI4uSEDpGRFV1UQogOqmpMU+qde12BULpZZQwJ27ejeXh4ib1GBXl51IBITN6bN5P60qXyLLS01CnfwU/h4ajbuXNRJb0CppNVpbimy31XRTcG6puLQm7riNOPgMa2jkYuGSFF3px/XXyqhUAoLNc8U3pX5T09Pcu8JmplqWiTIjQXiBBiypSW8ho0CPL8fLVzs3VdtlBsZUXzrInJU9xMZpUic25JS0z98s03yM/OhkPDhnrlOzDm8jnVianfd+mbi0Ju54QzyUX/ElJauuaV0ESXJfDKeg519O7Z/vrrrzFx4kQ0a9ZMa7bZN9WoUQOnTp2Cn58fbGxstLYkcBynsuwCqVg0F4gQYore7J0TWVlBuGWL2rnZimULe23ahLodO+K3//3PYMPJKOs4qUy0LTHlPWAAem3ahKzkZPz2v//pl+/AzMxYRa526L6LkCL65JXQhbqpFoY+R3F6V7Y/+eQTPH78GN7e3nBzc+PXJFTgOA5//PGHyusmT54M2eubkMmTJ1PW6krIWiZDwJQpdDNJCDEJ6nrn8rOzkf/qlca52YplC0PWrTPosoWKnh5CTB0nEGhcYsrF1xe9Nm3Cn1u3Yv+oUfrnOygspAq3gVWFOdjUGElKqzySMhr7HHpXtv38/Ep1QxIREcH/P5JuSColupkkhJgStb1zOszNTrlxA9aurshJTzfYetqEVBZMLte4xFTrSZPw4t9//6toA3rlOzCVYc7EtND9IykNXfNKGPscZY1rele2dUlAUZJOnTph9erVaoeh37lzB2PHjsXJkyfLfB5CCCFVl6beuV9WrIDv4MF4b+1a5UoDVDP6VoVeI0L0pXaJKY6D9wcf4PzChWrzHejynaJRi8QkWcmAFhFF/5JKoaS8EoqkjBKn0ucB0PUcZU38WCFNkKdPn9aYZO358+c4e/ZsOZeIEEKUvUhOxtn58/GiFMmHSPnQ1DunmJvtExaGCffuof3MmfAJC0P7mTMxMSkJvoMGmURGX0IqSvElphTJAkWvM49ry3fgExaGCX//rfE7RYhJspIBLSOpsl2JaMsrAfyXlNHijenMxjhHWRM/6t2zDQAZGRnYuXMn7ty5g5ycHJXnS1pSAYDGFoILFy7A2dm5NMUihBCDYIxB4uSE9jNmGDxRBjEctb1zryXExCDtzh0MP3u2Qpb6IMQUFc+0q7LEVGIiCnJz9ct3UFgITiCg71QFMEbWZEJMhaaRa8Wl37sHgVBYqqHk2nJXqJyjjHko9K5s3717FwEBAcjNzcXLly/h5OSEZ8+eoaCgAPb29rC1tVVb2V64cCEWLlwIoKii3bFjRwjeaAXNzc1FQUEBPv7441JeDiGElE15JOMghlG8d+7NYWACoRCtJ02CyNISqbdv438tW6rMzaakPaS60JRpV2XtWblcYwMW8F++A0UspGRo5c/QWZMpDhJTpGnkWnH29epBXlCgcZSatgYpbbkrVM5RxsSPele2P/vsM7Ru3RqxsbGQSCQ4dOgQmjVrhu3bt+PLL79EbGys2tcFBARg8uTJYIzhq6++wsCBA+Hu7q60j1gsRuPGjfHee++V7moIIaQMyiNRBjEsld45NUt5FbzOUP4mStpDqqriN5klNSAWX2Lqw8uX4ejlpbEBi+ZmVyxjNAZTHCSmSNvINeC/pIw5GRkqz+naIKXrOco9Qdqvv/6K6OhomJubAwDy8vJgZmaGsLAwpKamYsKECfj5559VXhcYGIjAwEAARb0RH374Idzc3MpUeEIIMZTySpRBDE+ld46Gi5NqSuUmU48GxPxXr1CQna1TAxYpX0JLy3LJzEyIqShp5Jqi4e9VWprSyAx9GqR0PUdZ7yX0rmzn5uaiRo0aEAgEkEqlePToEf+ct7c3pk+fXuIxii8DRgghpkDXRBmBkZHgaOikySneO0dLeZHq6M2bzIDPP4fE2VmnBsQ3UQOWaZE4ORk9MzMhpkaXhj+JkxM/MqM0DVLl0biod2Xb09MT9+/fBwA0b94cq1evRnBwMIRCIaKionTurf7rr7+wYcMGjUnWfvrpJ32LRgghpVZeiTKIcdFSXqS6UdvryXEIWbtW7TJeCsUbENWhBiwTwXGwsLPDmTlzSv4sDdiZRXO5iSnQteGvLEuFGbtxUe/q+oABA3D16lUAwNy5c3Hp0iXY29ujRo0a2LVrFyJ1mPdx6dIl+Pr6YteuXdi1axcePHiAhIQEHDhwAFevXkVWVpa+xSKEkDLRJ1EGIYSYCnW9ntqW8SqOb0DUclNJDVgVS2RpCYFQaNTMzOoo5nLbUGWbVDCO4/Dk2jUskEjw5No1tZXgsi4Vpss5SqtUCdIU2rRpg4SEBMTFxSEnJwedOnWCt7d3icf44osv0L9/f0RHR0MkEiE6OhotWrTAhQsXMHDgQEydOlXfYhFCSJmUV6IMQggxFJFEorbXM/91UkCdGxAZM3ZRSSnlZ2dDXlBQ5szMhFR22hr+DLVUmDEaF8t811irVi2MHj0aEyZM0KmiDQB//PEHBg4cyC/9pRhGHhAQgMjISEybNq2sxSKEECUvkpNxdv58vEhO5rcxxvieaiaX84kyBELldkjKwls50LBHUl3widCystT3ejKGhO3b0Tw8XCWeKVADYiXBGHIyMuA3ZkyJn2VBXh7FQFItGWKpMGMpVYTNz8/HmjVrEB4eji5duuDu3bsAgO3bt+PmzZslvp7jOIjFYnAcB2dnZ34OOAC4u7vjzp07pSkWIYSoxRiDxMkJ7WfMgMTJCYyxomRC//6LM5GR2BUWhjORkchOT4fv4MGYmJSE9jNnwicsDO1nzsTEpCT4DhpEN6UmjoY9kuqAj11z5mDXoEEoyM1Ve5P5y4oVsKlZE++tXUsNiJXcy5QUnRqDxVZWFANJtaQYnVhSg5S6pcKMTe9h5Pfu3UNQUBBSU1PRvHlznD9/Hi9evAAAnD17FocPH8b69eu1HqNJkyb4+++/0bFjR/j7+2PZsmXw8fGBSCTCokWLUL+ElglCCNHVmxl6a73zDt7+6CONGSv7794Nzx49KAsvIcTkqMu2Wy8oCM3Dw1WmwDy5dg17hw5Fr02bUC8oqFSZdmm0iGmgJdkI0U7XZbxSb98u97LpXdmeMGECnJyc8Ouvv8LOzg5isZh/LjAwUKelv0aPHs33Zi9YsABdunRBs2bNAAASiQQ7d+7Ut1iEEKJC7Y1pcDAy//lHY8bKHX36YGJSEizs7XFx8WI0HzmSegkIIRVOU7bdX1asgO/gwXhv7VrsHzVK6bkbO3fCe9AgeHbvXqoGRMVoEWIaaEk2QjTTpUGqInIa6F3ZPn36NLZt2wZHR0cUvpGV19XVFcnF5kNqMmTIEP7/jRs3xs2bNxEfH4/s7Gy0adMGzs7O+haLEEKUqL0x5Th4f/CBzsvhtJ8xoxxLTAghmmnKtlu8B7tup0747Ycf1N5kPr56lZbxqgJoSTZCNCtLg5SxRvLoXdkWCoVgGrJWPnnyBNbW1noXwtraGsHBwXq/jhBCNFF3Y6r3cjiEEGIitGXbTYiJQcqNG+j6zTcIjIyEwMxM7U0mLeNVddBnSYh6pW2QMtZIHr0r24GBgVi2bBm6devGZxPnOA6MMfzwww/o3Lmz2tft3r1br/P06dNH36IRQghP3Y2pvsvhUIWbEGIqSsq2++TaNSSeOIHabdtigURCvZ6EkGpNXYNUReSh0LuyvXjxYgQEBKBJkyYICQkBx3FYtWoVEhIScPfuXfz6669qX9e3b1+dz8FxnMoQdfIfxciC58+fV3BJCDFd8sJCmLu7I6f4RsZwccMG1O/fH8cXLuSX/SpOYGaGhoMG4UVWVoXOg7Oxsak28/CMHdNeZGUh5/W/kjKew5DHIkQfjDE0DAsrMXY9ffAAL169Uvkd1fa7W16/19Ulrhkqpmn6XErzecmtrdFy2jTIra0rRawlpDh9f7c07i+RoMVnn4HBMPccusQ0jmkaE65FYmIiIiMjcezYMaSmpkIqlSIoKAhz5szRmEm8+PJeuvDw8NC3WNXGw4cPUatWrYouBiHEiDIzM1GjRo2KLka5oJhGSPVQXeIaxTRCqgddYlqpKtukYsnlcjx69MgoLcTPnz9HrVq18ODBg0r/B7GqXAtdh2kpr+uoLj1AgHFjGkC/e6amqlwHUHWuheKaYVFM001VuQ6g6lwLXYd+dPmO6z2M3JAOHz6MS5cu4cGDB5g5cyZq166Ns2fPokGDBnBzc6vIopk0gUAAd3d3o56jRo0alfpLVlxVuRa6DtNSVa7DFJRHTAOqzmdG12F6qsq1VJXrqGgU0/RTVa4DqDrXQtdhODpVtkeOHKnzATmOQ3R0tNZ9UlJS0KtXL1y8eJFvdRg7dixq166NdevWQSKRYNWqVTqfkxBCCCGEEEIIMSU6VbY3bNgAGxsb1K9fX+OyXwq6DJeZNGkSUlJSkJCQgIYNG0IsFvPPBQUFYd68eboUixBCCCGEEEIIMUk6Vbb9/f1x8eJFFBYWIiwsDAMGDChTArODBw/if//7Hxo3bqySdbxWrVp4+PBhqY9Nysbc3BwREREwNzev6KKUWVW5FroO01JVrqM6qSqfGV2H6akq11JVrqO6qCqfV1W5DqDqXAtdh+HpnCDtn3/+QUxMDLZu3Yo///wT/v7+CAsLQ//+/eHo6KjXSa2trbFjxw50794dhYWFEIlEuHz5Mlq0aIG9e/di5MiRePbsWakuiBBCCCGEEEIIqWgCXXesXbs2vvjiC1y9ehV//vknOnbsiBUrVsDNzQ3dunVDXFyczidt3bo11q1bp/a5mJgYvPPOOzofixBCCCGEEEIIMTVlWvorJycHs2fPxvLlyxESEoLdu3fr9Lr4+Hh07NgRrVq1Qt++ffHpp59ixowZuHnzJg4ePIjz58+jRYsWpS0WIYQQQgghhBBSofSubBcWFuLo0aOIiYnBvn37IBQKERoailGjRuHtt9/W+Tjx8fGYNm0aLly4gMLCQnAcB39/fyxZsgT+/v56XwghhBBCCCGEEGIqdB5GfvbsWXz00UdwcXFB//79UVhYiC1btuDx48eIiorSuaKdl5eH3bt3w8XFBWfOnMHz58/x8OFDvHjxAufPn6eKthGtXr0aPXv2hJOTEziOw86dOzXue/DgQQQEBEAikcDe3h4dO3ZUSVx34cIF+Pv7w9LSEh4eHli8eHGJ2eqNJS0tjV8+TiKRwNvbG2vWrFHZ79GjRwgNDYWNjQ2kUilGjRqF58+fV0CJS3br1i0EBwdDIpHA1dUVX3zxBfLy8iq6WCX66aef0Lp1a9jY2EAmk6F///64d++eyn7R0dHw9PSEhYUFmjVrhgMHDlRAaYv89ddfGDt2LN566y0IhUJ4e3ur3S8jIwMTJkyAm5sbLCwsUL9+fSxbtkxpn7y8PEyZMgWurq6QSCQIDg7G7du3y+Myqh2KaRTTygPFNIpp5YniGsU1Y6OYVs4xjenA3d2dWVhYsN69e7MdO3aw7OxsXV6mkbm5OTt16lSZjkH017p1a9a6dWs2dOhQBoDFxsaq3W/z5s1MLBaz6dOns5MnT7J9+/axzz//nN29e5ff5+7du8za2pr17t2bHT9+nC1fvpyJxWK2ZMmS8rocJR07dmQymYytX7+enThxgk2ePJkBYD/88AO/T15eHvP29mbe3t7sp59+YjExMczd3Z316NGjQsqszbNnz5hMJmPt27dnhw8fZtHR0czW1paNGzeuooum1alTp5hAIGDDhw9nx44dYzExMczT05PVr1+fvXr1it9v27ZtjOM4NnPmTHby5Ek2ZswYJhQKWXx8fIWUe+/evczd3Z2FhoYyHx8f1rRpU5V9srKyWLNmzZifnx+LiYlhp06dYlFRUSq/82PGjGG2trYsOjqaHT58mLVr147VrFmTZWRklNflVBsU0yimGRvFNIpp5Y3iGsU1Y6KYVv4xTafKNsdxTCwWM2tra2ZjY6P1p0aNGiUer1mzZmzjxo1lLjzRT2FhIWOMscTERI0BPC0tjdWoUYOtXr1a67FGjx7NPDw8WG5uLr9t+vTpzM7OjuXk5Bi24CVITk5mANj69euVtrdv35516tSJf7x161bGcRy7desWv+3IkSMMAPvll1/Kq7g6WbBgAZNIJCwtLY3fFhUVxczMzNi///5bgSXTbsyYMaxu3bpMLpfz206ePMkAsLNnz/LbPD092cCBA5Ve6+/vz7p161ZuZS1O8d1gjLFhw4apDeIzZ85k9erVY1lZWRqP8+DBA2ZmZsaioqL4bWlpaUwikbDFixcbttCEYhrFNKOjmEYxrbxRXKO4ZkwU08o/puk0jDwiIgJffvklPv/8c0yePFnrz2effVbi8RYuXIh58+bh8uXLevbDk7IQCEr+uHfs2IHCwkKEh4dr3S8uLg69evWCWCzmtw0YMAAZGRmIj48vc1n1kZ+fDwCwtbVV2m5ra6s0VCouLg6+vr7w8vLitwUHB0MqleLQoUPlU1gdxcXFISgoCFKplN/Wv39/yOVyHD16tAJLpl1+fj5sbGzAcRy/TfG5KD6Le/fu4c6dO+jfv7/SawcMGIATJ04gNze3/Ar8mi7fjbVr12LkyJGQSCQa9zl69Cjkcjn69evHb5NKpejSpYvJ/Y5VBRTTKKYZG8U0imnljeIaxTVjophW/jFN58q2Pj8l+eKLL5CWlobWrVvD2dkZPj4+8PX15X+aNWtW5gsjpXPx4kU0atQIGzduhIeHB4RCId566y2lpd1evnyJBw8eoFGjRkqvbdSoETiOw61bt8q1zLVq1UKXLl2wYMEC3LhxAy9evMCOHTtw9OhRjBs3jt/v1q1bKmXmOA6NGjUq9zKXRF1Z7ezsIJPJTK6sxQ0fPhw3btzA6tWrkZmZiXv37uHLL79E8+bN+SX9FOV/8/oaN26MvLw8JCYmlnu5S5KUlITHjx/D0dERISEhMDc3h1QqxYcffoisrCx+v1u3bsHZ2Rn29vZKr2/cuLFJf25VGcU000AxzbRQTKvcKK6ZhsoY1yimlX9MExrlqCXw8/NDy5YtK+LUpASPHz/G7du3MWvWLPzf//0fZDIZVq1ahZCQEFy9ehVNmzZFRkYGgKKAUpxYLIaVlRWePXtW7uXevXs3PvjgAzRt2hQAYGZmhpUrVyI0NJTfJz09XaXMAGBvb18hZdamMpW1uHbt2mHPnj0ICwvj/3i+9dZbOHz4MMzMzAAUXRug+vujCHymeH2PHz8GAHz++efo06cPDh06hLt372LatGnIysrCtm3bAFTez60qo5hmGipTWYujmFY5P7eqjuKaaahMZVWgmFb+n1mFVLY3bNhQEaetNhhjKCws5B9zHMd/gUoil8uRlZWFLVu2ICQkBADQoUMHeHp6YvHixdi0aZNRyqwrddcmEAgwYsQI3L17F1u3boVMJsOxY8cwadIk2NvbY8CAARVY4urlwoULGDJkCD788EP07NkTaWlpmDt3Lnr06IFz587B0tKyootYKnK5HADg6emJjRs3AgA6d+4MoVCIDz/8EPPnz0e9evUqsohVGsU0imkVhWIaMRaKaxTXKgLFtPJXIZVtYlxnzpxBx44d+ceBgYE4ffq0Tq9VtFp16tSJ3yYSidC+fXskJCQA+K+lKzMzU+m1eXl5ePXqldLcFUNTd22ff/45YmNjce3aNfj4+AAo+qPz9OlTTJ48mQ/g9vb2KmUGilq5atWqZbQyl4a2shrz/S2rCRMmoFOnTkrLLLRp0wa1a9fG5s2bMXr0aP53LDMzE66urvx+ipZUU7w+RZmL/+4BRYEcAK5fv4569epV2s/N1FFMo5hWUSimVc7PrTKguEZxrSJQTCv/z4wq21WQn58fLl26xD+2sbHR+bWKoT3q5OTkAAAkEglq1aqlMrfh9u3bYIypzPEwJHXXtm/fPpiZmamsude8eXOsXbsWr169gpWVFRo1aoQ///xTaR/GGG7fvo3g4GCjlbk01M1NyszMRHJyslHf37K6ceMG3n//faVt7u7ucHR0xN9//w3gvzlAt27dUkqAcuvWLYjFYpPsTalfvz7Mzc01Pq/4bjRq1AhPnjxBenq60nwgdfO6iO4ophWhmFb+KKZRTDMWimtFKK6VL4pp5R/TdEqQRioXGxsbtGzZkv8p/kUpSc+ePQEAx48f57fl5eXhzJkz8PPz47d169YN+/bt47NLAsD27dthZ2eHgIAAA1yFeuquzcPDA4WFhbh27ZrSvleuXIGzszOsrKz4Mv/xxx+4e/cuv8+JEyeQlpaG7t27G63MpdGtWzccP36cn3MFALGxsRAIBOjSpUvFFawEHh4e+O2335S23b9/H6mpqahTpw4AoF69evD09ERsbKzSftu3b0fnzp2VsqaaCrFYjC5duuDEiRNK248dOwYAaNGiBQCgS5cuEAgE2LVrF79Peno6jh49anK/Y5UJxbQiFNPKH8U0imnGQnGtCMW18kUxrQJimlEWFCMm6dKlSyw2NpatXr2aAWCTJ09msbGx7PTp00r7hYaGMicnJxYdHc0OHTrEevTowSwsLNi1a9f4fe7evcskEgkLDQ1lJ06cYCtWrGBisVhl4fjy8Pz5c1a7dm3WoEEDtnnzZnb8+HH2xRdfMIFAwObOncvvl5eXx7y9vZmPjw/bv38/2759O6tVqxbr0aNHuZe5JM+ePWMymYwFBgayI0eOsHXr1jE7Ozs2bty4ii6aVitWrGAA2IQJE9ixY8dYTEwM8/b2Zi4uLiw1NZXfT7GO5uzZs9mpU6fY2LFjmVAoZBcuXKiQcr98+ZLFxsay2NhY1qFDB1arVi3+8dOnTxljjF2+fJmJxWIWFhbGjhw5wr777jtmY2PDBg0apHSsMWPGMDs7O7Zu3Tp25MgRFhgYyGrWrMkyMjIq4tKqNIppFNOMjWIaxbTyRnGN4poxUUwr/5hGle1qZNiwYQyAyk9gYKDSfllZWWz8+PHMycmJmZubs4CAAHb+/HmV4/3888+sdevWzNzcnLm7u7OFCxcyuVxeTlej7O7du6x///7Mzc2NWVlZsaZNm7IVK1awgoICpf0ePnzI+vTpw6ytrZmdnR0bOXIky8zMrJAyl+TGjRusc+fOzNLSkjk7O7PPP/+c5ebmVnSxtJLL5ez7779nvr6+TCKRMFdXV9a7d2928+ZNlX3Xrl3LGjRowMRiMf9HtaIkJiaq/W4AYKdOneL3O378OGvZsiUzNzdnrq6ubPLkySwnJ0fpWDk5OWzy5MnM2dmZWVpasqCgILXXT8qOYhrFNGOjmEYxrbxRXKO4ZkwU08o/pnGMFVtJnhBCCCGEEEIIIWVGc7YJIYQQQgghhBADo8o2IYQQQgghhBBiYFTZJoQQQgghhBBCDIwq24QQQgghhBBCiIFRZZsQQgghhBBCCDEwqmwTQgghhBBCCCEGRpVtQgghhBBCCCHEwKiyTXQSGRkJjuNQs2ZNyOVyleffeecdcByH4cOH63XcjIwMREZG4saNG0rbk5KSwHEcdu7cWZZil9mKFSvAcRz/+PTp0+A4DpcvXy63MkRGRuLChQsq2zmOw9KlS8utHOrs3bsXHMchKSkJQOk+txUrVuDQoUNGKiEh6lFMK0IxTRnFNFKZUVwrQnFNGcW1ikWVbaIzkUiE1NRUnD17Vmn7/fv3ER8fD2tra72PmZGRgTlz5qgEcJlMhvj4eHTq1KlMZTa0Fi1aID4+Ho0bNy63c86ZM0dtAI+Pj8egQYPKrRy6KM3nRgGcVBSKaRTTSkIxjVQ2FNcorpWE4lr5ElZ0AUjlIRaLERQUhG3btqFDhw789piYGDRt2hRmZmYGO5e5uTnatGljsOMZSo0aNUosV3Z2NiwtLY1eFlN8f0z1cyNEHYppFNNKYqqfGyGaUFyjuFYSU/3cqirq2SZ6GThwIHbu3In8/Hx+29atWxEWFqZ2/7NnzyIgIACWlpZwdHTEyJEj8ezZMwBFw1jq1q0LAOjXrx84juOHuagb4iKXyzFv3jzUqVMH5ubmaNSoEaKiopTOFxkZCWtra/z5559o27YtrKys4O3tjSNHjpR4bc+fP8fQoUNhY2MDJycnfPHFFygoKFDaR93QJI7jsGjRIkydOhWurq5wdnYGADDGsHTpUnh6esLc3Bz16tXD119/rXLemzdvok+fPpBKpbCyskKzZs2wbds2/tgAMGXKFP79OX36NP/cm0OToqKi4OXlBXNzc9SpUwfz5s1TGkq2YcMGcByH33//Hd26dYNEIkHDhg2xadOmEt+f/Px8TJo0CVKpFLa2tggPD0dWVpbSPuo+t59++gktW7aEtbU17Ozs0LJlS751tE6dOrh//z5WrVrFX9+GDRsAAJs2bULbtm0hlUphb2+PDh064Ndff1U6nz6f96ZNm9C8eXNYWFjA0dER3bt3x/379/nnHz58iMGDB8PR0RGWlpZo3749rly5UuL7Qio3imkU0yimkaqG4hrFNYprpoMq20Qv7733HnJzc3H06FEAwI0bN3Dt2jUMGDBAZd8rV64gODgYNjY2iI2NxeLFi7F//35069YNhYWFkMlk2L17NwBgwYIFiI+PR3x8PGQymdpzT5kyBZGRkRg+fDj279+PLl26YOzYsfjuu++U9svPz8egQYMwfPhw7NmzB87OzggNDUVaWprWaxs5ciT27NmDRYsWYePGjbhx4wZWrFih0/vyzTff4M6dO4iOjsaPP/4IAJg4cSJmz56NYcOG4eDBgxg+fDimTp2KNWvW8K+7e/cu/P39cffuXXz77bf46aefMGLECPzzzz8AioYfAcD48eP596dFixZqy7By5UqMHTsW7777Lvbv34/hw4cjMjISX3zxhcq+gwYNQpcuXbB37140b94cw4cPx82bN7Ve4/Tp07F69WpMmTIFO3bsQGFhIaZNm6b1NX///Tf69u2Lpk2bYs+ePdi+fTv69++P9PR0AMCePXvg6uqKvn378tfXo0cPAEV/DIYOHYrY2Fhs3boVtWvXRvv27XHnzh2lc+jyeS9ZsgTDhg2Dn58fdu/ejejoaDRs2BApKSkAgPT0dLRt2xZXr17FypUrsWvXLkgkEnTq1AlPnz7Veo2kcqOYph7FNPUoppHKgOKaehTX1KO4ZmSMEB1EREQwiUTCGGMsLCyMDR48mDHG2MyZM5m/vz9jjLFmzZqxYcOG8a/p3bs3q127NsvLy+O3HTlyhAFgP/30E2OMscTERAaAxcbGKp3vze0pKSlMJBKxadOmKe03cOBA5uTkxAoKCvhyAmAHDx5UOdbmzZs1Xt/169cZx3EsOjqa31ZQUMDq1q3Lin9NTp06xQCwS5cu8dsAsCZNmjC5XM5v++uvvxjHcSwqKkrpPFOnTmWurq6ssLCQfy+dnJxYZmamxrIBYEuWLNG6vaCggDk6OrIBAwYo7TN9+nQmFotZamoqY4yx9evXMwBs1apV/D5ZWVnMysqKzZ07V2MZ0tLSmKWlJZs1a5bS9vbt2zMALDExkTGm+rnFxsYyAOz58+caj+3h4cHGjRun8XnGGCssLGT5+fnMy8uLTZ8+nd+uy+edkZHBrKys2OjRozUef/bs2czW1pY9efKE35aTk8Nq167NpkyZorVspHKimFaEYhrFNFJ1UFwrQnGN4popoZ5toreBAwdi3759yM7ORkxMDAYOHKh2v3PnzuH999+HSCTit3Xp0gV2dnY4f/68Xuf85ZdfkJ+fj379+ilt/+CDD5CSkqLUgiYQCBAUFMQ/rlOnDiwtLfHw4UONx7906RIYY+jduze/zczMDL169dKpfN26dVPKhHn8+HEAQGhoKAoKCvifoKAgPH78GA8ePAAAnDhxAn379kWNGjV0Oo8mt27dQmpqqtr3Jy8vT2VIT5cuXfj/SyQSeHh4aH1//vzzT2RnZyu9P4rr08bX1xdmZmYICwvD/v37kZmZqesl4ebNm+jduzdcXFxgZmYGkUiE27dvq7SWlvR5x8fH49WrVwgPD9d4rqNHj6Jjx46QSqX8Z2VmZobAwEBcunRJ5zKTyolimiqKaepRTCOVBcU1VRTX1KO4ZlyUII3o7d1334VIJMLs2bORmJiI/v37q90vPT0dLi4uKttdXFz4uUC6UgxlefN4isfFj2dpaQmxWKy0n1gsRk5OjsbjJycnQyQSwd7eXu3xS/LmfqmpqWCMwdHRUe3+Dx48gIeHB9LS0uDm5qbTObTR5/0BADs7O6XHurw/APg5Tm8eXxNPT08cOHAACxYsQO/evSEQCNC1a1d89913qF27tsbXvXjxAl26dIGTkxOWL18ODw8PWFhYYNSoUSrlLOnzVgxR0vY+p6am4uLFi0o3Gwr169fXeo2k8qOYpopimnoU00hlQXFNFcU19SiuGRdVtoneRCIRQkNDsXz5cnTu3Fnjl1gqlaqdQ/HkyRNIpVK9zqnY/+nTp6hZs6bSsYo/X1oymQz5+flIT09XCuKK45ekeEupojwcx+H8+fMqwQUAvLy8AAAODg549OhRGUr+3/kAqLzfhnx/FMdX9/5r07VrV3Tt2hXPnz/H4cOH8emnn2LEiBE4ceKExtfEx8fj4cOHOHDgAJo1a8Zvz8zMhLu7u15ld3BwAAA8evRI42ulUim6du2KuXPnqjxnbm6u1/lI5UMxTRXFNM0oppHKgOKaKoprmlFcMx4aRk5KZdSoUXjvvfcwceJEjfu0bdsWe/fuVcoSeezYMWRkZKBt27YAwAc3bS11ANCqVSuIRCLExsYqbd+xYwecnZ3h6elZ2ksBALz99tsAipJAKBQWFmLv3r2lOl7nzp0BFLXUtWzZUuXHxsYGABAUFISdO3fixYsXGo8lEolKfH+8vLzg5OSk9v0Ri8Vo1apVqa5DwcfHB5aWlkrvDwDs2rVL52PUqFED/fv3x4ABA5QSfKhrqc3OzuafU7hw4QKSkpL0Lru/vz+srKywfv16jfsEBQXhxo0baNy4scpn5ePjo/c5SeVDMU07immqKKYRU0dxTTuKa6oorhke9WyTUmnVqlWJwW3GjBkICAhAz549MX78eDx58gTTpk1Dq1at0L17dwCAq6sr7OzssG3bNtStWxfm5ubw9fVVOZajoyPGjx+PJUuWwMLCAm3atMGhQ4ewdetWrFy5sszrRjZp0gS9e/fGpEmTkJOTgzp16mD16tXIy8sr1fE8PT0xbtw4DBkyBFOmTEHr1q2Rn5+PO3fu4NSpU/x7FxERgQMHDqBt27b44osvIJPJcOPGDbx69YrPTNm4cWPs27cP7dq1g0QigZeXF/8HQMHMzAyzZs3ChAkT4OzsjO7du+PixYtYvHgxJk2axLcYlpZUKsXYsWOxaNEiWFpaokWLFti2bRv+/vtvra+LiopCfHw8unbtCplMhsTERPz4449K85AaN26MkydP4tixY7C3t0fdunXRpk0bWFtbY9y4cZg2bRr+/fdfREREKLXU6srW1hYRERGYOnUq5HI53n//fcjlcpw6dQoDBw5Ey5Yt8dlnn2HLli0IDAzExIkTUbt2baSkpOCXX36Bm5sbPv30U73PSyoXimnaUUwrQjGNVCYU17SjuFaE4pqRVWR2NlJ5FM9wqcmbGS4ZY+z06dPM39+fmZubM6lUyoYPH87S0tKU9tmzZw9r3LgxMzc357Mlqst8WVhYyL766itWu3ZtJhKJWMOGDdmaNWt0KqetrS2LiIjQWv709HQ2aNAgJpFImIODA/vss8/YkiVLdMpwqS4DpVwuZytXrmTe3t5MLBYzqVTK/P392fLly5X2u379OgsJCWE1atRgVlZW7K233mIxMTH88+fOnWMtWrRglpaWDAA7deqUxvN+//33rGHDhkwkErHatWuzuXPn8tk0Gfsvw2VKSorS69R9dm/Kzc1l48ePZ3Z2dqxGjRps2LBhbPPmzVozXF64cIH16NGDyWQyJhaLWe3atdnEiROVMl4mJCSwdu3aMRsbGwaArV+/njHGWFxcHGvatCmzsLBgvr6+7NChQywwMJD16NGDf60+n/e6deuYj48PE4vFzMHBgfXs2ZPdv3+ffz45OZmFh4fzZXV3d2d9+/ZlP//8s9b3hVROFNOKUEyjmEaqDoprRSiuUVwzJRxjjBm9Rk8IIYQQQgghhFQjNGebEEIIIYQQQggxMKpsE0IIIYQQQgghBkaVbUIIIYQQQgghxMCosk0IIYQQQgghhBgYVbYJIYQQQgghhBADo8o2MZqkpCRwHIedO3fq9brTp09jwYIFKtsjIyNhbW1tqOKVaMWKFTh06JDBjrd3716sXr1aZfvw4cPh7e1tsPMYWnm/74SYMopryiiuEVK5UUxTRjGNGBpVtonJ0RTAR40ahVOnTpVbOcorgJu68n7fCamKKK6ZFoprhJQNxTTTQjHNdAkrugCkcmGMIS8vD+bm5uV+bnd3d7i7u5f7eaur3NxciEQig73viuMJBNTGR0wLxbXqg+IaqQ4oplUfFNNMH72TRCvFsJlDhw6hWbNmMDc3x/79+wEA8fHx6NSpEyQSCWxtbREWFoanT59qPd6mTZvQtm1bSKVS2Nvbo0OHDvj111/55yMjIzFnzhy8fPkSHMeB4zh06NCBf04xRObly5eQSCRYunSpyjn69u0Lf39//nFGRgY+/vhjyGQymJubw8/PD0ePHtVazjp16uD+/ftYtWoVX44NGzYAAORyOebNm4c6derA3NwcjRo1QlRUVInv48aNG3H9+nX+eMOHD1fa5/Tp02jevDkkEglatWqFK1euKD3PGMPSpUvh6ekJc3Nz1KtXD19//bXW8yrO7e3tjbi4OHh7e8PCwgJ+fn64ePGiyjV/8skn+L//+z94eHjA0tISz549Uzs06f79++jbty9sbW0hkUjw7rvv4s8//9TpeNrKePz4cfj6+sLS0hKBgYFISkrCs2fP0L9/f9SoUQP169fH9u3bVV5/8OBBtG7dGpaWlnBycsJHH32Ely9f8s+/fPkSn3zyCby8vGBlZYU6depg7NixyMzMVFvmVatWwcPDA7a2tujVqxdSUlJKfJ9J5UFxjeIaxTWKa1UJxTSKaRTTTDimMUK0GDZsGLO3t2f169dn69evZydOnGB3795lFy5cYGKxmPXq1Yvt37+fxcTEsAYNGrA2bdrwr01MTGQAWGxsLL9tzpw5LCoqih0/fpwdOnSIDRkyhJmbm7Pbt28zxhh78OABCw8PZ5aWliw+Pp7Fx8ez69evM8YYi4iIYBKJhD/WgAEDmJ+fn1J5nz9/ziwsLNi3337LGGMsNzeXtWzZktWqVYtFR0ezw4cPs8GDBzOhUMiuXbum8bp/++035urqyvr27cuX4+nTp4wxxj777DNmZmbGIiIi2JEjR9j48eMZALZy5UqNx/vrr79Y9+7dWb169fjj/fXXX/x77ODgwHx8fNiWLVvYgQMHmI+PD6tVqxbLy8vjjzF+/HhmaWnJ5s2bx44dO8bmzJnDRCIR+/7770v8DKVSKatTpw7bsGED27dvH/P392c1atRgT5484ffz8PBgrq6urF27dmzPnj3sp59+Yq9evVJ5358/f87q1KnD6tWrx7Zu3cp2797N/Pz8mJ2dHfvnn39KPJ6mMjo4ODBfX18WExPDdu3axWrWrMkCAgJYUFAQ++qrr9jRo0dZv379mFAoZElJSfxrY2NjmUAgYOHh4SwuLo6tW7eOOTs7sw8++IDf5+nTp2zs2LEsNjaWnT59mm3evJk1atSIdejQQakcHh4erFatWqxLly5s//79bP369czOzk7pWKTyo7hGcY3iGsW1qoRiGsU0immmG9Oosk20GjZsGAPALl68qLS9ffv2LCAggMnlcn7b9evXGcdx7ODBg4wx9QG8uMLCQpafn8+8vLzY9OnT+e1vBgxN2/ft28cAsDt37vDbNm7cyMzMzNjjx48ZY4ytW7eOCYVC/o+AQuvWrVm/fv20XruHhwcbN26c0raUlBQmEonYtGnTlLYPHDiQOTk5sYKCAo3HGzZsGGvatKna7RzHsYSEBH7bqVOnGAB27tw5xljRHwCO41hUVJTSa6dOncpcXV1ZYWGh1vMCYCdOnOC3ZWRkMBsbG6Xr8PDwYA4ODiwrK0vp9W++79988w3jOI7duHGD35aWlsYkEgn77LPPSjyepjK++R6sXLmSAWBTp07lt6WnpzMzMzO2YsUKxhhjcrmceXh4sIEDByodLy4uTuV4xeXn57Pz588zAPzNg6LM7u7uLCcnR+n6RSKR1veYVC4U1yiuUVyjuFaVUEyjmEYxzXRjGg0jJyVycHBA69at+cevXr3Czz//jH79+qGwsBAFBQUoKCiAp6cnatWqhUuXLmk81s2bN9G7d2+4uLjAzMwMIpEIt2/fxp07d/QuV9euXWFnZ4eYmBh+W0xMDDp27AgXFxcAwNGjR+Hj4wNPT0++nAUFBQgODtZaTk1++eUX5Ofno1+/fkrbP/jgA6SkpJTqOgDAzc0NTZs25R83adIEAPDw4UMAwPHjxwEAoaGhStcRFBSEx48f48GDB1qPb2tri06dOik9DgoKwi+//KK0X4cOHSCRSLQe69y5c/D29kbjxo35bVKpFMHBwTh//rzex1N48z3w9PQEAAQFBfHb7Ozs4OzszF/vnTt3cP/+ffTv31/pfQkMDIRAIMDly5f5127evBnNmzeHtbU1RCIR2rZtyx+juMDAQKV5bk2aNEF+fn6Jw+5I5UJx7T8U1yiukcqPYtp/KKZRTDMlVNkmJVIEQ4X09HQUFhbi008/hUgkUvr5559/NAaTFy9eoEuXLrh//z6WL1+Oc+fO4dKlS2jWrBlycnL0LpdYLEZoaCgfwNPS0nDs2DGEhYXx+6SmpuL3339XKee8efNKDHrqpKenA1B9TxSPNc1zKYmdnZ3SY7FYDAD8+5KamgrGGBwdHZWuIzg4GABKvBYnJyeVbS4uLkhOTlZ7Hdqkp6er3c/FxUXl+nU5noKm90Dd9uLvCwD07t1b6X2xsrJCYWEh/77s2bMHQ4cORatWrbBjxw5cvHgRe/bsAQCV372SPgtSNVBcU752gOIaxTVSmVFMU752gGIaxTTTQNnISYk4jlN6bGdnB47j8OWXX6JXr14q+zs6Oqo9Tnx8PB4+fIgDBw6gWbNm/PbMzMxSZ1AcOHAgoqOjce3aNcTHx8PMzAx9+vThn5dKpfD19UV0dHSpjv8mqVQKAHj69Clq1qzJb3/y5InS84YmlUrBcRzOnz/PB5TivLy8tL5eXdKIJ0+eQCaTKW1787PWVJbbt2+rPd6b16/L8cpCcb7vvvtOqUVfwc3NDQAQGxuLt956Syk5ypkzZ4xaNmLaKK79h+IaxTVS+VFM+w/FNIpppoQq20RvEokE/v7+uHnzJubNm6fz67KzswFAKQBduHABSUlJSkNSxGIxcnNzdTpmhw4d4Orqim3btiE+Ph7dunWDra0t/3xQUBAOHToENzc3/susq+KtcgqtWrWCSCRCbGwsmjdvzm/fsWMHnJ2d+eE0uh5PV507dwZQ1CL83nvv6f36zMxMnDx5kh+elJmZiePHj2PcuHF6H6tt27bYuXMnbt++zf/hSE9Px/HjxzF69Gi9j1cWjRo1gru7O+7du6f1WrKzs1X+8G3ZssXYxSOVCMU1imsU10hVQjGNYhrFNNNAlW1SKkuWLEGnTp3wwQcfYMCAAbC3t8fDhw9x7NgxjBgxgl8Corg2bdrA2toa48aNw7Rp0/Dvv/8iIiJCqdURABo3boyCggJ88803CAgIQI0aNTS2BpqZmaF///7YsGEDnj59qjQnCACGDh2KqKgodOjQAZ9//jk8PT2RkZGB33//HXl5eVi4cKHGa2zcuDFOnjyJY8eOwd7eHnXr1oWjoyPGjx+PJUuWwMLCAm3atMGhQ4ewdetWrFy5EmZmZlqPt27dOmzbtg0NGzaEo6Mj6tSpo/lNLsbT0xPjxo3DkCFDMGXKFLRu3Rr5+fm4c+cOTp06hb1792p9vVQqRXh4OObMmQM7OzssWrQIjDFMmjRJp/MXN2LECHz99dfo0aMH5s2bBwsLC8yfPx9CobBUxysLjuOwfPlyhIWF4eXLl+jRowckEgnu37+PgwcPYsGCBfD09ERwcDDGjRuHuXPnwt/fH4cOHcKJEyfKtazE9FFco7hGcY1UJRTTKKZRTDMBFZmdjZg+TVkZGWPs0qVLrHv37szW1pZZWlqyhg0bsrFjx7IHDx4wxtRnuIyLi2NNmzZlFhYWzNfXlx06dIgFBgayHj168Pvk5+ezjz/+mLm4uDCO41hgYCBjTHPmy/j4eAaAWVtbq12uIDMzk3366aesdu3aTCQSMZlMxrp3784OHDig9doTEhJYu3btmI2NDQPA1q9fzxgrysz51Vdf8cdr2LAhW7NmjdZjKcoxYMAA5uDgwACwYcOGMcbUv8fp6elK52SsKJvjypUrmbe3NxOLxUwqlTJ/f3+2fPlyredVHP/AgQOscePGTCwWs+bNm7Off/5ZaT91GT0ZU/++JyUlsT59+jAbGxtmZWXFgoODVZbn0HQ8bWUsTpHl89KlSyUe9+jRoywwMJBJJBImkUhY06ZN2eTJk1lGRgZjjLGCggI2efJk5uTkxGxsbFjfvn3ZxYsXVX4/1R17z549DABLTEzU6VqI6aO4RnGN4hrFtaqEYhrFNIppphvTOMYYK7+qPSGkvA0fPhyXL19GQkJCRReFEEIMguIaIaQqoZhWdVE2ckIIIYQQQgghxMCosk0IIYQQQgghhBgYDSMnhBBCCCGEEEIMjHq2CSGEEEIIIYQQA6PKNiFG1qpVK6xatUrj81evXgXHcTh9+rRRzh8cHIz58+cb5diEkOqHYhohpKqhuEaMhSrbhBjRnj17kJSUhJEjR1ZYGb788kssXboU6enpFVYGQkjVQDGNEFLVUFwjxkSVbUKMaMWKFRg4cCAsLS0rrAwdO3aEvb09Nm7cWGFlIIRUDRTTCCFVDcU1YkxU2SbESBITE3Hu3Dn07dtXafu8efPg6uoKa2tr9OnTB0+fPlV5LWMMS5cuhaenJ8zNzVGvXj18/fXXKvvt2bMHXl5esLCwQJs2bfDbb7/Bzs4OkZGRSvv169ePAjghpEwophFCqhqKa8TYqLJNiJGcOHECQqEQrVq14rd99913mDVrFoYMGYJdu3ahXr16CA8PV3ntxIkTMXv2bAwbNgwHDx7E8OHDMXXqVKxZs4bf5/fff0e/fv3QpEkT7N69G8OGDcMHH3yA3NxcleMFBATg6tWrSElJMc7FEkKqPIpphJCqhuIaMTpGCDGK0aNHs6ZNm/KPCwoKmJubGxsyZIjSfkOGDGEA2KlTpxhjjP3111+M4zgWFRWltN/UqVOZq6srKywsZIwx1q9fP9agQQP+MWOMbd68mQFgERERSq9NTExkANiBAwcMeIWEkOqEYhohpKqhuEaMjXq2CTGS5ORkODk58Y8fPnyIR48eoXfv3kr7vTl06fjx4wCA0NBQFBQU8D9BQUF4/PgxHjx4AAC4dOkSevbsCYHgv6/x+++/r7Ysjo6OfJkIIaQ0KKYRQqoaimvE2IQVXQBCqqqcnByYm5vzjxXB09nZWWk/FxcXpcepqalgjPFB900PHjyAh4eHyh8IALCxsYGFhYXKaxTlyM7O1v9CCCEEFNMIIVUPxTVibFTZJsRIpFIpkpKS+McymQwAVJJsPHnyROV1HMfh/PnzEIvFKsf18vLij/fmvJ4XL14gJydH5TUZGRkAAAcHB72vgxBCAIpphJCqh+IaMTYaRk6IkXh5eSExMZF/7O7uDplMhj179ijtt3PnTqXHnTt3BgCkpaWhZcuWKj82NjYAgLfffhsHDhyAXC7nX7t37161ZVH8IVEEf0II0RfFNEJIVUNxjRgb9WwTYiTvvPMOvvrqKzx8+BDu7u4wMzPDtGnTMHHiRLi4uCA4OBhHjx7FqVOnlF7n6emJcePGYciQIZgyZQpat26N/Px83LlzB6dOneKD9PTp0/H2228jNDQUo0ePxv3797F06VJYWFgozQ0CgMuXL8Pa2hpvvfVWOV09IaSqoZhGCKlqKK4Ro6vgBG2EVFm5ubnMwcGB/fDDD/w2uVzO5syZw5ydnZmVlRULCQlhhw8fVspwqdhv5cqVzNvbm4nFYiaVSpm/vz9bvny50jl27drFPD09mbm5OfPz82Pnz59nQqGQrVixQmm/9957TyWzJiGE6INiGiGkqqG4RoyNY4yxCq7vE1JlTZ48Gb///jtOnjxZLuc7ceIEgoKCcPr0aQQGBgIA0tPT4erqimPHjqF9+/blUg5CSNVEMY0QUtVQXCPGRJVtQowoOTkZDRo0wIULF9CsWTODH//jjz9G586d4eDggOvXr2Pu3Llwc3PD5cuX+eFJX331FU6fPl1uf0QIIVUXxTRCSFVDcY0YE83ZJsSIZDIZNmzYoJKJ0lDS09Mxfvx4pKamwtbWFl27dsXSpUuV5gFJpVJ8++23Rjk/IaR6oZhGCKlqKK4RY6KebUIIIYQQQgghxMBo6S9CCCGEEEIIIcTAqLJNCCGEEEIIIYQYGFW2CSGEEEIIIYQQA6PKNiGEEEIIIYQQYmBU2SaEEEIIIYQQQgyMKtuEEEIIIYQQQoiBUWWbEEIIIYQQQggxMKpsE0IIIYQQQgghBkaVbUIIIYQQQgghxMD+H1n9pTGPxrAOAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjE0lEQVR4nOydeXxMV/vAv3dmsieyyCIJQoLY1VJ9uxAEtbT2qtpJlFZb2tJWbQmKLq9SXVC0dqrqrbb8SrW0umjpEkvtexIkJET2mTm/P24yMpmZZCZCLOf7+cznmHvPPffcmcnjPOfZFCGEQCKRSCQSiUQikUgkEkm5oanoCUgkEolEIpFIJBKJRHK3IZVtiUQikUgkEolEIpFIyhmpbEskEolEIpFIJBKJRFLOSGVbIpFIJBKJRCKRSCSSckYq2xKJRCKRSCQSiUQikZQzUtmWSCQSiUQikUgkEomknJHKtkQikUgkEolEIpFIJOWMVLYlEolEIpFIJBKJRCIpZ6SyLZFIJBKJRCKRSCQSSTkjlW2J5DZmx44dKIrC559/XtFTkUgkkhvm1KlTKIrCO++8U9FTkUgkEoepUaMGjz32WEVPQ3IHIZVtyR3DH3/8wXPPPUeDBg3w8PCgevXq9O3blyNHjpR4XX5+PvXr17e6wEtPT2fAgAH4+voSHh7OkiVLLK7fs2cP7u7unDx5slyfRyKR3Ntcu3aNqVOn0qlTJ/z8/FAUhU8//dSin9Fo5NNPP6Vbt25Uq1YNDw8PGjZsyIwZM8jJyTHrm5uby/PPP09AQABVq1ZlxowZFuOdO3cOT09Pfv7555v1aBKJRGLBn3/+Sbdu3fDz88Pd3Z2GDRvy3nvvmfVZuHAhNWvWxM/Pj0GDBnH16lWz80ajkaZNmzJz5sxbOXWJpMzoKnoCEom9vPnmm/z888888cQTNG7cmPPnz/P+++/TrFkzfvvtNxo2bGj1uvnz53PmzBmr58aNG8eOHTuIj4/n2LFjjBgxgnr16vHQQw8BIITghRdeYOzYsdSsWfOmPZtEIrn3SE1NZdq0aVSvXp0mTZqwY8cOq/2ysrIYNmwY//nPfxg1ahSBgYH8+uuvTJ06le3bt/P999+jKAoAb7/9NsuXL2fixIlkZGQwbdo0IiIieOqpp0zjjR8/nm7duvHwww/fiseUSCQStm7dyuOPP07Tpk2ZPHkynp6eHD9+nHPnzpn67Nq1i2eeeYYXXniB8PBwZs2axfjx41m4cKGpz8cff8yVK1d4+eWXK+IxJBLHERLJHcLPP/8scnNzzY4dOXJEuLi4iAEDBli95sKFC8Lb21tMmzZNAOLtt982Ox8UFCSWLVtmeh8VFSVee+010/sVK1aIkJAQkZGRUY5PYj8//PCDAMT69etv6n2uXbt2U8eXSCSW5OTkiOTkZCGEEH/88YcAxCeffGLRLzc3V/z8888Wx+Pj4wUgtm3bZjr2wAMPiPj4eNP7IUOGiH79+pne//TTT8LDw0OcPXu2HJ/Efk6ePGlVFpc3UqZJJLcPV65cEUFBQaJnz57CYDDY7Pfqq6+Ktm3bmt5/8sknokqVKqb3aWlpwt/fX2zYsOGmzrckwsLCRNeuXW/qPfLz8y3Wu5I7F+lGLrljeOihh3B2djY7Vrt2bRo0aMC///5r9ZrXXnuNyMhIBg4caPV8dnY2vr6+pvd+fn5kZWUBkJmZyWuvvcasWbPw9PR0aK6JiYnExMQQEhKCi4sLNWvW5JlnniEvL8/U58SJEzzxxBMmd6r//Oc/fPPNN1bHMxqNvPHGG1StWhVXV1eio6M5duyYRb/du3fTqVMnvL29cXd3JyoqysJVNC4uDkVROHjwIP3798fX15dHHnnEdH7lypU0b94cNzc3/Pz86NevH2fPnjUbo02bNjRs2JCDBw/Stm1b3N3dCQ0N5a233rKYU05ODnFxcdSpUwdXV1eCg4Pp1asXx48fN3u+uXPn0qBBA1xdXQkKCmLkyJGkpaXZ94FLJHcgLi4uVKlSpdR+zs7OJm+bovTs2RPATP6VJNOMRiNjxozhlVdeoWrVqg7NNT09nRdffJEaNWrg4uJC1apVGTx4MKmpqaY+Fy9eJCYmhqCgIFxdXWnSpAnLli2zOeaiRYuIiIjAxcWF+++/nz/++MOiz6FDh+jTpw9+fn64urrSokULNm3aZNbn008/RVEUdu7cybPPPktgYKDZ823ZsoVWrVrh4eGBl5cXXbt25cCBA2ZjDB06FE9PTxITE+nRoweenp4EBAQwbtw4DAaDWV+j0ci8efNo1KgRrq6uBAQE0KlTJ/bs2WPWzx5ZKpHcC6xevZoLFy7wxhtvoNFoyMzMxGg0WvQrSX6Bun5p1KgRvXr1cuj+9vzN6vV6pk+fbpJJNWrU4PXXXyc3N9fqmLt27aJly5a4uroSHh7O8uXLLfqkp6czduxYqlWrhouLC7Vq1eLNN980e/aieSzmzp1ruv/BgwcBx2Tgzz//zEsvvURAQAAeHh707NmTlJQUi3lt2bKFqKgovLy8qFSpEvfffz+rV68262PPelJiJxWt7UskN4LRaBShoaGiY8eOFud2794tNBqN+OWXX2xaU6Kjo0WbNm3EkSNHxP/93/8JNzc3sXLlSiGEEK+//rpo2bKlMBqNDs0pMTFRhISECHd3dzF27FixYMECMXnyZFGvXj2RlpYmhBDi/PnzIigoSHh5eYmJEyeKOXPmiCZNmgiNRiO++OIL01iFlu2mTZuK5s2bi3fffVfExcUJd3d30bJlS7P7bt++XTg7O4sHH3xQ/Pe//xXvvvuuaNy4sXB2dha7d+829Zs6daoARP369UX37t3Fhx9+KD744AMhhBAzZswQiqKIJ598Unz44YciPj5e+Pv7ixo1apjmLoTqARASEiKqVasmxowZIz788EPRrl07AYjNmzeb+un1ehEdHS0A0a9fP/H++++LWbNmiXbt2on//e9/pn6xsbFCp9OJESNGiAULFohXX31VeHh4iPvvv1/k5eU59PlLJHciJVm2bbF161YBiNWrV5uOxcTEiIYNG4qEhATxyy+/iCpVqogZM2YIIYRYtGiRqF69usjKynJobhkZGaJhw4ZCq9WKESNGiI8++khMnz5d3H///eKvv/4SQgiRlZUl6tWrJ5ycnMSLL74o3nvvPdGqVSsBiLlz55rGKpTFTZs2FbVq1RJvvvmmeOutt4S/v7+oWrWq2d/7/v37hbe3t6hfv7548803xfvvvy9at24tFEUxk5OffPKJSaZFRUWJ+fPni9mzZwshhFi+fLlQFEV06tRJzJ8/X7z55puiRo0awsfHR5w8edI0xpAhQ4Srq6to0KCBGD58uPjoo49E7969BSA+/PBDs89j6NChAhCdO3cWc+fOFe+8847o3r27mD9/vqmPvbJUIrkX6N27t6hUqZLYtm2bqFOnjgCEh4eHGDVqlMjOzjb1W7FihXB3dxfffvutOHLkiGjdurVo3769EEKIAwcOCBcXF/HPP/84fH97/maHDBkiANGnTx/xwQcfiMGDBwtA9OjRw2yssLAwERkZKYKCgsTrr78u3n//fdGsWTOhKIrYv3+/qV9mZqZo3LixqFy5snj99dfFggULxODBg4WiKGLMmDGmfoUysX79+iI8PFzMnj1bvPvuu+L06dMOy8CmTZuKdu3aifnz54uXX35ZaLVa0bdvX7P5f/LJJ0JRFNGwYUPxxhtviA8++EDExsaKQYMGmfrYu56U2IdUtiV3NCtWrBCAWLJkidlxo9EoWrZsKZ566ikhhG3XxYSEBFG1alUBCED07t1bGAwGceLECeHm5iZ+/fVXh+c0ePBgodFoxB9//GFxrlBxHzt2rADETz/9ZDqXkZEhatasKWrUqGFysypUtuvVq2fmUjRv3jwBiH379pnGrV27tnj00UfNNgeysrJEzZo1RYcOHUzHCpXtws+mkFOnTgmtViveeOMNs+P79u0TOp3O7HhUVJQAxPLly03HcnNzRZUqVUTv3r1Nx5YuXSoAMWfOHJufxU8//SQAsWrVKrPz//d//2f1uERyN1IWZbt9+/aiUqVKZsrb2bNnRYMGDUwyrVWrViIjI0Okp6eLgIAAsXbtWofnNmXKFAGYLe4KKfw7njt3rgBMm5VCCJGXlycefPBB4enpKa5evSqEuC6LK1euLC5fvmzq++WXXwpAfPXVV6Zj0dHRolGjRiInJ8fsfg899JCoXbu26VjhQvORRx4Rer3edDwjI0P4+PiIESNGmM35/Pnzwtvb2+x44UJ72rRpZn0LNzoL+f777wUgXnjhBZufhSOyVCK5F2jcuLFwd3cX7u7u4vnnnxcbNmwQzz//vGkjvhC9Xi969eplkl/VqlUTCQkJQgghOnbsKEaNGuXwve35m/37778FIGJjY83Ojxs3TgDi+++/Nx0LCwsTgPjxxx9Nxy5evChcXFzEyy+/bDo2ffp04eHhIY4cOWI25muvvSa0Wq04c+aMEOK6TKxUqZK4ePGiWV9HZWD79u3N1oAvvvii0Gq1Ij09XQghRHp6uvDy8hIPPPCA2SZH0c/CkfWkxD4qXNm+cOGCOH36tMVLIimNf//9V1SqVEk8+OCDZgssIVQlz83NzUKYWYsTzM7OFn/88Yc4evSo6VjPnj3FwIEDhRBCbNiwQTRu3FjUqFFDxMfHl2jpNhgMolKlSqJ79+4lzr1OnToWlmkhhJg1a5aZEl2obL/11ltm/f78808BiC+//NLs/bJly0RKSorZKzY2Vri4uJgU+EJle+fOnWZjzpkzRyiKIo4ePWoxRr169Uy7y0Koyranp6fFZ9GtWzfRtGlT0/uuXbsKf39/kZ+fb/OzeOGFF4S3t7e4ePGixX09PT0t/vOTSO5GHFW233jjDatWVyFUJfevv/4SBw4cMP3dv/jii+KRRx4RQqgbXC1bthRVq1YVzz//fKmxgQ0aNBBNmjQpsU/Hjh1FlSpVLOIx16xZY6ZEF8riZ5991qzf5cuXBSDmzZsnhBDi0qVLQlEUMX36dAu5UBirfu7cOSHE9YVm0fwbQgjxxRdfmBbKxcfo2LGjqFWrlqlvobJdfLH7wgsvCF9fX9P70aNHC0VRxKVLl2x+Fo7IUonkXiA8PFwAFsryyJEjBWChkB49elTs2bPHpBB++eWXwsfHR6SkpIhz586Jxx57TAQHB4vHHntMJCYmlnhve/5mZ86cKQBx8OBBs+PJyckCMFOiw8LCRP369S3GaNy4sejZs6fZ+06dOlnIgO+++85sY7JQJg4bNsxsvLLIwM8++8xsjEIZWOgNsH79egGIjRs32vwsHFlPSuyjQrKRX7p0ieeff54vvviC/Px8s3NCCBRFsYiRkkiKcv78ebp27Yq3tzeff/45Wq3WdO7q1atMmDCB8ePHU61atVLHKoyBKeT7779n69atHD58mMOHD9OvXz8WLlxIjRo1eOqpp6hWrRrDhg2zOlZKSgpXr161mRm9kNOnT/PAAw9YHK9Xr57pfNExqlevbtavMKapMKb56NGjAAwZMsTmPa9cuWIWC1U8u/rRo0cRQlC7dm2r1zs5OZm9r1q1qikDctF5JSQkmN4fP36cyMhIdDrboubo0aNcuXKFwMBAq+cvXrxo81qJ5F5k3bp1TJo0iZiYGJ555hmL805OTtx3332m94cOHeLDDz/kl19+4fLly3Tt2pXXXnuNtm3bMmzYMN544w3i4+Nt3u/48eP07t27xDmdPn2a2rVro9GYp4IpKtOKUppMO3bsGEIIJk+ezOTJk63e8+LFi4SGhpreW5NpAO3atbN6faVKlczeF8ZyFp9X0dwRx48fJyQkBD8/P6tjFt7XEVkqkdztuLm5AZhVRQDo378/Cxcu5NdffzX7e6lVq5bp33l5ebz88stMnToVf39/WrVqRXBwMF999RWzZ8+mf//+Nis5gH1/s6dPn0aj0ZjdF6BKlSr4+PiUKr/AUlYcPXqUhIQEC5lSSPG1TXH5VRYZWJpcLcyVU9IatSzrSUnJVIiyHRsby86dO5kwYQL169e3SHolkZTElStX6Ny5M+np6fz000+EhISYnX/nnXfIy8vjySef5NSpUwCm0hJpaWmcOnWKkJAQq787g8HAmDFjeO211wgNDWX69Ok89NBDJuV65MiRrFq1yqayfbMouplQFCEEgCnZxttvv222yC5K8SRvhf/5FWI0GlEUhS1btli9X/HrS5uTvRiNRgIDA1m1apXV87b+o5JI7kW2bdvG4MGD6dq1KwsWLLDrmhdffJGBAwfSrFkzVqxYgZ+fHxMmTADglVdeKVXZvhnYK9PGjRvHo48+arVv8YWxNZkGsGLFCquJ6IpvAtqak6M4KkslkrudkJAQDhw4QFBQkNnxwk32kpKhvvvuu+h0Op577jnOnj3Lrl27OHnyJDVq1OCtt94iPDycc+fOOZz00RrFDQi2sGf9YzQa6dChA6+88orVvnXq1DF7b0t+OSIDy2NdVpb1pKRkKkTZ/uGHH3jvvfcYPHhwRdxecgeTk5PD448/zpEjR/juu++oX7++RZ8zZ86QlpZGgwYNLM7NnDmTmTNn8tdff1kVIh999BEZGRmMGzcOgKSkJDNlPiQkhMTERJvzCwgIoFKlSuzfv7/E5wgLC+Pw4cMWxw8dOmQ67wgRERGAaqlp3769Q9cWHUMIQc2aNS3+EygrERER7N69m/z8fJvWnIiICL777jsefvhhi/9sJBLJdXbv3k3Pnj1p0aIFn332WYkeI4V8/fXX/PLLLyZrRVJSEsHBwabzpck0UP9G7ZFpCQkJGI1GM+t2WWVaeHg4oFqBb0SmgbqgL+sY1sb89ttvuXz5sk1L2c2QpRLJnUzz5s3Ztm0biYmJREZGmo4nJSUBtjfVk5OTmTFjBuvXr0en05n6F67LCtvExESbyrY9f7NhYWEYjUaOHj1q8sYBuHDhAunp6Q7Lr8L7Xrt2rcyypzxkoLU5Aezfv99CUS/e50bWkxJzylT668CBA/Tr18+Unv7PP/8EYOLEiWzZsqXU6318fPD39y/LrSX3MAaDgSeffJJff/2V9evX8+CDD1rt98ILL7Bx40az18KFCwG1vMvGjRst3HUALl++zNSpU3n77bdxdXUFICgoyLRYBLXETkmlejQaDT169OCrr76yKAMD13cXu3Tpwu+//86vv/5qOpeZmcmiRYuoUaOG1U2EkmjevDkRERG88847XLt2zeK8tdIPxenVqxdarZb4+HiLXVAhBJcuXXJoTgC9e/cmNTWV999/3+Jc4T369u2LwWBg+vTpFn30ej3p6ekO31ciudv4999/6dq1KzVq1ODrr7+2a2MqLy+Pl156iUmTJpksSEFBQRw7dgy9Xm8at7TyY7179+aff/5h48aNFueKyrTz58+zbt060zm9Xs/8+fPx9PQkKirK7mcFVUFu06YNCxcuJDk52eK8PTLt0UcfpVKlSsycOdMiZM3eMYrTu3dvhBBWPQEKP4ubIUslkjuZvn37ArBkyRKz44sXL0an09GmTRur17322mu0bt2aTp06AZgs44XrssKyhyXJMHv+Zrt06QLA3Llzzc7PmTMHgK5du9oc3xZ9+/bl119/5dtvv7U4l56ebpLBtigPGVicjh074uXlxaxZs8jJyTE7V/hZlMd6UmKOw5btbdu20bVrV5o3b86AAQOYMWOG6ZyTkxMffvghnTt3LnGMV155hfnz59OxY0e7duYlEoCXX36ZTZs28fjjj3P58mVWrlxpdr6wlnazZs1o1qyZ2blCd/IGDRrQo0cPq+NPnjyZRo0a8cQTT5iO9e7dm2nTpvHMM88QFhbGwoULTcLXFjNnzmTr1q1ERUXx9NNPU69ePZKTk1m/fj27du3Cx8eH1157jTVr1tC5c2deeOEF/Pz8WLZsGSdPnmTDhg0WcY+lodFoWLx4MZ07d6ZBgwYMGzaM0NBQEhMT+eGHH6hUqRJfffVViWNEREQwY8YMJkyYwKlTp+jRowdeXl6cPHmSjRs38vTTT5ss/vYyePBgli9fzksvvcTvv/9Oq1atyMzM5LvvvuPZZ5+le/fuREVFMXLkSGbNmsXff/9Nx44dcXJy4ujRo6xfv5558+bRp08fh+4rkdwpvP/++6Snp5ssNl999ZUp7OX555/H29ubjIwMHn30UdLS0hg/fjzffPON2RgRERFWNx/nzZsHwJgxY0zHunTpwujRo+nfvz8PPfQQ06dPJzY2tsQ5jh8/ns8//5wnnniC4cOH07x5cy5fvsymTZtYsGABTZo04emnn2bhwoUMHTqUvXv3UqNGDT7//HN+/vln5s6di5eXl8OfzQcffMAjjzxCo0aNGDFiBOHh4Vy4cIFff/2Vc+fO8c8//5R4faVKlfjoo48YNGgQzZo1o1+/fgQEBHDmzBm++eYbHn74YasbgSXRtm1bBg0axHvvvcfRo0fp1KkTRqORn376ibZt2/Lcc8/dFFkqkdzJNG3alOHDh7N06VL0ej1RUVHs2LGD9evXM2HCBItwQIDff/+ddevWmeWBqVGjBi1atGDo0KHExMSwePFiHnjggRItz/b8zTZp0oQhQ4awaNEi0tPTiYqK4vfff2fZsmX06NGDtm3bOvzM48ePZ9OmTTz22GMMHTqU5s2bk5mZyb59+/j88885depUqYbHG5WBxalUqRLvvvsusbGx3H///fTv3x9fX1/++ecfsrKyWLZsWbmsJyXFcDSjWvPmzU212PLz84WiKGLv3r1CCCH+97//idDQ0FLHeO6550T16tVF9erVxaBBg8Tzzz9v9rKWnl8iKSw3ZetVEiVlIxdCLQHm7OxsqhlblE8//VTUqFFDVK5cWbz00ksWmc+tcfr0aTF48GAREBAgXFxcRHh4uBg9erRZ1t/jx4+LPn36CB8fH+Hq6ipatmwpvv76a7NxCrORr1+/3urzFM9c/Ndff4levXqJypUrCxcXFxEWFib69u0rtm/fbupTmI08JSXF6tw3bNggHnnkEeHh4SE8PDxE3bp1xejRo8Xhw4dNfaKiokSDBg0srh0yZIgICwszO5aVlSUmTpwoatasKZycnESVKlVEnz59xPHjx836LVq0SDRv3ly4ubkJLy8v0ahRI/HKK6+IpKQkq/OUSO4GCsvIWHsV1oEu/Hu39RoyZIjFuOfPnxdeXl5i06ZNFue2bNki6tatK3x8fMTgwYNFZmZmqfO8dOmSeO6550RoaKhwdnYWVatWFUOGDBGpqammPhcuXBDDhg0T/v7+wtnZWTRq1MhCRpUkiwExdepUs2PHjx8XgwcPFlWqVBFOTk4iNDRUPPbYY+Lzzz839SnMxGut3KIQqhx99NFHhbe3t3B1dRURERFi6NChYs+ePaY+Q4YMER4eHhbXFsrLouj1evH222+LunXrCmdnZxEQECA6d+5sWgsVYo8slUjuFfLy8kRcXJwICwsTTk5OolatWuLdd9+12tdoNIoHHnhAvPTSSxbnjh07Jlq3bi08PT1F69atLdYS1rDnbzY/P1/Ex8eb1irVqlUTEyZMMCu7JYQqs7t27Wpxj6ioKBEVFWV2LCMjQ0yYMEHUqlVLODs7C39/f/HQQw+Jd955R+Tl5QkhSl+f3ogMLFxD/vDDD2bHN23aJB566CHh5uYmKlWqJFq2bCnWrFlj1see9aTEPhQhHMtm5OrqyldffUWHDh0wGAw4OTmxZ88emjVrxs6dO3n00UctXBOKY82FtyiKonDixAlHpiWRSCQSiUQikUgkEsltg8M+3H5+fiZ3t+IcOXLELPGKLU6ePOnobSUSiUQikUgkEolEIrljcDhBWo8ePZg6dapZJmVFUTh//jzvvPNOqbU470SOHTvGqFGjuO+++9DpdDbr06Wnp/PCCy8QEhKCq6srERER/Pe//zXrk5eXx/jx46lSpQoeHh506NDBalZqiUQiuVlImSaRSO4mpEyTSCS3Kw5btmfNmsUff/xB48aNadSoEQDDhw/nxIkTREZGEhcXZ/dYx44d48iRI1bdznv16uXo1G4aBw4c4JtvvuGBBx7AaDSaatAVJTMzkzZt2qDT6Xj33XcJCgriyJEjXL161azfCy+8wNq1a5kzZw6hoaG88cYbREdHc+DAAby9vW/VI0kkknsYKdMkEsndhJRpEonktqUsgd55eXli6dKl4qmnnhIdOnQQTz75pPj444/Nkj+VxJUrV0S7du2ERqMRGo1GKIoiFEUxvddoNGWZ1k3DYDCY/j1kyBCriaEmTZokwsPDxbVr12yOc/bsWaHVasXChQtNxy5duiQ8PDzEm2++Wb6TlkgkEhtImSaRSO4mpEyTSCS3K2Wqs+3k5MSwYcNYvXo1W7duZe3atcTGxuLs7GzX9a+++irnz5/np59+QgjBxo0b2bFjBzExMdSsWZPffvutLNO6adhThmnx4sUMHz4cDw8Pm322bt2K0Wg0Ky3l5+dHx44d2bx5c7nMVSKRSEpDyjSJRHI3IWWaRCK5XXFY2f7nn39sCpzNmzeb1cOzxf/93/8xceJEHnjgAQBCQkJo3bo1ixYtonv37hbxM7c7p06d4vz58/j7+9OtWzdcXFzw8/NjxIgRZgXhDx06RGBgIL6+vmbX16tXj0OHDt3qaUskEolVpEyTSCR3E1KmSSSSisJhZfvFF1/k119/tXru999/5+WXXy51jIsXL1KtWjW0Wi0eHh5cunTJdK5Lly783//9n6PTqlDOnz8PwLhx4/D19WXz5s3MnDmT9evXM2LECFO/tLQ0fHx8LK739fXl8uXLNsfPzc3l6tWrpteVK1dISUlBOFa1TSKRSOxCyjSJRHI3IWWaRCKpKBxWtv/++28efvhhq+cefPBB/vzzz1LHqFatGqmpqQDUrl2bTZs2mc79+uuvuLq6OjqtCqUwEUedOnVYtmwZ0dHRjBo1infeeYe1a9fecM3wWbNm4e3tbXr5+PgQGBhIRkZGeUxfIpFIzJAyTSKR3E1ImSaR3ByS//yTeEUh2Yr+Z+uco8fvdBxWtnNzc8nLy7N5zlpm8eJ06NCB7777DlAt5QsWLKB58+Y8+OCDTJ06lcGDBzs6rQql0N2obdu2Zsejo6MBNUtmYb8rV65YXJ+Wloafn5/N8SdMmMCVK1dMr7Nnz5bX1CUSicQCKdMkEsndhJRpEomkonC49FfTpk1Zvnw53bp1szi3fPlymjRpUuoYb775JllZWQAMGjQIT09PPv/8c7Kzs3n//fcZOXKko9OqUCIiInBxcbF5vnADom7duly4cIG0tDSzeKBDhw5Rt25dm9e7uLiUOL5EIpGUJ1KmSSSSuwkp0yQSSUXhsGV7woQJbNy4ka5du/L555/zyy+/8Pnnn9O1a1f+97//MXHixFLHcHd3x9/f3/S+Z8+erFq1ii+++IJnnnnGrqyStxPOzs507NiR7du3mx3ftm0bAM2aNQOgY8eOaDQaNmzYYOqTlpbG1q1b6dKly62bsEQikZSAlGkSieRuQso0ieTGyEhOZkdcHBnJyRU9lTsOhy3bXbt2ZfXq1YwfP56+ffuiKApCCKpWrcrq1avp2rWr3WP9+++/7Nmzh7NnzzJ8+HCqVKnCsWPHCAoKwsvLy9Gp3TSysrJMGdhPnz7N1atX+fzzzwGIiooiICCAqVOn8tBDDzFgwACGDBnC0aNHmTBhAgMGDCAiIgKAqlWrEhsby/jx49FqtYSGhjJz5ky8vb3vOGu+RCK5c5EyTSKR3E1ImSaR3FyuJSezMz6eyG7d8AoOrujp3FncSJHuQ4cOiZ9//lkcOnTIoesyMzPFU089JbRardDpdEKj0Yi9e/cKIYTo06ePGD9+/I1Mq9w5efKkAKy+fvjhB1O/7777TrRo0UK4uLiIKlWqiJdfflnk5OSYjZWTkyNefvllERgYKNzc3ET79u3Fv//+69B8rly5IgBx5cqV8ng8iURyjyFlmkRye3E1KUn8MHWquJqUVNFTuSORMk0iubkk7d0r4kAkFehrpR0vyzUljXUn47BluyiRkZFlum7cuHF8//33bN68mVatWuHh4WE616VLF959913eeuutG5lauVKjRg27yjdER0fzxx9/lNjHxcWFd955h3feeae8pieRSCQOIWWaRHJ7Ia1GN4aUaRLJ3YGTu3tFT6HcKZOyffjwYTZs2MC5c+csso8risKSJUtKvP7zzz/n7bffpmPHjhgMBrNzNWrU4NSpU2WZlkQikUgkEsldRUZyMnsXLqT5yJFSEZdIJHcU9irPQgiCGjfm9cxMjHo9QggURbnJs7s1OKxsr1ixgmHDhuHq6kpYWBjOzs5m5+35YK5du0awjf8wMjMzHZ2SRCKRSCQSyV2JtHpLJJI7DUeUZ2E0kpGUxN6FC7l8/Dh+ERHq5mJICModljTbGg4r29OnT6dPnz4sXboU9zKa+hs3bsyGDRvo2LGjxblvvvmGFi1alGlciUQikUgkEolEIpE4Tnl40tirPOvc3BBGIwkrV7IpJgajXm86t2v2bLotWULjgQPveIXbYWU7KSmJjz76qMyKNsDkyZPp3r07WVlZPPHEEyiKwu+//86aNWtYunSpKaOkRCKROIJ0t5RIJBKJRCIpGzfqSWOP8qxzcwPAIyCAjKQki74ARr2eTTEx1IyOVpX0O9il3OGtgtatW7N///4bumnXrl1Zu3Ytu3btokePHgghePbZZ1m3bh2rVq0iOjr6hsaXSCT3JteSk/nl7be5JutASiSSu4i7MWmQRHJPk5UMe+LU9kavsXH8VtfGFkKUqjxnJCfjERAAioKrjw97Fy606Fv0mr0LFiCMxlsx/ZuGw8r2zJkz+fjjj1m4cCEnTpzg8uXLFi976NOnDydPnuTQoUPs2rWLgwcPcubMGfr06ePwQ0gkEknR+KCgxo3tykwrkUgktzNSrkkkdylZyfBnvOPKtpVrMk8nwJ/xaluEQiu1NQPEtQN/c+qpNlw78HdZZm9G4WagMBrtUp5dfXxwcnNDo9Nx+fjxEsdOO3ECjVZ7w3OsSBx2I2/WrBkAzzzzjE2TfvEM4yVRp04d6tSp4+g0JBKJxMTdnlxDIpHce0i5JpFI7CErNRWPIq09ZB85QI2jO0k5cgDPBveV6b7Fk6BptFr7lGedDoGqfPtFRJTY3zc8HKPBcEcr3A4r20uXLi0Xv/mzZ8/yv//9j7Nnz1otHzZv3rwbvodEIrn7uReSa0gkkrsDe/NKSLkmkUhuZyw2A2vVImrKFPuUZ70efVYWOenpNB85kl2zZ1u1hmt0OpqPGnXHyzqHle2hQ4fe8E0/++wzBg0ahNFoJDAw0Gr5MKlsSySS0rAnPuhuSK4hkUhuAanJsGEh9B4J/jcnwaI9yYekXJNIJLcrJWUQ9w0Pp9mIEaUqzznp6Ti5u5OZkoJ/ZCTdliyxGEuj09Ft6VK8goPveDlXIVsFr7/+Oj169CA1NZXExEROnjxp9jpx4kRFTEsikdxh2BsfdKcn15BIJLeA1GT4OF5tKxAp1yQSiVXSUszbCqCkDOK/vfsunsHBdFuyBI3O3J6r0enou3EjXsHBuPr48HpmJpVr1wZFofHAgYw5dYrWkybRqH9/Wk+axJhTp2g8YMAdb9WGMli2AX788UcWLVrEkSNHLFzAARISEqxcdZ2UlBSefvppvL29y3J7iUQiAbA/PugOjvWRSCT3DopGI+WaRCKxTnqqeXurKcggvjM+3upm4IWEBP43eDA9V6ygZnQ0excsIO3ECXzDw3ngxRdx8/GxmYfCKySEqKlT0eh0GPV6FK32jrdoF+Kwsv3tt9/StWtX2rdvz549e+jcuTPZ2dn8/PPPVK1alaioqFLH6NSpE7/99pss8SWRSG4Io8FwTyTXkEgk9wbCaJRyTSKR3JbYk0F8/9q1+NSoQbuZM82VZ42m1DwUl44e5eMWLRj2008EFyTkvhtw2DY/depUxo4dyzfffAPA9OnT+f777zly5AhOTk60a9eu1DEWLFjAzp07mThxIt9//z1//vmnxUsikUhsUVg7Up+bS/ORIy3clQq5W5JrSCSSO4sbqW+raDRSrkkkktuO/OxsuzKIa3Q6hNHIhYQEZnp4kJOebnf97fysrJv5CBWCw5L633//pXPnzmg0GhRFITMzE4CwsDDi4uKYMWNGqWNkZGSQlZXFrFmz6NChA/fff7/p1aJFC+6//37Hn0QikdwzFCYZunL6NF4hITbjg+6W5BoSieT2xJZSXVJ9W1sU1qpVFEXKNYnkXiYrGfbEOVaD+1YghCmDuL2bgfnZ2bj6+Nhdf/tuxGE3cldXV4xGI4qiEBwczPHjx2nVqhUAXl5enD17ttQxBg8ezJkzZ5g/fz516tSxyEYukUgkpeHk7o4+OxtFo6HxwIEW8UHNR41SF6TS+iORSG4S9mQXL43itWqFEFKuSSR3C2f/hs1joctcqHbf9eNFk535F7smKxn+jIca3cD95lRGKCuOZhC3x/Ucrtff1rm53dT5VwQOK9tNmjTh8OHDdOjQgejoaN544w38/f1xcnJi0qRJNGrUqNQxfv/9d1avXk2PHj3KMmeJRHIPY2thejcn15BIJHcPhRZssFKrtkjCICnXJJI7n9ykXST57yQkaRcuRZXtkpKd2VDEs9PScCvSFqLJSDNrTcfTU4gKVtvywlEjh72u56b629nZ5TbX2wWHt0bHjh1rEvQzZ87Ey8uLbt260blzZy5dusQHH3xQ6hi1a9dGb8OVQCKRSGwhjEYyEhPZGR/Phv792RkfT0ZiIqLA26YwPuhCQoJckEok9zKpybAwrsLLeBWl6EZhUOPGplq182rW5McZM9i/Zg0/zpjBvJo1SVi5Uso1ieR2oyS5YsP1O0+kc7qy2tqNDUU8Jz3drC1Ecy3drDUdv5JKmxC1LW+Kbgb2WrWKqKlTTZuEZjjgel78ue4WHFa2u3TpwujRowEIDQ1l7969HD58mL///ptjx47RvHnzUseYM2cOb7zxBocOHXJ8xhKJ5J7EnoWpzs3trkyuIZFIHOQ2qZldSPGNwgsJCXYlDBJCAEi5JpHcDpQkVwpdv8shzjo7Lc2svV2xdzMwMyXFrjwUmSkVVz/8ZuKwG/m0adOIjY0lJCQEUD/o2rVrA5CcnMzHH3/MlClTShxj7NixnD9/noYNGxISEoJPsYB4RVH4559/HJ2aRCK5SxFClLowrRkdjXdYGFFTp+JZxthJiUQiKS+c3N3RubmZNgpN8ktR6LZ4MbtmzSo1YVBUXNytnbREIqlwctLTcSvS3u6Uthlor+v53ehCDmVQtuPj4+nUqZNJ2S5KUlIS8fHxpSrbzZs3l65QEonEboTRaFcmy6i4ONrIxalEIimBjORk9i5cqMZGF9mYy0xJwaOwrVv28c3yShTEZBfdKHRyc8PJ3d2+hEFaLcj1kkQiuQ0omm+iLNyreSgcVraFEDY/lOTkZAsrtTU+/fRTR28rkUjuMYQQCKMRjVaLRqu1f2EqkUgkJWArg3hWaioeRdqyYJbw7MQJui9darFRmJ+dTX5Wln0JgwwGKHAll0gkkgpBCKo0bsTrmZkIfb4qk8qoICuKwvmEBD5p1YphP/1EcLNm5TzZ2w+7YrbXrFlDt27d6NatG4qi8PLLL5veF746duzI4MGDeeihh272nG9bNm3axAMPPICXlxfBwcH07duXEydOWPRbsmQJderUwdXVlSZNmvD1119XwGwlktsXU3xjXBwbBgxAn5tr/8JUUm5ImSaR2K6lXUhxd/HCvBKH//c/dC4ulhuFQrB/3TqaxsTYVavWMzhYhseUE1KmSSQOYjRCSiLKx9NgYn+1TUlUj98A91IeCruU7by8PDIyMsjIyEAIQWZmpul94UtRFAYPHszChQtv9pxvS3bs2EHPnj2pX78+GzduZO7cufzzzz907NiR7CIxCGvXrmXEiBE8+eSTbNmyhQcffJCePXvy22+/VeDsJZKKQQhhUpCNBoPJmm2WCG31avatXm33wlRSPkiZJrmTKUy0Ux4Jdwot4deKKdtF3cUrR0aau4srCiiKTQv27rlz8QoN5fHFi0tMGKQoCl7BwbSJiytzHW+JipRpEon96NzcVIV6y0p4vCYsmQHfrlHbx2uqxwsS00pKxi438iFDhjBkyBAA2rZty0cffUTdujcQ0HQXsnbtWsLCwli6dKnJzT4wMJB27dqxZ88eWrVqBcDUqVPp168f06dPB9TPMyEhgWnTprF58+YKm79EUm6kJsOGhdB7JPjbXhxaqy/78GuvkZOWZpEIbffcuTQeOJDHFy/mq9hYs3PFF6aS8kHKNMmdTHm4hJeESX4tWsSVc+d47KOP2LtwIQH16/PA2LE0evJJdO7uGPPzeOiVVzi6eTPJf/5puv5CQgL/GzyYHsuXE96+fam1aiU3jpRpkhsmNwWaF7R3MU7u7ngEBEBqEkyLAUOxfDkGvXr8/mi1n6REHI7Z/uGHH6wez8vLw9nZ+YYndKeSn5+Pl5eX2WLf29sbwFS648SJExw5coQ333zT7Np+/foxfvx4cnNzcXFxuXWTlkhuBqnJsOJtiOpmU9m2yM4LoCg8MmGC1URoRRemNdu1489Fi+TC9CYjZZrktsLWJp6dm3t241p6AiBhNHLkm2/IvnyJVq+9hs7dHYwGGj71FFFTpiAuJqJdNgvOHUdTNQLnXiMZ8fvvbBwyhH2rVpnGOfj55zQcMIA6XbrccwmDKgIp0yQ3TF6qqmznlX/d6tuCorHZBgMsirNUtAsx6GHDAtxGTL2lU7wTcXh1umLFCubPn296v3//fmrXro27uztt2rTh4sWLJV4vhODy5cvk5uY6PtvbmKFDh3Lw4EE+/PBDrly5wokTJ3j99ddp2rQpDz/8MICprnhxr4B69eqRl5fHyZMnb/m8JZJyRQio1Rh2ZaptkcQ+GcnJ/PjGG+RlZVkt41Vaht79a9fycYsWpB0/TlRcHL1WrSJq6lS8QkKkon0TkDJNcjuR+W8CfByvtkVJTFBr2yYmWL/QXoTA/7EnYFem2tpISiaEIDstjdqdOtGofRt0y2bBxP7w+QL869ZF2boGba/aZi6XSrea8H+r6Ll8OZ3ff59G/fvTetIkxpw6RZ0uXVA0Grtq1UpuDCnTJDeT3PwUTlZWW7PjGRlmrem4MU3tb6zAWtpFNxeLxmbHDUPRauFcyYlpSTyBotNJV/JScHiF+vbbb6MpsrB9/vnncXZ2Zu7cuSQnJ/P666+XeH1+fj6BgYF89913js/2NqZVq1Zs3LiR1157DR8fHyIiIrhw4QJbtmxBW5AhOa2gOH3xjO2+vr4AXL582erYubm5XL161ewlkdx2FAhqPo5XF58fx5uSaAgh8AgIoPXEiehcXKxar+3J0HshIYGT27eDEHJhepORMk1SIWQlw544tS1CzoWj0LygLUp5WJoKF5mLp6sJgBZPt0gAVFjyRhiNuHl7o3y72lypdnVHOX8GxYbLpTItBlKTuf+ZZ2xuFN5LCYMqAinTJDeTPH0qpyurbVFsKdt5Il3tL9Idu5HOhveNrePWMNtc7GsZm/3NMsjJgqolJ6YlNBxhMNy19bHLC4eV7VOnTlG/fn0AUlNT+emnn/jvf//Lc889x7Rp0/j2229LvN7Z2ZmqVatiuMuyBv/yyy8MGjSIESNG8P3337N+/XqMRiNdu3Y1S7xRFmbNmoW3t7fpVa1atXKatURSTpSQRENsWQlCsGfhQv43bJjtMl4OZOjV5+Xx0PjxMjvvTUTKNEmFkJWsWqqLKdsaYzo0L2hvEE1eClGPgbMup9QEQMJoJKiR6lYZ1KgRGo0GkZKIMj32ulKtKNDxSfhySYkul8qGBWA0yo3CCkLKNInd2Nj0q1CEwKfXeBieqbYF3jdCCLx7qse9e443hUTYpPjm4rF9kFIsNlsI2LoOuseA1kbEsVaHsefTZS4Bdi/hsLKt0WjIy8sD1PhtJycn2rZtC0BwcDCXLl0qdYzRo0czZ84ccnJyHL39bcsLL7xAu3bt+O9//0vbtm3p06cP33zzDX/++ScrVqwAru+MXrlyxezawp1UPz8/q2NPmDCBK1eumF5nz569iU8ikdhHYTmc/KysEpNoKNNiMJ4/i5ObG/8sW1ai9dreDL3O7u4yO+9NRso0ye1EviaDk5XVtijZBb+1wtYeNPmptHkcPAKDSk4AtGYe5GZfV4qFEWE0ovnfYvP+Lm6qO6adLpelLoYlNwUp0yR2Y2PTr0Suppm35YkwQlYiyl8zYHt/tc1KRAgj2Zcvs3PaDDb078/OaTPISExE2CrLVXxzcetaqFkXvlhoKQPXzIXAUJi82FLh1uoQk5eAv5ovR7qRl4zDCdKaNGnChx9+SNWqVXnvvfdo166dKVnEmTNnCAwMLHWMM2fOcOTIEapXr06bNm0ICgoy2+FVFIV58+Y5OrUK5eDBg3Tv3t3sWNWqVfH39+d4gRWvMAbo0KFDREZGmvodOnQIZ2dnwsPDrY7t4uIiE3JIbjuuJSfzyzvvEDVpkpqgqASLjvbLxTQaMoFNMTEm6/Wu2bOtJkL7ctgwesoMvRWOlGmSiiA3P4WkyhCSn0LRX0i+JoPTflD7srmynZOejluR1n4UXPyrwcfTrcuuR/tB/HKU1GTY+LGa7KxGXRgxxVKpzs223+VSr5culxWElGmSm0pGunlbCrkZGeCktl42+mi9A1VF++hK2BkDoois+ns2RC3GNbw/hzdt4kKCmrdi1+zZdFuyhMYDB6Kt5HO9vxCWm4slbRQeTYCpgyF+ObRoq8rBxBMQGo6heyxKQAj/fvEF9Xr1kjKtFBxWtmfOnMljjz1G48aN8fLyMou93rhxIy1btix1jK+//tokmP744w+L83eish0WFsafRcp6AJw+fZrU1FRq1KgBQHh4OHXq1GH9+vVmAn/dunVER0ff09ncJXcWpvqy166pB+yw6Ojc3dG5uZVaxivi0UcB8AoJISouDo1Wi9FgQNFopNvlLUTKNMlNIysZDi6E+iPB3dw7pTDu0V+fyk1VXVwro+icrcuu2o3VBeb/rYbi7uKDxlkq1UVdLj+dbV151+qg9yiy09PL/VEk9iFlmuRGyTWmqZuBxrQblk+5GRngZxnLXRSXOi0hK8lS0QYQepSdsRgD2/DAmDFsef558rOzMer1bIqJoWZ0NG4RkdeToAmjpWGktI3Cb9fCiYMwZSni6TgUrRZ9Vhb71q7ljw8+oN+mTeRImVYqDivbDz/8sMkyHRERYZZEIiYmhlq1apU6xt2YzXHUqFGMHTuWMWPG8Pjjj3Pp0iVmzJhBYGAgffv2NfWLi4tjwIABRERE0LZtW9atW8fu3bv58ccfK3D2EokNUpPhy6XQfbiprI5ZfewTJ+j5yVI0dlh09FlZ6LOzzct4tW3Lnx9/bNN6rRQkrdEUtJJbh5RpkptGoYtmjW4WyvbNRghB5f88Aa0GIAwGFGuy66mxcDHRXNFWL7atVK+ZC10Gqi6Xxa/T6mDqUvAPJvPw4Zv1aJJSkDJNcqMUJjXzF+k3dzMQAAXnavXgrxmWinYhvvXR5l/ivqFDaDp8OPrsLPatXcexzZvJvHCBKk2aqEnQ8vNAYyW7uD0bhScOYvD2J2HZMlWhz8oyC+tLlTKtVBxWtgG8vLxo3ry5xfEuXbrc8ITuVF544QVcXFz46KOPWLJkCV5eXjz44IOsX7+eypUrm/o99dRTZGVlMXv2bGbPnk1kZCQbN27kwQcfrMDZSyRWEAJ8AiBmIuj1IARCCIv62OHt29OkRyyaEiw6hu6x7Fu71nRo/9q1pBw8SLelS6X1+jZFyjTJ3YbZRuHx4zw0bhxVeo1EKSq7CpOdfTLLujyzpVQfTYD4YRC3DFq2hw0LTC6X9B6lblZqNNLdsgKRMk1yR6FzQ9G5wFUbnoMR/aDtcshMQtkbB1ePo6sUQZPesdw3dAhcSUNZFAfnjqNUrYV4eor1zcVSNgrF1KVoqlQjPzubuj16WBhGpEwrHbuU7Tlz5jBgwACCgoKYM2dOiX0VReHFF18sdczExETmzp3Lrl27uHz5Mn5+frRq1YoxY8YQGhpq3+xvIxRFYdSoUYwaNarUvjExMcTExNyCWUkkZcRoVGN7NixUd0KrRiB6jwT/EI5v3Wrm+n1s82buGzIEMXmxeYZeMCXRUAJC2F0sNCTl4EE8q1QxWbGl9fr2Qso0yd2EMBotNgqN+fn0WbfOXHaVluzMFMe4wrpSrSgQEIIYMVVNhqbXqx46chOxwpEyTXJnoSD0uSiVrCjIfo1VRfvYatgZa2b51vw9GxG1GCW8P/y4SZVZgFI1HNFzhPnmIpjFZouW7dWqCUVjswNDMObl0WLkSFqOHo2xQKbZYxjxDA4maurUe75yjF3K9rhx43jkkUcICgpi3LhxJfa1R9nev38/rVu3Jj8/nw4dOnDfffdx4cIFFixYwJIlS/jxxx9p0KCB/U8hkUhujKxkOLQU6j0NLpXVbJXFMvQqn85GTF5Mj08+4eK+faZkHLW6dCHr0iXcHu2PsVkbtF8uNglq0XsUVK7C/4YMMfUH88zi0pItkdxb2EqCVu4UxCoKIchISjJTtMGG7Eo6CXm5JSc7+3YtNHkE0ecZGDEFReeE0OejaHUmpfp8QgKftGrFsJ9+IrhZM9OlcvEpkUhUFDQad6DYGqiwxJduEhj1am6Lv2ebu5I3GguZiRaKtnq9GstNUBt4aoy6lgNY/S5K5wGIKUtQildg+O5zxKP94eEu6Ie+js7NDX1WFvs/W4ebfwB1unQh9fBhPm7RwkKmlYRXcDBt4uIc/FzuPuxSto1FUsgbbaWTd4Bx48YRERHB1q1bTWUWQC2t0LFjR8aNG8eWLVtu+D4SicQOhADXAGg2URXsudlqyRtrZbymx2Jspibj2BQbi5O7Ow2ffJJds2ZxeNMmHhgzhkZDJqBzd0eflcW53bup9kgg0bNm4VuzpswsLpFIbn4SNCHwf/wJ6DkAf30eCMGhL780r36gKDZll1GvR+k90tICVIhWh2jTA0VRSE7YZ1Opfmj8eAulWi4+JZLbCBvJGnNTD6kbgqmHcPG3T7F0CCEI6TaHUN0HCH2uug5TlIISX0koBxfC1eMoQQ9Dg2cgakmRJGkKRDwJf82yHcst9HBkMXSccF3ZLrBgK9NWIO6PNrNgG3uMQAmqSnZaGrvnzePquXNUCg21cBfPz8oq/8/iHqBMMds3yq5du1i1apWZog1qfcOJEycyaNCgipiWRHLvUSDYKRDsVIqAuiPg099Ut6Jv15r3N+jR7vqaJoOeplG/fujc3cFooGZ0NIc3bWJTTIyqhLu5mYRyUOPGdJo373pstgMuSBKJROIQwogoulitFAH1R9Ji1EjO7trF/rVrQVFwr1wZJ3d3Lh8/zoWEBDPZ5VerFk/v3QvWLEAFMYyKf7DJim1tASqVaonkDsBGssaMs/9wujJ4nf0Hl7r9y/eexRXqShHQ8DnV6FG8xNfxNXDxV0SbZRAajXJwgWrR1rnbjuU2PcQJ1bvHxU01ooC6pguugTJ6JvoihpF9a9dyfOtWui1ZQtSUKWh0ugpZq92tnj92KduOZmBs3bp1yTfV6cjNzbV6Ljc3F62M3ZRIyk5qshpr3XukKYM4oO6cCqOakdJoUBeKtmo3tl6slr45cdAU7wOotWd7jURz+TyaIvHc1XuM4Ok9e9g4eDD71641W3xeSEjg5PbtVH/kEX584w2aDh+O110mSCUSiQNcTTNvy4HCerTi6EoUKzJNab2YnsuX06Dfk9Tq2BGdmzvCaOChceNIOXBADXMRgvysLC4kJLBx0CB6Ll8O97dD2bDQLDRGKUh2JpFI7k5sleWypza2LXTeobZrZleKgNB21kt8HVuFkvYvPLYDmk4GnbO6hrMWy10Ur3C1rFdusQRmWh367Gze8PQ0GUYKQ/uc3NzK5C5eXtytm5R2Kdtt2rRBURSEEABmuxxCCItdD4PBUOJ47du3Z+LEidx3333UqVPHdPzo0aNMnjyZDh062P0AEomkGKnJ8HE8RHW7rmwLI2Qmwb8FFuzG48At0GbtRn6MhSptzON9TLVnV1lkrNQUxHP3XL6clIMHLeKzm48ahaLV0nrixJv88BKJ5HYnN+msumBNOotXeaRn0bnj2iBKtWjbqkebuA3qDCSyXTOU/bNMFqUq9Uby9N49bBykbhQWsn/tWi4dOcLQH3/E6empKFodIj8PReckk51JJPco9tTGtkSNzfas0dZGzWwFIvqW7BZ+6U9IeAsaTYA2vrD6L6hnJZbbNKQO6sTC1mLeiVodovcojELQeuJEq6F9jrqL363W6PLELmX7r7/+Mv374sWLxMTE0LZtW/r06UNQUBAXLlxg/fr17NixgyVLlpQ63pw5c4iKiqJ+/fo0bNiQoKAgLl68yL59+6hevXqpGc8lEokDCCMcXVEkkYYCUYsdj/exVXsWLOO5C7K4ykRoEsm9S25uMklJCwkJGYmLS5F4yDItWK0gBD49x4PTJJyMBrX8jTWZ5tcY2nyCcnSlRUIh5e/ZELWEnivMNwo1Oh0PjB2Lk5sbl/f8xoGnOhD58RcEtXv0xuZsA7lglUjuPoQQBBfGZgsDIvUfFN/6cLmIx6DOzTG3cICgaqBzUr0QfyyWJE3RqTHeHiFq/p1CCqrD4B+Mk6IQNWUyGidnjAWbiGVdo92t1ujyxC5lu0mTJqZ/9+nTh379+vHWW2+Z9Xn88ccZP348H330UamW6erVq7Nv3z6WLl3Krl27SEtLo06dOgwfPpxhw4bh6elZhkeRSCQmfPzVVgjVol10gemoYHdxg7yckmvPghrP/eVimsRM4uT27TIRmkRyj5OXl8zp0/H4+3czU7ZLIjstzdR6VSt6pljmXqMRcrNRdOoyRtFobcu0UjP3xkBoNN2XLuXXOXMsZFeezpUfTmRR2yfA7md3FLlglUjuLoQwkpeXRFLSQrKzj+PmFkFIlVice+1B+WEwHC+wOuuzQZ9lv1s4qOuydfPVcoNV2qjGkYwTap+6I8CzKly5DK27QURDUxkvTVBVQPVQTv16PQH/fZpLLy8ioOeAm/dBSBxPkPbtt9/yxRdfWD3XsWNHevXqZdc4np6evPDCC7zwwguOTkEikdhACAGRTVC+S0EIAwiBcupL8wWmI4I9Pxfa9oSwyJJrzxaSeAKNswu9Vq3CaDCgaDTSoi2R3KvkpFxv7QxwzEs8C24FbeOCg0Uz9xpyVUUbAXkpsH8JXD0BbZbakGn2Ze5VDi6gSvM4VXbdoKVHIpHcm2g07mjcAxHCyIULKzl8OAZRRO6cOTObyDqLCWq7HCXtYIGFW8DxdVA3xj638NxsVem+fBEGtVDD/TpOUNdoOVlqn5+3wNDXEE/HoWi1GPNyMeTr0SiKufEjR2YXvxU4bG7y9PRk+/btVs9t27ZNWqUlkgpCCCN5uYmcOhXHwYP9OXUqjrz8JET9kRDRr2jP64JdsbHfpuig3kiE1glmrEI/YBzG/LySa88ChIariTsAjcw4LpHc2+Skmrd2oGRnmLVq5t5ElL9mwPb+KP8uVo3bx1bBZ7XhrxlwfDUcW21dpjngyaNotBDtz6Wv15vJrpJcvKX7t0Ry55KZkmLWlhkh8Lx/PK1bZ+LecDh5eUkWirbaTc/hI7Hk5SYhGo1RZRMK7JsLHqGq+3dxGabooHURt3AhYOs66B6jJrGdFgOtPOERD/U1LQZ2/A9RuUqRMRSc3N2ll2EF4fCnPnr0aN566y2GDRvGl19+ya+//sqXX37J0KFD+e9//8vo0aOtXlepUiX27t0LgJeXF5UqVbL58vb2vrGnkkjuBVKTYWEcXL2s7qKeX8Fvu2ty+vQMLl5cw+nTM/jtt5pcuLgK0Xa5GrdYiEmwL7Yp2IVHMIc3bWKmhwdveHiQsHo1oucI0NpQ0LU61aVJkcJcIpHcGGaZe1fXLFCq14CTO1w7Y5lkyJZMc8CTRxgNcOWS5akCF29rVRRKOieRSG5vck4eNWvLROGG4J8zYPsAwEhS0kILRbsQd/f65OkvQZ0hMDwTMfwaotGLcGkf1B4ITx6DppOgVn+17X8Kag+A+GHXq8OsmQuBoYjJi9W1lxDXrdRaHRSUJ0zb8X/wiIfFBqLk1uKwG/mkSZPw8fFh9uzZLFu2zJSlPDg4mLlz5/L8889bve7ll18muOA/o5dffll+6RLJjVKQdVwMfY283CQOH4m1vot6OBZf7zY4NxqjxiaC6rr0w2BouxxC28PBBdfjferEIryqglC4mphI3R498A0Pp1anzhAQAFOWqDunxWrPMnWpmv1c/m1LJPcWtsoN3gCeEdYy95bgEl5UpoW0g38XXZdpQpSeubfuCBRFo8ZCSiSSewLNtXSztnSK5Y4oXspL546iWUV2tnVPmsDAftStu5y8vCROnYq7HssdNhJnlxCUb9cW5Mgp4hZ+YDc0CYTnZkFIzetlCDMzoMsgaNkeNiwwHaf3KFUOazQYrqZLV/HbAIeVbYDnnnuOZ599lnPnzpGcnExwcDBVq1ZFU4J7wtSpUwE1pvSFF17Aw8MDFxeXss1aIpGoaDTg7ETSKdu7qELoSTq/mBoRE9T/EAo58Tmi1gCo3gWlsHZjfi7GvDwUASjQYtQoWo4ebR5/3Xkg3B9tU7hLJJJ7DGvlBqGM9bQ16HQBuFdrAX9ON1eOS3MJP74W0g7CQ/OgRRwoWsjNAsUJ3INtZ+5tvQTcQxB6PUrxmrQSiUQCau6Ix+cQ6vQBIj9X3cQrviGoz0EIA25ulp40Hh6NqVt3ORcvrubw4Vjrsdzt+6MMaqFWfXFxu64o124M4+bByDjQaBEGAxSuyQJCELGTUJxcEPm5KDpnafS4zSjzylij0VC9enUeeOABqlevXqKiXZT8/HwCAwP57rvvynpriUQC5BpSON3ND0XR2txFLSQ7+wSKzh2ax5tck0T/U1C9C8Z8PUajAMAoQI8GCpJoaLRaoFj8tUYDASHw9FSYsUptA0Kkoi2R3KvkpkDzgrbo4aSzZm1pCCEI6TmPRx65qC4oQ6OLhL8o6qs0l/DLCZC4HXJz1fjFhz1g80o1M29Ef+hbzEWz7zGIeAquXSUn8bTjzy6RSO5+jEZISURZPAMm9kdZ/AYIAxxcWGxD0BXQEFIlFqVYiF7VqmPJy0u0ULShWCz3U2PM3cJBdR//fbuqZC8PIH3DrOtrMkUhfePbsNRDbaWifdtRJsv2jeDs7EzVqlUxGAy3+tYSyV1FnjGVk49cprqNXdSiuLmFq9nJm05E0WgRRgOXjx0n5+qfhDRrhhBGtaNWi5OTc+lhHopyPXbbVgy3RCK5N8hLVZXtPPNEaI7U01YTPCaRlFykTE7wCJx77YHzP0NgSxSdO8KYB01eQTmzGS79aTlQ0ay9hYvVNXOhy0D45f/gSip0KOKiuW0d+ATAw13I3vMr0olcIpEUovMOVRXtLSvNw+dc3eGZaZZeNvpsFEMOzi6hRNZZXCS8TyEw8EnOnJlVshfixcXUeHSCeq+iaHWI3qMwZmegzUkFVysD6O8cd/F7LbFkhaySR48ezZw5c+jYsSOurtZ+MRKJxB40GleMedmEhIzkzJnZVoW4ougICRmF0SD4cfp0Mi9cwCMggOajRuFXq5bqHl7g5KKRirNEIrnFqGVyVlhYfLKzT1Kv3jLyKtci6eys60p4yEice/2O8sMQNSt5IYoOEbUEpTBrbyEnDsK+3+CRrqrL+yez4eI5CAy1jG+USCSSAjwj2kJqkmWemsLyWxZeNgKOr0Wp/hhBQf3x9WlD0vnF5OQkotW62+eF6OKuupAXhrRodYjJS8AvCKXQMHKHU5hY8l6hQlbWZ86c4ciRI1SvXp02bdoQFBRkZklTFIV58+aVMIJEcm8jhMCj/hO01g5AGPU4KyHFdlFVFEVHZOQSnJ2DAYWoyZPR6HQY9XoUWZpLIpFUCNeTDAkh1ASPxRRtNb7xk4JatVbiGyOXqLVqAx+Ei7+o2cTrjQSPEMTVdJTW3SCioWVOiYAQROxEGd8okdxLlCmJo4J7aHNYPMNc0Ybr5beirNTG3jcXag9EObMF59xL1IiYoHrl2OuFaNSjDHzZlBPH0D0WJSCEPQsW0PK550Ar/W/uNCpE2f76669xcXHBxcWFP/74w+K8VLYlEtsIYSQvL4mkpOvullVDxxBUZRC+vm1JSv6Y7OwTuLmFE1IlVs1weeJzRM3eXEhI4JNWrRj2008EN2tW0Y8ikUjuNYQgpNscQnUfIPS5gJGkZMsEj6XGNx6Owdc3Guf6z6A0HI0xPxd9nh4nAUolX0TsZBQnZ0R+HorO6bpCXRDf6HttFumeE/DtO+kWPbhEIrmplKRQ20riWAIajRuKkwucs2GNLgxPKZ548XIC7BgGbZahZJ+Hv2ZD5jlo8BwhwSV7IQYHPc2lYyfwGTIBnbs7+qws9q1dy+5584js1g1jfi4ag0zieKdRLsp2VlYWSUlJRERE2GUpO3nyZHncViK5Nyj8D6TvaIRP5QJLT4yFpadB/Q1UrtyVGtVeR9G5IfRZqjvTvnng1xAloi+ewcE8NH78PRMnI5FIbiOEEbKSUA4uhKvHUfwaQdMJVlwr7YxvTFpAjRpxpmNO7u6mNUjq1+sJ+O/TpL68iICeAywHsBLfaPT2Z0cS1PP2L+sTSiSSiqIMCnVJGI3ZqvdLVRvW6KMJMHUwTFsBVYuVUK0/Su1z6Cg0eg1c3VFys3F2ciYyconFGk71QlyKk3MVPn+iBRf27cPJzY38LFVOaXQ6+m/eTP7Zf5F1nO48HE4f/M477xAfH296/9NPPxEaGkpkZCS1a9fm+PGS4xEkEomDpCbDircROify8pIshDSoC88DB3uTl3sOjq+BpR4oSz3UutqXEwpqzRpMcTJeUtmWSCSOkJUMe+LUthjZaWlmbXF03qHX69Gurgl/zVDl1B+TrLpWajRu9sc3KlpY5s+VjW9bbvY7WF/W6BPAzmS1lUgk9zqCrMS9qqXcVj6b7z6HK5fU0oFNJ0G7VWrrHgIoiGq11RwR8cNh6UzIuEJQ0ED+859ThIVNIjCwP2Fhk/jPf04RFDSAc7/8SsrBgyCEmaLdbelSvIKDyT36+617fEm54bCyvXjxYqpWrWp6/9JLL9GgQQO+/PJL/P39ef311+0aJzU1lYkTJ9K+fXsaNGhA+/btmTRpEikpKaVfLJHcjaQmw8I4tS1ECKjVGHZlgqcXSUml19Mmop+51UbRYaz7NELIuESJRFJGspLhz3irynZOerpZWxzPiLaW9WgBMMKV44QEjzQrk2M0ZmMwZNkV32jU50LuJYcexdXHx6yVSCQSa1w7/gP4h8CUJarCrShqJvLCiixTl4JPAAIQBdeIIq98d2+MMRNh6lKMMZPI1zqDAGfnEMKqTaJ+/VWEVZuEs3MIiqKh+iOPMObUKVpPmkSj/v1pPWkSY06dovGAASgaDYYrFyvss5CUHYfdyM+ePUutWrUASExMZO/evezcuZNWrVqh1+t55plnSh1j9+7ddOrUCaPRSPv27alTpw4XLlxg/vz5zJ8/n61bt/LAAw84/jQSyR1M5r8JeHwcT2b9B/FoFayWm0hNUl3ILyaiTF1qfz1trRsYstXsvK2XoHiGotaplUgkkluJgnvV5qo126RoK6BzU8vk/DER5/briIxcXCQ+W3Dx4jqCg2NKrbJQFrdKN19fOFXQFuFeK0cjkUhsoSZx1F9OUhMrdh4I7XqDTgdOLpCfC3o9uLghFMjLSzTLoxMSMhInp2C+HjWKfatXm1zCNTod3ZYsofHAgaTsfIfDTjOJSB1CaK8P1btqNHiFhBA1ZRIaJxeMBUkcZTLbOxuHLdtubm5cvXoVgO3bt+Pp6clDDz0EgI+PD1euXCl1jNGjR9OgQQPOnj3Lhg0b+PDDD9mwYQNnzpyhQYMGPPfcc45O647h0KFDdOjQAQ8PD6pUqcIrr7xCXl5eRU9LchuQlarWqM3N01+v6/h4TVgyA7avtz+TpSEXavaEppMw9D0GtQeAQApryU1DyjWJLTQaNxSdi1qP1q8xImopYvg1GJ6JGH4NUb0LyvG1BAUNMnOtNBqzcHGpTmTkEjOrN1yPb3R2Dib3SPm5VcowG0khUqbdxljzAixPCpI4tm6dSUi3OaqHoQIY0+DvGbC9v9pyDaHAhQsr+e23mpw+PYOLF9dw+vQMfvutJhcurKT7p58Q1KiRySXcqNezKSaGjORkPCPaYjRahrooisKVjW/DUg/r4TGSOw6HLdstW7Zk9uzZaDQa3n77bTp37oxWqwXg+PHjhIaGljrGgQMHWL9+PZUqVTI77u3tzWuvvcaTTz7p6LTuCNLS0mjXrh21a9fmiy++IDExkZdeeomsrCzef//9ip6e5HbA1R33WnUt6zoKAWgIqRJbsqUneCRonKDdKoz5uRjy9GhQUDQO76tJJHYh5ZokX5PBycrgITIszhmN2QhjPkqNHoi2y8jLTTSvmV09BmeXUJQLv+Ec+AA1asShKFqEMMClCwQFDsDXN5qkpAXXqyyEjMLZORhFkW6VkvJHyrTbnLIkQstNgeYFbUkUT+IY9DA0eEbNN7EzBoTB5JUjKkWQF9bOZh6dI0di8fFqwwNjxrApJsZ0zqjXs3fBAqKmTIJTJczFShJHR5FJH28PHFa233nnHR577DEef/xxwsLCeOONN0zn1q1bZ7Jyl0StWrVItxHbdeXKFcLDwx2d1h3BggULuHr1Khs3bsTPzw8AvV7Ps88+y+uvv05ISEgFz1BSYQiB/2NPQM8BuBgMsCjuuqKt0aiZLA16nF1CS6mnXeX6LiyKWXZeieRmIOWaJF+TwWk/qH3ZUtkGQCiI8D5cOL/CQnadOTObyDqLCaoyCHJzUT6ZDWkXUHwD1PqyBiMaUZkaYVNQNE4Y9bko2ht0q6zSAESU2kokxZAy7S4kL1VVtvNSrZ7WegdeT+JYNLdE1Q5w7Qzsm4dovQginlRrZuuzQKMj6fT0EvPonE9ZTMOnJpgp2wBpJ06gcXJBo7m5NbMLkz5GWkn6KBXxW4fD5q769etz4sQJUlJSOHnypCl+G+C///0v77zzTqljvP3220ydOpWdO3eaHd+xYwdxcXF2jXEnsmXLFtq3b28S3gB9+/bFaDSydevWCpyZpEIxGhEpiSiLp0PcMBStVq3rGN0H8cVhxO482HYRodWAUU9QUH/+0/KYeSbLlscICnwK8tQQD5Z6kH3sB6loS246Uq5JbKOg01UGjVatpHDERs3sI7Hk5SWDiyv6Ia/C6wvQD5nAvq3fc/Tbb9E5O3Pxh7f48UcPkje9eONyrdp9MHKH2kokxZAy7Q6lBOt1aRUTXOq0tJLEUYGIJ+Hi74iev5FXvS2nzs7i4MH+nD73DorG2a48Ok5u7ujczJVq3/BwjPm5GI0VVzNbVl+4dZS5znblypURQpCcnExgYCA6nY5GjRrZde348eO5cuUK7dq1w9vbm4CAAFJSUrhy5Qq+vr68+uqrvPrqq4Aau/DPP/+UON6lS5f4/fffSU5OJjs7m8qVKxMZGcl99913Wykbhw4dYvjw4WbHfHx8CA4O5tChQxU0K0mFYjQitqxEKXQZVxR47QPo9zyi4QPk5SaRdCrOLOmGszYY57ST1Kg24foO6/F14BoA1buAPhcaj8cjrHFFP53kHkDKNYlVCuIeQ3UfIISh9EoKBTWzf5o9m6vnzlEpNJTmo0bhFRyMotGgv5KI0e/G3SolktKQMu0OpQTrdU56Om5FWnMUnKvVK5bEEdVdXOeOqNmLCxdWFdssVKhWbZxdeXQM+jz02deVao1OR/NRo8hO3FuGh7SOq48PpMsKC7crZVK2v/32W6ZOncpff/2FwWDg999/p1mzZjz99NNERUUxYMCAEq9v3rz5DSvBV65cYdmyZSxbtoy///4bIYTZeUVR8PT0pGfPnowYMYKHH374hu5XHqSlpeFj5Q/B19eXy5cv27wuNzeX3Nxc0/vCBHX2cuS82j/c3x2dTv3KL17JIT07Dy9XJ4J93Cz6Vvdxx9VV7Zt6LYfL1/Jwc9ZQzc+zTH2PX7yGwWgkxMcdz4K+6Zk5XMzIw1mnoYZ/2fqeSr1Gnt5IoJczPh6uAFzL0ZOUnuVQX61GQ0Tg9b5nL18jO8+In6cz/p6O983J0XMmXV0Y1qlyPTdBcno2GTn5+Lg5E1jJBZGaZK5ou7jBvt8QLdpw4cKKItl5Vc6cmU1k5BKCggeiHPgIUveieIQi6j4NHiEIARonN2gRh16v58QNfvfl8Tux9n2Wx++k8Pu80d9J8e/zRn8ntr77u5WyyDUp025jmZaVzMU/FnClxkB8K1e7/rvO03NNX4krqdlEFPE6TE7PJjlHh954fTkhhBH02aBRjymK1u6a2a0nT0Tr5IIhP5dr+Qppmfn4ebkUjAvJOToyz181++6vGV05k6MjJz3b9N27+/tz1jmANGcfvHL0UqZJmWY3FSHTQMo1e/pqNRqKqrdmv9eCY5n5gsTzVy1+21f07pzJ0WG4lmP6becaIZUg/AuTOBZFr+abyMtLtuKVY2fFhCpPoxQpu1pYM9szOJiUHz5F4+SO0ahY/e6tyTWjxofkP31JesiPBkXkWqarN5n6ShidK5ltJpxIzyfNN5Qc/fX5FX73GdfM51z4fXr5BpiqMhT9nfgUqdYg5ZpjOKxsr1mzhoEDB9K3b19GjBjBiBEjTOciIiL45JNPSlW2P/30U4cnWpSZM2fyzjvv4OvryxNPPMHUqVNp0qQJ/v7+uLi4kJ6ezqlTp9izZw9btmwhOjqaRx55hPfee4/69evf0L0rglmzZhEfH1/m6zvO/QmAJYObE12/SsGxnaRn63HSKByd2cWib3y3egx5SI2d7zz3J1Ku5aHVKBy30vfZNuG80qkeAD0/+IWzadkoCpyc1dXUN3qOGjLwZIuqvNmnCQBPLNzN0YvXUICTsy37dqgXyMdD7gdg2Kd7+etsOgCnivRt847a94GavqwbqeYLeHbVXn48mmqzb8OQSnz9QisAJnyRwFcJyRZ9W7+1EwHUrOzOD+PbAvD21n9Z9ssZi75Rb+/EKKCKtwu/TWgPwNJfT/HWt4ct+rZ66wf0RkFlDyf2TIxG2bAQwusjnhoLjz6J4uKOMBpUl8vDNlwuD8fg6xuNc/1nUDQajPm55OfmozXCq18k8N++9wGQnqM3fUefjfoPLWtULvh8d5CRa8BZq+HIG51NYxf2nfNEY3o1rwZAp/d+5HJmPjqNwjEr3/0rj0bybFs1lOSx+bs4fyUXjQInrHz3Qx6qTnw31fvliY9+5eSlLJvf/eONg5nfvxkAA5f8wf6kqza/z9a1/Vkeo5YKHLnyT3afTLPZt2k1HzaOVjfeXlz3F9v+vWjRt+076ndfO9CTbS9FATD96wOs23POom/rt3ciBFTzdeOnV9sB8N6Oo3y444RFX8l1pEy7jWVaVjLdtoZz3nCEKt6nTTJt9d/pTDuzGj5N49Ts69+FKtMepW9uIo2qh6pxjwjy9CkknV9CdvYJ6tZdal8lBWHgwuZXOeb7MRO+n0diTjBuThr+na7KKYPQ0ifhUUj4yUymxSRPZXduI5wP7zDJNI+AABq0Wgo/wZwqyVKmIWXazeRGZRpIuVa8r025NvR6UjQzudZGPfbRfgPvb/rJYtxHEz/kvMGfKom7THLtfxe9eDN5MYfy83GpZE1GCZKSP7aqTJ87N5egoIHFyhaqKIqOyDpL1ESOWh33DR1KpapVue/pkXgFB7PndBrNW48jyGkihvxcvvjnIkt/Pkl89wYlyjWj1pcHvZfDQYU5B67LtV7bnTmTuxr3s3kcbHN9jgO2psLTCwk+msWrLdVjhXJNAYYWeR4zuRYXB0C3t38wk2ttCo43eu0bQMo1e3E4Znv69OmMHTuWNWvWMHToULNzDRo0YP/+/eU1N5vs2LGDL774guPHjzN79my6detGWFgYHh4e6HQ6/P39adGiBaNGjeLLL78kOTmZqKgoduzYcdPnVhK+vr5WS6OlpaWZxQYVZ8KECVy5csX0Onv27M2cpuQW4OqkRdFowS8QsWIPedFtOZU0i4MHByDQ2+VyiXLdm+Prw2k8/sHPbN53k0phSCQ2KItckzLtzkOTlWnznKKAk86FSnUfQwAXzq/kt99rF5TCWc2FC6sJDo6xKOF1/XodwVVGIoSCMORZLYcjkdwqpEy7txACdh5NhfojoaiM0rmVGJedmZnAoUODCQoaYFa2MCxsEv9pcYyggKdQvv8CYTDQ/ZNPiJoyiSP5qt25ljaLH6fNYEP//vw4bQbRgfDV6Ifx83C+FY8sucUoorj/dSm4urryzTffEB0djcFgwMnJiT179tCsWTN++OEHunTpQnZ2xQX83860bt2aypUrs3HjRtOxwjj1pUuXWmxe2OLq1at4e3tz5coVi/Jp1pCuSaX3rRA3ci8nBMIsFkijcad160wOHuzPxYtrbH6ngYH9qV9/FXSpRsqI2Yh2vUnPzlPH9VbnoNfrOZGadUPfvXS5vL1dk24HykOuSZl2G8m01D+58lkrUtttxbtq8+u/619Xcu2v0Vyt8x7h7YeYxs3K1eOqMaBxckEYjeTlneO33RFmm4UeHo1p3nwPFy+utmkBCqoyUHUT/99zHPX7iMDzo9G1mWmSaYlfPMsR34/wSn6eSu1mmL777K3vYzgxnrOBb+PTLub6d3/oT84O70TOf7+kWtP7pUyTMs1uKkKmgZRrFn3z0/HZvBR6j+SaZ8D13+vlIzCwOazcy9nAOtd/r/9ugL8GktlwBYnh3cx+22mfzUCTOotTnpMJ7TXW9Ns+v3YGuqsf4NRpJ97VasGRFfBjbEHstoIYfo1TZ2dx+vQMm99b7drvExL0NBjyVe/E3Cz4di3KZx8g5mwiM/M0f57tQGT+6wS0ncC+lSvZFBODsYhrt0ano9uSJTQeOBBFoyHtsxk4XX6D4+5TCew2xvTdp2xcRc7bL5L87Bwa9+l3/fv8cQXsfw5j/fkEthlsGvfn73ezvk9vxvzfF9Rs2dLsuzemXeL8umU0H6la26Vcu3k47EZepUoVDh06RHR0tMW5hIQEwsLCymVidyOdO3dm5syZpKenm+KB1q9fj0ajoWPHjjftvtZ+RIHerialrLS+/p6uph9nWfsW/dEX4uPhavoDKWvfon+khXi66qzOzZG+RYVKWfq62ugb7ONGcEFEjbowNY8FMhqzMRiy7Ha5VC6ew93fHw8r36dOZ30Ojnz35fE7sfZ9lsfvxNr3eTv8Tmx993crFSHXpExzvK/dMi0tBW9dFt7aa1DkuV11Cq66q/h7F1k2GI24XzkPGxbCxUSY8rFVl8tCC1Ddusvx8WlHcvIiU83sKoGxuLhVBQEazXVnO29nI6HF5qYoEOyqNzvuVrM2nMqhXqPa4ONm1r9aXgr4uoDr9TlLmVZyXynT5FqtOOUi18iALxdC75HgobqBe7rqCBaZ7H1/IZULFD4o8ns9dMxUT9vTP/j6cxQJm7f2e/VwUqw+s7cui+quenwLn1sIgvqMR9FNQhgNkHQaavWHKm3gyGLIOAFphwgJHlliXLZ/5e5QmOjWxQ0lJwu0Opi6FMU/mMx9n2LUZuEZ0ZZrSUkWijaotbc3xcRQMzoar4LScp6aHHW+VuSaq4diUrQB/N00oLsKHlqzvuE+TvimJeKqK9K38LuvUom6BW7hIOXazcRhZbt///7ExcVRt25d2rRpA6jJyPbv389bb73FM888U95zLJFp06bZPKfRaPD29ua+++6jVatWt3BW1hk1ahTz58+nR48evP766yQmJjJ+/HhGjRol6zbeK6QmqwvT3iOhciBJycXdxe1MuhEyCvLVcx4BsmyDpOKQcu0uIz3VvLWF0QhbVkJhgkd3T5SpS226XF68uJbMzIPUqjWPGjXiUBQthvxcDHl6FBSUAkVbuHmZtYUIxcusNeEbYN5KJDeIlGk3gdRkk+KM//WY62vJyeyMjyeyWzeTsn1LEEbISkI5uBCuHkepFAGRsSCAYyeg0QRwdUfJzcbZyZnIOostkqQpio7IyKU4u4SgPNwFhk+ExBMQGg69R6nPWVBJAT8F19Dm/DhthoWiXYhRr2fvggVExcVh1PjAXjB28DHr4+7vb9aa8PE3byW3FQ4r23FxcRw4cIAOHTpQubIaxN+5c2dSUlJ47LHHeO2118p9kiXx7rvvkpeXZ3Jdd3V1JScnBwA3Nzfy8/MxGAw0a9aMzZs3E1CBiomvry/bt2/n+eefp0ePHnh5eREbG8sbb7xRYXOS3Foy/03A4+N4Mhs+gsfDwVYXpqUm3YgsSLqRdOoWzlwisY6Ua/cgQkBq0nVFu+CYEIYSvXIyMxNIT9+Oj4+6+a0ATu7uZtVJjB5eYCxoi2DUepm1JtyDodlUtZVIygEp0+5etN6BqqJ9dGWxmtrA37Oh9WJo0h8G3w9njkJOFsqj/QiKX46vTzuSzlv3ysE3EBE7CcXJBZGfi6JzVl1xCtBo3NA6uXD5eMlVGdJOnECj1WJ09leV7U6+ZucLjSsWRha56Xhb47Cy7ezszJdffskPP/zAtm3bSE1Nxc/Pj/bt29O+fXuHJ3D27FnOnj1LkyZN8PDwcPj677//nieffJKpU6fSvXt3PD09uXbtGhs3bmTatGksX76crKwsBg4cyPjx4284E/qNUq9ePb777rsKnYOk4shKTcUDyLp4AXcbC9OSXC5DQkapiraiUcuEjZhqtksskVQEUq7dYwij6qFjKLJQzckCgyAkpGSXy5CQUSAUfvzJg4jUIYT2+vDG5uIeDC3ibmwMiaQYUqZVPJkpKXgUtnXLZ0yXOi0hK8lS0Qb1/Y+xqht5vxfgredVhfnbtSinj+C0cAfVq01Gq3MmPzuL/WvW8scHH9Bv0ya8QkJI+uoljvt/alWuGY3ZGPJz8YsoOUTQNzwco8EABkP5PLDktsBhZfvMmTMEBwfTtm1b2rZta3ZOr9eTlJRE9erVSx1n0aJFxMfHc/78eQD++OMPmjVrRs+ePWnTpg1jxoyxaz6jR4/m5ZdfNis35unpyaBBg8jMzGTs2LHs3r2bSZMmlehyLpHcCvKVNE52BBclDVAICR5hdWF68eJasrKOcN99O00ul0IYAM11K5B/MIyMu9WPIJFI7kGy09JwA7KvZuCm0cK5YhYaIVB2fY1zVDciI5dw+HCMdZdL52D0WWky47hEIikRk3GioC2k7Eq4gnO1evDXDEtFuxDf+oi8S/D4EJRuw9VkZ9s+A6/K4OzKxy3u5/LRo+RnXZdfha7fIEqQa4KcxL00HzmSXbNnW3Ul1+h0NB81yhRS4xDSw+e2xuFvtGbNmvz1119Wz/3zzz/UrFmz1DHmzp3L888/z+DBg/n2228pmhC9TZs2rF+/3u75/PXXXzaTstWoUYN9+/YB0LBhQ6ulHCSSW4lek87ZTu4YnDJRFA3OziFE1llsURJHUXRUrToGrcYVRdHyyy/VSdn3kZm7pUQikdwqctLT1fZSKhgNULWIhUZRwNUdFsWhGI0EBQ7gPw+cMC+F88AJggL7g4Cr+7+omIeQSCR3PFmpqWatGTp32xfq3FB0LnDVhit3RD9Erz3keVbm1Kk4Dh7sz6mkWeS1bw+tu/LHggVc+OcfM0Ubrrt+K1qnEud97fgPeIWE0G3JEjQ68zWfRqej29KleAUHl22dV+jhI5Xt2xKHLdslVQrLzc3FxcWl1DHmz5/P5MmTmTRpEoZirhKRkZEcPnzY7vmEhYWxePFiOnXqZHFu0aJFJkX80qVL+BdPKCCR3CSunfyb1C/G4t9rLp417wPUv53QzuOp7jQJQ34uwmhAOfkFQTX74+vThqTzi6+7i1eJVZNunPwCUbMHeXlncfP1LfmmEolEcitQNGqSx583Q9/noOOTqrKdkwV/70Jp8jDOwo8a1Sah6FwQ+tyChI5qIrScxL/AerliXH184HJBK5FIbksykpPZu3ChqWxUhSMENH0C7h8A+jz1fXGlVZ+N0OeqydCK49cY0XY5Fy6stkiEdubMbOrUWUyLZ0bx1+LFXEhIMLu00PVbGPJLnKL+SiKKRkPjgQOpGR3N3gULSDtxAt/wcJqPGqUq2qVZtf2DZfjgHYhdyvahQ4c4ePCg6f2OHTs4d+6cWZ+cnBzWrFlDeHh4qeMlJiby0EMPWT3n5OTEtWvX7JkWALNmzaJv375ERkby2GOPERAQQEpKCl9//TUnTpwwWcm3b99O69at7R5XIrkRss8doIbXTlLOHcCz5n0Io5H87Gx0TuqfnCLAaDCiqfIQysb/4NxwNDUiJqDo3BH6LDi+FmX/B9BpE/rci+qgrnKzSCKRlA/XDvxN6oyx+E+ai2eD+xy7WFEQ/iGw/HfIzwKdFgUQTlpo2Bw0BTklCjfnFR24OttlsXHz9YXLWGwuuvr4gFEq4RLJ7YCjWcRvRvy1CaNRTdi4YaEa3lI1Qt0M9A9RZZEJQd7Zf3GpP1JNhlZEoRaNxpKXm2ihaAMIoefIkVh8vNrwwJgxbIqJMZ0zd/1W0GjcUVM/2kbRaPAKCSFqyiQ0Ti4YCxKq2WXRdjB80DM4mKipU/G8HTZE7mHsUrbXrVtHfHw8oJb5spVx3MfHx64EZGFhYfz++++0a9fO4tzu3bupU6eOPdMCoGfPnvz+++/MmjWLjRs3kpycTHBwMPfffz/r1q3jvvvuA+CDDz6we0yJpLzQevggjEYQAm16CppNS+DccTRVIzD0GgWBIYhGY1B2xsDOWNXNSZ+lLk7bLAX3YET+JcLCpuJcqXFFP45EIqlIipYOtNeyYeOa7CMHqHF0JylHDtivbBe4aAohTOvJPOMlks4sITv7OG5uEYRUicFZUfvlJO9j78kO1Lz4xA0nQnOrWRuOF7QSieSOwlb89Y2greRjWYKwkE9nw5Ql0HmgmcKdn3wMlxqNIWqxuuYSqscNEU+SdHaW1cSOoCrc51MW0/CpCSZlu6jrN0CVx+cQ6vSB6rkoRInKs6IopG98G99rs7jiOQHfvpNu+POwhldwMG2K1NKWVAx2Kdtjx45l6NChCCEIDw/niy++oGnTpmZ9nJ2dqVKlil07MyNGjCAuLo6AgAB69eoFQH5+Pt988w1vv/22w+UVmjZtymeffebQNRLJTUfnjnv1AgV5y0q002PVLL6V/GDbOrSfzkZ8tB2aDkSERqMcXAAZJ8ArHOqPUmNvFA3OzgHUrBlXoY8ikUhuA2zUqi33a4ojBD69xoNuEj763AIXTbhwfqVVl8vIOosJqjII1yoN0R8tpV63vfgEmLcSieSexr1WXcsShIUY9Orx+6MhoKA2us4dp+BacDUNwvtDUBs4shgyE1F07lZLsRYlO/sETm7u3Dd0KJWqVjW5fgNkJCayd+FCLh8/jl9EhOpeHxJSulu4XiaKvBewS9n29vbG29sbgJMnTxIcHIyzs3OZbzpu3DjOnDnD008/zciRIwF4+OGHAXj22Wd59tlnyzTujZYRk0jKAyEElf/zBLQagIvRiLhwDs0vWxDrD0C1iOuZxc8eR1kwBWP1Oih+wYjmk1E0zghjHoriZBlvJJFIJLcaYYSsJJSDC+HqcZRKtRDN48jLPWfT5fLwkVh8fdvh7BKKRuPm0O2cdf6EXQLnSBk2I5FIbKAouIRUg8XTryvaiqKGr+RmqxuCBj3s+B/0eQafnuPBaRLOBgMsioMfN8FTY6DjBHB1R9goxVoUN7dwhDDQ/ZNPTK7fCEHCypVsiokxyzC+a/Zsui1ZQuOBA3HzqkPYJXASXjfv85Dc1jicjTwsLMykaGdlZXH58mWLlz289957HD16lA8++IAZM2bw/vvv8++///Lee+85OiUWLVpEaGgoYWFhtGrVypRgrWfPnsybN8/h8SSSsiKMxoJMlWqsooJA4+KKeGM1eYHu1zNcnoojL9Ad8cZqNMknURDkXdjJqf95kHfhB6loSySSisXNR1W0j66E1TXVcjnH18C+OaAIkpI/LtHlMil5EYVy0BFcnAKoeUlti+LsHKyG0zjbaZ2XiYQkkrsXFzcUJ2c1Rrt2Y5iyFH66Brsy1XbKUhjyCvQaCalJKItnQNwwFG1B2cKjCarlu5UnPOIBXy0nJDDGojJMIYqiIyRkFFmnd/Pjjx4kf/UiABlJSRaKNoBRr2dTTAwZycl4RLSh5iVwMtqvbBu9/dmRpLaSO58yZSOfMWMGCxcuJDk52Wqf4hnGbREeHm6ybJeVuXPn8uqrr/LSSy8RHR1Nx44dTecKy4jZW7NbInEIIQAjKFoQBoRQAIE2PwXNwSVqeYmwboiIvly4sILDh624W0YuJqjhIBRFg4uTPzUuZoGTdJOUSCQVTFBdyEqCnTEWNWkVRWuXy6WiaB2/r416sS4uwY6F0ziYSEgikdw4tyxLeW42Ij8PpU0PiF8GmYmwb5a67qoUAW1iwGsI/LULnolWrdyKAq99YF62UAjIyUJZMxfnLgOJrLPYwmNHUXRERi7F2TmY9OOfYtRmAQrCaGTvwoVWa2aDqnDvXbCAqCmOx2MbfQLYmQyRMmzmrsBhZfvdd99lzpw5vPLKK0ycOJFJkyah1WpZu3YteXl5TJw40a5xDAYDu3fv5ty5c+Tk5FicHzx4sF3jlGcZMYnEbgpcKylwrSToYWjwDBxdhbbI4lR1t0yyULShwN3ycCy+vu1xdgpGca9idZEpkUgk5Y3GkAbNC1oLFPCrDn9Os1C00WchjHn2uVwa9RiN2Y5NrLBerEQiueNwNEt5mRGCvJQLuLTvA0dWwI+x5rLq79kQtQQaPwXh9VVLthCwdR10j1ETqBWN8z6agDJ1MEHxy/H1bU9S8oLrpVhDRuHsHIyiaNBfSQQ/ULROaLRaLh8vedMx7cQJNE4uoLUMpzFqfGAvGDv4lM9nIrltcVjZXrJkCfHx8YwePZqJEyfSo0cPmjVrxuTJk+nWrRvHjh0rdYw///yTXr16cfbsWat1uxVFsVvZLs8yYhKJXRS6Vha1+FTtgHLtTDErkAa8I0g6FVeyu2XSAmrUiJOLTIlEcsvQGNNVZduYbnY8Oy0NN9fKoHVSNxItEHBmMyEhIzlzZrZV2Vbocpl9fv9NmbtEIpEAqtGjuKIN6vudMRAUpcZmTyso17VmLnQZCJMXw/RYc4X7u8+hY3+cW3WlRo04FEWLUZ+LorUsyyUM+RgNBvwiSt509A0Px5ifh+b3bAulWu9Xmx1fQb0nZYWFux2HY7ZPnTrFfffdh1arxcnJifT0dHUgjYZnn33WrtJfzzzzDN7e3nz//fdcuHCBtLQ0s5e9cd9wvYyYNRwtIyaRlIoQVlwr1bIRHFpiLvBd/W6uu6VEIpGUQmZKillbIkLg2nYEDE5BGA2qO6YVlD1TcXaqQmTkEosYx6Iulxn/fmP9Nm5eZq1EIpE4hKLgHBikehfaMGYg9Gq28Y79rh87mgBTB0On/vDlcYiZpP47ZhKGjccQD3UiOz39emz2phdtVFkSKBoNzUeORKOzbrcsrMGdm3hGtWBrfc3OF7qKG6Wr+F2Pw8p25cqVTdbi6tWr8+eff5rOpaamkpVVehr7AwcOMHv2bKKioggICDBlOy/6spcRI0YwY8YMlixZwtWrVwHzMmI3GhMukZhjtBTuOje1/mxxK1DOZYcyXEokEgmglutaGKe2RXBIcS4gKzXVrLWJ0QgpidcTCSkaiIwFawmDLieg7BhKUNBA/vOfU4SFTSIwsD9hYZP4z39OERQ04LrLpRX03tXMWolEInEIFzc1G7hV75siZJwAV3c1S3kh366FQS0gLQXxdBzMWIV+yAT2bf2eo99+i5uPD9eO/4DRWLI+oygKXiEhdFuyxELhLlqDO/u4DGe913HYjfzhhx/mjz/+oEuXLvTv35+4uDjOnz+Pk5MTH3/8MdHR0aWOUadOHZNifKPcrDJiEolVFK2lcNdnq7USLaxARrhynJDg0t0ty7DvJZFI7lZs1MbOSk3Fo0hbHmi9A1VFe8tK1dXSaFAXpxM+BI9QaL3Y0k1T0UFoRxSjEWenYMKqTUKjc7Hpclkc4eQLeQWtRCKROEpuNkKfh2LD+8aEVzjkZKnlwIpy4iCichXO//03v3/wAZVCQ011sxXN9djs0lA0GhoPHEjN6Gj2LlhA2okT+IaHm41luJpe5seU3B04rGzHxcWRmKjuVr/++uukp6ezZs0asrOz6dChA/Pnzy91jHfffZcxY8bQpEkT6tat6/isi/Hee+8xduxYtm3bxqVLl/Dz8yM6OpratWUchKScEdZcKwUcXwd1Y9SkHEWzWP4xEef264iMXGyRJE11t1xSkHhDlvqSSCS3GJ07LnVaQmoSrJkHExdBxydVZVufB/n5UKs/VGmjumNmnFAXr3ViwSMErl1FqeRL0qaXOO7/KRGpQwjt9WFFP5VEIrnbEYLcxLO41h9pse4yoeig3kjYts78uFYHU5eCfzBBvgF0X7rUVDe7LGsxRaPBKySE1lMmoXVywZCfi6bIWIVlvOo5UMbLMziYqKlT8byZSeYktwyHle3IyEgiIyMBcHFxYd68eXbVsm7UqJHZjzg5OZmGDRsSEhKCj4+PWV9FUfjnn38cmld5lBGTSEpHowrv4sJ931yoPRCiFsPOIlagk5+jHPyIoPrPqBkuk6xnuJRIJJKy4nC5HSHw6TUedJNwNhog+Qws+w2uFSufU28kOAfDsZPQaIKqhOdkwbZ1CG9/eKRrwf/rolSXS4lEcntyy8p1lTNZxw7hWr2zmnW8eIlCRQdtlqqbgg93UWOzE09AaDj0HgX+qtU5/fO38L02iyueE/Dt63iJLtPtFIXELW9zymcWNdInUL3b9bHKUsbLKziYNnFxZZ6P5PbCYWW7rDRv3rzcrHc//vijQ/1bt25dLveV3MOkJsOGRRA7EdyqWLpWXk6AHcOgzTIIbQ8HF1y3AlV9DMVgwFnvZcpwqcZoa6RFWyKR3DAOldspKFuoFJQtVIIehgaj4OgqywVrYfmcZgNh/Ufw714IDMXQPRYlIISc9HTcfB13BXf394fMglYikVQot6xcV3ni6q66Zysa1dARGm2+7qo/Sq3womjANxAROwnFyQVRYMGm6NpLb/9GYWnJHeWmo8QaZVK2165dy/r16zl79qxFjWxbVml7spTbS5s2bVAUxVQ2rKjCIoSwUGCK19+WSBwmNRnWvw8jp8K6+erOaHHXyroj1NjHQ0fMrUBb18KaeSgRDWHGKn75pTp1Mp/Cv8ObFf1UEonEQe5UK5C2ko/NsoVcO2upaMP18jkh7RB9nlFjGbOy2Ld2LbvnzSOyWzeiymB98QlpTBhT8QlpfMPPJZFI7lw06SlEBautXQiB/2NPQM8B+OfnqRViFA24hyCaTkLRuSAKckeYFGpFIX3j2/hem0X6DVqwjR5eYCxoJRI7cVjZfv3115k9ezbNmzenTp06ODs7O3zT4cOHM3nyZGrWrGlx7vTp08THx7N06VKb1//111+mf1+8eJGYmBjatm1Lnz59CAoK4sKFC6xfv54dO3awZMkSh+cnkZghBKJWI5TvUhAGA8rli2omy6fGQMcCpdpogMN/w7TH1dISiqJmv8wpssvZuhvCkEde3llcat5XUU8jkUhugNvRCmTPgtW9Vl3bZQv/mlVy+Zx/FyKaTmaWly/5RSqOBDZsiEarRdE6Wb/UhhXIxSWYmjXj7H4+iURyd6K5kkqbEEi5Ukq1BFCNGalJKBsWwrnjKFUjoPdI8A8BjYb0L8pHoZZIyhuHle2lS5cybdo0Jk0q+w/5008/ZdSoUVaV7dTUVJYtW1aist2kSRPTv/v06UO/fv146623zPo8/vjjjB8/no8++ogOHTqUea6Se5ziwn3gOESvkSifzlYz906PVZXqV96HFm3hxEH1OiHMFW2tDnqPQm8oyMIfFHnrn0Uikdw0KtLiXeqC1c0Dl9Bq8Nd0+8oWFifjBBqds8mbrBDf8HCMBgPCkG/1Mqea98H5glYikUjKgLaSj3nFBEMRGfbpbJiyBDoPVCsrpFu6cQsh8O45Hpwm4Z2fa9UDViK5mZQpM9MDDzxwwze29UM/evQolStXtnucb7/91qYy3bFjR7Zt21am+UkkJuH+eE1YMgO+XQPThqFUDkJMXqwq0IVK9Zq5EBh6/XhRimS+zMu3vz6uRCK5cyi0eF9LNq+NnZGczI64ODKKHb8lFLpc/nTNek1am2ULi+EVjj47C3329fI5Gp2O5qNGoWhsLyPcQyPNWolEUnFUqCy6Adxr1VUrJhRXtEF9Py0GUpNxqd3S4lphNJKRmMjOaTPY0L8/O6fNICMxEWE03qLZSyRlULZjY2NZvXq1wzf66KOPaNy4MY0bN0ZRFPr37296X/iqU6cOgwcPdsgS7enpyfbt262e27ZtG56eng7PtSxcunSJUaNGUb16dTw8PGjYsCELFiyw6JeUlETv3r3x8vLCz8+P2NjYcqs5LrkxMpKT+fGNN9T/iISwLtyPJsDUwSid+iO+OqVmuOzUH1p3w5iRDl0GmR+PmQRfnYJOA0CjwWjMtn5zieQ2Q8q08sGWEn7TMRohJRFl8XSYNADyc0suW6jYcHRTdBjqxLJvzVrTIY1OR7elS9U6stJCJLmDuJflWoXJotJwdbd9TlFwCakGGxZaKtqFGPSwYQHO1eqpnjoFCKORhJUrmVezJj/OmMH+NWv4ccYM5tWsScLKlQijUbWGSyQ3GYfdyKdPn86YMWN4+OGHiY6Otlq268UXX7S4LiQkhObNmwOwf/9+IiMjCQgwT4Pv7OxMvXr1iImJsXs+o0ePZsqUKVy4cIEePXoQGBjIxYsX2bhxIytWrCA+Pt7RRywTTzzxBIcOHWLmzJlUr16dzZs388wzz6DVahkxYgQA+fn5PProowCsXr2arKwsxo0bR//+/fn6669vyTwl1hFC4BEQQOuJEzHq9QhhVF3HrQn3b9fCiYMoU5Yino5D0WrRZ2Wx/7N1+NQMJ6xVKxgxBXROaq1arZMpUYezczBhYVNxdr49Yj0lEltImXabUtLCtBBrLpct20ObWPvLFgIoOkSbpWi8qpGfnU2j/v3xDQ+n+ahRqqJdglUbpLyT3H5IuXb7IISgckGys8r5edbdu70rozg5w7lSQl0ST6A4ucDwTJOreEZSEptiYjDqzddxRr2eTTEx1IyOVq3hp8vneXRGH8K2gq6lj9lxWTNb4rCy/f3337Ns2TIyMjL49ddfLc7bUra7d+9O9+7dTe+nTJliNWbbUSZNmoSPjw+zZ89m2bJlpizlwcHBzJ07l+eff/6G71Ea58+f54cffuCTTz5h6NChALRr144//viDtWvXmgT4559/zoEDB/j3339Ntcp9fX159NFH+f3332nZ0tIFRnLzEUYjGUlJ7F24kMvHj+Nfty5RU6aULNyPJsCqOSgzVvH1yJF4BAaaL0D3bYPFvSD2C2jyqOkymRhIcicgZdptiNUsvEUWpoVKuC2vnJ83w+NDLJXqgrKFoqBsoVKkfI6hdiyKZwiXDh2ixahRtBw9GmNB6RyzKiAyEZrkDkDKtduH4usuv4gINd9FSIi6hioi74TBoCZDK4nQcIx5uWwcOgy/WrWImjKFvQsXWijahRj1evYuWEDUlPJLpOYkfAnZCin3m5dDlDWzJQ4r26NHj6ZFixa899571KlTBycn61lIS+KTTz5x+JqSeO6553j22Wc5d+4cycnJBAcHU7VqVTSl7LqXF/n5anIYb29vs+Pe3t5cu3bN9H7Lli00btzYJLwBOnTogJ+fH5s3b5YCvAIodDMy2/3UaGg9caJdwl0YDDxWINAVrfb6AtQlAH7NgtEBJY8hkdyGSJl283EooVpJWXgVpZgSbrTucvlwF0i/BOH9IaiNednCOrEoRiNC54ex6WQ0Omf02VnsW1OkxNeUSbCsElesZPqV5XAkdwJSrjnGzUj6qK3kY33dBeyaPZvB27dT/ZFHUGwlprXmbajVYegeS8LKVexfswYnd3faTpvG5eNFDCaKgpObG/nZ2eqGJJB24gQaJxfQupXLs0kktnBY2T579izz58+nQYMGN2M+dvHRRx8xfPhwXFxcTMc0Gg3Vq1enevXqVq/Zt28fKSkptGvXrtznU61aNTp27MjMmTOJjIykWrVqbNmyha1bt7Jq1SpTv0OHDlG3bl2zaxVFoW7duhw6dKjc5yUpGVtuRk6urigaDcYesWhKEO7GHiPQaDS85e/PoK1bCW7W7BbOXiK5eUiZdvOxq4SYi5vtLLxJJyFumbkSXqOuGsJS3CtHUaDjk/DJLPhxk3nZwpws2LoW1sxDad0Nw5AJzPa+XuJLo9PRf/Nm8s/+i4veMtOvRHKnIOWaY5R7mUNXd9xq1bXp3h1Qvz7VHnzQUt6dOICyYg9i8mKU6bHmclCrQ0xeghIQwu558wDIz84mPysLv4gIgho35oGxY2nU70l0bu7qJuLadeyeO1etppCfi8ZgmUtHKF5mbSE6fAi7BLoAH4trjN7+7EiCet7+N/AhSe5GHFa2H3nkEQ4fPlyh5bQ+/fRT4uPjeeqpp3jiiSe4//77rVrYk5KS2LJlC2vWrGH37t18+umnN21OX3zxBU8++aRpE0Kr1TJ//nx69+5t6pOWlmYR4w6qe9Lly5dtjp2bm0tubq7p/Z2epON2QRiN5m5GhTufOTnk5+SgCwgtVbgbDQayL12qmAeQSG4iUqbdBvgGWHcJr90Ypn6iLkqLyidFgUHjoLhXjoubqlifO66GwBQtW1i0RGFEQ3Tu7qYSX0UToWVs+wYXJJI7m5sl16RMK4EiLuGuBgPp//xDQP36XEhIMLM4PzB2rLp5aCsxbfxyRMv2KBsWQOIJ1XW859NQuQobBw9Wxyu43/5162j5wgtETZ2CuJaIdv8suHocXaUIGveMocmggeRczVA3Ea1M2aj1MmsLcVJ8CbkEKYG+ltf4BLAzGSJ9pEfjraQiy27ai8PK9syZMxkyZAjOzs60b9/eqkDy8/Mrj7nZZPfu3WzcuJF58+bx3nvv4eTkRJ06dQgICMDFxYX09HROnjzJxYsX8fPzY8iQIaxcuZIqVarc8L2FEBgMBtN7RVHQaDQMGzaMo0ePsnr1aoKDg9m2bRtjx47F19eXfv363dA9Z82adcsSvd31CKG6WWq0aBSoGR1N6qFD1OrShUZPPonO3R19VhZXzp7Fzd8f10f7Y2zWBu2Xi03C3dA9FiUghJyrV1WrkzX8g2HEVLWVSG5jpEy7/chMScFDURCe3igfz7P0rnlqLFxMNFe0QZVvW9dB9xi1/mzhudxsVakuqoQXli0sSkHcY72ePS0SoRmuXLQ5X1cfH7hc0EoktwG3Wq5JmWYDKyEwQT1ieXrPHs78/DNVW7Y0rbs0Tk5oFk+zOzEtRgNnfvyJ/xvz2HVFu4Bjmzdz39AhcHQFmmKJH7V/z0ZELcat9iAyD30vNxHvcMrdA+Mm4LCyff/99wMwatQomyU/igq4m0XPnj3p2bMnp06d4rvvvmPPnj0kJyeTk5NDWFgYHTt25OGHH6ZNmzZliiu3xc6dO2nbtq3pfVRUFOPGjWP9+vUkJCTQqFEjANq0acPFixd5+eWXTQLc19eXK1euWIyZlpZGtWrVbN5zwoQJvPTSS6b3V69eLbH/nUCF7EQVCH0KhD5VI6jebwxh69YhLpxFs2wWnDuOrmoEvt1jUHx8SPrrL1L2JdBwyATTfwj7P1uHm38Adbp0IevSJetZJv2DYWTcrXkuieQGkDLt9iMrNRUPFzcUnVPJLuHWFqVr5kKXgTB58XVl3JYSXhStDtF7FIpWS69Vq6wmQrOFm68vXC5oJZLbgFst16RMM0fnZjsERpN0EhG3jLB6tVAK1122QmCKUiQx7VsBAbx4+jQnt2+3ULQBanXpgsg4a6FoAyD0KDtjIbQ9TlVqwX7LWxk9fcxa03Enf3Z8BfUaS1dxif04rGwvXbq03OpqCiE4cuQIly9fxs/Pjzp16jg8do0aNYiNjSU2NrZc5lQazZs3548//jC99/Ly4ssvv0Sr1dKwYUOzvk2bNmXx4sVkZWXh7u5O3bp12bdvn1kfIUSpbvkuLi5m8el3A7d8J8qa0K/dGM2IKYjNK9AUsxBpPp2NmLyYkC6D8K5alZ9mz+bquXNUCg01s/Z4BATILJOSOxop025TcrMR+XmWiRqLuoRbo8DlkvgVarmvQpfLnCxElWowZYmlm6ZWB1OXovgHc3XbYiolvmg1EZotnHX+hF0C50i5AJXcHtxquXYvyjQnd9tlCD0CSg6BUewNgSlOaDj6rCyyU1PZv24dTWNi2DV7tnn8t6LQqN+TaPbPslS0CxF6OLgA56bWZZzw8oXMgrYIRucAdn4NkfHSVVxiPw4r24XlEm6UDz/8kGnTppGSkmI6FhgYyJQpU3jmmWfK5R43Ay8vL1q0aGF2LCwsDIPBQEJCAk2aNDEd37t3L4GBgbgXCKTOnTuzcuVKjh49Su3atQHYvn07ly5dokuXLrfuIe41bJXCKXDFtIjJBjDoUabHIlq2xyMwhKjJk9E4OWHMz0fR6cptw0kiqWikTLtNcXEjN+ksrr1Hlu4SXpxv10KTRzD2fBpjEa+ccz/9RFinAYj7o83iHuk9SvXGKXQXt5IIzejpA+mWlh4AF6cAal4CnOQCVHJ7IOXazUMIQVDjxryemYlRr7esj60ouPn4wMfxNx4CU5SCrOP71q4FYPfcuTQeOJDHFy/mq9hYk8Lt5OaGzs0drpZSmzvjBIpOZiOX3HxuTW2sYixatIjnnnuO6OhoNm7cyC+//MLGjRtp164dzz33HIsXL66IaZWZLl26UL16dfr06cPKlSvZvn07r776Kp9++qlZne8+ffrQoEEDevfuzddff81nn33G8OHD6dq16z1TSuJWIYTAWBDOIIxWSuEUumJ+ucS6UAdV4d6wAEUYubBvHzM9PLiwb59UtCV3PVKmVSCFyYR2ZeISUl0t7zVliWp9LjhvWpRqbeyXa3WINj3Q5+Xx0+zZfDl8OD/NmoVfrdqgKCgBIYjYyTBjldoGhEAppTKNBRYeo5d0FZfcmUi5duMIo5GMxER2xsezoX9/dsbHk5GYqK6zCnByc0PR6WyHwNhad62ZC4GhaghMcdmm1SGmLkVTpRr52dk06t+fyG7dyM3IoMmgQYw5dYrWkyb9f3v3HdbU+fYB/HtCEkZAIMwgihMcgFWsClVxgHWVqqhV3GLV1jpaa9U6wLpfR22tVvoTZ1UUZx24d8VWba3F3QpWKyogoCg7z/sH5pSYQQIJBLg/18WlOTk55zkJuTnPuh/4hIXBf/JkMHkBUKOEXnKbemAFuYCabOSEGJJOPdu+vr7YunUrvL294ePjo7WywXEc/vjjD63H+/rrrzFhwgSsWLFCaXtISAicnJywdOnSchsWbgg2NjY4ceIEZsyYgalTpyIjIwN169bF8uXL8cknn/D7iUQiHD58GBMmTMDAgQMhFArRp08ffP311xVY+sqLMQZWWAiBUKi0zjWTy/Hi0SNciYpC5sOH6LV+vWrQL2kopsK/9wCBGaxlMgRMmaI6N5uQKohiWgVRt5522CSwboOB4r3ROa/AXGtrHBLOZkUDDq4QchwCZ82EQCSGPD8PnFDE//1OPRALp2WjkTr5Bzj1HlRBF0xI+aG4Vjba1scOiY6G7+DBEL7OLM4KCgw3BUaRmNbZDfK8PLQcMwatxo1Timk2bm4InD2Lj3XgzIAmY4Cri9QPJeeEQJOxyPtHfTZyQgxJp8q2n58fJBIJ//+y9uwlJiaiZ8+eap/r0aMH1qxZU6bjV4QGDRpg+/btJe5Xs2ZN7Nq1qxxKVLW8mVCteIX62d9/Q1q/Pt7+5BNInJyU/xgIBHh/7VrVoK/LUEygaIilvBA2MhnNzSbVCsW0cqZpPe0Ni4D/2wW07YGC4V9CaGkJeX4eCnNzYfbuQMibB6pfLSEzE5b29nylOk1dpfrNbOSEVHEU10qHMaZxfWx5QQF+Cg9H3c6di+ZqM4bcrCyYh44BZ6ApMMUT06afioM0or9STOM4DqkXY+F0dzTSGv4Ap3aDACs3IDAaOBOuXOHmhECHdYCVDLl31S9paOXoCLx8/W8x1jKZ+qS4hGihU2V7/fr1/P8NsVa1TCZDfHw8goKCVJ67ePEiZPRLTN6QlZyMC0uWoOkHH8DaxUVt66p9/fqo26mT0naRhQU4gQDyXqMgKB70dZwfhNCxAFchsy0IIdWFprwSQNF0li9CUbjnL/x5+ATixo+HtEEDfHj5Mu4cikPOszSNqyXwDeNUqSaElAGTy3ElKkqloq0gLyjAlTVrEBgRUbQ/Y4CjG9istf/lxdF1VYTXU2B+XrxYbWLawucZmmNa8XwTnABoOBio2Rm4sQZ4cQ+wqQc0GQtYyQBOgPwXecAVQB5sp3QYK0cn4P7rf4uhjhdSGnrXIkaOHInExES1z92/fx8jR44s8Rjh4eGYO3cuZs6ciatXryI5ORl//PEHZs6ciXnz5lWqIeTEsF4kJ+Ps/Pl4kZzMbyuejMPBy0t96yrHoWn//vjtf/9T2p6fnY38nBxwTjXB3pwH9Hp+kMp2gM/OC0dZ0TwjQggxFqYmr0RxhQUw27cWPgMGIP/VKzy5dg17hw5Fw27dULdzkNK87HrBXYoq2iXMwdaXYskbuYgyjhNSnXACAQRmZnj2t/Zpd+n37kEgFEJoZQVzGxvc2LkT7N0wFO75CwifCXQN41dFYMXzUCgUWxVBZGWFwFkz8f66dQicPQs2bm4lxjS1MYoTAFZuYM1nAp22FP1r5cZ3osjN7Isq22bln4uCesmrD72zkW/YsAFjx45F3bp1VZ5LTU3Fxo0bsW7dOq3HmDFjBtLT07FkyRIsXLjwv8IIhRg/fjy+/PJLfYtFqgDGGCROTmg/Ywaf4RKvhy5diYrCs3v38P66dWpbV0WWlhBZWan+MWAMCTEx8OzZE5bvhkHeooPSkEv5iwxw3YeAtQrSmJ2XEELKQtMSOSIrq6IbSIGZTvkjhFZWEFpaoiA7GwkxMUi5cQNdv/kGgREREJiZqczLLg0LOzsg4/W/xVh5+AJ+EUX/vslKBrSIKPqXEGIwb06hqwhMLoe8sBDS+tqn3dnXq1eUPweAQCjErb17cW7+fLSeOBE+xVdFOHsOtbsMBGvRAYK9/1N738UB2qfAqKFxWS6OQ8buJbDPWogMPZY0NDbqJa8+9K5sA9D4h/zu3btwcHDQ6fXLli3Dl19+iV9++QXp6emQSqVo1aqVTq8nVc+bc7BrvfMO3v7oI6Xh4iIrKwi3bFHbupqfnY38V6/U/jFQLA9xJ079kEu7uvXg0a4dMDqiqGW1oAAwM6MebUJImWhaIkdle2Ghal6JN71eX7Yg+7/MuU+uXUPiiROo/U4AEFhD55tSbSzrNgSSXv9bjNYbQysZ0FLDc4SQUstKTsaZOXPgFRKiU2XbWJVzTiCA35gxqmtavyYQCuE3dixyMjKQn50NeUEBpPXrI2HbNvwUHo6fRo2CyNIS+a+Khnm7+Pri/XXr4Do6EpyZGdjrhkKV+y5DToFRs6QhqX4qogFLp26777//Hr6+vvD19QXHcQgLC+MfK348PT0xdOhQBAcHl3i8TZs2IS0tDQ4ODujevTsGDRqEbt26wcHBAc+ePcOmTZvKfGHE9Ile99IoMlx+U7cuzs6bh4Rt2yCyskLmP/8oDRfXVqEGY0jYvh3Nw8MhECq3IRUfclkvuIvKkEuPdu2KepfuXgPaSoC/rlFFmxCit+I92OqWyMl+9kxl+7kFC/i8EtqW8iq+vqyC4gY3999/DHdTau+k/C8hpNJQVM6zik3FMwRFxu+Q6GiVeyyBUIiQdetgI5PhZUoKwBhyMjLgN2bMf/syxle0ASDlxg1IXF2R8yARaCtB6oFYuu8i5cJY3xFtdOrZdnNzg5+fHwAgISEBXl5ecHJS/kMsFovRuHFjhIeHl3i8ESNGID4+Xm0vdmJiIkaMGIGhQ4fqUjRSCSn16rzu0Vaag81x8P7gA5xfuFC5BbVYhVpd66qiBzskOlplTveNnTvhPWgQPLt3R+Ds2SrLhQEoGr40ZErRv4QQoiOVnmo1S+S4+Pqi/ezZ+GPzZuwfNUop3gVMmQLh67wSfDIhBTMh2OxocE5u+OWbb/jNxW9w00/FwbI8L5gQUqVomupSHCcQwHfwYNTt3BlX1qxB+r17sK9XTyl5mWLkzcuUFDh6eam9H1OJXRWYwFFu64jTj4DGtpSLghiPTpXt999/H++//z7/eNasWahXr16pT8oY0/hceno6bGxsSn1sYtqUhotrmIOtcf41/qtQv7d2rfINK4paSh9evFjiH4OsJ0/w+7p1aD5ypPIQEkcZMCbSmJdPCKli3pwCE/D555A4O6vcYLaeNAkv/v1XJW6VmFei14fgXNyRk5EBr5AQOHt7q8S0fE5IN4yEEL1pmuqiCScQFK1pHRGhvtPitYLsbJ0q54XPM4x8hUXk1nZAxut/i2+3c8KZZMDLjkbyEOPRe8528WXAFF69eoVHjx6hfv36Gr+kcXFxiIuL4x8vW7YMLi4uSvvk5OTg5MmTeOutt/QtFqkE3uzt0TQHW9twccWQ8F6bNqFup0747Ycf1AZwGzc3BEZGFiUNKiwEJxDwv5s2Mhnaz5hRLtdMCKmaik+B4SvWHIeQtWtVR+VoGq3zmq55JQJnz4ZAJFJJhEY3jIQQfb3ZUCitX79oHmsJmb85jsPja9ewvl07jDh3DrIWLTTvq7gfmz0LApHYIEkcS0NuY6/0LyHlSe/K9tKlS/Hy5UtEvF5L79y5cwgJCcHz589Rt25dHDlyBPXVVJLu3LmD/fv3Ayj6op47dw7m5spLyYvFYnh7e2PBggWluRZiwtjrrOI6zcEuYbh4QkwM0u7cwfCzZzW2rnIcB87MDAAgeP0vIYQYisTJSSWmaRqVo220DvBfI2LvzZuR9eQJzi1apHZ92dR92/TKzksIIW9S21D42vlFixASHQ3fwYMhtNQ+OaX4HGxtOI7TO7N4ZURLeRFN9F7XaO3atXB3d+cff/bZZ2jatCn27dsHR0dHjct2TZw4EYmJiUhMTETt2rURFxfHP1b83L59G3v37kWTJk1Kf0XEJDG5XHXJLi1JzX5ZsQI2NWvivbVr1SbjaD1pEkSWlshOT8fZ+fPxMiWl3FtKCSHVFMfBws5OJaZpakDUmtzxtYSYGFyOiiq6YdO2vqye8xutHB2V/iWEVG/qGgoV5AUF+Ck8HC+SkyFxKt1IGY3zvytwbrYmhqwgK1ZsqKgl2ojp0ruy/eDBAzRo0AAA8O+//+LKlStYuHAhevbsiWnTpuHs2bMlHiMxMRHNmjXTv7Sk0hKYmWmcg62uUv3k2jXsGzECvoMHY2JSEtrPnAmfsDC0nzkTE5OS4DtoEDiBgF+Xm4IbIaS8iCwtIRAKVWOapgZELQ2LCgKhEI169QLHcUg7EAu0lSDtQGyZGxEVN8ylvXEmhFQhGhoKi5MXFODKmjWwsLPT69DF53+7+Ppqzc9kKjRVkMViGTw8IiAW070lKTu9h5FbWlri+fPnAIATJ07A2toaAQEBAAA7OztkZmYatoSkSpAXFpZqDrZiuYmSknEQQkh5Kb6O7Js0JXHUltyxeHZePrYZqhfIUQZ8GKGyyoLGHm8rGdAiouhfQkiVorGh8A3p9+5BIBSWOJRcobTzv02VubkMdetGVnQxiI50yaZfkfSubLdq1QqLFi2CQCDAkiVL0K1bN5i9nhP7999/o2bNmgYvJKn8OIEAfmPGlHoOtq7JOAghxOiKrSP7Zkwr3oBYLyhIKQtv7osXaDZkiMr24vOyDU7DKgsae7ytZEBL1f0JIabjRXIyrkRFFVVo9RjZp62hsDj7evWK7sNK6NjQdf63WQ07nctIiK70zaZfUfT+y7506VIkJyfjvffeQ1ZWFubPn88/t337dr6Xm1RvjDHICwsBgP/Xxs0NIdHRWudgp929iwUSCZ5cu6b0hbGWyRAwZQolniCEmISXKSkaY9qNnTvx15EjsHk9H7DPli0IjIiApb290tI5iu1l7f2hxDyEVC9Zyck4M2cOspKT9XthsYZCTVNaZC1a4J1p0wCgxCHhus7/tqzvpV85CSkBk8vx4t9/cWbOHOwKC8OZOXPw4t9/weTyii6aCr17tps0aYJ79+4hLS0NDg4OSs8tW7YMrq6uBiscqZy0DScqac1FCzs7tZVqxbwaQgjRl769QCXtL7Ky0nkd2cdXr6qMytFn6RxdlCo+ahheTgip2l6mpMDRywsh0dEqlWSfQYPQa+NGZL2OgVqHhL+e/31mzpwS538Hzp6l/nlbR5x+BDS2pQSORHe6jKYwpekLele2FRwcHMAYQ3JyMpydnSEUCuHj42PIspFKSJcvgLY52FSpJoQYmqIXyCskRKfKtqb91Q5ZK9ZTrSmvhKYlcjRtL5cM4hqGl5PqqbTDkknloq2h0D0gAG9/9JHOlRi95n+LxIC56vxvuZ0TziQDXnaUwJHoRt1SwgqK0RR1O3cuahwykSHlpar2HzlyBG3atIGFhQVq166Na9euAQBGjx6NLVu26HSM69evY8CAAahfvz7Mzc3x22+/AQBmzJiBuLi40hSLVJAXyck4HRmJvFevdBpOBBTNa1Q3XJwQQkyRtiFrHMcZNKZRBnFS3ko9LJlUCuoyhb85paXlRx/pdA+nGFKu1/zv/DwgN9to10eqD7VLCRejGE1hSsPJ9a5sb9u2Dd27d0fdunWxevVqyItdTP369bF+/foSj3Hs2DE0b94c9+/fx6BBg5Cfn88/JxKJsHr1an2LRSpQVnIyznz1FYRisV5fAE29OoQQUtGKZzdVjNj5pm5dnJ03DwnbtuHsvHn4pm5dXPvxRzC5HEJLS4pphBCTo1NDobU1oG8lRof53wKhEH5jxyL333+MdXk8yl1RPWhaSri49Hv3IHidvNsU6F3Znjt3LiZNmoRt27Zh+PDhSs81bdoUCQkJJR5j+vTpGDBgAOLj4zF79myl55o3b47ff/9d32KRCmbl4KD7cCIzM4B6swkhJkhdD5AuvT3l0QutmN8op/mNhBAd6NpQCMZKdQ+nLVFk8SUNs/++bbRrVNC0ZjapWjQtJVycfb16fHJmU6B3ZfvevXvo3r272uckEolO62wnJCRgyJAhAKAy3M7Ozg6pqan6FotUEMWN6ZSUFP2+ABoyWxJCSEVR6QH66iuwwkKdenss7OyMXj7F/EY5zW8khGigGJWjT0OhXkPCi93DFZ//PTEpCe1nzoRPWBjaz5yJiUlJ8B00CJxAgMLnGUa5VlL9KJYSLmk0hSklSNO7JK6urrh165ba565duwYPD48SjyGVSvHo0SO1z925cwcyapWqFN68MX3yxx+V7gtACCGA+h6g+GXLdO/tEQqLeogIMVGK/CovaF52laQyKkfHYeEWdnZ6DQlXdw9njCUNCVGH4zidRlOYUj4ovb8FYWFhiIyMxIkTJ/htHMchISEB//d//4fBgweXeIxevXohIiICt2//N6yE4zg8fvwYS5cuRWhoqL7FMprVq1ejZ8+ecHJyAsdx2Llzp8Z9Dx48iICAAEgkEtjb26Njx454+PCh0j4XLlyAv78/LC0t4eHhgcWLF2tcv9CUqbsx3TdiBCQuLnhv7dpK8wUgpLqhmPafkpI75mdnI//VK916ewoKUJBNCYCI6arKSdCqe1x7s/Pj3IIFus9tfd1QqOuQcE33cIZOFKlJuazWQEyaLqMpTInepYmMjERAQACCg4P5NbW7deuGZs2aoWXLlpg2bVqJx1i4cCGcnJzg6+uL1q1bAwBGjhwJLy8v2NraItKEln7atGkTUlNTNQ6dV/jxxx/Rp08fdOjQAQcOHMDGjRvRsmVL5OTk8Pv89ddfePfddyGTyXDgwAFMmjQJs2fPxrJly4x9GQalaWjSk2vXsHfoUPiEhVWaLwAh1Q3FtP+UmNyRMSRs347m4eEl9vbkZGQYv8CE6KA69mBX17gmtLRU2/lxOjJS74ZCXYeEl8TYiSJptQYClG00RfEEqOVB73W2xWIx9u3bh1OnTuHYsWNITU2FVCpFUFAQgoKCdDqGra0tLly4gB9//BHHjh2DVCqFVCrFuHHjMHToUIjFYr0vxFguXLgAgUCApKQkbNq0Se0+z549w7hx47BixQp89NFH/PaQkBCl/ZYsWQIHBwfExMRALBajc+fOSElJwfz58zF+/HiYm5sb9VrK6kVyMn5ftw5tp07VODQpISYGKTduIGTdOgRGRkJgZgZ5YSE4gYB6tAkxARTTlJW0VuwvK1bAd/BgvLd2LfaPGqUU94r39qTeNn4CIEJ0oe+68lVBVY5r2ioGEicn9fOyizUUnl+0SO39mqaGwuKVGIFQCHlBATgzM9O5h3OUAR9GFP2rI+oNr5o4jsPja9ewvl07jDh3DrIWLbTuX3yqhbygoGgJvHL4vS51N2PHjh2xYMEC/PDDD1i0aJHOFW0FkUiEESNGYOvWrTh69ChiYmIwatQok6poA4BAhxaSHTt2oLCwEOHh4Vr3i4uLQ69evZSuccCAAcjIyEB8fHyZy2pMjDFInJzQfsaMEucwPrl2DReXL+fT7gtMKUgTUs1RTFNWUmIgxYgd30GDtPb20BByQipOVYxr6lZGUMJxsLCz09j58cuKFbCpWbPEqX0vU1JUXlteQ8JLtVyXowwYE6lXZZt6wys/bSN2dBlNoW0JPGOrkDG977zzDlavXo0UNV/wyujixYto1KgRNm7cCA8PDwiFQrz11luIi4vj93n58iUePHiARo0aKb22UaNG4DhOY9I5U6D0CzpoEApycytd2n1CiO6qekwrTmRpWWJioBs7d+JVWlr5JQAqRc8NIUS7yhTXdKkYlDQqxxANhcYeEk7LdRFdlSXnhC5L4BlThVS2ZTIZPv/8c9SsWRPvvvsuNm3ahBcvXlREUQzi8ePHuH37NmbNmoW5c+ciLi4OderUQUhICK5fvw4AyHg9TMfujeVhxGIxrKys8OzZM43Hz83NxfPnz5V+yovKL+jWrfhz61ad5jBquwktVWsmIaRcVOWYplC818jCzq7ExECS14mXDNXbozUGlqLnhhCinTHjmiFjmq5rY+uyXFdCTAwuR0Xx8YYyhZPqRtcl8IyZALFCvmk7d+7E06dPsXbtWgiFQowaNQouLi4IDQ3Frl27kJubW+5lYoyhoKCA/ynUo1dWLpcjKysLP/zwA4YOHYrg4GDExsbC3d0dixcvLnPZFi5cCFtbW/6nVq1aZT6mLjT9guo6NEnbjSi1ZhJiXBTTNFPXa5Sdnq5zYiBD9PaUJgZSIyWp7kw1rhkqpumzNrauy3U16tWr3IaFG5KlZ1MkNQyEpWfTii4KqcR0XQLPmL3bFdasZW1tjaFDh+LgwYNITk7G119/jWfPnmHAgAFwcXEp9/KcOXMGIpGI/+ncubPOr7W3twcAdOrUid8mEonQvn17vrVU0UqamZmp9Nq8vDy8evUKUqlU4/GnT5+OzMxM/ufBgwc6l60sNP2CFs86PuHePco6TogJqo4xraQszJoy956dNw/LXF1x5+BB2JhwDxA1UpLyZmqZzU01rhkqpum1Njag93Jdxh4WbkjWTd9CnW2nYd30rYouCqnEdF4Cz8zMaPFO72zkxuDg4IB33nkH9+/fx+3bt/HkyZNyL4Ofnx8uXbrEP7axsdH5tU2bam51UywnIZFIUKtWLZX5Prdv3wZjTGV+UHHm5uYVktVX2y+oIut412+++S/ruKllrCSkGquOMU1bFmaRlZXmzL0ouond0acPJiYlQWhujhUeHjplNy0J9UaTyszUMpubalwzVEzTd23s4st11e3cGVfWrEH6vXuwr1cPfmPHFlW0TaSxkJCKIC8s1DnPlLHiXam+gYWFhbhw4QJ27NiBTZs2qfzo6u+//8b8+fPh4+ODZs2aYcOGDejfvz8uXLhQmmKViY2NDVq2bMn/eHl56fzanj17AgCOHz/Ob8vLy8OZM2fg5+fHb+vWrRv27duH/Px8ftv27dthZ2eHgIAAA1yFYZX0C/rk2jUknjgBMFaphiYRUh1QTCuiNDfb3l7nXiND9QBRbzSpLHRde5YxxidAlRcWGnWu45uqelzTuWLwem1shbKsOUxIVcYJBCVOtSgpz1RZ6d2z/dtvv6FPnz548OCB2gDLcRyGDh2q9RjLly9HTEwMrly5AltbW4SGhuKbb75Bhw4ddFq+oTxdvnwZSUlJfOb0ixcvAgCcnJwQGBgIAGjRogVCQ0MxevRoPHv2DDKZDKtWrcKTJ08wZcoU/lhTpkzBli1bMHDgQHz88cf4888/sWTJEsyfP9/kljwD/vsF1WWNxso0NImQ6qw6xTQml+PFo0e4EhWFzIcP0Wv9er16jQipDvRZe7b4d+rZ339DWr8+/MaMqfCKXVWJa/rcd6m8Vs81hwmpDjiO46davDmqTdc8U2Wld2X7o48+gq2tLTZu3IgmTZqUKvDMnj0bISEhmDVrFrp27QqRSKT3McrLd999h40bN/KPly1bBgAIDAzE6dOn+e0bN27E9OnTMW3aNDx//hx+fn44fvw4fHx8+H0aNGiAo0eP4rPPPkP37t3h5OSEOXPmYPLkyeV2PfrQ9Rf0VVoaDZMkpJKo6jFNZGWlNDebj10chx6rVpWq14iQqkrXyrPa79Rr5xctQkh0NHwHD66wCndViWu63nel3r6t8RjU+UFIUb6JK1FRRfFMJqvQqRZ6V7avX7+O2NhYvqWwNJ4+fQorHYcrVbQNGzZgw4YNJe4nkUjw7bff4ttvv9W6X0BAAN/iWhnoMhdI4uSEDpGRFV1UQogOqmpMU+qde12BULpZZQwJ27ejeXh4ib1GBXl51IBITN6bN5P60qXyLLS01CnfwU/h4ajbuXNRJb0CppNVpbimy31XRTcG6puLQm7riNOPgMa2jkYuGSFF3px/XXyqhUAoLNc8U3pX5T09Pcu8JmplqWiTIjQXiBBiypSW8ho0CPL8fLVzs3VdtlBsZUXzrInJU9xMZpUic25JS0z98s03yM/OhkPDhnrlOzDm8jnVianfd+mbi0Ju54QzyUX/ElJauuaV0ESXJfDKeg519O7Z/vrrrzFx4kQ0a9ZMa7bZN9WoUQOnTp2Cn58fbGxstLYkcBynsuwCqVg0F4gQYore7J0TWVlBuGWL2rnZimULe23ahLodO+K3//3PYMPJKOs4qUy0LTHlPWAAem3ahKzkZPz2v//pl+/AzMxYRa526L6LkCL65JXQhbqpFoY+R3F6V7Y/+eQTPH78GN7e3nBzc+PXJFTgOA5//PGHyusmT54M2eubkMmTJ1PW6krIWiZDwJQpdDNJCDEJ6nrn8rOzkf/qlca52YplC0PWrTPosoWKnh5CTB0nEGhcYsrF1xe9Nm3Cn1u3Yv+oUfrnOygspAq3gVWFOdjUGElKqzySMhr7HHpXtv38/Ep1QxIREcH/P5JuSColupkkhJgStb1zOszNTrlxA9aurshJTzfYetqEVBZMLte4xFTrSZPw4t9//6toA3rlOzCVYc7EtND9IykNXfNKGPscZY1rele2dUlAUZJOnTph9erVaoeh37lzB2PHjsXJkyfLfB5CCCFVl6beuV9WrIDv4MF4b+1a5UoDVDP6VoVeI0L0pXaJKY6D9wcf4PzChWrzHejynaJRi8QkWcmAFhFF/5JKoaS8EoqkjBKn0ucB0PUcZU38WCFNkKdPn9aYZO358+c4e/ZsOZeIEEKUvUhOxtn58/GiFMmHSPnQ1DunmJvtExaGCffuof3MmfAJC0P7mTMxMSkJvoMGmURGX0IqSvElphTJAkWvM49ry3fgExaGCX//rfE7RYhJspIBLSOpsl2JaMsrAfyXlNHijenMxjhHWRM/6t2zDQAZGRnYuXMn7ty5g5ycHJXnS1pSAYDGFoILFy7A2dm5NMUihBCDYIxB4uSE9jNmGDxRBjEctb1zryXExCDtzh0MP3u2Qpb6IMQUFc+0q7LEVGIiCnJz9ct3UFgITiCg71QFMEbWZEJMhaaRa8Wl37sHgVBYqqHk2nJXqJyjjHko9K5s3717FwEBAcjNzcXLly/h5OSEZ8+eoaCgAPb29rC1tVVb2V64cCEWLlwIoKii3bFjRwjeaAXNzc1FQUEBPv7441JeDiGElE15JOMghlG8d+7NYWACoRCtJ02CyNISqbdv438tW6rMzaakPaS60JRpV2XtWblcYwMW8F++A0UspGRo5c/QWZMpDhJTpGnkWnH29epBXlCgcZSatgYpbbkrVM5RxsSPele2P/vsM7Ru3RqxsbGQSCQ4dOgQmjVrhu3bt+PLL79EbGys2tcFBARg8uTJYIzhq6++wsCBA+Hu7q60j1gsRuPGjfHee++V7moIIaQMyiNRBjEsld45NUt5FbzOUP4mStpDqqriN5klNSAWX2Lqw8uX4ejlpbEBi+ZmVyxjNAZTHCSmSNvINeC/pIw5GRkqz+naIKXrOco9Qdqvv/6K6OhomJubAwDy8vJgZmaGsLAwpKamYsKECfj5559VXhcYGIjAwEAARb0RH374Idzc3MpUeEIIMZTySpRBDE+ld46Gi5NqSuUmU48GxPxXr1CQna1TAxYpX0JLy3LJzEyIqShp5Jqi4e9VWprSyAx9GqR0PUdZ7yX0rmzn5uaiRo0aEAgEkEqlePToEf+ct7c3pk+fXuIxii8DRgghpkDXRBmBkZHgaOikySneO0dLeZHq6M2bzIDPP4fE2VmnBsQ3UQOWaZE4ORk9MzMhpkaXhj+JkxM/MqM0DVLl0biod2Xb09MT9+/fBwA0b94cq1evRnBwMIRCIaKionTurf7rr7+wYcMGjUnWfvrpJ32LRgghpVZeiTKIcdFSXqS6UdvryXEIWbtW7TJeCsUbENWhBiwTwXGwsLPDmTlzSv4sDdiZRXO5iSnQteGvLEuFGbtxUe/q+oABA3D16lUAwNy5c3Hp0iXY29ujRo0a2LVrFyJ1mPdx6dIl+Pr6YteuXdi1axcePHiAhIQEHDhwAFevXkVWVpa+xSKEkDLRJ1EGIYSYCnW9ntqW8SqOb0DUclNJDVgVS2RpCYFQaNTMzOoo5nLbUGWbVDCO4/Dk2jUskEjw5No1tZXgsi4Vpss5SqtUCdIU2rRpg4SEBMTFxSEnJwedOnWCt7d3icf44osv0L9/f0RHR0MkEiE6OhotWrTAhQsXMHDgQEydOlXfYhFCSJmUV6IMQggxFJFEorbXM/91UkCdGxAZM3ZRSSnlZ2dDXlBQ5szMhFR22hr+DLVUmDEaF8t811irVi2MHj0aEyZM0KmiDQB//PEHBg4cyC/9pRhGHhAQgMjISEybNq2sxSKEECUvkpNxdv58vEhO5rcxxvieaiaX84kyBELldkjKwls50LBHUl3widCystT3ejKGhO3b0Tw8XCWeKVADYiXBGHIyMuA3ZkyJn2VBXh7FQFItGWKpMGMpVYTNz8/HmjVrEB4eji5duuDu3bsAgO3bt+PmzZslvp7jOIjFYnAcB2dnZ34OOAC4u7vjzp07pSkWIYSoxRiDxMkJ7WfMgMTJCYyxomRC//6LM5GR2BUWhjORkchOT4fv4MGYmJSE9jNnwicsDO1nzsTEpCT4DhpEN6UmjoY9kuqAj11z5mDXoEEoyM1Ve5P5y4oVsKlZE++tXUsNiJXcy5QUnRqDxVZWFANJtaQYnVhSg5S6pcKMTe9h5Pfu3UNQUBBSU1PRvHlznD9/Hi9evAAAnD17FocPH8b69eu1HqNJkyb4+++/0bFjR/j7+2PZsmXw8fGBSCTCokWLUL+ElglCCNHVmxl6a73zDt7+6CONGSv7794Nzx49KAsvIcTkqMu2Wy8oCM3Dw1WmwDy5dg17hw5Fr02bUC8oqFSZdmm0iGmgJdkI0U7XZbxSb98u97LpXdmeMGECnJyc8Ouvv8LOzg5isZh/LjAwUKelv0aPHs33Zi9YsABdunRBs2bNAAASiQQ7d+7Ut1iEEKJC7Y1pcDAy//lHY8bKHX36YGJSEizs7XFx8WI0HzmSegkIIRVOU7bdX1asgO/gwXhv7VrsHzVK6bkbO3fCe9AgeHbvXqoGRMVoEWIaaEk2QjTTpUGqInIa6F3ZPn36NLZt2wZHR0cUvpGV19XVFcnF5kNqMmTIEP7/jRs3xs2bNxEfH4/s7Gy0adMGzs7O+haLEEKUqL0x5Th4f/CBzsvhtJ8xoxxLTAghmmnKtlu8B7tup0747Ycf1N5kPr56lZbxqgJoSTZCNCtLg5SxRvLoXdkWCoVgGrJWPnnyBNbW1noXwtraGsHBwXq/jhBCNFF3Y6r3cjiEEGIitGXbTYiJQcqNG+j6zTcIjIyEwMxM7U0mLeNVddBnSYh6pW2QMtZIHr0r24GBgVi2bBm6devGZxPnOA6MMfzwww/o3Lmz2tft3r1br/P06dNH36IRQghP3Y2pvsvhUIWbEGIqSsq2++TaNSSeOIHabdtigURCvZ6EkGpNXYNUReSh0LuyvXjxYgQEBKBJkyYICQkBx3FYtWoVEhIScPfuXfz6669qX9e3b1+dz8FxnMoQdfIfxciC58+fV3BJCDFd8sJCmLu7I6f4RsZwccMG1O/fH8cXLuSX/SpOYGaGhoMG4UVWVoXOg7Oxsak28/CMHdNeZGUh5/W/kjKew5DHIkQfjDE0DAsrMXY9ffAAL169Uvkd1fa7W16/19Ulrhkqpmn6XErzecmtrdFy2jTIra0rRawlpDh9f7c07i+RoMVnn4HBMPccusQ0jmkaE65FYmIiIiMjcezYMaSmpkIqlSIoKAhz5szRmEm8+PJeuvDw8NC3WNXGw4cPUatWrYouBiHEiDIzM1GjRo2KLka5oJhGSPVQXeIaxTRCqgddYlqpKtukYsnlcjx69MgoLcTPnz9HrVq18ODBg0r/B7GqXAtdh2kpr+uoLj1AgHFjGkC/e6amqlwHUHWuheKaYVFM001VuQ6g6lwLXYd+dPmO6z2M3JAOHz6MS5cu4cGDB5g5cyZq166Ns2fPokGDBnBzc6vIopk0gUAAd3d3o56jRo0alfpLVlxVuRa6DtNSVa7DFJRHTAOqzmdG12F6qsq1VJXrqGgU0/RTVa4DqDrXQtdhODpVtkeOHKnzATmOQ3R0tNZ9UlJS0KtXL1y8eJFvdRg7dixq166NdevWQSKRYNWqVTqfkxBCCCGEEEIIMSU6VbY3bNgAGxsb1K9fX+OyXwq6DJeZNGkSUlJSkJCQgIYNG0IsFvPPBQUFYd68eboUixBCCCGEEEIIMUk6Vbb9/f1x8eJFFBYWIiwsDAMGDChTArODBw/if//7Hxo3bqySdbxWrVp4+PBhqY9Nysbc3BwREREwNzev6KKUWVW5FroO01JVrqM6qSqfGV2H6akq11JVrqO6qCqfV1W5DqDqXAtdh+HpnCDtn3/+QUxMDLZu3Yo///wT/v7+CAsLQ//+/eHo6KjXSa2trbFjxw50794dhYWFEIlEuHz5Mlq0aIG9e/di5MiRePbsWakuiBBCCCGEEEIIqWgCXXesXbs2vvjiC1y9ehV//vknOnbsiBUrVsDNzQ3dunVDXFyczidt3bo11q1bp/a5mJgYvPPOOzofixBCCCGEEEIIMTVlWvorJycHs2fPxvLlyxESEoLdu3fr9Lr4+Hh07NgRrVq1Qt++ffHpp59ixowZuHnzJg4ePIjz58+jRYsWpS0WIYQQQgghhBBSofSubBcWFuLo0aOIiYnBvn37IBQKERoailGjRuHtt9/W+Tjx8fGYNm0aLly4gMLCQnAcB39/fyxZsgT+/v56XwghhBBCCCGEEGIqdB5GfvbsWXz00UdwcXFB//79UVhYiC1btuDx48eIiorSuaKdl5eH3bt3w8XFBWfOnMHz58/x8OFDvHjxAufPn6eKthGtXr0aPXv2hJOTEziOw86dOzXue/DgQQQEBEAikcDe3h4dO3ZUSVx34cIF+Pv7w9LSEh4eHli8eHGJ2eqNJS0tjV8+TiKRwNvbG2vWrFHZ79GjRwgNDYWNjQ2kUilGjRqF58+fV0CJS3br1i0EBwdDIpHA1dUVX3zxBfLy8iq6WCX66aef0Lp1a9jY2EAmk6F///64d++eyn7R0dHw9PSEhYUFmjVrhgMHDlRAaYv89ddfGDt2LN566y0IhUJ4e3ur3S8jIwMTJkyAm5sbLCwsUL9+fSxbtkxpn7y8PEyZMgWurq6QSCQIDg7G7du3y+Myqh2KaRTTygPFNIpp5YniGsU1Y6OYVs4xjenA3d2dWVhYsN69e7MdO3aw7OxsXV6mkbm5OTt16lSZjkH017p1a9a6dWs2dOhQBoDFxsaq3W/z5s1MLBaz6dOns5MnT7J9+/axzz//nN29e5ff5+7du8za2pr17t2bHT9+nC1fvpyJxWK2ZMmS8rocJR07dmQymYytX7+enThxgk2ePJkBYD/88AO/T15eHvP29mbe3t7sp59+YjExMczd3Z316NGjQsqszbNnz5hMJmPt27dnhw8fZtHR0czW1paNGzeuooum1alTp5hAIGDDhw9nx44dYzExMczT05PVr1+fvXr1it9v27ZtjOM4NnPmTHby5Ek2ZswYJhQKWXx8fIWUe+/evczd3Z2FhoYyHx8f1rRpU5V9srKyWLNmzZifnx+LiYlhp06dYlFRUSq/82PGjGG2trYsOjqaHT58mLVr147VrFmTZWRklNflVBsU0yimGRvFNIpp5Y3iGsU1Y6KYVv4xTafKNsdxTCwWM2tra2ZjY6P1p0aNGiUer1mzZmzjxo1lLjzRT2FhIWOMscTERI0BPC0tjdWoUYOtXr1a67FGjx7NPDw8WG5uLr9t+vTpzM7OjuXk5Bi24CVITk5mANj69euVtrdv35516tSJf7x161bGcRy7desWv+3IkSMMAPvll1/Kq7g6WbBgAZNIJCwtLY3fFhUVxczMzNi///5bgSXTbsyYMaxu3bpMLpfz206ePMkAsLNnz/LbPD092cCBA5Ve6+/vz7p161ZuZS1O8d1gjLFhw4apDeIzZ85k9erVY1lZWRqP8+DBA2ZmZsaioqL4bWlpaUwikbDFixcbttCEYhrFNKOjmEYxrbxRXKO4ZkwU08o/puk0jDwiIgJffvklPv/8c0yePFnrz2effVbi8RYuXIh58+bh8uXLevbDk7IQCEr+uHfs2IHCwkKEh4dr3S8uLg69evWCWCzmtw0YMAAZGRmIj48vc1n1kZ+fDwCwtbVV2m5ra6s0VCouLg6+vr7w8vLitwUHB0MqleLQoUPlU1gdxcXFISgoCFKplN/Wv39/yOVyHD16tAJLpl1+fj5sbGzAcRy/TfG5KD6Le/fu4c6dO+jfv7/SawcMGIATJ04gNze3/Ar8mi7fjbVr12LkyJGQSCQa9zl69Cjkcjn69evHb5NKpejSpYvJ/Y5VBRTTKKYZG8U0imnljeIaxTVjophW/jFN58q2Pj8l+eKLL5CWlobWrVvD2dkZPj4+8PX15X+aNWtW5gsjpXPx4kU0atQIGzduhIeHB4RCId566y2lpd1evnyJBw8eoFGjRkqvbdSoETiOw61bt8q1zLVq1UKXLl2wYMEC3LhxAy9evMCOHTtw9OhRjBs3jt/v1q1bKmXmOA6NGjUq9zKXRF1Z7ezsIJPJTK6sxQ0fPhw3btzA6tWrkZmZiXv37uHLL79E8+bN+SX9FOV/8/oaN26MvLw8JCYmlnu5S5KUlITHjx/D0dERISEhMDc3h1QqxYcffoisrCx+v1u3bsHZ2Rn29vZKr2/cuLFJf25VGcU000AxzbRQTKvcKK6ZhsoY1yimlX9MExrlqCXw8/NDy5YtK+LUpASPHz/G7du3MWvWLPzf//0fZDIZVq1ahZCQEFy9ehVNmzZFRkYGgKKAUpxYLIaVlRWePXtW7uXevXs3PvjgAzRt2hQAYGZmhpUrVyI0NJTfJz09XaXMAGBvb18hZdamMpW1uHbt2mHPnj0ICwvj/3i+9dZbOHz4MMzMzAAUXRug+vujCHymeH2PHz8GAHz++efo06cPDh06hLt372LatGnIysrCtm3bAFTez60qo5hmGipTWYujmFY5P7eqjuKaaahMZVWgmFb+n1mFVLY3bNhQEaetNhhjKCws5B9zHMd/gUoil8uRlZWFLVu2ICQkBADQoUMHeHp6YvHixdi0aZNRyqwrddcmEAgwYsQI3L17F1u3boVMJsOxY8cwadIk2NvbY8CAARVY4urlwoULGDJkCD788EP07NkTaWlpmDt3Lnr06IFz587B0tKyootYKnK5HADg6emJjRs3AgA6d+4MoVCIDz/8EPPnz0e9evUqsohVGsU0imkVhWIaMRaKaxTXKgLFtPJXIZVtYlxnzpxBx44d+ceBgYE4ffq0Tq9VtFp16tSJ3yYSidC+fXskJCQA+K+lKzMzU+m1eXl5ePXqldLcFUNTd22ff/45YmNjce3aNfj4+AAo+qPz9OlTTJ48mQ/g9vb2KmUGilq5atWqZbQyl4a2shrz/S2rCRMmoFOnTkrLLLRp0wa1a9fG5s2bMXr0aP53LDMzE66urvx+ipZUU7w+RZmL/+4BRYEcAK5fv4569epV2s/N1FFMo5hWUSimVc7PrTKguEZxrSJQTCv/z4wq21WQn58fLl26xD+2sbHR+bWKoT3q5OTkAAAkEglq1aqlMrfh9u3bYIypzPEwJHXXtm/fPpiZmamsude8eXOsXbsWr169gpWVFRo1aoQ///xTaR/GGG7fvo3g4GCjlbk01M1NyszMRHJyslHf37K6ceMG3n//faVt7u7ucHR0xN9//w3gvzlAt27dUkqAcuvWLYjFYpPsTalfvz7Mzc01Pq/4bjRq1AhPnjxBenq60nwgdfO6iO4ophWhmFb+KKZRTDMWimtFKK6VL4pp5R/TdEqQRioXGxsbtGzZkv8p/kUpSc+ePQEAx48f57fl5eXhzJkz8PPz47d169YN+/bt47NLAsD27dthZ2eHgIAAA1yFeuquzcPDA4WFhbh27ZrSvleuXIGzszOsrKz4Mv/xxx+4e/cuv8+JEyeQlpaG7t27G63MpdGtWzccP36cn3MFALGxsRAIBOjSpUvFFawEHh4e+O2335S23b9/H6mpqahTpw4AoF69evD09ERsbKzSftu3b0fnzp2VsqaaCrFYjC5duuDEiRNK248dOwYAaNGiBQCgS5cuEAgE2LVrF79Peno6jh49anK/Y5UJxbQiFNPKH8U0imnGQnGtCMW18kUxrQJimlEWFCMm6dKlSyw2NpatXr2aAWCTJ09msbGx7PTp00r7hYaGMicnJxYdHc0OHTrEevTowSwsLNi1a9f4fe7evcskEgkLDQ1lJ06cYCtWrGBisVhl4fjy8Pz5c1a7dm3WoEEDtnnzZnb8+HH2xRdfMIFAwObOncvvl5eXx7y9vZmPjw/bv38/2759O6tVqxbr0aNHuZe5JM+ePWMymYwFBgayI0eOsHXr1jE7Ozs2bty4ii6aVitWrGAA2IQJE9ixY8dYTEwM8/b2Zi4uLiw1NZXfT7GO5uzZs9mpU6fY2LFjmVAoZBcuXKiQcr98+ZLFxsay2NhY1qFDB1arVi3+8dOnTxljjF2+fJmJxWIWFhbGjhw5wr777jtmY2PDBg0apHSsMWPGMDs7O7Zu3Tp25MgRFhgYyGrWrMkyMjIq4tKqNIppFNOMjWIaxbTyRnGN4poxUUwr/5hGle1qZNiwYQyAyk9gYKDSfllZWWz8+PHMycmJmZubs4CAAHb+/HmV4/3888+sdevWzNzcnLm7u7OFCxcyuVxeTlej7O7du6x///7Mzc2NWVlZsaZNm7IVK1awgoICpf0ePnzI+vTpw6ytrZmdnR0bOXIky8zMrJAyl+TGjRusc+fOzNLSkjk7O7PPP/+c5ebmVnSxtJLL5ez7779nvr6+TCKRMFdXV9a7d2928+ZNlX3Xrl3LGjRowMRiMf9HtaIkJiaq/W4AYKdOneL3O378OGvZsiUzNzdnrq6ubPLkySwnJ0fpWDk5OWzy5MnM2dmZWVpasqCgILXXT8qOYhrFNGOjmEYxrbxRXKO4ZkwU08o/pnGMFVtJnhBCCCGEEEIIIWVGc7YJIYQQQgghhBADo8o2IYQQQgghhBBiYFTZJoQQQgghhBBCDIwq24QQQgghhBBCiIFRZZsQQgghhBBCCDEwqmwTQgghhBBCCCEGRpVtQgghhBBCCCHEwKiyTXQSGRkJjuNQs2ZNyOVyleffeecdcByH4cOH63XcjIwMREZG4saNG0rbk5KSwHEcdu7cWZZil9mKFSvAcRz/+PTp0+A4DpcvXy63MkRGRuLChQsq2zmOw9KlS8utHOrs3bsXHMchKSkJQOk+txUrVuDQoUNGKiEh6lFMK0IxTRnFNFKZUVwrQnFNGcW1ikWVbaIzkUiE1NRUnD17Vmn7/fv3ER8fD2tra72PmZGRgTlz5qgEcJlMhvj4eHTq1KlMZTa0Fi1aID4+Ho0bNy63c86ZM0dtAI+Pj8egQYPKrRy6KM3nRgGcVBSKaRTTSkIxjVQ2FNcorpWE4lr5ElZ0AUjlIRaLERQUhG3btqFDhw789piYGDRt2hRmZmYGO5e5uTnatGljsOMZSo0aNUosV3Z2NiwtLY1eFlN8f0z1cyNEHYppFNNKYqqfGyGaUFyjuFYSU/3cqirq2SZ6GThwIHbu3In8/Hx+29atWxEWFqZ2/7NnzyIgIACWlpZwdHTEyJEj8ezZMwBFw1jq1q0LAOjXrx84juOHuagb4iKXyzFv3jzUqVMH5ubmaNSoEaKiopTOFxkZCWtra/z5559o27YtrKys4O3tjSNHjpR4bc+fP8fQoUNhY2MDJycnfPHFFygoKFDaR93QJI7jsGjRIkydOhWurq5wdnYGADDGsHTpUnh6esLc3Bz16tXD119/rXLemzdvok+fPpBKpbCyskKzZs2wbds2/tgAMGXKFP79OX36NP/cm0OToqKi4OXlBXNzc9SpUwfz5s1TGkq2YcMGcByH33//Hd26dYNEIkHDhg2xadOmEt+f/Px8TJo0CVKpFLa2tggPD0dWVpbSPuo+t59++gktW7aEtbU17Ozs0LJlS751tE6dOrh//z5WrVrFX9+GDRsAAJs2bULbtm0hlUphb2+PDh064Ndff1U6nz6f96ZNm9C8eXNYWFjA0dER3bt3x/379/nnHz58iMGDB8PR0RGWlpZo3749rly5UuL7Qio3imkU0yimkaqG4hrFNYprpoMq20Qv7733HnJzc3H06FEAwI0bN3Dt2jUMGDBAZd8rV64gODgYNjY2iI2NxeLFi7F//35069YNhYWFkMlk2L17NwBgwYIFiI+PR3x8PGQymdpzT5kyBZGRkRg+fDj279+PLl26YOzYsfjuu++U9svPz8egQYMwfPhw7NmzB87OzggNDUVaWprWaxs5ciT27NmDRYsWYePGjbhx4wZWrFih0/vyzTff4M6dO4iOjsaPP/4IAJg4cSJmz56NYcOG4eDBgxg+fDimTp2KNWvW8K+7e/cu/P39cffuXXz77bf46aefMGLECPzzzz8AioYfAcD48eP596dFixZqy7By5UqMHTsW7777Lvbv34/hw4cjMjISX3zxhcq+gwYNQpcuXbB37140b94cw4cPx82bN7Ve4/Tp07F69WpMmTIFO3bsQGFhIaZNm6b1NX///Tf69u2Lpk2bYs+ePdi+fTv69++P9PR0AMCePXvg6uqKvn378tfXo0cPAEV/DIYOHYrY2Fhs3boVtWvXRvv27XHnzh2lc+jyeS9ZsgTDhg2Dn58fdu/ejejoaDRs2BApKSkAgPT0dLRt2xZXr17FypUrsWvXLkgkEnTq1AlPnz7Veo2kcqOYph7FNPUoppHKgOKaehTX1KO4ZmSMEB1EREQwiUTCGGMsLCyMDR48mDHG2MyZM5m/vz9jjLFmzZqxYcOG8a/p3bs3q127NsvLy+O3HTlyhAFgP/30E2OMscTERAaAxcbGKp3vze0pKSlMJBKxadOmKe03cOBA5uTkxAoKCvhyAmAHDx5UOdbmzZs1Xt/169cZx3EsOjqa31ZQUMDq1q3Lin9NTp06xQCwS5cu8dsAsCZNmjC5XM5v++uvvxjHcSwqKkrpPFOnTmWurq6ssLCQfy+dnJxYZmamxrIBYEuWLNG6vaCggDk6OrIBAwYo7TN9+nQmFotZamoqY4yx9evXMwBs1apV/D5ZWVnMysqKzZ07V2MZ0tLSmKWlJZs1a5bS9vbt2zMALDExkTGm+rnFxsYyAOz58+caj+3h4cHGjRun8XnGGCssLGT5+fnMy8uLTZ8+nd+uy+edkZHBrKys2OjRozUef/bs2czW1pY9efKE35aTk8Nq167NpkyZorVspHKimFaEYhrFNFJ1UFwrQnGN4popoZ5toreBAwdi3759yM7ORkxMDAYOHKh2v3PnzuH999+HSCTit3Xp0gV2dnY4f/68Xuf85ZdfkJ+fj379+ilt/+CDD5CSkqLUgiYQCBAUFMQ/rlOnDiwtLfHw4UONx7906RIYY+jduze/zczMDL169dKpfN26dVPKhHn8+HEAQGhoKAoKCvifoKAgPH78GA8ePAAAnDhxAn379kWNGjV0Oo8mt27dQmpqqtr3Jy8vT2VIT5cuXfj/SyQSeHh4aH1//vzzT2RnZyu9P4rr08bX1xdmZmYICwvD/v37kZmZqesl4ebNm+jduzdcXFxgZmYGkUiE27dvq7SWlvR5x8fH49WrVwgPD9d4rqNHj6Jjx46QSqX8Z2VmZobAwEBcunRJ5zKTyolimiqKaepRTCOVBcU1VRTX1KO4ZlyUII3o7d1334VIJMLs2bORmJiI/v37q90vPT0dLi4uKttdXFz4uUC6UgxlefN4isfFj2dpaQmxWKy0n1gsRk5OjsbjJycnQyQSwd7eXu3xS/LmfqmpqWCMwdHRUe3+Dx48gIeHB9LS0uDm5qbTObTR5/0BADs7O6XHurw/APg5Tm8eXxNPT08cOHAACxYsQO/evSEQCNC1a1d89913qF27tsbXvXjxAl26dIGTkxOWL18ODw8PWFhYYNSoUSrlLOnzVgxR0vY+p6am4uLFi0o3Gwr169fXeo2k8qOYpopimnoU00hlQXFNFcU19SiuGRdVtoneRCIRQkNDsXz5cnTu3Fnjl1gqlaqdQ/HkyRNIpVK9zqnY/+nTp6hZs6bSsYo/X1oymQz5+flIT09XCuKK45ekeEupojwcx+H8+fMqwQUAvLy8AAAODg549OhRGUr+3/kAqLzfhnx/FMdX9/5r07VrV3Tt2hXPnz/H4cOH8emnn2LEiBE4ceKExtfEx8fj4cOHOHDgAJo1a8Zvz8zMhLu7u15ld3BwAAA8evRI42ulUim6du2KuXPnqjxnbm6u1/lI5UMxTRXFNM0oppHKgOKaKoprmlFcMx4aRk5KZdSoUXjvvfcwceJEjfu0bdsWe/fuVcoSeezYMWRkZKBt27YAwAc3bS11ANCqVSuIRCLExsYqbd+xYwecnZ3h6elZ2ksBALz99tsAipJAKBQWFmLv3r2lOl7nzp0BFLXUtWzZUuXHxsYGABAUFISdO3fixYsXGo8lEolKfH+8vLzg5OSk9v0Ri8Vo1apVqa5DwcfHB5aWlkrvDwDs2rVL52PUqFED/fv3x4ABA5QSfKhrqc3OzuafU7hw4QKSkpL0Lru/vz+srKywfv16jfsEBQXhxo0baNy4scpn5ePjo/c5SeVDMU07immqKKYRU0dxTTuKa6oorhke9WyTUmnVqlWJwW3GjBkICAhAz549MX78eDx58gTTpk1Dq1at0L17dwCAq6sr7OzssG3bNtStWxfm5ubw9fVVOZajoyPGjx+PJUuWwMLCAm3atMGhQ4ewdetWrFy5sszrRjZp0gS9e/fGpEmTkJOTgzp16mD16tXIy8sr1fE8PT0xbtw4DBkyBFOmTEHr1q2Rn5+PO3fu4NSpU/x7FxERgQMHDqBt27b44osvIJPJcOPGDbx69YrPTNm4cWPs27cP7dq1g0QigZeXF/8HQMHMzAyzZs3ChAkT4OzsjO7du+PixYtYvHgxJk2axLcYlpZUKsXYsWOxaNEiWFpaokWLFti2bRv+/vtvra+LiopCfHw8unbtCplMhsTERPz4449K85AaN26MkydP4tixY7C3t0fdunXRpk0bWFtbY9y4cZg2bRr+/fdfREREKLXU6srW1hYRERGYOnUq5HI53n//fcjlcpw6dQoDBw5Ey5Yt8dlnn2HLli0IDAzExIkTUbt2baSkpOCXX36Bm5sbPv30U73PSyoXimnaUUwrQjGNVCYU17SjuFaE4pqRVWR2NlJ5FM9wqcmbGS4ZY+z06dPM39+fmZubM6lUyoYPH87S0tKU9tmzZw9r3LgxMzc357Mlqst8WVhYyL766itWu3ZtJhKJWMOGDdmaNWt0KqetrS2LiIjQWv709HQ2aNAgJpFImIODA/vss8/YkiVLdMpwqS4DpVwuZytXrmTe3t5MLBYzqVTK/P392fLly5X2u379OgsJCWE1atRgVlZW7K233mIxMTH88+fOnWMtWrRglpaWDAA7deqUxvN+//33rGHDhkwkErHatWuzuXPn8tk0Gfsvw2VKSorS69R9dm/Kzc1l48ePZ3Z2dqxGjRps2LBhbPPmzVozXF64cIH16NGDyWQyJhaLWe3atdnEiROVMl4mJCSwdu3aMRsbGwaArV+/njHGWFxcHGvatCmzsLBgvr6+7NChQywwMJD16NGDf60+n/e6deuYj48PE4vFzMHBgfXs2ZPdv3+ffz45OZmFh4fzZXV3d2d9+/ZlP//8s9b3hVROFNOKUEyjmEaqDoprRSiuUVwzJRxjjBm9Rk8IIYQQQgghhFQjNGebEEIIIYQQQggxMKpsE0IIIYQQQgghBkaVbUIIIYQQQgghxMCosk0IIYQQQgghhBgYVbYJIYQQQgghhBADo8o2MZqkpCRwHIedO3fq9brTp09jwYIFKtsjIyNhbW1tqOKVaMWKFTh06JDBjrd3716sXr1aZfvw4cPh7e1tsPMYWnm/74SYMopryiiuEVK5UUxTRjGNGBpVtonJ0RTAR40ahVOnTpVbOcorgJu68n7fCamKKK6ZFoprhJQNxTTTQjHNdAkrugCkcmGMIS8vD+bm5uV+bnd3d7i7u5f7eaur3NxciEQig73viuMJBNTGR0wLxbXqg+IaqQ4oplUfFNNMH72TRCvFsJlDhw6hWbNmMDc3x/79+wEA8fHx6NSpEyQSCWxtbREWFoanT59qPd6mTZvQtm1bSKVS2Nvbo0OHDvj111/55yMjIzFnzhy8fPkSHMeB4zh06NCBf04xRObly5eQSCRYunSpyjn69u0Lf39//nFGRgY+/vhjyGQymJubw8/PD0ePHtVazjp16uD+/ftYtWoVX44NGzYAAORyOebNm4c6derA3NwcjRo1QlRUVInv48aNG3H9+nX+eMOHD1fa5/Tp02jevDkkEglatWqFK1euKD3PGMPSpUvh6ekJc3Nz1KtXD19//bXW8yrO7e3tjbi4OHh7e8PCwgJ+fn64ePGiyjV/8skn+L//+z94eHjA0tISz549Uzs06f79++jbty9sbW0hkUjw7rvv4s8//9TpeNrKePz4cfj6+sLS0hKBgYFISkrCs2fP0L9/f9SoUQP169fH9u3bVV5/8OBBtG7dGpaWlnBycsJHH32Ely9f8s+/fPkSn3zyCby8vGBlZYU6depg7NixyMzMVFvmVatWwcPDA7a2tujVqxdSUlJKfJ9J5UFxjeIaxTWKa1UJxTSKaRTTTDimMUK0GDZsGLO3t2f169dn69evZydOnGB3795lFy5cYGKxmPXq1Yvt37+fxcTEsAYNGrA2bdrwr01MTGQAWGxsLL9tzpw5LCoqih0/fpwdOnSIDRkyhJmbm7Pbt28zxhh78OABCw8PZ5aWliw+Pp7Fx8ez69evM8YYi4iIYBKJhD/WgAEDmJ+fn1J5nz9/ziwsLNi3337LGGMsNzeXtWzZktWqVYtFR0ezw4cPs8GDBzOhUMiuXbum8bp/++035urqyvr27cuX4+nTp4wxxj777DNmZmbGIiIi2JEjR9j48eMZALZy5UqNx/vrr79Y9+7dWb169fjj/fXXX/x77ODgwHx8fNiWLVvYgQMHmI+PD6tVqxbLy8vjjzF+/HhmaWnJ5s2bx44dO8bmzJnDRCIR+/7770v8DKVSKatTpw7bsGED27dvH/P392c1atRgT5484ffz8PBgrq6urF27dmzPnj3sp59+Yq9evVJ5358/f87q1KnD6tWrx7Zu3cp2797N/Pz8mJ2dHfvnn39KPJ6mMjo4ODBfX18WExPDdu3axWrWrMkCAgJYUFAQ++qrr9jRo0dZv379mFAoZElJSfxrY2NjmUAgYOHh4SwuLo6tW7eOOTs7sw8++IDf5+nTp2zs2LEsNjaWnT59mm3evJk1atSIdejQQakcHh4erFatWqxLly5s//79bP369czOzk7pWKTyo7hGcY3iGsW1qoRiGsU0immmG9Oosk20GjZsGAPALl68qLS9ffv2LCAggMnlcn7b9evXGcdx7ODBg4wx9QG8uMLCQpafn8+8vLzY9OnT+e1vBgxN2/ft28cAsDt37vDbNm7cyMzMzNjjx48ZY4ytW7eOCYVC/o+AQuvWrVm/fv20XruHhwcbN26c0raUlBQmEonYtGnTlLYPHDiQOTk5sYKCAo3HGzZsGGvatKna7RzHsYSEBH7bqVOnGAB27tw5xljRHwCO41hUVJTSa6dOncpcXV1ZYWGh1vMCYCdOnOC3ZWRkMBsbG6Xr8PDwYA4ODiwrK0vp9W++79988w3jOI7duHGD35aWlsYkEgn77LPPSjyepjK++R6sXLmSAWBTp07lt6WnpzMzMzO2YsUKxhhjcrmceXh4sIEDByodLy4uTuV4xeXn57Pz588zAPzNg6LM7u7uLCcnR+n6RSKR1veYVC4U1yiuUVyjuFaVUEyjmEYxzXRjGg0jJyVycHBA69at+cevXr3Czz//jH79+qGwsBAFBQUoKCiAp6cnatWqhUuXLmk81s2bN9G7d2+4uLjAzMwMIpEIt2/fxp07d/QuV9euXWFnZ4eYmBh+W0xMDDp27AgXFxcAwNGjR+Hj4wNPT0++nAUFBQgODtZaTk1++eUX5Ofno1+/fkrbP/jgA6SkpJTqOgDAzc0NTZs25R83adIEAPDw4UMAwPHjxwEAoaGhStcRFBSEx48f48GDB1qPb2tri06dOik9DgoKwi+//KK0X4cOHSCRSLQe69y5c/D29kbjxo35bVKpFMHBwTh//rzex1N48z3w9PQEAAQFBfHb7Ozs4OzszF/vnTt3cP/+ffTv31/pfQkMDIRAIMDly5f5127evBnNmzeHtbU1RCIR2rZtyx+juMDAQKV5bk2aNEF+fn6Jw+5I5UJx7T8U1yiukcqPYtp/KKZRTDMlVNkmJVIEQ4X09HQUFhbi008/hUgkUvr5559/NAaTFy9eoEuXLrh//z6WL1+Oc+fO4dKlS2jWrBlycnL0LpdYLEZoaCgfwNPS0nDs2DGEhYXx+6SmpuL3339XKee8efNKDHrqpKenA1B9TxSPNc1zKYmdnZ3SY7FYDAD8+5KamgrGGBwdHZWuIzg4GABKvBYnJyeVbS4uLkhOTlZ7Hdqkp6er3c/FxUXl+nU5noKm90Dd9uLvCwD07t1b6X2xsrJCYWEh/77s2bMHQ4cORatWrbBjxw5cvHgRe/bsAQCV372SPgtSNVBcU752gOIaxTVSmVFMU752gGIaxTTTQNnISYk4jlN6bGdnB47j8OWXX6JXr14q+zs6Oqo9Tnx8PB4+fIgDBw6gWbNm/PbMzMxSZ1AcOHAgoqOjce3aNcTHx8PMzAx9+vThn5dKpfD19UV0dHSpjv8mqVQKAHj69Clq1qzJb3/y5InS84YmlUrBcRzOnz/PB5TivLy8tL5eXdKIJ0+eQCaTKW1787PWVJbbt2+rPd6b16/L8cpCcb7vvvtOqUVfwc3NDQAQGxuLt956Syk5ypkzZ4xaNmLaKK79h+IaxTVS+VFM+w/FNIpppoQq20RvEokE/v7+uHnzJubNm6fz67KzswFAKQBduHABSUlJSkNSxGIxcnNzdTpmhw4d4Orqim3btiE+Ph7dunWDra0t/3xQUBAOHToENzc3/susq+KtcgqtWrWCSCRCbGwsmjdvzm/fsWMHnJ2d+eE0uh5PV507dwZQ1CL83nvv6f36zMxMnDx5kh+elJmZiePHj2PcuHF6H6tt27bYuXMnbt++zf/hSE9Px/HjxzF69Gi9j1cWjRo1gru7O+7du6f1WrKzs1X+8G3ZssXYxSOVCMU1imsU10hVQjGNYhrFNNNAlW1SKkuWLEGnTp3wwQcfYMCAAbC3t8fDhw9x7NgxjBgxgl8Corg2bdrA2toa48aNw7Rp0/Dvv/8iIiJCqdURABo3boyCggJ88803CAgIQI0aNTS2BpqZmaF///7YsGEDnj59qjQnCACGDh2KqKgodOjQAZ9//jk8PT2RkZGB33//HXl5eVi4cKHGa2zcuDFOnjyJY8eOwd7eHnXr1oWjoyPGjx+PJUuWwMLCAm3atMGhQ4ewdetWrFy5EmZmZlqPt27dOmzbtg0NGzaEo6Mj6tSpo/lNLsbT0xPjxo3DkCFDMGXKFLRu3Rr5+fm4c+cOTp06hb1792p9vVQqRXh4OObMmQM7OzssWrQIjDFMmjRJp/MXN2LECHz99dfo0aMH5s2bBwsLC8yfPx9CobBUxysLjuOwfPlyhIWF4eXLl+jRowckEgnu37+PgwcPYsGCBfD09ERwcDDGjRuHuXPnwt/fH4cOHcKJEyfKtazE9FFco7hGcY1UJRTTKKZRTDMBFZmdjZg+TVkZGWPs0qVLrHv37szW1pZZWlqyhg0bsrFjx7IHDx4wxtRnuIyLi2NNmzZlFhYWzNfXlx06dIgFBgayHj168Pvk5+ezjz/+mLm4uDCO41hgYCBjTHPmy/j4eAaAWVtbq12uIDMzk3366aesdu3aTCQSMZlMxrp3784OHDig9doTEhJYu3btmI2NDQPA1q9fzxgrysz51Vdf8cdr2LAhW7NmjdZjKcoxYMAA5uDgwACwYcOGMcbUv8fp6elK52SsKJvjypUrmbe3NxOLxUwqlTJ/f3+2fPlyredVHP/AgQOscePGTCwWs+bNm7Off/5ZaT91GT0ZU/++JyUlsT59+jAbGxtmZWXFgoODVZbn0HQ8bWUsTpHl89KlSyUe9+jRoywwMJBJJBImkUhY06ZN2eTJk1lGRgZjjLGCggI2efJk5uTkxGxsbFjfvn3ZxYsXVX4/1R17z549DABLTEzU6VqI6aO4RnGN4hrFtaqEYhrFNIppphvTOMYYK7+qPSGkvA0fPhyXL19GQkJCRReFEEIMguIaIaQqoZhWdVE2ckIIIYQQQgghxMCosk0IIYQQQgghhBgYDSMnhBBCCCGEEEIMjHq2CSGEEEIIIYQQA6PKNiFG1qpVK6xatUrj81evXgXHcTh9+rRRzh8cHIz58+cb5diEkOqHYhohpKqhuEaMhSrbhBjRnj17kJSUhJEjR1ZYGb788kssXboU6enpFVYGQkjVQDGNEFLVUFwjxkSVbUKMaMWKFRg4cCAsLS0rrAwdO3aEvb09Nm7cWGFlIIRUDRTTCCFVDcU1YkxU2SbESBITE3Hu3Dn07dtXafu8efPg6uoKa2tr9OnTB0+fPlV5LWMMS5cuhaenJ8zNzVGvXj18/fXXKvvt2bMHXl5esLCwQJs2bfDbb7/Bzs4OkZGRSvv169ePAjghpEwophFCqhqKa8TYqLJNiJGcOHECQqEQrVq14rd99913mDVrFoYMGYJdu3ahXr16CA8PV3ntxIkTMXv2bAwbNgwHDx7E8OHDMXXqVKxZs4bf5/fff0e/fv3QpEkT7N69G8OGDcMHH3yA3NxcleMFBATg6tWrSElJMc7FEkKqPIpphJCqhuIaMTpGCDGK0aNHs6ZNm/KPCwoKmJubGxsyZIjSfkOGDGEA2KlTpxhjjP3111+M4zgWFRWltN/UqVOZq6srKywsZIwx1q9fP9agQQP+MWOMbd68mQFgERERSq9NTExkANiBAwcMeIWEkOqEYhohpKqhuEaMjXq2CTGS5ORkODk58Y8fPnyIR48eoXfv3kr7vTl06fjx4wCA0NBQFBQU8D9BQUF4/PgxHjx4AAC4dOkSevbsCYHgv6/x+++/r7Ysjo6OfJkIIaQ0KKYRQqoaimvE2IQVXQBCqqqcnByYm5vzjxXB09nZWWk/FxcXpcepqalgjPFB900PHjyAh4eHyh8IALCxsYGFhYXKaxTlyM7O1v9CCCEEFNMIIVUPxTVibFTZJsRIpFIpkpKS+McymQwAVJJsPHnyROV1HMfh/PnzEIvFKsf18vLij/fmvJ4XL14gJydH5TUZGRkAAAcHB72vgxBCAIpphJCqh+IaMTYaRk6IkXh5eSExMZF/7O7uDplMhj179ijtt3PnTqXHnTt3BgCkpaWhZcuWKj82NjYAgLfffhsHDhyAXC7nX7t37161ZVH8IVEEf0II0RfFNEJIVUNxjRgb9WwTYiTvvPMOvvrqKzx8+BDu7u4wMzPDtGnTMHHiRLi4uCA4OBhHjx7FqVOnlF7n6emJcePGYciQIZgyZQpat26N/Px83LlzB6dOneKD9PTp0/H2228jNDQUo0ePxv3797F06VJYWFgozQ0CgMuXL8Pa2hpvvfVWOV09IaSqoZhGCKlqKK4Ro6vgBG2EVFm5ubnMwcGB/fDDD/w2uVzO5syZw5ydnZmVlRULCQlhhw8fVspwqdhv5cqVzNvbm4nFYiaVSpm/vz9bvny50jl27drFPD09mbm5OfPz82Pnz59nQqGQrVixQmm/9957TyWzJiGE6INiGiGkqqG4RoyNY4yxCq7vE1JlTZ48Gb///jtOnjxZLuc7ceIEgoKCcPr0aQQGBgIA0tPT4erqimPHjqF9+/blUg5CSNVEMY0QUtVQXCPGRJVtQowoOTkZDRo0wIULF9CsWTODH//jjz9G586d4eDggOvXr2Pu3Llwc3PD5cuX+eFJX331FU6fPl1uf0QIIVUXxTRCSFVDcY0YE83ZJsSIZDIZNmzYoJKJ0lDS09Mxfvx4pKamwtbWFl27dsXSpUuV5gFJpVJ8++23Rjk/IaR6oZhGCKlqKK4RY6KebUIIIYQQQgghxMBo6S9CCCGEEEIIIcTAqLJNCCGEEEIIIYQYGFW2CSGEEEIIIYQQA6PKNiGEEEIIIYQQYmBU2SaEEEIIIYQQQgyMKtuEEEIIIYQQQoiBUWWbEEIIIYQQQggxMKpsE0IIIYQQQgghBkaVbUIIIYQQQgghxMD+H1n9pTGPxrAOAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1528,13 +1528,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADegElEQVR4nOydd3hURffHP3ez6QkpJIEk1IReghDKTymhS1G6oIAgEAQEARV8pSYUAcuLYAUEpIiANDuiooBYQMprRKRIJwmQQBJC+u7O74+bXbLZ3WQ3BEKZz/PkWfbeuXPn7iaHOXPOfI8ihBBIJBKJRCKRSCQSiUQiKTU0ZT0AiUQikUgkEolEIpFI7jeksy2RSCQSiUQikUgkEkkpI51tiUQikUgkEolEIpFIShnpbEskEolEIpFIJBKJRFLKSGdbIpFIJBKJRCKRSCSSUkY62xKJRCKRSCQSiUQikZQy0tmWSCQSiUQikUgkEomklJHOtkQikUgkEolEIpFIJKWMdLYlEolEIpFIJBKJRCIpZaSzLZHcxezatQtFUdi8eXNZD0UikUhumbNnz6IoCm+++WZZD0UikUgcplq1ajz22GNlPQzJPYR0tiX3DH/88Qfjxo2jfv36eHp6UqVKFfr378+JEyeKvC4vL4969epZneClpqYyaNAg/Pz8CAsLY8WKFRbXHzhwAA8PD86cOVOqzyORSB5sbty4QUxMDF26dMHf3x9FUVi1apVFO4PBwKpVq+jRoweVK1fG09OTBg0aMHfuXLKzs83a5uTk8PzzzxMYGEilSpWYO3euRX8XL17Ey8uLX3755XY9mkQikVhw6NAhevTogb+/Px4eHjRo0IC3337brM3SpUupXr06/v7+PP3001y/ft3svMFgoHHjxsybN+9ODl0iKTHash6ARGIvr732Gr/88gtPPPEEERERXLp0iXfffZcmTZrw+++/06BBA6vXvfPOO5w/f97quUmTJrFr1y5mzZrFv//+y8iRI6lbty6PPPIIAEIIxo8fz8SJE6levfptezaJRPLgkZyczOzZs6lSpQqNGjVi165dVttlZmYybNgw/u///o/Ro0cTFBTEb7/9RkxMDDt37uTHH39EURQA3njjDdasWcO0adNIT09n9uzZhIeH89RTT5n6mzx5Mj169KBly5Z34jElEomE7777jscff5zGjRszY8YMvLy8OHXqFBcvXjS12bt3L2PGjGH8+PGEhYUxf/58Jk+ezNKlS01tPvzwQ9LS0njppZfK4jEkEscREsk9wi+//CJycnLMjp04cUK4urqKQYMGWb3m8uXLwsfHR8yePVsA4o033jA7X6FCBbF69WrT+6ioKPHKK6+Y3q9du1aEhISI9PT0UnwS+/npp58EIDZt2nRb73Pjxo3b2r9EIrEkOztbJCYmCiGE+OOPPwQgPvroI4t2OTk54pdffrE4PmvWLAGI77//3nSsRYsWYtasWab3Q4cOFU8++aTp/c8//yw8PT3FhQsXSvFJ7OfMmTNWbXFpI22aRHL3kJaWJipUqCB69+4t9Hq9zXb/+c9/RLt27UzvP/roI1GxYkXT+5SUFBEQECC2bNlyW8dbFFWrVhXdu3e/rffIy8uzmO9K7l1kGrnknuGRRx7BxcXF7FjNmjWpX78+//zzj9VrXnnlFWrXrs3gwYOtns/KysLPz8/03t/fn8zMTAAyMjJ45ZVXmD9/Pl5eXg6NNT4+nhEjRhASEoKrqyvVq1dnzJgx5ObmmtqcPn2aJ554wpRO9X//9398/fXXVvszGAy8+uqrVKpUCTc3Nzp06MC///5r0W7fvn106dIFHx8fPDw8iIqKskgVjY2NRVEUjh49ysCBA/Hz86NVq1am8x9//DGRkZG4u7vj7+/Pk08+yYULF8z6aNu2LQ0aNODo0aO0a9cODw8PQkNDef311y3GlJ2dTWxsLLVq1cLNzY3g4GD69OnDqVOnzJ5v0aJF1K9fHzc3NypUqMCoUaNISUmx7wOXSO5BXF1dqVixYrHtXFxcTNk2BenduzeAmf0ryqYZDAYmTJjAyy+/TKVKlRwaa2pqKi+88ALVqlXD1dWVSpUqMWTIEJKTk01trly5wogRI6hQoQJubm40atSI1atX2+xz2bJlhIeH4+rqSrNmzfjjjz8s2hw7dox+/frh7++Pm5sbTZs25YsvvjBrs2rVKhRFYffu3Tz33HMEBQWZPd/27dtp3bo1np6eeHt70717d/7++2+zPp555hm8vLyIj4+nV69eeHl5ERgYyKRJk9Dr9WZtDQYDixcvpmHDhri5uREYGEiXLl04cOCAWTt7bKlE8iDwySefcPnyZV599VU0Gg0ZGRkYDAaLdkXZL1DnLw0bNqRPnz4O3d+ev1mdTsecOXNMNqlatWpMnTqVnJwcq33u3buX5s2b4+bmRlhYGGvWrLFok5qaysSJE6lcuTKurq7UqFGD1157zezZC+pYLFq0yHT/o0ePAo7ZwF9++YUXX3yRwMBAPD096d27N0lJSRbj2r59O1FRUXh7e1OuXDmaNWvGJ598YtbGnvmkxE7K2tuXSG4Fg8EgQkNDRefOnS3O7du3T2g0GvHrr7/ajKZ06NBBtG3bVpw4cUJ8++23wt3dXXz88cdCCCGmTp0qmjdvLgwGg0Njio+PFyEhIcLDw0NMnDhRLFmyRMyYMUPUrVtXpKSkCCGEuHTpkqhQoYLw9vYW06ZNEwsXLhSNGjUSGo1GbN261dSXMbLduHFjERkZKd566y0RGxsrPDw8RPPmzc3uu3PnTuHi4iIefvhh8d///le89dZbIiIiQri4uIh9+/aZ2sXExAhA1KtXT/Ts2VO8//774r333hNCCDF37lyhKIoYMGCAeP/998WsWbNEQECAqFatmmnsQqgZACEhIaJy5cpiwoQJ4v333xft27cXgPjmm29M7XQ6nejQoYMAxJNPPineffddMX/+fNG+fXvx2WefmdpFR0cLrVYrRo4cKZYsWSL+85//CE9PT9GsWTORm5vr0OcvkdyLFBXZtsV3330nAPHJJ5+Yjo0YMUI0aNBAxMXFiV9//VVUrFhRzJ07VwghxLJly0SVKlVEZmamQ2NLT08XDRo0EE5OTmLkyJHigw8+EHPmzBHNmjUThw8fFkIIkZmZKerWrSucnZ3FCy+8IN5++23RunVrAYhFixaZ+jLa4saNG4saNWqI1157Tbz++usiICBAVKpUyezv/ciRI8LHx0fUq1dPvPbaa+Ldd98Vbdq0EYqimNnJjz76yGTToqKixDvvvCMWLFgghBBizZo1QlEU0aVLF/HOO++I1157TVSrVk34+vqKM2fOmPoYOnSocHNzE/Xr1xfDhw8XH3zwgejbt68AxPvvv2/2eTzzzDMCEF27dhWLFi0Sb775pujZs6d45513TG3staUSyYNA3759Rbly5cT3338vatWqJQDh6ekpRo8eLbKyskzt1q5dKzw8PMSOHTvEiRMnRJs2bUTHjh2FEEL8/fffwtXVVfz5558O39+ev9mhQ4cKQPTr10+89957YsiQIQIQvXr1MuuratWqonbt2qJChQpi6tSp4t133xVNmjQRiqKII0eOmNplZGSIiIgIUb58eTF16lSxZMkSMWTIEKEoipgwYYKpndEm1qtXT4SFhYkFCxaIt956S5w7d85hG9i4cWPRvn178c4774iXXnpJODk5if79+5uN/6OPPhKKoogGDRqIV199Vbz33nsiOjpaPP3006Y29s4nJfYhnW3JPc3atWsFIFasWGF23GAwiObNm4unnnpKCGE7dTEuLk5UqlRJAAIQffv2FXq9Xpw+fVq4u7uL3377zeExDRkyRGg0GvHHH39YnDM67hMnThSA+Pnnn03n0tPTRfXq1UW1atVMaVZGZ7tu3bpmKUWLFy8WgPjrr79M/dasWVM8+uijZosDmZmZonr16qJTp06mY0Zn2/jZGDl79qxwcnISr776qtnxv/76S2i1WrPjUVFRAhBr1qwxHcvJyREVK1YUffv2NR1buXKlAMTChQttfhY///yzAMS6devMzn/77bdWj0sk9yMlcbY7duwoypUrZ+a8XbhwQdSvX99k01q3bi3S09NFamqqCAwMFBs2bHB4bDNnzhSA2eTOiPHveNGiRQIwLVYKIURubq54+OGHhZeXl7h+/boQ4qYtLl++vLh27Zqp7eeffy4A8eWXX5qOdejQQTRs2FBkZ2eb3e+RRx4RNWvWNB0zTjRbtWoldDqd6Xh6errw9fUVI0eONBvzpUuXhI+Pj9lx40R79uzZZm2NC51GfvzxRwGI8ePH2/wsHLGlEsmDQEREhPDw8BAeHh7i+eefF1u2bBHPP/+8aSHeiE6nE3369DHZr8qVK4u4uDghhBCdO3cWo0ePdvje9vzN/u9//xOAiI6ONjs/adIkAYgff/zRdKxq1aoCEHv27DEdu3LlinB1dRUvvfSS6dicOXOEp6enOHHihFmfr7zyinBychLnz58XQty0ieXKlRNXrlwxa+uoDezYsaPZHPCFF14QTk5OIjU1VQghRGpqqvD29hYtWrQwW+Qo+Fk4Mp+U2EeZO9uXL18W586ds/iRSIrjn3/+EeXKlRMPP/yw2QRLCNXJc3d3tzBm1vYJZmVliT/++EOcPHnSdKx3795i8ODBQgghtmzZIiIiIkS1atXErFmziox06/V6Ua5cOdGzZ88ix16rVi2LyLQQQsyfP9/MiTY626+//rpZu0OHDglAfP7552bvV69eLZKSksx+oqOjhaurq8mBNzrbu3fvNutz4cKFQlEUcfLkSYs+6tata1pdFkJ1tr28vCw+ix49eojGjRub3nfv3l0EBASIvLw8m5/F+PHjhY+Pj7hy5YrFfb28vCz+85NI7kccdbZfffVVq1FXIVQn9/Dhw+Lvv/82/d2/8MILolWrVkIIdYGrefPmolKlSuL5558vdm9g/fr1RaNGjYps07lzZ1GxYkWL/Zjr1683c6KNtvi5554za3ft2jUBiMWLFwshhLh69apQFEXMmTPHwi4Y96pfvHhRCHFzollQf0MIIbZu3WqaKBfuo3PnzqJGjRqmtkZnu/Bkd/z48cLPz8/0fuzYsUJRFHH16lWbn4UjtlQieRAICwsTgIWzPGrUKAFYOKQnT54UBw4cMDmEn3/+ufD19RVJSUni4sWL4rHHHhPBwcHiscceE/Hx8UXe256/2Xnz5glAHD161Ox4YmKiAMyc6KpVq4p69epZ9BERESF69+5t9r5Lly4WNuCHH34wW5g02sRhw4aZ9VcSG/jpp5+a9WG0gcZsgE2bNglAbNu2zeZn4ch8UmIfZaJGfvXqVZ5//nm2bt1KXl6e2TkhBIqiWOyRkkgKcunSJbp3746Pjw+bN2/GycnJdO769etMmTKFyZMnU7ly5WL7Mu6BMfLjjz/y3Xffcfz4cY4fP86TTz7J0qVLqVatGk899RSVK1dm2LBhVvtKSkri+vXrNpXRjZw7d44WLVpYHK9bt67pfME+qlSpYtbOuKfJuKf55MmTAAwdOtTmPdPS0sz2QhVWVz958iRCCGrWrGn1emdnZ7P3lSpVMikgFxxXXFyc6f2pU6eoXbs2Wq1tU3Py5EnS0tIICgqyev7KlSs2r5VIHkQ2btzI9OnTGTFiBGPGjLE47+zszEMPPWR6f+zYMd5//31+/fVXrl27Rvfu3XnllVdo164dw4YN49VXX2XWrFk273fq1Cn69u1b5JjOnTtHzZo10WjMpWAK2rSCFGfT/v33X4QQzJgxgxkzZli955UrVwgNDTW9t2bTANq3b2/1+nLlypm9N+7lLDyugtoRp06dIiQkBH9/f6t9Gu/riC2VSO533N3dAcyqIgAMHDiQpUuX8ttvv5n9vdSoUcP079zcXF566SViYmIICAigdevWBAcH8+WXX7JgwQIGDhxos5ID2Pc3e+7cOTQajdl9ASpWrIivr2+x9gssbcXJkyeJi4uzsClGCs9tCtuvktjA4uyqUSunqDlqSeaTkqIpE2c7Ojqa3bt3M2XKFOrVq2cheiWRFEVaWhpdu3YlNTWVn3/+mZCQELPzb775Jrm5uQwYMICzZ88CmEpLpKSkcPbsWUJCQqz+3un1eiZMmMArr7xCaGgoc+bM4ZFHHjE516NGjWLdunU2ne3bRcHFhIIIIQBMYhtvvPGG2SS7IIVF3oz/+RkxGAwoisL27dut3q/w9cWNyV4MBgNBQUGsW7fO6nlb/1FJJA8i33//PUOGDKF79+4sWbLErmteeOEFBg8eTJMmTVi7di3+/v5MmTIFgJdffrlYZ/t2YK9NmzRpEo8++qjVtoUnxtZsGsDatWutCtEVXgS0NSZHcdSWSiT3OyEhIfz9999UqFDB7Lhxkb0oMdS33noLrVbLuHHjuHDhAnv37uXMmTNUq1aN119/nbCwMC5evOiw6KM1CgcQbGHP/MdgMNCpUydefvllq21r1apl9t6W/XLEBpbGvKwk80lJ0ZSJs/3TTz/x9ttvM2TIkLK4veQeJjs7m8cff5wTJ07www8/UK9ePYs258+fJyUlhfr161ucmzdvHvPmzePw4cNWjcgHH3xAeno6kyZNAiAhIcHMmQ8JCSE+Pt7m+AIDAylXrhxHjhwp8jmqVq3K8ePHLY4fO3bMdN4RwsPDATVS07FjR4euLdiHEILq1atb/CdQUsLDw9m3bx95eXk2oznh4eH88MMPtGzZ0uI/G4lEcpN9+/bRu3dvmjZtyqefflpkxoiRr776il9//dUUrUhISCA4ONh0vjibBurfqD02LS4uDoPBYBbdLqlNCwsLA9Qo8K3YNFAn9CXtw1qfO3bs4Nq1azYjZbfDlkok9zKRkZF8//33xMfHU7t2bdPxhIQEwPaiemJiInPnzmXTpk1otVpTe+O8zPgaHx9v09m252+2atWqGAwGTp48acrGAbh8+TKpqakO2y/jfW/cuFFi21MaNtDamACOHDli4agXbnMr80mJOSUq/fX333/z5JNPmuTpDx06BMC0adPYvn17sdf7+voSEBBQkltLHmD0ej0DBgzgt99+Y9OmTTz88MNW240fP55t27aZ/SxduhRQy7ts27bNIl0H4Nq1a8TExPDGG2/g5uYGQIUKFUyTRVBL7BRVqkej0dCrVy++/PJLizIwcHN1sVu3buzfv5/ffvvNdC4jI4Nly5ZRrVo1q4sIRREZGUl4eDhvvvkmN27csDhvrfRDYfr06YOTkxOzZs2yWAUVQnD16lWHxgTQt29fkpOTeffddy3OGe/Rv39/9Ho9c+bMsWij0+lITU11+L4Syf3GP//8Q/fu3alWrRpfffWVXQtTubm5vPjii0yfPt0UQapQoQL//vsvOp3O1G9x5cf69u3Ln3/+ybZt2yzOFbRply5dYuPGjaZzOp2Od955By8vL6Kioux+VlAd5LZt27J06VISExMtzttj0x599FHKlSvHvHnzLLas2dtHYfr27YsQwmomgPGzuB22VCK5l+nfvz8AK1asMDu+fPlytFotbdu2tXrdK6+8Qps2bejSpQuAKTJunJcZyx4WZcPs+Zvt1q0bAIsWLTI7v3DhQgC6d+9us39b9O/fn99++40dO3ZYnEtNTTXZYFuUhg0sTOfOnfH29mb+/PlkZ2ebnTN+FqUxn5SY43Bk+/vvv6d79+5ERkYyaNAg5s6dazrn7OzM+++/T9euXYvs4+WXX+add96hc+fOdq3MSyQAL730El988QWPP/44165d4+OPPzY7b6yl3aRJE5o0aWJ2zphOXr9+fXr16mW1/xkzZtCwYUOeeOIJ07G+ffsye/ZsxowZQ9WqVVm6dKnJ+Npi3rx5fPfdd0RFRfHss89St25dEhMT2bRpE3v37sXX15dXXnmF9evX07VrV8aPH4+/vz+rV6/mzJkzbNmyxWLfY3FoNBqWL19O165dqV+/PsOGDSM0NJT4+Hh++uknypUrx5dffllkH+Hh4cydO5cpU6Zw9uxZevXqhbe3N2fOnGHbtm08++yzpoi/vQwZMoQ1a9bw4osvsn//flq3bk1GRgY//PADzz33HD179iQqKopRo0Yxf/58/ve//9G5c2ecnZ05efIkmzZtYvHixfTr18+h+0ok9wrvvvsuqamppojNl19+adr28vzzz+Pj40N6ejqPPvooKSkpTJ48ma+//tqsj/DwcKuLj4sXLwZgwoQJpmPdunVj7NixDBw4kEceeYQ5c+YQHR1d5BgnT57M5s2beeKJJxg+fDiRkZFcu3aNL774giVLltCoUSOeffZZli5dyjPPPMPBgwepVq0amzdv5pdffmHRokV4e3s7/Nm89957tGrVioYNGzJy5EjCwsK4fPkyv/32GxcvXuTPP/8s8vpy5crxwQcf8PTTT9OkSROefPJJAgMDOX/+PF9//TUtW7a0uhBYFO3atePpp5/m7bff5uTJk3Tp0gWDwcDPP/9Mu3btGDdu3G2xpRLJvUzjxo0ZPnw4K1euRKfTERUVxa5du9i0aRNTpkyx2A4IsH//fjZu3GimA1OtWjWaNm3KM888w4gRI1i+fDktWrQoMvJsz99so0aNGDp0KMuWLSM1NZWoqCj279/P6tWr6dWrF+3atXP4mSdPnswXX3zBY489xjPPPENkZCQZGRn89ddfbN68mbNnzxYbeLxVG1iYcuXK8dZbbxEdHU2zZs0YOHAgfn5+/Pnnn2RmZrJ69epSmU9KCuGoolpkZKSpFlteXp5QFEUcPHhQCCHEZ599JkJDQ4vtY9y4caJKlSqiSpUq4umnnxbPP/+82Y81eX6JxFhuytZPURSlRi6EWgLMxcXFVDO2IKtWrRLVqlUT5cuXFy+++KKF8rk1zp07J4YMGSICAwOFq6urCAsLE2PHjjVT/T116pTo16+f8PX1FW5ubqJ58+biq6++MuvHqEa+adMmq89TWLn48OHDok+fPqJ8+fLC1dVVVK1aVfTv31/s3LnT1MaoRp6UlGR17Fu2bBGtWrUSnp6ewtPTU9SpU0eMHTtWHD9+3NQmKipK1K9f3+LaoUOHiqpVq5ody8zMFNOmTRPVq1cXzs7OomLFiqJfv37i1KlTZu2WLVsmIiMjhbu7u/D29hYNGzYUL7/8skhISLA6TonkfsBYRsbaj7EOtPHv3dbP0KFDLfq9dOmS8Pb2Fl988YXFue3bt4s6deoIX19fMWTIEJGRkVHsOK9evSrGjRsnQkNDhYuLi6hUqZIYOnSoSE5ONrW5fPmyGDZsmAgICBAuLi6iYcOGFjaqKFsMiJiYGLNjp06dEkOGDBEVK1YUzs7OIjQ0VDz22GNi8+bNpjZGJV5r5RaFUO3oo48+Knx8fISbm5sIDw8XzzzzjDhw4ICpzdChQ4Wnp6fFtUZ7WRCdTifeeOMNUadOHeHi4iICAwNF165dTXMhI/bYUonkQSE3N1fExsaKqlWrCmdnZ1GjRg3x1ltvWW1rMBhEixYtxIsvvmhx7t9//xVt2rQRXl5eok2bNhZzCWvY8zebl5cnZs2aZZqrVK5cWUyZMsWs7JYQqs3u3r27xT2ioqJEVFSU2bH09HQxZcoUUaNGDeHi4iICAgLEI488It58802Rm5srhCh+fnorNtA4h/zpp5/Mjn/xxRfikUceEe7u7qJcuXKiefPmYv369WZt7JlPSuxDEcIxNSM3Nze+/PJLOnXqhF6vx9nZmQMHDtCkSRN2797No48+apGaUBhrKbwFURSF06dPOzIsiUQikUgkEolEIpFI7hoczuH29/c3pbsV5sSJE2bCK7Y4c+aMo7eVSCQSiUQikUgkEonknsFhgbRevXoRExNjpqSsKAqXLl3izTffLLYW573Iv//+y+jRo3nooYfQarU269OlpqYyfvx4QkJCcHNzIzw8nP/+979mbXJzc5k8eTIVK1bE09OTTp06WVWllkgkktuFtGkSieR+Qto0iURyt+JwZHv+/Pn88ccfRERE0LBhQwCGDx/O6dOnqV27NrGxsXb39e+//3LixAmraed9+vRxdGi3jb///puvv/6aFi1aYDAYTDXoCpKRkUHbtm3RarW89dZbVKhQgRMnTnD9+nWzduPHj2fDhg0sXLiQ0NBQXn31VTp06MDff/+Nj4/PnXokiUTyACNtmkQiuZ+QNk0ikdy1lGSjd25urli5cqV46qmnRKdOncSAAQPEhx9+aCb+VBRpaWmiffv2QqPRCI1GIxRFEYqimN5rNJqSDOu2odfrTf8eOnSoVWGo6dOni7CwMHHjxg2b/Vy4cEE4OTmJpUuXmo5dvXpVeHp6itdee610By2RSCQ2kDZNIpHcT0ibJpFI7lZKVGfb2dmZYcOG8cknn/Ddd9+xYcMGoqOjcXFxsev6//znP1y6dImff/4ZIQTbtm1j165djBgxgurVq/P777+XZFi3DXvKMC1fvpzhw4fj6elps813332HwWAwKy3l7+9P586d+eabb0plrBKJRFIc0qZJJJL7CWnTJBLJ3YrDzvaff/5p0+B88803ZvXwbPHtt98ybdo0WrRoAUBISAht2rRh2bJl9OzZ02L/zN3O2bNnuXTpEgEBAfTo0QNXV1f8/f0ZOXKkWUH4Y8eOERQUhJ+fn9n1devW5dixY3d62BKJRGIVadMkEsn9hLRpEomkrHDY2X7hhRf47bffrJ7bv38/L730UrF9XLlyhcqVK+Pk5ISnpydXr141nevWrRvffvuto8MqUy5dugTApEmT8PPz45tvvmHevHls2rSJkSNHmtqlpKTg6+trcb2fnx/Xrl2z2X9OTg7Xr183/aSlpZGUlIRwrGqbRCKR2IW0aRKJ5H5C2jSJRFJWOOxs/+9//6Nly5ZWzz388MMcOnSo2D4qV65McnIyADVr1uSLL74wnfvtt99wc3NzdFhlilGIo1atWqxevZoOHTowevRo3nzzTTZs2HDLNcPnz5+Pj4+P6cfX15egoCDS09NLY/gSiURihrRpEsmdJfHQIWYpColW5lDpiYnsio0lPTGxDEZ2fyBtmkRiH7ZskaPHizv3IOGws52Tk0Nubq7Nc9aUxQvTqVMnfvjhB0CNlC9ZsoTIyEgefvhhYmJiGDJkiKPDKlOM6Ubt2rUzO96hQwdAVck0tktLS7O4PiUlBX9/f5v9T5kyhbS0NNPPhQsXSmvoEolEYoG0aRLJ3cONxER2z5rFDelslxhp0yQSSVnhcOmvxo0bs2bNGnr06GFxbs2aNTRq1KjYPl577TUyMzMBePrpp/Hy8mLz5s1kZWXx7rvvMmrUKEeHVaaEh4fj6upq87xxAaJOnTpcvnyZlJQUs/1Ax44do06dOjavd3V1LbJ/iUQiKU2kTZNIbg/piYkcXLqUyFGj8A4OLuvhPDBImyaRSMoKhyPbU6ZMYdu2bXTv3p3Nmzfz66+/snnzZrp3785nn33GtGnTiu3Dw8ODgIAA0/vevXuzbt06tm7dypgxY+xSlbybcHFxoXPnzuzcudPs+Pfffw9AkyZNAOjcuTMajYYtW7aY2qSkpPDdd9/RrVu3OzdgiUQiKQJp0ySSW8NW6reMUpcN0qZJJJKywuHIdvfu3fnkk0+YPHky/fv3R1EUhBBUqlSJTz75hO7du9vd1z///MOBAwe4cOECw4cPp2LFivz7779UqFABb29vR4d228jMzDQpsJ87d47r16+zefNmAKKioggMDCQmJoZHHnmEQYMGMXToUE6ePMmUKVMYNGgQ4eHhAFSqVIno6GgmT56Mk5MToaGhzJs3Dx8fn3sumi+RSO5dpE2TSG4vRqe6do8eMoJ9B5A2TSKR3LXcSpHuY8eOiV9++UUcO3bMoesyMjLEU089JZycnIRWqxUajUYcPHhQCCFEv379xOTJk29lWKXOmTNnBGD156effjK1++GHH0TTpk2Fq6urqFixonjppZdEdna2WV/Z2dnipZdeEkFBQcLd3V107NhR/PPPPw6NJy0tTQAiLS2tNB5PIrlvuJ6QIH6KiRHXExLKeih3NdKmSSS3l4SDB0UsiIT8uU1Jjxd3TqIibZpEYklJ5kTSdpU+Dke2C1K7du0SXTdp0iR+/PFHvvnmG1q3bo2np6fpXLdu3Xjrrbd4/fXXb2VopUq1atXsKt/QoUMH/vjjjyLbuLq68uabb/Lmm2+W1vAkEkk+NxIT+fWNN2Q0qRikTZNIJPcT0qZJJJbIDJu7gxI528ePH2fLli1cvHjRQn1cURRWrFhR5PWbN2/mjTfeoHPnzuj1erNz1apV4+zZsyUZlkQieYARQlAhIoKpGRkYdDqEECiKYjovhYkkEolEIpFIJHcSh53ttWvXMmzYMNzc3KhatSouLi5m5wtObm1x48YNgm1MdjMyMhwdkkQiuYcpDSdYGAykJyRwcOlSrp06hX94uNpfSAhKvuCiXOGVSCT3Ks4eHmU9BIlEIpGUAIed7Tlz5tCvXz9WrlyJRwmNf0REBFu2bKFz584W577++muaNm1aon4lEsm9x606wcJgIO7jj/lixAgMOp3p+N4FC+ixYgURgwebHG45YZVIJI5SllkxxWXsSCQSSUmQ2X53Doed7YSEBD744IMSO9oAM2bMoGfPnmRmZvLEE0+gKAr79+9n/fr1rFy50qQoKZFIJEUhhCA9IcHC0QYw6HR8MWIE4Y8+imdQkJywSiSSElFWWTH2ZOxIJBJJSZDZfncOh53tNm3acOTIETp06FDim3bv3p0NGzYwefJk1q1bB8Bzzz1HpUqVWLdu3S31LZFIHhyEwcDBpUstHG0j9fr1w6N8edLj4+WEVSKRlDq3KzrkSMaORCKRlCUya7BoHHa2582bx+DBg3Fzc6NTp074+vpatPH39y+2n379+tGvXz9OnDhBcnIy/v7+1KlTx9HhSCSSBxiNkxPXTp2yeq5CRAS91qwhbt06voyOlhNWiURS6pRmdMg4YbUnY6d6hw7qgqHM0JFIJGWE3OZiHw47202aNAFgzJgxNj/QwgrjRVGrVi1q1arl6DAkEokEg16Pf3i41XMtJk4kPT7ewtEGOWGVSCR3DxYT1mIydgw6HQeXLCEqNhbFyekOj1YikUjkNhdHcNjZXrlyZalMTC9cuMBnn33GhQsXrJYPW7x48S3fQyKR3J+kJyZyeOVK/u+FF4gcNYq9CxaYT0wVhQYDBrB3/nw5YZVIJHcVBVMuC09YA+rUIWrmTJsZO0ZSTp9GI+2WRCKh9Lez2EoLd/bwQOvuLoVpHcRhZ/uZZ5655Zt++umnPP300xgMBoKCgqyWD5POtkQisYYQAs/AQNpMm4ZBp8M7JIQeK1aYGX1nd3ecPTzkhFUikZQZhSeZ1iLYFhNWReGRSZNsZuwY8QsLw6DXS/slkTxA2HKqS2s7i620cLPj+QuEUpjWfhx2tkuDqVOn0qtXL5YtW4aPj09ZDEEikdyDWEtbajFxIhGDB1O9QwcOLllCyunT+IWHY9Dp5IRVIpFYYGvCWlrRIWsTVvL3YRtt1yOTJuEZFGQ5YRWCIxs30njECMuMnXw0Wi2Ro0fLVE2J5AHjdiqI25pfufv53Tx++jQ9V66UwrQOUiJne8+ePSxbtowTJ05YpIADxMXFFXl9UlISzz77rHS0JRKJ3RSVttR/61Zqde9OVEwMGq0Wg06H4uRkPcU8HzlhlUgeTGxNWEtjIlt4wlq5ZUuajRljbrsUhR7Ll9vc5rJv0SIiBg/m8eXLLTQnNFotPVauxDs4+IGNEkkkktLDVlp4hYgI2sycyZ9r15rskLOHB9p166QwrYM4/LQ7duygffv2JCcnc+DAASpXrkxAQADHjx8nIyODpk2bFttHly5d+P3330s0YIlE8uBRnDrvp336kJ6YSHZqKvM8PbkcF4eiKKYUc43WfF1RTlglEklpUnDCurh6dfbMncuR9etx9vAg7fx5h7a5XI6L47MhQ4gYNIgJZ8/SZvp0Gg4cSJvp05lw9iwRgwY9cJNViURye/AMDLQ6v7ImMpuXlUVeZuYtCdOmJyaq2T4PEA5HtmNiYpg4cSKvvfYazs7OzJkzhyZNmnDu3DkeffRR2rdvX2wfS5YsYcCAAWRmZtKhQwer5cOMqucSiURitzpvTAx5mZmm44pGY5liHhZG5OjRqqMtJ6wSiaQUsDphtSHUWNyEFeDIhg1UbtWKpmPGWGTsyAVCiURSKigKbr6+7J41yz6R2aK2uUhhWps4PNP8559/6Nq1KxqNBkVRyMjIAKBq1arExsYyd+7cYvtIT08nMzOT+fPn06lTJ5o1a2b6adq0Kc2aNXP8SSQSyX2FEMJksIuqp20k5fRpNFot7ebOxatACqii0eAdEkJUTAx91q0jKibmgd03JJFIbgP5E9bCC4I2I9gFJqyFs26MaLRa6vTqhaIoXI6LM8vYkUgkktLA2d0djVZrYaOKyr7Zt2gR3qGhPL58uZn9ksK0tnE4su3m5obBYEBRFIKDgzl16hStW7cGwNvbmwsXLhTbx5AhQzh//jzvvPMOtWrVslAjl0gkDzZm+x7zBTnsFTtrM22axTlFUbgUF8dHrVsz7OefCZaZMxKJpJSwNWEtKoLt6L7sghk7EolEUhrkZWVZFZMtynYZt7n0WrOG6u3bc2jZMilMWwwOO9uNGjXi+PHjdOrUiQ4dOvDqq68SEBCAs7Mz06dPp2HDhsX2sX//fj755BN69epVkjFLJJL7jMJ1ZwsLdYR17Fgq6rxywiqRSEobWxPWolIuC05Ywzp2lNtcJBLJnUcIslNTLcVki6mKcGTDBq6eOMEze/ZIYVo7cPhpJ06caFppnTdvHt7e3vTo0YOuXbty9epV3nvvvWL7qFmzJjob+fwSieTBoWCJnAoRETaF0GylLYH9YmdewcFExcSYpZhLJBLJreLs7m6asBa2T0XZrqObN/Pvjh1459smuc1FIpHcaTKSkqyKyRY372oxcSLO7u5cPXlSCtMWg8OR7W7dupn+HRoaysGDB/n333/JysqiTp06dqWEL1y4kEmTJtGgQQPq1Knj6BAkEsl9gEVNxxo1iJo506oQms20JQeiQN7BwbSNjb2NTySRSB4kCtfTVjQaeqxYYbZYeDkujs+HDaPX6tVFRrAv/e9/cpuLRCK54+iysmyKyeakp9Po6aeLtF26/JRzI1KY1hKHne3Zs2cTHR1NSEgIoO6FrFmzJgCJiYl8+OGHzJw5s8g+Jk6cyKVLl2jQoAEhISEWauSKovDnn386OjSJRHKPYC1V3NnDg3azZ9sU1ziyYQNJR4/SZfFiomJj0Tg5SXVeiURSJlgsFoaH02LiRJuTTGPEpyhlcbnNRSKRlCaa1CSigtXX4igoJlvYRhVnuxzp60HEYWd71qxZdOnSxeRsFyQhIYFZs2YV62xHRkY+sB+4RPKgYytV3J5yOJfj4jizcydVWrViz6uv0nj4cLxlWrhEIrnNFKcrAbB3wQL6b91Kre7diZo5E42zM4a8XBSts2nOI4UaJRLJnUKTlkzbEEhKS7arvS0x2ZKIzEph2ps47GwLIWw6yomJiVZrZhdm1apVjt5WIpHcJ9ismV2MIAcUENdwcrKqOi6RSCSlSeFUcVuLhaDWkP20Tx8mnD2Lc14W7oMbcfWlZQT2HmTWztEIttSbkEgkdxJbNqok2TcyY8dOgbT169fTo0cPevTogaIovPTSS6b3xp/OnTszZMgQHnnkkds95ruWL774ghYtWuDt7U1wcDD9+/fn9OnTFu1WrFhBrVq1cHNzo1GjRnz11VdlMFqJpGwoqmZ2aQihSUoPadMkDzLCYCA9Pp7ds2axZeBAds+ejdDrrS8W5mPQ6Ti4ZAmuoVUgu3QmmUa9CZnFc+tImyaRSO40djnbubm5pKenk56ejhCCjIwM03vjj6IoDBkyhKVLl97uMd+V7Nq1i969e1OvXj22bdvGokWL+PPPP+ncuTNZWVmmdhs2bGDkyJEMGDCA7du38/DDD9O7d29+//33Mhy9RFJ6pCcmsis2lvTERKvnDXq9zVRxoxBaxKBBTDh7ljbTp9Nw4EDaTJ/OhLNniRg06IEU1ygLpE2T3AsUZ29Kgtbd3ZQqvrh6dfbMncuR9ev57b//tVpPuzApp0+jcXYBV/dSG5Pk1pE2TXI3cTtsl+TuxK408qFDhzJ06FAA2rVrxwcffCBVxAuxYcMGqlatysqVK01Rt6CgINq3b8+BAwdo3bo1ADExMTz55JPMmTMHUD/PuLg4Zs+ezTfffFNm45dISosbiYnsnjWL2j16mCIxQgiEXq9GqxWlyDqMRzdv5tFFi6S4RhkjbZrkXsCavblVPAMDS6wrAeAXFoYhLxdNTlaR7SR3FmnTJHcTRdmu9MREDi5dSuSoUTKj5T7A4RDRTz/9ZNXRzs3NLZUB3avk5eXh7e1t5gz4+PgAqqMBcPr0aU6cOEH//v3Nrn3yySfZuXMnOTk5d27AEsltpLCYUMFUzAMffFBsHUbPwEAURTGd12i10tG+w0ibJrmXKXHUSFFw8/UtVleisO0yYtSVyIk/X8KRS24X0qZJ7hWMjvgNGfW+L3DY2V67di3vvPOO6f2RI0eoWbMmHh4etG3blitXrhR5vRCCa9eu3XcG65lnnuHo0aO8//77pKWlcfr0aaZOnUrjxo1p2bIlAMeOHQOwWKyoW7cuubm5nDlz5o6PWyKB0ktnKigmVCEiwmoq5vZx49g2ZAgNZar4XY20aZJ7mZJOVp3d3YtMFbdXVyLr1PESj11ye5A2TSKRlAUOz2jfeOMNNAUmws8//zwuLi4sWrSIxMREpk6dWuT1eXl5BAUF8cMPPzg+2ruY1q1bs23bNl555RV8fX0JDw/n8uXLbN++HScnJwBSUlIALBTb/fz8ALh27ZrVvnNycrh+/brZj0RSmtiamDrihBeOYF+Oi7Op2vvXunUsb94cN19fomJi6LNuHVExMXiHhEhH+y5B2jTJg0heVhYGne6WdSX011Pv7MAlxSJtmkQiKQscntWePXuWevXqAZCcnMzPP//Mf//7X8aNG8fs2bPZsWNHkde7uLhQqVIl9Hp9yUZ8l/Lrr7/y9NNPM3LkSH788Uc2bdqEwWCge/fuZsIbJWH+/Pn4+PiYfipXrlxKo5ZIisaWEy6EMDnQBp3OMoK9YQMBdeoUqdqbeOgQvyxYAMA8T08ux8XJVPG7CGnTJA8amtQkoioKsq9cInLUKJup4kc3bybz6lVVV2LmDHWxcOYMy8VCNw+r10vKBmnTJBJJWeCws63RaEz7s3/66SecnZ1p164dAMHBwVy9erXYPsaOHcvChQvJzs529PZ3LePHj6d9+/b897//pV27dvTr14+vv/6aQ4cOsXbtWuDmymhaWprZtcaVVH9/f6t9T5kyhbS0NNPPhQsXbuOTSCRFU2wEW1HwKF8eZw8P+1R7tVrTfjnJ3YO0aZIHDU1aMm1DIPufP+3Wlbj61SZo5cnVrzbdXCwUgoDHnoC9GeqrtG93BdKmSR5I5KJfmWOXGnlBGjVqxPvvv0+lSpV4++23ad++Pa6urgCcP3+eoKCgYvs4f/48J06coEqVKrRt25YKFSqYRbQURWHx4sWODq1MOXr0KD179jQ7VqlSJQICAjiV73AY9wAdO3aM2rVrm9odO3YMFxcXwsLCrPbt6upq+owlkrLEGMEu6Fj3WL6cvfPnE1ivHi0mTqThgAFoPTwQej2PTJpE0t9/czkuzmp/fmFhGHQ6dLcYVZCUPtKmSR5U9NdTUTQaIgYPpnqHDhxcsoSU06fxCwsjcvRovIODzSPYBetpGwyQnICyZSlcPIVSKRz6joKAEJBbZMoUadMkDxJCCMo/9gT0HkT5vFyEEDJ7sIxw2NmeN28ejz32GBEREXh7e5vtvd62bRvNmzcvto+vvvrKZJj++OMPi/P3orNdtWpVDh06ZHbs3LlzJCcnU61aNQDCwsKoVasWmzZtMjP4GzdupEOHDri4uNzJIUskDiGEsBnB9ggK4tkDBxBX4nFaPd80yazYZxTPHjjAtiFDOLJhg1l/RtXe7NTUsnkgSZFImya5X9HkJhH1mPpqQYEokKLR2F2C0Kmcr+pob/8YZo8AfYHtM6sWwMwV0HUwWndZe7uskDZNcjsp63JdFlVgEhI4uHQp106dwj88XB2X1MUpExx2tlu2bGmKTIeHh5uJSIwYMYIaNWoU28f9qOY4evRoJk6cyIQJE3j88ce5evUqc+fOJSgoyKyERGxsLIMGDSI8PJx27dqxceNG9u3bx549e8pw9BKJbYwGXBgMHFy61GoEu/nY5+Cbj9HMiTabZCqrFsCM5fRes4ako0dNEe6Cqr3Jx6Vq792ItGmS+xVNXjJte3uQlJdsOmYrCqQoCpfi4viodWuG/fwzwU2aWHbo5oFHjTqQnGDpaIP6fvYIaNYB36pViYqJwUvWzr3jSJsmuZ3Yqpt9u51wIQQVGjZkakYGhrw8ywzEfPYuWECPFSuIGDzY5HAXdNAltw+HnW0Ab29vIiMjLY5369btlgd0rzJ+/HhcXV354IMPWLFiBd7e3jz88MNs2rSJ8uXLm9o99dRTZGZmsmDBAhYsWEDt2rXZtm0bDz/8cBmOXiKxpLAB1zg5WY9gD56E8A9CKeRoA6DXqcebd6TnypX8tnChRSqmTCG/O5E2TXI/IoSg/P89Aa1vOtXkZ+0UFQXKy8y01pm6J7v3IFz1elgWa2kDjeh1sGUJzqNiaRsbe9ueT2IbadMkZYEtJ7w0KBzBfmTSJDyDgqxWgTHodHwxYgThjz6KZ1CQqUyrQaeTKea3Gbuc7YULFzJo0CAqVKjAwoULi2yrKAovvPBCsX3Gx8ezaNEi9u7dy7Vr1/D396d169ZMmDCB0NBQ+0Z/F6EoCqNHj2b06NHFth0xYgQjRoy4A6OSSMyxd4XVZMCXLSPtwgV8qlQhasYMmo8ZA9+uuxnBVhSYsRzlo/lFTjKVLUuo+Gwsfdatw6DXo2g00rDf5UibJrnfKDwxrdyyJc3GjCk2CmQ19bvg3uzLF1FiP4KLRQtCEn8aNE6l/FQSe5E2TXK/oHV3L1JDx1YVmHr9+uFRvjzp8fEyxfwOYpezPWnSJFq1akWFChWYNGlSkW3tcbaPHDlCmzZtyMvLo1OnTjz00ENcvnyZJUuWsGLFCvbs2UP9+vXtfwqJRGIXxa2wGg34ia+/JuvaVVq/8gpaDw90mZnkZmTgmp1uHsF2dVf3ONoxyVTy65hqnORkUyKR3FmspVaGdepE2vnzRUaBqnfogGdgoHlnhfdmKwq88h5Usl6b20RoGBj00uGWSCS3hGdgoLmGDuDs7l5kFZgKERH0WrOGuHXr+DI62ubioosum6hgtRSipHSwawnDYDCYhM8MBkORP/bUz540aRLh4eGcP3+erVu38sEHH7B161bOnTtHWFhYsQ69RCIpXbTJx3jmGQ+8yrmQlZJCzS5daNixLdrV82HaQLSrF+Dq5Ymydal5BDsnS1XitXeSKZFIJCUgPTGRXbGxpCcmOnythbgjgKLQYMAADq9YYTMKZNDpOLhkCW4FtGkQwnJvthDw3UboOQKcbMQwnLTQdzQoMnIkkUhuAUXBzdeXg0uXmtmuvKws8jIz8Q+3Ph9rMXEi6fHxFo423FxcTE9MxCMoiLYhailESelQJlZ/7969TJ8+3VTP0Iifnx/Tpk1j7969ZTEsieSBRAhB+XZ9qfpRBq4Vq+Hu44Oy4xOc+tSEFXNhx3pY918UJ61lBFtOMiUSyR3AmJVzoyTOdr64Y8EJZnFRICMpp0+j0WpvppILA2xZarltZv0iCAqFGcstbaGTFmJWQkCwGgW3gldwsBROk0gkxeLs7o5Gq7W0XUJwZONGGo8YgUZbyAY5sLjoGlrlNo38wcWuNHJHFRjbtGlT9E21WnJycqyey8nJwUmmmUokd4SCexjTLl6k18qVGC6dt1AVLzKCvX4RdBusTjILX2fHJFMikUhuB84eHigaDRonJ4uJaXFRICN+YWEYdDp0WVnqfkaNk/VtMyfjIGYIzFoDTdvBtg/VPdqhYepiY0BwkXW2vYODpXCaRHKXU9blvUC1XQadzqrt2rdoERGDB/P48uVmEWyHFhedXdQtgpJSwy5nu23btiiKoqp2gpmwkTUFu+JSyTt27Mi0adN46KGHqFWrlun4yZMnmTFjBp06dbL7ASQSieNYiGvo9Th7etJz+XI0ny23jNoUjGCvWmB+vuAks3lH2LLEoUmmRCKRlCZCCDOlXYNebzkxLRAF2rtggdVoj0arJXL0aLJTU9VLDAZ1O4ytbTM7NsDpozBzJTwbC05OoNOpr3KxUSK557mdyuJ2IwTZqalEjhplYbsux8Xx2ZAh9FqzhrCOHTm4ZAkpp0/jFx5u00EviF9YGIa8XDQ5skpMaWLXDPjw4cMcOnSIw4cPs2PHDkJDQxk8eDCfffYZv//+O5999hmDBg0iNDSUb7/9ttj+Fi5ciE6no169ejz00EM8+uijNG7cmLp166LT6YpVPJdIJLeGUVxj3+LFPLZsGdNu3GBqeroqYmZL7KyoNMkfNsNvO1TH+tkYmLsORsZAYIh0tCUSid3cyt5syM/WiY9n96xZbBk4kN2zZqHLziZy1CiL1Mp9ixbhHRrK48uXW5zTaLX0WLkS7+Bgsk6fuCkYpGig7yjb22ZOH4XyFSE9BVp5wr9x0tGWSCSlhrOHBxlJSXiHhNBjxQoL23V082b+3bED7+BgombOpM+6dUTNmI7i5GTVDhoxLi7mxJ+/E4/xQGFXZLtRo0amf/fr148nn3yS119/3azN448/zuTJk/nggw+KjUxXqVKFv/76i5UrV7J3715SUlKoVasWw4cPZ9iwYXh5eZXgUSQSiV3ki2v8s3Ur0b//nl8zewFcuQhTPrAdtTFGsGevLTqCnXwZPl8JPYerxyQSicROShI5cvbwsF4KJ5+T33xD9P799Fixwuzc5bg4Ph82jF6rV5tHgcLCiBw9Gu/gYBSNBkP8GdqGQFJasuo4B4TAzBXmImlgvm3m3HF1641EIpFYQZOa5JDqtxCCCg0bqhk7eXmgKEQMHkz1Dh1s2q7kz9cT+N9nufrSMgJ7DzI56IVtZMHFxZSftiOTyEsXu5ztguzYsYOtW7daPde5c2f69OljVz9eXl6MHz+e8ePHOzoEiURyC3iUL49Gq6Vunz4ov3yDJv0aDHtFLeGly4UhL8Mv38CxQ5YX/7AZXlqkRqyfjVEnl3qduo/RGL0JCIYR0+7oM0kkkgcPs3TxfP0Ja2W8Eg8d4rOhQ+m9Zo3ViamiKHiHhBA1cwYaZxcMebkoWmeLLXImNBroOhiadbC96CjTMCUSCbadak1a8s1FvMLX5CYR9Zj6Cub6OoVrY6u2azoaZ1cMeTkoWhdz21Vg0U/RaIp10PXXU2/L5/Ag47Cz7eXlxc6dO61Gr7///nsZlZZI7lKMq6KTk5LUvYfpqSgtu0JGPPw1H66fgnLhUHcUrNkPMUNh+7qbHRijNr6BqmNtTKO0lU5pJ1KFVyKRGLE32mM2+Tx9mp4rV1oojhfkr3XrqPTwwzQdM8b6xDRfkwZAyf8peqAaddFxZAxotXJvtkQisUpRTrXNa/KSafs4XHPR2czYKVgb+8aPqykX/wJpXlPw6z/dvDM3D7O3ikbj2OLiLSDndyoOz5LHjh3LzJkzuXz5Mr169SIoKIgrV66wbds21q5dy6xZs6xeV65cOX766SciIyPx9vYu8ktVFIW0tDRHhyaRSGxgmpguW0baxYv0XLYMTTlf+Hcd7IkGUWCC+r8FELUCZq+Bhg9D3K+3VexMqvBKJA8WRSn62pqYGp1wF122xeTT2cMD7bp1xSrtpl+8iEZREPmutMmpNhggOQFly1K4eAqlUri6LzuggOZEoQmr2oGi7smObg3Lf4Y6TUr4iUgkknsdR9PCi+wrPQUAj8DqNjN2jLWxq3fogGvN5nCu0LYVIQh47AnoPYiAvFx1QTHf91IUheSvNpmlmBvxCAgwe72V55PzOxWHne3p06fj6+vLggULWL16tUmlPDg4mEWLFvH8889bve6ll14iOP8/1Zdeeum2rKBIJBJLhMHAia+/JuvaVVq/8gpaDw/V6Kaft3S0QX2/ewSEtId+Y6D/WET+yqeM2kgkklulJPuyjU54VoUKFpNPe8p4NXjySdrPmYNIikfZsgwuX0Cp11S1cds/ttx/vWoBvLEVWnUn4PH+ViesJuTebInkgaAoh9PRCLZGnwIPe6ivhc/dSAUUXCqG89vsucXWxo6aWSiabc8CIli1XZ6BgWavxT2fjF4XT4nyP8eNG8dzzz3HxYsXSUxMJDg4mEqVKqEpIuIVExMDqKms48ePx9PTE1dX15KNWiKR2IUQgqyUFGp26ZIvhDYfEs7ArNVwfLmlo226UAf/LEVExqK08iS50MqnRCKRFEdp1qTV6FOgqYJrSGV+nz3HfPJZTBmvChER9F6zBn7djnL9qrlGRVYGrF9sWe6wYz94pAskJaBsLWbCKpFI7hzJibBlaf7f4u1x8GzZrpKkhFtDCIFfz5HQbxx+eTlWyyijdUfj7GpnbWxXcHLHySdIdbRtLSDOXKHqTZSi/ZLR6+Ip8aet0WioUqUKLVq0oEqVKkU62gXJy8sjKCiIH374oaS3lkjuHjIT4UCs+nqXkJ6YyJ5XXyU9MRFhMODu44Oy4xOc+tSEla+qJbo0Tuoe7SI7Oo2icWJPosDgE1B0W4lEIimEMYJ9o4RlvAqiMaRCc3c0zi5WJ59FlfH6vxdfQMlIQ3mkC7Ruq2pU7BwIh+eAIQVW/Q6PPnnzgpoRMGsNfPsJ9KgOK+bCjvXq6+PV1YmswXDLzySRSEpAciJ8OEt9tRNHSwqWqu3Sp0Akpgi2qTzh7LlqecLZc0mPj1e1dAqiy8KQl2Nnbewc0GfhWqs5JCdYOtqgvp89Qv3cCmhUSG4/t6ZsVAJcXFyoVKkSer3+Tt9aIil9MhPh0Cyo1gM87oIUGiHwCixPm2nTEPo8tWxNciKaDW/DtGXQeYAa0THoVTG0ovAOQ+h1/HQ6i5q+gUW3lUgkEjspMhWz0MTUHMXm5PNyXByfDRlCrzVrqN6+PYeWLVOVdsPDaTR4sLo325ZGRZvlqnN9+qha4vCpiXAlHuZE256wNuugCqRJJJK7npJsXSktNIZUiARnbxe7xM4UY/BS607exX+IHDXKasYO3KyNnXfhH1xRcKlUF5bPtbRbRvQ6tYLCqFiHn8PWXm5J8ZRJHtTYsWNZuHAh2dnZZXF7ieT+RBggMx7l8BzYORDl0GxERjya8hVg9T6IanczonP1T1V1XLGx3qZood5oslJS7+gjSCSS+4fiSt5orJW8yZ+YagyppmNCCHx6T4bhN0DjROSoUTej14qCs4cHKApHNmxgxf/9H+7+/kTFxNBn3TqiZkxH0TipVRdsaVTsiYaMBHhqgrofu/MA+HxF8RNWIaPbEonEPlxrNS9W7CwjKamAvcvAuVI9U23swhk7BWtj55zcD1p3FGdXuFhM1mL8aTW70cnJofHb2sstKZ47HtkGOH/+PCdOnKBKlSq0bduWChUqmO1VUBSFxYsXl8XQJJJ7BuOeomZjx+IZUB5OfqwKmwk9aN1Bl4Vy/hvovR9OfZJ/Lt/Ap/wNfQ5A1HLYXWgCqmih7UrwCEZkXpXCFxKJpESUZH9jniadM+XBU6QDlvVlK7dsSbMxY+i/dStZ167S4In+aD080GVmcmTTp7iXD8DZ3Z20nRvx/XY8KQ/HUL7PmOI1Kk4sh85T4PXn1ewfeyesUjRSIrnrcVRJu3Cda9PxIjJvisvKca5Ul1+LEDur168fHuXLkx4fb1ZPu8XEicXXxk67ArosRF6Oqi1RFKFhanajXm+9yoKk1CkTZ/urr77C1dUVV1dX/vjjD4vz0tmWSIrHmBbVfNw4yEyAvxYj2iyD8AEoWg+ELhNuXETJumTuaANci4OfhkC7NRDaEY4ugfTT4B0G9UarKfGKBs/AQCl8IZFI7hh5mhtcCPCgdp6P1ZTLI+vXA9BszBhVvGz1fLh4Cm2lcBr1GQWBISiKgk/bPtDpKfzzcuzWqDBNPLMzwd4Jq9z7KJHc9dha+Ltx5n8kb51IQJ9FeFV/6Gb7/DrXSXmFShBaybwxoucCZzqDp7hgdjxPk87ZIHeqFSF2ViEigl5r1hC3bh1fRkdbpJj337qVWt27EzVzJhpnZxu1sQW5F//Bte8oVQzNWmaOkxYGjANFY7MsmKT0KRVnOzMzk4SEBMLDw+0q6XXmzJnSuK1E8kCjMyRR9RkFdz8fOPsjovfv5ObEk3BhPllZp3B3DyckZBQuzhVQwvrBqQ3mHZzaAClHIWqlqjqucULoclCcXKTRlUgktw1bESAhBBUfX0io83sY9DrzlEtFwdndHf+aNWn67LPwzVqUQnuqlYQzELs6v+RNfnmvClVg1Ay7NCrIy4G2veDMMehTzIS172hQitiJFxAMI2Num1qyRHJPcQcUxEtCzj97qea9m6v/7DVztm1ROPOm8Llz/lDzWrrF8bO+WVQuQuysxcSJpMfHWzjaoKaYf9qnDxPOnsUlNw23hc1IiXqN8v3GmXei9SDnxH5cO0WrquOFRdKctLDkR/ANhKT44suCWUNGwkuEw872m2++SUZGhqmU188//0yPHj24fv061atXZ8eOHYQXo5wnkUhuHf31k9QYUR7FyRlRvQ+XL6/j+IloRIEI9vnzC6hdazkV2q1BSTmqRrQLci0O/lqI0n4drA4g1X0ifv0L1WuUSCSSEmDLqba6L9tgIC8rC62zOi1RUMi4coU6vXpRo1s3Gj45AK27BwZdLuRko2x423wiWTMCYj6CvV9D+rWb5b2yM+HiGaj7rCqGZi2VPF+jQmi0KHPXIfLyUJycbE9YY1aqDkNRi5IBwSUSIZJI7kuMCuJRPe4qZ1utZ33ztThsOdRFo6DRuJMdf9C62Jmi0GDAAPbOn3/zeP7iYl5WFghhXk+7YaZ5ZF0IfHtPBufpeOflqHap62BVxHHLEnXLS2iYGtH2DSy+LJiru+UjCAE1ImBvBuh0MhLuIA4LpC1fvpxKlSqZ3r/44ovUr1+fzz//nICAAKZOnWpXP8nJyUybNo2OHTtSv359OnbsyPTp00lKsm8/hUTyICOEoHLrkbRqlYQwGMjNTbBwtNV2Oo6fiCY3JwHRcIL1zrzDELpcyLmKwcv39g9eIpE8ENhKuczT3OBskAd5mhuA6mgjBE6pSWhWzIVpA1GWxVKhemX6fbqRh/p1RHtEFXfUHJ6Dxlq5rqcmQnoqtOxqXt7rr/ng5wGeoRC1wlIUsoBGRcqub6GVJ8lffapGeLoOhi/Pwojp0GWg+vrlWegy6GYESEawJZI7Ska+n5BxL/gLQhDy+ELatMnAo1Ik3iEh9N+61UzszNndHWcPD66dOkWFiAh6rFzJtIwbTM3IYFrGDXqsXEmFiIib9bRdy9/s32BQo9TL8+3m8rmQFK+eCwxBRM+AuevUV78g+8qC+RUSQMu/Bx/OgmkD1dekeFn+0AEcjmxfuHCBGjVqABAfH8/BgwfZvXs3rVu3RqfTMWbMmGL72LdvH126dMFgMNCxY0dq1arF5cuXeeedd3jnnXf47rvvaNGiheNPI5Hcj2QmwtGlUG+UKlpmMGDQ6wuo8QoSEj+0cLSNCKEj4dJyqoVPUfduFyQ/opOdfB53wODtd3ufRSKR3H9c+B98MxG6LYLKD5kOW0u5FEJQvucsgpwXoM/LQRj3PG//GKc50eo+aFd3qFITzbMxiJMfoxTWnChcruvfv1THW+tsu7xX951QczCEdrCpUaG/nqpGwo1oNGp5r5ExoNWqER2nQqJoMoItkdxRMpOT8SzwaqIUU9X16Wc5Ux7c0886cJWCRuMB5NsHgyF/S4t5unat7t156fJl9i1eTMbly3hWrIhBp6NOr170Xr0akRGP05H5cP0U2nLhRPQeQaOnB5N24SJCr0cZmoxvXq7afzFR6pQ93+Mf05/kl5YR2PNJ9fMprsrCSDVzGVd3u+5RbOq5xPHItru7O9evXwdg586deHl58cgjjwDg6+tLWlpasX2MHTuW+vXrc+HCBbZs2cL777/Pli1bOH/+PPXr12fcuHHF9nGvcuzYMTp16oSnpycVK1bk5ZdfJjc3t6yHJbmLyTgXB4dmkXXpjBoBUkCnv8zZs7H8888wFMWJrKyixX+ysk6jaD3AqUB6UIGITlbC8dv8FJL7GWnXHgCSE2FprPpamEt/g7JbfS1Aniadc+XVV8hXFo+PZ8+cV/ls2DD2zJ0HQiAuX1TTwqctg59vqKmKaw9A9qUCjrYC2vyJbOFyXa7u4OJWdHmvrztA5mXwCEE0ngHt1yEaTwePkKL3XisK/BsHrTzVV5k6+UAgbdo9iDFV3YqNKlop3BJ9djznyquv9mDUm2jTJoOKj7+lztW2fwyPV4eVr8Luz9XXx6ujHP4Zd19f2sbO5LElS2gbMwPFyYl6T/RDOf0JTptqwuG5cGo9HJ6L06aaKKfX41utKsqWJRA7DOXfI5BUfJTaPby2uoDo5KQKRdpTZUGrVW2qX6B9kXApElksDke2mzdvzoIFC9BoNLzxxht07doVp/xabadOnSI0NLTYPv7++282bdpEuXLlzI77+PjwyiuvMGDAAEeHdU+QkpJC+/btqVmzJlu3biU+Pp4XX3yRzMxM3n333bIenuQuJS3pJFfKQ7BfZVDg8uWPOX58RH4kW6FWrfdwdy9aJ8HdPQwhdCgRL1mN6OTlatn1JdSNCLgzDyW5b5B27QGhiD2XaSlnuVYe/FPO4mPlUq1PKMJg4MTXX5N17SqtX3nFVK5LQaAc+V1NC8+Ih78WwI2L0OYDNaPHrx6i4UTzKgunNqL8tehmua43J6g1r4sr73X0fYiMJXXr6/jdmE+q1xT7NSoKRrwl9zXSphWPsfRo5KhReN8DpUGLUhG3TqEodRHHTeUJly0j7cIFWjz/PBVDg2D9YnUBsfOAm/oRCWcR1euQm5NAQuJSczFblxCU+O+tLhYqfy2Gqr2hz0joP1bNADrxJ4TVg5P5i4Cu7pCj7vE2Rqndomeofej16jX2VFnQ6SA3G7x8VZtfXCR8VCwojtXsftAokUDaY489xuOPP07VqlV59dVXTec2btxoinIXRY0aNUhNTbV6Li0tjbCwMEeHdU+wZMkSrl+/zrZt2/D39wdAp9Px3HPPMXXqVEJCQsp4hJKyxNZ/XoaMeOIrBFLVJ1Tdm21ytAEEV65sJDh4BOfPL7CaSq4oWkIqPgs4IRrPQNG6IHS5KE7OpiiNR9UIiIxRXyUSB5B2TXLjhhoFcrkWX8jZ1qDVBuBVrR1ZKSnU7NIFcSUep9WvwbVLaINCYeRMaN8HLnyDyLkGjV9RnWqhhxpPQeRMyyoLVUbgUnMwStpJcHWFPflp6vaU99I4qSJnOuk8S6wjbVrxGEuP1u7R4+5xtnOSIDL/1RpaG0rahY8LQUiPhYRq30Pocm6KgeXvvw51fg+Rpx4XQlgsIgq9HuXHLbDqd4Q+G7ROKIBwcYbqdQoFTFTOn19A7drLqdD2I5Rrf5mL2YY/qZZpzUyEuA9VO1cuHGpHqxlAf/4C9ZvfdOi/2wjrF0H8aRRnl5uCZ4pGTbEvrsrCjVT1Gq3Wvki4RjraxeFwGnm9evU4ffo0SUlJnDlzxrR/G+C///0vb775ZrF9vPHGG8TExLB7926z47t27SI2NtauPu5Ftm/fTseOHU3GG6B///4YDAa+++67MhyZ5G7A+J/XjcSbKVBCCEK7zKVVqysoiiAhYamFQ33x4iJcXEKpXXs5SiHxH0XRUrvWClxcg1GEgeTfNsFKT/W1QDqkd3AwbWNj757/NCX3DNKuPSAUOZG1EgUSgpBei2nVKgmPKi1w9/NDOfE/NIY8xOiZMG0pInqamm6Zl46o0pXcKm05e2E+R48OJCFhCfjW4fKV9fy+vybnzs3lypX1nDs3l9/31+TylfUI3zrw9xLYOQj0OfaV9xJ625EaiQRp0+5ZcpNVG5VrXhsbIfDtMxmGZ6ivxrRna8eFQc2eMZoyBfW9MCD0etUBBdBqEfl2pGbXrkQMHIiTu6t6TgOiQz+Ek4Zcw1XOnp/L0aMDuZHxFzk5hQMmxqHoOH7cipitf4TqaP/7CawPN0sv58A0db907RrmgpBR7VQnPKonIi9XjXaDOucLCFH3WjsVirUWrLKQkqReo9PZFwk36Iv/bh5wSlxnu3z58gghSExMJCgoCK1WS8OGDe26dvLkyaSlpdG+fXt8fHwIDAwkKSmJtLQ0/Pz8+M9//sN//vMfABRF4c8//yyyv6tXr7J//34SExPJysqifPny1K5dm4ceesiuut93imPHjjF8+HCzY76+vgQHB3Ps2LEyGpXkbkFnSCJ8pAc6gzqZFUJVGU9IWEp29kXq1v3I6t7sjIw4jh0bQp06a/D1bUdi4odkZZ3G3T2MkKBoXFxDUNKvQzk/DM4B7NqWSd1pMl1cUjpIu/aAYGMiK4QgOD8KZNCpgmcKAjISUP5ZCtdPoZQLRzR6GepFqumTZ2NNUerQ0HE4uwZy+dJas4oKfn6dyMk5X8TEdAR+PlG4OLujnPoEKnWEOiOKLe9VghiDVBx/wJA27T5CGCAzAeXoTVtEw4ng6md+vEJLqD8GgSBXl0TCpRUmG1UpdDxa3MnVXSLhQoHU7+BR6vzKSUNuziUSLqrnfHxaEhIyRi3HWmDLX+3ayzl/fr5jYrYNJ6rba3YX0qLwj4C2H8G/H1ueMwpIdnyanISLuBW8ibHKQuGyYH1Hq/ZNo7mZin4j1b5IeFGaFxKghM72jh07iImJ4fDhw+j1evbv30+TJk149tlniYqKYtCgQUVeHxkZectOcFpaGqtXr2b16tX873//u6lomo+iKHh5edG7d29GjhxJy5Ytb+l+pUFKSgq+vr4Wx/38/Lh27ZrN63JycsjJyTG9NwrU2cuJS2r7sAAPtPmrclfSsknNysXbzZlgX3eLtlV8PXBzU9sm38jm2o1c3F00VPb3KlHbU1duoDcYCPH1wCu/bWpGNlfSc3HRaqgWULK2Z5NvkKszEOTtgq+nalJuZOtISM10qK2TRkN40M22F67dICvXgL+XCwFeRbdN03mQnJyFj1u2qW12to7zqWqaYq2KN7UJzl85TWLiSiqFjCA0sDoAOTk6svUGQh9qx+BlGQh9HkIYHNqbfeXKBjIyjlKnzkqqVYtFUZwQOfnpRL6BiJbdUBQFg0sgX//gg/MLvhhSs4r97kvj98Ta91kavyfG7/NWf08Kf5+3+nti67u/XymJXZM27S62aZmJXPljCWnVBuNXvrKpbcrVFPS6ciRdSKFuM7WpEAZychJItNh7GIyy/xU1GqN1h8rdwdmTy5fXcvy4eYlCN7dw/PzaFypdqBAUNMCxielfi1S18ajllpPPAmKQ127kciFbi9ZgNgXlxKXrpGYIfLiZEnnzu/emcgHFcWnT7m/KwqbBvWfXUn2DOZ2ah3e2rti259JycSpXFa+sPHzzj5XUrhX8DTT7fc0/lpEnSEq+QdXyHignP1btg9Ee+EdA5Ew4udbcToT3RyC4fOljM1vk6RlB1aozrdquq1e/ITJyfyGn2vpCoUbjjpOTh2NitvpsCB8Ah+dbLiDacsLhpoBkpY5k6iHJJRClQPA5JTsPjVcg3tEz0Di7IPJyUbTOXEjJIitXR0i2Di+AlCRE1dowcwVKYZE0Jy0iPxJu9OekXbONw872+vXrGTx4MP3792fkyJGMHDnSdC48PJyPPvqoWGd71apVDg+0IPPmzePNN9/Ez8+PJ554gpiYGBo1akRAQACurq6kpqZy9uxZDhw4wPbt2+nQoQOtWrXi7bffpl69erd077Jg/vz5zJo1q8TXd170MwArhkTSoV7F/GO7Sc3S4axRODmvm0XbWT3qMvQRde9810U/k3QjFyeNwikrbZ9rG8bLXeoC0Pu9X7mQkoWiwJn53U1tOyxUtwwMaFqJ1/o1AuCJpfs4eeUGCnBmgWXbTnWD+HCoOqsbtuoghy+kAnC2QNu2b6ptW1T3Y+MoVS/guXUH2XMy2WbbBiHl+Gp8awCmbI3jy7hEi7ZtXt+NAKqX9+Cnye0AeOO7f1j963mLto/Gv8+lValU9NnL71M6ArDyt7O8vuO4RdvH3t3P9dyHqer7G7tfUZ1tF2cNznmX0BxeBjcuQKOXyfX0dnhvdmbmUVycg8AgYO5wlKBQdL1HoQQEc+ZqBjUCvfEKDuarCavZ9F0yLjt3ceLVrqbrjd/nwici6BNZGYAub+/hWkYeWo3Cv1a++5cfrc1z7dStJI+9s5dLaTloFDht5bsf+kgVZvVQs1+e+OA3zlzNtPndPx4RzDsDmwAweMUfHEm4bvFZGr/PNjUDWDNCLRU46uND7DuTYrNt48q+bBurLry9sPEw3/9zxaJtuzfV775mkBffvxgFwJyv/mbjgYsWbdu8sRshoLKfOz//pz0Ab+86yfu7Tlu0ldxE2rS7wKYlJ/LBe5t5LyvMrG3mX7vo8V0Yl/QnqOhzzmTTNp7QsyDhEzgvONsHKwuCKufPL6B+vS2Ub7sa2nyIonVHGPT5ehPRhWyXQlBQfwunukQT02tx8NMQNeUypD38s8wkBmmoOxqNpyoG2XHRbq5lNKSq9m22VrnpHKnfvR9vVGxL2/xj0qZJm2Yvt2rT4N6za9ueXca275LpdOFw0XZNCCo2jsT1x7Pk5eaZ9kAXZ9ciAt34wutn6DuKKd8lmuzaHwUqA5vZtbbqsQ+O6KnqkkIllxS0hcsGWnVSFUSV7uTmxBda9INKlSaSmxtvxXZBaOg4cnIuFLKB1hcKDYYs9PpM+8RsdZko+ix1L7nWw4oWhWLbCTcidHB0CZ6NZtKkzUdMSEznhfxTXRf/zKW0HLSKgX9/flItC9Z7EK1f/wmA6FrOTAfIyWLu1/8wtesgRGR7tNuWmiLhxrnl2t/O8UxLdS4r7ZptHI79z5kzh4kTJ7J+/XqeeeYZs3P169fnyJEjpTU2m+zatYutW7dy6tQpFixYQI8ePahatSqenp5otVoCAgJo2rQpo0eP5vPPPycxMZGoqCh27dp128dWFH5+flZLo6WkpJjtDSrMlClTSEtLM/1cuHDhdg5TcicRBjj/NUr8D4jGr0C7j8CvVsn2ZtdegYtrqLovJ2YlhugZbL1g4LH3fuFahlqyxDs4GK2r6x17PMn9T0nsmrRpdwHJiXj+ucvicM65YgRxUFPHLcUaVQID++Ffvis5uYmcvTCPo0cHIdBZtWm2nGpHJ6bo8/ckntoAW5uqk9OmsdB+HTkPzeR8to/VVEeDt1+xzyp58JA2rRQxGCApHtcVs2HaQJxXzIakeDAY+L+w8kVeqtFl2yzlZY2slBTQeqDPzaVHo4pojy8r5IzmO6nHVpgf13qAoiEh8UMri4EDSExcYSXAYf2c7YXCmwGTwvM3U4+KlpCQ0eq8sPF0qNbbuhaF1t2GE16I9NO4ujjj5mzd1ROCYqss/HjsCo+99wtbLxjUrTRz18HIGNPc8uA5+0qpPegoonD+dTG4ubnx9ddf06FDB/R6Pc7Ozhw4cIAmTZrw008/0a1bN7Kysm7XeO9p2rRpQ/ny5dm2bZvpmHGf+sqVKy0WL2xx/fp1fHx8SEtLsyifZo17LTXpnkq5TD5E2qetSW7/HT6VIotNTzkd/xtnTz5BWK3NVAtuoarvupRT1XYvrTDtzT56dCBXrqy3+C6Dgp6kTp015OYmmu/NrhiNi1slQCH78O+4j+9E2txNXK7T6pa+e5lGfnenJt0NlIZdkzatDGzasUNkDX6Yi+/sQhPe0NQ25dO5aFIXc9btJUL7TDT9Xl/aMBfttTeI95pCxNOTOXs2lnPn5pp9L56eEURGHuDKlU9MkSCNxoM2bTJs2DSF1q1vcP78fIu+atdeiZ9fO/btq2mzysL/Nf8Xl/M71VrcBWk8HdF4BldXViUpYBrVu402s2nnf91E7XPPkl1/OYGtB5m+++yDP1Mnpid5b32NZ+tHpU2TNs107HbbNLi37FrioUO83uEx+m3ZRqNHIi3aerpqCfVxU2tNW0lBZuYKRNfBHD8Vz/9Wr6b72BEmgVbT72viP/iO/D/4+CA3qkXcTCP/5XMC//ssSS8tIzuqJ3oDVPRxw1XRo2hdEbocFK2rKhh2qoDN0XrA8Awrxz1h+A0LG1WU7bJ9zrZNs2YfTVflB0wqVBiMcuAnaPiwqi6uy4PsS7A+zCwSz/AbamT7sPk9zGg8HUPjGcS3qYTy4ltU6jfI7LvP+elLGv53MEnTPiaw96Cb3/2lY3hFt4CPD5Jcqd7N35MrJyC6NSz/mVP+taRdcwCH08grVqzIsWPH6NChg8W5uLg4qlatWioDux/p2rUr8+bNIzU11bQfaNOmTWg0Gjp37nzb7mvtlyjIx40gHze72gZ4uZl+OUvatuAvvRFfTzfTH0hJ2xb8IzXi5aa1OjZH2hb8z6e4tj7aTHwC3KHAc7tZaSuEoHpIc8JCLyKEXtUZcPUttEeoBHuz9Tlg0KGggKLB3cMNsjPxqVgRn1v87kvj98Ta91kavyfWvs+74ffE2nd/P1MWdk3aNMfbWvtddSeXmn6uYBxfvjqvop1OhC4HxcnF1NZVA35uOpw8FRTFyWqKt7WUy6Kj1La3x1y8uIgKFQZTu/ZymxNTF9cQtf5sQfKF0JS0KwQcvETAczXB7eZUJ8jHDc9qQXheyEYTcFMoslbFchAeDOhxCQwEpE0zIm2anKtZ+x30TU0kzNfZ5ECZtRVCjWAXdrRBfT97BEqzDlTxc2fjqzOI6tPN5Gybfl9TnU2XmH5fhUA89gT0HkRA/l5jEJCZACYRtBrqvuzCEWFdllryz+J4JsKQa2GjirJdts/ZtmkFxWz9/DqSkLDkZsAkZLSqdXH2OIzroip8u7pD5Rr5yuIrCuw9F3Bqo12CkDkXz1M5N4mkAtW5jN99UqGv1PTdp2ot2gJwBVMkXNo1x3DY2R44cCCxsbHUqVOHtm3bAqoY2ZEjR3j99dcZM2ZMaY+xSGbPnm3znEajwcfHh4ceeojWrVvfwVFZZ/To0bzzzjv06tWLqVOnEh8fz+TJkxk9erSs23ifI4RBVeEtICRUufIr6PUphfYI2bk326UCCEUtTyFQ9y3eRcr7kgcHadfuE6yp9tYbBR4hgKKWxtFOx1eXgxB6K5NMW6JmRdu0m071CrO0dHViOoy6dVfbmJhWRPlpqHk92gJCaFw5DgcB10CLR/XMd6aNrxJJQaRNKwWEAbYstV1mT6+DLUtwHxljf58GAyQnoGxZChdPoTRqCU+MgcIiaADlwqDuyELOqC0nVcD5bwgJGVXIRhVlu0q2UJiUtJmgoEGU9+92M2Ai9HDhFMqv70L/cfDlWXOl8Ix0VfwxtAMcXaJqUeRlgleVQk54PgXsYNap7bgjKWscdrZjY2P5+++/6dSpE+XLq/stunbtSlJSEo899hivvPJKqQ+yKN566y1yc3NNqetubm5kZ2cD4O7uTl5eHnq9niZNmvDNN98QWIb/ufr5+bFz506ef/55evXqhbe3N9HR0bz66qtlNibJ7ce6kJBClSpTbO7NLjai4xKCPvsGv/4RTLWcqVTpNO0OPpFEchNp1+5RjHWzlWx1Ymxtwpp+BtquhqyCTngNRGQsIcEjzSaZRYmaFWXTMjOPcv36b1SoMBg/vw4WTjUouLiEULXydDRaVwz5EXcFAS1eA+/qJiE06o1WHW1Fc7O2rETiINKmlQIaJ7hYzJ7i+NMoWi1a92LcQVd31dEunJLeohNcP29ptwD+egtqDrJ0Rm1ULVAOxODS56DFol9Rtis+/l0qVhzi+EKhc0WUmCGwYz2U80dJTb5Z5xogMAQRPR3F2RWRl4OidVGDKR4hiMbTb6bKo1g64YXsoP56anHflOQO4LCz7eLiwueff85PP/3E999/T3JyMv7+/nTs2JGOHTs6PIALFy5w4cIFGjVqhKenp8PX//jjjwwYMICYmBh69uyJl5cXN27cYNu2bcyePZs1a9aQmZnJ4MGDmTx58i0rod8qdevW5YcffijTMUhuP+mJiRxcupTW06ah01+2EBIqamJaZN3s/L3ZCpAaf5rTKzOpPq7pHXwyicQSadfuQYx1s/0rqCmYhSestuq4aj1Qms3GxSWE2rWWmzJzikq5NLdp7UlMXGaZPqlorDvV+Rk7CV+8yKmAVYQnDyW0z/tA/uSzyQwUJxeEPhdF4ywzfCSlgrRpt4hBD5WKFjgkNAyh06ErTufJLxCSE8wdbUWBzgPgLxuK3KbqBGstndHcdKj5NAS3g2Mfmo4rOalWF/30+nQqVHjaquMMSpELhWmn06hUbQrO7h7kZWUS//t+qraqiHj+NZSQ6tbrXAOp297A78Z8Ur2m4Nd/uumZU7cWPq7aQZrMACcX0OeCtIN3HQ472+fPnyc4OJh27drRrl07s3M6nY6EhASqVKlSbD/Lli1j1qxZXLp0CYA//viDJk2a0Lt3b9q2bcuECRPsGs/YsWN56aWXzMqNeXl58fTTT5ORkcHEiRPZt28f06dPLzLlXCIpMVoPi0M3EhP59b//JSpmBgkXLaPXxant2rM329WzAtWqxeAbGmF+cUCwqhoZEFxqjyiRSO4vslJScEdB+FVGOTzH/jqu+fselXNfUaH6QPx825JwaTlZWafJzDxGcHDhVEyVK1c2kJl5goce2mOePonG5FArimLFqVYRihcGQyZC8b7ZqaKQ/OsmAk8+S3LNZSaxsxIjbadEUjooGug7ClYtsJ5K7qSFvqPJvnKJqGDQpCZZNMlISsJTURBePigfLjbvx9VdFRArSpH71AbwrgbN5kHEFHD1AF0u5OTAtIHwf52h8xS1n9ws0LqgHNyDS+IZqnWeguLqgcjJhG83QlgDXOpGmtmuqydP8dO0AdTp25cG/ftb2DWEwK2cD3vnL+D6xYuUCw0lcvRoUBQUW9HrguhsKIUXPq4ocGgT/PUsNFwGzW7RDoL6mUhKDYdLf1WvXp3Dhw9bPffnn39SvXr1YvtYtGgRzz//PEOGDGHHjh0UFERv27YtmzZtsns8hw8ftinKVq1aNf766y8AGjRoYLWUg0RSYoRQoz/DM9RX4++xEFRs1JCp6ek2hYTsKQOh7s2uqO7NBlC0+Xuz1T9b7+Bg2sbGmkRFTAQEw6hYOWGUSCQ2yU5NBbfy6iTPVh3XwiVyANO+x6DmKNv+D5fzO6lWeQr16q3Dy70urq7B1K5lvTxhpdAJaBRXhE7P3r2BJGx73uRoF+zfYLCcZGqUylT9Tn21wNak1BYewdAkRn0tiLSdEknpoCgQEAIzV6iOdUGMKdMBwWT98ydtQ0CTlmzRRWZyMri6qyJohVPSc7JUsa7CYmcW49CqbVt5QWsv0Olgzevw3UY1Ut7aC1p5wrcb4NIFGNsJZdZwlFbqcaWlp/p++CMYLl3gfx+t5o3AQGZrtLxXuzZHN2/m5Jdfomg0JH4xycyuKRoN3iEhtJkxjZ4rVxI1czreISEoGg0oCglfvsiePZ4kfPlC6USirdhBj3wRSI8CYpBFIgTUiIC9GeqrYwWrJDZw2NkuqlJYTk4OrnbU8H3nnXeYMWMG8+fPt4iO165dm+PHj9s9nqpVq7J8+XKr55YtW2ZyxK9evUqAvb9sEklxCANkxsPBWWoZiYOzIOea6bhyaDbsHGxDSEil2LrZtVbg4hJMXsIJWBNI6ub5MjVIIpHcOvmq4wxJQhj0jtdx/WsReIZCw/Eoe0ahrPSClZ4oKz1QfhpKhYqD+b//O0vVqtMJChpI1arTaR75L4GBT3HggyVonF0wGDIcGrKz8KP6d+prQWxOJouKUnsEq3W4CzvbEomk9NBooOtgVfBrxHToMlB9/fIsdBkEGjv2FOdkIfJyLVPShVAd5trRqkNtDUULtaLhuw1qeyHUiG1Bx10I1RnvPAA+X3Ezei6EeQ1qvQ6nz5fT8Mkn1UWAAviFhWHQ6xH6HHQ683OKonAp36lO/PIFs8VFZ4MXlZMycTZ4c7soSgzS4BPArgT1VT2g1kTnw1lq5P/DWaaa6JJbw6408mPHjnH06FHT+127dnHx4kWzNtnZ2axfv56wsLBi+4uPj+eRRx6xes7Z2ZkbN27YMywA5s+fT//+/alduzaPPfYYgYGBJCUl8dVXX3H69GlTlHznzp20adPG7n4lEptYExPyj1BLTZxcezPtUusBrCWkYrTVtMqbIhpWykAERePiXglFgOH8YchOxq2i7x1/VIlEcp9RWHU8YhLUHWWuzmurRI4Rs/2QHc33Q9aKRtEbcMafKpVn4KR1IS8rkyPrN7Bv8WJq9+iBIS8Hg8ExATNbTrXNyaQxSi2RSMoOjQYCQ9SFL61WjSw7OdkfOHB1JyfhAm7WUtJ/+QYeH2ohdgaojnbUCvAMgfX55QGN0fDCjrsxJd0OQTethwdad3fTPnONVkvk6NFqtNom1rN1nA3eVE+FFF/7nW2DxhcOgqGTr93X2MKjbgQ8G4NXwybWBehA/cxnrlAXTSpUlttsSohdzvbGjRuZNWsWoK7S2FIc9/X1tUuArGrVquzfv5/27dtbnNu3bx+1atWyZ1gA9O7dm/379zN//ny2bdtGYmIiwcHBNGvWjI0bN/LQQw8B8N5779ndp0RiEyGsiwlZ29+oy0LRZ+PiGmomJGREUbT4+3cGYcDFOZhqlW+qTJKXvzdbo8Et0B8A9+o17+CDSiSSu47kRLWcTt9RJZvwWFsoTPkb+hwoNGG1o47r6c2IhxehXM2Ahvn7HrMz4fuNiHIB8EgXPmzajGsnT5KXqU40NVotA7/5hqz4gw4PXZbrkkjuURQF/o2D6Naw/Geo06T4a4QgIL+etmtenuqgz1xh7gy27AapVyFsIFRoCyeW31z0q/us6mjPHAon40x98t1G6DnC3HG35YQXJjQMXWammaPdY+VKvIODrWyHuT0YnPxUZ7uLX/GNi8G4FdGemug066AumsgFzBJhl7M9ceJEnnnmGYQQhIWFsXXrVho3bmzWxsXFhYoVK9r1Czdy5EhiY2MJDAykT58+AOTl5fH111/zxhtvOFxeoXHjxnz66acOXSORlAwDHF1aaPKZv7/xcGFVTAGnNqBUeYwKFcyFhEzK4q4hkJOG4uaPMO7NFqC4FaibHRqh7i8sLIQmkUgeLJIT1dS+qB6OO9u2FgpNUeo15lHq4uq4Rq1AcQ9EeIHy0QK4chGCQhF9R0P5inw2dCiX//zTdEnBiWnKzk1UvQ7OwjKio/cONXs1IcXLJJJ7loykJDyzM9XXOsU0LlxPu1I4DJyoRlebdVBrUCecUdPSV8yFPV/AUxNuip1lZ8LvO6DVY2p5sO823nQi1y+CboMRM5ajzIlWj9tywgvipEX0HU3SP//QcOBA/MLCiBw9WnW0i4xqqxHsqlet27u7AjtrojMqFhSnOzq0+wW7nG0fHx98fHwAOHPmDMHBwbi4uJT4ppMmTeL8+fM8++yzjBo1CoCWLVsC8Nxzz/Hcc8+VqN9bLSMmkRSL4mS5j7Go/Y35NR2V89txyblKtfApKFoPhC5TjRy5BkDlrhgMBi59vYzcw//BpfFrhPQad7MP4/5CiUQicZAbf/+P5FdfoOra79XUcWtR6lMbIOUoRK2EyFi1Rq7Qw5ljEP4UVIgyjxrVilajRt99itJ5ALqhr6D18ECXmcnFffuo3CqIDvPn41e9OimnT1tMTJWUGzbTJ73qdIed3+PVobv5CZkWLpHcs2QmJ+NZ4NUmRaUzv7EVWnVHjJypiqaBmvp9Mk5tPydaTQk37rV+9EmYtRaad1SdxfwyW4b0VJRuTyOatkfZtkw9np2JqFgFZq5AKXxvJy1ixgoIqEiF8hXps24dhnwFcXsCjCVJF7+j2FkTHY10tEuKw6W/Cip/Z2Zmkp2dbdHG39+/2H7efvttJk6cyPfff8/Vq1fx9/enQ4cO1KzpeKqssYxYYmIiiqKUuIyYRFIswoqYUFH7GwtEjZTMS3B4AWRcRPEMRV8zGsUrhOy067j7+VGuZiuSNzajXP9Wd+ZZJBLJfU/Wib+pdn6/qgBcVJmca3Hw10Jovw46BsJX52DHeutRo+82qPsg2/RAl5XFq15eOLu7m9LFg5s04Zk9e4iKiUGj1aLPy0FTYGLqUrMFqZ9WxaV/C4th+Fd+iLbP7LodH4VEIrmbEcKynrYRvQ4m94Evz5KdmYX70w8hfrymRr0LXl9Q1GzHBmjUCkPvZzEMnWJaEPxrwwaSjh6l1Suv4P5sLIqTExj0JB87RvnOT2FoHIXT58tNzrm+ZzRKYAgH3v+A5uPGce7LANxzRhDU7zWzIToawS7N/de3hJ010THopcNdQkqkRj5nzhwqVaqEt7c3gYGBFj/2EhYWxqhRo5g6dSqjR48ukaNdsIzYd999d0tlxCQSqwiByDf8QihQb1Qh9csC+xutqWKe2gDb/g9c/BCRMdB2JboGU/jrsx85+e0O3H19URQFr/oPUW39LrzqP3RHHksikTwg5GQhdLnFl8nxDlMnq6nJN9MqTx81L5HTylN9f/ooos8ojny6EYQw25fdYuJEnN3dubx3JXv2eBK//Q2zCJBn4074zj+LZ+NOt/OpJRLJvYSd6cxuoVVACHISLqj6FYVLixlx0qJv9Rh/rl3Lq15ezPP05FVPT05//z0d5s9Hl53Nrlmz+Gz4cHR5Oo6sX8+ypk2J+3YnuqFTYO46dEOnEPftTpY1bUrG5csY8nKomnjVqoK4s8Gb6lexOKfzDePsLvW1IKb9106W+69NjrjG144P7hYx1kQv4nOk72hT2VmJ4zgc2X7rrbdYuHAhL7/8MtOmTWP69Ok4OTmxYcMGcnNzmTZtml396PV69u3bx8WLF61Gx4cMGWJXP8YyYtOnT0ev15udc7SMmOQBwRGRocJ7h9r0gM79LdUv89PFbapiNpiAcPYg+Z9j/Prmm5QLDbV7v49EIpHcEkKQe+UyrvVG2RY8K1gmB0x7G5mxXE3P1OtuRo2ctIiZKyAwhBpdu9Fm+nSr6eIiNZfK+zPRNve9U08qkUjuRZyc7E5nVpxdYG8GLnl5CCcnlMLCaaDaqJiVaCpU4o/33jMtCFaIiKDXmjX89cknfBkdjUGnXlO1dWsajxjB3gUL+GLECL6IjjbL1jGKO+Zd+AdbBY5tRap1AXVYvR6enVTcZvUCfZWiEFqxFKyJbuVzNNZEl6VnS47DzvaKFSuYNWsWY8eOZdq0afTq1YsmTZowY8YMevTowb///ltsH4cOHaJPnz5cuHDBat1uRVHsdrZLs4yY5AHBmsiQEGqKjJNWNTQaJ/VY4b1DLTrZVr/MTYeaT0NwOzj2odn+RuFdCQSUr12bnitXotfloXHS3jEFS4lEcp/g5lHyaz1CoM1y2GNHmZyTcTBrGCJ2NTTviFJgz6MxrTI3PR3PoCCiZk5H4+xqsY/RqVxNzq2Cuh1vYyUFj2BVQFLWzJZI7l30ervTmQ25OWx7Zhj+4eG0mDgR966DUYzCafk2ir6jUQKCEcCTX3zBwSVLSDl9modfeomMy5fNHG2AfYsWETF4MI8vX246V9DRNoo7pu3cg6uN1G9HHWRb5QyLwlgbu66PndfYKyxprIlu5XMkIFg9LykxDjvbZ8+e5aGHHsLJyQlnZ2dSU1MB0Gg0PPfcc0RHRzNv3rwi+xgzZgw+Pj6sXr2aevXq3ZLYWmmWEZM8oORHr8mPXlMpHJ55BdJTzB1tRYHOA+Cj+db3Mf69Dxq1Aid/eGg6OLtCXg6G3FzQGziwdCnNx41j7+uv0+jpp/EOlpNDiURiJ0JAjQjYm6HWqhXC/kiDouASWAF+2AztBkLFtuYLhXVGglcluJ4CbXpAeAMIDVOVxYFzR09SqcCexyOfbsQ9IJBa3bqhKAqp297A78Z80rym4Nd/uum2Bt9AdidCbd/bWK5LCkhKJPcHxnTmIhTB9T2jift4HUfWrwdg74IF9N+6lVrdu8PIGShaF0ReriqgpigogHdICFEzZ6BxdsGg17M7NtbM0Qa4HBfHZ0OG0GvNGqq3b8+hZcusZuvk3TCUWsS5qHKGtpxqh22qI8KSt1oT/T4gPTGRg0uXEjlqVKnO0R12tsuXL2+KFlepUoVDhw6ZHN3k5GQyMy0Ltxfm77//ZtOmTURFRTl6ewtKu4yY5AHC1d268qWiwLAplnuHXN1Vx7oo9cuaETBpMTRuDYAuT89fGzexb/FiavfogUGvp9XLL9/hB5VIJPc01hYE+45SU//siTi4uqupl7s+g5WvWhc8+2U79B+rTsw0TmbK4v41a/LzggVcv3jR6hYYg8YX9mWWvdCPRCK59zBm6xSTzixmrEAJDGHf4sWmwwadjk/79GHC2bM452XhPrgRyS8tI7D3IFMbRVFI/moTge9NRPNDEtdOWU9VP5IvnNZl8WKiYmPRODlhyHfcjdk6DkeWS8gdWai0Rklqot9H3EhMZPesWdTu0aNsne2WLVvyxx9/0K1bNwYOHEhsbCyXLl3C2dmZDz/8kA4dOhTbR61atbh+/XqJBlyY21VGTPIA4BdoXfmyoFNdkJwsdWJalPrlyTjYvxNd3ea8Hhhosd9H7s+WSCQOUVQpnJkroOtgMq5e5Y/33rO9Gp+TpUZ7KoWrCuPWFgoBqtWxsF0VIiLosXKlqizu5GS15M0d3V8okUjuD4Qg4LEnoPcgAvJy1fmUjXRmQ+9noXxFtg0ZwuW4OLNuDDodB5csIWrmDHN7Vpi0qxjycvEPt52qfjkujjM7d1Kl5SMQVY6rhRz3opzgO+WI3xGK+hwlDuPwzD82NpbWrdWo3dSpUxkxYgTr169n6dKldOjQgQ8++KDYPt566y3mz5/PsWPHHB+xFd5++21OnjzJe++9x9y5c3n33Xf5559/ePvtt0ulf8l9iKKAl6915UtrTjWo/xEYFXqLUr/sGc1fGzZY3e8j92hLJBK7Ka4UzuwRkKyWvNw9axY3EhNt9pObdBlRUHG28EKhFdsF6uTz94UL0Tg5weoA0ra9Ie2YRHIfkZ6YyK7YWNJt2Q8bOHvYrx9hdEQNRkfUYICkeJTlc2DaQPU1KV49np/OLKJnwNx1MCqW88dOsaxpU45s2GC1/5TTp9E4u6gLiLbIVzCPHDUKjdb6HE6j1RI5ejQ58ecddjiNjrihFKLRXsHBRMXE4FVo8dTWccndjcOR7dq1a1O7dm0AXF1dWbx4MYsLpHTYomHDhmb/QScmJtKgQQNCQkLw9fU1a6soCn/++adD4zKWEZNI7MLVXd2TYk35sqBTXXjvkDWFXiNG9cuKlcnLyqLhwIEW+30kEonEbuwsheM+ciZRwaBJTbLdFUBACGLGchRrtstKiqYRv7AwDHm5aH69al0Y6H6K6EgkDxiOps4KIagQEcHUjAwMOh1CCNP83taeV6MjWj+4il3ZOmg0aur3wlEYfrzGmZ07LSLaBTHZqJysIsee9e8x/Np1pceKFXwxYoTZ3u2CgZGUn7ZThNt+2/EODqZtbKzdx/ENMH+V3FU47GyXlMjIyFJbDd+zZ49D7du0aVMq95XcRyiKKv5gS/nSllNdnEJvUAiG3FyajhpF87FjMeh0KE5OMhIkkUgcx95SOFpn2lZ3Jykt2Xobd09cAitwdPNm6vYeiKFJW5w+X26yXaLvaIRfkNUUzYKRHncbqeJltr9QIpHcUYTBQHpCAgeXLuXaqVP4h4erjnVICIpGU6zj7hloY/se3MzWadZBFeoCyMowRaP3LlhgIWwGhWxUMePXX09F0WiIGDyY6h06mFTKCwdG9NdTS/YBlRWhEWpVhtCIsh6JxAolcrY3bNjApk2buHDhgkWNbFtR6VWrVpVogNZo27YtiqKYyoYVdGQKrrAZKVx/W/IAY1T0/fmGurpqS/nS6FTPWg3N2qNsXWY2MYWiFXqTjx/nw6ZNGfbzzwQ3ebAEJiQSya2RnpjIwWXLiJo+Td1nXRShYep+bGsRnQJ7IjUGPZ5BQWwZOJAaXbvS0Gi7srLQuLhw4uuvObp5s9nld1OkRyKRlC3CYCDu448tIsJ7Fyygx4oVRAwejNa9CCuhKLj7+qqlV4vJ1imooH07otGKRmOuUl5ICO2OYG9ZLnuQVRnuahx2tqdOncqCBQuIjIykVq1aJSrbNXz4cGbMmEH16tUtzp07d45Zs2axcuVKm9cfPnzY9O8rV64wYsQI2rVrR79+/ahQoQKXL19m06ZN7Nq1ixUrVjg8Psl9SmFF30Ytod8Y28qXDz8KAk78fojwAk71xf37qdK6YpEKvbqsLLN9jxKJRGIvNxIT2R0bS/OxY/EophQOfUeTbS2ik2/vlAIK5lV6jaTKJ5+wbcgQvoiOxtndnbzMTBo8+SS91qxh/OnTNkve3HORHolEUmoIIUhPSLBwdkEVKPtixAiqd+hgtYyVEWd3dxRb2/cKEn9azepxcgIcjEa72b+P3KRS/t9nLYTQ7giOlOWS3NM47GyvXLmS2bNnM3369OIb22DVqlWMHj3aqrOdnJzM6tWri3S2GzVqZPp3v379ePLJJ3n99dfN2jz++ONMnjyZDz74gE6dOpV4rJL7BGt7hHash79+g9jVFsqX9B2NEhCMAIKbNrVwqhVFUVdFZ0wvu1VRiURyX5ORlIRH7do2FwSJWQkBwWQVjujY2BOpWbUAMWM5vdesIenoUVPK+JENG7h64gTP7Nmjqo5rtdKmSSQSE8Jg4ODSpVbTuKGAInhMjM0+8rKyEDqdXdk6GPRQKCu1qGi0EILy+Vk85fNyrWa52kQqb0tuMyVSbGrRosUt39jWH8HJkycpX7683f3s2LHDpjPduXNnvv/++xKNT3IfUZSi7/Z1MLQ5wtsX8WwszF2HeDYWEajWr71p3GfSM7/8jXFvkqIoXP19E6z05Orvm+SkVCKRlCq6rKybpXC+PAsjpkOXgerrl2ehyyAoHHUuRsFcmRONSEqgxYQJpsMarZYWEyfi7O5OyqH97An3JOnnn6RNk0gkAGicnGzWpzaScvo0Gq3Wdiq5EGSlpqrb94qo6ELf0aBYd08UReHqV5uglSdXv1LnXcJgID0+nt2z57Bl4EB2z55Denw8wmBw4AklktuHw852dHQ0n3zyicM3+uCDD4iIiCAiIgJFURg4cKDpvfGnVq1aDBkyxKFItJeXFzt37rR67vvvv8fLy8vhsZaEq1evMnr0aKpUqYKnpycNGjRgyZIlFu0SEhLo27cv3t7e+Pv7Ex0dXWo1xyU2KE7R99ghlFULEHodnw0bppbAKGCoFUXhclwc8zw9uRwXZzYB9QgIAF2m+iqR3EdIm3YXUagUjoieoQoIWatwYIeCudPny2k0eBANBw6kzfTpTDh7lohBg1A0GnK1bvx0OtOh8jWyHI3kXkHatZJh0OuLrE8N+YrgOp26SGiDjKQktSrCzBWWDnd+RRcCglURW7CdFp6diVM5X9M+8sXVq7Nn7lyOrF/PnrlzWVy9OnEff1ysw21RkqyY4xJJSXA4jXzOnDlMmDCBli1b0qFDB6tlu1544QWL60JCQoiMjATgyJEj1K5dm8BCeztcXFyoW7cuI0aMsHs8Y8eOZebMmVy+fJlevXoRFBTElStX2LZtG2vXrmXWrFmOPmKJeOKJJzh27Bjz5s2jSpUqfPPNN4wZMwYnJydGjhwJQF5eHo8++igAn3zyCZmZmUyaNImBAwfy1Vdf3ZFxPpDYqeircXHl740b0WVlmQl+GEt2WduDbdyfVNQ+JYnkXuRBtmm2yteUKQX2FyZb21/o5qHucXTA3vVZt65U0sVtlqORSO4yHmS7disoGo1diuDZqanF9iUAugxC3zjKrCqCvmc0mgqV1PN2pIW716hj1z5y75AQm+UJbVVSKEmFBbnoKLGFw872jz/+yOrVq0lPT+e3336zOG/L2e7Zsyc9e/Y0vZ85c6bVPduOMn36dHx9fVmwYAGrV6827d0IDg5m0aJFPP/887d8j+K4dOkSP/30Ex999BHPPPMMAO3bt+ePP/5gw4YNJgO+efNm/v77b/755x9TrXI/Pz8effRR9u/fT/PmzW/7WB9IDHrbJb6MhIahy8w0rcgWNtTSiEoeJB50m+Zo3dmyxGKvol5vn4K5Xo8SVa5shIEkkjLgQbdrt4JRp6Y4RfDk48eL7MczMJD0hAQ29OxJs7Fjb1ZFyMzkrw0buPbvv7SfO5f0+Hib5cXyB4RrSGV+nz2n+H3ksbF3pDyhXHSU2MJhZ3vs2LE0bdqUt99+m1q1auHs7OzwTT/66COHrymKcePG8dxzz3Hx4kUSExMJDg6mUqVKaKyl2N0G8vLyAPDx8TE77uPjw40bN0zvt2/fTkREhMl4A3Tq1Al/f3+++eabB9KA3y6EEAiDAY2TEwIF+o5CKULRV98zmr82bDA7XNBQO2pEpXMuuZeRNu3uw5oAEPkKwcZJaUCdOkTNmIGhVzSaIuydoddI9f/H/PKZ9uBeqz5na0YRUKt+KT6VRHLnkHbt1rBHEbyoFHIUBTdfX3bPmkXioUN8MWKEWVWEChERjDxwgD/XruXL6Gib5cU0odXZc82dNs4u9u0jd3K6mZYukZQBDjvbFy5c4J133qF+/bL7D/eDDz5g+PDhuLq6mo5pNBqqVKlClSpVrF7z119/kZSURPv27Ut9PJUrV6Zz587MmzeP2rVrU7lyZbZv3853333HunXrTO2OHTtGnTp1zK5VFIU6depw7NixUh/Xg4owGMwmoLV69KBB//6IGctR5kRblviasQIlMIR9ixdb9GUy1A4iVzgl9zLSpt1dFLZplVu2pNmYMTdr3ur1OLu7c2TjRh6ZPBltYGix9s6g06GxVpvbBl71H8Jr/a7SfziJ5A4h7dqtYxKNNVYt0OlQnJzs2obi7O6ORqs1d5CFMG3RazFxIunx8RaONphnG7qH1eKnM1m00uns20eu1zu0sCiRlDYOO9utWrXi+PHjZVpOa9WqVcyaNYunnnqKJ554gmbNmlmNsCckJLB9+3bWr1/Pvn37WLVq1W0b09atWxkwYIBpEcLJyYl33nmHvn37mtqkpKRY7HEHNT3p2rVrNvvOyckhJyfH9P5BFukoDqNYRsE0p7BOnci8ehX3RwdiaNLWbI+QofezUL4i24YMMZXBKYjRUJfE4ZZI7mWkTSt7tO7uNm1a2vnz7Fu8mMeWLaPhgAGmVMy0CxdwDwjAzYq90/eMRgkMIfv6dZTr1yxrc0sk9zm3y67djzbNlnaFoihciovjo9atGfbzzwQ3aWJXf3lZWRhsOciKQoMBA9g7f7595cWEIDs11a595ModynKVSGzhsLM9b948hg4diouLCx07drRqkPz9/UtjbDbZt28f27ZtY/Hixbz99ts4OztTq1YtAgMDcXV1JTU1lTNnznDlyhX8/f0ZOnQoH3/8MRUrVrzlewsh0Beo/acoChqNhmHDhnHy5Ek++eQTgoOD+f7775k4cSJ+fn48+eSTt3TP+fPn3zGht3uJgqniBr0eRaOxFMsoYMCPf/EFLSZMMO0RMuTlkpedw+r/+z8SDx2y6F8aasmDgLRpdyfOHh6m/Y3WbNqJr74i+vffEVficVo9Hy6eQlspHL+eI1B8fUk4fJikv+JoUGBP5JFPN+IeEEitbt1IOfzbbXe25XYaSVlxp+3a/WjTitOusCYaWyRFOMjO7u44e3g4VF4sIymJgNq1i91HLksYSsoah53tZs2aATB69Gibv8D6QoXobwe9e/emd+/enD17lh9++IEDBw6QmJhIdnY2VatWpXPnzrRs2ZK2bduWaF+5LXbv3k27du1M76Oiopg0aRKbNm0iLi6Ohg0bAtC2bVuuXLnCSy+9ZDLgfn5+pKWlWfSZkpJC5cqVbd5zypQpvPjii6b3169fL7L9g0DhtEr/GjWImjmTg0uX2jTgl+PizPYI+deowcgDB2g+frxF2pI01JIHBWnTygZbUSMhBBUaNmRqRgYGvZ7dsbFWbVrdPn1Qvl2HplCquGbVAsSM5YR0exqfSpX4ecECrl+8SLnQULO9lWa1uW8TcjuNpKy403ZN2jT7sOUg52VlkZeZ6VB5MV1Wll37yCWSssZhZ3vlypWl5nwIIThx4gTXrl3D39+fWrVqOdx3tWrViI6OJjo6ulTGVByRkZH88ccfpvfe3t58/vnnODk50aBBA7O2jRs3Zvny5WRmZuLh4UGdOnX466+/zNoIIYpNy3d1dTXbn/6gYy2t0tnDg3azZ1usilo14Pl7hC7HxfHZkCH0WrOG6u3bc2jZMmmoJQ8c0qaVDdaiRsJgIC8rC62z+l+zRoHqHTpw/IsvTNtc8rKyMOTlQXKi5Z5sAL0OZU40oml7PINCiZoxHY2zS6mU+JJI7hXutF2TNq14nD08inSQhRAlKi92K/vI7wQyw0fisLNtLJdwq7z//vvMnj2bpKQk07GgoCBmzpzJmDFjSuUetwNvb2+aNm1qdqxq1aro9Xri4uJo1KiR6fjBgwcJCgrCw8MDgK5du/Lxxx9z8uRJatasCcDOnTu5evUq3bp1u3MPcQ8j8tV3C6cM2VwVFYIjGzfSeMQIqwb8yIYNXD1xgmf27LlrDbVEcjuRNu3uQBgMIAROqUlovlih1squFE6VXiN59sABtg0ZwhFTxQSB5rMPrauNg+pwb1uGGBXL1fza3IVLfNmqOyuR3A9Iu3b3IISgQkSEmq2j06k1s40O8swZZouBzu7uJSovVtJ95HcCmeEjKZOw3bJlyxg3bhwdOnRg27Zt/Prrr2zbto327dszbtw4li9fXhbDKjHdunWjSpUq9OvXj48//pidO3fyn//8h1WrVpnV+e7Xrx/169enb9++fPXVV3z66acMHz6c7t27P7ClJBxFGAwWqeLqiZtOtUZrvoa0b9EivENDeXz5cotzGq2WFhMn4uzuztWTJ5nn6cnluDjpaEseaKRNuzM450/uhVEpd/vHOPWpCSvmwo71sGIuml7hKDs+ofeaNVSIiFAVfZ1dVGe8KOJPo2icwMkJsi33VhrrzhpuY91ZieRu4kG3a+mJieyKjSU9MfGO3VMYDKTHx7N71iy2DBzI7lmzSI+PRxgMKIrC1a82QStPrn61CUVRTFHvCWfP0mb6dBoOHEib6dOZcPYsEYMGFVtezOF95BLJHcCuyHZERASffPIJDRo0oGHDhkU6Ioqi8OeffxbZ31tvvcX48eNZtGiR2fEePXoQGBjIm2++ecfSwksDb29vdu7cybRp0/jPf/5Damoq1atXZ+HChYwbN87UztnZmW+//Zbx48fz1FNPodVq6dOnD2+99VYZjv7uIj0xkcMrV9J4+PCbqZUFhNA0Tk42BTT2LVpExODBPL58udke7MtxcXw+bBi9Vq8mrGPHIutDSkMtkTw4Ns3WvunbTeFID0IgLl+02H8NmNLCDU3a0mLCBL6IjkaXmYm2UtF7GwkNA4Me7oCGikRyL3A/2bWS2K7iBM9KE1uVFMC8ZrZTOV+LxcC7PS1cInEUu5ztyMhIPD09Tf++1V/4M2fO8Nhjj1k91717d5YsWXJL/ZcFNWrUYOPGjcW2Cw0NZcuWLXdgRPceQgg8AwNpM22aKdWI/LTxg0uXcu30aXquXGlTQMO4B7v32rVWnWpFUaymLUkDLpFY8iDYtDs5+TRSWNwxoE4doqZPQykmLdzp8+U0GjGdMzt3knTsGBX7jEJZtcD6NU5a6DsaFKk5IZEU5H6xa2VhuxzBaiWFfMxqZofXtnr93ZwWLpE4il3O9kcffWT6d2nUqg4ODua3336jY8eOFud+//13gu9CwyG5vRSegFZu2ZJmY8ZY1pft2NHm/muAo5s38+iiRapTHRtrVhbM6FRn/v4TnlP6kDV/K56tHzVdWyIRC49gaBKjvkokEkkBhBAIvf5mdEajsRR39PQkauZMu9LCNS6u9Fm3Tr1Wo4GZK2D2CHOH20kLMSshIBiKWEiUoj0SieS2oCi4+fqye9as4mtmz5xRZFd3W7ahtJuSkuDwsvfw4cM5c+aM1XPnzp1j+PDhxfYxYsQI5syZw/Tp0/nf//5HYmIif/75J9OnT2fu3Ln3VAq55NYxphotrl6dPXPncmT9epw9PEg7f95iVbS4/dc9Vq7EMzBQranp5KQeL5R+5Fk3Ap6erL4WwChi4dAqsUcwNI2VzrZEIjGj8F7Fy3Fx1sUdMzMx5OWCHWnhQq+/qSuh0UDXwfDlWRgxHboMVF+/PAtdBqnOeBHYsndyMimRSG4Fj/Ll0Wi19tXMdnYBV/fbPqbSsmslmidKHngcViNftWoVo0ePpnr16hbnkpOTWb16NStXriyyj2nTppGSksIbb7zB/Pnzbw5Gq+X5559n6tSpjg5Lco9iVV1cUWgwYAB758+3WBUtlXJdAcEwKvb2PJBEInngsdirqCj0WL7cqk1DCE588w21i0kLF31Hk339unmkR6OBwBBE9AwUZxdE/taYoiLaxSGVcyUSSUkwalFMTkrC8P/t3XlcVNX7B/DPBWZYBmRfRXBJcEFIMRVScUFzi1TUXHI3s8w0za1FMNfSzDIt+4VrKoprbrniFlja8kXcSzBNVEBAUdmf3x82N8bZgVnA5/168dK5c++558wwD3PuPec5paW6rZldXASLQvUJz6oKxzVmShWa0KVujuvVq1fh6uqq0/GfffYZbt26hd27d2PdunXYs2cPbt26hcWLF/Mc2meIquziEltbSOzs1F4VTY2Px/+1bImcv/5CRGws+m7YgIiYGDj4+PC62Iwxk1J1AVFbTDs2Kwbk6gWaFfdkGHh5llagmFUQ3LyRf/u28sGCgKx/M/pm7UmoVEebMcYqQmkkz//+h9A33lAagSgnrpmdeRfHbj1ZitCc8AgfVpV0urP99ddf4+uvvwbwpKM8ePBg2NoqDvsoKChAeno6+vfvr7W8devWoWfPnnB1dVVas/DevXvYs2cPhg0bpmsbWDWmKru42jWzy7mTkoK0I0fg167dk3LUBHTGGDMG+UoKbadPV7qAqC2m3UlJwY6hQ9H3++9BL3SGsO0b4J9rT4aOR4+D4OYNaFnyRtXyXgCvp80YMxx1Wcczz5/H62fPKq0OAyivmX08Awg0syUI+U44q0o69VB8fHwQGhoKAEhNTUVgYCDc3RU/GFKpFI0bN8bo0aO1ljdy5EgkJyervAuelpaGkSNHcme7BlNIGqRqqFG5NbPVJUKTXxXlO9mMMVMrv5ICAOU72DrENHlyR5mHD+j1WRCsJKCSYgiWVpW6Wy1fT9vcvswyxsyfxM5O4/Pqso6Xn/KnbclVxmo6nTrbr7zyCl555RXx8UcffYT69etX+KREpPa5nJwcODg4VLhsZt6ezjoe/t57CH3jDaUvoOrWzAYUr4rylAPGmJwp1s1WiGkalifUJabJkztmpJxTueQND21kjBmDfP71+w8fikuxKn3f0pJ1PDU+HpkXLiBq1ar/VofhNbPZM0jvsbfllwGTe/ToEW7duoUGDRqo/QDt378f+/fvFx9/9tln8PT0VNinoKAAR48exfPPP69vtZgZkg+rbD5qFBy8vfUaanQnJQW7Ro5E77VrNV4VZYwxOWOsPSvv0L8wfjzsXF11Xp5Q1zs9cqqWvKnI0EbuoDPG9PH0TRGXBg2eXMB8Ki+OxNZWa9bxOykpOL1kCfpu2IBP3dww9OBBXjObmTVtozkqQu/O9uLFi/Hw4UPExMQAAE6ePImoqCjcv38f9erVw4EDB9BAxVX9K1euYPfu3QCezPs+efIkrK2tFfaRSqUICgrC/PnzK9IWZkbKD6uUXxWtyFAjQRCerJkdE/PfWrV8VZQxZiLyDn2rt99WGdM03cG+sHUrgoYMQUCPHkaLaTz3kDGmC3XzrwHg1MKFiIqLQ/Brr4kd7uLHj1FWUqJb1vGSEjzOzq6SelblBUS+GMnkdBrNUUF63xr87rvv4OvrKz6ePHkymjZtil27dsHNzU3tsl0TJ05EWloa0tLS4Ofnh/3794uP5T+XL1/Gzp070aRJk4q3iJnc01kpj3/8Mai0VClpkJw8u3j+7dsqs4sLgiAmQLOwsuKONmPM4DRd3ZbIZLBxclIZ0+QXEJsNHox3rl1D+w8/RLPBg9H+ww8xMT0dAT16QLCwwJ2UlP/WzK5kTLNzc1P4l7Gq8iAjA8diY/EgI0On7ax6ktjZqZ1/DQBlJSX4YfRoPMjI+G8qKBEKcnN1yzqem1tlda3Kta553WwGqOi3zJ6NB//8Ayorq5Ly9b6zfePGDTz33HMAgH/++Qe//vorjh8/jnbt2qGkpARvvvmm1jLS0tL0rymrFlRdFZXY2aHjxx/rPNTo1KefImToUA5+jDGj03R1W3wuPx+AikRo/5LPVez2xRca5yqqGipeEbJ/E5bK3DkJGqta6qZmGGPKBjM8hXhXWorjsbEqb4oATzrcv37zDSLKjZR5mJkJt8BARMXFKXXSn846zlhlGConiz6jOSpK76NtbW1x//59AMCRI0dgb2+P8PBwAICTkxPy8vIqVSFWfakbKq7LUl7Av0ONSkvRdto0/uPNGDM6TVe3FZ4bMgQlhYU6LU8IIpyYNw8PMzN5VA5jzGyUj2k7R45UuRTr03KuXYOFpaW4QkLJ48cQLCwQ/NprmJierjSSJ3jIEM46zqqE/AJfvo6jaXQZfaOu3wKoGc1RQXrf2W7VqhUWLlwICwsLLFq0CN27d4elpSUA4K+//kLt2rUrVSFWfVFZmeqh4ryUF2PMTEns7DTOVby6bx/G/PILzm3YoFMiNDkxpllaikuClcdzBZmxmSJbPzM/KuOdIKDn8uU63xTBU50PwcKC8+vUFG7ewOsxT/6txnQZfaO23/Kv8qM5hH/7uhWhd89m8eLFyMjIwMsvv4z8/HzMmzdPfG7z5s3iXW72bCAi8ZdU01XRn5cuhUPt2nj5u++U5vbwUl6MMWMrP3zSNTBQ7dXtF95+G/dv3FCZCK0yMa1K5wrWkC9HzLD0vTPETM8Qc+NVzs0ud1NE2/xrdTdFBEGo0lwUzETcvIE3Yp+Jvyd6jeaoBL3vbDdp0gTXrl1DdnY2XF1dFZ777LPP4OXlVakKsepD1/Vlgf+SBvVZv56X8mKMmZSq2KXy6rYgIOjVV3FqwQK1idB6r1uHep064bdvvzVdTJN/OWKM1ShVPjdew9rYmlZS0OemSFXlomDMEMqP8JF5eOg8mqMyHW69O9tyrq6uICJkZGTAw8MDVlZWaNasWYUrwsxfRdeXlbuwdSteWrr0yVAjedKg0lIx4zhjjBna08MnJXZ2sNqwQeXVbYmtLSR2dpVOhKYvHmLOGDMETWtjK1xA7NgRv/3f//FNEVbjlL+AZe/lhdA33jD4FNcKHX3gwAG0adMGNjY28PPzQ0pKCgBg7Nix2LBhg05lnD9/HgMHDkSDBg1gbW2N3377DQDwwQcfYP/+/RWpFjOw/IwMJC1aBEEQ1K4vq21Ypczd/clSXv9eIbLgOT2MMSNRlQxFUwJHXZI7GiIRGi9HwxjTRtPyhOpoWxtbvhTrw8xMlUuxMlaTCIIABx8fRMXFGXSKq96fnE2bNqFHjx6oV68eVqxYgbJya5A1aNAAq1ev1lrGoUOH0Lx5c1y/fh1DhgxBcXGx+JxEIsGKFSv0rRYzsPLzG22cnSu0vqw8KyVjjJmCymQomuYq6jOP8d9EaNxBZowZUvnvY57BwQqZkrXO8dZhbezMCxdg7+WFgpwcnn/NDMIQuQgqSpds+pWldwlz5szBpEmTsGnTJowYMULhuaZNmyI1NVVrGTNnzsTAgQORnJyMWbNmKTzXvHlz/P777/pWixmQPstDyK+K5vz1F18VZYyZhQcZGTgxb57a2KVpVM6Zr75CrTp1DH7lmzHGtNG0PCGgWxK8h5mZOt3Ne5iZyfOvmUGYW7LG8tn0DdFv0XvO9rVr19CjRw+Vz8lkMp3W2U5NTcWCBQsAQOkLipOTE7KysvStFjOQiiwPIR9W6de2LU7Mm4fmo0bx3R7GmFGoGlqZn5GBxI8+Qtvp01XGLm3JzgRBQPBrr6Fe586c3JExZnSalic8tXAhouLiEPzaa7CytdVaVvm1sTXFNE1rYxsjr4S+5+BcF6wyBEHA7ZQUrG7XDiNPnoR3ixZVVrbenW0vLy9cunQJnTt3VnouJSUF/v7+WstwcXHBrVu3VD535coVePMHxSyoXOxdnzWz1awvyxhjVa380MqykhIQkeLF3HLDJ1XFrtT4eGRfuYIRJ06oXSuW15FljJmCyuW6/lVWUoIfRo9Gvc6dIXN317nMyqyNLc8rYUj6nsMYdWI1nyFGc+h9OX7w4MGIjY3FkSNHxG2CICA1NRWffvopXnvtNa1l9O7dGzExMbh8+bJCGbdv38bixYsRHR2tb7UMZsWKFejVqxfc/03stXXrVrX77t27F+Hh4ZDJZHB2dkbHjh1x8+ZNhX2SkpIQFhYGW1tb+Pv745NPPlGYb2NO1C32zmtmM1Z91cSYpm1opZy24ZOtJ02CxNYW2VevqpyryOvIMmaeamJcE/27XJfK5Qn/VVZSgl+/+QY2Tk56Fm3amMZ3o1l55jSXuyrp3dmOjY1FeHg4unTpIq6p3b17d4SEhKBly5aYMWOG1jIWLFgAd3d3BAcHo3Xr1gCAUaNGITAwEI6Ojog1oytT69atQ1ZWltqh83Lff/89+vbtiw4dOmDPnj1Yu3YtWrZsiYKCAnGfP//8Ey+99BK8vb2xZ88eTJo0CbNmzcJnn31m6GZUiLr5jQqJ0P76ixOhMVaN1LSYJh9a+UW9ejgxdy5SN23Ciblz8UW9ekj5/ntQWRms/l3Cq/zwSU3JUEr+zUKuDs9jZM+SimS9NraaFtfK07RcV3k5167BwspKp6HkTzNVTOOVF1h5FZnLXR066HoPI5dKpdi1axcSExNx6NAhZGVlwcXFBZGRkYiMjNSpDEdHRyQlJeH777/HoUOH4OLiAhcXF4wfPx7Dhg2DVCrVuyGGkpSUBAsLC6Snp2PdunUq97l37x7Gjx+PpUuX4s033xS3R0VFKey3aNEiuLq6Ij4+HlKpFJ07d0ZmZibmzZuHCRMmwNra2qBt0VdZaanG5SEyL1xA1KpVVbq+LGPMsGpSTFM51eVfZSUl+PmLL9A4OhquDRsqDi+vxPBJxp4VWqdmmJGaFNeepm25Ljnn+vVRVlKica41YzVN+XWzzfWiTYVvP3bs2BHz58/Ht99+i4ULF+rc0ZaTSCQYOXIkNm7ciIMHDyI+Ph5jxowxq442AFjocId2y5YtKC0txejRozXut3//fvTu3VuhjQMHDkRubi6Sk5MrXdeqJlhY6LQ8RElhYZWtL8sYM6yaFNPUTXUBgKCBAzH69Gk8zs5WOby8osMnedgjMxeGvKOjy9QMc7rjXZPimhIdluuS58opyM3VWJQ5vWeMPStMMtb3xRdfxIoVK5CZmWmK01e506dPo1GjRli7di38/f1hZWWF559/Hvv37xf3efjwIW7cuIFGjRopHNuoUSMIgoBLly4Zu9pa6brYu9TOjteXZawGqS4xTd1UF8/gYPRetw7nNm7Elw0aaBxeru/wSR72yMyFoZbP0TQ148revaCyMrXrPJuz6hLXVNFnuS5VNK3NzRgzLL2HkVcFb29vvPfee5g0aRI6duyIIUOGoE+fPnBwcDBFdSrt9u3buHz5Mj766CN8+umn8Pb2xvLlyxEVFYU//vgDTZs2Re6/VxudnkpeIZVKYWdnh3v37qktv7CwEIWFheLj+/fvG6IZKumyPARjrGapLjFN3VSX1pMm4cE//2D3mDFVlrmXsWeBpqkZTfr1w3PduuHBrVv4deVK3PvrL7g0aIDQN96o0jVpDcWQcc3Q39Mqs1wXlZVV2/eMsZrAJJ3trVu3Ij8/H9u3b8fmzZsxZswYjBs3Dt27d8fgwYPRq1cvo8+JISKUlpaKjwVBgKWlpU7HlpWVIT8/Hxs2bBDn/nTo0AEBAQH45JNP1M4f0tWCBQswe/bsSpVRGTy/kbHq51mIafKpLgpLeQkCgl59FacWLNCauTciJqbSdWCsJniQkYFfv/0W7T/4QOXUjPKjRZ6+iFV+nWdDd97MNa4Z63uavt/HqmptbsZYxZnskpa9vT2GDRuGvXv3IiMjA59//jnu3buHgQMHwtPT0+j1OX78OCQSifijah1xdZydnQEAnTp1ErdJJBK0b98e58+fB/DfVdK8vDyFY4uKivDo0SO4uLioLX/mzJnIy8sTf27cuKFz3aqKIAh4mJnJc7MZqyaehZimaqqL5N/M44bM3MtYTZOfkYGkTz9Vm/Val9EiDzIyDD482VzjmjG/p+mab0JbAkn5e8YjfNizxti5C0xyZ/tprq6uePHFF3H9+nVcvnwZd+7cMXodQkNDcebMGfGxPkPamzZtqvY5+XISMpkMderUUZrvc/nyZRCR0vyg8qytrc0iU7mDtzfaf/CBqavBGNPBsxLTlIZWpqWhpLCQM/cypie1Wa/1GS0SGwtBxzvNFWGucc0U39O05ZvQlEAS0D7Ch5NBsprGVCssVOjOdmlpKZKSkrBlyxasW7dO6UdXf/31F+bNm4dmzZohJCQEa9aswYABA5CUlFSRalWKg4MDWrZsKf4EBgbqfGyvXr0AAIcPHxa3FRUV4fjx4wgNDRW3de/eHbt27UJxcbG4bfPmzXByckJ4eHgVtIIxxp54lmJa+aGVfb//HhYSSZVk7mXsWSKxtVWZ9Vqv0SIG7GgDz1ZcqwzBwkJtAsnyNI3w4WSQrCbRZYUFQ9H7zvZvv/2Gvn374saNGyqHCwmCgGHDhmksY8mSJYiPj8evv/4KR0dHREdH44svvkCHDh10Wr7BmM6ePYv09HQxc/rp06cBAO7u7oiIiAAAtGjRAtHR0Rg7dizu3bsnJt24c+cOpk6dKpY1depUbNiwAYMGDcJbb72Fc+fOYdGiRZg3b57ZLXnGGKuZampMEwQBt1NSsLpdO7x+9izcAgMRFRenNISyfOberMuXjVpHxszR03d7BAsLhc9O8ePHKH70SLfRIqWlBu9wq1JT41pFUVmZ2gSS5RlrhA/fJWemYmVrq1PuAkPmm9C7s/3mm2/C0dERa9euRZMmTSoUeGbNmoWoqCh89NFH6NatGyQSid5lGMtXX32FtWvXio8/++wzAEBERASOHTsmbl+7di1mzpyJGTNm4P79+wgNDcXhw4fRrFkzcZ/nnnsOBw8exOTJk9GjRw+4u7tj9uzZmDJlitHawxh7ttX0mFb86FGlMvcyVpM9PVdRVabq1pMmKX12si5dUk5GWI58tIipslvX9LhWESoTSJZjiBE+6jrV8rvkjBmbzN1da+6Cep07w8HHx2B10Luzff78eSQkJIhXCivi7t27sDPy5PSKWrNmDdasWaN1P5lMhi+//BJffvmlxv3Cw8PFK66MMWZsz1JM45UUGHtC1VxFEKm92zNg+3YE9Oyp+Nl56o63XPnRIqb6bD1LcU1X5RNIGmuED3eqmTmRyGSwcXLC8dmzdco3YSh6d7YDAgIqvX5gdeloM8YYq97KDy8fefIkvFu0MHWVGDMqVXevX5wxAwU5OWrv9mzp2xcT09NhZW2Npf7+4mdH22gRZl54hA97FokXF/PzAUD3fBMGuliod2f7888/x8SJExESEqIx2+zTatWqhcTERISGhsLBwUHj1U9BEJSWXWCMMcYqSlvmXsZqIpVzFQUBbWfO1DlTdfnPDo8WqX74PWPPEoWLi9eu4ZVVq3TONwEDLV2od2f77bffxu3btxEUFAQfHx9xTUI5QRDwv//9T+m4KVOmwPvfORxTpkzhDzljjDHGmIGoW2e5smvR82iR6offM1bTqUuEVj8yEs1HjzZpvgm9O9uhoaEV6ijHlFvHL5bnczDGGDMSzoTLnkXq1lnWK7u4hkzVPFqk+uH3jFVnTyd4LE9dIrSfly5F8Guv4eXvvsPuMWNMkm9C7862LgkotOnUqRNWrFihchj6lStXMG7cOBw9erTS52GMMcbUJe3hTjirydSus0yE1M2bdbrbw2vRm56mDgZjzwJVCR4VOseCoDYR2p2UFOwcNgy9161DvU6d8Nu33xo934Tene2qcOzYMbVJ1u7fv48TJ04YuUaMMcaeNZw5l1V3mjpimtZZ1vVuD69FbzpaOxiMPQNUJXgMfeMNOPj4iJ1kia0tLKys1E6NSY2PR+aFC+j2xReIiI2FhaWlUXMXVKiznZubi61bt+LKlSsoKChQel7bkgoA1DYuKSkJHh4eFakWY4xVmQcZGfh15conQZ3vfDLGzIguHTFN6yzfSUnBrpEj0WfdOtSPjORM1WZGlw6GOnwnnFUHuvyeqkzwiCfLE0bFxSH4tddgZWuL4sePUVZSonFqzJ2UFKQdOQK/tm0xXyYzau4CvTvbV69eRXh4OAoLC/Hw4UO4u7vj3r17KCkpgbOzMxwdHVV2thcsWIAFCxYAeNLR7tixIyyeChiFhYUoKSnBW2+9VcHmMMZY1cjPyEDSokUIjIrizjZjzGxo64jJLxS+MH68xnWWG7z0EgBwpmozo2sHQ+k4vhPOqgFdf0/VJXgEnqyW8MPo0ajXuTNk7u6Q2NqiIDdX7cVFQHFqjLFzF+jd2Z48eTJat26NhIQEyGQy7Nu3DyEhIdi8eTPef/99JCQkqDwuPDwcU6ZMARHh448/xqBBg+Dr66uwj1QqRePGjfHyyy9XrDWMMVYF+EvLs43ncjNzpUtHrCA3F8dnz0ZgVBRk7u46rY3NmarNgz4dDIXjKnEnnDFj0ef3VF2CRzn3Jk3w8M4deIaEiN/VBAsLtRcXTTk1Ru/O9i+//IK4uDhYW1sDAIqKimBpaYnBgwcjKysL77zzDn766Sel4yIiIhAREQHgyZ3t119/HT4+PpWsPmOMVS3+0sJ4LjczRxXtiOm6zjJnqjY9bR2M8uufA+qXOwIUL8Dw3y5mavqM2BAsLNQneAQQNHAgeq9bhwe3buF4bKz4Xa31pElaLy6aYmqM3p3twsJC1KpVCxYWFnBxccGtW7fE54KCgjBz5kytZZRfBowxxswFf2lhjJkrfTti5fE6y9WDpg6GXPn1z9UtdwQoXoBx4JtbzIT0vVBIZWVqEzx6Bgej97p1OLdxo1Jyx1MLF2LA9u0I6NnTrKbG6P2tMSAgANevXwcANG/eHCtWrMCDBw/w+PFjrFy5Uue71X/++Sc+/PBDDBgwAFFRUUo/jDFmTLr8MXiQkQEiMlENmTY8/JvVZPp0xGxdXVU+r+7uNX92zIOmDPJy4vrnBQWwcXLS6QIMlZUZorqM6UTXC4U2Tk7iNnmCRwsrxfvCrSdNwoN//lHqaMvL2dK3Lx5kZKAgNxfzZTLcSUkx+TRAvTvbAwcOxB9//AEAmDNnDs6cOQNnZ2fUqlUL27ZtQ6wOQ+/OnDmD4OBgbNu2Ddu2bcONGzeQmpqKPXv24I8//kB+fr6+1WKMMb0RkRisdf1jwF9azJd8+DcntGM1kbaOmGdwMMKmTEFZaSmmZWXBMzhY54uD/NkxD+o6GHLyJE8lRUXoOGeOxuWO5HKuXYOFpSXAeUeYiVTkQqEgCGKCR/HzIAgIevVV/B4Xp1PH3VymxlQoQZpcmzZtkJqaiv3796OgoACdOnVCUFCQ1jKmTZuGAQMGIC4uDhKJBHFxcWjRogWSkpIwaNAgTJ8+Xd9qMcaYXsrPzc67eRO9V6/W/UsLY4wZmaalvORzGB/euaMwh7Gy+Sb4jrdxle9gaEryJFhYoP0HH+h+J7y0FOBRWcxE9L1QKCamtbBQmIN9/59/ILGz02uqhTmo0Drb5dWpUwdjx47V65j//e9/mDFjhrj0l3yt7vDwcMTGxmLGjBl46d8lKRhjrKopzc0WBPRcvlznLy3c4WaMGZu6jpi2OYyalovShpMFGt/THQx1GeTl++qy3BHnGmGmVNkLhQoJHvWZamGCZGiqVOjTV1xcjG+++QajR49G165dcfXqVQDA5s2bcfHiRa3HC4IAqVQKQRDg4eEhzgEHAF9fX1y5cqUi1WKMMa1Uzs0mQurmzWg+erTW4Xv8pYUxZiryjtjE9HS0//BDNBs8GK+sXo2Hd+6oncMozzfxdJZyZr7KdzD6btiAiJgYlSMUVA61/ZfCnXANQ8h59AIzNHW/p+UvFH5Rrx5OzJ2L1E2bcGLuXHxRrx5Svv8eVFYGQRBwJyUF82UyFOTk6DTVoiA310it007vb43Xrl1DYGAgpk2bhj///BNHjhzBgwcPAAAnTpzAp59+qrWMJk2a4K9/hwCEhYXhs88+Q2pqKi5fvoyFCxeigZYrFowxVlHq5mb/vHQpHGrXxsvffVfhLy2MMWZoT3fEPENC9E4+VFncQTO88h0MTUmeVF2Aaf/hh5iYno7gIUO0XiDm+frMGCpzoVCee6L40SM8zMzU6QLTw8xMvetoqLim9zDyd955B+7u7vjll1/g5OQEqVQqPhcREaHT0l9jx44V72bPnz8fXbt2RUhICABAJpNh69at+laLMcZ0oi5Rx52UFOwcNgy9161DvY4d8dv//Z/G4XuMMWYq8qW8vn/pJUzNzDT6HEYeXm48uiR50nUtdcZMSdWQ8OOxsdqXMywXa0oeP9ZpqkVFhpAbKq7p3dk+duwYNm3aBDc3N5SWlio85+XlhYyMDK1lDB06VPx/48aNcfHiRSQnJ+Px48do06YNPDw89K0WY4zpRNN8n9T4eGReuICoVasQERsLC0tL/tLCGDNbj7KzUVZSUu3mMLKqx2ups+qgQhcKVWTTr04XmPS+TWNlZaV2KYk7d+7A3t5e70rY29ujS5cuiIqK4o42Y8ygtC2tknnhAuy9vFBSWIgT8+bhYWamWQZvxhgDEQpyc6vdHEZmOOay3BFjmuh1oVBNNn1dp1qYmt53tiMiIvDZZ5+he/fuYjZxQRBARPj222/RuXNnlcdt375dr/P07dtX36oxxphW+i6twhhj5uxhZibcAgO1xrSsy5dNWEvGGCun3IXCymbT1+cCkynyTejd2f7kk08QHh6OJk2aICoqCoIgYPny5UhNTcXVq1fxyy+/qDyuX79+Op9DEASlIersP/KRBffv3zdxTRirvupGRWHkuXP4Y9Uq5Kanw6luXTw/ahQcvLzwID/f1NWDg4OD2V6lrWoc0xjT34P8fBQAyMnMhHXt2lpjWk5mJgr+PU5mos/asxLXqiqmyd9jXd8zTfvrWxZjhiL/XbydlgbXhg3R6auvsG/8+Cd3sP9lYWmJHsuXg2QyPHjwQO3vr77bIZOhxeTJIFTNdw5dYppA6saEa5CWlobY2FgcOnQIWVlZcHFxQWRkJGbPnq02k3j55b104e/vr2+1nhk3b95EnTp1TF0NxpgB5eXloVatWqauhlFwTGPs2fCsxDWOaYw9G3SJaRXqbDPTKisrw61btwxyhfj+/fuoU6cObty4Ue3/INaUtnA7zIux2vGs3AECDBvTAP7dMzc1pR1AzWkLx7WqxTFNNzWlHUDNaQu3Qz+6fMb1HkZelX788UecOXMGN27cwIcffgg/Pz+cOHECzz33HHx8fExZNbNmYWEBX19fg56jVq1a1fpDVl5NaQu3w7zUlHaYA2PENKDmvGfcDvNTU9pSU9phahzT9FNT2gHUnLZwO6qOTp3tUaNG6VygIAiIi4vTuE9mZiZ69+6N06dPi1cdxo0bBz8/P6xatQoymQzLly/X+ZyMMcYYY4wxxpg50amzvWbNGjg4OKBBgwZql/2S02W4zKRJk5CZmYnU1FQ0bNgQUqlUfC4yMhJz587VpVqMMcYYY4wxxphZ0qmzHRYWhtOnT6O0tBSDBw/GwIEDK5XAbO/evfi///s/NG7cWCnreJ06dXDz5s0Kl80qx9raGjExMbC2tjZ1VSqtprSF22Feako7niU15T3jdpifmtKWmtKOZ0VNeb9qSjuAmtMWbkfV0zlB2t9//434+Hhs3LgR586dQ1hYGAYPHowBAwbAzc1Nr5Pa29tjy5Yt6NGjB0pLSyGRSHD27Fm0aNECO3fuxKhRo3Dv3r0KNYgxxhhjjDHGGDM1zauEl+Pn54dp06bhjz/+wLlz59CxY0csXboUPj4+6N69O/bv36/zSVu3bo1Vq1apfC4+Ph4vvviizmUxxhhjjDHGGGPmplJLfxUUFGDWrFlYsmQJoqKisH37dp2OS05ORseOHdGqVSv069cP7777Lj744ANcvHgRe/fuxalTp9CiRYuKVosxxhhjjDHGGDMpvTvbpaWlOHjwIOLj47Fr1y5YWVkhOjoaY8aMwQsvvKBzOcnJyZgxYwaSkpJQWloKQRAQFhaGRYsWISwsTO+GMMYYY4wxxhhj5kLnYeQnTpzAm2++CU9PTwwYMAClpaXYsGEDbt++jZUrV+rc0S4qKsL27dvh6emJ48eP4/79+7h58yYePHiAU6dOcUfbgFasWIFevXrB3d0dgiBg69atavfdu3cvwsPDIZPJ4OzsjI4dOyolrktKSkJYWBhsbW3h7++PTz75RGu2ekPJzs4Wl4+TyWQICgrCN998o7TfrVu3EB0dDQcHB7i4uGDMmDG4f/++CWqs3aVLl9ClSxfIZDJ4eXlh2rRpKCoqMnW1tPrhhx/QunVrODg4wNvbGwMGDMC1a9eU9ouLi0NAQABsbGwQEhKCPXv2mKC2T/z5558YN24cnn/+eVhZWSEoKEjlfrm5uXjnnXfg4+MDGxsbNGjQAJ999pnCPkVFRZg6dSq8vLwgk8nQpUsXXL582RjNeOZwTOOYZgwc0zimGRPHNY5rhsYxzcgxjXTg6+tLNjY21KdPH9qyZQs9fvxYl8PUsra2psTExEqVwfTXunVrat26NQ0bNowAUEJCgsr91q9fT1KplGbOnElHjx6lXbt20XvvvUdXr14V97l69SrZ29tTnz596PDhw7RkyRKSSqW0aNEiYzVHQceOHcnb25tWr15NR44coSlTphAA+vbbb8V9ioqKKCgoiIKCguiHH36g+Ph48vX1pZ49e5qkzprcu3ePvL29qX379vTjjz9SXFwcOTo60vjx401dNY0SExPJwsKCRowYQYcOHaL4+HgKCAigBg0a0KNHj8T9Nm3aRIIg0IcffkhHjx6lN954g6ysrCg5Odkk9d65cyf5+vpSdHQ0NWvWjJo2baq0T35+PoWEhFBoaCjFx8dTYmIirVy5Uul3/o033iBHR0eKi4ujH3/8kdq1a0e1a9em3NxcYzXnmcExjWOaoXFM45hmbBzXOK4ZEsc048c0nTrbgiCQVCole3t7cnBw0PhTq1YtreWFhITQ2rVrK115pp/S0lIiIkpLS1MbwLOzs6lWrVq0YsUKjWWNHTuW/P39qbCwUNw2c+ZMcnJyooKCgqqtuBYZGRkEgFavXq2wvX379tSpUyfx8caNG0kQBLp06ZK47cCBAwSAfv75Z2NVVyfz588nmUxG2dnZ4raVK1eSpaUl/fPPPyasmWZvvPEG1atXj8rKysRtR48eJQB04sQJcVtAQAANGjRI4diwsDDq3r270epanvyzQUQ0fPhwlUH8ww8/pPr161N+fr7acm7cuEGWlpa0cuVKcVt2djbJZDL65JNPqrbSjGMaxzSD45jGMc3YOK5xXDMkjmnGj2k6DSOPiYnB+++/j/feew9TpkzR+DN58mSt5S1YsABz587F2bNn9bwPzyrDwkL7271lyxaUlpZi9OjRGvfbv38/evfuDalUKm4bOHAgcnNzkZycXOm66qO4uBgA4OjoqLDd0dFRYajU/v37ERwcjMDAQHFbly5d4OLign379hmnsjrav38/IiMj4eLiIm4bMGAAysrKcPDgQRPWTLPi4mI4ODhAEARxm/x9kb8X165dw5UrVzBgwACFYwcOHIgjR46gsLDQeBX+ly6fje+++w6jRo2CTCZTu8/BgwdRVlaG/v37i9tcXFzQtWtXs/sdqwk4pnFMMzSOaRzTjI3jGsc1Q+KYZvyYpnNnW58fbaZNm4bs7Gy0bt0aHh4eaNasGYKDg8WfkJCQSjeMVczp06fRqFEjrF27Fv7+/rCyssLzzz+vsLTbw4cPcePGDTRq1Ejh2EaNGkEQBFy6dMmoda5Tpw66du2K+fPn48KFC3jw4AG2bNmCgwcPYvz48eJ+ly5dUqqzIAho1KiR0eusjaq6Ojk5wdvb2+zqWt6IESNw4cIFrFixAnl5ebh27Rref/99NG/eXFzST17/p9vXuHFjFBUVIS0tzej11iY9PR23b9+Gm5sboqKiYG1tDRcXF7z++uvIz88X97t06RI8PDzg7OyscHzjxo3N+n2ryTimmQeOaeaFY1r1xnHNPFTHuMYxzfgxzcogpWoRGhqKli1bmuLUTIvbt2/j8uXL+Oijj/Dpp5/C29sby5cvR1RUFP744w80bdoUubm5AJ4ElPKkUins7Oxw7949o9d7+/btePXVV9G0aVMAgKWlJZYtW4bo6Ghxn5ycHKU6A4Czs7NJ6qxJdapree3atcOOHTswePBg8Y/n888/jx9//BGWlpYAnrQNUP79kQc+c2zf7du3AQDvvfce+vbti3379uHq1auYMWMG8vPzsWnTJgDV932ryTimmYfqVNfyOKZVz/etpuO4Zh6qU13lOKYZ/z0zSWd7zZo1pjjtM4OIUFpaKj4WBEH8AGlTVlaG/Px8bNiwAVFRUQCADh06ICAgAJ988gnWrVtnkDrrSlXbLCwsMHLkSFy9ehUbN26Et7c3Dh06hEmTJsHZ2RkDBw40YY2fLUlJSRg6dChef/119OrVC9nZ2ZgzZw569uyJkydPwtbW1tRVrJCysjIAQEBAANauXQsA6Ny5M6ysrPD6669j3rx5qF+/vimrWKNxTOOYZioc05ihcFzjuGYKHNOMzySdbWZYx48fR8eOHcXHEREROHbsmE7Hyq9aderUSdwmkUjQvn17pKamAvjvSldeXp7CsUVFRXj06JHC3JWqpqpt7733HhISEpCSkoJmzZoBePJH5+7du5gyZYoYwJ2dnZXqDDy5ylWnTh2D1bkiNNXVkK9vZb3zzjvo1KmTwjILbdq0gZ+fH9avX4+xY8eKv2N5eXnw8vIS95NfSTXH9snrXP53D3gSyAHg/PnzqF+/frV938wdxzSOaabCMa16vm/VAcc1jmumwDHN+O8Zd7ZroNDQUJw5c0Z87ODgoPOx8qE9qhQUFAAAZDIZ6tSpozS34fLlyyAipTkeVUlV23bt2gVLS0ulNfeaN2+O7777Do8ePYKdnR0aNWqEc+fOKexDRLh8+TK6dOlisDpXhKq5SXl5ecjIyDDo61tZFy5cwCuvvKKwzdfXF25ubvjrr78A/DcH6NKlSwoJUC5dugSpVGqWd1MaNGgAa2trtc/LPxuNGjXCnTt3kJOTozAfSNW8LqY7jmlPcEwzPo5pHNMMhePaExzXjItjmvFjmk4J0lj14uDggJYtW4o/5T8o2vTq1QsAcPjwYXFbUVERjh8/jtDQUHFb9+7dsWvXLjG7JABs3rwZTk5OCA8Pr4JWqKaqbf7+/igtLUVKSorCvr/++is8PDxgZ2cn1vl///sfrl69Ku5z5MgRZGdno0ePHgarc0V0794dhw8fFudcAUBCQgIsLCzQtWtX01VMC39/f/z2228K265fv46srCzUrVsXAFC/fn0EBAQgISFBYb/Nmzejc+fOCllTzYVUKkXXrl1x5MgRhe2HDh0CALRo0QIA0LVrV1hYWGDbtm3iPjk5OTh48KDZ/Y5VJxzTnuCYZnwc0zimGQrHtSc4rhkXxzQTxDSDLCjGzNKZM2coISGBVqxYQQBoypQplJCQQMeOHVPYLzo6mtzd3SkuLo727dtHPXv2JBsbG0pJSRH3uXr1KslkMoqOjqYjR47Q0qVLSSqVKi0cbwz3798nPz8/eu6552j9+vV0+PBhmjZtGllYWNCcOXPE/YqKiigoKIiaNWtGu3fvps2bN1OdOnWoZ8+eRq+zNvfu3SNvb2+KiIigAwcO0KpVq8jJyYnGjx9v6qpptHTpUgJA77zzDh06dIji4+MpKCiIPD09KSsrS9xPvo7mrFmzKDExkcaNG0dWVlaUlJRkkno/fPiQEhISKCEhgTp06EB16tQRH9+9e5eIiM6ePUtSqZQGDx5MBw4coK+++oocHBxoyJAhCmW98cYb5OTkRKtWraIDBw5QREQE1a5dm3Jzc03RtBqNYxrHNEPjmMYxzdg4rnFcMySOacaPadzZfoYMHz6cACj9REREKOyXn59PEyZMIHd3d7K2tqbw8HA6deqUUnk//fQTtW7dmqytrcnX15cWLFhAZWVlRmqNoqtXr9KAAQPIx8eH7OzsqGnTprR06VIqKSlR2O/mzZvUt29fsre3JycnJxo1ahTl5eWZpM7aXLhwgTp37ky2trbk4eFB7733HhUWFpq6WhqVlZXR119/TcHBwSSTycjLy4v69OlDFy9eVNr3u+++o+eee46kUqn4R9VU0tLSVH42AFBiYqK43+HDh6lly5ZkbW1NXl5eNGXKFCooKFAoq6CggKZMmUIeHh5ka2tLkZGRKtvPKo9jGsc0Q+OYxjHN2DiucVwzJI5pxo9pAlG5leQZY4wxxhhjjDFWaTxnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1txhhjjDHGGGOsinFnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1tppPY2FgIgoDatWujrKxM6fkXX3wRgiBgxIgRepWbm5uL2NhYXLhwQWF7eno6BEHA1q1bK1PtSlu6dCkEQRAfHzt2DIIg4OzZs0arQ2xsLJKSkpS2C4KAxYsXG60equzcuROCICA9PR1Axd63pUuXYt++fQaqIWOqcUx7gmOaIo5prDrjuPYExzVFHNdMizvbTGcSiQRZWVk4ceKEwvbr168jOTkZ9vb2epeZm5uL2bNnKwVwb29vJCcno1OnTpWqc1Vr0aIFkpOT0bhxY6Odc/bs2SoDeHJyMoYMGWK0euiiIu8bB3BmKhzTOKZpwzGNVTcc1ziuacNxzbisTF0BVn1IpVJERkZi06ZN6NChg7g9Pj4eTZs2haWlZZWdy9raGm3atKmy8qpKrVq1tNbr8ePHsLW1NXhdzPH1Mdf3jTFVOKZxTNPGXN83xtThuMZxTRtzfd9qKr6zzfQyaNAgbN26FcXFxeK2jRs3YvDgwSr3P3HiBMLDw2Fraws3NzeMGjUK9+7dA/BkGEu9evUAAP3794cgCOIwF1VDXMrKyjB37lzUrVsX1tbWaNSoEVauXKlwvtjYWNjb2+PcuXNo27Yt7OzsEBQUhAMHDmht2/379zFs2DA4ODjA3d0d06ZNQ0lJicI+qoYmCYKAhQsXYvr06fDy8oKHhwcAgIiwePFiBAQEwNraGvXr18fnn3+udN6LFy+ib9++cHFxgZ2dHUJCQrBp0yaxbACYOnWq+PocO3ZMfO7poUkrV65EYGAgrK2tUbduXcydO1dhKNmaNWsgCAJ+//13dO/eHTKZDA0bNsS6deu0vj7FxcWYNGkSXFxc4OjoiNGjRyM/P19hH1Xv2w8//ICWLVvC3t4eTk5OaNmypXh1tG7durh+/TqWL18utm/NmjUAgHXr1qFt27ZwcXGBs7MzOnTogF9++UXhfPq83+vWrUPz5s1hY2MDNzc39OjRA9evXxefv3nzJl577TW4ubnB1tYW7du3x6+//qr1dWHVG8c0jmkc01hNw3GN4xrHNfPBnW2ml5dffhmFhYU4ePAgAODChQtISUnBwIEDlfb99ddf0aVLFzg4OCAhIQGffPIJdu/eje7du6O0tBTe3t7Yvn07AGD+/PlITk5GcnIyvL29VZ576tSpiI2NxYgRI7B792507doV48aNw1dffaWwX3FxMYYMGYIRI0Zgx44d8PDwQHR0NLKzszW2bdSoUdixYwcWLlyItWvX4sKFC1i6dKlOr8sXX3yBK1euIC4uDt9//z0AYOLEiZg1axaGDx+OvXv3YsSIEZg+fTq++eYb8birV68iLCwMV69exZdffokffvgBI0eOxN9//w3gyfAjAJgwYYL4+rRo0UJlHZYtW4Zx48bhpZdewu7duzFixAjExsZi2rRpSvsOGTIEXbt2xc6dO9G8eXOMGDECFy9e1NjGmTNnYsWKFZg6dSq2bNmC0tJSzJgxQ+Mxf/31F/r164emTZtix44d2Lx5MwYMGICcnBwAwI4dO+Dl5YV+/fqJ7evZsyeAJ38Mhg0bhoSEBGzcuBF+fn5o3749rly5onAOXd7vRYsWYfjw4QgNDcX27dsRFxeHhg0bIjMzEwCQk5ODtm3b4o8//sCyZcuwbds2yGQydOrUCXfv3tXYRla9cUxTjWOaahzTWHXAcU01jmuqcVwzMGJMBzExMSSTyYiIaPDgwfTaa68REdGHH35IYWFhREQUEhJCw4cPF4/p06cP+fn5UVFRkbjtwIEDBIB++OEHIiJKS0sjAJSQkKBwvqe3Z2ZmkkQioRkzZijsN2jQIHJ3d6eSkhKxngBo7969SmWtX79ebfvOnz9PgiBQXFycuK2kpITq1atH5T8miYmJBIDOnDkjbgNATZo0obKyMnHbn3/+SYIg0MqVKxXOM336dPLy8qLS0lLxtXR3d6e8vDy1dQNAixYt0ri9pKSE3NzcaODAgQr7zJw5k6RSKWVlZRER0erVqwkALV++XNwnPz+f7OzsaM6cOWrrkJ2dTba2tvTRRx8pbG/fvj0BoLS0NCJSft8SEhIIAN2/f19t2f7+/jR+/Hi1zxMRlZaWUnFxMQUGBtLMmTPF7bq837m5uWRnZ0djx45VW/6sWbPI0dGR7ty5I24rKCggPz8/mjp1qsa6seqJY9oTHNM4prGag+PaExzXOK6ZE76zzfQ2aNAg7Nq1C48fP0Z8fDwGDRqkcr+TJ0/ilVdegUQiEbd17doVTk5OOHXqlF7n/Pnnn1FcXIz+/fsrbH/11VeRmZmpcAXNwsICkZGR4uO6devC1tYWN2/eVFv+mTNnQETo06ePuM3S0hK9e/fWqX7du3dXyIR5+PBhAEB0dDRKSkrEn8jISNy+fRs3btwAABw5cgT9+vVDrVq1dDqPOpcuXUJWVpbK16eoqEhpSE/Xrl3F/8tkMvj7+2t8fc6dO4fHjx8rvD7y9mkSHBwMS0tLDB48GLt370ZeXp6uTcLFixfRp08feHp6wtLSEhKJBJcvX1a6Wqrt/U5OTsajR48wevRotec6ePAgOnbsCBcXF/G9srS0REREBM6cOaNznVn1xDFNGcc01TimseqC45oyjmuqcVwzLE6QxvT20ksvQSKRYNasWUhLS8OAAQNU7peTkwNPT0+l7Z6enuJcIF3Jh7I8XZ78cfnybG1tIZVKFfaTSqUoKChQW35GRgYkEgmcnZ1Vlq/N0/tlZWWBiODm5qZy/xs3bsDf3x/Z2dnw8fHR6Rya6PP6AICTk5PCY11eHwDiHKeny1cnICAAe/bswfz589GnTx9YWFigW7du+Oqrr+Dn56f2uAcPHqBr165wd3fHkiVL4O/vDxsbG4wZM0apntreb/kQJU2vc1ZWFk6fPq3wZUOuQYMGGtvIqj+Oaco4pqnGMY1VFxzXlHFcU43jmmFxZ5vpTSKRIDo6GkuWLEHnzp3VfohdXFxUzqG4c+cOXFxc9DqnfP+7d++idu3aCmWVf76ivL29UVxcjJycHIUgLi9fm/JXSuX1EQQBp06dUgouABAYGAgAcHV1xa1btypR8//OB0Dp9a7K10devqrXX5Nu3bqhW7duuH//Pn788Ue8++67GDlyJI4cOaL2mOTkZNy8eRN79uxBSEiIuD0vLw++vr561d3V1RUAcOvWLbXHuri4oFu3bpgzZ47Sc9bW1nqdj1U/HNOUcUxTj2Maqw44rinjuKYexzXD4WHkrELGjBmDl19+GRMnTlS7T9u2bbFz506FLJGHDh1Cbm4u2rZtCwBicNN0pQ4AWrVqBYlEgoSEBIXtW7ZsgYeHBwICAiraFADACy+8AOBJEgi50tJS7Ny5s0Llde7cGcCTK3UtW7ZU+nFwcAAAREZGYuvWrXjw4IHasiQSidbXJzAwEO7u7ipfH6lUilatWlWoHXLNmjWDra2twusDANu2bdO5jFq1amHAgAEYOHCgQoIPVVdqHz9+LD4nl5SUhPT0dL3rHhYWBjs7O6xevVrtPpGRkbhw4QIaN26s9F41a9ZM73Oy6odjmmYc05RxTGPmjuOaZhzXlHFcq3p8Z5tVSKtWrbQGtw8++ADh4eHo1asXJkyYgDt37mDGjBlo1aoVevToAQDw8vKCk5MTNm3ahHr16sHa2hrBwcFKZbm5uWHChAlYtGgRbGxs0KZNG+zbtw8bN27EsmXLKr1uZJMmTdCnTx9MmjQJBQUFqFu3LlasWIGioqIKlRcQEIDx48dj6NChmDp1Klq3bo3i4mJcuXIFiYmJ4msXExODPXv2oG3btpg2bRq8vb1x4cIFPHr0SMxM2bhxY+zatQvt2rWDTCZDYGCg+AdAztLSEh999BHeeecdeHh4oEePHjh9+jQ++eQTTJo0SbxiWFEuLi4YN24cFi5cCFtbW7Ro0QKbNm3CX3/9pfG4lStXIjk5Gd26dYO3tzfS0tLw/fffK8xDaty4MY4ePYpDhw7B2dkZ9erVQ5s2bWBvb4/x48djxowZ+OeffxATE6NwpVZXjo6OiImJwfTp01FWVoZXXnkFZWVlSExMxKBBg9CyZUtMnjwZGzZsQEREBCZOnAg/Pz9kZmbi559/ho+PD9599129z8uqF45pmnFMe4JjGqtOOK5pxnHtCY5rBmbK7Gys+iif4VKdpzNcEhEdO3aMwsLCyNramlxcXGjEiBGUnZ2tsM+OHTuocePGZG1tLWZLVJX5srS0lD7++GPy8/MjiURCDRs2pG+++Uanejo6OlJMTIzG+ufk5NCQIUNIJpORq6srTZ48mRYtWqRThktVGSjLyspo2bJlFBQURFKplFxcXCgsLIyWLFmisN/58+cpKiqKatWqRXZ2dvT8889TfHy8+PzJkyepRYsWZGtrSwAoMTFR7Xm//vpratiwIUkkEvLz86M5c+aI2TSJ/stwmZmZqXCcqvfuaYWFhTRhwgRycnKiWrVq0fDhw2n9+vUaM1wmJSVRz549ydvbm6RSKfn5+dHEiRMVMl6mpqZSu3btyMHBgQDQ6tWriYho//791LRpU7KxsaHg4GDat28fRUREUM+ePcVj9Xm/V61aRc2aNSOpVEqurq7Uq1cvun79uvh8RkYGjR49Wqyrr68v9evXj3766SeNrwurnjimPcExjWMaqzk4rj3BcY3jmjkRiIgM3qNnjDHGGGOMMcaeITxnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1txhhjjDHGGGOsinFnmzHGGGOMMcYYq2Lc2WYGk56eDkEQsHXrVr2OO3bsGObPn6+0PTY2Fvb29lVVPa2WLl2Kffv2VVl5O3fuxIoVK5S2jxgxAkFBQVV2nqpm7NedMXPGcU0RxzXGqjeOaYo4prGqxp1tZnbUBfAxY8YgMTHRaPUwVgA3d8Z+3RmriTiumReOa4xVDsc088IxzXxZmboCrHohIhQVFcHa2tro5/b19YWvr6/Rz/usKiwshEQiqbLXXV6ehQVf42PmhePas4PjGnsWcEx7dnBMM3/8SjKN5MNm9u3bh5CQEFhbW2P37t0AgOTkZHTq1AkymQyOjo4YPHgw7t69q7G8devWoW3btnBxcYGzszM6dOiAX375RXw+NjYWs2fPxsOHDyEIAgRBQIcOHcTn5ENkHj58CJlMhsWLFyudo1+/fggLCxMf5+bm4q233oK3tzesra0RGhqKgwcPaqxn3bp1cf36dSxfvlysx5o1awAAZWVlmDt3LurWrQtra2s0atQIK1eu1Po6rl27FufPnxfLGzFihMI+x44dQ/PmzSGTydCqVSv8+uuvCs8TERYvXoyAgABYW1ujfv36+PzzzzWeV37uoKAg7N+/H0FBQbCxsUFoaChOnz6t1Oa3334bn376Kfz9/WFra4t79+6pHJp0/fp19OvXD46OjpDJZHjppZdw7tw5ncrTVMfDhw8jODgYtra2iIiIQHp6Ou7du4cBAwagVq1aaNCgATZv3qx0/N69e9G6dWvY2trC3d0db775Jh4+fCg+//DhQ7z99tsIDAyEnZ0d6tati3HjxiEvL09lnZcvXw5/f384Ojqid+/eyMzM1Po6s+qD4xrHNY5rHNdqEo5pHNM4pplxTCPGNBg+fDg5OztTgwYNaPXq1XTkyBG6evUqJSUlkVQqpd69e9Pu3bspPj6ennvuOWrTpo14bFpaGgGghIQEcdvs2bNp5cqVdPjwYdq3bx8NHTqUrK2t6fLly0REdOPGDRo9ejTZ2tpScnIyJScn0/nz54mIKCYmhmQymVjWwIEDKTQ0VKG+9+/fJxsbG/ryyy+JiKiwsJBatmxJderUobi4OPrxxx/ptddeIysrK0pJSVHb7t9++428vLyoX79+Yj3u3r1LRESTJ08mS0tLiomJoQMHDtCECRMIAC1btkxteX/++Sf16NGD6tevL5b3559/iq+xq6srNWvWjDZs2EB79uyhZs2aUZ06daioqEgsY8KECWRra0tz586lQ4cO0ezZs0kikdDXX3+t9T10cXGhunXr0po1a2jXrl0UFhZGtWrVojt37oj7+fv7k5eXF7Vr14527NhBP/zwAz169Ejpdb9//z7VrVuX6tevTxs3bqTt27dTaGgoOTk50d9//621PHV1dHV1peDgYIqPj6dt27ZR7dq1KTw8nCIjI+njjz+mgwcPUv/+/cnKyorS09PFYxMSEsjCwoJGjx5N+/fvp1WrVpGHhwe9+uqr4j53796lcePGUUJCAh07dozWr19PjRo1og4dOijUw9/fn+rUqUNdu3al3bt30+rVq8nJyUmhLFb9cVzjuMZxjeNaTcIxjWMaxzTzjWnc2WYaDR8+nADQ6dOnFba3b9+ewsPDqaysTNx2/vx5EgSB9u7dS0SqA3h5paWlVFxcTIGBgTRz5kxx+9MBQ932Xbt2EQC6cuWKuG3t2rVkaWlJt2/fJiKiVatWkZWVlfhHQK5169bUv39/jW339/en8ePHK2zLzMwkiURCM2bMUNg+aNAgcnd3p5KSErXlDR8+nJo2bapyuyAIlJqaKm5LTEwkAHTy5EkievIHQBAEWrlypcKx06dPJy8vLyotLdV4XgB05MgRcVtubi45ODgotMPf359cXV0pPz9f4finX/cvvviCBEGgCxcuiNuys7NJJpPR5MmTtZanro5PvwbLli0jADR9+nRxW05ODllaWtLSpUuJiKisrIz8/f1p0KBBCuXt379fqbzyiouL6dSpUwRA/PIgr7Ovry8VFBQotF8ikWh8jVn1wnGN4xrHNY5rNQnHNI5pHNPMN6bxMHKmlaurK1q3bi0+fvToEX766Sf0798fpaWlKCkpQUlJCQICAlCnTh2cOXNGbVkXL15Enz594OnpCUtLS0gkEly+fBlXrlzRu17dunWDk5MT4uPjxW3x8fHo2LEjPD09AQAHDx5Es2bNEBAQINazpKQEXbp00VhPdX7++WcUFxejf//+CttfffVVZGZmVqgdAODj44OmTZuKj5s0aQIAuHnzJgDg8OHDAIDo6GiFdkRGRuL27du4ceOGxvIdHR3RqVMnhceRkZH4+eefFfbr0KEDZDKZxrJOnjyJoKAgNG7cWNzm4uKCLl264NSpU3qXJ/f0axAQEAAAiIyMFLc5OTnBw8NDbO+VK1dw/fp1DBgwQOF1iYiIgIWFBc6ePSseu379ejRv3hz29vaQSCRo27atWEZ5ERERCvPcmjRpguLiYq3D7lj1wnHtPxzXOK6x6o9j2n84pnFMMyfc2WZayYOhXE5ODkpLS/Huu+9CIpEo/Pz9999qg8mDBw/QtWtXXL9+HUuWLMHJkydx5swZhISEoKCgQO96SaVSREdHiwE8Ozsbhw4dwuDBg8V9srKy8PvvvyvVc+7cuVqDnio5OTkAlF8T+WN181y0cXJyUngslUoBQHxdsrKyQERwc3NTaEeXLl0AQGtb3N3dlbZ5enoiIyNDZTs0ycnJUbmfp6enUvt1KU9O3Wuganv51wUA+vTpo/C62NnZobS0VHxdduzYgWHDhqFVq1bYsmULTp8+jR07dgCA0u+etveC1Qwc1xTbDnBc47jGqjOOaYptBzimcUwzD5yNnGklCILCYycnJwiCgPfffx+9e/dW2t/NzU1lOcnJybh58yb27NmDkJAQcXteXl6FMygOGjQIcXFxSElJQXJyMiwtLdG3b1/xeRcXFwQHByMuLq5C5T/NxcUFAHD37l3Url1b3H7nzh2F56uai4sLBEHAqVOnxIBSXmBgoMbjVSWNuHPnDry9vRW2Pf1eq6vL5cuXVZb3dPt1Ka8y5Of76quvFK7oy/n4+AAAEhIS8PzzzyskRzl+/LhB68bMG8e1/3Bc47jGqj+Oaf/hmMYxzZxwZ5vpTSaTISwsDBcvXsTcuXN1Pu7x48cAoBCAkpKSkJ6erjAkRSqVorCwUKcyO3ToAC8vL2zatAnJycno3r07HB0dxecjIyOxb98++Pj4iB9mXZW/KifXqlUrSCQSJCQkoHnz5uL2LVu2wMPDQxxOo2t5uurcuTOAJ1eEX375Zb2Pz8vLw9GjR8XhSXl5eTh8+DDGjx+vd1lt27bF1q1bcfnyZfEPR05ODg4fPoyxY8fqXV5lNGrUCL6+vrh27ZrGtjx+/FjpD9+GDRsMXT1WjXBc47jGcY3VJBzTOKZxTDMP3NlmFbJo0SJ06tQJr776KgYOHAhnZ2fcvHkThw4dwsiRI8UlIMpr06YN7O3tMX78eMyYMQP//PMPYmJiFK46AkDjxo1RUlKCL774AuHh4ahVq5baq4GWlpYYMGAA1qxZg7t37yrMCQKAYcOGYeXKlejQoQPee+89BAQEIDc3F7///juKioqwYMECtW1s3Lgxjh49ikOHDsHZ2Rn16tWDm5sbJkyYgEWLFsHGxgZt2rTBvn37sHHjRixbtgyWlpYay1u1ahU2bdqEhg0bws3NDXXr1lX/IpcTEBCA8ePHY+jQoZg6dSpat26N4uJiXLlyBYmJidi5c6fG411cXDB69GjMnj0bTk5OWLhwIYgIkyZN0un85Y0cORKff/45evbsiblz58LGxgbz5s2DlZVVhcqrDEEQsGTJEgwePBgPHz5Ez549IZPJcP36dezduxfz589HQEAAunTpgvHjx2POnDkICwvDvn37cOTIEaPWlZk/jmsc1ziusZqEYxrHNI5pZsCU2dmY+VOXlZGI6MyZM9SjRw9ydHQkW1tbatiwIY0bN45u3LhBRKozXO7fv5+aNm1KNjY2FBwcTPv27aOIiAjq2bOnuE9xcTG99dZb5OnpSYIgUEREBBGpz3yZnJxMAMje3l7lcgV5eXn07rvvkp+fH0kkEvL29qYePXrQnj17NLY9NTWV2rVrRw4ODgSAVq9eTURPMnN+/PHHYnkNGzakb775RmNZ8noMHDiQXF1dCQANHz6ciFS/xjk5OQrnJHqSzXHZsmUUFBREUqmUXFxcKCwsjJYsWaLxvPLy9+zZQ40bNyapVErNmzenn376SWE/VRk9iVS/7unp6dS3b19ycHAgOzs76tKli9LyHOrK01TH8uRZPs+cOaO13IMHD1JERATJZDKSyWTUtGlTmjJlCuXm5hIRUUlJCU2ZMoXc3d3JwcGB+vXrR6dPn1b6/VRV9o4dOwgApaWl6dQWZv44rnFc47jGca0m4ZjGMY1jmvnGNIGIyHhde8aYsY0YMQJnz55FamqqqavCGGNVguMaY6wm4ZhWc3E2csYYY4wxxhhjrIpxZ5sxxhhjjDHGGKtiPIycMcYYY4wxxhirYnxnmzHGGGOMMcYYq2Lc2WbMwFq1aoXly5erff6PP/6AIAg4duyYQc7fpUsXzJs3zyBlM8aePRzTGGM1Dcc1Zijc2WbMgHbs2IH09HSMGjXKZHV4//33sXjxYuTk5JisDoyxmoFjGmOspuG4xgyJO9uMGdDSpUsxaNAg2NramqwOHTt2hLOzM9auXWuyOjDGagaOaYyxmobjGjMk7mwzZiBpaWk4efIk+vXrp7B97ty58PLygr29Pfr27Yu7d+8qHUtEWLx4MQICAmBtbY369evj888/V9pvx44dCAwMhI2NDdq0aYPffvsNTk5OiI2NVdivf//+HMAZY5XCMY0xVtNwXGOGxp1txgzkyJEjsLKyQqtWrcRtX331FT766CMMHToU27ZtQ/369TF69GilYydOnIhZs2Zh+PDh2Lt3L0aMGIHp06fjm2++Eff5/fff0b9/fzRp0gTbt2/H8OHD8eqrr6KwsFCpvPDwcPzxxx/IzMw0TGMZYzUexzTGWE3DcY0ZHDHGDGLs2LHUtGlT8XFJSQn5+PjQ0KFDFfYbOnQoAaDExEQiIvrzzz9JEARauXKlwn7Tp08nLy8vKi0tJSKi/v3703PPPSc+JiJav349AaCYmBiFY9PS0ggA7dmzpwpbyBh7lnBMY4zVNBzXmKHxnW3GDCQjIwPu7u7i45s3b+LWrVvo06ePwn5PD106fPgwACA6OholJSXiT2RkJG7fvo0bN24AAM6cOYNevXrBwuK/j/Err7yisi5ubm5inRhjrCI4pjHGahqOa8zQrExdAcZqqoKCAlhbW4uP5cHTw8NDYT9PT0+Fx1lZWSAiMeg+7caNG/D391f6AwEADg4OsLGxUTpGXo/Hjx/r3xDGGAPHNMZYzcNxjRkad7YZMxAXFxekp6eLj729vQFAKcnGnTt3lI4TBAGnTp2CVCpVKjcwMFAs7+l5PQ8ePEBBQYHSMbm5uQAAV1dXvdvBGGMAxzTGWM3DcY0ZGg8jZ8xAAgMDkZaWJj729fWFt7c3duzYobDf1q1bFR537twZAJCdnY2WLVsq/Tg4OAAAXnjhBezZswdlZWXisTt37lRZF/kfEnnwZ4wxfXFMY4zVNBzXmKHxnW3GDOTFF1/Exx9/jJs3b8LX1xeWlpaYMWMGJk6cCE9PT3Tp0gUHDx5EYmKiwnEBAQEYP348hg4diqlTp6J169YoLi7GlStXkJiYKAbpmTNn4oUXXkB0dDTGjh2L69evY/HixbCxsVGYGwQAZ8+ehb29PZ5//nkjtZ4xVtNwTGOM1TQc15jBmThBG2M1VmFhIbm6utK3334rbisrK6PZs2eTh4cH2dnZUVRUFP34448KGS7l+y1btoyCgoJIKpWSi4sLhYWF0ZIlSxTOsW3bNgoICCBra2sKDQ2lU6dOkZWVFS1dulRhv5dfflkpsyZjjOmDYxpjrKbhuMYMTSAiMnF/n7Eaa8qUKfj9999x9OhRo5zvyJEjiIyMxLFjxxAREQEAyMnJgZeXFw4dOoT27dsbpR6MsZqJYxpjrKbhuMYMiTvbjBlQRkYGnnvuOSQlJSEkJKTKy3/rrbfQuXNnuLq64vz585gzZw58fHxw9uxZcXjSxx9/jGPHjhntjwhjrObimMYYq2k4rjFD4jnbjBmQt7c31qxZo5SJsqrk5ORgwoQJyMrKgqOjI7p164bFixcrzANycXHBl19+aZDzM8aeLRzTGGM1Dcc1Zkh8Z5sxxhhjjDHGGKtivPQXY4wxxhhjjDFWxbizzRhjjDHGGGOMVTHubDPGGGOMMcYYY1WMO9uMMcYYY4wxxlgV4842Y4wxxhhjjDFWxbizzRhjjDHGGGOMVTHubDPGGGOMMcYYY1WMO9uMMcYYY4wxxlgV4842Y4wxxhhjjDFWxf4fMywWWQhzK/UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADegElEQVR4nOydd3hURffHP3ez6QkpJIEk1IReghDKTymhS1G6oIAgEAQEARV8pSYUAcuLYAUEpIiANDuiooBYQMprRKRIJwmQQBJC+u7O74+bXbLZ3WQ3BEKZz/PkWfbeuXPn7iaHOXPOfI8ihBBIJBKJRCKRSCQSiUQiKTU0ZT0AiUQikUgkEolEIpFI7jeksy2RSCQSiUQikUgkEkkpI51tiUQikUgkEolEIpFIShnpbEskEolEIpFIJBKJRFLKSGdbIpFIJBKJRCKRSCSSUkY62xKJRCKRSCQSiUQikZQy0tmWSCQSiUQikUgkEomklJHOtkQikUgkEolEIpFIJKWMdLYlEolEIpFIJBKJRCIpZaSzLZHcxezatQtFUdi8eXNZD0UikUhumbNnz6IoCm+++WZZD0UikUgcplq1ajz22GNlPQzJPYR0tiX3DH/88Qfjxo2jfv36eHp6UqVKFfr378+JEyeKvC4vL4969epZneClpqYyaNAg/Pz8CAsLY8WKFRbXHzhwAA8PD86cOVOqzyORSB5sbty4QUxMDF26dMHf3x9FUVi1apVFO4PBwKpVq+jRoweVK1fG09OTBg0aMHfuXLKzs83a5uTk8PzzzxMYGEilSpWYO3euRX8XL17Ey8uLX3755XY9mkQikVhw6NAhevTogb+/Px4eHjRo0IC3337brM3SpUupXr06/v7+PP3001y/ft3svMFgoHHjxsybN+9ODl0iKTHash6ARGIvr732Gr/88gtPPPEEERERXLp0iXfffZcmTZrw+++/06BBA6vXvfPOO5w/f97quUmTJrFr1y5mzZrFv//+y8iRI6lbty6PPPIIAEIIxo8fz8SJE6levfptezaJRPLgkZyczOzZs6lSpQqNGjVi165dVttlZmYybNgw/u///o/Ro0cTFBTEb7/9RkxMDDt37uTHH39EURQA3njjDdasWcO0adNIT09n9uzZhIeH89RTT5n6mzx5Mj169KBly5Z34jElEomE7777jscff5zGjRszY8YMvLy8OHXqFBcvXjS12bt3L2PGjGH8+PGEhYUxf/58Jk+ezNKlS01tPvzwQ9LS0njppZfK4jEkEscREsk9wi+//CJycnLMjp04cUK4urqKQYMGWb3m8uXLwsfHR8yePVsA4o033jA7X6FCBbF69WrT+6ioKPHKK6+Y3q9du1aEhISI9PT0UnwS+/npp58EIDZt2nRb73Pjxo3b2r9EIrEkOztbJCYmCiGE+OOPPwQgPvroI4t2OTk54pdffrE4PmvWLAGI77//3nSsRYsWYtasWab3Q4cOFU8++aTp/c8//yw8PT3FhQsXSvFJ7OfMmTNWbXFpI22aRHL3kJaWJipUqCB69+4t9Hq9zXb/+c9/RLt27UzvP/roI1GxYkXT+5SUFBEQECC2bNlyW8dbFFWrVhXdu3e/rffIy8uzmO9K7l1kGrnknuGRRx7BxcXF7FjNmjWpX78+//zzj9VrXnnlFWrXrs3gwYOtns/KysLPz8/03t/fn8zMTAAyMjJ45ZVXmD9/Pl5eXg6NNT4+nhEjRhASEoKrqyvVq1dnzJgx5ObmmtqcPn2aJ554wpRO9X//9398/fXXVvszGAy8+uqrVKpUCTc3Nzp06MC///5r0W7fvn106dIFHx8fPDw8iIqKskgVjY2NRVEUjh49ysCBA/Hz86NVq1am8x9//DGRkZG4u7vj7+/Pk08+yYULF8z6aNu2LQ0aNODo0aO0a9cODw8PQkNDef311y3GlJ2dTWxsLLVq1cLNzY3g4GD69OnDqVOnzJ5v0aJF1K9fHzc3NypUqMCoUaNISUmx7wOXSO5BXF1dqVixYrHtXFxcTNk2BenduzeAmf0ryqYZDAYmTJjAyy+/TKVKlRwaa2pqKi+88ALVqlXD1dWVSpUqMWTIEJKTk01trly5wogRI6hQoQJubm40atSI1atX2+xz2bJlhIeH4+rqSrNmzfjjjz8s2hw7dox+/frh7++Pm5sbTZs25YsvvjBrs2rVKhRFYffu3Tz33HMEBQWZPd/27dtp3bo1np6eeHt70717d/7++2+zPp555hm8vLyIj4+nV69eeHl5ERgYyKRJk9Dr9WZtDQYDixcvpmHDhri5uREYGEiXLl04cOCAWTt7bKlE8iDwySefcPnyZV599VU0Gg0ZGRkYDAaLdkXZL1DnLw0bNqRPnz4O3d+ev1mdTsecOXNMNqlatWpMnTqVnJwcq33u3buX5s2b4+bmRlhYGGvWrLFok5qaysSJE6lcuTKurq7UqFGD1157zezZC+pYLFq0yHT/o0ePAo7ZwF9++YUXX3yRwMBAPD096d27N0lJSRbj2r59O1FRUXh7e1OuXDmaNWvGJ598YtbGnvmkxE7K2tuXSG4Fg8EgQkNDRefOnS3O7du3T2g0GvHrr7/ajKZ06NBBtG3bVpw4cUJ8++23wt3dXXz88cdCCCGmTp0qmjdvLgwGg0Njio+PFyEhIcLDw0NMnDhRLFmyRMyYMUPUrVtXpKSkCCGEuHTpkqhQoYLw9vYW06ZNEwsXLhSNGjUSGo1GbN261dSXMbLduHFjERkZKd566y0RGxsrPDw8RPPmzc3uu3PnTuHi4iIefvhh8d///le89dZbIiIiQri4uIh9+/aZ2sXExAhA1KtXT/Ts2VO8//774r333hNCCDF37lyhKIoYMGCAeP/998WsWbNEQECAqFatmmnsQqgZACEhIaJy5cpiwoQJ4v333xft27cXgPjmm29M7XQ6nejQoYMAxJNPPineffddMX/+fNG+fXvx2WefmdpFR0cLrVYrRo4cKZYsWSL+85//CE9PT9GsWTORm5vr0OcvkdyLFBXZtsV3330nAPHJJ5+Yjo0YMUI0aNBAxMXFiV9//VVUrFhRzJ07VwghxLJly0SVKlVEZmamQ2NLT08XDRo0EE5OTmLkyJHigw8+EHPmzBHNmjUThw8fFkIIkZmZKerWrSucnZ3FCy+8IN5++23RunVrAYhFixaZ+jLa4saNG4saNWqI1157Tbz++usiICBAVKpUyezv/ciRI8LHx0fUq1dPvPbaa+Ldd98Vbdq0EYqimNnJjz76yGTToqKixDvvvCMWLFgghBBizZo1QlEU0aVLF/HOO++I1157TVSrVk34+vqKM2fOmPoYOnSocHNzE/Xr1xfDhw8XH3zwgejbt68AxPvvv2/2eTzzzDMCEF27dhWLFi0Sb775pujZs6d45513TG3staUSyYNA3759Rbly5cT3338vatWqJQDh6ekpRo8eLbKyskzt1q5dKzw8PMSOHTvEiRMnRJs2bUTHjh2FEEL8/fffwtXVVfz5558O39+ev9mhQ4cKQPTr10+89957YsiQIQIQvXr1MuuratWqonbt2qJChQpi6tSp4t133xVNmjQRiqKII0eOmNplZGSIiIgIUb58eTF16lSxZMkSMWTIEKEoipgwYYKpndEm1qtXT4SFhYkFCxaIt956S5w7d85hG9i4cWPRvn178c4774iXXnpJODk5if79+5uN/6OPPhKKoogGDRqIV199Vbz33nsiOjpaPP3006Y29s4nJfYhnW3JPc3atWsFIFasWGF23GAwiObNm4unnnpKCGE7dTEuLk5UqlRJAAIQffv2FXq9Xpw+fVq4u7uL3377zeExDRkyRGg0GvHHH39YnDM67hMnThSA+Pnnn03n0tPTRfXq1UW1atVMaVZGZ7tu3bpmKUWLFy8WgPjrr79M/dasWVM8+uijZosDmZmZonr16qJTp06mY0Zn2/jZGDl79qxwcnISr776qtnxv/76S2i1WrPjUVFRAhBr1qwxHcvJyREVK1YUffv2NR1buXKlAMTChQttfhY///yzAMS6devMzn/77bdWj0sk9yMlcbY7duwoypUrZ+a8XbhwQdSvX99k01q3bi3S09NFamqqCAwMFBs2bHB4bDNnzhSA2eTOiPHveNGiRQIwLVYKIURubq54+OGHhZeXl7h+/boQ4qYtLl++vLh27Zqp7eeffy4A8eWXX5qOdejQQTRs2FBkZ2eb3e+RRx4RNWvWNB0zTjRbtWoldDqd6Xh6errw9fUVI0eONBvzpUuXhI+Pj9lx40R79uzZZm2NC51GfvzxRwGI8ePH2/wsHLGlEsmDQEREhPDw8BAeHh7i+eefF1u2bBHPP/+8aSHeiE6nE3369DHZr8qVK4u4uDghhBCdO3cWo0ePdvje9vzN/u9//xOAiI6ONjs/adIkAYgff/zRdKxq1aoCEHv27DEdu3LlinB1dRUvvfSS6dicOXOEp6enOHHihFmfr7zyinBychLnz58XQty0ieXKlRNXrlwxa+uoDezYsaPZHPCFF14QTk5OIjU1VQghRGpqqvD29hYtWrQwW+Qo+Fk4Mp+U2EeZO9uXL18W586ds/iRSIrjn3/+EeXKlRMPP/yw2QRLCNXJc3d3tzBm1vYJZmVliT/++EOcPHnSdKx3795i8ODBQgghtmzZIiIiIkS1atXErFmziox06/V6Ua5cOdGzZ88ix16rVi2LyLQQQsyfP9/MiTY626+//rpZu0OHDglAfP7552bvV69eLZKSksx+oqOjhaurq8mBNzrbu3fvNutz4cKFQlEUcfLkSYs+6tata1pdFkJ1tr28vCw+ix49eojGjRub3nfv3l0EBASIvLw8m5/F+PHjhY+Pj7hy5YrFfb28vCz+85NI7kccdbZfffVVq1FXIVQn9/Dhw+Lvv/82/d2/8MILolWrVkIIdYGrefPmolKlSuL5558vdm9g/fr1RaNGjYps07lzZ1GxYkWL/Zjr1683c6KNtvi5554za3ft2jUBiMWLFwshhLh69apQFEXMmTPHwi4Y96pfvHhRCHFzollQf0MIIbZu3WqaKBfuo3PnzqJGjRqmtkZnu/Bkd/z48cLPz8/0fuzYsUJRFHH16lWbn4UjtlQieRAICwsTgIWzPGrUKAFYOKQnT54UBw4cMDmEn3/+ufD19RVJSUni4sWL4rHHHhPBwcHiscceE/Hx8UXe256/2Xnz5glAHD161Ox4YmKiAMyc6KpVq4p69epZ9BERESF69+5t9r5Lly4WNuCHH34wW5g02sRhw4aZ9VcSG/jpp5+a9WG0gcZsgE2bNglAbNu2zeZn4ch8UmIfZaJGfvXqVZ5//nm2bt1KXl6e2TkhBIqiWOyRkkgKcunSJbp3746Pjw+bN2/GycnJdO769etMmTKFyZMnU7ly5WL7Mu6BMfLjjz/y3Xffcfz4cY4fP86TTz7J0qVLqVatGk899RSVK1dm2LBhVvtKSkri+vXrNpXRjZw7d44WLVpYHK9bt67pfME+qlSpYtbOuKfJuKf55MmTAAwdOtTmPdPS0sz2QhVWVz958iRCCGrWrGn1emdnZ7P3lSpVMikgFxxXXFyc6f2pU6eoXbs2Wq1tU3Py5EnS0tIICgqyev7KlSs2r5VIHkQ2btzI9OnTGTFiBGPGjLE47+zszEMPPWR6f+zYMd5//31+/fVXrl27Rvfu3XnllVdo164dw4YN49VXX2XWrFk273fq1Cn69u1b5JjOnTtHzZo10WjMpWAK2rSCFGfT/v33X4QQzJgxgxkzZli955UrVwgNDTW9t2bTANq3b2/1+nLlypm9N+7lLDyugtoRp06dIiQkBH9/f6t9Gu/riC2VSO533N3dAcyqIgAMHDiQpUuX8ttvv5n9vdSoUcP079zcXF566SViYmIICAigdevWBAcH8+WXX7JgwQIGDhxos5ID2Pc3e+7cOTQajdl9ASpWrIivr2+x9gssbcXJkyeJi4uzsClGCs9tCtuvktjA4uyqUSunqDlqSeaTkqIpE2c7Ojqa3bt3M2XKFOrVq2cheiWRFEVaWhpdu3YlNTWVn3/+mZCQELPzb775Jrm5uQwYMICzZ88CmEpLpKSkcPbsWUJCQqz+3un1eiZMmMArr7xCaGgoc+bM4ZFHHjE516NGjWLdunU2ne3bRcHFhIIIIQBMYhtvvPGG2SS7IIVF3oz/+RkxGAwoisL27dut3q/w9cWNyV4MBgNBQUGsW7fO6nlb/1FJJA8i33//PUOGDKF79+4sWbLErmteeOEFBg8eTJMmTVi7di3+/v5MmTIFgJdffrlYZ/t2YK9NmzRpEo8++qjVtoUnxtZsGsDatWutCtEVXgS0NSZHcdSWSiT3OyEhIfz9999UqFDB7Lhxkb0oMdS33noLrVbLuHHjuHDhAnv37uXMmTNUq1aN119/nbCwMC5evOiw6KM1CgcQbGHP/MdgMNCpUydefvllq21r1apl9t6W/XLEBpbGvKwk80lJ0ZSJs/3TTz/x9ttvM2TIkLK4veQeJjs7m8cff5wTJ07www8/UK9ePYs258+fJyUlhfr161ucmzdvHvPmzePw4cNWjcgHH3xAeno6kyZNAiAhIcHMmQ8JCSE+Pt7m+AIDAylXrhxHjhwp8jmqVq3K8ePHLY4fO3bMdN4RwsPDATVS07FjR4euLdiHEILq1atb/CdQUsLDw9m3bx95eXk2oznh4eH88MMPtGzZ0uI/G4lEcpN9+/bRu3dvmjZtyqefflpkxoiRr776il9//dUUrUhISCA4ONh0vjibBurfqD02LS4uDoPBYBbdLqlNCwsLA9Qo8K3YNFAn9CXtw1qfO3bs4Nq1azYjZbfDlkok9zKRkZF8//33xMfHU7t2bdPxhIQEwPaiemJiInPnzmXTpk1otVpTe+O8zPgaHx9v09m252+2atWqGAwGTp48acrGAbh8+TKpqakO2y/jfW/cuFFi21MaNtDamACOHDli4agXbnMr80mJOSUq/fX333/z5JNPmuTpDx06BMC0adPYvn17sdf7+voSEBBQkltLHmD0ej0DBgzgt99+Y9OmTTz88MNW240fP55t27aZ/SxduhRQy7ts27bNIl0H4Nq1a8TExPDGG2/g5uYGQIUKFUyTRVBL7BRVqkej0dCrVy++/PJLizIwcHN1sVu3buzfv5/ffvvNdC4jI4Nly5ZRrVo1q4sIRREZGUl4eDhvvvkmN27csDhvrfRDYfr06YOTkxOzZs2yWAUVQnD16lWHxgTQt29fkpOTeffddy3OGe/Rv39/9Ho9c+bMsWij0+lITU11+L4Syf3GP//8Q/fu3alWrRpfffWVXQtTubm5vPjii0yfPt0UQapQoQL//vsvOp3O1G9x5cf69u3Ln3/+ybZt2yzOFbRply5dYuPGjaZzOp2Od955By8vL6Kioux+VlAd5LZt27J06VISExMtzttj0x599FHKlSvHvHnzLLas2dtHYfr27YsQwmomgPGzuB22VCK5l+nfvz8AK1asMDu+fPlytFotbdu2tXrdK6+8Qps2bejSpQuAKTJunJcZyx4WZcPs+Zvt1q0bAIsWLTI7v3DhQgC6d+9us39b9O/fn99++40dO3ZYnEtNTTXZYFuUhg0sTOfOnfH29mb+/PlkZ2ebnTN+FqUxn5SY43Bk+/vvv6d79+5ERkYyaNAg5s6dazrn7OzM+++/T9euXYvs4+WXX+add96hc+fOdq3MSyQAL730El988QWPP/44165d4+OPPzY7b6yl3aRJE5o0aWJ2zphOXr9+fXr16mW1/xkzZtCwYUOeeOIJ07G+ffsye/ZsxowZQ9WqVVm6dKnJ+Npi3rx5fPfdd0RFRfHss89St25dEhMT2bRpE3v37sXX15dXXnmF9evX07VrV8aPH4+/vz+rV6/mzJkzbNmyxWLfY3FoNBqWL19O165dqV+/PsOGDSM0NJT4+Hh++uknypUrx5dffllkH+Hh4cydO5cpU6Zw9uxZevXqhbe3N2fOnGHbtm08++yzpoi/vQwZMoQ1a9bw4osvsn//flq3bk1GRgY//PADzz33HD179iQqKopRo0Yxf/58/ve//9G5c2ecnZ05efIkmzZtYvHixfTr18+h+0ok9wrvvvsuqamppojNl19+adr28vzzz+Pj40N6ejqPPvooKSkpTJ48ma+//tqsj/DwcKuLj4sXLwZgwoQJpmPdunVj7NixDBw4kEceeYQ5c+YQHR1d5BgnT57M5s2beeKJJxg+fDiRkZFcu3aNL774giVLltCoUSOeffZZli5dyjPPPMPBgwepVq0amzdv5pdffmHRokV4e3s7/Nm89957tGrVioYNGzJy5EjCwsK4fPkyv/32GxcvXuTPP/8s8vpy5crxwQcf8PTTT9OkSROefPJJAgMDOX/+PF9//TUtW7a0uhBYFO3atePpp5/m7bff5uTJk3Tp0gWDwcDPP/9Mu3btGDdu3G2xpRLJvUzjxo0ZPnw4K1euRKfTERUVxa5du9i0aRNTpkyx2A4IsH//fjZu3GimA1OtWjWaNm3KM888w4gRI1i+fDktWrQoMvJsz99so0aNGDp0KMuWLSM1NZWoqCj279/P6tWr6dWrF+3atXP4mSdPnswXX3zBY489xjPPPENkZCQZGRn89ddfbN68mbNnzxYbeLxVG1iYcuXK8dZbbxEdHU2zZs0YOHAgfn5+/Pnnn2RmZrJ69epSmU9KCuGoolpkZKSpFlteXp5QFEUcPHhQCCHEZ599JkJDQ4vtY9y4caJKlSqiSpUq4umnnxbPP/+82Y81eX6JxFhuytZPURSlRi6EWgLMxcXFVDO2IKtWrRLVqlUT5cuXFy+++KKF8rk1zp07J4YMGSICAwOFq6urCAsLE2PHjjVT/T116pTo16+f8PX1FW5ubqJ58+biq6++MuvHqEa+adMmq89TWLn48OHDok+fPqJ8+fLC1dVVVK1aVfTv31/s3LnT1MaoRp6UlGR17Fu2bBGtWrUSnp6ewtPTU9SpU0eMHTtWHD9+3NQmKipK1K9f3+LaoUOHiqpVq5ody8zMFNOmTRPVq1cXzs7OomLFiqJfv37i1KlTZu2WLVsmIiMjhbu7u/D29hYNGzYUL7/8skhISLA6TonkfsBYRsbaj7EOtPHv3dbP0KFDLfq9dOmS8Pb2Fl988YXFue3bt4s6deoIX19fMWTIEJGRkVHsOK9evSrGjRsnQkNDhYuLi6hUqZIYOnSoSE5ONrW5fPmyGDZsmAgICBAuLi6iYcOGFjaqKFsMiJiYGLNjp06dEkOGDBEVK1YUzs7OIjQ0VDz22GNi8+bNpjZGJV5r5RaFUO3oo48+Knx8fISbm5sIDw8XzzzzjDhw4ICpzdChQ4Wnp6fFtUZ7WRCdTifeeOMNUadOHeHi4iICAwNF165dTXMhI/bYUonkQSE3N1fExsaKqlWrCmdnZ1GjRg3x1ltvWW1rMBhEixYtxIsvvmhx7t9//xVt2rQRXl5eok2bNhZzCWvY8zebl5cnZs2aZZqrVK5cWUyZMsWs7JYQqs3u3r27xT2ioqJEVFSU2bH09HQxZcoUUaNGDeHi4iICAgLEI488It58802Rm5srhCh+fnorNtA4h/zpp5/Mjn/xxRfikUceEe7u7qJcuXKiefPmYv369WZt7JlPSuxDEcIxNSM3Nze+/PJLOnXqhF6vx9nZmQMHDtCkSRN2797No48+apGaUBhrKbwFURSF06dPOzIsiUQikUgkEolEIpFI7hoczuH29/c3pbsV5sSJE2bCK7Y4c+aMo7eVSCQSiUQikUgkEonknsFhgbRevXoRExNjpqSsKAqXLl3izTffLLYW573Iv//+y+jRo3nooYfQarU269OlpqYyfvx4QkJCcHNzIzw8nP/+979mbXJzc5k8eTIVK1bE09OTTp06WVWllkgkktuFtGkSieR+Qto0iURyt+JwZHv+/Pn88ccfRERE0LBhQwCGDx/O6dOnqV27NrGxsXb39e+//3LixAmraed9+vRxdGi3jb///puvv/6aFi1aYDAYTDXoCpKRkUHbtm3RarW89dZbVKhQgRMnTnD9+nWzduPHj2fDhg0sXLiQ0NBQXn31VTp06MDff/+Nj4/PnXokiUTyACNtmkQiuZ+QNk0ikdy1lGSjd25urli5cqV46qmnRKdOncSAAQPEhx9+aCb+VBRpaWmiffv2QqPRCI1GIxRFEYqimN5rNJqSDOu2odfrTf8eOnSoVWGo6dOni7CwMHHjxg2b/Vy4cEE4OTmJpUuXmo5dvXpVeHp6itdee610By2RSCQ2kDZNIpHcT0ibJpFI7lZKVGfb2dmZYcOG8cknn/Ddd9+xYcMGoqOjcXFxsev6//znP1y6dImff/4ZIQTbtm1j165djBgxgurVq/P777+XZFi3DXvKMC1fvpzhw4fj6elps813332HwWAwKy3l7+9P586d+eabb0plrBKJRFIc0qZJJJL7CWnTJBLJ3YrDzvaff/5p0+B88803ZvXwbPHtt98ybdo0WrRoAUBISAht2rRh2bJl9OzZ02L/zN3O2bNnuXTpEgEBAfTo0QNXV1f8/f0ZOXKkWUH4Y8eOERQUhJ+fn9n1devW5dixY3d62BKJRGIVadMkEsn9hLRpEomkrHDY2X7hhRf47bffrJ7bv38/L730UrF9XLlyhcqVK+Pk5ISnpydXr141nevWrRvffvuto8MqUy5dugTApEmT8PPz45tvvmHevHls2rSJkSNHmtqlpKTg6+trcb2fnx/Xrl2z2X9OTg7Xr183/aSlpZGUlIRwrGqbRCKR2IW0aRKJ5H5C2jSJRFJWOOxs/+9//6Nly5ZWzz388MMcOnSo2D4qV65McnIyADVr1uSLL74wnfvtt99wc3NzdFhlilGIo1atWqxevZoOHTowevRo3nzzTTZs2HDLNcPnz5+Pj4+P6cfX15egoCDS09NLY/gSiURihrRpEsmdJfHQIWYpColW5lDpiYnsio0lPTGxDEZ2fyBtmkRiH7ZskaPHizv3IOGws52Tk0Nubq7Nc9aUxQvTqVMnfvjhB0CNlC9ZsoTIyEgefvhhYmJiGDJkiKPDKlOM6Ubt2rUzO96hQwdAVck0tktLS7O4PiUlBX9/f5v9T5kyhbS0NNPPhQsXSmvoEolEYoG0aRLJ3cONxER2z5rFDelslxhp0yQSSVnhcOmvxo0bs2bNGnr06GFxbs2aNTRq1KjYPl577TUyMzMBePrpp/Hy8mLz5s1kZWXx7rvvMmrUKEeHVaaEh4fj6upq87xxAaJOnTpcvnyZlJQUs/1Ax44do06dOjavd3V1LbJ/iUQiKU2kTZNIbg/piYkcXLqUyFGj8A4OLuvhPDBImyaRSMoKhyPbU6ZMYdu2bXTv3p3Nmzfz66+/snnzZrp3785nn33GtGnTiu3Dw8ODgIAA0/vevXuzbt06tm7dypgxY+xSlbybcHFxoXPnzuzcudPs+Pfffw9AkyZNAOjcuTMajYYtW7aY2qSkpPDdd9/RrVu3OzdgiUQiKQJp0ySSW8NW6reMUpcN0qZJJJKywuHIdvfu3fnkk0+YPHky/fv3R1EUhBBUqlSJTz75hO7du9vd1z///MOBAwe4cOECw4cPp2LFivz7779UqFABb29vR4d228jMzDQpsJ87d47r16+zefNmAKKioggMDCQmJoZHHnmEQYMGMXToUE6ePMmUKVMYNGgQ4eHhAFSqVIno6GgmT56Mk5MToaGhzJs3Dx8fn3sumi+RSO5dpE2TSG4vRqe6do8eMoJ9B5A2TSKR3LXcSpHuY8eOiV9++UUcO3bMoesyMjLEU089JZycnIRWqxUajUYcPHhQCCFEv379xOTJk29lWKXOmTNnBGD156effjK1++GHH0TTpk2Fq6urqFixonjppZdEdna2WV/Z2dnipZdeEkFBQcLd3V107NhR/PPPPw6NJy0tTQAiLS2tNB5PIrlvuJ6QIH6KiRHXExLKeih3NdKmSSS3l4SDB0UsiIT8uU1Jjxd3TqIibZpEYklJ5kTSdpU+Dke2C1K7du0SXTdp0iR+/PFHvvnmG1q3bo2np6fpXLdu3Xjrrbd4/fXXb2VopUq1atXsKt/QoUMH/vjjjyLbuLq68uabb/Lmm2+W1vAkEkk+NxIT+fWNN2Q0qRikTZNIJPcT0qZJJJbIDJu7gxI528ePH2fLli1cvHjRQn1cURRWrFhR5PWbN2/mjTfeoHPnzuj1erNz1apV4+zZsyUZlkQieYARQlAhIoKpGRkYdDqEECiKYjovhYkkEolEIpFIJHcSh53ttWvXMmzYMNzc3KhatSouLi5m5wtObm1x48YNgm1MdjMyMhwdkkQiuYcpDSdYGAykJyRwcOlSrp06hX94uNpfSAhKvuCiXOGVSCT3Ks4eHmU9BIlEIpGUAIed7Tlz5tCvXz9WrlyJRwmNf0REBFu2bKFz584W577++muaNm1aon4lEsm9x606wcJgIO7jj/lixAgMOp3p+N4FC+ixYgURgwebHG45YZVIJI5SllkxxWXsSCQSSUmQ2X53Doed7YSEBD744IMSO9oAM2bMoGfPnmRmZvLEE0+gKAr79+9n/fr1rFy50qQoKZFIJEUhhCA9IcHC0QYw6HR8MWIE4Y8+imdQkJywSiSSElFWWTH2ZOxIJBJJSZDZfncOh53tNm3acOTIETp06FDim3bv3p0NGzYwefJk1q1bB8Bzzz1HpUqVWLdu3S31LZFIHhyEwcDBpUstHG0j9fr1w6N8edLj4+WEVSKRlDq3KzrkSMaORCKRlCUya7BoHHa2582bx+DBg3Fzc6NTp074+vpatPH39y+2n379+tGvXz9OnDhBcnIy/v7+1KlTx9HhSCSSBxiNkxPXTp2yeq5CRAS91qwhbt06voyOlhNWiURS6pRmdMg4YbUnY6d6hw7qgqHM0JFIJGWE3OZiHw47202aNAFgzJgxNj/QwgrjRVGrVi1q1arl6DAkEokEg16Pf3i41XMtJk4kPT7ewtEGOWGVSCR3DxYT1mIydgw6HQeXLCEqNhbFyekOj1YikUjkNhdHcNjZXrlyZalMTC9cuMBnn33GhQsXrJYPW7x48S3fQyKR3J+kJyZyeOVK/u+FF4gcNYq9CxaYT0wVhQYDBrB3/nw5YZVIJHcVBVMuC09YA+rUIWrmTJsZO0ZSTp9GI+2WRCKh9Lez2EoLd/bwQOvuLoVpHcRhZ/uZZ5655Zt++umnPP300xgMBoKCgqyWD5POtkQisYYQAs/AQNpMm4ZBp8M7JIQeK1aYGX1nd3ecPTzkhFUikZQZhSeZ1iLYFhNWReGRSZNsZuwY8QsLw6DXS/slkTxA2HKqS2s7i620cLPj+QuEUpjWfhx2tkuDqVOn0qtXL5YtW4aPj09ZDEEikdyDWEtbajFxIhGDB1O9QwcOLllCyunT+IWHY9Dp5IRVIpFYYGvCWlrRIWsTVvL3YRtt1yOTJuEZFGQ5YRWCIxs30njECMuMnXw0Wi2Ro0fLVE2J5AHjdiqI25pfufv53Tx++jQ9V66UwrQOUiJne8+ePSxbtowTJ05YpIADxMXFFXl9UlISzz77rHS0JRKJ3RSVttR/61Zqde9OVEwMGq0Wg06H4uRkPcU8HzlhlUgeTGxNWEtjIlt4wlq5ZUuajRljbrsUhR7Ll9vc5rJv0SIiBg/m8eXLLTQnNFotPVauxDs4+IGNEkkkktLDVlp4hYgI2sycyZ9r15rskLOHB9p166QwrYM4/LQ7duygffv2JCcnc+DAASpXrkxAQADHjx8nIyODpk2bFttHly5d+P3330s0YIlE8uBRnDrvp336kJ6YSHZqKvM8PbkcF4eiKKYUc43WfF1RTlglEklpUnDCurh6dfbMncuR9etx9vAg7fx5h7a5XI6L47MhQ4gYNIgJZ8/SZvp0Gg4cSJvp05lw9iwRgwY9cJNViURye/AMDLQ6v7ImMpuXlUVeZuYtCdOmJyaq2T4PEA5HtmNiYpg4cSKvvfYazs7OzJkzhyZNmnDu3DkeffRR2rdvX2wfS5YsYcCAAWRmZtKhQwer5cOMqucSiURitzpvTAx5mZmm44pGY5liHhZG5OjRqqMtJ6wSiaQUsDphtSHUWNyEFeDIhg1UbtWKpmPGWGTsyAVCiURSKigKbr6+7J41yz6R2aK2uUhhWps4PNP8559/6Nq1KxqNBkVRyMjIAKBq1arExsYyd+7cYvtIT08nMzOT+fPn06lTJ5o1a2b6adq0Kc2aNXP8SSQSyX2FEMJksIuqp20k5fRpNFot7ebOxatACqii0eAdEkJUTAx91q0jKibmgd03JJFIbgP5E9bCC4I2I9gFJqyFs26MaLRa6vTqhaIoXI6LM8vYkUgkktLA2d0djVZrYaOKyr7Zt2gR3qGhPL58uZn9ksK0tnE4su3m5obBYEBRFIKDgzl16hStW7cGwNvbmwsXLhTbx5AhQzh//jzvvPMOtWrVslAjl0gkDzZm+x7zBTnsFTtrM22axTlFUbgUF8dHrVsz7OefCZaZMxKJpJSwNWEtKoLt6L7sghk7EolEUhrkZWVZFZMtynYZt7n0WrOG6u3bc2jZMilMWwwOO9uNGjXi+PHjdOrUiQ4dOvDqq68SEBCAs7Mz06dPp2HDhsX2sX//fj755BN69epVkjFLJJL7jMJ1ZwsLdYR17Fgq6rxywiqRSEobWxPWolIuC05Ywzp2lNtcJBLJnUcIslNTLcVki6mKcGTDBq6eOMEze/ZIYVo7cPhpJ06caFppnTdvHt7e3vTo0YOuXbty9epV3nvvvWL7qFmzJjob+fwSieTBoWCJnAoRETaF0GylLYH9YmdewcFExcSYpZhLJBLJreLs7m6asBa2T0XZrqObN/Pvjh1459smuc1FIpHcaTKSkqyKyRY372oxcSLO7u5cPXlSCtMWg8OR7W7dupn+HRoaysGDB/n333/JysqiTp06dqWEL1y4kEmTJtGgQQPq1Knj6BAkEsl9gEVNxxo1iJo506oQms20JQeiQN7BwbSNjb2NTySRSB4kCtfTVjQaeqxYYbZYeDkujs+HDaPX6tVFRrAv/e9/cpuLRCK54+iysmyKyeakp9Po6aeLtF26/JRzI1KY1hKHne3Zs2cTHR1NSEgIoO6FrFmzJgCJiYl8+OGHzJw5s8g+Jk6cyKVLl2jQoAEhISEWauSKovDnn386OjSJRHKPYC1V3NnDg3azZ9sU1ziyYQNJR4/SZfFiomJj0Tg5SXVeiURSJlgsFoaH02LiRJuTTGPEpyhlcbnNRSKRlCaa1CSigtXX4igoJlvYRhVnuxzp60HEYWd71qxZdOnSxeRsFyQhIYFZs2YV62xHRkY+sB+4RPKgYytV3J5yOJfj4jizcydVWrViz6uv0nj4cLxlWrhEIrnNFKcrAbB3wQL6b91Kre7diZo5E42zM4a8XBSts2nOI4UaJRLJnUKTlkzbEEhKS7arvS0x2ZKIzEph2ps47GwLIWw6yomJiVZrZhdm1apVjt5WIpHcJ9ismV2MIAcUENdwcrKqOi6RSCSlSeFUcVuLhaDWkP20Tx8mnD2Lc14W7oMbcfWlZQT2HmTWztEIttSbkEgkdxJbNqok2TcyY8dOgbT169fTo0cPevTogaIovPTSS6b3xp/OnTszZMgQHnnkkds95ruWL774ghYtWuDt7U1wcDD9+/fn9OnTFu1WrFhBrVq1cHNzo1GjRnz11VdlMFqJpGwoqmZ2aQihSUoPadMkDzLCYCA9Pp7ds2axZeBAds+ejdDrrS8W5mPQ6Ti4ZAmuoVUgu3QmmUa9CZnFc+tImyaRSO40djnbubm5pKenk56ejhCCjIwM03vjj6IoDBkyhKVLl97uMd+V7Nq1i969e1OvXj22bdvGokWL+PPPP+ncuTNZWVmmdhs2bGDkyJEMGDCA7du38/DDD9O7d29+//33Mhy9RFJ6pCcmsis2lvTERKvnDXq9zVRxoxBaxKBBTDh7ljbTp9Nw4EDaTJ/OhLNniRg06IEU1ygLpE2T3AsUZ29Kgtbd3ZQqvrh6dfbMncuR9ev57b//tVpPuzApp0+jcXYBV/dSG5Pk1pE2TXI3cTtsl+TuxK408qFDhzJ06FAA2rVrxwcffCBVxAuxYcMGqlatysqVK01Rt6CgINq3b8+BAwdo3bo1ADExMTz55JPMmTMHUD/PuLg4Zs+ezTfffFNm45dISosbiYnsnjWL2j16mCIxQgiEXq9GqxWlyDqMRzdv5tFFi6S4RhkjbZrkXsCavblVPAMDS6wrAeAXFoYhLxdNTlaR7SR3FmnTJHcTRdmu9MREDi5dSuSoUTKj5T7A4RDRTz/9ZNXRzs3NLZUB3avk5eXh7e1t5gz4+PgAqqMBcPr0aU6cOEH//v3Nrn3yySfZuXMnOTk5d27AEsltpLCYUMFUzAMffFBsHUbPwEAURTGd12i10tG+w0ibJrmXKXHUSFFw8/UtVleisO0yYtSVyIk/X8KRS24X0qZJ7hWMjvgNGfW+L3DY2V67di3vvPOO6f2RI0eoWbMmHh4etG3blitXrhR5vRCCa9eu3XcG65lnnuHo0aO8//77pKWlcfr0aaZOnUrjxo1p2bIlAMeOHQOwWKyoW7cuubm5nDlz5o6PWyKB0ktnKigmVCEiwmoq5vZx49g2ZAgNZar4XY20aZJ7mZJOVp3d3YtMFbdXVyLr1PESj11ye5A2TSKRlAUOz2jfeOMNNAUmws8//zwuLi4sWrSIxMREpk6dWuT1eXl5BAUF8cMPPzg+2ruY1q1bs23bNl555RV8fX0JDw/n8uXLbN++HScnJwBSUlIALBTb/fz8ALh27ZrVvnNycrh+/brZj0RSmtiamDrihBeOYF+Oi7Op2vvXunUsb94cN19fomJi6LNuHVExMXiHhEhH+y5B2jTJg0heVhYGne6WdSX011Pv7MAlxSJtmkQiKQscntWePXuWevXqAZCcnMzPP//Mf//7X8aNG8fs2bPZsWNHkde7uLhQqVIl9Hp9yUZ8l/Lrr7/y9NNPM3LkSH788Uc2bdqEwWCge/fuZsIbJWH+/Pn4+PiYfipXrlxKo5ZIisaWEy6EMDnQBp3OMoK9YQMBdeoUqdqbeOgQvyxYAMA8T08ux8XJVPG7CGnTJA8amtQkoioKsq9cInLUKJup4kc3bybz6lVVV2LmDHWxcOYMy8VCNw+r10vKBmnTJBJJWeCws63RaEz7s3/66SecnZ1p164dAMHBwVy9erXYPsaOHcvChQvJzs529PZ3LePHj6d9+/b897//pV27dvTr14+vv/6aQ4cOsXbtWuDmymhaWprZtcaVVH9/f6t9T5kyhbS0NNPPhQsXbuOTSCRFU2wEW1HwKF8eZw8P+1R7tVrTfjnJ3YO0aZIHDU1aMm1DIPufP+3Wlbj61SZo5cnVrzbdXCwUgoDHnoC9GeqrtG93BdKmSR5I5KJfmWOXGnlBGjVqxPvvv0+lSpV4++23ad++Pa6urgCcP3+eoKCgYvs4f/48J06coEqVKrRt25YKFSqYRbQURWHx4sWODq1MOXr0KD179jQ7VqlSJQICAjiV73AY9wAdO3aM2rVrm9odO3YMFxcXwsLCrPbt6upq+owlkrLEGMEu6Fj3WL6cvfPnE1ivHi0mTqThgAFoPTwQej2PTJpE0t9/czkuzmp/fmFhGHQ6dLcYVZCUPtKmSR5U9NdTUTQaIgYPpnqHDhxcsoSU06fxCwsjcvRovIODzSPYBetpGwyQnICyZSlcPIVSKRz6joKAEJBbZMoUadMkDxJCCMo/9gT0HkT5vFyEEDJ7sIxw2NmeN28ejz32GBEREXh7e5vtvd62bRvNmzcvto+vvvrKZJj++OMPi/P3orNdtWpVDh06ZHbs3LlzJCcnU61aNQDCwsKoVasWmzZtMjP4GzdupEOHDri4uNzJIUskDiGEsBnB9ggK4tkDBxBX4nFaPd80yazYZxTPHjjAtiFDOLJhg1l/RtXe7NTUsnkgSZFImya5X9HkJhH1mPpqQYEokKLR2F2C0Kmcr+pob/8YZo8AfYHtM6sWwMwV0HUwWndZe7uskDZNcjsp63JdFlVgEhI4uHQp106dwj88XB2X1MUpExx2tlu2bGmKTIeHh5uJSIwYMYIaNWoU28f9qOY4evRoJk6cyIQJE3j88ce5evUqc+fOJSgoyKyERGxsLIMGDSI8PJx27dqxceNG9u3bx549e8pw9BKJbYwGXBgMHFy61GoEu/nY5+Cbj9HMiTabZCqrFsCM5fRes4ako0dNEe6Cqr3Jx6Vq792ItGmS+xVNXjJte3uQlJdsOmYrCqQoCpfi4viodWuG/fwzwU2aWHbo5oFHjTqQnGDpaIP6fvYIaNYB36pViYqJwUvWzr3jSJsmuZ3Yqpt9u51wIQQVGjZkakYGhrw8ywzEfPYuWECPFSuIGDzY5HAXdNAltw+HnW0Ab29vIiMjLY5369btlgd0rzJ+/HhcXV354IMPWLFiBd7e3jz88MNs2rSJ8uXLm9o99dRTZGZmsmDBAhYsWEDt2rXZtm0bDz/8cBmOXiKxpLAB1zg5WY9gD56E8A9CKeRoA6DXqcebd6TnypX8tnChRSqmTCG/O5E2TXI/IoSg/P89Aa1vOtXkZ+0UFQXKy8y01pm6J7v3IFz1elgWa2kDjeh1sGUJzqNiaRsbe9ueT2IbadMkZYEtJ7w0KBzBfmTSJDyDgqxWgTHodHwxYgThjz6KZ1CQqUyrQaeTKea3Gbuc7YULFzJo0CAqVKjAwoULi2yrKAovvPBCsX3Gx8ezaNEi9u7dy7Vr1/D396d169ZMmDCB0NBQ+0Z/F6EoCqNHj2b06NHFth0xYgQjRoy4A6OSSMyxd4XVZMCXLSPtwgV8qlQhasYMmo8ZA9+uuxnBVhSYsRzlo/lFTjKVLUuo+Gwsfdatw6DXo2g00rDf5UibJrnfKDwxrdyyJc3GjCk2CmQ19bvg3uzLF1FiP4KLRQtCEn8aNE6l/FQSe5E2TXK/oHV3L1JDx1YVmHr9+uFRvjzp8fEyxfwOYpezPWnSJFq1akWFChWYNGlSkW3tcbaPHDlCmzZtyMvLo1OnTjz00ENcvnyZJUuWsGLFCvbs2UP9+vXtfwqJRGIXxa2wGg34ia+/JuvaVVq/8gpaDw90mZnkZmTgmp1uHsF2dVf3ONoxyVTy65hqnORkUyKR3FmspVaGdepE2vnzRUaBqnfogGdgoHlnhfdmKwq88h5Usl6b20RoGBj00uGWSCS3hGdgoLmGDuDs7l5kFZgKERH0WrOGuHXr+DI62ubioosum6hgtRSipHSwawnDYDCYhM8MBkORP/bUz540aRLh4eGcP3+erVu38sEHH7B161bOnTtHWFhYsQ69RCIpXbTJx3jmGQ+8yrmQlZJCzS5daNixLdrV82HaQLSrF+Dq5Ymydal5BDsnS1XitXeSKZFIJCUgPTGRXbGxpCcmOnythbgjgKLQYMAADq9YYTMKZNDpOLhkCW4FtGkQwnJvthDw3UboOQKcbMQwnLTQdzQoMnIkkUhuAUXBzdeXg0uXmtmuvKws8jIz8Q+3Ph9rMXEi6fHxFo423FxcTE9MxCMoiLYhailESelQJlZ/7969TJ8+3VTP0Iifnx/Tpk1j7969ZTEsieSBRAhB+XZ9qfpRBq4Vq+Hu44Oy4xOc+tSEFXNhx3pY918UJ61lBFtOMiUSyR3AmJVzoyTOdr64Y8EJZnFRICMpp0+j0WpvppILA2xZarltZv0iCAqFGcstbaGTFmJWQkCwGgW3gldwsBROk0gkxeLs7o5Gq7W0XUJwZONGGo8YgUZbyAY5sLjoGlrlNo38wcWuNHJHFRjbtGlT9E21WnJycqyey8nJwUmmmUokd4SCexjTLl6k18qVGC6dt1AVLzKCvX4RdBusTjILX2fHJFMikUhuB84eHigaDRonJ4uJaXFRICN+YWEYdDp0WVnqfkaNk/VtMyfjIGYIzFoDTdvBtg/VPdqhYepiY0BwkXW2vYODpXCaRHKXU9blvUC1XQadzqrt2rdoERGDB/P48uVmEWyHFhedXdQtgpJSwy5nu23btiiKoqp2gpmwkTUFu+JSyTt27Mi0adN46KGHqFWrlun4yZMnmTFjBp06dbL7ASQSieNYiGvo9Th7etJz+XI0ny23jNoUjGCvWmB+vuAks3lH2LLEoUmmRCKRlCZCCDOlXYNebzkxLRAF2rtggdVoj0arJXL0aLJTU9VLDAZ1O4ytbTM7NsDpozBzJTwbC05OoNOpr3KxUSK557mdyuJ2IwTZqalEjhplYbsux8Xx2ZAh9FqzhrCOHTm4ZAkpp0/jFx5u00EviF9YGIa8XDQ5skpMaWLXDPjw4cMcOnSIw4cPs2PHDkJDQxk8eDCfffYZv//+O5999hmDBg0iNDSUb7/9ttj+Fi5ciE6no169ejz00EM8+uijNG7cmLp166LT6YpVPJdIJLeGUVxj3+LFPLZsGdNu3GBqeroqYmZL7KyoNMkfNsNvO1TH+tkYmLsORsZAYIh0tCUSid3cyt5syM/WiY9n96xZbBk4kN2zZqHLziZy1CiL1Mp9ixbhHRrK48uXW5zTaLX0WLkS7+Bgsk6fuCkYpGig7yjb22ZOH4XyFSE9BVp5wr9x0tGWSCSlhrOHBxlJSXiHhNBjxQoL23V082b+3bED7+BgombOpM+6dUTNmI7i5GTVDhoxLi7mxJ+/E4/xQGFXZLtRo0amf/fr148nn3yS119/3azN448/zuTJk/nggw+KjUxXqVKFv/76i5UrV7J3715SUlKoVasWw4cPZ9iwYXh5eZXgUSQSiV3ki2v8s3Ur0b//nl8zewFcuQhTPrAdtTFGsGevLTqCnXwZPl8JPYerxyQSicROShI5cvbwsF4KJ5+T33xD9P799Fixwuzc5bg4Ph82jF6rV5tHgcLCiBw9Gu/gYBSNBkP8GdqGQFJasuo4B4TAzBXmImlgvm3m3HF1641EIpFYQZOa5JDqtxCCCg0bqhk7eXmgKEQMHkz1Dh1s2q7kz9cT+N9nufrSMgJ7DzI56IVtZMHFxZSftiOTyEsXu5ztguzYsYOtW7daPde5c2f69OljVz9eXl6MHz+e8ePHOzoEiURyC3iUL49Gq6Vunz4ov3yDJv0aDHtFLeGly4UhL8Mv38CxQ5YX/7AZXlqkRqyfjVEnl3qduo/RGL0JCIYR0+7oM0kkkgcPs3TxfP0Ja2W8Eg8d4rOhQ+m9Zo3ViamiKHiHhBA1cwYaZxcMebkoWmeLLXImNBroOhiadbC96CjTMCUSCbadak1a8s1FvMLX5CYR9Zj6Cub6OoVrY6u2azoaZ1cMeTkoWhdz21Vg0U/RaIp10PXXU2/L5/Ag47Cz7eXlxc6dO61Gr7///nsZlZZI7lKMq6KTk5LUvYfpqSgtu0JGPPw1H66fgnLhUHcUrNkPMUNh+7qbHRijNr6BqmNtTKO0lU5pJ1KFVyKRGLE32mM2+Tx9mp4rV1oojhfkr3XrqPTwwzQdM8b6xDRfkwZAyf8peqAaddFxZAxotXJvtkQisUpRTrXNa/KSafs4XHPR2czYKVgb+8aPqykX/wJpXlPw6z/dvDM3D7O3ikbj2OLiLSDndyoOz5LHjh3LzJkzuXz5Mr169SIoKIgrV66wbds21q5dy6xZs6xeV65cOX766SciIyPx9vYu8ktVFIW0tDRHhyaRSGxgmpguW0baxYv0XLYMTTlf+Hcd7IkGUWCC+r8FELUCZq+Bhg9D3K+3VexMqvBKJA8WRSn62pqYGp1wF122xeTT2cMD7bp1xSrtpl+8iEZREPmutMmpNhggOQFly1K4eAqlUri6LzuggOZEoQmr2oGi7smObg3Lf4Y6TUr4iUgkknsdR9PCi+wrPQUAj8DqNjN2jLWxq3fogGvN5nCu0LYVIQh47AnoPYiAvFx1QTHf91IUheSvNpmlmBvxCAgwe72V55PzOxWHne3p06fj6+vLggULWL16tUmlPDg4mEWLFvH8889bve6ll14iOP8/1Zdeeum2rKBIJBJLhMHAia+/JuvaVVq/8gpaDw/V6Kaft3S0QX2/ewSEtId+Y6D/WET+yqeM2kgkklulJPuyjU54VoUKFpNPe8p4NXjySdrPmYNIikfZsgwuX0Cp11S1cds/ttx/vWoBvLEVWnUn4PH+ViesJuTebInkgaAoh9PRCLZGnwIPe6ivhc/dSAUUXCqG89vsucXWxo6aWSiabc8CIli1XZ6BgWavxT2fjF4XT4nyP8eNG8dzzz3HxYsXSUxMJDg4mEqVKqEpIuIVExMDqKms48ePx9PTE1dX15KNWiKR2IUQgqyUFGp26ZIvhDYfEs7ArNVwfLmlo226UAf/LEVExqK08iS50MqnRCKRFEdp1qTV6FOgqYJrSGV+nz3HfPJZTBmvChER9F6zBn7djnL9qrlGRVYGrF9sWe6wYz94pAskJaBsLWbCKpFI7hzJibBlaf7f4u1x8GzZrpKkhFtDCIFfz5HQbxx+eTlWyyijdUfj7GpnbWxXcHLHySdIdbRtLSDOXKHqTZSi/ZLR6+Ip8aet0WioUqUKLVq0oEqVKkU62gXJy8sjKCiIH374oaS3lkjuHjIT4UCs+nqXkJ6YyJ5XXyU9MRFhMODu44Oy4xOc+tSEla+qJbo0Tuoe7SI7Oo2icWJPosDgE1B0W4lEIimEMYJ9o4RlvAqiMaRCc3c0zi5WJ59FlfH6vxdfQMlIQ3mkC7Ruq2pU7BwIh+eAIQVW/Q6PPnnzgpoRMGsNfPsJ9KgOK+bCjvXq6+PV1YmswXDLzySRSEpAciJ8OEt9tRNHSwqWqu3Sp0Akpgi2qTzh7LlqecLZc0mPj1e1dAqiy8KQl2Nnbewc0GfhWqs5JCdYOtqgvp89Qv3cCmhUSG4/t6ZsVAJcXFyoVKkSer3+Tt9aIil9MhPh0Cyo1gM87oIUGiHwCixPm2nTEPo8tWxNciKaDW/DtGXQeYAa0THoVTG0ovAOQ+h1/HQ6i5q+gUW3lUgkEjspMhWz0MTUHMXm5PNyXByfDRlCrzVrqN6+PYeWLVOVdsPDaTR4sLo325ZGRZvlqnN9+qha4vCpiXAlHuZE256wNuugCqRJJJK7npJsXSktNIZUiARnbxe7xM4UY/BS607exX+IHDXKasYO3KyNnXfhH1xRcKlUF5bPtbRbRvQ6tYLCqFiHn8PWXm5J8ZRJHtTYsWNZuHAh2dnZZXF7ieT+RBggMx7l8BzYORDl0GxERjya8hVg9T6IanczonP1T1V1XLGx3qZood5oslJS7+gjSCSS+4fiSt5orJW8yZ+YagyppmNCCHx6T4bhN0DjROSoUTej14qCs4cHKApHNmxgxf/9H+7+/kTFxNBn3TqiZkxH0TipVRdsaVTsiYaMBHhqgrofu/MA+HxF8RNWIaPbEonEPlxrNS9W7CwjKamAvcvAuVI9U23swhk7BWtj55zcD1p3FGdXuFhM1mL8aTW70cnJofHb2sstKZ47HtkGOH/+PCdOnKBKlSq0bduWChUqmO1VUBSFxYsXl8XQJJJ7BuOeomZjx+IZUB5OfqwKmwk9aN1Bl4Vy/hvovR9OfZJ/Lt/Ap/wNfQ5A1HLYXWgCqmih7UrwCEZkXpXCFxKJpESUZH9jniadM+XBU6QDlvVlK7dsSbMxY+i/dStZ167S4In+aD080GVmcmTTp7iXD8DZ3Z20nRvx/XY8KQ/HUL7PmOI1Kk4sh85T4PXn1ewfeyesUjRSIrnrcVRJu3Cda9PxIjJvisvKca5Ul1+LEDur168fHuXLkx4fb1ZPu8XEicXXxk67ArosRF6Oqi1RFKFhanajXm+9yoKk1CkTZ/urr77C1dUVV1dX/vjjD4vz0tmWSIrHmBbVfNw4yEyAvxYj2iyD8AEoWg+ELhNuXETJumTuaANci4OfhkC7NRDaEY4ugfTT4B0G9UarKfGKBs/AQCl8IZFI7hh5mhtcCPCgdp6P1ZTLI+vXA9BszBhVvGz1fLh4Cm2lcBr1GQWBISiKgk/bPtDpKfzzcuzWqDBNPLMzwd4Jq9z7KJHc9dha+Ltx5n8kb51IQJ9FeFV/6Gb7/DrXSXmFShBaybwxoucCZzqDp7hgdjxPk87ZIHeqFSF2ViEigl5r1hC3bh1fRkdbpJj337qVWt27EzVzJhpnZxu1sQW5F//Bte8oVQzNWmaOkxYGjANFY7MsmKT0KRVnOzMzk4SEBMLDw+0q6XXmzJnSuK1E8kCjMyRR9RkFdz8fOPsjovfv5ObEk3BhPllZp3B3DyckZBQuzhVQwvrBqQ3mHZzaAClHIWqlqjqucULoclCcXKTRlUgktw1bESAhBBUfX0io83sY9DrzlEtFwdndHf+aNWn67LPwzVqUQnuqlYQzELs6v+RNfnmvClVg1Ay7NCrIy4G2veDMMehTzIS172hQitiJFxAMI2Num1qyRHJPcQcUxEtCzj97qea9m6v/7DVztm1ROPOm8Llz/lDzWrrF8bO+WVQuQuysxcSJpMfHWzjaoKaYf9qnDxPOnsUlNw23hc1IiXqN8v3GmXei9SDnxH5cO0WrquOFRdKctLDkR/ANhKT44suCWUNGwkuEw872m2++SUZGhqmU188//0yPHj24fv061atXZ8eOHYQXo5wnkUhuHf31k9QYUR7FyRlRvQ+XL6/j+IloRIEI9vnzC6hdazkV2q1BSTmqRrQLci0O/lqI0n4drA4g1X0ifv0L1WuUSCSSEmDLqba6L9tgIC8rC62zOi1RUMi4coU6vXpRo1s3Gj45AK27BwZdLuRko2x423wiWTMCYj6CvV9D+rWb5b2yM+HiGaj7rCqGZi2VPF+jQmi0KHPXIfLyUJycbE9YY1aqDkNRi5IBwSUSIZJI7kuMCuJRPe4qZ1utZ33ztThsOdRFo6DRuJMdf9C62Jmi0GDAAPbOn3/zeP7iYl5WFghhXk+7YaZ5ZF0IfHtPBufpeOflqHap62BVxHHLEnXLS2iYGtH2DSy+LJiru+UjCAE1ImBvBuh0MhLuIA4LpC1fvpxKlSqZ3r/44ovUr1+fzz//nICAAKZOnWpXP8nJyUybNo2OHTtSv359OnbsyPTp00lKsm8/hUTyICOEoHLrkbRqlYQwGMjNTbBwtNV2Oo6fiCY3JwHRcIL1zrzDELpcyLmKwcv39g9eIpE8ENhKuczT3OBskAd5mhuA6mgjBE6pSWhWzIVpA1GWxVKhemX6fbqRh/p1RHtEFXfUHJ6Dxlq5rqcmQnoqtOxqXt7rr/ng5wGeoRC1wlIUsoBGRcqub6GVJ8lffapGeLoOhi/Pwojp0GWg+vrlWegy6GYESEawJZI7Ska+n5BxL/gLQhDy+ELatMnAo1Ik3iEh9N+61UzszNndHWcPD66dOkWFiAh6rFzJtIwbTM3IYFrGDXqsXEmFiIib9bRdy9/s32BQo9TL8+3m8rmQFK+eCwxBRM+AuevUV78g+8qC+RUSQMu/Bx/OgmkD1dekeFn+0AEcjmxfuHCBGjVqABAfH8/BgwfZvXs3rVu3RqfTMWbMmGL72LdvH126dMFgMNCxY0dq1arF5cuXeeedd3jnnXf47rvvaNGiheNPI5Hcj2QmwtGlUG+UKlpmMGDQ6wuo8QoSEj+0cLSNCKEj4dJyqoVPUfduFyQ/opOdfB53wODtd3ufRSKR3H9c+B98MxG6LYLKD5kOW0u5FEJQvucsgpwXoM/LQRj3PG//GKc50eo+aFd3qFITzbMxiJMfoxTWnChcruvfv1THW+tsu7xX951QczCEdrCpUaG/nqpGwo1oNGp5r5ExoNWqER2nQqJoMoItkdxRMpOT8SzwaqIUU9X16Wc5Ux7c0886cJWCRuMB5NsHgyF/S4t5unat7t156fJl9i1eTMbly3hWrIhBp6NOr170Xr0akRGP05H5cP0U2nLhRPQeQaOnB5N24SJCr0cZmoxvXq7afzFR6pQ93+Mf05/kl5YR2PNJ9fMprsrCSDVzGVd3u+5RbOq5xPHItru7O9evXwdg586deHl58cgjjwDg6+tLWlpasX2MHTuW+vXrc+HCBbZs2cL777/Pli1bOH/+PPXr12fcuHHF9nGvcuzYMTp16oSnpycVK1bk5ZdfJjc3t6yHJbmLyTgXB4dmkXXpjBoBUkCnv8zZs7H8888wFMWJrKyixX+ysk6jaD3AqUB6UIGITlbC8dv8FJL7GWnXHgCSE2FprPpamEt/g7JbfS1Aniadc+XVV8hXFo+PZ8+cV/ls2DD2zJ0HQiAuX1TTwqctg59vqKmKaw9A9qUCjrYC2vyJbOFyXa7u4OJWdHmvrztA5mXwCEE0ngHt1yEaTwePkKL3XisK/BsHrTzVV5k6+UAgbdo9iDFV3YqNKlop3BJ9djznyquv9mDUm2jTJoOKj7+lztW2fwyPV4eVr8Luz9XXx6ujHP4Zd19f2sbO5LElS2gbMwPFyYl6T/RDOf0JTptqwuG5cGo9HJ6L06aaKKfX41utKsqWJRA7DOXfI5BUfJTaPby2uoDo5KQKRdpTZUGrVW2qX6B9kXApElksDke2mzdvzoIFC9BoNLzxxht07doVp/xabadOnSI0NLTYPv7++282bdpEuXLlzI77+PjwyiuvMGDAAEeHdU+QkpJC+/btqVmzJlu3biU+Pp4XX3yRzMxM3n333bIenuQuJS3pJFfKQ7BfZVDg8uWPOX58RH4kW6FWrfdwdy9aJ8HdPQwhdCgRL1mN6OTlatn1JdSNCLgzDyW5b5B27QGhiD2XaSlnuVYe/FPO4mPlUq1PKMJg4MTXX5N17SqtX3nFVK5LQaAc+V1NC8+Ih78WwI2L0OYDNaPHrx6i4UTzKgunNqL8tehmua43J6g1r4sr73X0fYiMJXXr6/jdmE+q1xT7NSoKRrwl9zXSphWPsfRo5KhReN8DpUGLUhG3TqEodRHHTeUJly0j7cIFWjz/PBVDg2D9YnUBsfOAm/oRCWcR1euQm5NAQuJSczFblxCU+O+tLhYqfy2Gqr2hz0joP1bNADrxJ4TVg5P5i4Cu7pCj7vE2Rqndomeofej16jX2VFnQ6SA3G7x8VZtfXCR8VCwojtXsftAokUDaY489xuOPP07VqlV59dVXTec2btxoinIXRY0aNUhNTbV6Li0tjbCwMEeHdU+wZMkSrl+/zrZt2/D39wdAp9Px3HPPMXXqVEJCQsp4hJKyxNZ/XoaMeOIrBFLVJ1Tdm21ytAEEV65sJDh4BOfPL7CaSq4oWkIqPgs4IRrPQNG6IHS5KE7OpiiNR9UIiIxRXyUSB5B2TXLjhhoFcrkWX8jZ1qDVBuBVrR1ZKSnU7NIFcSUep9WvwbVLaINCYeRMaN8HLnyDyLkGjV9RnWqhhxpPQeRMyyoLVUbgUnMwStpJcHWFPflp6vaU99I4qSJnOuk8S6wjbVrxGEuP1u7R4+5xtnOSIDL/1RpaG0rahY8LQUiPhYRq30Pocm6KgeXvvw51fg+Rpx4XQlgsIgq9HuXHLbDqd4Q+G7ROKIBwcYbqdQoFTFTOn19A7drLqdD2I5Rrf5mL2YY/qZZpzUyEuA9VO1cuHGpHqxlAf/4C9ZvfdOi/2wjrF0H8aRRnl5uCZ4pGTbEvrsrCjVT1Gq3Wvki4RjraxeFwGnm9evU4ffo0SUlJnDlzxrR/G+C///0vb775ZrF9vPHGG8TExLB7926z47t27SI2NtauPu5Ftm/fTseOHU3GG6B///4YDAa+++67MhyZ5G7A+J/XjcSbKVBCCEK7zKVVqysoiiAhYamFQ33x4iJcXEKpXXs5SiHxH0XRUrvWClxcg1GEgeTfNsFKT/W1QDqkd3AwbWNj757/NCX3DNKuPSAUOZG1EgUSgpBei2nVKgmPKi1w9/NDOfE/NIY8xOiZMG0pInqamm6Zl46o0pXcKm05e2E+R48OJCFhCfjW4fKV9fy+vybnzs3lypX1nDs3l9/31+TylfUI3zrw9xLYOQj0OfaV9xJ625EaiQRp0+5ZcpNVG5VrXhsbIfDtMxmGZ6ivxrRna8eFQc2eMZoyBfW9MCD0etUBBdBqEfl2pGbXrkQMHIiTu6t6TgOiQz+Ek4Zcw1XOnp/L0aMDuZHxFzk5hQMmxqHoOH7cipitf4TqaP/7CawPN0sv58A0db907RrmgpBR7VQnPKonIi9XjXaDOucLCFH3WjsVirUWrLKQkqReo9PZFwk36Iv/bh5wSlxnu3z58gghSExMJCgoCK1WS8OGDe26dvLkyaSlpdG+fXt8fHwIDAwkKSmJtLQ0/Pz8+M9//sN//vMfABRF4c8//yyyv6tXr7J//34SExPJysqifPny1K5dm4ceesiuut93imPHjjF8+HCzY76+vgQHB3Ps2LEyGpXkbkFnSCJ8pAc6gzqZFUJVGU9IWEp29kXq1v3I6t7sjIw4jh0bQp06a/D1bUdi4odkZZ3G3T2MkKBoXFxDUNKvQzk/DM4B7NqWSd1pMl1cUjpIu/aAYGMiK4QgOD8KZNCpgmcKAjISUP5ZCtdPoZQLRzR6GepFqumTZ2NNUerQ0HE4uwZy+dJas4oKfn6dyMk5X8TEdAR+PlG4OLujnPoEKnWEOiOKLe9VghiDVBx/wJA27T5CGCAzAeXoTVtEw4ng6md+vEJLqD8GgSBXl0TCpRUmG1UpdDxa3MnVXSLhQoHU7+BR6vzKSUNuziUSLqrnfHxaEhIyRi3HWmDLX+3ayzl/fr5jYrYNJ6rba3YX0qLwj4C2H8G/H1ueMwpIdnyanISLuBW8ibHKQuGyYH1Hq/ZNo7mZin4j1b5IeFGaFxKghM72jh07iImJ4fDhw+j1evbv30+TJk149tlniYqKYtCgQUVeHxkZectOcFpaGqtXr2b16tX873//u6lomo+iKHh5edG7d29GjhxJy5Ytb+l+pUFKSgq+vr4Wx/38/Lh27ZrN63JycsjJyTG9NwrU2cuJS2r7sAAPtPmrclfSsknNysXbzZlgX3eLtlV8PXBzU9sm38jm2o1c3F00VPb3KlHbU1duoDcYCPH1wCu/bWpGNlfSc3HRaqgWULK2Z5NvkKszEOTtgq+nalJuZOtISM10qK2TRkN40M22F67dICvXgL+XCwFeRbdN03mQnJyFj1u2qW12to7zqWqaYq2KN7UJzl85TWLiSiqFjCA0sDoAOTk6svUGQh9qx+BlGQh9HkIYHNqbfeXKBjIyjlKnzkqqVYtFUZwQOfnpRL6BiJbdUBQFg0sgX//gg/MLvhhSs4r97kvj98Ta91kavyfG7/NWf08Kf5+3+nti67u/XymJXZM27S62aZmJXPljCWnVBuNXvrKpbcrVFPS6ciRdSKFuM7WpEAZychJItNh7GIyy/xU1GqN1h8rdwdmTy5fXcvy4eYlCN7dw/PzaFypdqBAUNMCxielfi1S18ajllpPPAmKQ127kciFbi9ZgNgXlxKXrpGYIfLiZEnnzu/emcgHFcWnT7m/KwqbBvWfXUn2DOZ2ah3e2rti259JycSpXFa+sPHzzj5XUrhX8DTT7fc0/lpEnSEq+QdXyHignP1btg9Ee+EdA5Ew4udbcToT3RyC4fOljM1vk6RlB1aozrdquq1e/ITJyfyGn2vpCoUbjjpOTh2NitvpsCB8Ah+dbLiDacsLhpoBkpY5k6iHJJRClQPA5JTsPjVcg3tEz0Di7IPJyUbTOXEjJIitXR0i2Di+AlCRE1dowcwVKYZE0Jy0iPxJu9OekXbONw872+vXrGTx4MP3792fkyJGMHDnSdC48PJyPPvqoWGd71apVDg+0IPPmzePNN9/Ez8+PJ554gpiYGBo1akRAQACurq6kpqZy9uxZDhw4wPbt2+nQoQOtWrXi7bffpl69erd077Jg/vz5zJo1q8TXd170MwArhkTSoV7F/GO7Sc3S4axRODmvm0XbWT3qMvQRde9810U/k3QjFyeNwikrbZ9rG8bLXeoC0Pu9X7mQkoWiwJn53U1tOyxUtwwMaFqJ1/o1AuCJpfs4eeUGCnBmgWXbTnWD+HCoOqsbtuoghy+kAnC2QNu2b6ptW1T3Y+MoVS/guXUH2XMy2WbbBiHl+Gp8awCmbI3jy7hEi7ZtXt+NAKqX9+Cnye0AeOO7f1j963mLto/Gv8+lValU9NnL71M6ArDyt7O8vuO4RdvH3t3P9dyHqer7G7tfUZ1tF2cNznmX0BxeBjcuQKOXyfX0dnhvdmbmUVycg8AgYO5wlKBQdL1HoQQEc+ZqBjUCvfEKDuarCavZ9F0yLjt3ceLVrqbrjd/nwici6BNZGYAub+/hWkYeWo3Cv1a++5cfrc1z7dStJI+9s5dLaTloFDht5bsf+kgVZvVQs1+e+OA3zlzNtPndPx4RzDsDmwAweMUfHEm4bvFZGr/PNjUDWDNCLRU46uND7DuTYrNt48q+bBurLry9sPEw3/9zxaJtuzfV775mkBffvxgFwJyv/mbjgYsWbdu8sRshoLKfOz//pz0Ab+86yfu7Tlu0ldxE2rS7wKYlJ/LBe5t5LyvMrG3mX7vo8V0Yl/QnqOhzzmTTNp7QsyDhEzgvONsHKwuCKufPL6B+vS2Ub7sa2nyIonVHGPT5ehPRhWyXQlBQfwunukQT02tx8NMQNeUypD38s8wkBmmoOxqNpyoG2XHRbq5lNKSq9m22VrnpHKnfvR9vVGxL2/xj0qZJm2Yvt2rT4N6za9ueXca275LpdOFw0XZNCCo2jsT1x7Pk5eaZ9kAXZ9ciAt34wutn6DuKKd8lmuzaHwUqA5vZtbbqsQ+O6KnqkkIllxS0hcsGWnVSFUSV7uTmxBda9INKlSaSmxtvxXZBaOg4cnIuFLKB1hcKDYYs9PpM+8RsdZko+ix1L7nWw4oWhWLbCTcidHB0CZ6NZtKkzUdMSEznhfxTXRf/zKW0HLSKgX9/flItC9Z7EK1f/wmA6FrOTAfIyWLu1/8wtesgRGR7tNuWmiLhxrnl2t/O8UxLdS4r7ZptHI79z5kzh4kTJ7J+/XqeeeYZs3P169fnyJEjpTU2m+zatYutW7dy6tQpFixYQI8ePahatSqenp5otVoCAgJo2rQpo0eP5vPPPycxMZGoqCh27dp128dWFH5+flZLo6WkpJjtDSrMlClTSEtLM/1cuHDhdg5TcicRBjj/NUr8D4jGr0C7j8CvVsn2ZtdegYtrqLovJ2YlhugZbL1g4LH3fuFahlqyxDs4GK2r6x17PMn9T0nsmrRpdwHJiXj+ucvicM65YgRxUFPHLcUaVQID++Ffvis5uYmcvTCPo0cHIdBZtWm2nGpHJ6bo8/ckntoAW5uqk9OmsdB+HTkPzeR8to/VVEeDt1+xzyp58JA2rRQxGCApHtcVs2HaQJxXzIakeDAY+L+w8kVeqtFl2yzlZY2slBTQeqDPzaVHo4pojy8r5IzmO6nHVpgf13qAoiEh8UMri4EDSExcYSXAYf2c7YXCmwGTwvM3U4+KlpCQ0eq8sPF0qNbbuhaF1t2GE16I9NO4ujjj5mzd1ROCYqss/HjsCo+99wtbLxjUrTRz18HIGNPc8uA5+0qpPegoonD+dTG4ubnx9ddf06FDB/R6Pc7Ozhw4cIAmTZrw008/0a1bN7Kysm7XeO9p2rRpQ/ny5dm2bZvpmHGf+sqVKy0WL2xx/fp1fHx8SEtLsyifZo17LTXpnkq5TD5E2qetSW7/HT6VIotNTzkd/xtnTz5BWK3NVAtuoarvupRT1XYvrTDtzT56dCBXrqy3+C6Dgp6kTp015OYmmu/NrhiNi1slQCH78O+4j+9E2txNXK7T6pa+e5lGfnenJt0NlIZdkzatDGzasUNkDX6Yi+/sQhPe0NQ25dO5aFIXc9btJUL7TDT9Xl/aMBfttTeI95pCxNOTOXs2lnPn5pp9L56eEURGHuDKlU9MkSCNxoM2bTJs2DSF1q1vcP78fIu+atdeiZ9fO/btq2mzysL/Nf8Xl/M71VrcBWk8HdF4BldXViUpYBrVu402s2nnf91E7XPPkl1/OYGtB5m+++yDP1Mnpid5b32NZ+tHpU2TNs107HbbNLi37FrioUO83uEx+m3ZRqNHIi3aerpqCfVxU2tNW0lBZuYKRNfBHD8Vz/9Wr6b72BEmgVbT72viP/iO/D/4+CA3qkXcTCP/5XMC//ssSS8tIzuqJ3oDVPRxw1XRo2hdEbocFK2rKhh2qoDN0XrA8Awrxz1h+A0LG1WU7bJ9zrZNs2YfTVflB0wqVBiMcuAnaPiwqi6uy4PsS7A+zCwSz/AbamT7sPk9zGg8HUPjGcS3qYTy4ltU6jfI7LvP+elLGv53MEnTPiaw96Cb3/2lY3hFt4CPD5Jcqd7N35MrJyC6NSz/mVP+taRdcwCH08grVqzIsWPH6NChg8W5uLg4qlatWioDux/p2rUr8+bNIzU11bQfaNOmTWg0Gjp37nzb7mvtlyjIx40gHze72gZ4uZl+OUvatuAvvRFfTzfTH0hJ2xb8IzXi5aa1OjZH2hb8z6e4tj7aTHwC3KHAc7tZaSuEoHpIc8JCLyKEXtUZcPUttEeoBHuz9Tlg0KGggKLB3cMNsjPxqVgRn1v87kvj98Ta91kavyfWvs+74ffE2nd/P1MWdk3aNMfbWvtddSeXmn6uYBxfvjqvop1OhC4HxcnF1NZVA35uOpw8FRTFyWqKt7WUy6Kj1La3x1y8uIgKFQZTu/ZymxNTF9cQtf5sQfKF0JS0KwQcvETAczXB7eZUJ8jHDc9qQXheyEYTcFMoslbFchAeDOhxCQwEpE0zIm2anKtZ+x30TU0kzNfZ5ECZtRVCjWAXdrRBfT97BEqzDlTxc2fjqzOI6tPN5Gybfl9TnU2XmH5fhUA89gT0HkRA/l5jEJCZACYRtBrqvuzCEWFdllryz+J4JsKQa2GjirJdts/ZtmkFxWz9/DqSkLDkZsAkZLSqdXH2OIzroip8u7pD5Rr5yuIrCuw9F3Bqo12CkDkXz1M5N4mkAtW5jN99UqGv1PTdp2ot2gJwBVMkXNo1x3DY2R44cCCxsbHUqVOHtm3bAqoY2ZEjR3j99dcZM2ZMaY+xSGbPnm3znEajwcfHh4ceeojWrVvfwVFZZ/To0bzzzjv06tWLqVOnEh8fz+TJkxk9erSs23ifI4RBVeEtICRUufIr6PUphfYI2bk326UCCEUtTyFQ9y3eRcr7kgcHadfuE6yp9tYbBR4hgKKWxtFOx1eXgxB6K5NMW6JmRdu0m071CrO0dHViOoy6dVfbmJhWRPlpqHk92gJCaFw5DgcB10CLR/XMd6aNrxJJQaRNKwWEAbYstV1mT6+DLUtwHxljf58GAyQnoGxZChdPoTRqCU+MgcIiaADlwqDuyELOqC0nVcD5bwgJGVXIRhVlu0q2UJiUtJmgoEGU9+92M2Ai9HDhFMqv70L/cfDlWXOl8Ix0VfwxtAMcXaJqUeRlgleVQk54PgXsYNap7bgjKWscdrZjY2P5+++/6dSpE+XLq/stunbtSlJSEo899hivvPJKqQ+yKN566y1yc3NNqetubm5kZ2cD4O7uTl5eHnq9niZNmvDNN98QWIb/ufr5+bFz506ef/55evXqhbe3N9HR0bz66qtlNibJ7ce6kJBClSpTbO7NLjai4xKCPvsGv/4RTLWcqVTpNO0OPpFEchNp1+5RjHWzlWx1Ymxtwpp+BtquhqyCTngNRGQsIcEjzSaZRYmaFWXTMjOPcv36b1SoMBg/vw4WTjUouLiEULXydDRaVwz5EXcFAS1eA+/qJiE06o1WHW1Fc7O2rETiINKmlQIaJ7hYzJ7i+NMoWi1a92LcQVd31dEunJLeohNcP29ptwD+egtqDrJ0Rm1ULVAOxODS56DFol9Rtis+/l0qVhzi+EKhc0WUmCGwYz2U80dJTb5Z5xogMAQRPR3F2RWRl4OidVGDKR4hiMbTb6bKo1g64YXsoP56anHflOQO4LCz7eLiwueff85PP/3E999/T3JyMv7+/nTs2JGOHTs6PIALFy5w4cIFGjVqhKenp8PX//jjjwwYMICYmBh69uyJl5cXN27cYNu2bcyePZs1a9aQmZnJ4MGDmTx58i0rod8qdevW5YcffijTMUhuP+mJiRxcupTW06ah01+2EBIqamJaZN3s/L3ZCpAaf5rTKzOpPq7pHXwyicQSadfuQYx1s/0rqCmYhSestuq4aj1Qms3GxSWE2rWWmzJzikq5NLdp7UlMXGaZPqlorDvV+Rk7CV+8yKmAVYQnDyW0z/tA/uSzyQwUJxeEPhdF4ywzfCSlgrRpt4hBD5WKFjgkNAyh06ErTufJLxCSE8wdbUWBzgPgLxuK3KbqBGstndHcdKj5NAS3g2Mfmo4rOalWF/30+nQqVHjaquMMSpELhWmn06hUbQrO7h7kZWUS//t+qraqiHj+NZSQ6tbrXAOp297A78Z8Ur2m4Nd/uumZU7cWPq7aQZrMACcX0OeCtIN3HQ472+fPnyc4OJh27drRrl07s3M6nY6EhASqVKlSbD/Lli1j1qxZXLp0CYA//viDJk2a0Lt3b9q2bcuECRPsGs/YsWN56aWXzMqNeXl58fTTT5ORkcHEiRPZt28f06dPLzLlXCIpMVoPi0M3EhP59b//JSpmBgkXLaPXxant2rM329WzAtWqxeAbGmF+cUCwqhoZEFxqjyiRSO4vslJScEdB+FVGOTzH/jqu+fselXNfUaH6QPx825JwaTlZWafJzDxGcHDhVEyVK1c2kJl5goce2mOePonG5FArimLFqVYRihcGQyZC8b7ZqaKQ/OsmAk8+S3LNZSaxsxIjbadEUjooGug7ClYtsJ5K7qSFvqPJvnKJqGDQpCZZNMlISsJTURBePigfLjbvx9VdFRArSpH71AbwrgbN5kHEFHD1AF0u5OTAtIHwf52h8xS1n9ws0LqgHNyDS+IZqnWeguLqgcjJhG83QlgDXOpGmtmuqydP8dO0AdTp25cG/ftb2DWEwK2cD3vnL+D6xYuUCw0lcvRoUBQUW9HrguhsKIUXPq4ocGgT/PUsNFwGzW7RDoL6mUhKDYdLf1WvXp3Dhw9bPffnn39SvXr1YvtYtGgRzz//PEOGDGHHjh0UFERv27YtmzZtsns8hw8ftinKVq1aNf766y8AGjRoYLWUg0RSYoRQoz/DM9RX4++xEFRs1JCp6ek2hYTsKQOh7s2uqO7NBlC0+Xuz1T9b7+Bg2sbGmkRFTAQEw6hYOWGUSCQ2yU5NBbfy6iTPVh3XwiVyANO+x6DmKNv+D5fzO6lWeQr16q3Dy70urq7B1K5lvTxhpdAJaBRXhE7P3r2BJGx73uRoF+zfYLCcZGqUylT9Tn21wNak1BYewdAkRn0tiLSdEknpoCgQEAIzV6iOdUGMKdMBwWT98ydtQ0CTlmzRRWZyMri6qyJohVPSc7JUsa7CYmcW49CqbVt5QWsv0Olgzevw3UY1Ut7aC1p5wrcb4NIFGNsJZdZwlFbqcaWlp/p++CMYLl3gfx+t5o3AQGZrtLxXuzZHN2/m5Jdfomg0JH4xycyuKRoN3iEhtJkxjZ4rVxI1czreISEoGg0oCglfvsiePZ4kfPlC6USirdhBj3wRSI8CYpBFIgTUiIC9GeqrYwWrJDZw2NkuqlJYTk4OrnbU8H3nnXeYMWMG8+fPt4iO165dm+PHj9s9nqpVq7J8+XKr55YtW2ZyxK9evUqAvb9sEklxCANkxsPBWWoZiYOzIOea6bhyaDbsHGxDSEil2LrZtVbg4hJMXsIJWBNI6ub5MjVIIpHcOvmq4wxJQhj0jtdx/WsReIZCw/Eoe0ahrPSClZ4oKz1QfhpKhYqD+b//O0vVqtMJChpI1arTaR75L4GBT3HggyVonF0wGDIcGrKz8KP6d+prQWxOJouKUnsEq3W4CzvbEomk9NBooOtgVfBrxHToMlB9/fIsdBkEGjv2FOdkIfJyLVPShVAd5trRqkNtDUULtaLhuw1qeyHUiG1Bx10I1RnvPAA+X3Ezei6EeQ1qvQ6nz5fT8Mkn1UWAAviFhWHQ6xH6HHQ683OKonAp36lO/PIFs8VFZ4MXlZMycTZ4c7soSgzS4BPArgT1VT2g1kTnw1lq5P/DWaaa6JJbw6408mPHjnH06FHT+127dnHx4kWzNtnZ2axfv56wsLBi+4uPj+eRRx6xes7Z2ZkbN27YMywA5s+fT//+/alduzaPPfYYgYGBJCUl8dVXX3H69GlTlHznzp20adPG7n4lEptYExPyj1BLTZxcezPtUusBrCWkYrTVtMqbIhpWykAERePiXglFgOH8YchOxq2i7x1/VIlEcp9RWHU8YhLUHWWuzmurRI4Rs/2QHc33Q9aKRtEbcMafKpVn4KR1IS8rkyPrN7Bv8WJq9+iBIS8Hg8ExATNbTrXNyaQxSi2RSMoOjQYCQ9SFL61WjSw7OdkfOHB1JyfhAm7WUtJ/+QYeH2ohdgaojnbUCvAMgfX55QGN0fDCjrsxJd0OQTethwdad3fTPnONVkvk6NFqtNom1rN1nA3eVE+FFF/7nW2DxhcOgqGTr93X2MKjbgQ8G4NXwybWBehA/cxnrlAXTSpUlttsSohdzvbGjRuZNWsWoK7S2FIc9/X1tUuArGrVquzfv5/27dtbnNu3bx+1atWyZ1gA9O7dm/379zN//ny2bdtGYmIiwcHBNGvWjI0bN/LQQw8B8N5779ndp0RiEyGsiwlZ29+oy0LRZ+PiGmomJGREUbT4+3cGYcDFOZhqlW+qTJKXvzdbo8Et0B8A9+o17+CDSiSSu47kRLWcTt9RJZvwWFsoTPkb+hwoNGG1o47r6c2IhxehXM2Ahvn7HrMz4fuNiHIB8EgXPmzajGsnT5KXqU40NVotA7/5hqz4gw4PXZbrkkjuURQF/o2D6Naw/Geo06T4a4QgIL+etmtenuqgz1xh7gy27AapVyFsIFRoCyeW31z0q/us6mjPHAon40x98t1G6DnC3HG35YQXJjQMXWammaPdY+VKvIODrWyHuT0YnPxUZ7uLX/GNi8G4FdGemug066AumsgFzBJhl7M9ceJEnnnmGYQQhIWFsXXrVho3bmzWxsXFhYoVK9r1Czdy5EhiY2MJDAykT58+AOTl5fH111/zxhtvOFxeoXHjxnz66acOXSORlAwDHF1aaPKZv7/xcGFVTAGnNqBUeYwKFcyFhEzK4q4hkJOG4uaPMO7NFqC4FaibHRqh7i8sLIQmkUgeLJIT1dS+qB6OO9u2FgpNUeo15lHq4uq4Rq1AcQ9EeIHy0QK4chGCQhF9R0P5inw2dCiX//zTdEnBiWnKzk1UvQ7OwjKio/cONXs1IcXLJJJ7loykJDyzM9XXOsU0LlxPu1I4DJyoRlebdVBrUCecUdPSV8yFPV/AUxNuip1lZ8LvO6DVY2p5sO823nQi1y+CboMRM5ajzIlWj9tywgvipEX0HU3SP//QcOBA/MLCiBw9WnW0i4xqqxHsqlet27u7AjtrojMqFhSnOzq0+wW7nG0fHx98fHwAOHPmDMHBwbi4uJT4ppMmTeL8+fM8++yzjBo1CoCWLVsC8Nxzz/Hcc8+VqN9bLSMmkRSL4mS5j7Go/Y35NR2V89txyblKtfApKFoPhC5TjRy5BkDlrhgMBi59vYzcw//BpfFrhPQad7MP4/5CiUQicZAbf/+P5FdfoOra79XUcWtR6lMbIOUoRK2EyFi1Rq7Qw5ljEP4UVIgyjxrVilajRt99itJ5ALqhr6D18ECXmcnFffuo3CqIDvPn41e9OimnT1tMTJWUGzbTJ73qdIed3+PVobv5CZkWLpHcs2QmJ+NZ4NUmRaUzv7EVWnVHjJypiqaBmvp9Mk5tPydaTQk37rV+9EmYtRaad1SdxfwyW4b0VJRuTyOatkfZtkw9np2JqFgFZq5AKXxvJy1ixgoIqEiF8hXps24dhnwFcXsCjCVJF7+j2FkTHY10tEuKw6W/Cip/Z2Zmkp2dbdHG39+/2H7efvttJk6cyPfff8/Vq1fx9/enQ4cO1KzpeKqssYxYYmIiiqKUuIyYRFIswoqYUFH7GwtEjZTMS3B4AWRcRPEMRV8zGsUrhOy067j7+VGuZiuSNzajXP9Wd+ZZJBLJfU/Wib+pdn6/qgBcVJmca3Hw10Jovw46BsJX52DHeutRo+82qPsg2/RAl5XFq15eOLu7m9LFg5s04Zk9e4iKiUGj1aLPy0FTYGLqUrMFqZ9WxaV/C4th+Fd+iLbP7LodH4VEIrmbEcKynrYRvQ4m94Evz5KdmYX70w8hfrymRr0LXl9Q1GzHBmjUCkPvZzEMnWJaEPxrwwaSjh6l1Suv4P5sLIqTExj0JB87RvnOT2FoHIXT58tNzrm+ZzRKYAgH3v+A5uPGce7LANxzRhDU7zWzIToawS7N/de3hJ010THopcNdQkqkRj5nzhwqVaqEt7c3gYGBFj/2EhYWxqhRo5g6dSqjR48ukaNdsIzYd999d0tlxCQSqwiByDf8QihQb1Qh9csC+xutqWKe2gDb/g9c/BCRMdB2JboGU/jrsx85+e0O3H19URQFr/oPUW39LrzqP3RHHksikTwg5GQhdLnFl8nxDlMnq6nJN9MqTx81L5HTylN9f/ooos8ojny6EYQw25fdYuJEnN3dubx3JXv2eBK//Q2zCJBn4074zj+LZ+NOt/OpJRLJvYSd6cxuoVVACHISLqj6FYVLixlx0qJv9Rh/rl3Lq15ezPP05FVPT05//z0d5s9Hl53Nrlmz+Gz4cHR5Oo6sX8+ypk2J+3YnuqFTYO46dEOnEPftTpY1bUrG5csY8nKomnjVqoK4s8Gb6lexOKfzDePsLvW1IKb9106W+69NjrjG144P7hYx1kQv4nOk72hT2VmJ4zgc2X7rrbdYuHAhL7/8MtOmTWP69Ok4OTmxYcMGcnNzmTZtml396PV69u3bx8WLF61Gx4cMGWJXP8YyYtOnT0ev15udc7SMmOQBwRGRocJ7h9r0gM79LdUv89PFbapiNpiAcPYg+Z9j/Prmm5QLDbV7v49EIpHcEkKQe+UyrvVG2RY8K1gmB0x7G5mxXE3P1OtuRo2ctIiZKyAwhBpdu9Fm+nSr6eIiNZfK+zPRNve9U08qkUjuRZyc7E5nVpxdYG8GLnl5CCcnlMLCaaDaqJiVaCpU4o/33jMtCFaIiKDXmjX89cknfBkdjUGnXlO1dWsajxjB3gUL+GLECL6IjjbL1jGKO+Zd+AdbBY5tRap1AXVYvR6enVTcZvUCfZWiEFqxFKyJbuVzNNZEl6VnS47DzvaKFSuYNWsWY8eOZdq0afTq1YsmTZowY8YMevTowb///ltsH4cOHaJPnz5cuHDBat1uRVHsdrZLs4yY5AHBmsiQEGqKjJNWNTQaJ/VY4b1DLTrZVr/MTYeaT0NwOzj2odn+RuFdCQSUr12bnitXotfloXHS3jEFS4lEcp/g5lHyaz1CoM1y2GNHmZyTcTBrGCJ2NTTviFJgz6MxrTI3PR3PoCCiZk5H4+xqsY/RqVxNzq2Cuh1vYyUFj2BVQFLWzJZI7l30ervTmQ25OWx7Zhj+4eG0mDgR966DUYzCafk2ir6jUQKCEcCTX3zBwSVLSDl9modfeomMy5fNHG2AfYsWETF4MI8vX246V9DRNoo7pu3cg6uN1G9HHWRb5QyLwlgbu66PndfYKyxprIlu5XMkIFg9LykxDjvbZ8+e5aGHHsLJyQlnZ2dSU1MB0Gg0PPfcc0RHRzNv3rwi+xgzZgw+Pj6sXr2aevXq3ZLYWmmWEZM8oORHr8mPXlMpHJ55BdJTzB1tRYHOA+Cj+db3Mf69Dxq1Aid/eGg6OLtCXg6G3FzQGziwdCnNx41j7+uv0+jpp/EOlpNDiURiJ0JAjQjYm6HWqhXC/kiDouASWAF+2AztBkLFtuYLhXVGglcluJ4CbXpAeAMIDVOVxYFzR09SqcCexyOfbsQ9IJBa3bqhKAqp297A78Z80rym4Nd/uum2Bt9AdidCbd/bWK5LCkhKJPcHxnTmIhTB9T2jift4HUfWrwdg74IF9N+6lVrdu8PIGShaF0ReriqgpigogHdICFEzZ6BxdsGg17M7NtbM0Qa4HBfHZ0OG0GvNGqq3b8+hZcusZuvk3TCUWsS5qHKGtpxqh22qI8KSt1oT/T4gPTGRg0uXEjlqVKnO0R12tsuXL2+KFlepUoVDhw6ZHN3k5GQyMy0Ltxfm77//ZtOmTURFRTl6ewtKu4yY5AHC1d268qWiwLAplnuHXN1Vx7oo9cuaETBpMTRuDYAuT89fGzexb/FiavfogUGvp9XLL9/hB5VIJPc01hYE+45SU//siTi4uqupl7s+g5WvWhc8+2U79B+rTsw0TmbK4v41a/LzggVcv3jR6hYYg8YX9mWWvdCPRCK59zBm6xSTzixmrEAJDGHf4sWmwwadjk/79GHC2bM452XhPrgRyS8tI7D3IFMbRVFI/moTge9NRPNDEtdOWU9VP5IvnNZl8WKiYmPRODlhyHfcjdk6DkeWS8gdWai0Rklqot9H3EhMZPesWdTu0aNsne2WLVvyxx9/0K1bNwYOHEhsbCyXLl3C2dmZDz/8kA4dOhTbR61atbh+/XqJBlyY21VGTPIA4BdoXfmyoFNdkJwsdWJalPrlyTjYvxNd3ea8Hhhosd9H7s+WSCQOUVQpnJkroOtgMq5e5Y/33rO9Gp+TpUZ7KoWrCuPWFgoBqtWxsF0VIiLosXKlqizu5GS15M0d3V8okUjuD4Qg4LEnoPcgAvJy1fmUjXRmQ+9noXxFtg0ZwuW4OLNuDDodB5csIWrmDHN7Vpi0qxjycvEPt52qfjkujjM7d1Kl5SMQVY6rhRz3opzgO+WI3xGK+hwlDuPwzD82NpbWrdWo3dSpUxkxYgTr169n6dKldOjQgQ8++KDYPt566y3mz5/PsWPHHB+xFd5++21OnjzJe++9x9y5c3n33Xf5559/ePvtt0ulf8l9iKKAl6915UtrTjWo/xEYFXqLUr/sGc1fGzZY3e8j92hLJBK7Ka4UzuwRkKyWvNw9axY3EhNt9pObdBlRUHG28EKhFdsF6uTz94UL0Tg5weoA0ra9Ie2YRHIfkZ6YyK7YWNJt2Q8bOHvYrx9hdEQNRkfUYICkeJTlc2DaQPU1KV49np/OLKJnwNx1MCqW88dOsaxpU45s2GC1/5TTp9E4u6gLiLbIVzCPHDUKjdb6HE6j1RI5ejQ58ecddjiNjrihFKLRXsHBRMXE4FVo8dTWccndjcOR7dq1a1O7dm0AXF1dWbx4MYsLpHTYomHDhmb/QScmJtKgQQNCQkLw9fU1a6soCn/++adD4zKWEZNI7MLVXd2TYk35sqBTXXjvkDWFXiNG9cuKlcnLyqLhwIEW+30kEonEbuwsheM+ciZRwaBJTbLdFUBACGLGchRrtstKiqYRv7AwDHm5aH69al0Y6H6K6EgkDxiOps4KIagQEcHUjAwMOh1CCNP83taeV6MjWj+4il3ZOmg0aur3wlEYfrzGmZ07LSLaBTHZqJysIsee9e8x/Np1pceKFXwxYoTZ3u2CgZGUn7ZThNt+2/EODqZtbKzdx/ENMH+V3FU47GyXlMjIyFJbDd+zZ49D7du0aVMq95XcRyiKKv5gS/nSllNdnEJvUAiG3FyajhpF87FjMeh0KE5OMhIkkUgcx95SOFpn2lZ3Jykt2Xobd09cAitwdPNm6vYeiKFJW5w+X26yXaLvaIRfkNUUzYKRHncbqeJltr9QIpHcUYTBQHpCAgeXLuXaqVP4h4erjnVICIpGU6zj7hloY/se3MzWadZBFeoCyMowRaP3LlhgIWwGhWxUMePXX09F0WiIGDyY6h06mFTKCwdG9NdTS/YBlRWhEWpVhtCIsh6JxAolcrY3bNjApk2buHDhgkWNbFtR6VWrVpVogNZo27YtiqKYyoYVdGQKrrAZKVx/W/IAY1T0/fmGurpqS/nS6FTPWg3N2qNsXWY2MYWiFXqTjx/nw6ZNGfbzzwQ3ebAEJiQSya2RnpjIwWXLiJo+Td1nXRShYep+bGsRnQJ7IjUGPZ5BQWwZOJAaXbvS0Gi7srLQuLhw4uuvObp5s9nld1OkRyKRlC3CYCDu448tIsJ7Fyygx4oVRAwejNa9CCuhKLj7+qqlV4vJ1imooH07otGKRmOuUl5ICO2OYG9ZLnuQVRnuahx2tqdOncqCBQuIjIykVq1aJSrbNXz4cGbMmEH16tUtzp07d45Zs2axcuVKm9cfPnzY9O8rV64wYsQI2rVrR79+/ahQoQKXL19m06ZN7Nq1ixUrVjg8Psl9SmFF30Ytod8Y28qXDz8KAk78fojwAk71xf37qdK6YpEKvbqsLLN9jxKJRGIvNxIT2R0bS/OxY/EophQOfUeTbS2ik2/vlAIK5lV6jaTKJ5+wbcgQvoiOxtndnbzMTBo8+SS91qxh/OnTNkve3HORHolEUmoIIUhPSLBwdkEVKPtixAiqd+hgtYyVEWd3dxRb2/cKEn9azepxcgIcjEa72b+P3KRS/t9nLYTQ7giOlOWS3NM47GyvXLmS2bNnM3369OIb22DVqlWMHj3aqrOdnJzM6tWri3S2GzVqZPp3v379ePLJJ3n99dfN2jz++ONMnjyZDz74gE6dOpV4rJL7BGt7hHash79+g9jVFsqX9B2NEhCMAIKbNrVwqhVFUVdFZ0wvu1VRiURyX5ORlIRH7do2FwSJWQkBwWQVjujY2BOpWbUAMWM5vdesIenoUVPK+JENG7h64gTP7Nmjqo5rtdKmSSQSE8Jg4ODSpVbTuKGAInhMjM0+8rKyEDqdXdk6GPRQKCu1qGi0EILy+Vk85fNyrWa52kQqb0tuMyVSbGrRosUt39jWH8HJkycpX7683f3s2LHDpjPduXNnvv/++xKNT3IfUZSi7/Z1MLQ5wtsX8WwszF2HeDYWEajWr71p3GfSM7/8jXFvkqIoXP19E6z05Orvm+SkVCKRlCq6rKybpXC+PAsjpkOXgerrl2ehyyAoHHUuRsFcmRONSEqgxYQJpsMarZYWEyfi7O5OyqH97An3JOnnn6RNk0gkAGicnGzWpzaScvo0Gq3Wdiq5EGSlpqrb94qo6ELf0aBYd08UReHqV5uglSdXv1LnXcJgID0+nt2z57Bl4EB2z55Denw8wmBw4AklktuHw852dHQ0n3zyicM3+uCDD4iIiCAiIgJFURg4cKDpvfGnVq1aDBkyxKFItJeXFzt37rR67vvvv8fLy8vhsZaEq1evMnr0aKpUqYKnpycNGjRgyZIlFu0SEhLo27cv3t7e+Pv7Ex0dXWo1xyU2KE7R99ghlFULEHodnw0bppbAKGCoFUXhclwc8zw9uRwXZzYB9QgIAF2m+iqR3EdIm3YXUagUjoieoQoIWatwYIeCudPny2k0eBANBw6kzfTpTDh7lohBg1A0GnK1bvx0OtOh8jWyHI3kXkHatZJh0OuLrE8N+YrgOp26SGiDjKQktSrCzBWWDnd+RRcCglURW7CdFp6diVM5X9M+8sXVq7Nn7lyOrF/PnrlzWVy9OnEff1ysw21RkqyY4xJJSXA4jXzOnDlMmDCBli1b0qFDB6tlu1544QWL60JCQoiMjATgyJEj1K5dm8BCeztcXFyoW7cuI0aMsHs8Y8eOZebMmVy+fJlevXoRFBTElStX2LZtG2vXrmXWrFmOPmKJeOKJJzh27Bjz5s2jSpUqfPPNN4wZMwYnJydGjhwJQF5eHo8++igAn3zyCZmZmUyaNImBAwfy1Vdf3ZFxPpDYqeircXHl740b0WVlmQl+GEt2WduDbdyfVNQ+JYnkXuRBtmm2yteUKQX2FyZb21/o5qHucXTA3vVZt65U0sVtlqORSO4yHmS7disoGo1diuDZqanF9iUAugxC3zjKrCqCvmc0mgqV1PN2pIW716hj1z5y75AQm+UJbVVSKEmFBbnoKLGFw872jz/+yOrVq0lPT+e3336zOG/L2e7Zsyc9e/Y0vZ85c6bVPduOMn36dHx9fVmwYAGrV6827d0IDg5m0aJFPP/887d8j+K4dOkSP/30Ex999BHPPPMMAO3bt+ePP/5gw4YNJgO+efNm/v77b/755x9TrXI/Pz8effRR9u/fT/PmzW/7WB9IDHrbJb6MhIahy8w0rcgWNtTSiEoeJB50m+Zo3dmyxGKvol5vn4K5Xo8SVa5shIEkkjLgQbdrt4JRp6Y4RfDk48eL7MczMJD0hAQ29OxJs7Fjb1ZFyMzkrw0buPbvv7SfO5f0+Hib5cXyB4RrSGV+nz2n+H3ksbF3pDyhXHSU2MJhZ3vs2LE0bdqUt99+m1q1auHs7OzwTT/66COHrymKcePG8dxzz3Hx4kUSExMJDg6mUqVKaKyl2N0G8vLyAPDx8TE77uPjw40bN0zvt2/fTkREhMl4A3Tq1Al/f3+++eabB9KA3y6EEAiDAY2TEwIF+o5CKULRV98zmr82bDA7XNBQO2pEpXMuuZeRNu3uw5oAEPkKwcZJaUCdOkTNmIGhVzSaIuydoddI9f/H/PKZ9uBeqz5na0YRUKt+KT6VRHLnkHbt1rBHEbyoFHIUBTdfX3bPmkXioUN8MWKEWVWEChERjDxwgD/XruXL6Gib5cU0odXZc82dNs4u9u0jd3K6mZYukZQBDjvbFy5c4J133qF+/bL7D/eDDz5g+PDhuLq6mo5pNBqqVKlClSpVrF7z119/kZSURPv27Ut9PJUrV6Zz587MmzeP2rVrU7lyZbZv3853333HunXrTO2OHTtGnTp1zK5VFIU6depw7NixUh/Xg4owGMwmoLV69KBB//6IGctR5kRblviasQIlMIR9ixdb9GUy1A4iVzgl9zLSpt1dFLZplVu2pNmYMTdr3ur1OLu7c2TjRh6ZPBltYGix9s6g06GxVpvbBl71H8Jr/a7SfziJ5A4h7dqtYxKNNVYt0OlQnJzs2obi7O6ORqs1d5CFMG3RazFxIunx8RaONphnG7qH1eKnM1m00uns20eu1zu0sCiRlDYOO9utWrXi+PHjZVpOa9WqVcyaNYunnnqKJ554gmbNmlmNsCckJLB9+3bWr1/Pvn37WLVq1W0b09atWxkwYIBpEcLJyYl33nmHvn37mtqkpKRY7HEHNT3p2rVrNvvOyckhJyfH9P5BFukoDqNYRsE0p7BOnci8ehX3RwdiaNLWbI+QofezUL4i24YMMZXBKYjRUJfE4ZZI7mWkTSt7tO7uNm1a2vnz7Fu8mMeWLaPhgAGmVMy0CxdwDwjAzYq90/eMRgkMIfv6dZTr1yxrc0sk9zm3y67djzbNlnaFoihciovjo9atGfbzzwQ3aWJXf3lZWRhsOciKQoMBA9g7f7595cWEIDs11a595ModynKVSGzhsLM9b948hg4diouLCx07drRqkPz9/UtjbDbZt28f27ZtY/Hixbz99ts4OztTq1YtAgMDcXV1JTU1lTNnznDlyhX8/f0ZOnQoH3/8MRUrVrzlewsh0Beo/acoChqNhmHDhnHy5Ek++eQTgoOD+f7775k4cSJ+fn48+eSTt3TP+fPn3zGht3uJgqniBr0eRaOxFMsoYMCPf/EFLSZMMO0RMuTlkpedw+r/+z8SDx2y6F8aasmDgLRpdyfOHh6m/Y3WbNqJr74i+vffEVficVo9Hy6eQlspHL+eI1B8fUk4fJikv+JoUGBP5JFPN+IeEEitbt1IOfzbbXe25XYaSVlxp+3a/WjTitOusCYaWyRFOMjO7u44e3g4VF4sIymJgNq1i91HLksYSsoah53tZs2aATB69Gibv8D6QoXobwe9e/emd+/enD17lh9++IEDBw6QmJhIdnY2VatWpXPnzrRs2ZK2bduWaF+5LXbv3k27du1M76Oiopg0aRKbNm0iLi6Ohg0bAtC2bVuuXLnCSy+9ZDLgfn5+pKWlWfSZkpJC5cqVbd5zypQpvPjii6b3169fL7L9g0DhtEr/GjWImjmTg0uX2jTgl+PizPYI+deowcgDB2g+frxF2pI01JIHBWnTygZbUSMhBBUaNmRqRgYGvZ7dsbFWbVrdPn1Qvl2HplCquGbVAsSM5YR0exqfSpX4ecECrl+8SLnQULO9lWa1uW8TcjuNpKy403ZN2jT7sOUg52VlkZeZ6VB5MV1Wll37yCWSssZhZ3vlypWl5nwIIThx4gTXrl3D39+fWrVqOdx3tWrViI6OJjo6ulTGVByRkZH88ccfpvfe3t58/vnnODk50aBBA7O2jRs3Zvny5WRmZuLh4UGdOnX466+/zNoIIYpNy3d1dTXbn/6gYy2t0tnDg3azZ1usilo14Pl7hC7HxfHZkCH0WrOG6u3bc2jZMmmoJQ8c0qaVDdaiRsJgIC8rC62z+l+zRoHqHTpw/IsvTNtc8rKyMOTlQXKi5Z5sAL0OZU40oml7PINCiZoxHY2zS6mU+JJI7hXutF2TNq14nD08inSQhRAlKi92K/vI7wQyw0fisLNtLJdwq7z//vvMnj2bpKQk07GgoCBmzpzJmDFjSuUetwNvb2+aNm1qdqxq1aro9Xri4uJo1KiR6fjBgwcJCgrCw8MDgK5du/Lxxx9z8uRJatasCcDOnTu5evUq3bp1u3MPcQ8j8tV3C6cM2VwVFYIjGzfSeMQIqwb8yIYNXD1xgmf27LlrDbVEcjuRNu3uQBgMIAROqUlovlih1squFE6VXiN59sABtg0ZwhFTxQSB5rMPrauNg+pwb1uGGBXL1fza3IVLfNmqOyuR3A9Iu3b3IISgQkSEmq2j06k1s40O8swZZouBzu7uJSovVtJ95HcCmeEjKZOw3bJlyxg3bhwdOnRg27Zt/Prrr2zbto327dszbtw4li9fXhbDKjHdunWjSpUq9OvXj48//pidO3fyn//8h1WrVpnV+e7Xrx/169enb9++fPXVV3z66acMHz6c7t27P7ClJBxFGAwWqeLqiZtOtUZrvoa0b9EivENDeXz5cotzGq2WFhMn4uzuztWTJ5nn6cnluDjpaEseaKRNuzM450/uhVEpd/vHOPWpCSvmwo71sGIuml7hKDs+ofeaNVSIiFAVfZ1dVGe8KOJPo2icwMkJsi33VhrrzhpuY91ZieRu4kG3a+mJieyKjSU9MfGO3VMYDKTHx7N71iy2DBzI7lmzSI+PRxgMKIrC1a82QStPrn61CUVRTFHvCWfP0mb6dBoOHEib6dOZcPYsEYMGFVtezOF95BLJHcCuyHZERASffPIJDRo0oGHDhkU6Ioqi8OeffxbZ31tvvcX48eNZtGiR2fEePXoQGBjIm2++ecfSwksDb29vdu7cybRp0/jPf/5Damoq1atXZ+HChYwbN87UztnZmW+//Zbx48fz1FNPodVq6dOnD2+99VYZjv7uIj0xkcMrV9J4+PCbqZUFhNA0Tk42BTT2LVpExODBPL58udke7MtxcXw+bBi9Vq8mrGPHIutDSkMtkTw4Ns3WvunbTeFID0IgLl+02H8NmNLCDU3a0mLCBL6IjkaXmYm2UtF7GwkNA4Me7oCGikRyL3A/2bWS2K7iBM9KE1uVFMC8ZrZTOV+LxcC7PS1cInEUu5ztyMhIPD09Tf++1V/4M2fO8Nhjj1k91717d5YsWXJL/ZcFNWrUYOPGjcW2Cw0NZcuWLXdgRPceQgg8AwNpM22aKdWI/LTxg0uXcu30aXquXGlTQMO4B7v32rVWnWpFUaymLUkDLpFY8iDYtDs5+TRSWNwxoE4doqZPQykmLdzp8+U0GjGdMzt3knTsGBX7jEJZtcD6NU5a6DsaFKk5IZEU5H6xa2VhuxzBaiWFfMxqZofXtnr93ZwWLpE4il3O9kcffWT6d2nUqg4ODua3336jY8eOFud+//13gu9CwyG5vRSegFZu2ZJmY8ZY1pft2NHm/muAo5s38+iiRapTHRtrVhbM6FRn/v4TnlP6kDV/K56tHzVdWyIRC49gaBKjvkokEkkBhBAIvf5mdEajsRR39PQkauZMu9LCNS6u9Fm3Tr1Wo4GZK2D2CHOH20kLMSshIBiKWEiUoj0SieS2oCi4+fqye9as4mtmz5xRZFd3W7ahtJuSkuDwsvfw4cM5c+aM1XPnzp1j+PDhxfYxYsQI5syZw/Tp0/nf//5HYmIif/75J9OnT2fu3Ln3VAq55NYxphotrl6dPXPncmT9epw9PEg7f95iVbS4/dc9Vq7EMzBQranp5KQeL5R+5Fk3Ap6erL4WwChi4dAqsUcwNI2VzrZEIjGj8F7Fy3Fx1sUdMzMx5OWCHWnhQq+/qSuh0UDXwfDlWRgxHboMVF+/PAtdBqnOeBHYsndyMimRSG4Fj/Ll0Wi19tXMdnYBV/fbPqbSsmslmidKHngcViNftWoVo0ePpnr16hbnkpOTWb16NStXriyyj2nTppGSksIbb7zB/Pnzbw5Gq+X5559n6tSpjg5Lco9iVV1cUWgwYAB758+3WBUtlXJdAcEwKvb2PJBEInngsdirqCj0WL7cqk1DCE588w21i0kLF31Hk339unmkR6OBwBBE9AwUZxdE/taYoiLaxSGVcyUSSUkwalFMTkrC8P/t3XlcVNX7B/DPBWZYBmRfRXBJcEFIMRVScUFzi1TUXHI3s8w0za1FMNfSzDIt+4VrKoprbrniFlja8kXcSzBNVEBAUdmf3x82N8bZgVnA5/168dK5c++558wwD3PuPec5paW6rZldXASLQvUJz6oKxzVmShWa0KVujuvVq1fh6uqq0/GfffYZbt26hd27d2PdunXYs2cPbt26hcWLF/Mc2meIquziEltbSOzs1F4VTY2Px/+1bImcv/5CRGws+m7YgIiYGDj4+PC62Iwxk1J1AVFbTDs2Kwbk6gWaFfdkGHh5llagmFUQ3LyRf/u28sGCgKx/M/pm7UmoVEebMcYqQmkkz//+h9A33lAagSgnrpmdeRfHbj1ZitCc8AgfVpV0urP99ddf4+uvvwbwpKM8ePBg2NoqDvsoKChAeno6+vfvr7W8devWoWfPnnB1dVVas/DevXvYs2cPhg0bpmsbWDWmKru42jWzy7mTkoK0I0fg167dk3LUBHTGGDMG+UoKbadPV7qAqC2m3UlJwY6hQ9H3++9BL3SGsO0b4J9rT4aOR4+D4OYNaFnyRtXyXgCvp80YMxx1Wcczz5/H62fPKq0OAyivmX08Awg0syUI+U44q0o69VB8fHwQGhoKAEhNTUVgYCDc3RU/GFKpFI0bN8bo0aO1ljdy5EgkJyervAuelpaGkSNHcme7BlNIGqRqqFG5NbPVJUKTXxXlO9mMMVMrv5ICAOU72DrENHlyR5mHD+j1WRCsJKCSYgiWVpW6Wy1fT9vcvswyxsyfxM5O4/Pqso6Xn/KnbclVxmo6nTrbr7zyCl555RXx8UcffYT69etX+KREpPa5nJwcODg4VLhsZt6ezjoe/t57CH3jDaUvoOrWzAYUr4rylAPGmJwp1s1WiGkalifUJabJkztmpJxTueQND21kjBmDfP71+w8fikuxKn3f0pJ1PDU+HpkXLiBq1ar/VofhNbPZM0jvsbfllwGTe/ToEW7duoUGDRqo/QDt378f+/fvFx9/9tln8PT0VNinoKAAR48exfPPP69vtZgZkg+rbD5qFBy8vfUaanQnJQW7Ro5E77VrNV4VZYwxOWOsPSvv0L8wfjzsXF11Xp5Q1zs9cqqWvKnI0EbuoDPG9PH0TRGXBg2eXMB8Ki+OxNZWa9bxOykpOL1kCfpu2IBP3dww9OBBXjObmTVtozkqQu/O9uLFi/Hw4UPExMQAAE6ePImoqCjcv38f9erVw4EDB9BAxVX9K1euYPfu3QCezPs+efIkrK2tFfaRSqUICgrC/PnzK9IWZkbKD6uUXxWtyFAjQRCerJkdE/PfWrV8VZQxZiLyDn2rt99WGdM03cG+sHUrgoYMQUCPHkaLaTz3kDGmC3XzrwHg1MKFiIqLQ/Brr4kd7uLHj1FWUqJb1vGSEjzOzq6SelblBUS+GMnkdBrNUUF63xr87rvv4OvrKz6ePHkymjZtil27dsHNzU3tsl0TJ05EWloa0tLS4Ofnh/3794uP5T+XL1/Gzp070aRJk4q3iJnc01kpj3/8Mai0VClpkJw8u3j+7dsqs4sLgiAmQLOwsuKONmPM4DRd3ZbIZLBxclIZ0+QXEJsNHox3rl1D+w8/RLPBg9H+ww8xMT0dAT16QLCwwJ2UlP/WzK5kTLNzc1P4l7Gq8iAjA8diY/EgI0On7ax6ktjZqZ1/DQBlJSX4YfRoPMjI+G8qKBEKcnN1yzqem1tlda3Kta553WwGqOi3zJ6NB//8Ayorq5Ly9b6zfePGDTz33HMAgH/++Qe//vorjh8/jnbt2qGkpARvvvmm1jLS0tL0rymrFlRdFZXY2aHjxx/rPNTo1KefImToUA5+jDGj03R1W3wuPx+AikRo/5LPVez2xRca5yqqGipeEbJ/E5bK3DkJGqta6qZmGGPKBjM8hXhXWorjsbEqb4oATzrcv37zDSLKjZR5mJkJt8BARMXFKXXSn846zlhlGConiz6jOSpK76NtbW1x//59AMCRI0dgb2+P8PBwAICTkxPy8vIqVSFWfakbKq7LUl7Av0ONSkvRdto0/uPNGDM6TVe3FZ4bMgQlhYU6LU8IIpyYNw8PMzN5VA5jzGyUj2k7R45UuRTr03KuXYOFpaW4QkLJ48cQLCwQ/NprmJierjSSJ3jIEM46zqqE/AJfvo6jaXQZfaOu3wKoGc1RQXrf2W7VqhUWLlwICwsLLFq0CN27d4elpSUA4K+//kLt2rUrVSFWfVFZmeqh4ryUF2PMTEns7DTOVby6bx/G/PILzm3YoFMiNDkxpllaikuClcdzBZmxmSJbPzM/KuOdIKDn8uU63xTBU50PwcKC8+vUFG7ewOsxT/6txnQZfaO23/Kv8qM5hH/7uhWhd89m8eLFyMjIwMsvv4z8/HzMmzdPfG7z5s3iXW72bCAi8ZdU01XRn5cuhUPt2nj5u++U5vbwUl6MMWMrP3zSNTBQ7dXtF95+G/dv3FCZCK0yMa1K5wrWkC9HzLD0vTPETM8Qc+NVzs0ud1NE2/xrdTdFBEGo0lwUzETcvIE3Yp+Jvyd6jeaoBL3vbDdp0gTXrl1DdnY2XF1dFZ777LPP4OXlVakKsepD1/Vlgf+SBvVZv56X8mKMmZSq2KXy6rYgIOjVV3FqwQK1idB6r1uHep064bdvvzVdTJN/OWKM1ShVPjdew9rYmlZS0OemSFXlomDMEMqP8JF5eOg8mqMyHW69O9tyrq6uICJkZGTAw8MDVlZWaNasWYUrwsxfRdeXlbuwdSteWrr0yVAjedKg0lIx4zhjjBna08MnJXZ2sNqwQeXVbYmtLSR2dpVOhKYvHmLOGDMETWtjK1xA7NgRv/3f//FNEVbjlL+AZe/lhdA33jD4FNcKHX3gwAG0adMGNjY28PPzQ0pKCgBg7Nix2LBhg05lnD9/HgMHDkSDBg1gbW2N3377DQDwwQcfYP/+/RWpFjOw/IwMJC1aBEEQ1K4vq21Ypczd/clSXv9eIbLgOT2MMSNRlQxFUwJHXZI7GiIRGi9HwxjTRtPyhOpoWxtbvhTrw8xMlUuxMlaTCIIABx8fRMXFGXSKq96fnE2bNqFHjx6oV68eVqxYgbJya5A1aNAAq1ev1lrGoUOH0Lx5c1y/fh1DhgxBcXGx+JxEIsGKFSv0rRYzsPLzG22cnSu0vqw8KyVjjJmCymQomuYq6jOP8d9EaNxBZowZUvnvY57BwQqZkrXO8dZhbezMCxdg7+WFgpwcnn/NDMIQuQgqSpds+pWldwlz5szBpEmTsGnTJowYMULhuaZNmyI1NVVrGTNnzsTAgQORnJyMWbNmKTzXvHlz/P777/pWixmQPstDyK+K5vz1F18VZYyZhQcZGTgxb57a2KVpVM6Zr75CrTp1DH7lmzHGtNG0PCGgWxK8h5mZOt3Ne5iZyfOvmUGYW7LG8tn0DdFv0XvO9rVr19CjRw+Vz8lkMp3W2U5NTcWCBQsAQOkLipOTE7KysvStFjOQiiwPIR9W6de2LU7Mm4fmo0bx3R7GmFGoGlqZn5GBxI8+Qtvp01XGLm3JzgRBQPBrr6Fe586c3JExZnSalic8tXAhouLiEPzaa7CytdVaVvm1sTXFNE1rYxsjr4S+5+BcF6wyBEHA7ZQUrG7XDiNPnoR3ixZVVrbenW0vLy9cunQJnTt3VnouJSUF/v7+WstwcXHBrVu3VD535coVePMHxSyoXOxdnzWz1awvyxhjVa380MqykhIQkeLF3HLDJ1XFrtT4eGRfuYIRJ06oXSuW15FljJmCyuW6/lVWUoIfRo9Gvc6dIXN317nMyqyNLc8rYUj6nsMYdWI1nyFGc+h9OX7w4MGIjY3FkSNHxG2CICA1NRWffvopXnvtNa1l9O7dGzExMbh8+bJCGbdv38bixYsRHR2tb7UMZsWKFejVqxfc/03stXXrVrX77t27F+Hh4ZDJZHB2dkbHjh1x8+ZNhX2SkpIQFhYGW1tb+Pv745NPPlGYb2NO1C32zmtmM1Z91cSYpm1opZy24ZOtJ02CxNYW2VevqpyryOvIMmaeamJcE/27XJfK5Qn/VVZSgl+/+QY2Tk56Fm3amMZ3o1l55jSXuyrp3dmOjY1FeHg4unTpIq6p3b17d4SEhKBly5aYMWOG1jIWLFgAd3d3BAcHo3Xr1gCAUaNGITAwEI6Ojog1oytT69atQ1ZWltqh83Lff/89+vbtiw4dOmDPnj1Yu3YtWrZsiYKCAnGfP//8Ey+99BK8vb2xZ88eTJo0CbNmzcJnn31m6GZUiLr5jQqJ0P76ixOhMVaN1LSYJh9a+UW9ejgxdy5SN23Ciblz8UW9ekj5/ntQWRms/l3Cq/zwSU3JUEr+zUKuDs9jZM+SimS9NraaFtfK07RcV3k5167BwspKp6HkTzNVTOOVF1h5FZnLXR066HoPI5dKpdi1axcSExNx6NAhZGVlwcXFBZGRkYiMjNSpDEdHRyQlJeH777/HoUOH4OLiAhcXF4wfPx7Dhg2DVCrVuyGGkpSUBAsLC6Snp2PdunUq97l37x7Gjx+PpUuX4s033xS3R0VFKey3aNEiuLq6Ij4+HlKpFJ07d0ZmZibmzZuHCRMmwNra2qBt0VdZaanG5SEyL1xA1KpVVbq+LGPMsGpSTFM51eVfZSUl+PmLL9A4OhquDRsqDi+vxPBJxp4VWqdmmJGaFNeepm25Ljnn+vVRVlKica41YzVN+XWzzfWiTYVvP3bs2BHz58/Ht99+i4ULF+rc0ZaTSCQYOXIkNm7ciIMHDyI+Ph5jxowxq442AFjocId2y5YtKC0txejRozXut3//fvTu3VuhjQMHDkRubi6Sk5MrXdeqJlhY6LQ8RElhYZWtL8sYM6yaFNPUTXUBgKCBAzH69Gk8zs5WOby8osMnedgjMxeGvKOjy9QMc7rjXZPimhIdluuS58opyM3VWJQ5vWeMPStMMtb3xRdfxIoVK5CZmWmK01e506dPo1GjRli7di38/f1hZWWF559/Hvv37xf3efjwIW7cuIFGjRopHNuoUSMIgoBLly4Zu9pa6brYu9TOjteXZawGqS4xTd1UF8/gYPRetw7nNm7Elw0aaBxeru/wSR72yMyFoZbP0TQ148revaCyMrXrPJuz6hLXVNFnuS5VNK3NzRgzLL2HkVcFb29vvPfee5g0aRI6duyIIUOGoE+fPnBwcDBFdSrt9u3buHz5Mj766CN8+umn8Pb2xvLlyxEVFYU//vgDTZs2Re6/VxudnkpeIZVKYWdnh3v37qktv7CwEIWFheLj+/fvG6IZKumyPARjrGapLjFN3VSX1pMm4cE//2D3mDFVlrmXsWeBpqkZTfr1w3PduuHBrVv4deVK3PvrL7g0aIDQN96o0jVpDcWQcc3Q39Mqs1wXlZVV2/eMsZrAJJ3trVu3Ij8/H9u3b8fmzZsxZswYjBs3Dt27d8fgwYPRq1cvo8+JISKUlpaKjwVBgKWlpU7HlpWVIT8/Hxs2bBDn/nTo0AEBAQH45JNP1M4f0tWCBQswe/bsSpVRGTy/kbHq51mIafKpLgpLeQkCgl59FacWLNCauTciJqbSdWCsJniQkYFfv/0W7T/4QOXUjPKjRZ6+iFV+nWdDd97MNa4Z63uavt/HqmptbsZYxZnskpa9vT2GDRuGvXv3IiMjA59//jnu3buHgQMHwtPT0+j1OX78OCQSifijah1xdZydnQEAnTp1ErdJJBK0b98e58+fB/DfVdK8vDyFY4uKivDo0SO4uLioLX/mzJnIy8sTf27cuKFz3aqKIAh4mJnJc7MZqyaehZimaqqL5N/M44bM3MtYTZOfkYGkTz9Vm/Val9EiDzIyDD482VzjmjG/p+mab0JbAkn5e8YjfNizxti5C0xyZ/tprq6uePHFF3H9+nVcvnwZd+7cMXodQkNDcebMGfGxPkPamzZtqvY5+XISMpkMderUUZrvc/nyZRCR0vyg8qytrc0iU7mDtzfaf/CBqavBGNPBsxLTlIZWpqWhpLCQM/cypie1Wa/1GS0SGwtBxzvNFWGucc0U39O05ZvQlEAS0D7Ch5NBsprGVCssVOjOdmlpKZKSkrBlyxasW7dO6UdXf/31F+bNm4dmzZohJCQEa9aswYABA5CUlFSRalWKg4MDWrZsKf4EBgbqfGyvXr0AAIcPHxa3FRUV4fjx4wgNDRW3de/eHbt27UJxcbG4bfPmzXByckJ4eHgVtIIxxp54lmJa+aGVfb//HhYSSZVk7mXsWSKxtVWZ9Vqv0SIG7GgDz1ZcqwzBwkJtAsnyNI3w4WSQrCbRZYUFQ9H7zvZvv/2Gvn374saNGyqHCwmCgGHDhmksY8mSJYiPj8evv/4KR0dHREdH44svvkCHDh10Wr7BmM6ePYv09HQxc/rp06cBAO7u7oiIiAAAtGjRAtHR0Rg7dizu3bsnJt24c+cOpk6dKpY1depUbNiwAYMGDcJbb72Fc+fOYdGiRZg3b57ZLXnGGKuZampMEwQBt1NSsLpdO7x+9izcAgMRFRenNISyfOberMuXjVpHxszR03d7BAsLhc9O8ePHKH70SLfRIqWlBu9wq1JT41pFUVmZ2gSS5RlrhA/fJWemYmVrq1PuAkPmm9C7s/3mm2/C0dERa9euRZMmTSoUeGbNmoWoqCh89NFH6NatGyQSid5lGMtXX32FtWvXio8/++wzAEBERASOHTsmbl+7di1mzpyJGTNm4P79+wgNDcXhw4fRrFkzcZ/nnnsOBw8exOTJk9GjRw+4u7tj9uzZmDJlitHawxh7ttX0mFb86FGlMvcyVpM9PVdRVabq1pMmKX12si5dUk5GWI58tIipslvX9LhWESoTSJZjiBE+6jrV8rvkjBmbzN1da+6Cep07w8HHx2B10Luzff78eSQkJIhXCivi7t27sDPy5PSKWrNmDdasWaN1P5lMhi+//BJffvmlxv3Cw8PFK66MMWZsz1JM45UUGHtC1VxFEKm92zNg+3YE9Oyp+Nl56o63XPnRIqb6bD1LcU1X5RNIGmuED3eqmTmRyGSwcXLC8dmzdco3YSh6d7YDAgIqvX5gdeloM8YYq97KDy8fefIkvFu0MHWVGDMqVXevX5wxAwU5OWrv9mzp2xcT09NhZW2Npf7+4mdH22gRZl54hA97FokXF/PzAUD3fBMGuliod2f7888/x8SJExESEqIx2+zTatWqhcTERISGhsLBwUHj1U9BEJSWXWCMMcYqSlvmXsZqIpVzFQUBbWfO1DlTdfnPDo8WqX74PWPPEoWLi9eu4ZVVq3TONwEDLV2od2f77bffxu3btxEUFAQfHx9xTUI5QRDwv//9T+m4KVOmwPvfORxTpkzhDzljjDHGmIGoW2e5smvR82iR6offM1bTqUuEVj8yEs1HjzZpvgm9O9uhoaEV6ijHlFvHL5bnczDGGDMSzoTLnkXq1lnWK7u4hkzVPFqk+uH3jFVnTyd4LE9dIrSfly5F8Guv4eXvvsPuMWNMkm9C7862LgkotOnUqRNWrFihchj6lStXMG7cOBw9erTS52GMMcbUJe3hTjirydSus0yE1M2bdbrbw2vRm56mDgZjzwJVCR4VOseCoDYR2p2UFOwcNgy9161DvU6d8Nu33xo934Tene2qcOzYMbVJ1u7fv48TJ04YuUaMMcaeNZw5l1V3mjpimtZZ1vVuD69FbzpaOxiMPQNUJXgMfeMNOPj4iJ1kia0tLKys1E6NSY2PR+aFC+j2xReIiI2FhaWlUXMXVKiznZubi61bt+LKlSsoKChQel7bkgoA1DYuKSkJHh4eFakWY4xVmQcZGfh15conQZ3vfDLGzIguHTFN6yzfSUnBrpEj0WfdOtSPjORM1WZGlw6GOnwnnFUHuvyeqkzwiCfLE0bFxSH4tddgZWuL4sePUVZSonFqzJ2UFKQdOQK/tm0xXyYzau4CvTvbV69eRXh4OAoLC/Hw4UO4u7vj3r17KCkpgbOzMxwdHVV2thcsWIAFCxYAeNLR7tixIyyeChiFhYUoKSnBW2+9VcHmMMZY1cjPyEDSokUIjIrizjZjzGxo64jJLxS+MH68xnWWG7z0EgBwpmozo2sHQ+k4vhPOqgFdf0/VJXgEnqyW8MPo0ajXuTNk7u6Q2NqiIDdX7cVFQHFqjLFzF+jd2Z48eTJat26NhIQEyGQy7Nu3DyEhIdi8eTPef/99JCQkqDwuPDwcU6ZMARHh448/xqBBg+Dr66uwj1QqRePGjfHyyy9XrDWMMVYF+EvLs43ncjNzpUtHrCA3F8dnz0ZgVBRk7u46rY3NmarNgz4dDIXjKnEnnDFj0ef3VF2CRzn3Jk3w8M4deIaEiN/VBAsLtRcXTTk1Ru/O9i+//IK4uDhYW1sDAIqKimBpaYnBgwcjKysL77zzDn766Sel4yIiIhAREQHgyZ3t119/HT4+PpWsPmOMVS3+0sJ4LjczRxXtiOm6zjJnqjY9bR2M8uufA+qXOwIUL8Dw3y5mavqM2BAsLNQneAQQNHAgeq9bhwe3buF4bKz4Xa31pElaLy6aYmqM3p3twsJC1KpVCxYWFnBxccGtW7fE54KCgjBz5kytZZRfBowxxswFf2lhjJkrfTti5fE6y9WDpg6GXPn1z9UtdwQoXoBx4JtbzIT0vVBIZWVqEzx6Bgej97p1OLdxo1Jyx1MLF2LA9u0I6NnTrKbG6P2tMSAgANevXwcANG/eHCtWrMCDBw/w+PFjrFy5Uue71X/++Sc+/PBDDBgwAFFRUUo/jDFmTLr8MXiQkQEiMlENmTY8/JvVZPp0xGxdXVU+r+7uNX92zIOmDPJy4vrnBQWwcXLS6QIMlZUZorqM6UTXC4U2Tk7iNnmCRwsrxfvCrSdNwoN//lHqaMvL2dK3Lx5kZKAgNxfzZTLcSUkx+TRAvTvbAwcOxB9//AEAmDNnDs6cOQNnZ2fUqlUL27ZtQ6wOQ+/OnDmD4OBgbNu2Ddu2bcONGzeQmpqKPXv24I8//kB+fr6+1WKMMb0RkRisdf1jwF9azJd8+DcntGM1kbaOmGdwMMKmTEFZaSmmZWXBMzhY54uD/NkxD+o6GHLyJE8lRUXoOGeOxuWO5HKuXYOFpSXAeUeYiVTkQqEgCGKCR/HzIAgIevVV/B4Xp1PH3VymxlQoQZpcmzZtkJqaiv3796OgoACdOnVCUFCQ1jKmTZuGAQMGIC4uDhKJBHFxcWjRogWSkpIwaNAgTJ8+Xd9qMcaYXsrPzc67eRO9V6/W/UsLY4wZmaalvORzGB/euaMwh7Gy+Sb4jrdxle9gaEryJFhYoP0HH+h+J7y0FOBRWcxE9L1QKCamtbBQmIN9/59/ILGz02uqhTmo0Drb5dWpUwdjx47V65j//e9/mDFjhrj0l3yt7vDwcMTGxmLGjBl46d8lKRhjrKopzc0WBPRcvlznLy3c4WaMGZu6jpi2OYyalovShpMFGt/THQx1GeTl++qy3BHnGmGmVNkLhQoJHvWZamGCZGiqVOjTV1xcjG+++QajR49G165dcfXqVQDA5s2bcfHiRa3HC4IAqVQKQRDg4eEhzgEHAF9fX1y5cqUi1WKMMa1Uzs0mQurmzWg+erTW4Xv8pYUxZiryjtjE9HS0//BDNBs8GK+sXo2Hd+6oncMozzfxdJZyZr7KdzD6btiAiJgYlSMUVA61/ZfCnXANQ8h59AIzNHW/p+UvFH5Rrx5OzJ2L1E2bcGLuXHxRrx5Svv8eVFYGQRBwJyUF82UyFOTk6DTVoiA310it007vb43Xrl1DYGAgpk2bhj///BNHjhzBgwcPAAAnTpzAp59+qrWMJk2a4K9/hwCEhYXhs88+Q2pqKi5fvoyFCxeigZYrFowxVlHq5mb/vHQpHGrXxsvffVfhLy2MMWZoT3fEPENC9E4+VFncQTO88h0MTUmeVF2Aaf/hh5iYno7gIUO0XiDm+frMGCpzoVCee6L40SM8zMzU6QLTw8xMvetoqLim9zDyd955B+7u7vjll1/g5OQEqVQqPhcREaHT0l9jx44V72bPnz8fXbt2RUhICABAJpNh69at+laLMcZ0oi5Rx52UFOwcNgy9161DvY4d8dv//Z/G4XuMMWYq8qW8vn/pJUzNzDT6HEYeXm48uiR50nUtdcZMSdWQ8OOxsdqXMywXa0oeP9ZpqkVFhpAbKq7p3dk+duwYNm3aBDc3N5SWlio85+XlhYyMDK1lDB06VPx/48aNcfHiRSQnJ+Px48do06YNPDw89K0WY4zpRNN8n9T4eGReuICoVasQERsLC0tL/tLCGDNbj7KzUVZSUu3mMLKqx2ups+qgQhcKVWTTr04XmPS+TWNlZaV2KYk7d+7A3t5e70rY29ujS5cuiIqK4o42Y8ygtC2tknnhAuy9vFBSWIgT8+bhYWamWQZvxhgDEQpyc6vdHEZmOOay3BFjmuh1oVBNNn1dp1qYmt53tiMiIvDZZ5+he/fuYjZxQRBARPj222/RuXNnlcdt375dr/P07dtX36oxxphW+i6twhhj5uxhZibcAgO1xrSsy5dNWEvGGCun3IXCymbT1+cCkynyTejd2f7kk08QHh6OJk2aICoqCoIgYPny5UhNTcXVq1fxyy+/qDyuX79+Op9DEASlIersP/KRBffv3zdxTRirvupGRWHkuXP4Y9Uq5Kanw6luXTw/ahQcvLzwID/f1NWDg4OD2V6lrWoc0xjT34P8fBQAyMnMhHXt2lpjWk5mJgr+PU5mos/asxLXqiqmyd9jXd8zTfvrWxZjhiL/XbydlgbXhg3R6auvsG/8+Cd3sP9lYWmJHsuXg2QyPHjwQO3vr77bIZOhxeTJIFTNdw5dYppA6saEa5CWlobY2FgcOnQIWVlZcHFxQWRkJGbPnq02k3j55b104e/vr2+1nhk3b95EnTp1TF0NxpgB5eXloVatWqauhlFwTGPs2fCsxDWOaYw9G3SJaRXqbDPTKisrw61btwxyhfj+/fuoU6cObty4Ue3/INaUtnA7zIux2vGs3AECDBvTAP7dMzc1pR1AzWkLx7WqxTFNNzWlHUDNaQu3Qz+6fMb1HkZelX788UecOXMGN27cwIcffgg/Pz+cOHECzz33HHx8fExZNbNmYWEBX19fg56jVq1a1fpDVl5NaQu3w7zUlHaYA2PENKDmvGfcDvNTU9pSU9phahzT9FNT2gHUnLZwO6qOTp3tUaNG6VygIAiIi4vTuE9mZiZ69+6N06dPi1cdxo0bBz8/P6xatQoymQzLly/X+ZyMMcYYY4wxxpg50amzvWbNGjg4OKBBgwZql/2S02W4zKRJk5CZmYnU1FQ0bNgQUqlUfC4yMhJz587VpVqMMcYYY4wxxphZ0qmzHRYWhtOnT6O0tBSDBw/GwIEDK5XAbO/evfi///s/NG7cWCnreJ06dXDz5s0Kl80qx9raGjExMbC2tjZ1VSqtprSF22Feako7niU15T3jdpifmtKWmtKOZ0VNeb9qSjuAmtMWbkfV0zlB2t9//434+Hhs3LgR586dQ1hYGAYPHowBAwbAzc1Nr5Pa29tjy5Yt6NGjB0pLSyGRSHD27Fm0aNECO3fuxKhRo3Dv3r0KNYgxxhhjjDHGGDM1zauEl+Pn54dp06bhjz/+wLlz59CxY0csXboUPj4+6N69O/bv36/zSVu3bo1Vq1apfC4+Ph4vvviizmUxxhhjjDHGGGPmplJLfxUUFGDWrFlYsmQJoqKisH37dp2OS05ORseOHdGqVSv069cP7777Lj744ANcvHgRe/fuxalTp9CiRYuKVosxxhhjjDHGGDMpvTvbpaWlOHjwIOLj47Fr1y5YWVkhOjoaY8aMwQsvvKBzOcnJyZgxYwaSkpJQWloKQRAQFhaGRYsWISwsTO+GMMYYY4wxxhhj5kLnYeQnTpzAm2++CU9PTwwYMAClpaXYsGEDbt++jZUrV+rc0S4qKsL27dvh6emJ48eP4/79+7h58yYePHiAU6dOcUfbgFasWIFevXrB3d0dgiBg69atavfdu3cvwsPDIZPJ4OzsjI4dOyolrktKSkJYWBhsbW3h7++PTz75RGu2ekPJzs4Wl4+TyWQICgrCN998o7TfrVu3EB0dDQcHB7i4uGDMmDG4f/++CWqs3aVLl9ClSxfIZDJ4eXlh2rRpKCoqMnW1tPrhhx/QunVrODg4wNvbGwMGDMC1a9eU9ouLi0NAQABsbGwQEhKCPXv2mKC2T/z5558YN24cnn/+eVhZWSEoKEjlfrm5uXjnnXfg4+MDGxsbNGjQAJ999pnCPkVFRZg6dSq8vLwgk8nQpUsXXL582RjNeOZwTOOYZgwc0zimGRPHNY5rhsYxzcgxjXTg6+tLNjY21KdPH9qyZQs9fvxYl8PUsra2psTExEqVwfTXunVrat26NQ0bNowAUEJCgsr91q9fT1KplGbOnElHjx6lXbt20XvvvUdXr14V97l69SrZ29tTnz596PDhw7RkyRKSSqW0aNEiYzVHQceOHcnb25tWr15NR44coSlTphAA+vbbb8V9ioqKKCgoiIKCguiHH36g+Ph48vX1pZ49e5qkzprcu3ePvL29qX379vTjjz9SXFwcOTo60vjx401dNY0SExPJwsKCRowYQYcOHaL4+HgKCAigBg0a0KNHj8T9Nm3aRIIg0IcffkhHjx6lN954g6ysrCg5Odkk9d65cyf5+vpSdHQ0NWvWjJo2baq0T35+PoWEhFBoaCjFx8dTYmIirVy5Uul3/o033iBHR0eKi4ujH3/8kdq1a0e1a9em3NxcYzXnmcExjWOaoXFM45hmbBzXOK4ZEsc048c0nTrbgiCQVCole3t7cnBw0PhTq1YtreWFhITQ2rVrK115pp/S0lIiIkpLS1MbwLOzs6lWrVq0YsUKjWWNHTuW/P39qbCwUNw2c+ZMcnJyooKCgqqtuBYZGRkEgFavXq2wvX379tSpUyfx8caNG0kQBLp06ZK47cCBAwSAfv75Z2NVVyfz588nmUxG2dnZ4raVK1eSpaUl/fPPPyasmWZvvPEG1atXj8rKysRtR48eJQB04sQJcVtAQAANGjRI4diwsDDq3r270epanvyzQUQ0fPhwlUH8ww8/pPr161N+fr7acm7cuEGWlpa0cuVKcVt2djbJZDL65JNPqrbSjGMaxzSD45jGMc3YOK5xXDMkjmnGj2k6DSOPiYnB+++/j/feew9TpkzR+DN58mSt5S1YsABz587F2bNn9bwPzyrDwkL7271lyxaUlpZi9OjRGvfbv38/evfuDalUKm4bOHAgcnNzkZycXOm66qO4uBgA4OjoqLDd0dFRYajU/v37ERwcjMDAQHFbly5d4OLign379hmnsjrav38/IiMj4eLiIm4bMGAAysrKcPDgQRPWTLPi4mI4ODhAEARxm/x9kb8X165dw5UrVzBgwACFYwcOHIgjR46gsLDQeBX+ly6fje+++w6jRo2CTCZTu8/BgwdRVlaG/v37i9tcXFzQtWtXs/sdqwk4pnFMMzSOaRzTjI3jGsc1Q+KYZvyYpnNnW58fbaZNm4bs7Gy0bt0aHh4eaNasGYKDg8WfkJCQSjeMVczp06fRqFEjrF27Fv7+/rCyssLzzz+vsLTbw4cPcePGDTRq1Ejh2EaNGkEQBFy6dMmoda5Tpw66du2K+fPn48KFC3jw4AG2bNmCgwcPYvz48eJ+ly5dUqqzIAho1KiR0eusjaq6Ojk5wdvb2+zqWt6IESNw4cIFrFixAnl5ebh27Rref/99NG/eXFzST17/p9vXuHFjFBUVIS0tzej11iY9PR23b9+Gm5sboqKiYG1tDRcXF7z++uvIz88X97t06RI8PDzg7OyscHzjxo3N+n2ryTimmQeOaeaFY1r1xnHNPFTHuMYxzfgxzcogpWoRGhqKli1bmuLUTIvbt2/j8uXL+Oijj/Dpp5/C29sby5cvR1RUFP744w80bdoUubm5AJ4ElPKkUins7Oxw7949o9d7+/btePXVV9G0aVMAgKWlJZYtW4bo6Ghxn5ycHKU6A4Czs7NJ6qxJdapree3atcOOHTswePBg8Y/n888/jx9//BGWlpYAnrQNUP79kQc+c2zf7du3AQDvvfce+vbti3379uHq1auYMWMG8vPzsWnTJgDV932ryTimmYfqVNfyOKZVz/etpuO4Zh6qU13lOKYZ/z0zSWd7zZo1pjjtM4OIUFpaKj4WBEH8AGlTVlaG/Px8bNiwAVFRUQCADh06ICAgAJ988gnWrVtnkDrrSlXbLCwsMHLkSFy9ehUbN26Et7c3Dh06hEmTJsHZ2RkDBw40YY2fLUlJSRg6dChef/119OrVC9nZ2ZgzZw569uyJkydPwtbW1tRVrJCysjIAQEBAANauXQsA6Ny5M6ysrPD6669j3rx5qF+/vimrWKNxTOOYZioc05ihcFzjuGYKHNOMzySdbWZYx48fR8eOHcXHEREROHbsmE7Hyq9aderUSdwmkUjQvn17pKamAvjvSldeXp7CsUVFRXj06JHC3JWqpqpt7733HhISEpCSkoJmzZoBePJH5+7du5gyZYoYwJ2dnZXqDDy5ylWnTh2D1bkiNNXVkK9vZb3zzjvo1KmTwjILbdq0gZ+fH9avX4+xY8eKv2N5eXnw8vIS95NfSTXH9snrXP53D3gSyAHg/PnzqF+/frV938wdxzSOaabCMa16vm/VAcc1jmumwDHN+O8Zd7ZroNDQUJw5c0Z87ODgoPOx8qE9qhQUFAAAZDIZ6tSpozS34fLlyyAipTkeVUlV23bt2gVLS0ulNfeaN2+O7777Do8ePYKdnR0aNWqEc+fOKexDRLh8+TK6dOlisDpXhKq5SXl5ecjIyDDo61tZFy5cwCuvvKKwzdfXF25ubvjrr78A/DcH6NKlSwoJUC5dugSpVGqWd1MaNGgAa2trtc/LPxuNGjXCnTt3kJOTozAfSNW8LqY7jmlPcEwzPo5pHNMMhePaExzXjItjmvFjmk4J0lj14uDggJYtW4o/5T8o2vTq1QsAcPjwYXFbUVERjh8/jtDQUHFb9+7dsWvXLjG7JABs3rwZTk5OCA8Pr4JWqKaqbf7+/igtLUVKSorCvr/++is8PDxgZ2cn1vl///sfrl69Ku5z5MgRZGdno0ePHgarc0V0794dhw8fFudcAUBCQgIsLCzQtWtX01VMC39/f/z2228K265fv46srCzUrVsXAFC/fn0EBAQgISFBYb/Nmzejc+fOCllTzYVUKkXXrl1x5MgRhe2HDh0CALRo0QIA0LVrV1hYWGDbtm3iPjk5OTh48KDZ/Y5VJxzTnuCYZnwc0zimGQrHtSc4rhkXxzQTxDSDLCjGzNKZM2coISGBVqxYQQBoypQplJCQQMeOHVPYLzo6mtzd3SkuLo727dtHPXv2JBsbG0pJSRH3uXr1KslkMoqOjqYjR47Q0qVLSSqVKi0cbwz3798nPz8/eu6552j9+vV0+PBhmjZtGllYWNCcOXPE/YqKiigoKIiaNWtGu3fvps2bN1OdOnWoZ8+eRq+zNvfu3SNvb2+KiIigAwcO0KpVq8jJyYnGjx9v6qpptHTpUgJA77zzDh06dIji4+MpKCiIPD09KSsrS9xPvo7mrFmzKDExkcaNG0dWVlaUlJRkkno/fPiQEhISKCEhgTp06EB16tQRH9+9e5eIiM6ePUtSqZQGDx5MBw4coK+++oocHBxoyJAhCmW98cYb5OTkRKtWraIDBw5QREQE1a5dm3Jzc03RtBqNYxrHNEPjmMYxzdg4rnFcMySOacaPadzZfoYMHz6cACj9REREKOyXn59PEyZMIHd3d7K2tqbw8HA6deqUUnk//fQTtW7dmqytrcnX15cWLFhAZWVlRmqNoqtXr9KAAQPIx8eH7OzsqGnTprR06VIqKSlR2O/mzZvUt29fsre3JycnJxo1ahTl5eWZpM7aXLhwgTp37ky2trbk4eFB7733HhUWFpq6WhqVlZXR119/TcHBwSSTycjLy4v69OlDFy9eVNr3u+++o+eee46kUqn4R9VU0tLSVH42AFBiYqK43+HDh6lly5ZkbW1NXl5eNGXKFCooKFAoq6CggKZMmUIeHh5ka2tLkZGRKtvPKo9jGsc0Q+OYxjHN2DiucVwzJI5pxo9pAlG5leQZY4wxxhhjjDFWaTxnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1txhhjjDHGGGOsinFnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1tppPY2FgIgoDatWujrKxM6fkXX3wRgiBgxIgRepWbm5uL2NhYXLhwQWF7eno6BEHA1q1bK1PtSlu6dCkEQRAfHzt2DIIg4OzZs0arQ2xsLJKSkpS2C4KAxYsXG60equzcuROCICA9PR1Axd63pUuXYt++fQaqIWOqcUx7gmOaIo5prDrjuPYExzVFHNdMizvbTGcSiQRZWVk4ceKEwvbr168jOTkZ9vb2epeZm5uL2bNnKwVwb29vJCcno1OnTpWqc1Vr0aIFkpOT0bhxY6Odc/bs2SoDeHJyMoYMGWK0euiiIu8bB3BmKhzTOKZpwzGNVTcc1ziuacNxzbisTF0BVn1IpVJERkZi06ZN6NChg7g9Pj4eTZs2haWlZZWdy9raGm3atKmy8qpKrVq1tNbr8ePHsLW1NXhdzPH1Mdf3jTFVOKZxTNPGXN83xtThuMZxTRtzfd9qKr6zzfQyaNAgbN26FcXFxeK2jRs3YvDgwSr3P3HiBMLDw2Fraws3NzeMGjUK9+7dA/BkGEu9evUAAP3794cgCOIwF1VDXMrKyjB37lzUrVsX1tbWaNSoEVauXKlwvtjYWNjb2+PcuXNo27Yt7OzsEBQUhAMHDmht2/379zFs2DA4ODjA3d0d06ZNQ0lJicI+qoYmCYKAhQsXYvr06fDy8oKHhwcAgIiwePFiBAQEwNraGvXr18fnn3+udN6LFy+ib9++cHFxgZ2dHUJCQrBp0yaxbACYOnWq+PocO3ZMfO7poUkrV65EYGAgrK2tUbduXcydO1dhKNmaNWsgCAJ+//13dO/eHTKZDA0bNsS6deu0vj7FxcWYNGkSXFxc4OjoiNGjRyM/P19hH1Xv2w8//ICWLVvC3t4eTk5OaNmypXh1tG7durh+/TqWL18utm/NmjUAgHXr1qFt27ZwcXGBs7MzOnTogF9++UXhfPq83+vWrUPz5s1hY2MDNzc39OjRA9evXxefv3nzJl577TW4ubnB1tYW7du3x6+//qr1dWHVG8c0jmkc01hNw3GN4xrHNfPBnW2ml5dffhmFhYU4ePAgAODChQtISUnBwIEDlfb99ddf0aVLFzg4OCAhIQGffPIJdu/eje7du6O0tBTe3t7Yvn07AGD+/PlITk5GcnIyvL29VZ576tSpiI2NxYgRI7B792507doV48aNw1dffaWwX3FxMYYMGYIRI0Zgx44d8PDwQHR0NLKzszW2bdSoUdixYwcWLlyItWvX4sKFC1i6dKlOr8sXX3yBK1euIC4uDt9//z0AYOLEiZg1axaGDx+OvXv3YsSIEZg+fTq++eYb8birV68iLCwMV69exZdffokffvgBI0eOxN9//w3gyfAjAJgwYYL4+rRo0UJlHZYtW4Zx48bhpZdewu7duzFixAjExsZi2rRpSvsOGTIEXbt2xc6dO9G8eXOMGDECFy9e1NjGmTNnYsWKFZg6dSq2bNmC0tJSzJgxQ+Mxf/31F/r164emTZtix44d2Lx5MwYMGICcnBwAwI4dO+Dl5YV+/fqJ7evZsyeAJ38Mhg0bhoSEBGzcuBF+fn5o3749rly5onAOXd7vRYsWYfjw4QgNDcX27dsRFxeHhg0bIjMzEwCQk5ODtm3b4o8//sCyZcuwbds2yGQydOrUCXfv3tXYRla9cUxTjWOaahzTWHXAcU01jmuqcVwzMGJMBzExMSSTyYiIaPDgwfTaa68REdGHH35IYWFhREQUEhJCw4cPF4/p06cP+fn5UVFRkbjtwIEDBIB++OEHIiJKS0sjAJSQkKBwvqe3Z2ZmkkQioRkzZijsN2jQIHJ3d6eSkhKxngBo7969SmWtX79ebfvOnz9PgiBQXFycuK2kpITq1atH5T8miYmJBIDOnDkjbgNATZo0obKyMnHbn3/+SYIg0MqVKxXOM336dPLy8qLS0lLxtXR3d6e8vDy1dQNAixYt0ri9pKSE3NzcaODAgQr7zJw5k6RSKWVlZRER0erVqwkALV++XNwnPz+f7OzsaM6cOWrrkJ2dTba2tvTRRx8pbG/fvj0BoLS0NCJSft8SEhIIAN2/f19t2f7+/jR+/Hi1zxMRlZaWUnFxMQUGBtLMmTPF7bq837m5uWRnZ0djx45VW/6sWbPI0dGR7ty5I24rKCggPz8/mjp1qsa6seqJY9oTHNM4prGag+PaExzXOK6ZE76zzfQ2aNAg7Nq1C48fP0Z8fDwGDRqkcr+TJ0/ilVdegUQiEbd17doVTk5OOHXqlF7n/Pnnn1FcXIz+/fsrbH/11VeRmZmpcAXNwsICkZGR4uO6devC1tYWN2/eVFv+mTNnQETo06ePuM3S0hK9e/fWqX7du3dXyIR5+PBhAEB0dDRKSkrEn8jISNy+fRs3btwAABw5cgT9+vVDrVq1dDqPOpcuXUJWVpbK16eoqEhpSE/Xrl3F/8tkMvj7+2t8fc6dO4fHjx8rvD7y9mkSHBwMS0tLDB48GLt370ZeXp6uTcLFixfRp08feHp6wtLSEhKJBJcvX1a6Wqrt/U5OTsajR48wevRotec6ePAgOnbsCBcXF/G9srS0REREBM6cOaNznVn1xDFNGcc01TimseqC45oyjmuqcVwzLE6QxvT20ksvQSKRYNasWUhLS8OAAQNU7peTkwNPT0+l7Z6enuJcIF3Jh7I8XZ78cfnybG1tIZVKFfaTSqUoKChQW35GRgYkEgmcnZ1Vlq/N0/tlZWWBiODm5qZy/xs3bsDf3x/Z2dnw8fHR6Rya6PP6AICTk5PCY11eHwDiHKeny1cnICAAe/bswfz589GnTx9YWFigW7du+Oqrr+Dn56f2uAcPHqBr165wd3fHkiVL4O/vDxsbG4wZM0apntreb/kQJU2vc1ZWFk6fPq3wZUOuQYMGGtvIqj+Oaco4pqnGMY1VFxzXlHFcU43jmmFxZ5vpTSKRIDo6GkuWLEHnzp3VfohdXFxUzqG4c+cOXFxc9DqnfP+7d++idu3aCmWVf76ivL29UVxcjJycHIUgLi9fm/JXSuX1EQQBp06dUgouABAYGAgAcHV1xa1btypR8//OB0Dp9a7K10devqrXX5Nu3bqhW7duuH//Pn788Ue8++67GDlyJI4cOaL2mOTkZNy8eRN79uxBSEiIuD0vLw++vr561d3V1RUAcOvWLbXHuri4oFu3bpgzZ47Sc9bW1nqdj1U/HNOUcUxTj2Maqw44rinjuKYexzXD4WHkrELGjBmDl19+GRMnTlS7T9u2bbFz506FLJGHDh1Cbm4u2rZtCwBicNN0pQ4AWrVqBYlEgoSEBIXtW7ZsgYeHBwICAiraFADACy+8AOBJEgi50tJS7Ny5s0Llde7cGcCTK3UtW7ZU+nFwcAAAREZGYuvWrXjw4IHasiQSidbXJzAwEO7u7ipfH6lUilatWlWoHXLNmjWDra2twusDANu2bdO5jFq1amHAgAEYOHCgQoIPVVdqHz9+LD4nl5SUhPT0dL3rHhYWBjs7O6xevVrtPpGRkbhw4QIaN26s9F41a9ZM73Oy6odjmmYc05RxTGPmjuOaZhzXlHFcq3p8Z5tVSKtWrbQGtw8++ADh4eHo1asXJkyYgDt37mDGjBlo1aoVevToAQDw8vKCk5MTNm3ahHr16sHa2hrBwcFKZbm5uWHChAlYtGgRbGxs0KZNG+zbtw8bN27EsmXLKr1uZJMmTdCnTx9MmjQJBQUFqFu3LlasWIGioqIKlRcQEIDx48dj6NChmDp1Klq3bo3i4mJcuXIFiYmJ4msXExODPXv2oG3btpg2bRq8vb1x4cIFPHr0SMxM2bhxY+zatQvt2rWDTCZDYGCg+AdAztLSEh999BHeeecdeHh4oEePHjh9+jQ++eQTTJo0SbxiWFEuLi4YN24cFi5cCFtbW7Ro0QKbNm3CX3/9pfG4lStXIjk5Gd26dYO3tzfS0tLw/fffK8xDaty4MY4ePYpDhw7B2dkZ9erVQ5s2bWBvb4/x48djxowZ+OeffxATE6NwpVZXjo6OiImJwfTp01FWVoZXXnkFZWVlSExMxKBBg9CyZUtMnjwZGzZsQEREBCZOnAg/Pz9kZmbi559/ho+PD9599129z8uqF45pmnFMe4JjGqtOOK5pxnHtCY5rBmbK7Gys+iif4VKdpzNcEhEdO3aMwsLCyNramlxcXGjEiBGUnZ2tsM+OHTuocePGZG1tLWZLVJX5srS0lD7++GPy8/MjiURCDRs2pG+++Uanejo6OlJMTIzG+ufk5NCQIUNIJpORq6srTZ48mRYtWqRThktVGSjLyspo2bJlFBQURFKplFxcXCgsLIyWLFmisN/58+cpKiqKatWqRXZ2dvT8889TfHy8+PzJkyepRYsWZGtrSwAoMTFR7Xm//vpratiwIUkkEvLz86M5c+aI2TSJ/stwmZmZqXCcqvfuaYWFhTRhwgRycnKiWrVq0fDhw2n9+vUaM1wmJSVRz549ydvbm6RSKfn5+dHEiRMVMl6mpqZSu3btyMHBgQDQ6tWriYho//791LRpU7KxsaHg4GDat28fRUREUM+ePcVj9Xm/V61aRc2aNSOpVEqurq7Uq1cvun79uvh8RkYGjR49Wqyrr68v9evXj3766SeNrwurnjimPcExjWMaqzk4rj3BcY3jmjkRiIgM3qNnjDHGGGOMMcaeITxnmzHGGGOMMcYYq2Lc2WaMMcYYY4wxxqoYd7YZY4wxxhhjjLEqxp1txhhjjDHGGGOsinFnmzHGGGOMMcYYq2Lc2WYGk56eDkEQsHXrVr2OO3bsGObPn6+0PTY2Fvb29lVVPa2WLl2Kffv2VVl5O3fuxIoVK5S2jxgxAkFBQVV2nqpm7NedMXPGcU0RxzXGqjeOaYo4prGqxp1tZnbUBfAxY8YgMTHRaPUwVgA3d8Z+3RmriTiumReOa4xVDsc088IxzXxZmboCrHohIhQVFcHa2tro5/b19YWvr6/Rz/usKiwshEQiqbLXXV6ehQVf42PmhePas4PjGnsWcEx7dnBMM3/8SjKN5MNm9u3bh5CQEFhbW2P37t0AgOTkZHTq1AkymQyOjo4YPHgw7t69q7G8devWoW3btnBxcYGzszM6dOiAX375RXw+NjYWs2fPxsOHDyEIAgRBQIcOHcTn5ENkHj58CJlMhsWLFyudo1+/fggLCxMf5+bm4q233oK3tzesra0RGhqKgwcPaqxn3bp1cf36dSxfvlysx5o1awAAZWVlmDt3LurWrQtra2s0atQIK1eu1Po6rl27FufPnxfLGzFihMI+x44dQ/PmzSGTydCqVSv8+uuvCs8TERYvXoyAgABYW1ujfv36+PzzzzWeV37uoKAg7N+/H0FBQbCxsUFoaChOnz6t1Oa3334bn376Kfz9/WFra4t79+6pHJp0/fp19OvXD46OjpDJZHjppZdw7tw5ncrTVMfDhw8jODgYtra2iIiIQHp6Ou7du4cBAwagVq1aaNCgATZv3qx0/N69e9G6dWvY2trC3d0db775Jh4+fCg+//DhQ7z99tsIDAyEnZ0d6tati3HjxiEvL09lnZcvXw5/f384Ojqid+/eyMzM1Po6s+qD4xrHNY5rHNdqEo5pHNM4pplxTCPGNBg+fDg5OztTgwYNaPXq1XTkyBG6evUqJSUlkVQqpd69e9Pu3bspPj6ennvuOWrTpo14bFpaGgGghIQEcdvs2bNp5cqVdPjwYdq3bx8NHTqUrK2t6fLly0REdOPGDRo9ejTZ2tpScnIyJScn0/nz54mIKCYmhmQymVjWwIEDKTQ0VKG+9+/fJxsbG/ryyy+JiKiwsJBatmxJderUobi4OPrxxx/ptddeIysrK0pJSVHb7t9++428vLyoX79+Yj3u3r1LRESTJ08mS0tLiomJoQMHDtCECRMIAC1btkxteX/++Sf16NGD6tevL5b3559/iq+xq6srNWvWjDZs2EB79uyhZs2aUZ06daioqEgsY8KECWRra0tz586lQ4cO0ezZs0kikdDXX3+t9T10cXGhunXr0po1a2jXrl0UFhZGtWrVojt37oj7+fv7k5eXF7Vr14527NhBP/zwAz169Ejpdb9//z7VrVuX6tevTxs3bqTt27dTaGgoOTk50d9//621PHV1dHV1peDgYIqPj6dt27ZR7dq1KTw8nCIjI+njjz+mgwcPUv/+/cnKyorS09PFYxMSEsjCwoJGjx5N+/fvp1WrVpGHhwe9+uqr4j53796lcePGUUJCAh07dozWr19PjRo1og4dOijUw9/fn+rUqUNdu3al3bt30+rVq8nJyUmhLFb9cVzjuMZxjeNaTcIxjWMaxzTzjWnc2WYaDR8+nADQ6dOnFba3b9+ewsPDqaysTNx2/vx5EgSB9u7dS0SqA3h5paWlVFxcTIGBgTRz5kxx+9MBQ932Xbt2EQC6cuWKuG3t2rVkaWlJt2/fJiKiVatWkZWVlfhHQK5169bUv39/jW339/en8ePHK2zLzMwkiURCM2bMUNg+aNAgcnd3p5KSErXlDR8+nJo2bapyuyAIlJqaKm5LTEwkAHTy5EkievIHQBAEWrlypcKx06dPJy8vLyotLdV4XgB05MgRcVtubi45ODgotMPf359cXV0pPz9f4finX/cvvviCBEGgCxcuiNuys7NJJpPR5MmTtZanro5PvwbLli0jADR9+nRxW05ODllaWtLSpUuJiKisrIz8/f1p0KBBCuXt379fqbzyiouL6dSpUwRA/PIgr7Ovry8VFBQotF8ikWh8jVn1wnGN4xrHNY5rNQnHNI5pHNPMN6bxMHKmlaurK1q3bi0+fvToEX766Sf0798fpaWlKCkpQUlJCQICAlCnTh2cOXNGbVkXL15Enz594OnpCUtLS0gkEly+fBlXrlzRu17dunWDk5MT4uPjxW3x8fHo2LEjPD09AQAHDx5Es2bNEBAQINazpKQEXbp00VhPdX7++WcUFxejf//+CttfffVVZGZmVqgdAODj44OmTZuKj5s0aQIAuHnzJgDg8OHDAIDo6GiFdkRGRuL27du4ceOGxvIdHR3RqVMnhceRkZH4+eefFfbr0KEDZDKZxrJOnjyJoKAgNG7cWNzm4uKCLl264NSpU3qXJ/f0axAQEAAAiIyMFLc5OTnBw8NDbO+VK1dw/fp1DBgwQOF1iYiIgIWFBc6ePSseu379ejRv3hz29vaQSCRo27atWEZ5ERERCvPcmjRpguLiYq3D7lj1wnHtPxzXOK6x6o9j2n84pnFMMyfc2WZayYOhXE5ODkpLS/Huu+9CIpEo/Pz9999qg8mDBw/QtWtXXL9+HUuWLMHJkydx5swZhISEoKCgQO96SaVSREdHiwE8Ozsbhw4dwuDBg8V9srKy8PvvvyvVc+7cuVqDnio5OTkAlF8T+WN181y0cXJyUngslUoBQHxdsrKyQERwc3NTaEeXLl0AQGtb3N3dlbZ5enoiIyNDZTs0ycnJUbmfp6enUvt1KU9O3Wuganv51wUA+vTpo/C62NnZobS0VHxdduzYgWHDhqFVq1bYsmULTp8+jR07dgCA0u+etveC1Qwc1xTbDnBc47jGqjOOaYptBzimcUwzD5yNnGklCILCYycnJwiCgPfffx+9e/dW2t/NzU1lOcnJybh58yb27NmDkJAQcXteXl6FMygOGjQIcXFxSElJQXJyMiwtLdG3b1/xeRcXFwQHByMuLq5C5T/NxcUFAHD37l3Url1b3H7nzh2F56uai4sLBEHAqVOnxIBSXmBgoMbjVSWNuHPnDry9vRW2Pf1eq6vL5cuXVZb3dPt1Ka8y5Of76quvFK7oy/n4+AAAEhIS8PzzzyskRzl+/LhB68bMG8e1/3Bc47jGqj+Oaf/hmMYxzZxwZ5vpTSaTISwsDBcvXsTcuXN1Pu7x48cAoBCAkpKSkJ6erjAkRSqVorCwUKcyO3ToAC8vL2zatAnJycno3r07HB0dxecjIyOxb98++Pj4iB9mXZW/KifXqlUrSCQSJCQkoHnz5uL2LVu2wMPDQxxOo2t5uurcuTOAJ1eEX375Zb2Pz8vLw9GjR8XhSXl5eTh8+DDGjx+vd1lt27bF1q1bcfnyZfEPR05ODg4fPoyxY8fqXV5lNGrUCL6+vrh27ZrGtjx+/FjpD9+GDRsMXT1WjXBc47jGcY3VJBzTOKZxTDMP3NlmFbJo0SJ06tQJr776KgYOHAhnZ2fcvHkThw4dwsiRI8UlIMpr06YN7O3tMX78eMyYMQP//PMPYmJiFK46AkDjxo1RUlKCL774AuHh4ahVq5baq4GWlpYYMGAA1qxZg7t37yrMCQKAYcOGYeXKlejQoQPee+89BAQEIDc3F7///juKioqwYMECtW1s3Lgxjh49ikOHDsHZ2Rn16tWDm5sbJkyYgEWLFsHGxgZt2rTBvn37sHHjRixbtgyWlpYay1u1ahU2bdqEhg0bws3NDXXr1lX/IpcTEBCA8ePHY+jQoZg6dSpat26N4uJiXLlyBYmJidi5c6fG411cXDB69GjMnj0bTk5OWLhwIYgIkyZN0un85Y0cORKff/45evbsiblz58LGxgbz5s2DlZVVhcqrDEEQsGTJEgwePBgPHz5Ez549IZPJcP36dezduxfz589HQEAAunTpgvHjx2POnDkICwvDvn37cOTIEaPWlZk/jmsc1ziusZqEYxrHNI5pZsCU2dmY+VOXlZGI6MyZM9SjRw9ydHQkW1tbatiwIY0bN45u3LhBRKozXO7fv5+aNm1KNjY2FBwcTPv27aOIiAjq2bOnuE9xcTG99dZb5OnpSYIgUEREBBGpz3yZnJxMAMje3l7lcgV5eXn07rvvkp+fH0kkEvL29qYePXrQnj17NLY9NTWV2rVrRw4ODgSAVq9eTURPMnN+/PHHYnkNGzakb775RmNZ8noMHDiQXF1dCQANHz6ciFS/xjk5OQrnJHqSzXHZsmUUFBREUqmUXFxcKCwsjJYsWaLxvPLy9+zZQ40bNyapVErNmzenn376SWE/VRk9iVS/7unp6dS3b19ycHAgOzs76tKli9LyHOrK01TH8uRZPs+cOaO13IMHD1JERATJZDKSyWTUtGlTmjJlCuXm5hIRUUlJCU2ZMoXc3d3JwcGB+vXrR6dPn1b6/VRV9o4dOwgApaWl6dQWZv44rnFc47jGca0m4ZjGMY1jmvnGNIGIyHhde8aYsY0YMQJnz55FamqqqavCGGNVguMaY6wm4ZhWc3E2csYYY4wxxhhjrIpxZ5sxxhhjjDHGGKtiPIycMcYYY4wxxhirYnxnmzHGGGOMMcYYq2Lc2WbMwFq1aoXly5erff6PP/6AIAg4duyYQc7fpUsXzJs3zyBlM8aePRzTGGM1Dcc1Zijc2WbMgHbs2IH09HSMGjXKZHV4//33sXjxYuTk5JisDoyxmoFjGmOspuG4xgyJO9uMGdDSpUsxaNAg2NramqwOHTt2hLOzM9auXWuyOjDGagaOaYyxmobjGjMk7mwzZiBpaWk4efIk+vXrp7B97ty58PLygr29Pfr27Yu7d+8qHUtEWLx4MQICAmBtbY369evj888/V9pvx44dCAwMhI2NDdq0aYPffvsNTk5OiI2NVdivf//+HMAZY5XCMY0xVtNwXGOGxp1txgzkyJEjsLKyQqtWrcRtX331FT766CMMHToU27ZtQ/369TF69GilYydOnIhZs2Zh+PDh2Lt3L0aMGIHp06fjm2++Eff5/fff0b9/fzRp0gTbt2/H8OHD8eqrr6KwsFCpvPDwcPzxxx/IzMw0TGMZYzUexzTGWE3DcY0ZHDHGDGLs2LHUtGlT8XFJSQn5+PjQ0KFDFfYbOnQoAaDExEQiIvrzzz9JEARauXKlwn7Tp08nLy8vKi0tJSKi/v3703PPPSc+JiJav349AaCYmBiFY9PS0ggA7dmzpwpbyBh7lnBMY4zVNBzXmKHxnW3GDCQjIwPu7u7i45s3b+LWrVvo06ePwn5PD106fPgwACA6OholJSXiT2RkJG7fvo0bN24AAM6cOYNevXrBwuK/j/Err7yisi5ubm5inRhjrCI4pjHGahqOa8zQrExdAcZqqoKCAlhbW4uP5cHTw8NDYT9PT0+Fx1lZWSAiMeg+7caNG/D391f6AwEADg4OsLGxUTpGXo/Hjx/r3xDGGAPHNMZYzcNxjRkad7YZMxAXFxekp6eLj729vQFAKcnGnTt3lI4TBAGnTp2CVCpVKjcwMFAs7+l5PQ8ePEBBQYHSMbm5uQAAV1dXvdvBGGMAxzTGWM3DcY0ZGg8jZ8xAAgMDkZaWJj729fWFt7c3duzYobDf1q1bFR537twZAJCdnY2WLVsq/Tg4OAAAXnjhBezZswdlZWXisTt37lRZF/kfEnnwZ4wxfXFMY4zVNBzXmKHxnW3GDOTFF1/Exx9/jJs3b8LX1xeWlpaYMWMGJk6cCE9PT3Tp0gUHDx5EYmKiwnEBAQEYP348hg4diqlTp6J169YoLi7GlStXkJiYKAbpmTNn4oUXXkB0dDTGjh2L69evY/HixbCxsVGYGwQAZ8+ehb29PZ5//nkjtZ4xVtNwTGOM1TQc15jBmThBG2M1VmFhIbm6utK3334rbisrK6PZs2eTh4cH2dnZUVRUFP34448KGS7l+y1btoyCgoJIKpWSi4sLhYWF0ZIlSxTOsW3bNgoICCBra2sKDQ2lU6dOkZWVFS1dulRhv5dfflkpsyZjjOmDYxpjrKbhuMYMTSAiMnF/n7Eaa8qUKfj9999x9OhRo5zvyJEjiIyMxLFjxxAREQEAyMnJgZeXFw4dOoT27dsbpR6MsZqJYxpjrKbhuMYMiTvbjBlQRkYGnnvuOSQlJSEkJKTKy3/rrbfQuXNnuLq64vz585gzZw58fHxw9uxZcXjSxx9/jGPHjhntjwhjrObimMYYq2k4rjFD4jnbjBmQt7c31qxZo5SJsqrk5ORgwoQJyMrKgqOjI7p164bFixcrzANycXHBl19+aZDzM8aeLRzTGGM1Dcc1Zkh8Z5sxxhhjjDHGGKtivPQXY4wxxhhjjDFWxbizzRhjjDHGGGOMVTHubDPGGGOMMcYYY1WMO9uMMcYYY4wxxlgV4842Y4wxxhhjjDFWxbizzRhjjDHGGGOMVTHubDPGGGOMMcYYY1WMO9uMMcYYY4wxxlgV4842Y4wxxhhjjDFWxf4fMywWWQhzK/UAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1546,13 +1546,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADaJUlEQVR4nOydeVxUVfvAv3dm2EEWQQR3cV8wxeWXprjnUqZpaq6Ze5laabkDamrla5otamKpub2mtvtmWWq2WGqlZi65C4iggMg+M+f3x2VGhpmBGcT9fD+f+Vzm3HPPPXcYHs5znk0RQggkEolEIpFIJBKJRCKRlBqaOz0BiUQikUgkEolEIpFI7jeksi2RSCQSiUQikUgkEkkpI5VtiUQikUgkEolEIpFIShmpbEskEolEIpFIJBKJRFLKSGVbIpFIJBKJRCKRSCSSUkYq2xKJRCKRSCQSiUQikZQyUtmWSCQSiUQikUgkEomklJHKtkQikUgkEolEIpFIJKWMVLYlEolEIpFIJBKJRCIpZaSyLZHcxezatQtFUfjkk0/u9FQkEonkpjl79iyKorBw4cI7PRWJRCJxmqpVq/LYY4/d6WlI7iGksi25Z/j9998ZN24c9evXx8vLi8qVK9O3b19OnDhR5HV5eXnUq1fP5gIvNTWVgQMH4u/vT/Xq1YmNjbW6fv/+/Xh6enLmzJlSfR6JRPJgc/36daKioujSpQsBAQEoisJHH31k1c9oNPLRRx/Ro0cPKlWqhJeXFw0aNGDu3LlkZ2db9M3JyeGFF14gKCiIihUrMnfuXKvxLl68iLe3Nz/99NOtejSJRCKx4uDBg/To0YOAgAA8PT1p0KABb7/9tkWf5cuXU61aNQICAhg8eDDXrl2zOG80GmncuDHz5s27nVOXSEqM7k5PQCJxlNdff52ffvqJp556ivDwcC5dusQ777xDkyZN+PXXX2nQoIHN65YuXcr58+dtnps0aRK7du0iJiaGf//9l5EjR1K3bl1atmwJgBCC8ePHM3HiRKpVq3bLnk0ikTx4JCcnM3v2bCpXrkyjRo3YtWuXzX6ZmZkMGzaM//u//2PMmDGUK1eOX375haioKHbu3Mn333+PoigAvPnmm6xZs4bp06eTnp7O7NmzCQsL4+mnnzaPN3nyZHr06EGrVq1ux2NKJBIJO3bs4PHHH6dx48bMnDkTb29vTp06xcWLF8199u7dy9ixYxk/fjzVq1dn/vz5TJ48meXLl5v7fPDBB6SlpfHyyy/ficeQSJxHSCT3CD/99JPIycmxaDtx4oRwc3MTAwcOtHlNYmKi8PX1FbNnzxaAePPNNy3OBwcHi9WrV5vfR0ZGiilTppjfr127VoSGhor09PRSfBLH+eGHHwQgNm/efEvvc/369Vs6vkQisSY7O1skJCQIIYT4/fffBSA+/PBDq345OTnip59+smqPiYkRgPj222/NbS1atBAxMTHm90OHDhX9+/c3v//xxx+Fl5eXuHDhQik+ieOcOXPGpiwubaRMk0juHtLS0kRwcLDo1auXMBgMdvu9+uqrol27dub3H374oShfvrz5fUpKiggMDBRbtmy5pfMtiipVqoju3bvf0nvk5eVZrXcl9y7SjVxyz9CyZUtcXV0t2mrWrEn9+vX5559/bF4zZcoUateuzaBBg2yez8rKwt/f3/w+ICCAzMxMADIyMpgyZQrz58/H29vbqbnGxcUxfPhwQkNDcXNzo1q1aowdO5bc3Fxzn9OnT/PUU0+Z3an+7//+j6+++srmeEajkddee42KFSvi7u5Ohw4d+Pfff6367du3jy5duuDr64unpyeRkZFWrqLR0dEoisLRo0cZMGAA/v7+PPLII+bzH3/8MREREXh4eBAQEED//v25cOGCxRht27alQYMGHD16lHbt2uHp6UmFChV44403rOaUnZ1NdHQ0tWrVwt3dnZCQEJ588klOnTpl8XyLFy+mfv36uLu7ExwczOjRo0lJSXHsA5dI7kHc3NwoX758sf1cXV3N3jYF6dWrF4CF/CtKphmNRiZMmMArr7xCxYoVnZpramoqL774IlWrVsXNzY2KFSsyZMgQkpOTzX0uX77M8OHDCQ4Oxt3dnUaNGrF69Wq7Y65YsYKwsDDc3Nxo1qwZv//+u1WfY8eO0adPHwICAnB3d6dp06Z8/vnnFn0++ugjFEVh9+7dPPfcc5QrV87i+bZv307r1q3x8vLCx8eH7t278/fff1uM8cwzz+Dt7U1cXBw9e/bE29uboKAgJk2ahMFgsOhrNBpZsmQJDRs2xN3dnaCgILp06cL+/fst+jkiSyWSB4H169eTmJjIa6+9hkajISMjA6PRaNWvKPkF6vqlYcOGPPnkk07d35G/Wb1ez5w5c8wyqWrVqkybNo2cnBybY+7du5fmzZvj7u5O9erVWbNmjVWf1NRUJk6cSKVKlXBzc6NGjRq8/vrrFs9eMI/F4sWLzfc/evQo4JwM/Omnn3jppZcICgrCy8uLXr16kZSUZDWv7du3ExkZiY+PD2XKlKFZs2asX7/eoo8j60mJg9xpbV8iuRmMRqOoUKGC6Ny5s9W5ffv2CY1GI37++We71pQOHTqItm3bihMnToj//e9/wsPDQ3z88cdCCCGmTZsmmjdvLoxGo1NziouLE6GhocLT01NMnDhRLFu2TMycOVPUrVtXpKSkCCGEuHTpkggODhY+Pj5i+vTpYtGiRaJRo0ZCo9GIrVu3mscyWbYbN24sIiIixFtvvSWio6OFp6enaN68ucV9d+7cKVxdXcXDDz8s/vOf/4i33npLhIeHC1dXV7Fv3z5zv6ioKAGIevXqiSeeeEK899574t133xVCCDF37lyhKIro16+feO+990RMTIwIDAwUVatWNc9dCNUDIDQ0VFSqVElMmDBBvPfee6J9+/YCEF9//bW5n16vFx06dBCA6N+/v3jnnXfE/PnzRfv27cWnn35q7jdixAih0+nEyJEjxbJly8Srr74qvLy8RLNmzURubq5Tn79Eci9SlGXbHjt27BCAWL9+vblt+PDhokGDBuLQoUPi559/FuXLlxdz584VQgixYsUKUblyZZGZmenU3NLT00WDBg2EVqsVI0eOFO+//76YM2eOaNasmfjjjz+EEEJkZmaKunXrChcXF/Hiiy+Kt99+W7Ru3VoAYvHixeaxTLK4cePGokaNGuL1118Xb7zxhggMDBQVK1a0+Hs/cuSI8PX1FfXq1ROvv/66eOedd0SbNm2EoigWcvLDDz80y7TIyEixdOlSsWDBAiGEEGvWrBGKooguXbqIpUuXitdff11UrVpV+Pn5iTNnzpjHGDp0qHB3dxf169cXzz77rHj//fdF7969BSDee+89i8/jmWeeEYDo2rWrWLx4sVi4cKF44oknxNKlS819HJWlEsmDQO/evUWZMmXEt99+K2rVqiUA4eXlJcaMGSOysrLM/dauXSs8PT3FN998I06cOCHatGkjOnbsKIQQ4u+//xZubm7ir7/+cvr+jvzNDh06VACiT58+4t133xVDhgwRgOjZs6fFWFWqVBG1a9cWwcHBYtq0aeKdd94RTZo0EYqiiCNHjpj7ZWRkiPDwcFG2bFkxbdo0sWzZMjFkyBChKIqYMGGCuZ9JJtarV09Ur15dLFiwQLz11lvi3LlzTsvAxo0bi/bt24ulS5eKl19+WWi1WtG3b1+L+X/44YdCURTRoEED8dprr4l3331XjBgxQgwePNjcx9H1pMQxpLItuadZu3atAERsbKxFu9FoFM2bNxdPP/20EMK+6+KhQ4dExYoVBSAA0bt3b2EwGMTp06eFh4eH+OWXX5ye05AhQ4RGoxG///671TmT4j5x4kQBiB9//NF8Lj09XVSrVk1UrVrV7GZlUrbr1q1r4VK0ZMkSAYjDhw+bx61Zs6Z49NFHLTYHMjMzRbVq1USnTp3MbSZl2/TZmDh79qzQarXitddes2g/fPiw0Ol0Fu2RkZECEGvWrDG35eTkiPLly4vevXub21atWiUAsWjRIrufxY8//igAsW7dOovz//vf/2y2SyT3IyVRtjt27CjKlCljobxduHBB1K9f3yzTWrduLdLT00VqaqoICgoSGzdudHpus2bNEoDF4s6E6e948eLFAjBvVgohRG5urnj44YeFt7e3uHbtmhDihiwuW7asuHr1qrnvZ599JgDxxRdfmNs6dOggGjZsKLKzsy3u17JlS1GzZk1zm2mh+cgjjwi9Xm9uT09PF35+fmLkyJEWc7506ZLw9fW1aDcttGfPnm3R17TRaeL7778XgBg/frzdz8IZWSqRPAiEh4cLT09P4enpKV544QWxZcsW8cILL5g34k3o9Xrx5JNPmuVXpUqVxKFDh4QQQnTu3FmMGTPG6Xs78jf7559/CkCMGDHC4vykSZMEIL7//ntzW5UqVQQg9uzZY267fPmycHNzEy+//LK5bc6cOcLLy0ucOHHCYswpU6YIrVYrzp8/L4S4IRPLlCkjLl++bNHXWRnYsWNHizXgiy++KLRarUhNTRVCCJGamip8fHxEixYtLDY5Cn4WzqwnJY5xx5XtxMREce7cOauXRFIc//zzjyhTpox4+OGHLRZYQqhKnoeHh5UwsxUnmJWVJX7//Xdx8uRJc1uvXr3EoEGDhBBCbNmyRYSHh4uqVauKmJiYIi3dBoNBlClTRjzxxBNFzr1WrVpWlmkhhJg/f76FEm1Stt944w2LfgcPHhSA+Oyzzyzer169WiQlJVm8RowYIdzc3MwKvEnZ3r17t8WYixYtEoqiiJMnT1qNUbduXfPushCqsu3t7W31WfTo0UM0btzY/L579+4iMDBQ5OXl2f0sxo8fL3x9fcXly5et7uvt7W31z08iuR9xVtl+7bXXbFpdhVCV3D/++EP8/fff5r/7F198UTzyyCNCCHWDq3nz5qJixYrihRdeKDY2sH79+qJRo0ZF9uncubMoX768VTzmhg0bLJRokyx+7rnnLPpdvXpVAGLJkiVCCCGuXLkiFEURc+bMsZILplj1ixcvCiFuLDQL5t8QQoitW7eaF8qFx+jcubOoUaOGua9J2S682B0/frzw9/c3v3/++eeFoijiypUrdj8LZ2SpRPIgUL16dQFYKcujR48WgJVCevLkSbF//36zQvjZZ58JPz8/kZSUJC5evCgee+wxERISIh577DERFxdX5L0d+ZudN2+eAMTRo0ct2hMSEgRgoURXqVJF1KtXz2qM8PBw0atXL4v3Xbp0sZIB3333ncXGpEkmDhs2zGK8ksjA//73vxZjmGSgyRtg8+bNAhDbtm2z+1k4s56UOMYdyUZ+5coVXnjhBbZu3UpeXp7FOSEEiqJYxUhJJAW5dOkS3bt3x9fXl08++QStVms+d+3aNaZOncrkyZOpVKlSsWOZYmBMfP/99+zYsYPjx49z/Phx+vfvz/Lly6latSpPP/00lSpVYtiwYTbHSkpK4tq1a3Yzo5s4d+4cLVq0sGqvW7eu+XzBMSpXrmzRzxTTZIppPnnyJABDhw61e8+0tDSLWKjC2dVPnjyJEIKaNWvavN7FxcXifcWKFc0ZkAvO69ChQ+b3p06donbt2uh09kXNyZMnSUtLo1y5cjbPX7582e61EsmDyKZNm5gxYwbDhw9n7NixVuddXFx46KGHzO+PHTvGe++9x88//8zVq1fp3r07U6ZMoV27dgwbNozXXnuNmJgYu/c7deoUvXv3LnJO586do2bNmmg0lqlgCsq0ghQn0/7991+EEMycOZOZM2favOfly5epUKGC+b0tmQbQvn17m9eXKVPG4r0plrPwvArmjjh16hShoaEEBATYHNN0X2dkqURyv+Ph4QFgURUBYMCAASxfvpxffvnF4u+lRo0a5p9zc3N5+eWXiYqKIjAwkNatWxMSEsIXX3zBggULGDBggN1KDuDY3+y5c+fQaDQW9wUoX748fn5+xcovsJYVJ0+e5NChQ1YyxUThtU1h+VUSGVicXDXlyilqjVqS9aSkaO6Isj1ixAh2797N1KlTqVevnlXSK4mkKNLS0ujatSupqan8+OOPhIaGWpxfuHAhubm59OvXj7NnzwKYS0ukpKRw9uxZQkNDbX7vDAYDEyZMYMqUKVSoUIE5c+bQsmVLs3I9evRo1q1bZ1fZvlUU3EwoiBACwJxs480337RYZBekcJI30z8/E0ajEUVR2L59u837Fb6+uDk5itFopFy5cqxbt87meXv/qCSSB5Fvv/2WIUOG0L17d5YtW+bQNS+++CKDBg2iSZMmrF27loCAAKZOnQrAK6+8UqyyfStwVKZNmjSJRx991GbfwgtjWzINYO3atTYT0RXeBLQ3J2dxVpZKJPc7oaGh/P333wQHB1u0mzbZi0qG+tZbb6HT6Rg3bhwXLlxg7969nDlzhqpVq/LGG29QvXp1Ll686HTSR1sUNiDYw5H1j9FopFOnTrzyyis2+9aqVcvivT355YwMLI11WUnWk5KiuSPK9g8//MDbb7/NkCFD7sTtJfcw2dnZPP7445w4cYLvvvuOevXqWfU5f/48KSkp1K9f3+rcvHnzmDdvHn/88YdNIfL++++Tnp7OpEmTAIiPj7dQ5kNDQ4mLi7M7v6CgIMqUKcORI0eKfI4qVapw/Phxq/Zjx46ZzztDWFgYoFpqOnbs6NS1BccQQlCtWjWrfwIlJSwsjH379pGXl2fXmhMWFsZ3331Hq1atrP7ZSCSSG+zbt49evXrRtGlT/vvf/xbpMWLiyy+/5OeffzZbK+Lj4wkJCTGfL06mgfo36ohMO3ToEEaj0cK6XVKZVr16dUC1At+MTAN1QV/SMWyN+c0333D16lW7lrJbIUslknuZiIgIvv32W+Li4qhdu7a5PT4+HrC/qZ6QkMDcuXPZvHkzOp3O3N+0LjMd4+Li7CrbjvzNVqlSBaPRyMmTJ83eOACJiYmkpqY6Lb9M971+/XqJZU9pyEBbcwI4cuSIlaJeuM/NrCcllpSo9Nfff/9N//79zenpDx48CMD06dPZvn17sdf7+fkRGBhYkltLHmAMBgP9+vXjl19+YfPmzTz88MM2+40fP55t27ZZvJYvXw6o5V22bdtm5a4DcPXqVaKionjzzTdxd3cHIDg42LxYBLXETlGlejQaDT179uSLL76wKgMDN3YXu3Xrxm+//cYvv/xiPpeRkcGKFSuoWrWqzU2EooiIiCAsLIyFCxdy/fp1q/O2Sj8U5sknn0Sr1RITE2O1CyqE4MqVK07NCaB3794kJyfzzjvvWJ0z3aNv374YDAbmzJlj1Uev15Oamur0fSWS+41//vmH7t27U7VqVb788kuHNqZyc3N56aWXmDFjhtmCFBwczL///oterzePW1z5sd69e/PXX3+xbds2q3MFZdqlS5fYtGmT+Zxer2fp0qV4e3sTGRnp8LOCqiC3bduW5cuXk5CQYHXeEZn26KOPUqZMGebNm2cVsuboGIXp3bs3QgibngCmz+JWyFKJ5F6mb9++AMTGxlq0r1y5Ep1OR9u2bW1eN2XKFNq0aUOXLl0AzJZx07rMVPawKBnmyN9st27dAFi8eLHF+UWLFgHQvXt3u+Pbo2/fvvzyyy988803VudSU1PNMtgepSEDC9O5c2d8fHyYP38+2dnZFudMn0VprCclljht2f7222/p3r07ERERDBw4kLlz55rPubi48N5779G1a9cix3jllVdYunQpnTt3dmhnXiIBePnll/n88895/PHHuXr1Kh9//LHFeVMt7SZNmtCkSROLcyZ38vr169OzZ0+b48+cOZOGDRvy1FNPmdt69+7N7NmzGTt2LFWqVGH58uVm4WuPefPmsWPHDiIjIxk1ahR169YlISGBzZs3s3fvXvz8/JgyZQobNmyga9eujB8/noCAAFavXs2ZM2fYsmWLVdxjcWg0GlauXEnXrl2pX78+w4YNo0KFCsTFxfHDDz9QpkwZvvjiiyLHCAsLY+7cuUydOpWzZ8/Ss2dPfHx8OHPmDNu2bWPUqFFmi7+jDBkyhDVr1vDSSy/x22+/0bp1azIyMvjuu+947rnneOKJJ4iMjGT06NHMnz+fP//8k86dO+Pi4sLJkyfZvHkzS5YsoU+fPk7dVyK5V3jnnXdITU01W2y++OILc9jLCy+8gK+vL+np6Tz66KOkpKQwefJkvvrqK4sxwsLCbG4+LlmyBIAJEyaY27p168bzzz/PgAEDaNmyJXPmzGHEiBFFznHy5Ml88sknPPXUUzz77LNERERw9epVPv/8c5YtW0ajRo0YNWoUy5cv55lnnuHAgQNUrVqVTz75hJ9++onFixfj4+Pj9Gfz7rvv8sgjj9CwYUNGjhxJ9erVSUxM5JdffuHixYv89ddfRV5fpkwZ3n//fQYPHkyTJk3o378/QUFBnD9/nq+++opWrVrZ3Agsinbt2jF48GDefvttTp48SZcuXTAajfz444+0a9eOcePG3RJZKpHcyzRu3Jhnn32WVatWodfriYyMZNeuXWzevJmpU6dahQMC/Pbbb2zatMkiD0zVqlVp2rQpzzzzDMOHD2flypW0aNGiSMuzI3+zjRo1YujQoaxYsYLU1FQiIyP57bffWL16NT179qRdu3ZOP/PkyZP5/PPPeeyxx3jmmWeIiIggIyODw4cP88knn3D27NliDY83KwMLU6ZMGd566y1GjBhBs2bNGDBgAP7+/vz1119kZmayevXqUllPSgrhbEa1iIgIcy22vLw8oSiKOHDggBBCiE8//VRUqFCh2DHGjRsnKleuLCpXriwGDx4sXnjhBYuXrfT8Eomp3JS9V1EUlY1cCLUEmKurq7lmbEE++ugjUbVqVVG2bFnx0ksvWWU+t8W5c+fEkCFDRFBQkHBzcxPVq1cXzz//vEXW31OnTok+ffoIPz8/4e7uLpo3by6+/PJLi3FM2cg3b95s83kKZy7+448/xJNPPinKli0r3NzcRJUqVUTfvn3Fzp07zX1M2ciTkpJszn3Lli3ikUceEV5eXsLLy0vUqVNHPP/88+L48ePmPpGRkaJ+/fpW1w4dOlRUqVLFoi0zM1NMnz5dVKtWTbi4uIjy5cuLPn36iFOnTln0W7FihYiIiBAeHh7Cx8dHNGzYULzyyisiPj7e5jwlkvsBUxkZWy9THWjT37u919ChQ63GvXTpkvDx8RGff/651bnt27eLOnXqCD8/PzFkyBCRkZFR7DyvXLkixo0bJypUqCBcXV1FxYoVxdChQ0VycrK5T2Jiohg2bJgIDAwUrq6uomHDhlYyqihZDIioqCiLtlOnTokhQ4aI8uXLCxcXF1GhQgXx2GOPiU8++cTcx5SJ11a5RSFUOfroo48KX19f4e7uLsLCwsQzzzwj9u/fb+4zdOhQ4eXlZXWtSV4WRK/XizfffFPUqVNHuLq6iqCgING1a1fzWsiEI7JUInlQyM3NFdHR0aJKlSrCxcVF1KhRQ7z11ls2+xqNRtGiRQvx0ksvWZ37999/RZs2bYS3t7do06aN1VrCFo78zebl5YmYmBjzWqVSpUpi6tSpFmW3hFBldvfu3a3uERkZKSIjIy3a0tPTxdSpU0WNGjWEq6urCAwMFC1bthQLFy4Uubm5Qoji16c3IwNNa8gffvjBov3zzz8XLVu2FB4eHqJMmTKiefPmYsOGDRZ9HFlPShxDEcK5bEbu7u588cUXdOrUCYPBgIuLC/v376dJkybs3r2bRx991Mo1oTC2XHgLoigKp0+fdmZaEolEIpFIJBKJRCKR3DU47cMdEBBgdncrzIkTJywSr9jjzJkzzt5WIpFIJBKJRCKRSCSSewanE6T17NmTqKgoi0zKiqJw6dIlFi5cWGwtznuRf//9lzFjxvDQQw+h0+ns1qdLTU1l/PjxhIaG4u7uTlhYGP/5z38s+uTm5jJ58mTKly+Pl5cXnTp1spmVWiKRSG4VUqZJJJL7CSnTJBLJ3YrTlu358+fz+++/Ex4eTsOGDQF49tlnOX36NLVr1yY6Otrhsf79919OnDhh0+38ySefdHZqt4y///6br776ihYtWmA0Gs016AqSkZFB27Zt0el0vPXWWwQHB3PixAmuXbtm0W/8+PFs3LiRRYsWUaFCBV577TU6dOjA33//ja+v7+16JIlE8gAjZZpEIrmfkDJNIpHctZQk0Ds3N1esWrVKPP3006JTp06iX79+4oMPPrBI/lQUaWlpon379kKj0QiNRiMURRGKopjfazSakkzrlmEwGMw/Dx061GZiqBkzZojq1auL69ev2x3nwoULQqvViuXLl5vbrly5Iry8vMTrr79eupOWSCQSO0iZJpFI7iekTJNIJHcrJaqz7eLiwrBhw1i/fj07duxg48aNjBgxAldXV4euf/XVV7l06RI//vgjQgi2bdvGrl27GD58ONWqVePXX38tybRuGY6UYVq5ciXPPvssXl5edvvs2LEDo9FoUVoqICCAzp078/XXX5fKXCUSiaQ4pEyTSCT3E1KmSSSSuxWnle2//vrLrsD5+uuvLerh2eN///sf06dPp0WLFgCEhobSpk0bVqxYwRNPPGEVP3O3c/bsWS5dukRgYCA9evTAzc2NgIAARo4caVEQ/tixY5QrVw5/f3+L6+vWrcuxY8du97QlEonEJlKmSSSS+wkp0yQSyZ3CaWX7xRdf5JdffrF57rfffuPll18udozLly9TqVIltFotXl5eXLlyxXyuW7du/O9//3N2WneUS5cuATBp0iT8/f35+uuvmTdvHps3b2bkyJHmfikpKfj5+Vld7+/vz9WrV+2On5OTw7Vr18yvtLQ0kpKSEM5VbZNIJBKHkDJNIpHcT0iZJpFI7hROK9t//vknrVq1snnu4Ycf5uDBg8WOUalSJZKTkwGoWbMmn3/+ufncL7/8gru7u7PTuqOYEnHUqlWL1atX06FDB8aMGcPChQvZuHHjTdcMnz9/Pr6+vuaXn58f5cqVIz09vTSmL5FIJBZImSaRSO4npEyTSG4N6QkJ7IqOJj0hwepcwsGDxCgKCYV0Q2fbS0JpjnWzOK1s5+TkkJuba/ecrczihenUqRPfffcdoFrKly1bRkREBA8//DBRUVEMGTLE2WndUUzuRu3atbNo79ChA6BmyTT1S0tLs7o+JSWFgIAAu+NPnTqVtLQ08+vChQulNXWJRCKxQso0iURyPyFlmkRya7iekMDumBiu21C2JSpOl/5q3Lgxa9asoUePHlbn1qxZQ6NGjYod4/XXXyczMxOAwYMH4+3tzSeffEJWVhbvvPMOo0ePdnZad5SwsDDc3NzsnjdtQNSpU4fExERSUlIs4oGOHTtGnTp17F7v5uZW5PgSiURSmkiZJpFI7iekTJNIJHcKpy3bU6dOZdu2bXTv3p1PPvmEn3/+mU8++YTu3bvz6aefMn369GLH8PT0JDAw0Py+V69erFu3jq1btzJ27FiHskreTbi6utK5c2d27txp0f7tt98C0KRJEwA6d+6MRqNhy5Yt5j4pKSns2LGDbt263b4JSyQSSRFImSaRSO4npEyTSCR3Cqct2927d2f9+vVMnjyZvn37oigKQggqVqzI+vXr6d69u8Nj/fPPP+zfv58LFy7w7LPPUr58ef7991+Cg4Px8fFxdmq3jMzMTHMG9nPnznHt2jU++eQTACIjIwkKCiIqKoqWLVsycOBAhg4dysmTJ5k6dSoDBw4kLCwMgIoVKzJixAgmT56MVqulQoUKzJs3D19f33vOmi+RSO5dpEyTSO590hMSOLB8ORGjR+MTEnKnp3NHkTJNInkwuSfk4M0U6T527Jj46aefxLFjx5y6LiMjQzz99NNCq9UKnU4nNBqNOHDggBBCiD59+ojJkyffzLRKnTNnzgjA5uuHH34w9/vuu+9E06ZNhZubmyhfvrx4+eWXRXZ2tsVY2dnZ4uWXXxblypUTHh4eomPHjuKff/5xaj5paWkCEGlpaaXxeBKJ5AFDyjSJ5N7hWny8+CEqSlyLj7dojz9wQESDiM9fPz3ISJkmkdwZipJD9s45216S+99N8tFpy3ZBateuXaLrJk2axPfff8/XX39N69at8fLyMp/r1q0bb731Fm+88cbNTK1UqVq1qkPlGzp06MDvv/9eZB83NzcWLlzIwoULS2t6EolE4hRSpkkk9w6mBES1e/S4ey03dxgp0yQSyd1KiZTt48ePs2XLFi5evGiVfVxRFGJjY4u8/pNPPuHNN9+kc+fOGAwGi3NVq1bl7NmzJZmWRCKRSCQSiUQikUjuI+4Jd3E7OK1sr127lmHDhuHu7k6VKlVwdXW1OK8oSrFjXL9+nRA7H1RGRoazU5JIJJIScy8LcIlEIimMlGkSieR+41728HFa2Z4zZw59+vRh1apVeHp6luim4eHhbNmyhc6dO1ud++qrr2jatGmJxpVIJBJnuZcFuEQikRRGyjSJRCK5e3Ba2Y6Pj+f9998vsaINMHPmTJ544gkyMzN56qmnUBSF3377jQ0bNrBq1SpzRkmJRCKRSCQSiW1c7KzF7LVLJBKJ5PbidEHrNm3acOTIkZu6affu3dm4cSN79+6lZ8+eCCF47rnn2LRpE+vWraNDhw43Nb5EIpEUJj0hgT2vvUZ6QoLVObkwlUgk9xJCCILDw5mWkUFweLg5OZi9dolEIpHcGZy2bM+bN49Bgwbh7u5Op06d8PPzs+oTEBBQ7Dh9+vShT58+nDhxguTkZAICAqhTp46z05FIJJJiEULgFRREm+nTMer1CCFQFMViYVqwXSKRSO5WhNFIenw8B5Yv5+qpUwSEhdFi4kQ8/P2t2iNGj8YnNBRF47RtRSKRSO4qnDWM3C2GFKeV7SZNmgAwduxYu4vSwhnGi6JWrVrUqlXL2WlIJBKJQ8iFqUQiuddx8fRE5+GBMBo59PHHfD58OEa9HoDg8HDazJrFX2vX8sWIEeZ2gL0LFtAjNpbwQYOkXJNIJCXmTiZedNYwcrcZUpxWtletWlUqE75w4QKffvopFy5csFk+bMmSJTd9D4lE8mAjF6YSieRexmLRmL9xWFCeAbSYOJH0uDgreQZg1Ov5fPhwqnXooG4kSs8diURSAko78aKj+SZsGUyKMow42/924LSy/cwzz9z0Tf/73/8yePBgjEYj5cqVs1k+TCrbEonkZhBCyIWpRCK5Z7FYNJ4+zROrVnFg+XJLuaUoNOjXj73z51vJMxNGvZ4Dy5YRGR2NotXeptlLJBKJNfaszrbaEcLKYAKWhhGdhweAXc+fwv3vhMLttLJdGkybNo2ePXuyYsUKfH1978QUJBLJfYYQAmEwoNHpVCGrKHJhKpFI7kkKLxpdPD3RrVvH1VOnLPq5eHjg4ulp1V6YlNOn0Uh5JpFI7iDOhPW1mjKF7JQUK8UZLA0jXkFBAHgFBdk0sBTufycMKSVStvfs2cOKFSs4ceKElQs4wKFDh4q8PikpiVGjRklFWyKRlAqFBXhgnTpEzpolF6YSieSOcDPxjba8cvKyssjLzCQgLMyir732wvhXr47RYJByTSKR3HaczjehKDwydaq1waQAZsNIVBQoCu5+fuyOibkrDSlO29K/+eYb2rdvT3JyMvv376dSpUoEBgZy/PhxMjIyaNq0abFjdOnShV9//bVEE5ZIJJKCmAT4kmrV2DN3Lkc2bGBXdHSpLEwlEomkJJjiG6/bKDVYHMJotF5kCsGRTZtoPHw4Gp2u+PYCaHQ6IsaMkXkoJBLJHcGe1dleWJ9ThhGdDo+AADQ63V1rSHFa8kZFRTFx4kS++uorAObMmcP333/PiRMncHFxoX379sWOsWzZMnbv3s306dP5/vvvOXjwoNVLIpFIisNeXLZcmEokknsVjVZrc9G4b/FifCpU4PGVKy3kl712UOVZj1Wr8AkJkTkoJBLJ7Sff6mwvrO+P2Fgra7RThhG9Hn12Nka9/q41pDi9mvznn3/o2rUrGo0GRVHIyMgAoEqVKkRHRzN37txix0hPTyczM5P58+fTqVMnmjVrZn41bdqUZs2aOf8kEonkgcOmBSgfuTCVSCT3IkaDweaiMfHQIT4dMoSGAwYw/vRp2syYQcMBA6jdowc56ek0GjyYCWfPmtvbzJjBhLNnCR84UG4eSiQSh0hPSGBXdDTpJfDKsYVn2bI2rc5FWq8dMIyENGlCqylTAJh2/TpoNESMHn1XGlKcjtl2d3fHaDSiKAohISGcOnWK1q1bA+Dj48OFCxeKHWPIkCGcP3+epUuXUqtWLats5BKJROII9ixAcGNh2mvtWqp37MiBZctIOX0a/+rVzQvTwu0RY8aoirZcmEok9y+ZCXB0OdQbDZ63t16srVjuwskdFa2WiNGj2btggdVG4pGNG7ly4gTP7NlDZFSUxTWKouATGmqzXSKRSApiL69EaZX4MmUXn5yUZHMDsTjr9b7FiwkfNIjHV660cjNvOHAgPVev5nr+M1w9dYpKrVrRbOxYesTGWnk73mlDitPKdqNGjTh+/DidOnWiQ4cOvPbaawQGBuLi4sKMGTNo2LBhsWP89ttvrF+/np49e5ZkzhKJRALYtwCZOLJxI5UeeYSmY8fKhalEIlHJTICDMVC1x00r284mQiu8kLWVnbfZuHH4hIbaXTS2mDgRFw8Pko8f54OmTRn244+ENGkCqKVTLx06xIetW1u0SyQSSUHsKdWa1CQiQ9RjSSks11pOmmS9gVjAem1rYzHx0CE+GzaMXmvWWBhGKrZsSbOxY62SrR3ZsIGLv/xCz9Wrqdahw11lSHFa2Z44cSJnzpwBYN68eTz++OP06NEDgIoVK7Jt27Zix6hZsyZ6O9niJBKJpCiEEAijUU1yoSh2LUCgLkzr9OyJoihcT0rij1WraPzss+Z/LHJhKpFIbobMfw7Bihgy2zzslBWouJqwQ3buJHzQoCIXjfp8y5At7LVLJBJJUWjSkmkbCklpySW63pZcS/r7b0bu329lpS7Keq3R6Qh79FEAS8NIviJvq8TX4XXrSP7nH7ueP3cKp5Xtbt26mX+uUKECBw4c4N9//yUrK4s6deo45BK+aNEiJk2aRIMGDahTp46zU5BIJA8ohXdLnXEb8gkJoc306TbHlQtTiURSEopamLp4etq9rriasGs6dODFixel941EIrlnsJe01hTW17OQldqZsL5Lhw7xYZs2TElNLbIkWMLBg/y0YAGRUVHM8/K6KwwpTivbs2fPZsSIEYSGhgKqZahmzZoAJCQk8MEHHzBr1qwix5g4cSKXLl2iQYMGhIaG4ufnZ3FeURT++usvZ6cmkUjuY2ztlt7NbkMSieTBxBSrOC0jA6NejxDCUkF2sCbs7++8Q2R0NIlOet94h4QQGRWF903EW0okknsfZ8NcbpaiktYe2biRpKNH6bFqFZHR0Wi0WufD+oRwvMSXTocQojQfr8Q4rWzHxMTQpUsXs7JdkPj4eGJiYopVtiMiIuTOrEQiKZKC7uJGo5Hr95jbkEQiubcojYWpMBrJy8pC56IDdGA0kJeTg4uHh3njz1523sKYa8IqilPeNz4hIbSNji7R/CUSyf1DaSU7g6JjuV08PVE0miKT1oJq4f510SKeXLeONwIDGbxjh1P5JvKyshwv8aXXo8/KcvIpbw1OK9tWO7QFSEhIsLJS2+Kjjz5y9rYSieQ+xEKhNhhQ8ksKWriLnz7NE6tWOew2tOe11yzisotDWoEkEgnYX5g6ooRry/ghjEYQAm1qEprPY+HiKTQVw9D2GA7ulRBGY5HZeQtjrgl7l1hnJBLJg4smLZm21T0tQmYKe/E4LNf0erKuXLF5vsiNRSHITk0tNldPxJgxZKemOvRctwOH/Cs3bNhAjx496NGjB4qi8PLLL5vfm16dO3dmyJAhtGzZ8lbP+a7l888/p0WLFvj4+BASEkLfvn05ffq0Vb/Y2Fhq1aqFu7s7jRo14ssvv7wDs5VI7izCaCQ9Lo7d0dFsGTCA3dHRZFy+bHYXX1KtGnvmzuX4p5+ic3Nz2G2ozfTpTu3gmqxAt8PF6l5DyjSJRFXCf37zTa7bqzvr7oln3XD15+0fo32yJsTOhW82QOxc9f3/1gGwf/lytgwYQOJff910TVi5Ueg8UqZJ7ksyE2B/tHq8BQghKPvYU7A3g7KPPWU2lKTHxbE7JkZdw8XEoM/OdkiulUQRNsk7IYS5WkPh+xTM1ZORVPJs6qWNQ8p2bm4u6enppKenI4QgIyPD/N70UhSFIUOGsHz58ls957uSXbt20atXL+rVq8e2bdtYvHgxf/31F507dyargBvDxo0bGTlyJP369WP79u08/PDD9OrVi19//fUOzl4iubUIIVQLDWq5rsIK9ZENG9gzdy7/bt/OtYsXLdzFi6vFaMJsBZKUClKmSe5XTIswRxZjBS03weHhFjGABRegbuUrIBIvoswZAYZC1haDHmX2cIyXLuDi4cGRDRv4bNgwvIKDeXzlyiIXjEWFwsiNQueQMk1y32IqZ3gLlG2zUj17DlsGDGD/ig9ACJtruI/atME7JOSWKMImeecVFISi0RA+aBATzp6lzYwZNBwwgDYzZjDh7FnCBw40V2u4W3DIjXzo0KEMHToUgHbt2vH+++/LLOKF2LhxI1WqVGHVqlXmf47lypWjffv27N+/n9atWwMQFRVF//79mTNnDqB+nocOHWL27Nl8/fXXd2z+kgec5ATYshx6j4bAki/chBAIg8Eibpr87JQF6y16lStnHX+tKNTv25e98+dbthdTixEcswJJnEPKNMn9SmZyMl4FjvawVQM7YvRofPJz1pjOpcXF0XPlByiffmCtaJsw6NF+tpKGQ6fy+fDhRWbnlckdbw1SpknuFW5HYrPi6mmbQmMKJ6at3qkTaefP28yhk3DwIJ8OHUqvNWuKLVt4sygazT1TrcHpmO0ffvjBZntubq5DZb/uV/Ly8vDx8bH4Jfv6+gKYd8JPnz7NiRMneP311y2u7d+/P5MnTyYnJwc3N7fbN2mJxERyAnwQA5E9Sqxs2yvLZSGoFYUeK1daK9SAi4cHLp6eNt3Fi6vF6IgVSOIcUqZJHlSKqoF98uuvGfHbbxxet858zsXLi56rVsHFokNdiDuNztMTnYcH+qysYrPzSkoXKdMk9wqlmdjMHsXV0/aoUce6jJei0KBfP5trOBOH162j4sMP03Ts2FuuCDuSVO1uwOlt07Vr17J06VLz+yNHjlCzZk08PT1p27Ytly9fLvJ6IQRXr14lJyfH+dnexTzzzDMcPXqU9957j7S0NE6fPs20adNo3LgxrVq1AuDYsWMAVl4BdevWJTc3lzNnztz2eUskpYEtt3AXT0+r3c+iFOqi3MVNVqCGAwYw/vRpu25DktJDyjTJg0pRNbCbjRvHtQsXLDYQAYx5uVCx6FAXKlRHn5lpYdUxZefVaLXsfeMNMpKSpKJ9i5AyTSJxEEXBLbSSVWLaotZwBbn4889oNBoSDx9mnpcXiYcO3VK55ky1hjuB06vTN998E02BRe0LL7yAq6srixcvJiEhgWnTphV5fV5eHuXKleO7775zfrZ3Ma1bt2bbtm1MmTIFPz8/wsLCSExMZPv27Wi1WgBSUlIArDK2+/v7A3D16lWbY+fk5HDt2jWLl0RytyDy3cRt7X7+ERtrIaiLjL8u4C5uK7nGkY0bif2//8MjIIDI6GieXLeOyOhofEJDpaJ9C5AyTfJAkl8D22b1gwJyLahePXqsWsX069eZdv06KBpE79GgteMwqNVheGIEhzdutDplyjfxyCuv2LRiyURopYOUaZL7FWfyUDiEmwcaF1crpdrpHDpC3PWK8O3A6RXq2bNnqVevHgDJycn8+OOP/Oc//2HcuHHMnj2bb775psjrXV1dqVixIob7LJHRzz//zODBgxk5ciTff/89mzdvxmg00r17d4vEGyVh/vz5+Pr6ml+VKlUqpVlLJCWjYMIzYTQ6vvtZjEK9b/FifCpUsJtco8XEibh4eKi1ZwGNdLe8ZUiZJrmXSU9IYFd0NOk2Mohr0lMsjub21CTaVfOwWwPbJNc8y5Vj1P79hHduh271fJg+AM3W5RAYgpgVa61wa3WImbEoQaHsW7LE8p4O5JuQidBKBynT7nNucUbuu5nM5GSLo8O4e9puz8nCmJdrrVQXs4YDmUPHFk5/EhqNhtzcXECN33ZxcaFdu3YAhISEcMVO3bSCPP/88yxatIjs7Gxnb3/XMn78eNq3b89//vMf2rVrR58+ffjqq684ePAga9euBW7sjKalpVlca9pJDQgIsDn21KlTSUtLM78uXLhwC59EIimagiW7Ph02DI1Wa7kwVRRQFLu7nyaF2lYW3qSjR7n466/FZpmU3HqkTJPcy5hiHm2V69JcT7U4mtvTkmkTqtheZJJv1cnKovnYsSjfrLcs8fXGOJSoodBlIOKLszB8BnQZAMNnqO+7DuTTYcNIPHToxv1kvonbipRp9zm3MCP33UJRm4jOYKuUlwVuHuTEX7As46UouHh6sm/JErtrOCnTbON0grRGjRrx3nvvUbFiRd5++23at29vThZx/vx5ypUrV+wY58+f58SJE1SuXJm2bdsSHBxs8UtRFIUlhXZ/73aOHj3KE088YdFWsWJFAgMDOZWviJhigI4dO0bt2rXN/Y4dO4arqyvVq1e3Obabm5tMyCG5K7BKGqQodH/3XQLCwggOD6fFxIk07NcPnacnxrxcWr7yCie//pqEgwfNYziahdcnNPRG0iCDAUWjkcL7NiJlmuS+xj3Q4q158dlrIBgMRIwebV39QAiuXbhAgK+n7RJf29ehnPkH8cEexKhoFK0Woc9D0eoQQtDx9dfxr1ZNZh2/Q0iZJrnXcTZxmq2M40VWWVAUsxx0y8vDXaul79atZF29QoOn+qLz9ESfmcnFn38mfNAgWUnBQZxWtufNm8djjz1GeHg4Pj4+FrHX27Zto3nz5sWO8eWXX5oF0++//251/l5UtqtUqcLBAgoFwLlz50hOTqZq1aoAVK9enVq1arF582YLgb9p0yY6dOjwQGdzl9xZMpKS8DId7VT1s4rNVhS1ZuymTTQfP57IWbMQl+PQrp4PF0+hqRiG65OjGfnbb2wbOpTD69aZxzr6ySc0GDiQWt262VWoFUVRS4eB2W1ccvuQMk1yPyKEwK/PVNDMwM9oUC06pvKEK1aQduECoU2b0mzsWHrExqryzmDAxcODvOxsfCtXQvlwnv0SX8cOony0ADEyinleXuYMuYqi3DNlau5XpEyTPGgUzjhur8pCypkz9Fy9muuFlPCWr7xCre7dISkeJX9tp6sYRuUnR4OUaQ7jtLLdqlUrs2U6LCzMIonE8OHDqVGjRrFj3I/ZHMeMGcPEiROZMGECjz/+OFeuXGHu3LmUK1eOvn37mvtFR0czcOBAwsLCaNeuHZs2bWLfvn3s2bPnDs5e8qBjr+5swVqPXuXKcWD5coLq1bOwYOuzs9G6usLXH6OZM9xiEap8tAAxK5Zea9ZQ8eGHufjzz1a7nyaxLBXquwsp0yT3G0IYISMe5Z/lcO0USpkwRL3R4BHC1dOnaD1litlyc/7HH2k4cCB1e/dG56JD4+qGMTcHjaubQyW+FJ3OyjXzXilTc78iZZrkQcZmMlsgODycJz78kEMff2xRWjU4PJzIWbPg649RbKztmBULXQeRfPIkHzRtKmVaETitbAP4+PgQERFh1d6tW7ebntC9yvjx43Fzc+P9998nNjYWHx8fHn74YTZv3kzZsmXN/Z5++mkyMzNZsGABCxYsoHbt2mzbto2HH374Ds5eIrHN9YQEfn7zTer07IlPSIg5MVBBC7Zu0CREQDkrYQyAQY8yeziiWQeajR1L8+efl7uf9whSpknuBQpuCBblVimEEU6uRdk9AkSBReOfCxCRsVRpPRBl8zL46yd0FcOo1G88iqLgcj0FZevyfG+dGohRs1AcKPEl9HqLEl8Fkdl57wxSpknuV+wlfQTMSdCsktnmeye2mDiR9Li4G4p2gXZxOc7KiAKo72cPh2Yd8AoKkjKtGBxSthctWsTAgQMJDg5m0aJFRfZVFIUXX3yx2DHj4uJYvHgxe/fu5erVqwQEBNC6dWsmTJhAhQoVHJv9XYSiKIwZM4YxY8YU23f48OEMHz78NsxKIik5QgiCw8OZlpGBUa/HaDDQfOxY+N86NKZ4RUWBmStRPpxv363SoEfZsgxGRwPYzWApubuQMk1yL+BIDKMQQrVoF1K01ZN6lN3DITgS3D3UZGc1w9GMnIX4eq1VbLZSsTr0GgkfLbAt87Q66D2GrNTUUnxKSWkgZZrkfsVW0seCeSjK5uWak9kWzq8jDAYu/fUXdXr2pEa3bhbtyoroItd2bFmGx8ioW/589zoOrXonTZrEI488QnBwMJMmTSqyryPK9pEjR2jTpg15eXl06tSJhx56iMTERJYtW0ZsbCx79uyhfv36jj+FRCIpVYTRSF5WFjoXHaADo0FdRF65ZLn4dPNQd00dcKtEI93EJRLJHUAYVdfxwoq2+bweTqyEzlNVa83TE+FynO0kaOvfgq4DVRfK2YUsPlodRK2CwBAyjh+/ZY8jkUgkRWGVBK1GDSJnzaJOz570Wr3awjtRqRhGcP/x9Nm0CZF4Ac3q+ZB4ESX6Q4dDZnQeHrfnwe5RHFK2jUajzZ9LyqRJkwgLC2PHjh3mMgugllbo3LkzkyZNYvv27Td9H4lE4hzaMn4IoxGEQJuahObzWEv3ya3LLReXOVmQnQkOuFViNEiFWyKR3FY0Oh2KRgvXilk0pp9WNw7dPaFzP7DnrXPyEEQNgdlroVkH2LJM3UysUB16j4HAENBo7LqQSyQSya1C61vObhK0kIgI6vXpA1+vveGdCBaePBZei1PedWhtV1TIjETljvhz7t27l3Xr1lko2qDWN5w+fTqDBw++E9OSSB54POuGqz9s/xhtQWHs7okydrb1LqcQsGMTPDG8WLdKFFkKQiKR3F6Mej3CaEApU8yi0ae6unEIxXvrfLMRQqrC8/MQI2aiuLgi8nJRdC7qIrUIvENCiIyKwtuBsj0SyX1PcgJsWQ69R6sbVZIisVXKqyButZrbTIKmItSs4oU9dmx58jixtpMhM8Xj0Op3z549Tr2KQ6fTkZOTY/NcTk4OWpmVWCK5/SgKbsGhiMSL1sK4KAv2hsVQrgLMXKkK34IUcKssbhEqkUgktwRFg6g7GhQ79gVFB7VGwI6NjnvraHUgjCR/uRke8VKPBWScPaXaJySEttHRDtXIlUjue5IT4IMY9Xifkp6QwK7oaNITEhxqLwpTKS9NfikvSxRcKta1TIJmPqVQo1Nna+9ERVE9eT6LtVaoHVzbZSTZVvwlN3DIst22bVsURTGXsSiYRVgIYZVV2GAwFDlex44dmT59Og899BC1atUyt588eZKZM2fSqVMnhx9AIpGUEu6eKAoon35gLXSL2uU0uVXGrIHmHe26VUokEklxOJpdvDgKWoAURUF4hSIiV1onSVN00CYWvEJhw5KSeetkW2fiNSnVEonkwcZeEkdHkjs6hc4DjYsbV08V8MrJzyyOoqDztOGxU1TenYJru6btYNsHtzxk5n71/HFI2f7jjz/MP1++fJnhw4fTrl07+vTpQ3BwMImJiWzevJldu3YRGxtb7HiLFi0iMjKSevXq0aBBA4KDg7l8+TKHDx+mcuXKxWY8l0gktwB3TzWm2p775IbF0G2QustZ2PL93SfQZSC06gajotTFqF4PWq20aEskEocprQWoJi2ZttU9Scq3ACmKBlFzMCK0I8o/y9QYbZ/qiHpjwKM8StRQdXEJRcu6Qt46noGBAOajRCKR3BH0WRjzcggIC7PKOK7PzMSYl4umsMdOcZ4832yE00dh1irEqGgUrdbhkJmScL9uUjqkbDdq1Mj8c58+fejfvz9vvPGGRZ/HH3+cyZMn8/777xdrma5cuTKHDx9m1apV7N27l5SUFGrVqsWzzz7LsGHD8Pb2LsGjSCSSEiEEgY+r5SGE0YAyeBKc/vvGwtNEgcRAonlHtZyXLQv2sT9hRGtY+SPUaXJHHkkikdxfOGPxLlzyxuSBpyga1cIdEY2i0SKMBlA0KELAC69DaLUbMi0jHboNLtZbxysoyOIokUgkN4su+RhDn1aP4Og6SpB38R9aTJxI5KxZFhnHdRXDMA55BfHkaJSCHjuOePKcPgply5N94QwegxqR/PIKgnoNLK1HvWnsWcPvJiu50wnSvvnmG7Zu3WrzXOfOnXnyyScdGsfb25vx48czfvx4Z6cgkUhKC2GEzHiUo8vh2imUMmGIuqNR1u5XFetvNlr2/+4TxMuLUYJC1brZGq2aZVzRWO5y2nCrlEgkkpJSlMXbxdPT/LNVyZuwMFVBDw1F0WhQAGHQq7LLoEfRuaqKc1Co7WRnQaEwMgp00ltHIpGUHprcJCIfU4+F0aWepmpbSEk97dSYeQn/4lUl3DrjOKD56WvE6t8Qs2JRCpYtdNCTJ+uH7XjchWs7e9bwu8lK7rSy7e3tzc6dO21ar7/99ltplZZI7mZMmT/7Pg9+ZeHkx7B7uEUMo/LnAjW2MWaNuqNpsnBrdYioVSh+QepiU8lPZCjLeUkkkjuAEILg8HCmZWTkZx23XfJm74IFDNm5k8qPPIKSHI+yZbm5vqyaBTkUNBqSv9xM0H9GWVpuFAX+PSS9dSQSSZE4m29Ck5dM28chKc9WsrMicPe03a7zxCWkBkpyvLXSDHDsIEr0UDUGu3DZQgc8eQzXUp2bp8SM08r2888/z6xZs0hMTKRnz56UK1eOy5cvs23bNtauXUtMTIzN68qUKcMPP/xAREQEPj4+VknVCqIoCmlpac5OTSKRFEdyAqx9EwZMhMx4K0UbAKFH2T0CUaEjyqxVsG6RWkux9xgUR5KdBYaoliBZxkMikZQSemMSVYaqR7C2YLecNAmvcuVslrwJqlePSg8/DNs/hoIWHVBdJ2fFQtdBaMv42ffKuQstOhKJxEFuQ4mx0k94ZqlU2wuPQQj8ek0Glxm4GgywItq2OzjA9nXQ8GHoM9auJ4+z5QwlxeO0sj1jxgz8/PxYsGABq1evNmcpDwkJYfHixbzwwgs2r3v55ZcJyf/yvfzyy0Uq2xKJ5BYgBKJGQ5S9GWps9oH/WCva5r56lKPL1NjGuesQ+jwUrc4xoRsYorqYSyQSSSlhuHaSqs+AxnjV2oKtKPRYuZK98+fbqC0LLSZORFyOQ1NY0Qb1/ezh0KwDHmG1b8/DSCSS24upxFhkj5tStkurWgKAJj3F4mhCCIFvvvLsm5ejVoISwio8psXEiXj4+4PJWyfxIkr0h/aT3Jo49DP0fZ7kL7cS9MZwK08emx4+kpvCaWUbYNy4cTz33HNcvHiRhIQEQkJCqFixIpoiLF5RUVGA+iUaP348Xl5euLm5lWzWEonEOYxGyMlC0al/8opGC9eKEcjpp1E0Wt4IDGTwjh2ENJHukxKJ5M6guZ4KZcC3fF3S4+MtLNguHh64eHpalrwxoSg07NdPTRRkz9pj0MOWZbiPnMWueKjrKzOLSyQPNHYs4Zn/HIIVMWS2efjmle3rqRZHsPbYqdSqFc3GjrUKjwkODycyKgq2f3wj/lpRYMq79jOLm6hQXc21YzBIT57bRImL32o0GipXrkyLFi2oXLlykYp2QfLy8ihXrhzfffddSW8tkUicwWgEBOQmwZ9zYedAMORAmWIEsk91EAb+78UX74psjhKJ5EFHwSOkLgeWL7ewYOdlZZGXmUlAWAGZpii4eHri4ulpu75sYeJOo+hc+CnVA6OfE5nFZdiMRHL/YbKEJydYNOuunqTt4+qxMJrUJCJD1KMj7YUxeewsqVaNPXPncmTDBlw8PUk7f94qPKbt7BiUK5csE50VzCyutWNL1erUOGzFefVPljksOSVWtkuKq6srFStWxGAw3O5bSyQPHkKAgpoI7b814Y+5cGo9/Lse6gwHxY5AVnRQZxQIhTbTp5dO/JFEIpHcBBqNB1oXN2sLthAc2bSJxsOHE9KkCT1WrWL69etMy8jglcuXMeblOmTtEXo9+qws63NFKdSmsBmpbEsk9z0aYypE5B8Ln0tLpm2oenSkvSAi303cQqlWFBr068cfsbGW4TGKQq1u3VC2Lr+haCuKmjht4xIoV0HNLF5Y4S6QWbwkcdiyzGHJue3KNqhJ1hYtWkR2dvaduL1E8uAgBFy/CHtGWMZnH14MXhUgcqW1wq3ooE0swrsC4rZOViKRSIpCwZCXY2nBzmff4sWUqViRkb/9RnjnduhWz4fpA9Rjbg6i9+hirT1Zqam2z0uFWiK568lISrI4OsSFP2F5W/V4BxFGo5XHjr3wGBdPTzQurqq3Ts1wmLUKfrwOezNg1c/w10/QZQB8dgqGz1B/Hj4DvjgLXQYWn+TWHiXw4rkXamDfDkoUs32znD9/nhMnTlC5cmXatm1LcHCwRcI0RVFYsmTJnZiaRHLvk5kAR5dDvTHgEQTHPrBOhHb1EPwwBNqtgdD28M8KSD+tuo7XGoHwqQgCmYVSIpHcVmy5XAohqNB1MpVdZmA06IkYPZq9CxaYk6O5eHjckFX/W4e2UCI0U31ZZsVaZyMvYO0RV648UAtAieR+IjM5Ga8CR4e49Dcou9VjpYdu3eSKQuuCRqu1UqpthseYMBqgbU+IWQ0ZcXB4vpqHp0wY1BquejQa9DAqGrTa0sksXoLkt/dCDezbwR1Rtr/88kvc3Nxwc3Pj999/tzovlW2JpOSkHtrGtasfUsYYil/zUfYToZ3aCClHoeUSaBqt1s3Oy8GYm4siAAVZNUAikdxWNGnJtK3uSVK+y6U5YdCKFaRduEBo06Y0GzuWvlu3knX1Cg369kXn4YlRn6smgdyw5EayIDcPyMkqur5sgTqyXkFBD9QCUCK502QkJeFlOta507O5QUnmpTGkqC7mhpTiOxfEkIfRYLBWqguEx5g3F4G8zEyMBiNKxz4oJ9Zaey7+uQDarETUGgxGgfKIl8wsfocpFWU7MzOT+Ph4wsLCHFqcnzlzpjRuK5FICiGEwLfFaPyU5xDCgDAaUYJbwakNti+4egjidiLKt0ZRwChAjwYXRUEpqauRRCKRgP3atnbaLevI5iGMRk589RVZV6/QesoUdJ6e6DMzST52jFqPdYeMeJQjqkVHUyYM6oyEj35V3SjrN1djGLMz1aRBGxbDJ+9Dn7EwciboXEGfC1pZR1YiuVOUyBpdFIVqUxdHVkoKHgWOJtKunORyZ3C7chIvHnVorKLiuYtD0WgsPXby2bd4MeGDBvH4ypV8MWKEek4IrsXH4xuotVa0QX2/ZwRU7IgBX3Qys/gdx+nV9MKFC4mJiTG///HHH6lQoQK1a9emZs2anLJVekMikdxyhDCSmxPH2bPRHD06gLNno8nNi0fUHws17OxoKjpEvTGoPkeYM/hKRVsikdw0djL62moXRiPpcXHsnj2HLQMGkHj4MFkpKdTs0oWGHduiW70Aooeh+/JDAuvWgZMfo2yolp/0cYN6/H2aGo9Yu4bqVrlzgHqMbAdr9wNCPf/XVljlBX9sloq2RHI/IASBDz8Fz2aoR+FYxpns/DwN2YXyNeg1qZzrrB5vFo0hBR72tG3xzt8cUBQFn9BQesTGotHdsIMmHjrEZ8OGET5oEBPOnqXNrFlEjBlDmdAQlKPLrRVtE0KPcnQZWnf7JZY9atXnbM1IPGrVv6nnkxSP05btlStXMnnyZPP7l156ifr16zNlyhTmzp3LtGnT2LRpU7HjJCcn89Zbb7Fv3z5zre7/+7//Y8KECQTJTHcSSbHk5CSQkLCKChXGodP5kJi4luPHRyAKCN/z5xdQu3Yswe1Wo6T8A1cO3hhA0SHargLPEHLiL+Lery5XpKuRRPJgY875MBo8HYxdtmfBzkmCiPxjEZhK3pgz8SoKPWJj0bm4wE9fo0m/CsOmqJZqgx4lMx52D7dcaAaEQ9sP4d+PYbdtt0p6j1FjHY0G0Etrj0RS2qQnJHBg+XIiRo++fVVMhBEy41Xl89oplDJh+fIr9EaJKwdlkQmNId3iaCJPc52z5Tzx1F93bGpC4P/ESOgzDv+8HIQQKIqieiH2mgwuM/A1tWs0hA8aRLUOHTiwYgUZiYl4BQcTMWqUWRlvGzULRaNVB7cXImgi/TSK1kUNp7GBd/2H8N6wy6HnkNwcTivbFy5coEaNGgDExcVx4MABdu/eTevWrdHr9YwdO7bYMfbt20eXLl0wGo107NiRWrVqkZiYyNKlS1m6dCk7duygRYsWzj+NRPKAIITAxSWIqlWnqxbt3HgrRVvtp+f48eH4+3fAtccelD8XmBOhiTqjwCsUBGQeO4y7dDWSSCSZCXAwBqr2cE7Z/iAGIntYKtu5yeoCN9ey5E3BeEjP2tYlb1w8PHBxd8eYmoymVdf8BEAL1MoKbd5XNwMKW3QaTlT7FVa0wcKtEs9Qpz4OiUTiONcTEtgdE0PtHj1uj7ItjGpp08Kbb38ugMhYqDkIFA1ZiSfxiEA9FnYLt+F6roh0i6N6L0HQEzEoLgsQeTn5pVXte8aY800sX87VU6cICAujxcSJePj7W+Sh8K1UiYhRo/AJDUXRaCyUamE0gKJBQajy7Z/lcO00tF2lJkMrCp/qCH0uSo6NcoaS24rTvqIeHh5cu3YNgJ07d+Lt7U3Lli0B8PPzIy0trdgxnn/+eerXr8+FCxfYsmUL7733Hlu2bOH8+fPUr1+fcePGOTute4Zjx47RqVMnvLy8KF++PK+88gq5ubl3elqSewhVuY7j3LkYjh4diBB5xMcvt1K0b/TXEx+/DHTuGB+aAe3XYXxoBnmaAECNzTZcS72tzyC5v5By7cEmx5DEmc7q0RGyE09ChHq0Knmj0eDi7Y0wGtGU8YeL2xGXdiEaT4F2qxAaHaJCB9WSbUaBsH5wLLZIt0qOLgOMN/WskgcDKdPuXtITEtgVHU1eZibY8nIB9f3u4ermoRC23cWFwO/JyfBshnosyvXcaISkOJSVr0H0MPWYFKe2F0LrW87srbOkWjX2zJvH6W+/5fiXX+JWpgzHv/yS0zu/o/XUKfT88ENaT53C6Z3fkXr2LEIYUTLiUA5Ew84BKEeXqYr2yY/BHDazHv5dD3WGW5duNaHooN4Ysi+ed+qzldwanLZsN2/enAULFqDRaHjzzTfp2rUrWq3q0nDq1CkqVKhQ7Bh///03mzdvpkyZMhbtvr6+TJkyhX79+jk7rXuClJQU2rdvT82aNdm6dStxcXG89NJLZGZm8s4779zp6UnuQoQQgBFF0SKEAVBITPyY48eHI4QejcYTjWYdWVlFuxNlZZ1WxzAvNDVqbLaMV5TcJFKuSXKNyZzrDIHGZKwiBG1YjQzEc/6JyrjnJJlL3tTr04f2814joEaYWd4Jgx4qdyU3J474C/PJyjqFh0cYoSEjcX1yP8oPQ9SqCjoP9T4OuFWiaMGtHBwAWgSW1kcguY940GSaPdfvolzC74i7eD7XExLYPXs2kTNnwMGi45Y5ukyttmJ1zgHXc0DnW0FVqPd+hbh2BZ6dguLmicjJhG//i1KmLDzSHTQa8jQZnAsJpFytxqTHx3Py66957ujfFjLNaBDU6tYVDNkoOlV30rpqCX/6KRQXD2srfcVOcP289YbC4cWq1T5ypbU3j6JTLd+eIWSd2o5tJ3L7eAYGWhwlN4/TyvbChQt57LHHePzxx6lSpQqvvfaa+dymTZvMVu6iqFGjBqmFkhGYSEtLo3r16s5O655g2bJlXLt2jW3bthEQEACAXq/nueeeY9q0aYSGSvc2yQ1M7uHx8cvJyjpFpUqTcHEpZ1a0AYzGLAyGTDw8inYn8vCojhAGEo8c4cNHHmHYjz8S0qTJ7XgMyX2OlGv3KCWJzbZHborlEXWjUDTpg6bZQIyGHJQCsYpBveegKPPMFRPaz5uHX5XK5ObEc/ZsNFlZp/D1bUVo6FiLzUUT588voHatlQS3W4OSchSuHlZjsB1wq0QYwLWsqmy7yfwwEmseNJlmz/W7KJfwUnUXd3cugziooSaKVuf4BptWVXe0vuUccj3X+VZApwvEu2o7SE9BtOpCbm4C8fEFNv06jMTVNQQlOwPh4U1Q77koynyEMKDLzqX3hvUWMs3DI4yKFSei0/mTm3eV+PMrLTcQqYhycUeBOeV77Pwx33pD4eoh+GEItFsDoe3hnxXmEEHqjVFluqLBzVV9bmcUZ6/8vFleDubP8g4JITIqCu/bvOlyL+G0G3m9evU4ffo0SUlJnDlzxhy/DfCf//yHhQsXFjvGm2++SVRUFLt377Zo37VrF9HR0Q6NcS+yfft2OnbsaBbeAH379sVoNLJjx447ODPJ3YYQRhITP+bXX6tx7txcLl/eiKdnHRISCruLCy5f3kRIyHAUO+5EiqIjNHQMCAXv8uVpOXmyFIqSUkPKtbuA5ARYHm2d9bsoMhPg0JvqsQAZSUkWR4fIS0Wj8YS8VKBAqMv5uRw9OoBz5+ei11+1WTEhLy8JvyqVVXm3zyTvNqDReJKTc95K0VbH13P8xAhyc+IRDScAAk5tcsitsgTLHskDhpRptwkhCHzsKdiboR4LuXGb3MXTE6zlWl5Wlur54ugGm0GVIW61mhften7+a4TRQLn2U3jkkSQ8q7RAlPEnMWkDv/4WZpZP587N5dffwkhL/wXh4WUh1+Ljl6Fzd7OSacnJn6PVliExcS2//lbDcqx9YSQmrkW0/fBGiExxHjunNsLWpur5ptHQfh2i8QwL67yzinNJ8AkJoW109G33cLiXKPF/nbJlyyKEID4+Hn1+rFXDhg0dyiQ+efJk0tLSaN++PQEBAdSuXZuAgAA6dOhAWloar776KuHh4YSHh9OoUaNix7ty5Qrbt29n1apVvPvuu2zcuJE//vgj3wX37uHYsWPUqVPHos3Pz4+QkBCOHTt2h2YluRsQQpgXlDcSnt1YZGo0Hmi1njbdxS9eXIyrawVq115ppXArio7atWNxdQ0BRZFCUVLqSLl2F2CvxJY9hFAXdM9mqMcC/yszk5MtjjdOJMD+aCvlXAiBV7PJtGmTgVezV2xsFBZaZBZYfJ47N5crV7eTk3OxkFKtUK5cPxISYovORXFppVrWsMYAyMsE70qqZaqwwl3ArVKW+pIUh5Rpt4DCG4LmGOg5MH2AeiwUA22ynl+3oWwjBFkpqapnjsMbbAquleraTrAI0PJtRIf15OYlmhXn69f/Iicn3uamn6dnPcqUedjhjcKKFSeSmxtXRDLbghuIgD6reI+dq4cgbqcqwld5kbr1TSnj7kKcdiMH+Oabb4iKiuKPP/7AYDDw22+/0aRJE0aNGkVkZCQDBxZdOigiIuKmY0XT0tJYvXo1q1ev5s8//7RSrBVFwdvbm169ejFy5EhatWp1U/crDVJSUvDz87Nq9/f35+rVq3avy8nJIScnx/zelKDOUU5cUvtXD/REl1+/73JaNqlZufi4uxDi52HVt7KfJ+7uat/k69lcvZ6Lh6uGSgHeJep76vJ1DEYjoX6eeOf3Tc3I5nJ6Lq46DVUDS9b3bPJ1cvVGyvm44uflDsD1bD3xqZlO9dVqNISVu9H3wtXrZOUaCfB2JdDb+b7Z2XrOp6rZvWuVv5GbICE1i/TsPPw8XCnnq/a1dBc/TZ06q6wSnhXlLp6RcYhjx4ZQp84a/Pzak5Cwgqys03h4VCc0dIyqaAtQNEqRv/sLrkEkZAh8svXm32dpfE9s/T5L43ti+n3e7Pek8O/zZr8n9n739yslkWtSppWyTMvKwy+/rajvqk6jobyvu1o6Kz9WkTJhiLqjUbxuWEPS9J6cu25EuZ5943udeoHrB5eT5t2JsDrqZp0QRnJy4klIsB/qAkUtMhXKlevL+fPzLdqL2lwsSFbWaRStG7RfB3k5iLw8lJqDoEIHNVbTVHmh3hiUfLfKy2nZpKXkEKD1pmyBsaRMU5Ey7c7INLhzcq2gIlDw+2p+lmw96ZeuWX0HU/1COJ2ah0+23vx9vZatJ8W/AhfS9RTc0j936hya1e/hG9mbMgHBsP1jmD3cbHEG4KMFMCsW0XUQ565mkpN941zB76tpZhlJSXjUqQ2RsSiFLdWKDhG5Kv/vXl37pFEWX52bbUtxtT6I+s8XKqGqULv2Siv5ZOKGXLPeKLS+xl77DUwbiFXDpqqW94IeO38usL1BkL+hkJeeyrVsHSkuGvwLnD4hfNENmkOobxDu+W3FyqpsPd6O9pVyzSGcVrY3bNjAoEGD6Nu3LyNHjmTkyJHmc2FhYXz44YfFKtsfffSR0xMtyLx581i4cCH+/v489dRTREVF0ahRIwIDA3FzcyM1NZWzZ8+yf/9+tm/fTocOHXjkkUd4++23qVev3k3d+04wf/58YmJiSnx958U/AhA7JIIO9crnt+0mNUuPi0bh5LxuVn1jetRlaEs1dr7r4h9Jup6LVqNwykbf59pW55UudQHo9e7PXEjJQlHgzPzu5r4dFqkhA/2aVuT1Pqq3wlPL93Hy8nUU4MwC676d6pbjg6HNABj20QH+uJAKwNkCfdsuVPu2qObPptFqvoDn1h1gz8lku30bhJbhy/GtAZi69RBfHEqw6tvmjd0IoFpZT36Y3A6AN3f8w+qfz1v1jXxzN0YB5X3d+HVqRwBW/XKWN745bj3umz+g02jwdNVwYGZnsxWo+IRnN9zFz59fYCWsL1/eSGbmCR56aDdVq0bfSDBkBINBcDYlkxpBPvmf7y7Scwy4ajWceK2reYzWrVfBEYVFdRN4MqISAF3e3sPVjDx0GoV/bfzuX3m0Ns+1U0NJHlu6l0tpOWgUOG3jdz+0ZWViejQE4Kn3f+HMlUy7v/vHw0NYOkCNKR8U+ztH4q9ZfZam32ebmoGsGa6WChz98UH2nUmx27dxJT+2Pa9uvL246Q++/eeyVd92C9Xffc1y3nz7UiQAc778m037L1r1bfPmboSASv4e/PhqewDe3nWS93adtuoruYGUaaUr0x7yh0/z2+zJtNFrD/LFuFaIEx+j7LFcmCoFYhW1Xn48Gvcel84HUP7PvapMEwKXco0JHJWAT14eCIFAFIqntrcwtb/ItKdUO5uLQlG05AgNXxy6RJ+mlcAzFNF4BorOjZy8PBLScqjqpW4kmGSaV+tV/F1gLCnTVKRMKxk3K9Pgzsm1n5+6oRYXlGsT89Mnjdl1lTOf/2j13d42agXbdiTT6cIfZrn20t4U/h61nE+3J3E28sazRW5LhjYfslrvR2RyvLWiDer72cMxRLTntwtGVu5JwWQmKyjXfumrzleflcWEjX/xVt+BiJD26I4tN2+w6euMRvEMQVsg2VmX8wvZlZeHmw1LsWj2Grk5liVUi970sy3X7F3j1AaizhO0HmDIKj4RWmQseIYwZ+NPrD2/Hk8lh6MFxuu8+hjQmFeO5fBc/q+5OLn27EMBzBoZBYEhUq6VEk67kc+ZM4eJEyeyYcMGnnnmGYtz9evX58iRI6U1N7vs2rWLrVu3curUKRYsWECPHj2oUqUKXl5e6HQ6AgMDadq0KWPGjOGzzz4jISGByMhIdu3adcvnVhT+/v42S6OlpKRYxAYVZurUqaSlpZlfFy5cuJXTlNwihBAcntWJf+Z04adX2iGEsHIXL2qRWZy7eMWKE9BqPUGou7hGvZ5PDsbx+Ls/cTVDliyR3BpKItekTLv9DGtVDZERj2aPnVjF/DI5HqG1zc2d6gXnZ+2NQ/vHbNg5ALc/ZyP0mQ6HuhS1yLQv7xzPRWGIP86Quf+h9qwdTNt2xHSS7O8/oO7M7dSeuYOD51JsjiGR2ELKtFuDokDLWuVhy3JrRduEQY9u23KeaORYqNsXf8Xz2Ds/8e1ZjRqv3H4d+odmsvW4kcfe+cmir5tOx56TVxB1C7uea8A3jPgExz0Knd0odGoDUZ+pKtqguonvGgY1BsGAs9B4hho203gGYsBZcx3xH/4uve+bwdMbRkdDoAw3LC0U4WRgs7u7O1999RUdOnTAYDDg4uLC/v37adKkCT/88APdunUjK0sWULdFmzZtKFu2LNu2bTO3paWl4e/vz6pVq6w2L+xx7do1fH19SUtLsyqfZgvpcll831vtRi6MRvKystC66tC6uGHIy0Gj03H2bDTnzs21+H3Vrr0Kf/927NtX08oSVK5cf+rUWUNe3mXi45fdcBcvPwJX94qAQm5KCvuaVSZs2WYyGj7i0O8+ads6st98kYTnFhHep790I79HXJPuBkpDrkmZdpMyLeEf/Eb+H3x8gOtVw21+V4XRoNZu/cNS3ljQeAaiyUyuLffnYvgm6rXqhmKVtVdBPHudsxfmF5JdCq1bX+f8eUfbVezJOy+vcCIi9nP58nor93M1F8UqgoMHovy9net7+3C5xjI8mva98bv/6xsS3n+ajKfXUrHFoxYyLe3oHwRM7EzZ1buhjmqVkTJNRcq0OyPT4A66kZ89wYqICEYdOEBmxVrm72v60UOsiIig/0/7UKrXsfgOJhw8yBsdHqPPlm00ahlh/r4e//k33n/sSQZs20rzyObmOZzb9yvaqf2p+P1ZmD4Avtlg/4PoMgDmruPEr/vZ8HAzRh04gE+9G3LN8+KN+eqr1jJ/X7VfL8T/+nziPKaS0W78je+2EAhDLorOTU2qptGgnFgLe/Itxe6BMCSJo0cHcPmy5bzsr8fsyzV71xS1tgNVrv3f/53FVeOnehsVDoNBUetwa7QIowGBgkaj2kxPrZ2Hb/rrpPi8Ss3B00r0PZFy7dbhtBt5+fLlOXbsGB06dLA6d+jQIapUqVIqE7sf6dq1K/PmzSM1NdUcD7R582Y0Gg2dO3e+Zfe19SUq5+tujhkurm+gt7v5y1nSvgW/9Cb8vNzNfyAl7Vvwj9SEt7vO5tyc6VtQqJSkr3uBvsJoBARGzRXiLn5AVtYpPD3rULXqLLsJz4KDB1G79kqrRWZS0ieUKzeQsmW7UbXKTBSNK8KQA/pcNS4buJZ4mR9OZ1KzbHmHf/eegYEE5SYRUCXILJDt9YWb/92XxvfE1u/zbvieuNvpe79yJ+SalGmF+qa6FNtX0WgdKpOjaF3x9fLArUZdNba7cCykzgNFZ8tSbS/UpegQmBvyLtbCUq7mohhG3bqr8ffvaLm5mJ+LQlE0kJWKtyYbb18dFFBGcAsiZH8KTAyBwjLN3w0M1y3mIWWaipRpD95aLeHsjfaC39f0/GMZdx0hNsbwS02gup+LWYEy9fVPiaOSj6V6UcXXFdLPg14PFYvJIF6hOhgN+GZeITIENKlJFt/XxCNJ5vZKATdKmKYA6DPx1EIF03xt1dNuMAFqDYbQdnDsA0g/ixAGux6FttdjgsuX/0tIyEgruWbvmqLWdqYNRFfXEBQURES0WalWFI057jx183z8s5eQ6j4B/74zbvwuypahbNY1lLKWvycp11TutFxzWtkeMGAA0dHR1KlTh7Zt2wJqMrIjR47wxhtvMHbs2NKeY5HMnj3b7jmNRoOvry8PPfQQrVu3vo2zss2YMWNYunQpPXv2ZNq0acTFxTF58mTGjBlz39VtlKgIoWrAiYnrrJJoVKo0yfmEZ2YLNihGQKMehVGDggIaDe5+fk7XPLwd5SEk9ydSrt0jCEPRWW0DwqHhy+ribmgybkYDHIi2djnXZyGMuU4tTItaZGZmHuXatV8JDh6Ev38HK6UaFFxdQqhSeQYarRtGfQ6K1vVGklW/QMujIwSGQH5MokRSGCnTSp+MpCS8hCAv+RIuvUerydBsuZJrddB7DCgaNGnJtA2FpLRkiy722gG1VJaJouppd9oClbtDo2ng6gHCSGjIaCvFueB6rPCmX1n/R3FxC3Zqo9BgSCc4eDD+fh2IT1h+Q9aFjMLVNRRFABrFrlINQHYyFNJTjT7+FkfJ3YXTynZ0dDR///03nTp1omxZNZdn165dSUpK4rHHHmPKlCmlPsmieOutt8jNzTW7rru7u5OdnQ2Ah4cHeXl5GAwGmjRpwtdff+1QabJbhb+/Pzt37uSFF16gZ8+e+Pj4MGLECF577bU7NifJrUUIQV6erbIRjiY820PVKlEoGp1qwTbqVaUaxZw5GI0Wxd3VvPNpKu8lkdwOpFy7V9CoZXJsZbUN6w/t1kBmoupqfv0iSrsPi7CEK4TasOgUtTA16NPURaYdKzUCXLXlLBI8YjDmLz41xG2L4nTZpVS/Mo6KvV6/MZUK4dAkSj06SmCIGpMokdhAyrTSJzM5GS8g/e+/CGjXFWbFWidJ0+ogapX69+lkxSIhBL69JoPLDHzzchBC2PbMAfX9t72h77+weye8OR5lZzKubqHOeRQa8wCK3ijM8bSUaVcSUfwMuBr9qFpJTeIo9DmQpzcbTMzYUKol9yZOK9uurq589tln/PDDD3z77bckJycTEBBAx44d6dixo9MTuHDhAhcuXKBRo0Z4eXk5ff33339Pv379iIqK4oknnsDb25vr16+zbds2Zs+ezZo1a8jMzGTQoEFMnjz5pjOh3yx169blu+++u6NzkNxihEAY9ShaFxRFWJXxMlGcS5Ga8MzDXANXUXSgu6FUo9VZHiWSO4SUa/cAigKeoWr22oIL0IBwVdH+d32BbLcKtH7XtiVc54GiccHVNZTatVZy/ISthekAygZ0o2qlaSg6DzXhz6lNKH4NcQ1qYrH4zLl2nfjDBwlt0gRFq0Poc8FFC3o9SgF5Z9R6YzRmYtT6WM7HMwSaRlvPU1qvJTeBlGm3BsO1VFWh7DoImnWALcsg7rTqOt57jPr3WlDhdABTThydS/5aSKBate3V0wa1/cRK6DxVVfr/twGlfe+iNwT1ekS+ncOQa+DCr79TNTISDu7BtVyopVKtN6BMHwA7NqnPUyYAJTXfEl+nCcoHexCK1jxfxd3ToQ0Go8YPDoCxk59Tn5HkzuL0Kv38+fOEhITQrl072rVrZ3FOr9cTHx9P5cqVix1nxYoVxMTEcOnSJQB+//13mjRpQq9evWjbti0TJkxwaD7PP/88L7/8skW5MW9vbwYPHkxGRgYTJ05k3759zJgxo0iXc4mkVCgYH3Q9DqXdKrulHkxWoLp111oL9wLu4gUt2BKJRFJiFI2avbZgHeqGL0NmYqGyMkXUd9VngT4T5dyXBFcbgL9fW+IvrSzgDjkSV7eKKDkpcHgJZFxE8aoAtUaAVyikp3Lp3zP8uXo17r6+RIwZoyra+Qvs1G1v4n99PqneUy3cJ43efhbHYpHWa4nk7kWjgaBQxIiZKC6uiLxcFJ2LUxZtbRk/NSeOEGhTk9B8HgsXT6GpWhdGznQoRwXunuDmARsWQ7dBcMCG4nzhFCT/CA+1Zv/775Nw4ABlKlQgYswYdZwmbSA5AWXZbEhJRKnRENFnLKJVN5SdW1TrvUnR1upgwERw8yD925WUiXvRStYVhXtwTTgA7oNqOvw5Se48Tivb1apV45dffqF58+ZW5/766y+aN2+OwWAocozFixfz6quv8tJLL9GhQweLhBNt27Zl8+bNDivbf/zxB7NmzbJ5rmrVqhw+fBiABg0a2CzlIJGUGoXjg3ReiLYfFFnq4fLljfj6PkJo6FiqVp6BonUzu4uDou54apxzpyoR0gokkTwYKBrVwt1kJmhdwV5stt36rgJO/RdRoT3Ktv/DtcHzVA2biqLzzLdgb0S5sANaf6CWqdG5QnYmfLsJUSYQWncnuFEjur79Nsb8BbZSYIFt1PjBvkwry41HtZpwLv8okUjufRSF5C83E/SfUSS/vIKgXgOLv6YAnnXzQ0e2f4x2zogbLukeXjBiWtE5KgB8qkNeDrTrBRWqY7x+DaVJG0TiRTQmxdk/CMMTI1AatiTt7FmajhmDRqvFmJeDoruRO0IEhSJGzULRahEGAygKSjHWe0PaZdBnOvXMMr/OvYnTynZRlcJycnJwc3MrdoylS5cyc+ZMZsyYYaWY165dm+PHjzs8nypVqrBy5Uq6dOlidW7FihXm7OhXrlwhMNCJBCoSiTMIAYXjg/SZ+Uk3rGMbTSiKjsCyPVS3J1PdR0WHEQ0agdnac8uRViCJ5MFBUeDID7BmEPwnybYF6Ooh+GGI6mIe2g7++eBGKZrKXcE9CNFgPMqeEaoyrvNA0WeCokO0XQWuniibl8E/B6BcBQxPjEATrHrrpO7+hoCovlyxscA2av1VN8kulol+PAOD4Fz+USKR3D9kO6dwAqAouAWHqopxQUXbNJ7BCHVG2s5RAep6q+5ohNYFZe46jHm55GXn8MWAAYR17kzDoa+i8/REn5nJ4Y0b+f3dd+n/+efknD9I4l9t8dSPo1yf1wtMRyFlS6GkZoqSb72fgeLihshX0J2NR5fc+zikbB87doyjR4+a3+/atYuLFy9a9MnOzmbDhg1Ur1692PHi4uJo2bKlzXMuLi5cv37d5jlbzJ8/n759+1K7dm0ee+wxgoKCSEpK4ssvv+T06dNs3rwZgJ07d9KmTRuHx5VInMJmfJBAOf8VrlUetxnbqJZ6iMXVrQIIVV9XUI8anc7C2iORSCSlilsQ7LmiLlLtWYBObYSUoxC5CiKi1VCWvBwUfR5Go4AaAzEGt0V7cqVZETfWHoniUxFDTi6aniPQ9H0eY24Ohjw9GkVB0WjUuM2SLLAlEokEwN0TRQHl0w+ss5oLAXu/gsjHoc3KG/W0TSg6aBOL8Arh+Gefs3XgQAJq1GDk/v3U6NqVL0aM4PMRI3Dx8CAvMxONTkePVavwCQkh/duvqHo5kxS/QrkjTBROaqYoXP3sA8rufpWrka9Tts+4Uv8oJHc/DinbmzZtIiYmBlB3b+xlHPfz83MoAVmVKlX47bffaN++vdW5ffv2UatWLUemBUCvXr347bffmD9/Ptu2bSMhIYGQkBCaNWvGpk2beOihhwB49913HR5TInEIIRAGA4pOpy5CbVmH9kehVH6M4PKDrGMb8+OyFSHUjOL5l2i0MjZbIpHcWsyleJIu4WIvSzmoyrZrIHy5Gt54QVWStTqUmSsRjw7g5K6D1Hh0KjoPT/RZmRzesJF/t2+n1ZQplM///4sCLp6ecgNRIpGUHhotXLQTl708Clo/pobClG+rJkPL3xCk1giET0WEQbArKoq8zEwSDx3i0yFD6LlmDdXat+fgihWknD6Nf/XqRIwZg09IiLpRmHbZ6Wkatf7wSybG9reuLJdnvueup/TgvStxSNmeOHEizzzzDEIIqlevztatW2ncuLFFH1dXV8qXL+/QP9ORI0cSHR1NUFAQTz75JAB5eXl89dVXvPnmm06XV2jcuDH//e9/nbpGIrkpjEbIyVIVbXRq3KMt69DVQ/DDYJR2a3DVlbWMy9bnohiM8MM26NBbJkCTSCS3DYtSPO27WmcpB7MFCK9Q2LDkhjXaoEeZMwJjk7ZkXU3hNS9vsxUIVM+cRxcvJu/cYdx2tSKtcLIz30B2xUNdX+uFoVw0SiQSRxAGPUpFO145Jw/BrMEwey3CNRDloRng4gZ5OQi9HmEwsm3IEBIPHTJfcmTjRq6cOMEze/YQGTULjc7FKjbb6O0HqU4karxNyFjuuxuHAkJ9fX2pUqUKVatW5cyZM3Tr1o0qVapYvEJCQhzetZ40aRLPPvsso0aNMte9btWqFU888QSDBw/mueeeK9HDXLhwgZ9//pmMjIwSXS+ROITRCAjITYI/58LOAXDlL6g7+kbcdUFObYRt/4diFChC/RtR8gwo32yGZ/4PGrW6kXFcIpFISpH0hAR2RUeTnpBg87zhWuqNLOUDzqpJzWoMUI/9T0PY0xA1RF28WlyoR/vZShr27w9CWCjaJpfLnJO/2UwA5Fk3HEZF3UhwVACvuuEwMko9SiQSSUGEIPCxp+DH66AoiN6j7Zc//e4TDFcuc/VCHPo8NT+UXm9EuLpzYvt2jn7yiUV3jU5Hi4kTcfHw4Oqujzj7vheXP19omcDRx9/iWBBzWS6NX6k8quT+wekEaaaEYwCZmZlkZ2db9QkICCh2nLfffpuJEyfy7bffcuXKFQICAujQoQM1azqfadRURiwhIQFFUUpcRkwiKRZTYPWJjy3jgFL+hif328jci6qAN5wAWncY0gzOnzS7YhK1Sk1OJt0rJRLJLSDzn0OwIobMNg/jE1JEtQFFg/AMhYhoFI0WhAEO/ggLH7NWtE3EnUbn6UnbmBiuHD9u5XKZl55rsyasT0gIbaOjbY8pkzVKJA8W7p6O9TMaITkeZctyuHgKpVEr6DMWMSsWZfZwy9htrU5t9w9ic6euJB4+bPa+adC/Pz3XrGH8qVMc/OADm+7iIt2TqrGZJE2v6vBj2EvuKJGUKBv53LlzWb58OQn2dsqLKf1lonr16owePdrZKVhQmmXEJJJiEQIyLlon3CiYubdCxxs1bH2qQ52RCO+KcC0VpfXjNktASCQSya1Ak5ZM21BISku2PllgkSuMRvKystC56FBctQgjKL/ttK9oA1SojjAaaD31VTQubtYul3LxKZFI7CCEoOxjT0GvgZTNy0UIYdNDVlvGT1W0t38MBZXqbzbA4V9QolcjmnVAKVBiS/QeAwHBbBs82OwqbvK+ObJxI0lHj9Jj1Soio6PzS3lZlyG8k7j7+UFq/lFyz+O0sv3WW2+xaNEiXnnlFaZPn86MGTPQarVs3LiR3Nxcpk+f7tA4BoOBffv2cfHiRZvW8SFDhjg0TmmWEZM84CQnwJbl0Hu0/XrTioBjH9hOJGQnc68xNxfFKMDHD0ZFqRZtvR60WmnRlkgktx+TK2avgQTq8xBGIwiBNjUJzeexqtVo0CTEk6NRPlpgne0XVMtR7zGgaEjJz7abUijbbmnGX7u6hlClShSurkVY5yUSyT2BMBpJj4/nwPLlXD11ioCwMCJGj8YnNNSq5KlnjTqQHG+paJvYvg7O/IPywR7EqCgUrQ6RlwM6VzIuX7ZyFTeRdPQo3uXLk3PhDB6DGtksQ2gLo0sgu76AuuG3NqeER3BN2AIeLZz39pXcfThtUouNjSUmJoZXXnkFgJ49exIVFcXff/9N3bp1+ffff4sd4+DBg4SFhdG6dWv69+/PM888Y/EaNmyYw/MpzTJikgec5AT4IEY92kOxk3XcxNVDcHiROdmZUYAeDeSXvOHkIXjEC/49JBVtiURy+zEaISkOZeUcmD4AZesKtf1/69A+WRNi56oWo9nDUMoGI2autI6JzHfRJFDN1aIPqMmuLZnoAywXhqWZtMfNLYRq1aJxc5PKtkRyr6It44cwGjn08ccsqVaNPXPncmTDBvbMncuSatU49PHH6uafCf8g3EIrqYYQW5t+AMcOwkcL1ES1q7xI3fYmiqLgFRREj9hYNDpL+VUwr0TWqeNOlSE0ugax+0v16Cj2Nh2LjPGuEA5NotSj5J7HaWX77NmzPPTQQ2i1WlxcXEhNTVUH0mh47rnnHCr9NXbsWHx9ffn+++9JTEwkJSXF4nX16lWH52MqI2YLZ8uISST2SE9IYO8bb9jPOl4QH9W1EgBFo5a8Me3UBobA4Mn2LecSiURihyKTnRUV9+juaemK+Xi1G0q1uyfKpfPWMY8nD0HUEJQuAxBfnIXhM6DLABg+Q33fdZBZrhn9gtidoB4lEonEJu6eeNSoQ3p8PJ8PH45Rb6k8G/V6Ph8+nKyUFIQQBPboD99eRnFxtV/iy0TcaRQXNzXULx9FoyF80CAmnD1LmxkzaDhgAG1mzGDC2bOEDxyolvK6lnoLHtQSe5uObnUf4ey1SNzqPmJ9kSl3ReG1YmAIjIySa8h7DKfdyMuWLWu2FleuXJmDBw+a62UnJyeTmVn8DtHff//N5s2biYyMdPb2VpR2GTHJA46NBasQAq+gIB555RV1x7XuaBR7NWkVHaLeGEBhnpcXw378kZAmTW6cl8l/JBJJCbmekMDumBhq9+hxI9mZEFAjHPZmqOEpQtzwmingLu5vMFi7YioKdO4HH863bTX6ZiOcPooyaxViVDSKVoswGECjuWtiGyUSyV1OATnkbjCQ+tdfBNWrZ1F2y0TnRYvw8PeHy3EoW5erMdizVoG9El8mKlRXS4EZsiyaFY0Gn9BQImfNsJlX4k7iXf8hvDfscu4iuYa8J3Hast2qVSt+//13AAYMGEB0dDSTJk1i6tSp5iRlxVGrVi2uXbvm/GxtcKvKiEkeMAouWGuEm3dHhdFIelwcu2Ni2DJgAMnHj4NXKCIy1rrMl6JDtF0FniHoc3JoOXky3kVl/5VIJBIbFFeuy0y+SzgfxMD0AeoxKU5tL+guPmMgikFv7Yrp5qFuMBZlNTp5CNYtQtFqoXtlkj/faLVQ9Q4JITIqylreSSuMRPJgUzhsZUU0wSFlGbV/Pw3697foWq9PH5o//zx8vRalR773zf/Wq68nhtsv8aXVYew1yu4UFEUhbdubsMqLtHwXc/P0fAPZFa8eJZJbhdOW7ejoaOLi4gCYNm0aqampbNiwgaysLDp16sTSpUuLHeOtt95iwoQJNGrUiDp16jg/60KUZhkxyQNIfjkJ8stJUDEMeo9GBIZyfu9e1nToYHZ3Svr7b0YdOIBSYyAipB3KsRXmrOOizijwCgUBLh4e9kvbSCQSSRHYtGAXQOfhYTs7L8BPX8Pq3+B/626cc/eEueusleqcLDVe0VGrUeIFm6ftlvKSVhiJ5IHDxdOzSBml+WgBYuZKeq1ZQ9LRo2YLd/vXXoOkeJQ5Iyxl2obF0G0QzFwJhc9pdYiZ+fkjtDrQetifmN7a89YUAlNbhsBIbiFOK9u1a9emdu3aALi5ubFkyRKWLFlS7HUNGza02E1KSEigQYMGhIaG4lcotb2iKPz1119Ozas0yohJHkDsLVg/WgCzYqnU+WnV3Sm/RmPi4cNsGzyYnmvWYNAEoHvohmuSPlePC4pVJk2JRHL/kJ6QwIHly9XMuXfIc8UrKMh+dt6+4yDxguU5e0q1ELBjk2o1KibreG5iPG635nEkEskdxsXTwVrXRSCEIDg8nGkZGQijEZEcb50LAsCgR5kzAmOTtrSYMIHPhw8HjYaAsDCUFdHW/fPzRxCzBpq1h60rzCW+DE+MQAkK5Z+tW6nb6wk0hdzITZiTkXXyu+nntIfJSl5XWsklhXBa2S4pERERpRYjsWfPHqf6t2nTplTuK7nPEML+gtWgR5k9HGOzjjy1eTO+FSui8/REn5nJ4U2b2DpgAK2mTKH8Qw+p/RUtLp53RxyQRCK5dRRndb7lKAoefn6qy3hhuWUvBrsopbo4q1HUKpTAEAynT3C2ZiSBterfyqeTSCS3kYIKslGvt1vruthxCpbyOn2aXh+uQlNUBnGDHu1nK2k4dCqfDx+OZ0CAGqpiL6QlP38Ek5ao3jIarboe27iR3999l/6ff07ehX/sbggatf6qst3F3+lncxS7VnIZTvPAUyJle+PGjWzevJkLFy5Y1ci2Z5V2JEu5o7Rt2xZFURD5cbUFBYMtQVG4/rZEAoAwFl1OomMftGXLESCMKKvnw8VT6CqGEd5jOI0GDWL/8uWERkTwRmAgg3fssEyEJpFIJCVEk5pEZIh6LIyLhweKTmd7UVpUDLY9pfrkIYgZhoheDc07omxZZrYaid5jUAJDQKPBs0YdqjqbzEcikdy1OFPr2h46Dw9zKS9ThnEXT08062yErRQm7jQ6T08eeuYZylSujDAYUIoKaTl5CH7bib5uc94ICiIvM9OijFf6t1+VmveNPSu13fwURXE7wmk8Q9RSYZ5Sob8bcVrZnjZtGgsWLCAiIoJatWrh6urq9E2fffZZZs6cSbVq1azOnTt3jpiYGFatWmX3+j/++MP88+XLlxk+fDjt2rWjT58+BAcHk5iYyObNm9m1axexsbFOz0/ygKApYhe1ZrjqsrR9nVX8kDY/3qjZmDEY9XqajxsnE6FJJJJSQ5OWTNtQSEpLtjqXl5WF0OttL0qLisEuzhXTaCTteg5+pqzj+Vl7kd46Esk9g6NhLoUVZBN7FyygR2ws4YMGqXHXxeAVFGRVyisvKwt9ZiY6h3JBGHjiww8x5uWCRoN4cjRKMSEtSf/8Q52ePfGvXp2IMWPwCQlRy3ilXS52vo5iz0ptNz8FJVTESwvPEGgaffvvK3EIp5XtVatWMXv2bGbMmFHim3700UeMGTPGprKdnJzM6tWri1S2GzVqZP65T58+9O/fnzfeeMOiz+OPP87kyZN5//336dSpU4nnKrmPMRrsJwZ6eiJcjrN2qwRzvJFo3hElKFQmQpNIJLcPIchKTcWz92hrl/DiYrC/2QjnTmBcvgtGzETj4mrliplz/jjui5pxNfJ1yvYZd1sfTSKR3ByOhLkIIYqtdV2tQwe8goKKjOV28fLC3c+P3TExluMIweFNmwjvMRxtEYozvceQfeEMHoMaceXlFQT1GogICkXMXGmdJE2rQ8xaBYEhBPuX48l16zDm5aLoXMzerKUZl10SxbkoRVzyYFOiTE4tWrS46Rvbiwk5efIkZcuWdXicb775xq4y3blzZ7799tsSzU9y/5KekMCe114jLzsHeo+2Lidhinv8LLbIeCNlyzIUYbz1E5ZIJJICZCQlQWAozIq1ll//fQcRXAlh65xWh3h6Ari6s6JZc+Z5efGalxdfjh5Ni4kT8QkJIfP0GfglU41xlEgk9x3CaOTA8uVWiraJoHr1yEhMxN3fn2kZGQSHh5vDNqFAnPf162h0Oq6esvYQ3Ld4MUq5CoiZK23KIaJUxTnr1HHVGycfRaOBboMRX5yF4TOgywAYPkN933UgikbDlS//C494ceXLzZZlvExx2aUgu0yK851Kgim5v3Ba2R4xYgTr1693+kbvv/8+4eHhhIeHoygKAwYMML83vWrVqsWQIUOcskR7e3uzc+dOm+e+/fZbvL29nZ5rSbhy5QpjxoyhcuXKeHl50aBBA5YtW2bVLz4+nt69e+Pj40NAQAAjRowotZrjkuIRQuAVFESb6dPRuroibC1YHak9C6oLpkZ7aycskdwhpEy7e9FnZYFGA10HQaFFKYs+RwDi0QEYtv1rcc746SnoOojstDRqP/44dXr2pM2MGUw4e5bwgepC1nAt9Q4/nURy65ByDTRarU0FGaBB//6M3L8fj7Jl2R0dzZYBA9gdE0N6XJyaYdxoJD0ujt0xMWwZOBB9Tg4BYdYegomHDvH7smV2FWfRZSDYkTeKRgNBoYhR0TB3nXoMKhRHnm1dxksiuVtx2o18zpw5TJgwgVatWtGhQwebZbtefPFFq+tCQ0OJiIgA4MiRI9SuXZugIMtYCFdXV+rWrcvw4cMdns/zzz/PrFmzSExMpGfPnpQrV47Lly+zbds21q5dS0xMjLOPWCKeeuopjh07xrx586hcuTJff/01Y8eORavVMnLkSADy8vJ49NFHAVi/fj2ZmZlMmjSJAQMG8OWXX96WeT7ICKORvKwsdC46QAdGAwa9Hm3XQdCsQ4HEQGFqTVkH4o0wGqTCLbkvkTKtdChxqTB3B0rxmBalI2aiuLgi8nJBq2P/++9zcMUKWkyYQMOhU29UUti4kX+3b6fVlClERkej0WqtXTFl+RrJfYyUa2A0GGwqyMHh4fRcs4bD69fzxYgRFpbvk19/zYjffuPwunUW7ufVO3ak8fDh7F2wwKJ/cHg4TceM4fiXX5J99QoNCsihI//dhEfZQGp17462jJ/NOSqKQtLnGwl6dyLJzy8mqNfA0v0QJJLbiXCS7777TpQpU0YoimLzpdFoih3jmWeeEadPn3b21nZZunSpqFChgvn+iqKI0NBQ8fbbb5faPYoiISFBAOLDDz+0aG/Tpo1o3769+f369euFoiji2LFj5rZvvvlGAGLfvn0O3y8tLU0AIi0t7abn/qBgNBiEUa8X+otnhHhvhhDTnhbivRnCEH9WGA0GkZeVJQw52UIIIQw52UKfmyuMiReEaK4TIgLrV3OdEIkXhTAa7+yDSSS3ACnT7BN/4ICIBhF/4MAt6S+MRmHMzVF/zM2xkDG2xjIajcKQ39+QmyOMRqNIu3BBzNbpRDSIaEURr3l6qj+DmK3TibSLF0XmmZNCtPIUl7d+fHPzlUjuEW6nXLtTMs2Rv18rGZH/OrhqlUg5c8aqvahz74eHC31urvjjo48szln1tyOHMuIuiB9CEJd2/s9qnpe3fixEBFYyytn2os5JeSe5HTjtRv7888/TtGlTDh8+TE5ODkaj0eLlSJmtDz/80GZytJIybtw4zp8/z9mzZ/n55585e/YsFy5c4IUXXii1exRFXl4eAL6+vhbtvr6+FnEu27dvJzw8nNq1a5vbOnXqREBAAF9//fVtmeuDiPl3sP1jtE/WhNi58M0GiJ2LpmcN+HotGq2WFc1bMM/Lizlu7sT+3/9B2RC7cY+meCOZqVdyPyJl2q0nPSGBXdHRpCck3Gg0GiEpDmXlHJg+QD0mxantNjC7dM6eo7p7zp5DxuXL+ISG0iM2Fo1OB0KQl6m6XBYsk1M4VlIiud+Rck1FURRLGaE20qBfP/6IjbWO5S7iXOKhQ3w6ZAgNBwxg/OnTtJkxg4YDB9JwwADL/gXkEKiJ2A4sW4Z7ufLsTlCzf98sJq8coxNeOXc0g7jkgcFpN/ILFy6wdOlS6tevfyvm4xDvv/8+zz77LG5uNyrqaTQaKleuTOXKlW1ec/jwYZKSkmjfvn2pz6dSpUp07tyZefPmUbt2bSpVqsT27dvZsWMH69atM/c7duwYderUsbhWURTq1KnDsWPHSn1eDzJCCITRiEarBSEQiRfRFJFZ3NikLS3Gj+fz/BCGhIMH2TZ0KL3WrEFYuJhXh95jVEXbwTqUEsm9hpRptx6rrMFGI2z/GGYPt5RTHy1Q80p0VUvxeAYG2qxta2LvggUM2bmT8EGDqNahAweWLSPl9GnrMjkyNlvygCHl2g0UjcZCRlyLi8PF09NmLLeLh4fdcwBHNm4k6ehRuixZYg5PAez2N5Fy+jQanc6hEmOOYK9cV1HIDOKS24HTyvYjjzzC8ePH72g5rY8++oiYmBiefvppnnrqKZo1a4aLi4tVv/j4eLZv386GDRvYt28fH3300S2b09atW+nXr595E0Kr1bJ06VJ69+5t7pOSkmIV4w7g7+/P1atX7Y6dk5NDTk6O+f39kqTjViGMRtLj4zmwfDlpcXH0XPkByqcfFJlZXPvZShoOnWpWtgEOr1tHxYcfptnYsTAyCnQ60OtBq5UWbcl9j5RptxEhIDneWtEG9f2GJYj2vQmsVYvJSUkIg4G8rCz2LVlis3TPmg4dePHiRXxCQ4mcpZb4KhybLZE8iNwquXarZFqJcz44gKLRqDIiKgqNTmc3ljsvK4u8zEyb50wkHjrEmZ07qfzII8zz9mZKamqR/QH8q1fHqNerCR+dwF5eiaKs1DIXheRO4rRpbt68eSxbtowVK1Zw+vRprl69avW61ezbt4/333+fP/74g9atW+Pj40N4eDgdOnSgW7dutGzZkpCQECpVqsSUKVN46KGHOHnypIUwLSlCCPR6vfllMBgQQjBs2DBOnjzJ+vXr+eGHH3j11VeZOHEiGzduvOl7zp8/H19fX/OrUqVKNz3m/YrJ2rOkWjX2zJ3L0f/+V01g5kBmcZ2np9UO68Wff1YzYKYmQexr6lEuViX3EVKm3QUII2xZbntD8NH+8NGvKGlXUFZEq+7lK6LRXbvCiF9/pUH//laXGPV6fn/nHYTRSNKPP7AnzIukH3+QirbkgeF2y7VbJdNMHjDXC4ablCKKopB46BDzvLzITkkhYvToG67lJoTgyKZNNB4+3PpcPhqdjogxY8hOTSUvI4Ps1FTbY9no7ywmC3Zh1/OiynXZu0YiuR04bdlu1qwZAGPGjLH7j9uRuO2bpVevXvTq1YuzZ8/y3XffsX//fhISEsjOzqZKlSp07tyZVq1a0bZtW5tW75Kye/du2rVrZ34fGRnJpEmT2Lx5M4cOHaJhw4YAtG3blsuXL/Pyyy/TP38x5O/vT1pamtWYKSkpRQrmqVOn8tJLL5nfX7t2TS5ObSCEID0+3sKtMi8zE2NeLhoHMovrMzOtdlj9q1fHaDCgCQyB4dNv1dQlkjuGlGl3FkWjsb8hWDMcYtbA/9ZDoTAYzUcLEDNX0mvNGpKOHiXx0CGLS1NOn1azjfuX44fTmdSUi0zJA8Ttlmv3ukzLy8wkIymJwNq16REbaxWe8vs779BoyBCb5wrmgkg+fhygyLFs9b/VyNhsyZ3EaWV71apVpbY7LoTgxIkTXL16lYCAAGrVquX02FWrVmXEiBGMGDGiVOZUHBEREfz+++/m9z4+Pnz22WdotVoaNGhg0bdx48asXLmSzMxMPD09qVOnDocPH7boI4Qo1i3fzc3NIj79QaNg/LXRYEDRaFAURW03GFT3J70eFIUDy5dbulUKwYmvv6b2k6NRPlpg23Kk1WF4YgSHC+1sm3ZeFRmbLbmPkTLt1uPiabuMl4unJ8JoVEsI2toQfHoiXI6zUrQBy3wTEyZYhMDAjY1CCiR+kkgeFG63XLsfZJo+K8sqlrtgvgdFUYrNBWEyWBQ3VuH+txoZmy25kzitbD/zzDOlcuP33nuP2bNnk5SUZG4rV64cs2bNYuzYsaVyj1uBj48PTZs2tWirUqUKBoOBQ4cO0ahRI3P7gQMHKFeuHJ75C62uXbvy8ccfc/LkSWrWrAnAzp07uXLlCt26dbt9D3EPUTD++uqpUwSEhdFi4kQ8/P0t2gPr1CFy1iybCTl2zYqi1oEDMCsWpXBMpFaHmBWLEhTKviVLzM0Fd16l66XkfkbKNGtKK05SCEFweDjTMjIw6vUIIcwbhRbtigYKbwgqCnTuBx/OdzrfhNwolDzoSLlWcqxiufV6FK3WvBYq6pzdsWTuCMkDjNPKdmmwYsUKxo0bx9NPP02/fv0IDg4mMTGRTZs2MW7cOFxcXG6bpbo06NatG5UrV6ZPnz5ERUUREhLCjh07zIncTPTp04d58+bRu3dv5s2bR2ZmJpMmTaJ79+40b978Dj7B3YmtbLvB4eG0mTWLv9au5YsRI25YsRWFlpMm2UzIkXjoENsGD6bXmjXQrD3KluXmzOIiP7N4dmoqtXv0oFyDBlY7rxLJg8aDLtOsMoWXAEc3CgNq1CBy1iyUsuURM1eimKzYbh7g7ulUvgl9VpbDG4WegYEWR4nkfudBl2vOoCgKlw4d4sPWrRn244+ENGni0Dl7YyV/uZmg/4ziyssrCOo18FZPXyK5q3BI2Q4PD2f9+vU0aNCAhg0bFvkPXFEU/vrrryLHe+uttxg/fjyLFy+2aO/RowdBQUEsXLjwnlK2fXx82LlzJ9OnT+fVV18lNTWVatWqsWjRIsaNG2fu5+Liwv/+9z/Gjx/P008/jU6n48knn+Stt966g7O/O7EVfw3QYuJE0uPiLBVt9QJzAo+9CxZYZeg9snEjV06c4Jk9e3AZFYWi1SHyd2RRFDz8/c0lKwq6qkskDyJSpt0czmwUunh60m72bPYtXUqzMWMwNmmL9rOVEH8GcnNsu5cXpEJ1jLk51O3Vy6mNQq+64TAySj1KJA8AUq45T8Ha2M6cs0m2k/0lkvsEh5TtiIgIvLy8zD/frBJy5swZHnvsMZvnunfvzrJly25q/DtBjRo12LRpU7H9KlSowJYtW27DjO5thNFoHX+tKDTo14+98+dbKdMA+xYvJnzQIB5fudJKGdfodLSYOBEXDw8yr1zhwIoVNH72WbPVSlEUVfEGc41IieRBRsq0kuHsRqGprE7m5cusaNqUFhMm0HDoVHSengiDwdq9vCBaHaL3GBSdC0+uW+eci2ZgCIyOtmqWiYQk9zP3i1y7lSXBJBJJ6eKQsv3hhx+afy6NWtUhISH88ssvdOzY0ercr7/+SogUHA8s6QkJ/LFqFW2mT///9u48Lqqq/wP457IMy4DsayguiRtiLo8Kqbig5ZK5p+RumeVjWuZWFpiWlUv2mJb9wjUVxXLX3NfEUsvM3RJ8JFFBAVdkme/vD2IexpmBGXbw8369eNXcuffcc2bkw5y5556jd/+1tZ0drO3tDd6XDeQMF98weDB6rliBmmFhRifkUHt4oM17nFmciIqf2V8UPjYqZ9OIEdj0yiuwtrND7S5d0GfNGt3h5bn+mW8C7j64c+wwnMZ3LpYhmpxIiKj8K45bXYiodJh9Q+rw4cMRFxdn8LkrV65g+PDhBZYxYsQITJ8+HVOnTsXJkyeRmJiI33//HVOnTsWMGTMq1BByKl73EhOx7/33ocnK0rv/OvcKkKH7snOdjo7G8UWLcq7OREai18qVCI2MhKOvL++/JqISZ2FpafYXhT/PmwfHp57CC99+m7MurQgyHzzA2XXrcOyrr4AugyCb44ERU4Hnw4ERU3Medx4IxcICGdeucogmERFROWT2BGlLly7FqFGjUKNGDb3nkpOTsWzZMixevDjfMt577z2kpKRg1qxZmDlz5v8qY2WFMWPG4N133zW3WlSJWNvZIT01FU1fe033/usC7ssGcoaL1+3RI2dY+D+daw4LJ6KSdjcxESe++QZt3nvP7C8K8xuVU7dHj5ydPHwhIyOhWFrmDC83cV4JDgsnIiIqO4W61GfsD/ylS5fg5uZm0vFz5szBtWvXsHnzZixfvhxbtmzBtWvXMHv2bE5MVUncTUzE/shI3E1MNGn/vMvh2Do7w9HXF92jonKu9PxD7wpQHlyui4jKyr3ERByIjNR+UaiTT3m+KHw8t3KdXbcOD27d0i6T02vlSoR+8L52VI6iKLj++++Y5eGB67//bnLG5Q4L51BTIqpINE7u2H8t579EFZlJV7a/+uorfPXVVwByOsrh4eGws7PT2Sc9PR3x8fHo27dvgeUtX74cXbt2hZubm96ahbdv38aWLVswePBgU9tA5ZQ59xQZWyYnaOBA1OjQQedKz6O7d9Fo0KB878smIioL95OS4F6nDrpHRelMklbQBI7dFy+G2sOjwGVyHiQnl2p7iIjKgsbZAwcSgTrOHmVdFaIiMamz7evri6ZNmwIATp8+jTp16sDDQ/cfv0qlQr169TBixIgCyxs2bBhiY2MNXgWPi4vDsGHD2Nl+ghhaJgcADn/yCfr98AMCunZFaEQELKysoPlnuS5FUXKuAHG5LiIqR7IePoRiYVH0Lwp5DzYRFSPOYE5UNkzqbL/44ot48cUXtY/ff/991KxZs9AnFRGjz6WkpMDR0bHQZVP5JyIQjSank6zR4J6BZXIAQJOVhbW9emFsfDwcfX0BQGcIJpfrIqLySrGwyPlC0NgXhQa258odPlmPwyeJqJhwBnOismH2BGl5lwHL9eDBA1y7dg21atUyemVx+/bt2L59u/bxnDlz4OXlpbNPeno69u7di2eeecbcalEFoTNc/PJlvLh4sf4yOXlosrJw4uuvERoZqe1YExGVR9b29jqPFUXB9VOnsKR1aww7dAg+TZrkuz2XucMn7d3ddf5LRFTRcXJHqizM7mzPnj0b9+/fR0REBADg0KFD6N69O+7cuYMaNWpgx44dqGVgxtWLFy9i8+bNAHI+aBw6dAg2NjY6+6hUKgQGBuLjjz8uTFuoHMr74fPx4eLW9vawWrnS6HI4uVIuX+aVayIqt/JO7qjJyoKI6HzxnPnA8JBwY9vNpf7nti61B+9tJKLypzCjdXInd3wcO+FU0Zg9k9S3334LPz8/7eO3334bDRo0wMaNG+Hu7m502a6xY8ciLi4OcXFxqFatGrZv3659nPtz4cIFbNiwAfXr1y98i6jUGZp1PO+HT6+gIIgI7j42XNyUdbMBwKVmTWiys0u0DUREhSEaDe7+/TcOTJuG78PDcWDaNNz9+2+IRlPWVSMiKhdyR+toimGyM66wQBWN2Ve2r169iqeffhoA8Pfff+PEiRM4cOAAWrdujaysLLz++usFlhEXF2d+Tancevw+IL2ZxZ9+GqEffKA/XNzEdbObjhrFGcaJqFyxsrPLd3LH7lFRCBo4EFaPrdxBRERETw6zezB2dna4c+cOAGDPnj1wcHBASEgIAMDZ2RlpaWnFW0OqMPJ++PyiRg0cnDEDp1evRuycObCwsjI4XJzrZhNRcTE0yqYkWNvbQ+3hoTdaJ5cmKwubRozA3cTE0hna7e4DvBqR818iogqCQ8LpSWD2le3mzZvjk08+gYWFBWbNmoXOnTvD8p/7af/66y889dRTxV5JqhiMffjMb7j4jVOnsGHwYPRYvhw12rfHr998w3WziahQSnq2XZ17s7OzcSAysuDJHf+Z3+Rxxfoh090HeC2y6OUQEZUiY/dlE1UmhZogrVu3bnjhhRfg7++Pjz76SPvcmjVrtFe56clirVbD1tkZB6ZN0//wWcBw8dPR0bh18SKGHjyY73I4RERlJe/tMWkJCeixZIlpkztaWaHdjBl6nWp+yCQiIqr8zL5kWL9+fVy+fBlJSUmIi4vT3r8N5CznNXv27GKtIJVv2is99+4ZHSoOFDxcvMW4cbC2s8OtS5fwsVqNG6dOsaNNROXC47fH/L5smVmTO7Z57z1O5kNERPQEMvvKdi43NzeICBITE+Hp6QkrKys0bNiwOOtG5ZyhNbONffjMHS7ec8UK1AwLw4mvvzY4XDzrnyHnRETlgaGVFDi5IxEREZmiUJ8CduzYgZYtW8LW1hbVqlXDqVOnAAAjR47EypUrTSrjzJkz6N+/P2rVqgUbGxv8+uuvAID33nsP27dvL0y1qBTpTYS2ahX+WLUKjUeM0LtynevsunV4cOsWHH19ERoZiV4rVyI0MhKOvr7aD6ScLIOIyhPRaPRXUkDJTu5oLAeZj0RERBWL2Z3t1atXo0uXLqhRowYWLlwITZ61RGvVqoUlS5YUWMauXbvQuHFjXLlyBS+//DIyMzO1z1lbW2PhwoXmVotKkcErPTDtw6fawwOKosDin0n1LB67L5vrJxJReWBtbw/FwgIWlpYGb4/JHa3TMDwcb/71F9pMnYqG4eFoM3UqxsbHI+jllwt9VdtYDjIfiYiIKhazh5FPnz4d48aNw5w5c5CdnY1XX31V+1yDBg3w+eefF1jGlClT0L9/fyxfvhxZWVmYMWOG9rnGjRvj22+/NbdaVIqMXenhzOJEVNHpzDielQVNdrbR22NOR0cj6exZdF+8GKGRkbCwtOTkjkREj+GoHHqSmd3Zvnz5Mrp06WLwObVabdI626dPn8bMmTMBQO8DibOzM5KTk82tFpUiY1d6gP99+Hz+iy/44ZOIKhSdeSj++guutWrh2cmT0fS114zem5109iwcvL2RnpKCef7+GHboEHyaNCmD2hMR5YzKKW+4+gI9ycy+zOjt7Y3z588bfO7UqVPw9/cvsAxXV1dcu3bN4HMXL16ED7/5Ktfyu9ID5FzhjtuzBxDhzOJEVCHozUOxejUOzpiBpW3awMHHB92jovK9N/t+UhIndySiMpN3VI5XUBBExKTjeNWZKMfdxETsj4zE3cTEYi3X7M52eHg4IiMjsWfPHu02RVFw+vRpfPbZZxg4cGCBZfTo0QMRERG4cOGCThnXr1/H7Nmz0bt3b3OrVWIWLlyIbt26weOfe43XrVtndN+tW7ciJCQEarUaLi4uaNeuHRISEnT2OXLkCIKDg2FnZwd/f398+umnJgdieaFYWKDpa68ZnQgtdxbe9NRUfvgkKmeYafqMzUMBAIm//ooNQ4YgaOBAjI2PN3pvdtbDh2VUeyJ60nNNNBrc/ftvHJg2Dd+Hh+PAtGm4+/ffkDzzKhnDuSCIctxLTMSBadNwr6w725GRkQgJCUHHjh3h7e0NAOjcuTMaNWqEZs2aYfLkyQWWMXPmTHh4eCAoKAgtWrQAAAwfPhx16tSBk5MTIsvRUJPly5cjOTnZ6ND5XN999x169eqFtm3bYsuWLVi2bBmaNWuG9PR07T5//vknnnvuOfj4+GDLli0YN24cPvjgA8yZM6ekm1GsFEWBo6+vSVd6iKh8YabpMzYPRa4/Vq7Esa++0l4B6rVyJUIjInRWUiCisvOk5pqVnZ3RUTlf1KiBU999Z1KHu7jwKjmRPrPv2VapVNi4cSP27duHXbt2ITk5Ga6urggLC0NYWJhJZTg5OeHIkSP47rvvsGvXLri6usLV1RWjR4/G4MGDoVKpzG5ISTly5AgsLCwQHx+P5cuXG9zn9u3bGD16NObNm4fXX39du7179+46+82aNQtubm6Ijo6GSqVChw4dkJSUhI8++ghjxoyBjY1NibalKEQEkp0NCysr7T3YQQMHokaHDvmumU1E5QszTV9+81DkSjhyBM1Hj0bi779jSatWvDebqBx5UnNN7eFhdFSOJisLm0aMQI0OHeDo61sq9eG92UT6zO5s52rXrh3atWtX6BNbW1tj2LBhGDZsWKHLKA0WJly1WLt2LbKzszFixIh899u+fTt69eql82VC//79MXPmTMTGxqJt27ZFrW6JMDRpUNPXXoOjr2/OmtkRETqdcN6fTVR+MdP0FTQPBQC41KwJTXY2IGLw9hhe0SEqO09krikKbJ2dcWDaNKOjcjRZWTjx9dcIZQeYqMyUyfi3Z599FgsXLkRSJRlmfPToUdStWxfLli2Dv78/rKys8Mwzz2D79u3afe7fv4+rV6+ibt26OsfWrVsXiqIYnXSurBU0PAkiuHXpksGJ0Pjhk6hiqsyZZoip81DkN2Sc9z0SlW+VLdes7exgYWVV4KiclMuXYWFpCfBCCFGZKJPOto+PD9555x089dRTeO6557B8+XLcvXu3LKpSLK5fv44LFy7g/fffx/Tp07F9+3ZUr14d3bt3x5kzZwAAqampAHKWNstLpVLB3t4et2/fNlr+o0ePcOfOHZ2f0pDfpEG5w5PuJiZC7eFh8EoPP3wSVUyVNdOMMXUeCo7aIaq4SjLXyiLTMh8+hCYry6xROURU+sqks71u3TrcvHkT3377LaysrPDKK6/Ay8sLvXv3xvfff49Hjx6Vep1EBFlZWdqf7Oxsk4/VaDS4d+8evvnmGwwePBgdO3ZETEwM/Pz88Omnnxa5bjNnzoSTk5P2p2rVqkUu0xQFTRqUOzzJ9rE/SkRU9php5lEsLAqccZyIylZ5zbUyyTQRpKemFnlUTmFw5CKR6crs04ODgwMGDx6MrVu3IjExEZ9//jlu376N/v37w8vLq9Trc+DAAVhbW2t/OnToYPKxLi4uAID27dtrt1lbW6NNmzbab0tzvyVNS0vTOTYjIwMPHjyAq6ur0fKnTJmCtLQ07c/Vq1dNrltRmDJpUMrly7CwsoKVnV2p1ImITMNMK9jdxEQc/Ogj7ZqaioWFdh4KzjhOVP6U11wryUyztrc3+tz9pKQyGZXDkYtEpiv0BGnFyc3NDc8++yyuXLmCCxcu4MaNG6Veh6ZNm+LYsWPax46OjiYf26BBA6PP5S4noVarUbVqVb37fS5cuAAR0bs/KC8bG5symf3S5EmDsrI48zhROcNMy5+IQO3hgTbvvQdNVhZEBIqiQFEUXD91Cktat+aM40TlTHnNtZLINBGBV1AQ3r1/Xyejclnb2yPr4UPtqJz8VocpDF69JioehepsZ2dn4+eff0ZCQoLO2oS5Bg8ebFI5f/31F6KjoxEdHY2zZ8/Cy8sL/fr1w4ABAwpTrSJxdHREs2bNCnVst27dEBERgd27d6NHjx4Acr4FPXDgANq0aaPdr3Pnzti4cSM+++wzWFtbAwDWrFkDZ2dnhISEFLkNxS130qDDn3xicCh57vCkrIwMBjJROcNMyyEiEI0GFpaW0GRn53zw/Gc+CkMrLOR+MDU0DwURla0nJdfyWwUGiqLfCc8zKqe4VofhMl5ExcPszvavv/6KXr164erVqxADky0oilJgZ3vu3LmIjo7GiRMn4OTkhN69e+OLL75A27ZtTVq+oTQdP34c8fHx2pnTjx49CgDw8PBAaGgoAKBJkybo3bs3Ro4cidu3b8PHxwcLFizAjRs3MGHCBG1ZEyZMwMqVKzFgwAC88cYb+OOPPzBr1ix89NFH5Wpt8Vx5Jw16fJI0neFJFhYMZKIK4knKtMc/sFZ99ln86/XXceq77/Qy7fAnn6B7VBSCBg7kbTFEFUxlyrXcVWAez6iUuDj0WLYM9/L5opCjcojKITFT8+bNJSgoSPbv3y83b96U1NRUvZ+CqNVqGTBggGzatEkyMjLMrUKpGjJkiADQ+wkNDdXZ7969ezJmzBjx8PAQGxsbCQkJkcOHD+uV99NPP0mLFi3ExsZG/Pz8ZObMmaLRaMyqU1pamgCQtLS0ojTNZJrsbElLSJC9U6fK9+HhsnfqVElLSBBNdnapnJ+Iik9lzrRrJ05IJCA3z54VTXa2nFy2TD60spJIQCIB+XXxYkmJi9PZlvfnQysrSUtIkPtJSRIJyLUTJ4yew9BzRFQ2yluuFTbTNBqNpF29qpdRXwUFSVZGhvy2dKnecx9aWcnJZctEk50tN8+eZXYRFVJJ/Y4oIuatBeDg4ICYmBh07ty5EF37HA8ePIB9PhM+UP7u3LkDJycnpKWloUqVKqVyTjEwFJPL4BBRcSiuTEv89Vcsad0a465cQVZ6Or6oUeN/V4YUBe/eu4fDM2fi4IwZRstoM3UqQiMiMN3aGiNPnNC7OpT466/4pmlTg88REQGFzzRNdjYOREbqZVT3xYtRo107zK9d2+htfWPj42FlY4NZHh7MLiIj7iYm4sSiRTkjQh67/bWkfkfMHrMdEBBQ5PUD2dGueBRFgYWlJYCcWcrZ0Sai8kTyTCZk6+Kit2yhtZ0drO3tucICURGJSM66zcjpHJp5zYbyYXAVGEVB4Esv4beoKC7FSlRE9xITcWDaNNz7ZxWS0mD2Pduff/45xo4di0aNGuU72+zjqlSpgn379qFp06ZwdHTMt7OmKIresgtERESG5L03Oy0hAT2WLNH7wJr58CEyHzzgCgtERZDfxF1cIq/oDK0CU5xfFOa3jBgRlQyzO9v//ve/cf36dQQGBsLX11e7JmEuRVHw+++/6x03fvx4+PxzuX78+PG8MkpEREWmN5mQoqDrggX6nWoRnF6zBo1HjChwhYX01NTSqTxRBWJs4q68kwuyw100hlaBKY4vCqWAZcSIqOSY3dlu2rRpoX5BIyIitP8fyZmriYioiOSfJbx0Pvzn06n+ed48BA0ciBe+/RabX3nF6AoLyRculHZTiMo1g79r/9BkZWHTiBGo0aFDzhVuduIKzeAqMEX8opCjEYjKltmd7aVLlxb5pO3bt8fChQsNDkO/ePEiRo0ahb179xb5PEREVHmJRqN3bzZgvFN949QpbBw2DD2WLUPNsDCc+PprpFy+DJeaNdF01CjtUoYcQk5PGkOTBokIJDsbFlZWRn/XcuXeMxwaGQnln/ldqHAUCwsEDRyIGh06aDMq88EDOFWrVuBSrI9/UcjRCERlz+zOdnHYv3+/0UnW7ty5g4MHD5ZyjYiIqKIxOJkQcjrVGwYPRo/ly1GjXTv8+n//p9Opzr16FBoRAQsrK2iysqBw4keq5PKbhTd30qA63bvD0cfHpHkQHpdy+bJ2IlUqGsXCQi+joCh6nfD8vijkaAQiw0p77oJCdbZTU1Oxbt06XLx4Eenp6XrP/+c//ymwDGO/2EeOHIGnp2dhqkVEVGzy+2BK5YOhyYRynY6ORtLZs+i+eDFCIyMNLlt4/dQpLGndGsMOHeJSOFTpPd6hNsTKzs70eRAe41KzJjTZ2exwFxNFUfQzyowvCjkagUhXWc1dYHZn+9KlSwgJCcGjR49w//59eHh44Pbt28jKyoKLiwucnJwMdrZnzpyJmTNnAsgJkHbt2sHisaErjx49QlZWFt54441CNoeIqHjcS0zEkVmz8v1gSmXL0GRCeSWdPQsHb2/tMMnHOwEOPj4ImTABDnx/6QlR0BUdtYeHWfMg5Mq9Z5hDkotf5oMHOo8NdsIfo1hYGB35kxdHI9CToiznLjC7s/3222+jRYsWiImJgVqtxrZt29CoUSOsWbMG7777LmJiYgweFxISgvHjx0NE8OGHH2LAgAHw8/PT2UelUqFevXp44YUXCtcaIqJiwJlbKwaDkwn9I+99jMbeO0cfH7TlhJ30BDAp0xQFts7OODBtmsnzIACm/a5R8Xu8E56XaDT5jvzJxdEI9CQwZ+6CkhhibnZn+5dffkFUVBRsbGwAABkZGbC0tER4eDiSk5Px5ptv4qefftI7LjQ0FKGhoQByPiC9+uqr8PX1LWL1iYiKF2durVgMTSb0+H2MRE8yUzPN3s0NFlZWhZoHgb9r5U9BI384GoGeBKbMXVDrueeg9vQssYssZne2Hz16hCpVqsDCwgKurq64du2a9rnAwEBMmTKlwDLyLgNGRFRecObWisnQZEKc8IzItEyDosArKAgTkpKKPA8ClR9FHflDVBkUNHdB/T59YO/mhrt//11iF1nM7mwHBATgypUrAIDGjRtj4cKF6NixI6ysrLBo0SKTr1b/+eefWLp0qdFJ1jZt2mRu1YiICo0zt1ZsptzHSPQkKSjT/tq5E0EDB+p8yAx5550izYNA5QtH/tCTLr+5C7yCgtBj+XKcWrlS7/aY4rzIYnZnu3///jh58iQGDRqE6dOn47nnnoOLiwsURYGIYNmyZQWWcezYMYSGhsLf3x8XL15EUFAQ0tLSEB8fDz8/Pzz99NOFagwRUWFx5tbKIb/7GImeJPllmldQEF5csgS/r1ih8yEz6cwZvHr8OO/NrkQ48oeeZPmN1mkxbhzu/v23XtYBxXuRxeyu+ttvv405c+YAAFq2bInTp09j4cKFmDNnDk6ePImXX365wDImTpyIfv364fTp0xARREVF4fLlyzh8+DAURcGkSZPMbwkRURFw5lYiqkzyyzRjHzJz781uGB6OsfHxaDN1KhqGh6PN1KkYGx+PoJdf5tXQCkhRFNw4dQofq9W4ceoUO9r0xMidu8DC6rHry4qCwJdewm9RUQVeZBGNpkh1KNQ623lVrVoVI0eONOuY33//HZMnT9Yu/ZU7jDwkJASRkZGYPHkynnvuuaJWjYjIZJy5lYgqE6OZ9s+HzMMzZxr8kGnw3mxeDa0UOPKHnjTG5i6wtrODtb19qVxkKdTXk5mZmfj6668xYsQIdOrUCZcuXQIArFmzBufOnSvweEVRoFKpoCgKPD09tfeAA4Cfnx8uXrxYmGoRERWa0W8//8GZW4moIjGWaaZ8yLxx6hSOzp2r/ZBpYWXFjjYRVUi5cxfkHa0TPH48NFlZJl9kKQqzPzVevnwZderUwcSJE/Hnn39iz549uHv3LgDg4MGD+Oyzzwoso379+vjrn5APDg7GnDlzcPr0aVy4cAGffPIJahXQcCKi4pb328/HP5zyXsUni4OPD0IjIuDg41PWVSEqNGOZlvnwITIfPCiVD5lEROVB3rkLeq1cidAPPoBiaVkqF1nMHkb+5ptvwsPDA7/88gucnZ2hUqm0z4WGhpq09NfIkSO1V7M//vhjdOrUCY0aNQIAqNVqrFu3ztxqEREVGWduJQBw9PFB28jIsq4GUZEZyzQR4RrMRPREMbRqSWksj2d2Z3v//v1YvXo13N3dkf3YN57e3t5ITEwssIxBgwZp/79evXo4d+4cYmNj8fDhQ7Rs2RKenp7mVouIqFhw5lYiqkyMZZq1nR3XYCaiJ07euQtK4yKL2Z1tKysriIjB527cuAEHBwezK+Hg4ICOHTuafRwRUUngms1EVJkYzDRF4UgeInrilfRFFrM726GhoZgzZw46d+6snU08d43tb775Bh06dDB43A8//GDWeXr16mVu1YiIihVnbqXH8X5uqsgezzSO5CEiKtmLLGZ3tj/99FOEhISgfv366N69OxRFwYIFC3D69GlcunQJv/zyi8Hj+vTpY/I5FEXRG6JO/5M7suDOnTtlXBOiykvj4IBmkydD4+BQJr9rjo6OT8wH3uLKtLv37iH9n/+qS+o9U6vR5O23IWAGU8WSX6ZdP3kS3z3/PAb++CO8n3mmxOrwpORaSWeaudsLeo7oSVHQ78jdBw/M+h0xJdMUMTYmPB9xcXGIjIzErl27kJycDFdXV4SFhWHatGlGZxLPu7yXKfz9/c2t1hMjISEBVatWLetqEFEJSktLQ5UqVcq6GqWCmUb0ZHhSco2ZRvRkMCXTCtXZprKl0Whw7dq1EvmG+M6dO6hatSquXr1a4f8gVpa2sB3lS2m140m5AgSUbKYB/LdX3lSWdgCVpy3MteLFTDNNZWkHUHnawnaYx5TfcbOHkRenH3/8EceOHcPVq1cxdepUVKtWDQcPHsTTTz8NX1/fsqxauWZhYQE/P78SPUeVKlUq9C9ZXpWlLWxH+VJZ2lEelEamAZXnPWM7yp/K0pbK0o6yxkwzT2VpB1B52sJ2FB+TOtvDhw83uUBFURAVFZXvPklJSejRoweOHj2q/dZh1KhRqFatGhYvXgy1Wo0FCxaYfE4iIiIiIiKi8sSkzvbSpUvh6OiIWrVqGV32K5cpw2XGjRuHpKQknD59GrVr14ZKpdI+FxYWhhkzZphSLSIiIiIiIqJyyaTOdnBwMI4ePYrs7GyEh4ejf//+RZrAbOvWrfi///s/1KtXT2/W8apVqyIhIaHQZVPR2NjYICIiAjY2NmVdlSKrLG1hO8qXytKOJ0llec/YjvKnsrSlsrTjSVFZ3q/K0g6g8rSF7Sh+Jk+Q9t///hfR0dFYtWoV/vjjDwQHByM8PBz9+vWDu7u7WSd1cHDA2rVr0aVLF2RnZ8Pa2hrHjx9HkyZNsGHDBgwfPhy3b98uVIOIiIiIiIiIypqFqTtWq1YNEydOxMmTJ/HHH3+gXbt2mDdvHnx9fdG5c2ds377d5JO2aNECixcvNvhcdHQ0nn32WZPLIiIiIiIiIipvirT0V3p6Oj744APMnTsX3bt3xw8//GDScbGxsWjXrh2aN2+OPn364K233sJ7772Hc+fOYevWrTh8+DCaNGlS2GoRERERERERlSmzO9vZ2dnYuXMnoqOjsXHjRlhZWaF379545ZVX8K9//cvkcmJjYzF58mQcOXIE2dnZUBQFwcHBmDVrFoKDg81uCBEREREREVF5YfIw8oMHD+L111+Hl5cX+vXrh+zsbKxcuRLXr1/HokWLTO5oZ2Rk4IcffoCXlxcOHDiAO3fuICEhAXfv3sXhw4fZ0S5BCxcuRLdu3eDh4QFFUbBu3Tqj+27duhUhISFQq9VwcXFBu3bt9CauO3LkCIKDg2FnZwd/f398+umnBc5WX1Ju3bqlXT5OrVYjMDAQX3/9td5+165dQ+/eveHo6AhXV1e88soruHPnThnUuGDnz59Hx44doVar4e3tjYkTJyIjI6Osq1WgTZs2oUWLFnB0dISPjw/69euHy5cv6+0XFRWFgIAA2NraolGjRtiyZUsZ1DbHn3/+iVGjRuGZZ56BlZUVAgMDDe6XmpqKN998E76+vrC1tUWtWrUwZ84cnX0yMjIwYcIEeHt7Q61Wo2PHjrhw4UJpNOOJw0xjppUGZhozrTQx15hrJY2ZVsqZJibw8/MTW1tb6dmzp6xdu1YePnxoymFG2djYyL59+4pUBpmvRYsW0qJFCxk8eLAAkJiYGIP7rVixQlQqlUyZMkX27t0rGzdulHfeeUcuXbqk3efSpUvi4OAgPXv2lN27d8vcuXNFpVLJrFmzSqs5Otq1ayc+Pj6yZMkS2bNnj4wfP14AyDfffKPdJyMjQwIDAyUwMFA2bdok0dHR4ufnJ127di2TOufn9u3b4uPjI23atJEff/xRoqKixMnJSUaPHl3WVcvXvn37xMLCQoYOHSq7du2S6OhoCQgIkFq1asmDBw+0+61evVoURZGpU6fK3r175bXXXhMrKyuJjY0tk3pv2LBB/Pz8pHfv3tKwYUNp0KCB3j737t2TRo0aSdOmTSU6Olr27dsnixYt0vs3/9prr4mTk5NERUXJjz/+KK1bt5annnpKUlNTS6s5TwxmGjOtpDHTmGmljbnGXCtJzLTSzzSTOtuKoohKpRIHBwdxdHTM96dKlSoFlteoUSNZtmxZkStP5snOzhYRkbi4OKMBfuvWLalSpYosXLgw37JGjhwp/v7+8ujRI+22KVOmiLOzs6SnpxdvxQuQmJgoAGTJkiU629u0aSPt27fXPl61apUoiiLnz5/XbtuxY4cAkJ9//rm0qmuSjz/+WNRqtdy6dUu7bdGiRWJpaSl///13GdYsf6+99prUqFFDNBqNdtvevXsFgBw8eFC7LSAgQAYMGKBzbHBwsHTu3LnU6ppX7u+GiMiQIUMMhvjUqVOlZs2acu/ePaPlXL16VSwtLWXRokXabbdu3RK1Wi2ffvpp8VaamGnMtBLHTGOmlTbmGnOtJDHTSj/TTBpGHhERgXfffRfvvPMOxo8fn+/P22+/XWB5M2fOxIwZM3D8+HEzr8NTUVhYFPx2r127FtnZ2RgxYkS++23fvh09evSASqXSbuvfvz9SU1MRGxtb5LqaIzMzEwDg5OSks93JyUlnqNT27dsRFBSEOnXqaLd17NgRrq6u2LZtW+lU1kTbt29HWFgYXF1dtdv69esHjUaDnTt3lmHN8peZmQlHR0coiqLdlvu+5L4Xly9fxsWLF9GvXz+dY/v37489e/bg0aNHpVfhf5jyu/Htt99i+PDhUKvVRvfZuXMnNBoN+vbtq93m6uqKTp06lbt/Y5UBM42ZVtKYacy00sZcY66VJGZa6WeayZ1tc34KMnHiRNy6dQstWrSAp6cnGjZsiKCgIO1Po0aNitwwKpyjR4+ibt26WLZsGfz9/WFlZYVnnnlGZ2m3+/fv4+rVq6hbt67OsXXr1oWiKDh//nyp1rlq1aro1KkTPv74Y5w9exZ3797F2rVrsXPnTowePVq73/nz5/XqrCgK6tatW+p1Loihujo7O8PHx6fc1TWvoUOH4uzZs1i4cCHS0tJw+fJlvPvuu2jcuLF2Sb/c+j/evnr16iEjIwNxcXGlXu+CxMfH4/r163B3d0f37t1hY2MDV1dXvPrqq7h37552v/Pnz8PT0xMuLi46x9erV69cv2+VGTOtfGCmlS/MtIqNuVY+VMRcY6aVfqZZlUipBWjatCmaNWtWFqemAly/fh0XLlzA+++/j88++ww+Pj5YsGABunfvjpMnT6JBgwZITU0FkBMoealUKtjb2+P27dulXu8ffvgBL730Eho0aAAAsLS0xPz589G7d2/tPikpKXp1BgAXF5cyqXN+KlJd82rdujXWr1+P8PBw7R/PZ555Bj/++CMsLS0B5LQN0P/3kxt85bF9169fBwC888476NWrF7Zt24ZLly5h8uTJuHfvHlavXg2g4r5vlRkzrXyoSHXNi5lWMd+3yo65Vj5UpLrmYqaV/ntWJp3tpUuXlsVpnxgiguzsbO1jRVG0v0AF0Wg0uHfvHlauXInu3bsDANq2bYuAgAB8+umnWL58eYnU2VSG2mZhYYFhw4bh0qVLWLVqFXx8fLBr1y6MGzcOLi4u6N+/fxnW+Mly5MgRDBo0CK+++iq6deuGW7duYfr06ejatSsOHToEOzu7sq5ioWg0GgBAQEAAli1bBgDo0KEDrKys8Oqrr+Kjjz5CzZo1y7KKlRozjZlWVphpVFKYa8y1ssBMK31l0tmmknXgwAG0a9dO+zg0NBT79+836djcb63at2+v3WZtbY02bdrg9OnTAP73TVdaWprOsRkZGXjw4IHOvSvFzVDb3nnnHcTExODUqVNo2LAhgJw/Ojdv3sT48eO1Ae7i4qJXZyDnW66qVauWWJ0LI7+6luTrW1Rvvvkm2rdvr7PMQsuWLVGtWjWsWLECI0eO1P4bS0tLg7e3t3a/3G9Sy2P7cuuc998ekBPkAHDmzBnUrFmzwr5v5R0zjZlWVphpFfN9qwiYa8y1ssBMK/33jJ3tSqhp06Y4duyY9rGjo6PJx+YO7TEkPT0dAKBWq1G1alW9exsuXLgAEdG7x6M4GWrbxo0bYWlpqbfmXuPGjfHtt9/iwYMHsLe3R926dfHHH3/o7CMiuHDhAjp27FhidS4MQ/cmpaWlITExsURf36I6e/YsXnzxRZ1tfn5+cHd3x19//QXgf/cAnT9/XmcClPPnz0OlUpXLqym1atWCjY2N0edzfzfq1q2LGzduICUlRed+IEP3dZHpmGk5mGmlj5nGTCspzLUczLXSxUwr/UwzaYI0qlgcHR3RrFkz7U/eX5SCdOvWDQCwe/du7baMjAwcOHAATZs21W7r3LkzNm7cqJ1dEgDWrFkDZ2dnhISEFEMrDDPUNn9/f2RnZ+PUqVM6+544cQKenp6wt7fX1vn333/HpUuXtPvs2bMHt27dQpcuXUqszoXRuXNn7N69W3vPFQDExMTAwsICnTp1KruKFcDf3x+//vqrzrYrV64gOTkZ1atXBwDUrFkTAQEBiImJ0dlvzZo16NChg86sqeWFSqVCp06dsGfPHp3tu3btAgA0adIEANCpUydYWFjg+++/1+6TkpKCnTt3lrt/YxUJMy0HM630MdOYaSWFuZaDuVa6mGllkGklsqAYlUvHjh2TmJgYWbhwoQCQ8ePHS0xMjOzfv19nv969e4uHh4dERUXJtm3bpGvXrmJrayunTp3S7nPp0iVRq9XSu3dv2bNnj8ybN09UKpXewvGl4c6dO1KtWjV5+umnZcWKFbJ7926ZOHGiWFhYyPTp07X7ZWRkSGBgoDRs2FA2b94sa9askapVq0rXrl1Lvc4FuX37tvj4+EhoaKjs2LFDFi9eLM7OzjJ69Oiyrlq+5s2bJwDkzTfflF27dkl0dLQEBgaKl5eXJCcna/fLXUfzgw8+kH379smoUaPEyspKjhw5Uib1vn//vsTExEhMTIy0bdtWqlatqn188+ZNERE5fvy4qFQqCQ8Plx07dsiXX34pjo6O8vLLL+uU9dprr4mzs7MsXrxYduzYIaGhofLUU09JampqWTStUmOmMdNKGjONmVbamGvMtZLETCv9TGNn+wkyZMgQAaD3ExoaqrPfvXv3ZMyYMeLh4SE2NjYSEhIihw8f1ivvp59+khYtWoiNjY34+fnJzJkzRaPRlFJrdF26dEn69esnvr6+Ym9vLw0aNJB58+ZJVlaWzn4JCQnSq1cvcXBwEGdnZxk+fLikpaWVSZ0LcvbsWenQoYPY2dmJp6envPPOO/Lo0aOyrla+NBqNfPXVVxIUFCRqtVq8vb2lZ8+ecu7cOb19v/32W3n66adFpVJp/6iWlbi4OIO/GwBk37592v12794tzZo1ExsbG/H29pbx48dLenq6Tlnp6ekyfvx48fT0FDs7OwkLCzPYfio6ZhozraQx05hppY25xlwrScy00s80RSTPSvJEREREREREVGS8Z5uIiIiIiIiomLGzTURERERERFTM2NkmIiIiIiIiKmbsbBMREREREREVM3a2iYiIiIiIiIoZO9tERERERERExYydbSIiIiIiIqJixs42mSQyMhKKouCpp56CRqPRe/7ZZ5+FoigYOnSoWeWmpqYiMjISZ8+e1dkeHx8PRVGwbt26olS7yObNmwdFUbSP9+/fD0VRcPz48VKrQ2RkJI4cOaK3XVEUzJ49u9TqYciGDRugKAri4+MBFO59mzdvHrZt21ZCNSQyjJmWg5mmi5lGFRlzLQdzTRdzrWyxs00ms7a2RnJyMg4ePKiz/cqVK4iNjYWDg4PZZaampmLatGl6Ae7j44PY2Fi0b9++SHUubk2aNEFsbCzq1atXauecNm2awQCPjY3Fyy+/XGr1MEVh3jcGOJUVZhozrSDMNKpomGvMtYIw10qXVVlXgCoOlUqFsLAwrF69Gm3bttVuj46ORoMGDWBpaVls57KxsUHLli2LrbziUqVKlQLr9fDhQ9jZ2ZV4Xcrj61Ne3zciQ5hpzLSClNf3jcgY5hpzrSDl9X2rrHhlm8wyYMAArFu3DpmZmdptq1atQnh4uMH9Dx48iJCQENjZ2cHd3R3Dhw/H7du3AeQMY6lRowYAoG/fvlAURTvMxdAQF41GgxkzZqB69eqwsbFB3bp1sWjRIp3zRUZGwsHBAX/88QdatWoFe3t7BAYGYseOHQW27c6dOxg8eDAcHR3h4eGBiRMnIisrS2cfQ0OTFEXBJ598gkmTJsHb2xuenp4AABHB7NmzERAQABsbG9SsWROff/653nnPnTuHXr16wdXVFfb29mjUqBFWr16tLRsAJkyYoH199u/fr33u8aFJixYtQp06dWBjY4Pq1atjxowZOkPJli5dCkVR8Ntvv6Fz585Qq9WoXbs2li9fXuDrk5mZiXHjxsHV1RVOTk4YMWIE7t27p7OPofdt06ZNaNasGRwcHODs7IxmzZppvx2tXr06rly5ggULFmjbt3TpUgDA8uXL0apVK7i6usLFxQVt27bFL7/8onM+c97v5cuXo3HjxrC1tYW7uzu6dOmCK1euaJ9PSEjAwIED4e7uDjs7O7Rp0wYnTpwo8HWhio2ZxkxjplFlw1xjrjHXyg92tsksL7zwAh49eoSdO3cCAM6ePYtTp06hf//+evueOHECHTt2hKOjI2JiYvDpp59i8+bN6Ny5M7Kzs+Hj44MffvgBAPDxxx8jNjYWsbGx8PHxMXjuCRMmIDIyEkOHDsXmzZvRqVMnjBo1Cl9++aXOfpmZmXj55ZcxdOhQrF+/Hp6enujduzdu3bqVb9uGDx+O9evX45NPPsGyZctw9uxZzJs3z6TX5YsvvsDFixcRFRWF7777DgAwduxYfPDBBxgyZAi2bt2KoUOHYtKkSfj666+1x126dAnBwcG4dOkS/vOf/2DTpk0YNmwY/vvf/wLIGX4EAGPGjNG+Pk2aNDFYh/nz52PUqFF47rnnsHnzZgwdOhSRkZGYOHGi3r4vv/wyOnXqhA0bNqBx48YYOnQozp07l28bp0yZgoULF2LChAlYu3YtsrOzMXny5HyP+euvv9CnTx80aNAA69evx5o1a9CvXz+kpKQAANavXw9vb2/06dNH276uXbsCyPljMHjwYMTExGDVqlWoVq0a2rRpg4sXL+qcw5T3e9asWRgyZAiaNm2KH374AVFRUahduzaSkpIAACkpKWjVqhVOnjyJ+fPn4/vvv4darUb79u1x8+bNfNtIFRszzTBmmmHMNKoImGuGMdcMY66VMCEyQUREhKjVahERCQ8Pl4EDB4qIyNSpUyU4OFhERBo1aiRDhgzRHtOzZ0+pVq2aZGRkaLft2LFDAMimTZtERCQuLk4ASExMjM75Ht+elJQk1tbWMnnyZJ39BgwYIB4eHpKVlaWtJwDZunWrXlkrVqww2r4zZ86IoigSFRWl3ZaVlSU1atSQvL8m+/btEwBy7Ngx7TYAUr9+fdFoNNptf/75pyiKIosWLdI5z6RJk8Tb21uys7O1r6WHh4ekpaUZrRsAmTVrVr7bs7KyxN3dXfr376+zz5QpU0SlUklycrKIiCxZskQAyIIFC7T73Lt3T+zt7WX69OlG63Dr1i2xs7OT999/X2d7mzZtBIDExcWJiP77FhMTIwDkzp07Rsv29/eX0aNHG31eRCQ7O1syMzOlTp06MmXKFO12U97v1NRUsbe3l5EjRxot/4MPPhAnJye5ceOGdlt6erpUq1ZNJkyYkG/dqGJipuVgpjHTqPJgruVgrjHXyhNe2SazDRgwABs3bsTDhw8RHR2NAQMGGNzv0KFDePHFF2Ftba3d1qlTJzg7O+Pw4cNmnfPnn39GZmYm+vbtq7P9pZdeQlJSks43aBYWFggLC9M+rl69Ouzs7JCQkGC0/GPHjkFE0LNnT+02S0tL9OjRw6T6de7cWWcmzN27dwMAevfujaysLO1PWFgYrl+/jqtXrwIA9uzZgz59+qBKlSomnceY8+fPIzk52eDrk5GRoTekp1OnTtr/V6vV8Pf3z/f1+eOPP/Dw4UOd1ye3ffkJCgqCpaUlwsPDsXnzZqSlpZnaJJw7dw49e/aEl5cXLC0tYW1tjQsXLuh9W1rQ+x0bG4sHDx5gxIgRRs+1c+dOtGvXDq6urtr3ytLSEqGhoTh27JjJdaaKiZmmj5lmGDONKgrmmj7mmmHMtZLFCdLIbM899xysra3xwQcfIC4uDv369TO4X0pKCry8vPS2e3l5ae8FMlXuUJbHy8t9nLc8Ozs7qFQqnf1UKhXS09ONlp+YmAhra2u4uLgYLL8gj++XnJwMEYG7u7vB/a9evQp/f3/cunULvr6+Jp0jP+a8PgDg7Oys89iU1weA9h6nx8s3JiAgAFu2bMHHH3+Mnj17wsLCAs8//zy+/PJLVKtWzehxd+/eRadOneDh4YG5c+fC398ftra2eOWVV/TqWdD7nTtEKb/XOTk5GUePHtX5sJGrVq1a+baRKj5mmj5mmmHMNKoomGv6mGuGMddKFjvbZDZra2v07t0bc+fORYcOHYz+Eru6uhq8h+LGjRtwdXU165y5+9+8eRNPPfWUTll5ny8sHx8fZGZmIiUlRSfEc8svSN5vSnProygKDh8+rBcuAFCnTh0AgJubG65du1aEmv/vfAD0Xu/ifH1yyzf0+ufn+eefx/PPP487d+7gxx9/xFtvvYVhw4Zhz549Ro+JjY1FQkICtmzZgkaNGmm3p6Wlwc/Pz6y6u7m5AQCuXbtm9FhXV1c8//zzmD59ut5zNjY2Zp2PKh5mmj5mmnHMNKoImGv6mGvGMddKDoeRU6G88soreOGFFzB27Fij+7Rq1QobNmzQmSVy165dSE1NRatWrQBAG275fVMHAM2bN4e1tTViYmJ0tq9duxaenp4ICAgobFMAAP/6178A5EwCkSs7OxsbNmwoVHkdOnQAkPNNXbNmzfR+HB0dAQBhYWFYt24d7t69a7Qsa2vrAl+fOnXqwMPDw+Dro1Kp0Lx580K1I1fDhg1hZ2en8/oAwPfff29yGVWqVEG/fv3Qv39/nQk+DH1T+/DhQ+1zuY4cOYL4+Hiz6x4cHAx7e3ssWbLE6D5hYWE4e/Ys6tWrp/deNWzY0OxzUsXDTMsfM00fM43KO+Za/phr+phrxY9XtqlQmjdvXmC4vffeewgJCUG3bt0wZswY3LhxA5MnT0bz5s3RpUsXAIC3tzecnZ2xevVq1KhRAzY2NggKCtIry93dHWPGjMGsWbNga2uLli1bYtu2bVi1ahXmz59f5HUj69evj549e2LcuHFIT09H9erVsXDhQmRkZBSqvICAAIwePRqDBg3ChAkT0KJFC2RmZuLixYvYt2+f9rWLiIjAli1b0KpVK0ycOBE+Pj44e/YsHjx4oJ2Zsl69eti4cSNat24NtVqNOnXqaP8A5LK0tMT777+PN998E56enujSpQuOHj2KTz/9FOPGjdN+Y1hYrq6uGDVqFD755BPY2dmhSZMmWL16Nf766698j1u0aBFiY2Px/PPPw8fHB3Fxcfjuu+907kOqV68e9u7di127dsHFxQU1atRAy5Yt4eDggNGjR2Py5Mn4+++/ERERofNNramcnJwQERGBSZMmQaPR4MUXX4RGo8G+ffswYMAANGvWDG+//TZWrlyJ0NBQjB07FtWqVUNSUhJ+/vln+Pr64q233jL7vFSxMNPyx0zLwUyjioS5lj/mWg7mWgkry9nZqOLIO8OlMY/PcCkisn//fgkODhYbGxtxdXWVoUOHyq1bt3T2Wb9+vdSrV09sbGy0syUamvkyOztbPvzwQ6lWrZpYW1tL7dq15euvvzapnk5OThIREZFv/VNSUuTll18WtVotbm5u8vbbb8usWbNMmuHS0AyUGo1G5s+fL4GBgaJSqcTV1VWCg4Nl7ty5OvudOXNGunfvLlWqVBF7e3t55plnJDo6Wvv8oUOHpEmTJmJnZycAZN++fUbP+9VXX0nt2rXF2tpaqlWrJtOnT9fOpinyvxkuk5KSdI4z9N497tGjRzJmzBhxdnaWKlWqyJAhQ2TFihX5znB55MgR6dq1q/j4+IhKpZJq1arJ2LFjdWa8PH36tLRu3VocHR0FgCxZskRERLZv3y4NGjQQW1tbCQoKkm3btkloaKh07dpVe6w57/fixYulYcOGolKpxM3NTbp16yZXrlzRPp+YmCgjRozQ1tXPz0/69OkjP/30U76vC1VMzLQczDRmGlUezLUczDXmWnmiiIiUeI+eiIiIiIiI6AnCe7aJiIiIiIiIihk720RERERERETFjJ1tIiIiIiIiomLGzjYRERERERFRMWNnm4iIiIiIiKiYsbNNJSY+Ph6KomDdunVmHbd//358/PHHetsjIyPh4OBQXNUr0Lx587Bt27ZiK2/Dhg1YuHCh3vahQ4ciMDCw2M5T3Er7dScqz5hruphrRBUbM00XM42KGzvbVO4YC/BXXnkF+/btK7V6lFaAl3el/boTVUbMtfKFuUZUNMy08oWZVn5ZlXUFqGIREWRkZMDGxqbUz+3n5wc/P79SP++T6tGjR7C2ti621z23PAsLfsdH5Qtz7cnBXKMnATPtycFMK//4SlK+cofNbNu2DY0aNYKNjQ02b94MAIiNjUX79u2hVqvh5OSE8PBw3Lx5M9/yli9fjlatWsHV1RUuLi5o27YtfvnlF+3zkZGRmDZtGu7fvw9FUaAoCtq2bat9LneIzP3796FWqzF79my9c/Tp0wfBwcHax6mpqXjjjTfg4+MDGxsbNG3aFDt37sy3ntWrV8eVK1ewYMECbT2WLl0KANBoNJgxYwaqV68OGxsb1K1bF4sWLSrwdVy2bBnOnDmjLW/o0KE6++zfvx+NGzeGWq1G8+bNceLECZ3nRQSzZ89GQEAAbGxsULNmTXz++ef5njf33IGBgdi+fTsCAwNha2uLpk2b4ujRo3pt/ve//43PPvsM/v7+sLOzw+3btw0OTbpy5Qr69OkDJycnqNVqPPfcc/jjjz9MKi+/Ou7evRtBQUGws7NDaGgo4uPjcfv2bfTr1w9VqlRBrVq1sGbNGr3jt27dihYtWsDOzg4eHh54/fXXcf/+fe3z9+/fx7///W/UqVMH9vb2qF69OkaNGoW0tDSDdV6wYAH8/f3h5OSEHj16ICkpqcDXmSoO5hpzjbnGXKtMmGnMNGZaOc40IcrHkCFDxMXFRWrVqiVLliyRPXv2yKVLl+TIkSOiUqmkR48esnnzZomOjpann35aWrZsqT02Li5OAEhMTIx227Rp02TRokWye/du2bZtmwwaNEhsbGzkwoULIiJy9epVGTFihNjZ2UlsbKzExsbKmTNnREQkIiJC1Gq1tqz+/ftL06ZNdep7584dsbW1lf/85z8iIvLo0SNp1qyZVK1aVaKiouTHH3+UgQMHipWVlZw6dcpou3/99Vfx9vaWPn36aOtx8+ZNERF5++23xdLSUiIiImTHjh0yZswYASDz5883Wt6ff/4pXbp0kZo1a2rL+/PPP7WvsZubmzRs2FBWrlwpW7ZskYYNG0rVqlUlIyNDW8aYMWPEzs5OZsyYIbt27ZJp06aJtbW1fPXVVwW+h66urlK9enVZunSpbNy4UYKDg6VKlSpy48YN7X7+/v7i7e0trVu3lvXr18umTZvkwYMHeq/7nTt3pHr16lKzZk1ZtWqV/PDDD9K0aVNxdnaW//73vwWWZ6yObm5uEhQUJNHR0fL999/LU089JSEhIRIWFiYffvih7Ny5U/r27StWVlYSHx+vPTYmJkYsLCxkxIgRsn37dlm8eLF4enrKSy+9pN3n5s2bMmrUKImJiZH9+/fLihUrpG7dutK2bVudevj7+0vVqlWlU6dOsnnzZlmyZIk4OzvrlEUVH3ONucZcY65VJsw0ZhozrfxmGjvblK8hQ4YIADl69KjO9jZt2khISIhoNBrttjNnzoiiKLJ161YRMRzgeWVnZ0tmZqbUqVNHpkyZot3+eGAY275x40YBIBcvXtRuW7ZsmVhaWsr169dFRGTx4sViZWWl/SOQq0WLFtK3b9982+7v7y+jR4/W2ZaUlCTW1tYyefJkne0DBgwQDw8PycrKMlrekCFDpEGDBga3K4oip0+f1m7bt2+fAJBDhw6JSM4fAEVRZNGiRTrHTpo0Sby9vSU7Ozvf8wKQPXv2aLelpqaKo6OjTjv8/f3Fzc1N7t27p3P846/7F198IYqiyNmzZ7Xbbt26JWq1Wt5+++0CyzNWx8dfg/nz5wsAmTRpknZbSkqKWFpayrx580RERKPRiL+/vwwYMECnvO3bt+uVl1dmZqYcPnxYAGg/POTW2c/PT9LT03Xab21tne9rTBULc425xlxjrlUmzDRmGjOt/GYah5FTgdzc3NCiRQvt4wcPHuCnn35C3759kZ2djaysLGRlZSEgIABVq1bFsWPHjJZ17tw59OzZE15eXrC0tIS1tTUuXLiAixcvml2v559/Hs7OzoiOjtZui46ORrt27eDl5QUA2LlzJxo2bIiAgABtPbOystCxY8d862nMzz//jMzMTPTt21dn+0svvYSkpKRCtQMAfH190aBBA+3j+vXrAwASEhIAALt37wYA9O7dW6cdYWFhuH79Oq5evZpv+U5OTmjfvr3O47CwMPz88886+7Vt2xZqtTrfsg4dOoTAwEDUq1dPu83V1RUdO3bE4cOHzS4v1+OvQUBAAAAgLCxMu83Z2Rmenp7a9l68eBFXrlxBv379dF6X0NBQWFhY4Pjx49pjV6xYgcaNG8PBwQHW1tZo1aqVtoy8QkNDde5zq1+/PjIzMwscdkcVC3Ptf5hrzDWq+Jhp/8NMY6aVJ+xsU4FywzBXSkoKsrOz8dZbb8Ha2lrn57///a/RMLl79y46deqEK1euYO7cuTh06BCOHTuGRo0aIT093ex6qVQq9O7dWxvgt27dwq5duxAeHq7dJzk5Gb/99ptePWfMmFFg6BmSkpICQP81yX1s7D6Xgjg7O+s8VqlUAKB9XZKTkyEicHd312lHx44dAaDAtnh4eOht8/LyQmJiosF25CclJcXgfl5eXnrtN6W8XMZeA0Pb874uANCzZ0+d18Xe3h7Z2dna12X9+vUYPHgwmjdvjrVr1+Lo0aNYv349AOj92yvovaDKgbmm23aAucZco4qMmabbdoCZxkwrHzgbORVIURSdx87OzlAUBe+++y569Oiht7+7u7vBcmJjY5GQkIAtW7agUaNG2u1paWmFnkFxwIABiIqKwqlTpxAbGwtLS0v06tVL+7yrqyuCgoIQFRVVqPIf5+rqCgC4efMmnnrqKe32Gzdu6Dxf3FxdXaEoCg4fPqwNlLzq1KmT7/GGJo24ceMGfHx8dLY9/l4bq8uFCxcMlvd4+00pryhyz/fll1/qfKOfy9fXFwAQExODZ555RmdylAMHDpRo3ah8Y679D3ONuUYVHzPtf5hpzLTyhJ1tMptarUZwcDDOnTuHGTNmmHzcw4cPAUAngI4cOYL4+HidISkqlQqPHj0yqcy2bdvC29sbq1evRmxsLDp37gwnJyft82FhYdi2bRt8fX21v8ymyvutXK7mzZvD2toaMTExaNy4sXb72rVr4enpqR1OY2p5purQoQOAnG+EX3jhBbOPT0tLw969e7XDk9LS0rB7926MHj3a7LJatWqFdevW4cKFC9o/HCkpKdi9ezdGjhxpdnlFUbduXfj5+eHy5cv5tuXhw4d6f/hWrlxZ0tWjCoS5xlxjrlFlwkxjpjHTygd2tqlQZs2ahfbt2+Oll15C//794eLigoSEBOzatQvDhg3TLgGRV8uWLeHg4IDRo0dj8uTJ+PvvvxEREaHzrSMA1KtXD1lZWfjiiy8QEhKCKlWqGP020NLSEv369cPSpUtx8+ZNnXuCAGDw4MFYtGgR2rZti3feeQcBAQFITU3Fb7/9hoyMDMycOdNoG+vVq4e9e/di165dcHFxQY0aNeDu7o4xY8Zg1qxZsLW1RcuWLbFt2zasWrUK8+fPh6WlZb7lLV68GKtXr0bt2rXh7u6O6tWrG3+R8wgICMDo0aMxaNAgTJgwAS1atEBmZiYuXryIffv2YcOGDfke7+rqihEjRmDatGlwdnbGJ598AhHBuHHjTDp/XsOGDcPnn3+Orl27YsaMGbC1tcVHH30EKyurQpVXFIqiYO7cuQgPD8f9+/fRtWtXqNVqXLlyBVu3bsXHH3+MgIAAdOzYEaNHj8b06dMRHByMbdu2Yc+ePaVaVyr/mGvMNeYaVSbMNGYaM60cKMvZ2aj8MzYro4jIsWPHpEuXLuLk5CR2dnZSu3ZtGTVqlFy9elVEDM9wuX37dmnQoIHY2tpKUFCQbNu2TUJDQ6Vr167afTIzM+WNN94QLy8vURRFQkNDRcT4zJexsbECQBwcHAwuV5CWliZvvfWWVKtWTaytrcXHx0e6dOkiW7Zsybftp0+fltatW4ujo6MAkCVLlohIzsycH374oba82rVry9dff51vWbn16N+/v7i5uQkAGTJkiIgYfo1TUlJ0zimSM5vj/PnzJTAwUFQqlbi6ukpwcLDMnTs33/Pmlr9lyxapV6+eqFQqady4sfz00086+xma0VPE8OseHx8vvXr1EkdHR7G3t5eOHTvqLc9hrLz86phX7iyfx44dK7DcnTt3SmhoqKjValGr1dKgQQMZP368pKamiohIVlaWjB8/Xjw8PMTR0VH69OkjR48e1fv3aajs9evXCwCJi4szqS1U/jHXmGvMNeZaZcJMY6Yx08pvpikiIqXXtSei0jZ06FAcP34cp0+fLuuqEBEVC+YaEVUmzLTKi7ORExERERERERUzdraJiIiIiIiIihmHkRMREREREREVM17ZJiIiIiIiIipm7GwTlbDmzZtjwYIFRp8/efIkFEXB/v37S+T8HTt2xEcffVQiZRPRk4eZRkSVDXONSgo720QlaP369YiPj8fw4cPLrA7vvvsuZs+ejZSUlDKrAxFVDsw0IqpsmGtUktjZJipB8+bNw4ABA2BnZ1dmdWjXrh1cXFywbNmyMqsDEVUOzDQiqmyYa1SS2NkmKiFxcXE4dOgQ+vTpo7N9xowZ8Pb2hoODA3r16oWbN2/qHSsimD17NgICAmBjY4OaNWvi888/19tv/fr1qFOnDmxtbdGyZUv8+uuvcHZ2RmRkpM5+ffv2ZYATUZEw04iosmGuUUljZ5uohOzZswdWVlZo3ry5dtuXX36J999/H4MGDcL333+PmjVrYsSIEXrHjh07Fh988AGGDBmCrVu3YujQoZg0aRK+/vpr7T6//fYb+vbti/r16+OHH37AkCFD8NJLL+HRo0d65YWEhODkyZNISkoqmcYSUaXHTCOiyoa5RiVOiKhEjBw5Uho0aKB9nJWVJb6+vjJo0CCd/QYNGiQAZN++fSIi8ueff4qiKLJo0SKd/SZNmiTe3t6SnZ0tIiJ9+/aVp59+WvtYRGTFihUCQCIiInSOjYuLEwCyZcuWYmwhET1JmGlEVNkw16ik8co2UQlJTEyEh4eH9nFCQgKuXbuGnj176uz3+NCl3bt3AwB69+6NrKws7U9YWBiuX7+Oq1evAgCOHTuGbt26wcLif7/GL774osG6uLu7a+tERFQYzDQiqmyYa1TSrMq6AkSVVXp6OmxsbLSPc8PT09NTZz8vLy+dx8nJyRARbeg+7urVq/D399f7AwEAjo6OsLW11Tsmtx4PHz40vyFERGCmEVHlw1yjksbONlEJcXV1RXx8vPaxj48PAOhNsnHjxg294xRFweHDh6FSqfTKrVOnjra8x+/ruXv3LtLT0/WOSU1NBQC4ubmZ3Q4iIoCZRkSVD3ONShqHkROVkDp16iAuLk772M/PDz4+Pli/fr3OfuvWrdN53KFDBwDArVu30KxZM70fR0dHAMC//vUvbNmyBRqNRnvshg0bDNYl9w9JbvgTEZmLmUZElQ1zjUoar2wTlZBnn30WH374IRISEuDn5wdLS0tMnjwZY8eOhZeXFzp27IidO3di3759OscFBARg9OjRGDRoECZMmIAWLVogMzMTFy9exL59+7QhPWXKFPzrX/9C7969MXLkSFy5cgWzZ8+Gra2tzr1BAHD8+HE4ODjgmWeeKaXWE1Flw0wjosqGuUYlrownaCOqtB49eiRubm7yzTffaLdpNBqZNm2aeHp6ir29vXTv3l1+/PFHnRkuc/ebP3++BAYGikqlEldXVwkODpa5c+fqnOP777+XgIAAsbGxkaZNm8rhw4fFyspK5s2bp7PfCy+8oDezJhGROZhpRFTZMNeopCkiImXc3yeqtMaPH4/ffvsNe/fuLZXz7dmzB2FhYdi/fz9CQ0MBACkpKfD29sauXbvQpk2bUqkHEVVOzDQiqmyYa1SS2NkmKkGJiYl4+umnceTIETRq1KjYy3/jjTfQoUMHuLm54cyZM5g+fTp8fX1x/Phx7fCkDz/8EPv37y+1PyJEVHkx04iosmGuUUniPdtEJcjHxwdLly7Vm4myuKSkpGDMmDFITk6Gk5MTnn/+ecyePVvnPiBXV1f85z//KZHzE9GThZlGRJUNc41KEq9sExERERERERUzLv1FREREREREVMzY2SYiIiIiIiIqZuxsExERERERERUzdraJiIiIiIiIihk720RERERERETFjJ1tIiIiIiIiomLGzjYRERERERFRMWNnm4iIiIiIiKiYsbNNREREREREVMz+HwVUxSj/N7BwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADaJUlEQVR4nOydeVxUVfvAv3dm2EEWQQR3cV8wxeWXprjnUqZpaq6Ze5laabkDamrla5otamKpub2mtvtmWWq2WGqlZi65C4iggMg+M+f3x2VGhpmBGcT9fD+f+Vzm3HPPPXcYHs5znk0RQggkEolEIpFIJBKJRCKRlBqaOz0BiUQikUgkEolEIpFI7jeksi2RSCQSiUQikUgkEkkpI5VtiUQikUgkEolEIpFIShmpbEskEolEIpFIJBKJRFLKSGVbIpFIJBKJRCKRSCSSUkYq2xKJRCKRSCQSiUQikZQyUtmWSCQSiUQikUgkEomklJHKtkQikUgkEolEIpFIJKWMVLYlEolEIpFIJBKJRCIpZaSyLZHcxezatQtFUfjkk0/u9FQkEonkpjl79iyKorBw4cI7PRWJRCJxmqpVq/LYY4/d6WlI7iGksi25Z/j9998ZN24c9evXx8vLi8qVK9O3b19OnDhR5HV5eXnUq1fP5gIvNTWVgQMH4u/vT/Xq1YmNjbW6fv/+/Xh6enLmzJlSfR6JRPJgc/36daKioujSpQsBAQEoisJHH31k1c9oNPLRRx/Ro0cPKlWqhJeXFw0aNGDu3LlkZ2db9M3JyeGFF14gKCiIihUrMnfuXKvxLl68iLe3Nz/99NOtejSJRCKx4uDBg/To0YOAgAA8PT1p0KABb7/9tkWf5cuXU61aNQICAhg8eDDXrl2zOG80GmncuDHz5s27nVOXSEqM7k5PQCJxlNdff52ffvqJp556ivDwcC5dusQ777xDkyZN+PXXX2nQoIHN65YuXcr58+dtnps0aRK7du0iJiaGf//9l5EjR1K3bl1atmwJgBCC8ePHM3HiRKpVq3bLnk0ikTx4JCcnM3v2bCpXrkyjRo3YtWuXzX6ZmZkMGzaM//u//2PMmDGUK1eOX375haioKHbu3Mn333+PoigAvPnmm6xZs4bp06eTnp7O7NmzCQsL4+mnnzaPN3nyZHr06EGrVq1ux2NKJBIJO3bs4PHHH6dx48bMnDkTb29vTp06xcWLF8199u7dy9ixYxk/fjzVq1dn/vz5TJ48meXLl5v7fPDBB6SlpfHyyy/ficeQSJxHSCT3CD/99JPIycmxaDtx4oRwc3MTAwcOtHlNYmKi8PX1FbNnzxaAePPNNy3OBwcHi9WrV5vfR0ZGiilTppjfr127VoSGhor09PRSfBLH+eGHHwQgNm/efEvvc/369Vs6vkQisSY7O1skJCQIIYT4/fffBSA+/PBDq345OTnip59+smqPiYkRgPj222/NbS1atBAxMTHm90OHDhX9+/c3v//xxx+Fl5eXuHDhQik+ieOcOXPGpiwubaRMk0juHtLS0kRwcLDo1auXMBgMdvu9+uqrol27dub3H374oShfvrz5fUpKiggMDBRbtmy5pfMtiipVqoju3bvf0nvk5eVZrXcl9y7SjVxyz9CyZUtcXV0t2mrWrEn9+vX5559/bF4zZcoUateuzaBBg2yez8rKwt/f3/w+ICCAzMxMADIyMpgyZQrz58/H29vbqbnGxcUxfPhwQkNDcXNzo1q1aowdO5bc3Fxzn9OnT/PUU0+Z3an+7//+j6+++srmeEajkddee42KFSvi7u5Ohw4d+Pfff6367du3jy5duuDr64unpyeRkZFWrqLR0dEoisLRo0cZMGAA/v7+PPLII+bzH3/8MREREXh4eBAQEED//v25cOGCxRht27alQYMGHD16lHbt2uHp6UmFChV44403rOaUnZ1NdHQ0tWrVwt3dnZCQEJ588klOnTpl8XyLFy+mfv36uLu7ExwczOjRo0lJSXHsA5dI7kHc3NwoX758sf1cXV3N3jYF6dWrF4CF/CtKphmNRiZMmMArr7xCxYoVnZpramoqL774IlWrVsXNzY2KFSsyZMgQkpOTzX0uX77M8OHDCQ4Oxt3dnUaNGrF69Wq7Y65YsYKwsDDc3Nxo1qwZv//+u1WfY8eO0adPHwICAnB3d6dp06Z8/vnnFn0++ugjFEVh9+7dPPfcc5QrV87i+bZv307r1q3x8vLCx8eH7t278/fff1uM8cwzz+Dt7U1cXBw9e/bE29uboKAgJk2ahMFgsOhrNBpZsmQJDRs2xN3dnaCgILp06cL+/fst+jkiSyWSB4H169eTmJjIa6+9hkajISMjA6PRaNWvKPkF6vqlYcOGPPnkk07d35G/Wb1ez5w5c8wyqWrVqkybNo2cnBybY+7du5fmzZvj7u5O9erVWbNmjVWf1NRUJk6cSKVKlXBzc6NGjRq8/vrrFs9eMI/F4sWLzfc/evQo4JwM/Omnn3jppZcICgrCy8uLXr16kZSUZDWv7du3ExkZiY+PD2XKlKFZs2asX7/eoo8j60mJg9xpbV8iuRmMRqOoUKGC6Ny5s9W5ffv2CY1GI37++We71pQOHTqItm3bihMnToj//e9/wsPDQ3z88cdCCCGmTZsmmjdvLoxGo1NziouLE6GhocLT01NMnDhRLFu2TMycOVPUrVtXpKSkCCGEuHTpkggODhY+Pj5i+vTpYtGiRaJRo0ZCo9GIrVu3mscyWbYbN24sIiIixFtvvSWio6OFp6enaN68ucV9d+7cKVxdXcXDDz8s/vOf/4i33npLhIeHC1dXV7Fv3z5zv6ioKAGIevXqiSeeeEK899574t133xVCCDF37lyhKIro16+feO+990RMTIwIDAwUVatWNc9dCNUDIDQ0VFSqVElMmDBBvPfee6J9+/YCEF9//bW5n16vFx06dBCA6N+/v3jnnXfE/PnzRfv27cWnn35q7jdixAih0+nEyJEjxbJly8Srr74qvLy8RLNmzURubq5Tn79Eci9SlGXbHjt27BCAWL9+vblt+PDhokGDBuLQoUPi559/FuXLlxdz584VQgixYsUKUblyZZGZmenU3NLT00WDBg2EVqsVI0eOFO+//76YM2eOaNasmfjjjz+EEEJkZmaKunXrChcXF/Hiiy+Kt99+W7Ru3VoAYvHixeaxTLK4cePGokaNGuL1118Xb7zxhggMDBQVK1a0+Hs/cuSI8PX1FfXq1ROvv/66eOedd0SbNm2EoigWcvLDDz80y7TIyEixdOlSsWDBAiGEEGvWrBGKooguXbqIpUuXitdff11UrVpV+Pn5iTNnzpjHGDp0qHB3dxf169cXzz77rHj//fdF7969BSDee+89i8/jmWeeEYDo2rWrWLx4sVi4cKF44oknxNKlS819HJWlEsmDQO/evUWZMmXEt99+K2rVqiUA4eXlJcaMGSOysrLM/dauXSs8PT3FN998I06cOCHatGkjOnbsKIQQ4u+//xZubm7ir7/+cvr+jvzNDh06VACiT58+4t133xVDhgwRgOjZs6fFWFWqVBG1a9cWwcHBYtq0aeKdd94RTZo0EYqiiCNHjpj7ZWRkiPDwcFG2bFkxbdo0sWzZMjFkyBChKIqYMGGCuZ9JJtarV09Ur15dLFiwQLz11lvi3LlzTsvAxo0bi/bt24ulS5eKl19+WWi1WtG3b1+L+X/44YdCURTRoEED8dprr4l3331XjBgxQgwePNjcx9H1pMQxpLItuadZu3atAERsbKxFu9FoFM2bNxdPP/20EMK+6+KhQ4dExYoVBSAA0bt3b2EwGMTp06eFh4eH+OWXX5ye05AhQ4RGoxG///671TmT4j5x4kQBiB9//NF8Lj09XVSrVk1UrVrV7GZlUrbr1q1r4VK0ZMkSAYjDhw+bx61Zs6Z49NFHLTYHMjMzRbVq1USnTp3MbSZl2/TZmDh79qzQarXitddes2g/fPiw0Ol0Fu2RkZECEGvWrDG35eTkiPLly4vevXub21atWiUAsWjRIrufxY8//igAsW7dOovz//vf/2y2SyT3IyVRtjt27CjKlCljobxduHBB1K9f3yzTWrduLdLT00VqaqoICgoSGzdudHpus2bNEoDF4s6E6e948eLFAjBvVgohRG5urnj44YeFt7e3uHbtmhDihiwuW7asuHr1qrnvZ599JgDxxRdfmNs6dOggGjZsKLKzsy3u17JlS1GzZk1zm2mh+cgjjwi9Xm9uT09PF35+fmLkyJEWc7506ZLw9fW1aDcttGfPnm3R17TRaeL7778XgBg/frzdz8IZWSqRPAiEh4cLT09P4enpKV544QWxZcsW8cILL5g34k3o9Xrx5JNPmuVXpUqVxKFDh4QQQnTu3FmMGTPG6Xs78jf7559/CkCMGDHC4vykSZMEIL7//ntzW5UqVQQg9uzZY267fPmycHNzEy+//LK5bc6cOcLLy0ucOHHCYswpU6YIrVYrzp8/L4S4IRPLlCkjLl++bNHXWRnYsWNHizXgiy++KLRarUhNTRVCCJGamip8fHxEixYtLDY5Cn4WzqwnJY5xx5XtxMREce7cOauXRFIc//zzjyhTpox4+OGHLRZYQqhKnoeHh5UwsxUnmJWVJX7//Xdx8uRJc1uvXr3EoEGDhBBCbNmyRYSHh4uqVauKmJiYIi3dBoNBlClTRjzxxBNFzr1WrVpWlmkhhJg/f76FEm1Stt944w2LfgcPHhSA+Oyzzyzer169WiQlJVm8RowYIdzc3MwKvEnZ3r17t8WYixYtEoqiiJMnT1qNUbduXfPushCqsu3t7W31WfTo0UM0btzY/L579+4iMDBQ5OXl2f0sxo8fL3x9fcXly5et7uvt7W31z08iuR9xVtl+7bXXbFpdhVCV3D/++EP8/fff5r/7F198UTzyyCNCCHWDq3nz5qJixYrihRdeKDY2sH79+qJRo0ZF9uncubMoX768VTzmhg0bLJRokyx+7rnnLPpdvXpVAGLJkiVCCCGuXLkiFEURc+bMsZILplj1ixcvCiFuLDQL5t8QQoitW7eaF8qFx+jcubOoUaOGua9J2S682B0/frzw9/c3v3/++eeFoijiypUrdj8LZ2SpRPIgUL16dQFYKcujR48WgJVCevLkSbF//36zQvjZZ58JPz8/kZSUJC5evCgee+wxERISIh577DERFxdX5L0d+ZudN2+eAMTRo0ct2hMSEgRgoURXqVJF1KtXz2qM8PBw0atXL4v3Xbp0sZIB3333ncXGpEkmDhs2zGK8ksjA//73vxZjmGSgyRtg8+bNAhDbtm2z+1k4s56UOMYdyUZ+5coVXnjhBbZu3UpeXp7FOSEEiqJYxUhJJAW5dOkS3bt3x9fXl08++QStVms+d+3aNaZOncrkyZOpVKlSsWOZYmBMfP/99+zYsYPjx49z/Phx+vfvz/Lly6latSpPP/00lSpVYtiwYTbHSkpK4tq1a3Yzo5s4d+4cLVq0sGqvW7eu+XzBMSpXrmzRzxTTZIppPnnyJABDhw61e8+0tDSLWKjC2dVPnjyJEIKaNWvavN7FxcXifcWKFc0ZkAvO69ChQ+b3p06donbt2uh09kXNyZMnSUtLo1y5cjbPX7582e61EsmDyKZNm5gxYwbDhw9n7NixVuddXFx46KGHzO+PHTvGe++9x88//8zVq1fp3r07U6ZMoV27dgwbNozXXnuNmJgYu/c7deoUvXv3LnJO586do2bNmmg0lqlgCsq0ghQn0/7991+EEMycOZOZM2favOfly5epUKGC+b0tmQbQvn17m9eXKVPG4r0plrPwvArmjjh16hShoaEEBATYHNN0X2dkqURyv+Ph4QFgURUBYMCAASxfvpxffvnF4u+lRo0a5p9zc3N5+eWXiYqKIjAwkNatWxMSEsIXX3zBggULGDBggN1KDuDY3+y5c+fQaDQW9wUoX748fn5+xcovsJYVJ0+e5NChQ1YyxUThtU1h+VUSGVicXDXlyilqjVqS9aSkaO6Isj1ixAh2797N1KlTqVevnlXSK4mkKNLS0ujatSupqan8+OOPhIaGWpxfuHAhubm59OvXj7NnzwKYS0ukpKRw9uxZQkNDbX7vDAYDEyZMYMqUKVSoUIE5c+bQsmVLs3I9evRo1q1bZ1fZvlUU3EwoiBACwJxs480337RYZBekcJI30z8/E0ajEUVR2L59u837Fb6+uDk5itFopFy5cqxbt87meXv/qCSSB5Fvv/2WIUOG0L17d5YtW+bQNS+++CKDBg2iSZMmrF27loCAAKZOnQrAK6+8UqyyfStwVKZNmjSJRx991GbfwgtjWzINYO3atTYT0RXeBLQ3J2dxVpZKJPc7oaGh/P333wQHB1u0mzbZi0qG+tZbb6HT6Rg3bhwXLlxg7969nDlzhqpVq/LGG29QvXp1Ll686HTSR1sUNiDYw5H1j9FopFOnTrzyyis2+9aqVcvivT355YwMLI11WUnWk5KiuSPK9g8//MDbb7/NkCFD7sTtJfcw2dnZPP7445w4cYLvvvuOevXqWfU5f/48KSkp1K9f3+rcvHnzmDdvHn/88YdNIfL++++Tnp7OpEmTAIiPj7dQ5kNDQ4mLi7M7v6CgIMqUKcORI0eKfI4qVapw/Phxq/Zjx46ZzztDWFgYoFpqOnbs6NS1BccQQlCtWjWrfwIlJSwsjH379pGXl2fXmhMWFsZ3331Hq1atrP7ZSCSSG+zbt49evXrRtGlT/vvf/xbpMWLiyy+/5OeffzZbK+Lj4wkJCTGfL06mgfo36ohMO3ToEEaj0cK6XVKZVr16dUC1At+MTAN1QV/SMWyN+c0333D16lW7lrJbIUslknuZiIgIvv32W+Li4qhdu7a5PT4+HrC/qZ6QkMDcuXPZvHkzOp3O3N+0LjMd4+Li7CrbjvzNVqlSBaPRyMmTJ83eOACJiYmkpqY6Lb9M971+/XqJZU9pyEBbcwI4cuSIlaJeuM/NrCcllpSo9Nfff/9N//79zenpDx48CMD06dPZvn17sdf7+fkRGBhYkltLHmAMBgP9+vXjl19+YfPmzTz88MM2+40fP55t27ZZvJYvXw6o5V22bdtm5a4DcPXqVaKionjzzTdxd3cHIDg42LxYBLXETlGlejQaDT179uSLL76wKgMDN3YXu3Xrxm+//cYvv/xiPpeRkcGKFSuoWrWqzU2EooiIiCAsLIyFCxdy/fp1q/O2Sj8U5sknn0Sr1RITE2O1CyqE4MqVK07NCaB3794kJyfzzjvvWJ0z3aNv374YDAbmzJlj1Uev15Oamur0fSWS+41//vmH7t27U7VqVb788kuHNqZyc3N56aWXmDFjhtmCFBwczL///oterzePW1z5sd69e/PXX3+xbds2q3MFZdqlS5fYtGmT+Zxer2fp0qV4e3sTGRnp8LOCqiC3bduW5cuXk5CQYHXeEZn26KOPUqZMGebNm2cVsuboGIXp3bs3QgibngCmz+JWyFKJ5F6mb9++AMTGxlq0r1y5Ep1OR9u2bW1eN2XKFNq0aUOXLl0AzJZx07rMVPawKBnmyN9st27dAFi8eLHF+UWLFgHQvXt3u+Pbo2/fvvzyyy988803VudSU1PNMtgepSEDC9O5c2d8fHyYP38+2dnZFudMn0VprCclljht2f7222/p3r07ERERDBw4kLlz55rPubi48N5779G1a9cix3jllVdYunQpnTt3dmhnXiIBePnll/n88895/PHHuXr1Kh9//LHFeVMt7SZNmtCkSROLcyZ38vr169OzZ0+b48+cOZOGDRvy1FNPmdt69+7N7NmzGTt2LFWqVGH58uVm4WuPefPmsWPHDiIjIxk1ahR169YlISGBzZs3s3fvXvz8/JgyZQobNmyga9eujB8/noCAAFavXs2ZM2fYsmWLVdxjcWg0GlauXEnXrl2pX78+w4YNo0KFCsTFxfHDDz9QpkwZvvjiiyLHCAsLY+7cuUydOpWzZ8/Ss2dPfHx8OHPmDNu2bWPUqFFmi7+jDBkyhDVr1vDSSy/x22+/0bp1azIyMvjuu+947rnneOKJJ4iMjGT06NHMnz+fP//8k86dO+Pi4sLJkyfZvHkzS5YsoU+fPk7dVyK5V3jnnXdITU01W2y++OILc9jLCy+8gK+vL+np6Tz66KOkpKQwefJkvvrqK4sxwsLCbG4+LlmyBIAJEyaY27p168bzzz/PgAEDaNmyJXPmzGHEiBFFznHy5Ml88sknPPXUUzz77LNERERw9epVPv/8c5YtW0ajRo0YNWoUy5cv55lnnuHAgQNUrVqVTz75hJ9++onFixfj4+Pj9Gfz7rvv8sgjj9CwYUNGjhxJ9erVSUxM5JdffuHixYv89ddfRV5fpkwZ3n//fQYPHkyTJk3o378/QUFBnD9/nq+++opWrVrZ3Agsinbt2jF48GDefvttTp48SZcuXTAajfz444+0a9eOcePG3RJZKpHcyzRu3Jhnn32WVatWodfriYyMZNeuXWzevJmpU6dahQMC/Pbbb2zatMkiD0zVqlVp2rQpzzzzDMOHD2flypW0aNGiSMuzI3+zjRo1YujQoaxYsYLU1FQiIyP57bffWL16NT179qRdu3ZOP/PkyZP5/PPPeeyxx3jmmWeIiIggIyODw4cP88knn3D27NliDY83KwMLU6ZMGd566y1GjBhBs2bNGDBgAP7+/vz1119kZmayevXqUllPSgrhbEa1iIgIcy22vLw8oSiKOHDggBBCiE8//VRUqFCh2DHGjRsnKleuLCpXriwGDx4sXnjhBYuXrfT8Eomp3JS9V1EUlY1cCLUEmKurq7lmbEE++ugjUbVqVVG2bFnx0ksvWWU+t8W5c+fEkCFDRFBQkHBzcxPVq1cXzz//vEXW31OnTok+ffoIPz8/4e7uLpo3by6+/PJLi3FM2cg3b95s83kKZy7+448/xJNPPinKli0r3NzcRJUqVUTfvn3Fzp07zX1M2ciTkpJszn3Lli3ikUceEV5eXsLLy0vUqVNHPP/88+L48ePmPpGRkaJ+/fpW1w4dOlRUqVLFoi0zM1NMnz5dVKtWTbi4uIjy5cuLPn36iFOnTln0W7FihYiIiBAeHh7Cx8dHNGzYULzyyisiPj7e5jwlkvsBUxkZWy9THWjT37u919ChQ63GvXTpkvDx8RGff/651bnt27eLOnXqCD8/PzFkyBCRkZFR7DyvXLkixo0bJypUqCBcXV1FxYoVxdChQ0VycrK5T2Jiohg2bJgIDAwUrq6uomHDhlYyqihZDIioqCiLtlOnTokhQ4aI8uXLCxcXF1GhQgXx2GOPiU8++cTcx5SJ11a5RSFUOfroo48KX19f4e7uLsLCwsQzzzwj9u/fb+4zdOhQ4eXlZXWtSV4WRK/XizfffFPUqVNHuLq6iqCgING1a1fzWsiEI7JUInlQyM3NFdHR0aJKlSrCxcVF1KhRQ7z11ls2+xqNRtGiRQvx0ksvWZ37999/RZs2bYS3t7do06aN1VrCFo78zebl5YmYmBjzWqVSpUpi6tSpFmW3hFBldvfu3a3uERkZKSIjIy3a0tPTxdSpU0WNGjWEq6urCAwMFC1bthQLFy4Uubm5Qoji16c3IwNNa8gffvjBov3zzz8XLVu2FB4eHqJMmTKiefPmYsOGDRZ9HFlPShxDEcK5bEbu7u588cUXdOrUCYPBgIuLC/v376dJkybs3r2bRx991Mo1oTC2XHgLoigKp0+fdmZaEolEIpFIJBKJRCKR3DU47cMdEBBgdncrzIkTJywSr9jjzJkzzt5WIpFIJBKJRCKRSCSSewanE6T17NmTqKgoi0zKiqJw6dIlFi5cWGwtznuRf//9lzFjxvDQQw+h0+ns1qdLTU1l/PjxhIaG4u7uTlhYGP/5z38s+uTm5jJ58mTKly+Pl5cXnTp1spmVWiKRSG4VUqZJJJL7CSnTJBLJ3YrTlu358+fz+++/Ex4eTsOGDQF49tlnOX36NLVr1yY6Otrhsf79919OnDhh0+38ySefdHZqt4y///6br776ihYtWmA0Gs016AqSkZFB27Zt0el0vPXWWwQHB3PixAmuXbtm0W/8+PFs3LiRRYsWUaFCBV577TU6dOjA33//ja+v7+16JIlE8gAjZZpEIrmfkDJNIpHctZQk0Ds3N1esWrVKPP3006JTp06iX79+4oMPPrBI/lQUaWlpon379kKj0QiNRiMURRGKopjfazSakkzrlmEwGMw/Dx061GZiqBkzZojq1auL69ev2x3nwoULQqvViuXLl5vbrly5Iry8vMTrr79eupOWSCQSO0iZJpFI7iekTJNIJHcrJaqz7eLiwrBhw1i/fj07duxg48aNjBgxAldXV4euf/XVV7l06RI//vgjQgi2bdvGrl27GD58ONWqVePXX38tybRuGY6UYVq5ciXPPvssXl5edvvs2LEDo9FoUVoqICCAzp078/XXX5fKXCUSiaQ4pEyTSCT3E1KmSSSSuxWnle2//vrLrsD5+uuvLerh2eN///sf06dPp0WLFgCEhobSpk0bVqxYwRNPPGEVP3O3c/bsWS5dukRgYCA9evTAzc2NgIAARo4caVEQ/tixY5QrVw5/f3+L6+vWrcuxY8du97QlEonEJlKmSSSS+wkp0yQSyZ3CaWX7xRdf5JdffrF57rfffuPll18udozLly9TqVIltFotXl5eXLlyxXyuW7du/O9//3N2WneUS5cuATBp0iT8/f35+uuvmTdvHps3b2bkyJHmfikpKfj5+Vld7+/vz9WrV+2On5OTw7Vr18yvtLQ0kpKSEM5VbZNIJBKHkDJNIpHcT0iZJpFI7hROK9t//vknrVq1snnu4Ycf5uDBg8WOUalSJZKTkwGoWbMmn3/+ufncL7/8gru7u7PTuqOYEnHUqlWL1atX06FDB8aMGcPChQvZuHHjTdcMnz9/Pr6+vuaXn58f5cqVIz09vTSmL5FIJBZImSaRSO4npEyTSG4N6QkJ7IqOJj0hwepcwsGDxCgKCYV0Q2fbS0JpjnWzOK1s5+TkkJuba/ecrczihenUqRPfffcdoFrKly1bRkREBA8//DBRUVEMGTLE2WndUUzuRu3atbNo79ChA6BmyTT1S0tLs7o+JSWFgIAAu+NPnTqVtLQ08+vChQulNXWJRCKxQso0iURyPyFlmkRya7iekMDumBiu21C2JSpOl/5q3Lgxa9asoUePHlbn1qxZQ6NGjYod4/XXXyczMxOAwYMH4+3tzSeffEJWVhbvvPMOo0ePdnZad5SwsDDc3NzsnjdtQNSpU4fExERSUlIs4oGOHTtGnTp17F7v5uZW5PgSiURSmkiZJpFI7iekTJNIJHcKpy3bU6dOZdu2bXTv3p1PPvmEn3/+mU8++YTu3bvz6aefMn369GLH8PT0JDAw0Py+V69erFu3jq1btzJ27FiHskreTbi6utK5c2d27txp0f7tt98C0KRJEwA6d+6MRqNhy5Yt5j4pKSns2LGDbt263b4JSyQSSRFImSaRSO4npEyTSCR3Cqct2927d2f9+vVMnjyZvn37oigKQggqVqzI+vXr6d69u8Nj/fPPP+zfv58LFy7w7LPPUr58ef7991+Cg4Px8fFxdmq3jMzMTHMG9nPnznHt2jU++eQTACIjIwkKCiIqKoqWLVsycOBAhg4dysmTJ5k6dSoDBw4kLCwMgIoVKzJixAgmT56MVqulQoUKzJs3D19f33vOmi+RSO5dpEyTSO590hMSOLB8ORGjR+MTEnKnp3NHkTJNInkwuSfk4M0U6T527Jj46aefxLFjx5y6LiMjQzz99NNCq9UKnU4nNBqNOHDggBBCiD59+ojJkyffzLRKnTNnzgjA5uuHH34w9/vuu+9E06ZNhZubmyhfvrx4+eWXRXZ2tsVY2dnZ4uWXXxblypUTHh4eomPHjuKff/5xaj5paWkCEGlpaaXxeBKJ5AFDyjSJ5N7hWny8+CEqSlyLj7dojz9wQESDiM9fPz3ISJkmkdwZipJD9s45216S+99N8tFpy3ZBateuXaLrJk2axPfff8/XX39N69at8fLyMp/r1q0bb731Fm+88cbNTK1UqVq1qkPlGzp06MDvv/9eZB83NzcWLlzIwoULS2t6EolE4hRSpkkk9w6mBES1e/S4ey03dxgp0yQSyd1KiZTt48ePs2XLFi5evGiVfVxRFGJjY4u8/pNPPuHNN9+kc+fOGAwGi3NVq1bl7NmzJZmWRCKRSCQSiUQikUjuI+4Jd3E7OK1sr127lmHDhuHu7k6VKlVwdXW1OK8oSrFjXL9+nRA7H1RGRoazU5JIJJIScy8LcIlEIimMlGkSieR+41728HFa2Z4zZw59+vRh1apVeHp6luim4eHhbNmyhc6dO1ud++qrr2jatGmJxpVIJBJnuZcFuEQikRRGyjSJRCK5e3Ba2Y6Pj+f9998vsaINMHPmTJ544gkyMzN56qmnUBSF3377jQ0bNrBq1SpzRkmJRCKRSCQSiW1c7KzF7LVLJBKJ5PbidEHrNm3acOTIkZu6affu3dm4cSN79+6lZ8+eCCF47rnn2LRpE+vWraNDhw43Nb5EIpEUJj0hgT2vvUZ6QoLVObkwlUgk9xJCCILDw5mWkUFweLg5OZi9dolEIpHcGZy2bM+bN49Bgwbh7u5Op06d8PPzs+oTEBBQ7Dh9+vShT58+nDhxguTkZAICAqhTp46z05FIJJJiEULgFRREm+nTMer1CCFQFMViYVqwXSKRSO5WhNFIenw8B5Yv5+qpUwSEhdFi4kQ8/P2t2iNGj8YnNBRF47RtRSKRSO4qnDWM3C2GFKeV7SZNmgAwduxYu4vSwhnGi6JWrVrUqlXL2WlIJBKJQ8iFqUQiuddx8fRE5+GBMBo59PHHfD58OEa9HoDg8HDazJrFX2vX8sWIEeZ2gL0LFtAjNpbwQYOkXJNIJCXmTiZedNYwcrcZUpxWtletWlUqE75w4QKffvopFy5csFk+bMmSJTd9D4lE8mAjF6YSieRexmLRmL9xWFCeAbSYOJH0uDgreQZg1Ov5fPhwqnXooG4kSs8diURSAko78aKj+SZsGUyKMow42/924LSy/cwzz9z0Tf/73/8yePBgjEYj5cqVs1k+TCrbEonkZhBCyIWpRCK5Z7FYNJ4+zROrVnFg+XJLuaUoNOjXj73z51vJMxNGvZ4Dy5YRGR2NotXeptlLJBKJNfaszrbaEcLKYAKWhhGdhweAXc+fwv3vhMLttLJdGkybNo2ePXuyYsUKfH1978QUJBLJfYYQAmEwoNHpVCGrKHJhKpFI7kkKLxpdPD3RrVvH1VOnLPq5eHjg4ulp1V6YlNOn0Uh5JpFI7iDOhPW1mjKF7JQUK8UZLA0jXkFBAHgFBdk0sBTufycMKSVStvfs2cOKFSs4ceKElQs4wKFDh4q8PikpiVGjRklFWyKRlAqFBXhgnTpEzpolF6YSieSOcDPxjba8cvKyssjLzCQgLMyir732wvhXr47RYJByTSKR3HaczjehKDwydaq1waQAZsNIVBQoCu5+fuyOibkrDSlO29K/+eYb2rdvT3JyMvv376dSpUoEBgZy/PhxMjIyaNq0abFjdOnShV9//bVEE5ZIJJKCmAT4kmrV2DN3Lkc2bGBXdHSpLEwlEomkJJjiG6/bKDVYHMJotF5kCsGRTZtoPHw4Gp2u+PYCaHQ6IsaMkXkoJBLJHcGe1dleWJ9ThhGdDo+AADQ63V1rSHFa8kZFRTFx4kS++uorAObMmcP333/PiRMncHFxoX379sWOsWzZMnbv3s306dP5/vvvOXjwoNVLIpFIisNeXLZcmEokknsVjVZrc9G4b/FifCpU4PGVKy3kl712UOVZj1Wr8AkJkTkoJBLJ7Sff6mwvrO+P2Fgra7RThhG9Hn12Nka9/q41pDi9mvznn3/o2rUrGo0GRVHIyMgAoEqVKkRHRzN37txix0hPTyczM5P58+fTqVMnmjVrZn41bdqUZs2aOf8kEonkgcOmBSgfuTCVSCT3IkaDweaiMfHQIT4dMoSGAwYw/vRp2syYQcMBA6jdowc56ek0GjyYCWfPmtvbzJjBhLNnCR84UG4eSiQSh0hPSGBXdDTpJfDKsYVn2bI2rc5FWq8dMIyENGlCqylTAJh2/TpoNESMHn1XGlKcjtl2d3fHaDSiKAohISGcOnWK1q1bA+Dj48OFCxeKHWPIkCGcP3+epUuXUqtWLats5BKJROII9ixAcGNh2mvtWqp37MiBZctIOX0a/+rVzQvTwu0RY8aoirZcmEok9y+ZCXB0OdQbDZ63t16srVjuwskdFa2WiNGj2btggdVG4pGNG7ly4gTP7NlDZFSUxTWKouATGmqzXSKRSApiL69EaZX4MmUXn5yUZHMDsTjr9b7FiwkfNIjHV660cjNvOHAgPVev5nr+M1w9dYpKrVrRbOxYesTGWnk73mlDitPKdqNGjTh+/DidOnWiQ4cOvPbaawQGBuLi4sKMGTNo2LBhsWP89ttvrF+/np49e5ZkzhKJRALYtwCZOLJxI5UeeYSmY8fKhalEIlHJTICDMVC1x00r284mQiu8kLWVnbfZuHH4hIbaXTS2mDgRFw8Pko8f54OmTRn244+ENGkCqKVTLx06xIetW1u0SyQSSUHsKdWa1CQiQ9RjSSks11pOmmS9gVjAem1rYzHx0CE+GzaMXmvWWBhGKrZsSbOxY62SrR3ZsIGLv/xCz9Wrqdahw11lSHFa2Z44cSJnzpwBYN68eTz++OP06NEDgIoVK7Jt27Zix6hZsyZ6O9niJBKJpCiEEAijUU1yoSh2LUCgLkzr9OyJoihcT0rij1WraPzss+Z/LHJhKpFIbobMfw7Bihgy2zzslBWouJqwQ3buJHzQoCIXjfp8y5At7LVLJBJJUWjSkmkbCklpySW63pZcS/r7b0bu329lpS7Keq3R6Qh79FEAS8NIviJvq8TX4XXrSP7nH7ueP3cKp5Xtbt26mX+uUKECBw4c4N9//yUrK4s6deo45BK+aNEiJk2aRIMGDahTp46zU5BIJA8ohXdLnXEb8gkJoc306TbHlQtTiURSEopamLp4etq9rriasGs6dODFixel941EIrlnsJe01hTW17OQldqZsL5Lhw7xYZs2TElNLbIkWMLBg/y0YAGRUVHM8/K6KwwpTivbs2fPZsSIEYSGhgKqZahmzZoAJCQk8MEHHzBr1qwix5g4cSKXLl2iQYMGhIaG4ufnZ3FeURT++usvZ6cmkUjuY2ztlt7NbkMSieTBxBSrOC0jA6NejxDCUkF2sCbs7++8Q2R0NIlOet94h4QQGRWF903EW0okknsfZ8NcbpaiktYe2biRpKNH6bFqFZHR0Wi0WufD+oRwvMSXTocQojQfr8Q4rWzHxMTQpUsXs7JdkPj4eGJiYopVtiMiIuTOrEQiKZKC7uJGo5Hr95jbkEQiubcojYWpMBrJy8pC56IDdGA0kJeTg4uHh3njz1523sKYa8IqilPeNz4hIbSNji7R/CUSyf1DaSU7g6JjuV08PVE0miKT1oJq4f510SKeXLeONwIDGbxjh1P5JvKyshwv8aXXo8/KcvIpbw1OK9tWO7QFSEhIsLJS2+Kjjz5y9rYSieQ+xEKhNhhQ8ksKWriLnz7NE6tWOew2tOe11yzisotDWoEkEgnYX5g6ooRry/ghjEYQAm1qEprPY+HiKTQVw9D2GA7ulRBGY5HZeQtjrgl7l1hnJBLJg4smLZm21T0tQmYKe/E4LNf0erKuXLF5vsiNRSHITk0tNldPxJgxZKemOvRctwOH/Cs3bNhAjx496NGjB4qi8PLLL5vfm16dO3dmyJAhtGzZ8lbP+a7l888/p0WLFvj4+BASEkLfvn05ffq0Vb/Y2Fhq1aqFu7s7jRo14ssvv7wDs5VI7izCaCQ9Lo7d0dFsGTCA3dHRZFy+bHYXX1KtGnvmzuX4p5+ic3Nz2G2ozfTpTu3gmqxAt8PF6l5DyjSJRFXCf37zTa7bqzvr7oln3XD15+0fo32yJsTOhW82QOxc9f3/1gGwf/lytgwYQOJff910TVi5Ueg8UqZJ7ksyE2B/tHq8BQghKPvYU7A3g7KPPWU2lKTHxbE7JkZdw8XEoM/OdkiulUQRNsk7IYS5WkPh+xTM1ZORVPJs6qWNQ8p2bm4u6enppKenI4QgIyPD/N70UhSFIUOGsHz58ls957uSXbt20atXL+rVq8e2bdtYvHgxf/31F507dyargBvDxo0bGTlyJP369WP79u08/PDD9OrVi19//fUOzl4iubUIIVQLDWq5rsIK9ZENG9gzdy7/bt/OtYsXLdzFi6vFaMJsBZKUClKmSe5XTIswRxZjBS03weHhFjGABRegbuUrIBIvoswZAYZC1haDHmX2cIyXLuDi4cGRDRv4bNgwvIKDeXzlyiIXjEWFwsiNQueQMk1y32IqZ3gLlG2zUj17DlsGDGD/ig9ACJtruI/atME7JOSWKMImeecVFISi0RA+aBATzp6lzYwZNBwwgDYzZjDh7FnCBw40V2u4W3DIjXzo0KEMHToUgHbt2vH+++/LLOKF2LhxI1WqVGHVqlXmf47lypWjffv27N+/n9atWwMQFRVF//79mTNnDqB+nocOHWL27Nl8/fXXd2z+kgec5ATYshx6j4bAki/chBAIg8Eibpr87JQF6y16lStnHX+tKNTv25e98+dbthdTixEcswJJnEPKNMn9SmZyMl4FjvawVQM7YvRofPJz1pjOpcXF0XPlByiffmCtaJsw6NF+tpKGQ6fy+fDhRWbnlckdbw1SpknuFW5HYrPi6mmbQmMKJ6at3qkTaefP28yhk3DwIJ8OHUqvNWuKLVt4sygazT1TrcHpmO0ffvjBZntubq5DZb/uV/Ly8vDx8bH4Jfv6+gKYd8JPnz7NiRMneP311y2u7d+/P5MnTyYnJwc3N7fbN2mJxERyAnwQA5E9Sqxs2yvLZSGoFYUeK1daK9SAi4cHLp6eNt3Fi6vF6IgVSOIcUqZJHlSKqoF98uuvGfHbbxxet858zsXLi56rVsHFokNdiDuNztMTnYcH+qysYrPzSkoXKdMk9wqlmdjMHsXV0/aoUce6jJei0KBfP5trOBOH162j4sMP03Ts2FuuCDuSVO1uwOlt07Vr17J06VLz+yNHjlCzZk08PT1p27Ytly9fLvJ6IQRXr14lJyfH+dnexTzzzDMcPXqU9957j7S0NE6fPs20adNo3LgxrVq1AuDYsWMAVl4BdevWJTc3lzNnztz2eUskpYEtt3AXT0+r3c+iFOqi3MVNVqCGAwYw/vRpu25DktJDyjTJg0pRNbCbjRvHtQsXLDYQAYx5uVCx6FAXKlRHn5lpYdUxZefVaLXsfeMNMpKSpKJ9i5AyTSJxEEXBLbSSVWLaotZwBbn4889oNBoSDx9mnpcXiYcO3VK55ky1hjuB06vTN998E02BRe0LL7yAq6srixcvJiEhgWnTphV5fV5eHuXKleO7775zfrZ3Ma1bt2bbtm1MmTIFPz8/wsLCSExMZPv27Wi1WgBSUlIArDK2+/v7A3D16lWbY+fk5HDt2jWLl0RytyDy3cRt7X7+ERtrIaiLjL8u4C5uK7nGkY0bif2//8MjIIDI6GieXLeOyOhofEJDpaJ9C5AyTfJAkl8D22b1gwJyLahePXqsWsX069eZdv06KBpE79GgteMwqNVheGIEhzdutDplyjfxyCuv2LRiyURopYOUaZL7FWfyUDiEmwcaF1crpdrpHDpC3PWK8O3A6RXq2bNnqVevHgDJycn8+OOP/Oc//2HcuHHMnj2bb775psjrXV1dqVixIob7LJHRzz//zODBgxk5ciTff/89mzdvxmg00r17d4vEGyVh/vz5+Pr6ml+VKlUqpVlLJCWjYMIzYTQ6vvtZjEK9b/FifCpUsJtco8XEibh4eKi1ZwGNdLe8ZUiZJrmXSU9IYFd0NOk2Mohr0lMsjub21CTaVfOwWwPbJNc8y5Vj1P79hHduh271fJg+AM3W5RAYgpgVa61wa3WImbEoQaHsW7LE8p4O5JuQidBKBynT7nNucUbuu5nM5GSLo8O4e9puz8nCmJdrrVQXs4YDmUPHFk5/EhqNhtzcXECN33ZxcaFdu3YAhISEcMVO3bSCPP/88yxatIjs7Gxnb3/XMn78eNq3b89//vMf2rVrR58+ffjqq684ePAga9euBW7sjKalpVlca9pJDQgIsDn21KlTSUtLM78uXLhwC59EIimagiW7Ph02DI1Wa7kwVRRQFLu7nyaF2lYW3qSjR7n466/FZpmU3HqkTJPcy5hiHm2V69JcT7U4mtvTkmkTqtheZJJv1cnKovnYsSjfrLcs8fXGOJSoodBlIOKLszB8BnQZAMNnqO+7DuTTYcNIPHToxv1kvonbipRp9zm3MCP33UJRm4jOYKuUlwVuHuTEX7As46UouHh6sm/JErtrOCnTbON0grRGjRrx3nvvUbFiRd5++23at29vThZx/vx5ypUrV+wY58+f58SJE1SuXJm2bdsSHBxs8UtRFIUlhXZ/73aOHj3KE088YdFWsWJFAgMDOZWviJhigI4dO0bt2rXN/Y4dO4arqyvVq1e3Obabm5tMyCG5K7BKGqQodH/3XQLCwggOD6fFxIk07NcPnacnxrxcWr7yCie//pqEgwfNYziahdcnNPRG0iCDAUWjkcL7NiJlmuS+xj3Q4q158dlrIBgMRIwebV39QAiuXbhAgK+n7RJf29ehnPkH8cEexKhoFK0Woc9D0eoQQtDx9dfxr1ZNZh2/Q0iZJrnXcTZxmq2M40VWWVAUsxx0y8vDXaul79atZF29QoOn+qLz9ESfmcnFn38mfNAgWUnBQZxWtufNm8djjz1GeHg4Pj4+FrHX27Zto3nz5sWO8eWXX5oF0++//251/l5UtqtUqcLBAgoFwLlz50hOTqZq1aoAVK9enVq1arF582YLgb9p0yY6dOjwQGdzl9xZMpKS8DId7VT1s4rNVhS1ZuymTTQfP57IWbMQl+PQrp4PF0+hqRiG65OjGfnbb2wbOpTD69aZxzr6ySc0GDiQWt262VWoFUVRS4eB2W1ccvuQMk1yPyKEwK/PVNDMwM9oUC06pvKEK1aQduECoU2b0mzsWHrExqryzmDAxcODvOxsfCtXQvlwnv0SX8cOony0ADEyinleXuYMuYqi3DNlau5XpEyTPGgUzjhur8pCypkz9Fy9muuFlPCWr7xCre7dISkeJX9tp6sYRuUnR4OUaQ7jtLLdqlUrs2U6LCzMIonE8OHDqVGjRrFj3I/ZHMeMGcPEiROZMGECjz/+OFeuXGHu3LmUK1eOvn37mvtFR0czcOBAwsLCaNeuHZs2bWLfvn3s2bPnDs5e8qBjr+5swVqPXuXKcWD5coLq1bOwYOuzs9G6usLXH6OZM9xiEap8tAAxK5Zea9ZQ8eGHufjzz1a7nyaxLBXquwsp0yT3G0IYISMe5Z/lcO0USpkwRL3R4BHC1dOnaD1litlyc/7HH2k4cCB1e/dG56JD4+qGMTcHjaubQyW+FJ3OyjXzXilTc78iZZrkQcZmMlsgODycJz78kEMff2xRWjU4PJzIWbPg649RbKztmBULXQeRfPIkHzRtKmVaETitbAP4+PgQERFh1d6tW7ebntC9yvjx43Fzc+P9998nNjYWHx8fHn74YTZv3kzZsmXN/Z5++mkyMzNZsGABCxYsoHbt2mzbto2HH374Ds5eIrHN9YQEfn7zTer07IlPSIg5MVBBC7Zu0CREQDkrYQyAQY8yeziiWQeajR1L8+efl7uf9whSpknuBQpuCBblVimEEU6uRdk9AkSBReOfCxCRsVRpPRBl8zL46yd0FcOo1G88iqLgcj0FZevyfG+dGohRs1AcKPEl9HqLEl8Fkdl57wxSpknuV+wlfQTMSdCsktnmeye2mDiR9Li4G4p2gXZxOc7KiAKo72cPh2Yd8AoKkjKtGBxSthctWsTAgQMJDg5m0aJFRfZVFIUXX3yx2DHj4uJYvHgxe/fu5erVqwQEBNC6dWsmTJhAhQoVHJv9XYSiKIwZM4YxY8YU23f48OEMHz78NsxKIik5QgiCw8OZlpGBUa/HaDDQfOxY+N86NKZ4RUWBmStRPpxv363SoEfZsgxGRwPYzWApubuQMk1yL+BIDKMQQrVoF1K01ZN6lN3DITgS3D3UZGc1w9GMnIX4eq1VbLZSsTr0GgkfLbAt87Q66D2GrNTUUnxKSWkgZZrkfsVW0seCeSjK5uWak9kWzq8jDAYu/fUXdXr2pEa3bhbtyoroItd2bFmGx8ioW/589zoOrXonTZrEI488QnBwMJMmTSqyryPK9pEjR2jTpg15eXl06tSJhx56iMTERJYtW0ZsbCx79uyhfv36jj+FRCIpVYTRSF5WFjoXHaADo0FdRF65ZLn4dPNQd00dcKtEI93EJRLJHUAYVdfxwoq2+bweTqyEzlNVa83TE+FynO0kaOvfgq4DVRfK2YUsPlodRK2CwBAyjh+/ZY8jkUgkRWGVBK1GDSJnzaJOz570Wr3awjtRqRhGcP/x9Nm0CZF4Ac3q+ZB4ESX6Q4dDZnQeHrfnwe5RHFK2jUajzZ9LyqRJkwgLC2PHjh3mMgugllbo3LkzkyZNYvv27Td9H4lE4hzaMn4IoxGEQJuahObzWEv3ya3LLReXOVmQnQkOuFViNEiFWyKR3FY0Oh2KRgvXilk0pp9WNw7dPaFzP7DnrXPyEEQNgdlroVkH2LJM3UysUB16j4HAENBo7LqQSyQSya1C61vObhK0kIgI6vXpA1+vveGdCBaePBZei1PedWhtV1TIjETljvhz7t27l3Xr1lko2qDWN5w+fTqDBw++E9OSSB54POuGqz9s/xhtQWHs7okydrb1LqcQsGMTPDG8WLdKFFkKQiKR3F6Mej3CaEApU8yi0ae6unEIxXvrfLMRQqrC8/MQI2aiuLgi8nJRdC7qIrUIvENCiIyKwtuBsj0SyX1PcgJsWQ69R6sbVZIisVXKqyButZrbTIKmItSs4oU9dmx58jixtpMhM8Xj0Op3z549Tr2KQ6fTkZOTY/NcTk4OWpmVWCK5/SgKbsGhiMSL1sK4KAv2hsVQrgLMXKkK34IUcKssbhEqkUgktwRFg6g7GhQ79gVFB7VGwI6NjnvraHUgjCR/uRke8VKPBWScPaXaJySEttHRDtXIlUjue5IT4IMY9Xifkp6QwK7oaNITEhxqLwpTKS9NfikvSxRcKta1TIJmPqVQo1Nna+9ERVE9eT6LtVaoHVzbZSTZVvwlN3DIst22bVsURTGXsSiYRVgIYZVV2GAwFDlex44dmT59Og899BC1atUyt588eZKZM2fSqVMnhx9AIpGUEu6eKAoon35gLXSL2uU0uVXGrIHmHe26VUokEklxOJpdvDgKWoAURUF4hSIiV1onSVN00CYWvEJhw5KSeetkW2fiNSnVEonkwcZeEkdHkjs6hc4DjYsbV08V8MrJzyyOoqDztOGxU1TenYJru6btYNsHtzxk5n71/HFI2f7jjz/MP1++fJnhw4fTrl07+vTpQ3BwMImJiWzevJldu3YRGxtb7HiLFi0iMjKSevXq0aBBA4KDg7l8+TKHDx+mcuXKxWY8l0gktwB3TzWm2p775IbF0G2QustZ2PL93SfQZSC06gajotTFqF4PWq20aEskEocprQWoJi2ZttU9Scq3ACmKBlFzMCK0I8o/y9QYbZ/qiHpjwKM8StRQdXEJRcu6Qt46noGBAOajRCKR3BH0WRjzcggIC7PKOK7PzMSYl4umsMdOcZ4832yE00dh1irEqGgUrdbhkJmScL9uUjqkbDdq1Mj8c58+fejfvz9vvPGGRZ/HH3+cyZMn8/777xdrma5cuTKHDx9m1apV7N27l5SUFGrVqsWzzz7LsGHD8Pb2LsGjSCSSEiEEgY+r5SGE0YAyeBKc/vvGwtNEgcRAonlHtZyXLQv2sT9hRGtY+SPUaXJHHkkikdxfOGPxLlzyxuSBpyga1cIdEY2i0SKMBlA0KELAC69DaLUbMi0jHboNLtZbxysoyOIokUgkN4su+RhDn1aP4Og6SpB38R9aTJxI5KxZFhnHdRXDMA55BfHkaJSCHjuOePKcPgply5N94QwegxqR/PIKgnoNLK1HvWnsWcPvJiu50wnSvvnmG7Zu3WrzXOfOnXnyyScdGsfb25vx48czfvx4Z6cgkUhKC2GEzHiUo8vh2imUMmGIuqNR1u5XFetvNlr2/+4TxMuLUYJC1brZGq2aZVzRWO5y2nCrlEgkkpJSlMXbxdPT/LNVyZuwMFVBDw1F0WhQAGHQq7LLoEfRuaqKc1Co7WRnQaEwMgp00ltHIpGUHprcJCIfU4+F0aWepmpbSEk97dSYeQn/4lUl3DrjOKD56WvE6t8Qs2JRCpYtdNCTJ+uH7XjchWs7e9bwu8lK7rSy7e3tzc6dO21ar7/99ltplZZI7mZMmT/7Pg9+ZeHkx7B7uEUMo/LnAjW2MWaNuqNpsnBrdYioVSh+QepiU8lPZCjLeUkkkjuAEILg8HCmZWTkZx23XfJm74IFDNm5k8qPPIKSHI+yZbm5vqyaBTkUNBqSv9xM0H9GWVpuFAX+PSS9dSQSSZE4m29Ck5dM28chKc9WsrMicPe03a7zxCWkBkpyvLXSDHDsIEr0UDUGu3DZQgc8eQzXUp2bp8SM08r2888/z6xZs0hMTKRnz56UK1eOy5cvs23bNtauXUtMTIzN68qUKcMPP/xAREQEPj4+VknVCqIoCmlpac5OTSKRFEdyAqx9EwZMhMx4K0UbAKFH2T0CUaEjyqxVsG6RWkux9xgUR5KdBYaoliBZxkMikZQSemMSVYaqR7C2YLecNAmvcuVslrwJqlePSg8/DNs/hoIWHVBdJ2fFQtdBaMv42ffKuQstOhKJxEFuQ4mx0k94ZqlU2wuPQQj8ek0Glxm4GgywItq2OzjA9nXQ8GHoM9auJ4+z5QwlxeO0sj1jxgz8/PxYsGABq1evNmcpDwkJYfHixbzwwgs2r3v55ZcJyf/yvfzyy0Uq2xKJ5BYgBKJGQ5S9GWps9oH/WCva5r56lKPL1NjGuesQ+jwUrc4xoRsYorqYSyQSSSlhuHaSqs+AxnjV2oKtKPRYuZK98+fbqC0LLSZORFyOQ1NY0Qb1/ezh0KwDHmG1b8/DSCSS24upxFhkj5tStkurWgKAJj3F4mhCCIFvvvLsm5ejVoISwio8psXEiXj4+4PJWyfxIkr0h/aT3Jo49DP0fZ7kL7cS9MZwK08emx4+kpvCaWUbYNy4cTz33HNcvHiRhIQEQkJCqFixIpoiLF5RUVGA+iUaP348Xl5euLm5lWzWEonEOYxGyMlC0al/8opGC9eKEcjpp1E0Wt4IDGTwjh2ENJHukxKJ5M6guZ4KZcC3fF3S4+MtLNguHh64eHpalrwxoSg07NdPTRRkz9pj0MOWZbiPnMWueKjrKzOLSyQPNHYs4Zn/HIIVMWS2efjmle3rqRZHsPbYqdSqFc3GjrUKjwkODycyKgq2f3wj/lpRYMq79jOLm6hQXc21YzBIT57bRImL32o0GipXrkyLFi2oXLlykYp2QfLy8ihXrhzfffddSW8tkUicwWgEBOQmwZ9zYedAMORAmWIEsk91EAb+78UX74psjhKJ5EFHwSOkLgeWL7ewYOdlZZGXmUlAWAGZpii4eHri4ulpu75sYeJOo+hc+CnVA6OfE5nFZdiMRHL/YbKEJydYNOuunqTt4+qxMJrUJCJD1KMj7YUxeewsqVaNPXPncmTDBlw8PUk7f94qPKbt7BiUK5csE50VzCyutWNL1erUOGzFefVPljksOSVWtkuKq6srFStWxGAw3O5bSyQPHkKAgpoI7b814Y+5cGo9/Lse6gwHxY5AVnRQZxQIhTbTp5dO/JFEIpHcBBqNB1oXN2sLthAc2bSJxsOHE9KkCT1WrWL69etMy8jglcuXMeblOmTtEXo9+qws63NFKdSmsBmpbEsk9z0aYypE5B8Ln0tLpm2oenSkvSAi303cQqlWFBr068cfsbGW4TGKQq1u3VC2Lr+haCuKmjht4xIoV0HNLF5Y4S6QWbwkcdiyzGHJue3KNqhJ1hYtWkR2dvaduL1E8uAgBFy/CHtGWMZnH14MXhUgcqW1wq3ooE0swrsC4rZOViKRSIpCwZCXY2nBzmff4sWUqViRkb/9RnjnduhWz4fpA9Rjbg6i9+hirT1Zqam2z0uFWiK568lISrI4OsSFP2F5W/V4BxFGo5XHjr3wGBdPTzQurqq3Ts1wmLUKfrwOezNg1c/w10/QZQB8dgqGz1B/Hj4DvjgLXQYWn+TWHiXw4rkXamDfDkoUs32znD9/nhMnTlC5cmXatm1LcHCwRcI0RVFYsmTJnZiaRHLvk5kAR5dDvTHgEQTHPrBOhHb1EPwwBNqtgdD28M8KSD+tuo7XGoHwqQgCmYVSIpHcVmy5XAohqNB1MpVdZmA06IkYPZq9CxaYk6O5eHjckFX/W4e2UCI0U31ZZsVaZyMvYO0RV648UAtAieR+IjM5Ga8CR4e49Dcou9VjpYdu3eSKQuuCRqu1UqpthseYMBqgbU+IWQ0ZcXB4vpqHp0wY1BquejQa9DAqGrTa0sksXoLkt/dCDezbwR1Rtr/88kvc3Nxwc3Pj999/tzovlW2JpOSkHtrGtasfUsYYil/zUfYToZ3aCClHoeUSaBqt1s3Oy8GYm4siAAVZNUAikdxWNGnJtK3uSVK+y6U5YdCKFaRduEBo06Y0GzuWvlu3knX1Cg369kXn4YlRn6smgdyw5EayIDcPyMkqur5sgTqyXkFBD9QCUCK502QkJeFlOta507O5QUnmpTGkqC7mhpTiOxfEkIfRYLBWqguEx5g3F4G8zEyMBiNKxz4oJ9Zaey7+uQDarETUGgxGgfKIl8wsfocpFWU7MzOT+Ph4wsLCHFqcnzlzpjRuK5FICiGEwLfFaPyU5xDCgDAaUYJbwakNti+4egjidiLKt0ZRwChAjwYXRUEpqauRRCKRgP3atnbaLevI5iGMRk589RVZV6/QesoUdJ6e6DMzST52jFqPdYeMeJQjqkVHUyYM6oyEj35V3SjrN1djGLMz1aRBGxbDJ+9Dn7EwciboXEGfC1pZR1YiuVOUyBpdFIVqUxdHVkoKHgWOJtKunORyZ3C7chIvHnVorKLiuYtD0WgsPXby2bd4MeGDBvH4ypV8MWKEek4IrsXH4xuotVa0QX2/ZwRU7IgBX3Qys/gdx+nV9MKFC4mJiTG///HHH6lQoQK1a9emZs2anLJVekMikdxyhDCSmxPH2bPRHD06gLNno8nNi0fUHws17OxoKjpEvTGoPkeYM/hKRVsikdw0djL62moXRiPpcXHsnj2HLQMGkHj4MFkpKdTs0oWGHduiW70Aooeh+/JDAuvWgZMfo2yolp/0cYN6/H2aGo9Yu4bqVrlzgHqMbAdr9wNCPf/XVljlBX9sloq2RHI/IASBDz8Fz2aoR+FYxpns/DwN2YXyNeg1qZzrrB5vFo0hBR72tG3xzt8cUBQFn9BQesTGotHdsIMmHjrEZ8OGET5oEBPOnqXNrFlEjBlDmdAQlKPLrRVtE0KPcnQZWnf7JZY9atXnbM1IPGrVv6nnkxSP05btlStXMnnyZPP7l156ifr16zNlyhTmzp3LtGnT2LRpU7HjJCcn89Zbb7Fv3z5zre7/+7//Y8KECQTJTHcSSbHk5CSQkLCKChXGodP5kJi4luPHRyAKCN/z5xdQu3Yswe1Wo6T8A1cO3hhA0SHargLPEHLiL+Lery5XpKuRRPJgY875MBo8HYxdtmfBzkmCiPxjEZhK3pgz8SoKPWJj0bm4wE9fo0m/CsOmqJZqgx4lMx52D7dcaAaEQ9sP4d+PYbdtt0p6j1FjHY0G0Etrj0RS2qQnJHBg+XIiRo++fVVMhBEy41Xl89oplDJh+fIr9EaJKwdlkQmNId3iaCJPc52z5Tzx1F93bGpC4P/ESOgzDv+8HIQQKIqieiH2mgwuM/A1tWs0hA8aRLUOHTiwYgUZiYl4BQcTMWqUWRlvGzULRaNVB7cXImgi/TSK1kUNp7GBd/2H8N6wy6HnkNwcTivbFy5coEaNGgDExcVx4MABdu/eTevWrdHr9YwdO7bYMfbt20eXLl0wGo107NiRWrVqkZiYyNKlS1m6dCk7duygRYsWzj+NRPKAIITAxSWIqlWnqxbt3HgrRVvtp+f48eH4+3fAtccelD8XmBOhiTqjwCsUBGQeO4y7dDWSSCSZCXAwBqr2cE7Z/iAGIntYKtu5yeoCN9ey5E3BeEjP2tYlb1w8PHBxd8eYmoymVdf8BEAL1MoKbd5XNwMKW3QaTlT7FVa0wcKtEs9Qpz4OiUTiONcTEtgdE0PtHj1uj7ItjGpp08Kbb38ugMhYqDkIFA1ZiSfxiEA9FnYLt+F6roh0i6N6L0HQEzEoLgsQeTn5pVXte8aY800sX87VU6cICAujxcSJePj7W+Sh8K1UiYhRo/AJDUXRaCyUamE0gKJBQajy7Z/lcO00tF2lJkMrCp/qCH0uSo6NcoaS24rTvqIeHh5cu3YNgJ07d+Lt7U3Lli0B8PPzIy0trdgxnn/+eerXr8+FCxfYsmUL7733Hlu2bOH8+fPUr1+fcePGOTute4Zjx47RqVMnvLy8KF++PK+88gq5ubl3elqSewhVuY7j3LkYjh4diBB5xMcvt1K0b/TXEx+/DHTuGB+aAe3XYXxoBnmaAECNzTZcS72tzyC5v5By7cEmx5DEmc7q0RGyE09ChHq0Knmj0eDi7Y0wGtGU8YeL2xGXdiEaT4F2qxAaHaJCB9WSbUaBsH5wLLZIt0qOLgOMN/WskgcDKdPuXtITEtgVHU1eZibY8nIB9f3u4ermoRC23cWFwO/JyfBshnosyvXcaISkOJSVr0H0MPWYFKe2F0LrW87srbOkWjX2zJvH6W+/5fiXX+JWpgzHv/yS0zu/o/XUKfT88ENaT53C6Z3fkXr2LEIYUTLiUA5Ew84BKEeXqYr2yY/BHDazHv5dD3WGW5duNaHooN4Ysi+ed+qzldwanLZsN2/enAULFqDRaHjzzTfp2rUrWq3q0nDq1CkqVKhQ7Bh///03mzdvpkyZMhbtvr6+TJkyhX79+jk7rXuClJQU2rdvT82aNdm6dStxcXG89NJLZGZm8s4779zp6UnuQoQQgBFF0SKEAVBITPyY48eHI4QejcYTjWYdWVlFuxNlZZ1WxzAvNDVqbLaMV5TcJFKuSXKNyZzrDIHGZKwiBG1YjQzEc/6JyrjnJJlL3tTr04f2814joEaYWd4Jgx4qdyU3J474C/PJyjqFh0cYoSEjcX1yP8oPQ9SqCjoP9T4OuFWiaMGtHBwAWgSW1kcguY940GSaPdfvolzC74i7eD7XExLYPXs2kTNnwMGi45Y5ukyttmJ1zgHXc0DnW0FVqPd+hbh2BZ6dguLmicjJhG//i1KmLDzSHTQa8jQZnAsJpFytxqTHx3Py66957ujfFjLNaBDU6tYVDNkoOlV30rpqCX/6KRQXD2srfcVOcP289YbC4cWq1T5ypbU3j6JTLd+eIWSd2o5tJ3L7eAYGWhwlN4/TyvbChQt57LHHePzxx6lSpQqvvfaa+dymTZvMVu6iqFGjBqmFkhGYSEtLo3r16s5O655g2bJlXLt2jW3bthEQEACAXq/nueeeY9q0aYSGSvc2yQ1M7uHx8cvJyjpFpUqTcHEpZ1a0AYzGLAyGTDw8inYn8vCojhAGEo8c4cNHHmHYjz8S0qTJ7XgMyX2OlGv3KCWJzbZHborlEXWjUDTpg6bZQIyGHJQCsYpBveegKPPMFRPaz5uHX5XK5ObEc/ZsNFlZp/D1bUVo6FiLzUUT588voHatlQS3W4OSchSuHlZjsB1wq0QYwLWsqmy7yfwwEmseNJlmz/W7KJfwUnUXd3cugziooSaKVuf4BptWVXe0vuUccj3X+VZApwvEu2o7SE9BtOpCbm4C8fEFNv06jMTVNQQlOwPh4U1Q77koynyEMKDLzqX3hvUWMs3DI4yKFSei0/mTm3eV+PMrLTcQqYhycUeBOeV77Pwx33pD4eoh+GEItFsDoe3hnxXmEEHqjVFluqLBzVV9bmcUZ6/8vFleDubP8g4JITIqCu/bvOlyL+G0G3m9evU4ffo0SUlJnDlzxhy/DfCf//yHhQsXFjvGm2++SVRUFLt377Zo37VrF9HR0Q6NcS+yfft2OnbsaBbeAH379sVoNLJjx447ODPJ3YYQRhITP+bXX6tx7txcLl/eiKdnHRISCruLCy5f3kRIyHAUO+5EiqIjNHQMCAXv8uVpOXmyFIqSUkPKtbuA5ARYHm2d9bsoMhPg0JvqsQAZSUkWR4fIS0Wj8YS8VKBAqMv5uRw9OoBz5+ei11+1WTEhLy8JvyqVVXm3zyTvNqDReJKTc95K0VbH13P8xAhyc+IRDScAAk5tcsitsgTLHskDhpRptwkhCHzsKdiboR4LuXGb3MXTE6zlWl5Wlur54ugGm0GVIW61mhften7+a4TRQLn2U3jkkSQ8q7RAlPEnMWkDv/4WZpZP587N5dffwkhL/wXh4WUh1+Ljl6Fzd7OSacnJn6PVliExcS2//lbDcqx9YSQmrkW0/fBGiExxHjunNsLWpur5ptHQfh2i8QwL67yzinNJ8AkJoW109G33cLiXKPF/nbJlyyKEID4+Hn1+rFXDhg0dyiQ+efJk0tLSaN++PQEBAdSuXZuAgAA6dOhAWloar776KuHh4YSHh9OoUaNix7ty5Qrbt29n1apVvPvuu2zcuJE//vgj3wX37uHYsWPUqVPHos3Pz4+QkBCOHTt2h2YluRsQQpgXlDcSnt1YZGo0Hmi1njbdxS9eXIyrawVq115ppXArio7atWNxdQ0BRZFCUVLqSLl2F2CvxJY9hFAXdM9mqMcC/yszk5MtjjdOJMD+aCvlXAiBV7PJtGmTgVezV2xsFBZaZBZYfJ47N5crV7eTk3OxkFKtUK5cPxISYovORXFppVrWsMYAyMsE70qqZaqwwl3ArVKW+pIUh5Rpt4DCG4LmGOg5MH2AeiwUA22ynl+3oWwjBFkpqapnjsMbbAquleraTrAI0PJtRIf15OYlmhXn69f/Iicn3uamn6dnPcqUedjhjcKKFSeSmxtXRDLbghuIgD6reI+dq4cgbqcqwld5kbr1TSnj7kKcdiMH+Oabb4iKiuKPP/7AYDDw22+/0aRJE0aNGkVkZCQDBxZdOigiIuKmY0XT0tJYvXo1q1ev5s8//7RSrBVFwdvbm169ejFy5EhatWp1U/crDVJSUvDz87Nq9/f35+rVq3avy8nJIScnx/zelKDOUU5cUvtXD/REl1+/73JaNqlZufi4uxDi52HVt7KfJ+7uat/k69lcvZ6Lh6uGSgHeJep76vJ1DEYjoX6eeOf3Tc3I5nJ6Lq46DVUDS9b3bPJ1cvVGyvm44uflDsD1bD3xqZlO9dVqNISVu9H3wtXrZOUaCfB2JdDb+b7Z2XrOp6rZvWuVv5GbICE1i/TsPPw8XCnnq/a1dBc/TZ06q6wSnhXlLp6RcYhjx4ZQp84a/Pzak5Cwgqys03h4VCc0dIyqaAtQNEqRv/sLrkEkZAh8svXm32dpfE9s/T5L43ti+n3e7Pek8O/zZr8n9n739yslkWtSppWyTMvKwy+/rajvqk6jobyvu1o6Kz9WkTJhiLqjUbxuWEPS9J6cu25EuZ5943udeoHrB5eT5t2JsDrqZp0QRnJy4klIsB/qAkUtMhXKlevL+fPzLdqL2lwsSFbWaRStG7RfB3k5iLw8lJqDoEIHNVbTVHmh3hiUfLfKy2nZpKXkEKD1pmyBsaRMU5Ey7c7INLhzcq2gIlDw+2p+lmw96ZeuWX0HU/1COJ2ah0+23vx9vZatJ8W/AhfS9RTc0j936hya1e/hG9mbMgHBsP1jmD3cbHEG4KMFMCsW0XUQ565mkpN941zB76tpZhlJSXjUqQ2RsSiFLdWKDhG5Kv/vXl37pFEWX52bbUtxtT6I+s8XKqGqULv2Siv5ZOKGXLPeKLS+xl77DUwbiFXDpqqW94IeO38usL1BkL+hkJeeyrVsHSkuGvwLnD4hfNENmkOobxDu+W3FyqpsPd6O9pVyzSGcVrY3bNjAoEGD6Nu3LyNHjmTkyJHmc2FhYXz44YfFKtsfffSR0xMtyLx581i4cCH+/v489dRTREVF0ahRIwIDA3FzcyM1NZWzZ8+yf/9+tm/fTocOHXjkkUd4++23qVev3k3d+04wf/58YmJiSnx958U/AhA7JIIO9crnt+0mNUuPi0bh5LxuVn1jetRlaEs1dr7r4h9Jup6LVqNwykbf59pW55UudQHo9e7PXEjJQlHgzPzu5r4dFqkhA/2aVuT1Pqq3wlPL93Hy8nUU4MwC676d6pbjg6HNABj20QH+uJAKwNkCfdsuVPu2qObPptFqvoDn1h1gz8lku30bhJbhy/GtAZi69RBfHEqw6tvmjd0IoFpZT36Y3A6AN3f8w+qfz1v1jXxzN0YB5X3d+HVqRwBW/XKWN745bj3umz+g02jwdNVwYGZnsxWo+IRnN9zFz59fYCWsL1/eSGbmCR56aDdVq0bfSDBkBINBcDYlkxpBPvmf7y7Scwy4ajWceK2reYzWrVfBEYVFdRN4MqISAF3e3sPVjDx0GoV/bfzuX3m0Ns+1U0NJHlu6l0tpOWgUOG3jdz+0ZWViejQE4Kn3f+HMlUy7v/vHw0NYOkCNKR8U+ztH4q9ZfZam32ebmoGsGa6WChz98UH2nUmx27dxJT+2Pa9uvL246Q++/eeyVd92C9Xffc1y3nz7UiQAc778m037L1r1bfPmboSASv4e/PhqewDe3nWS93adtuoruYGUaaUr0x7yh0/z2+zJtNFrD/LFuFaIEx+j7LFcmCoFYhW1Xn48Gvcel84HUP7PvapMEwKXco0JHJWAT14eCIFAFIqntrcwtb/ItKdUO5uLQlG05AgNXxy6RJ+mlcAzFNF4BorOjZy8PBLScqjqpW4kmGSaV+tV/F1gLCnTVKRMKxk3K9Pgzsm1n5+6oRYXlGsT89Mnjdl1lTOf/2j13d42agXbdiTT6cIfZrn20t4U/h61nE+3J3E28sazRW5LhjYfslrvR2RyvLWiDer72cMxRLTntwtGVu5JwWQmKyjXfumrzleflcWEjX/xVt+BiJD26I4tN2+w6euMRvEMQVsg2VmX8wvZlZeHmw1LsWj2Grk5liVUi970sy3X7F3j1AaizhO0HmDIKj4RWmQseIYwZ+NPrD2/Hk8lh6MFxuu8+hjQmFeO5fBc/q+5OLn27EMBzBoZBYEhUq6VEk67kc+ZM4eJEyeyYcMGnnnmGYtz9evX58iRI6U1N7vs2rWLrVu3curUKRYsWECPHj2oUqUKXl5e6HQ6AgMDadq0KWPGjOGzzz4jISGByMhIdu3adcvnVhT+/v42S6OlpKRYxAYVZurUqaSlpZlfFy5cuJXTlNwihBAcntWJf+Z04adX2iGEsHIXL2qRWZy7eMWKE9BqPUGou7hGvZ5PDsbx+Ls/cTVDliyR3BpKItekTLv9DGtVDZERj2aPnVjF/DI5HqG1zc2d6gXnZ+2NQ/vHbNg5ALc/ZyP0mQ6HuhS1yLQv7xzPRWGIP86Quf+h9qwdTNt2xHSS7O8/oO7M7dSeuYOD51JsjiGR2ELKtFuDokDLWuVhy3JrRduEQY9u23KeaORYqNsXf8Xz2Ds/8e1ZjRqv3H4d+odmsvW4kcfe+cmir5tOx56TVxB1C7uea8A3jPgExz0Knd0odGoDUZ+pKtqguonvGgY1BsGAs9B4hho203gGYsBZcx3xH/4uve+bwdMbRkdDoAw3LC0U4WRgs7u7O1999RUdOnTAYDDg4uLC/v37adKkCT/88APdunUjK0sWULdFmzZtKFu2LNu2bTO3paWl4e/vz6pVq6w2L+xx7do1fH19SUtLsyqfZgvpcll831vtRi6MRvKystC66tC6uGHIy0Gj03H2bDTnzs21+H3Vrr0Kf/927NtX08oSVK5cf+rUWUNe3mXi45fdcBcvPwJX94qAQm5KCvuaVSZs2WYyGj7i0O8+ads6st98kYTnFhHep790I79HXJPuBkpDrkmZdpMyLeEf/Eb+H3x8gOtVw21+V4XRoNZu/cNS3ljQeAaiyUyuLffnYvgm6rXqhmKVtVdBPHudsxfmF5JdCq1bX+f8eUfbVezJOy+vcCIi9nP58nor93M1F8UqgoMHovy9net7+3C5xjI8mva98bv/6xsS3n+ajKfXUrHFoxYyLe3oHwRM7EzZ1buhjmqVkTJNRcq0OyPT4A66kZ89wYqICEYdOEBmxVrm72v60UOsiIig/0/7UKrXsfgOJhw8yBsdHqPPlm00ahlh/r4e//k33n/sSQZs20rzyObmOZzb9yvaqf2p+P1ZmD4Avtlg/4PoMgDmruPEr/vZ8HAzRh04gE+9G3LN8+KN+eqr1jJ/X7VfL8T/+nziPKaS0W78je+2EAhDLorOTU2qptGgnFgLe/Itxe6BMCSJo0cHcPmy5bzsr8fsyzV71xS1tgNVrv3f/53FVeOnehsVDoNBUetwa7QIowGBgkaj2kxPrZ2Hb/rrpPi8Ss3B00r0PZFy7dbhtBt5+fLlOXbsGB06dLA6d+jQIapUqVIqE7sf6dq1K/PmzSM1NdUcD7R582Y0Gg2dO3e+Zfe19SUq5+tujhkurm+gt7v5y1nSvgW/9Cb8vNzNfyAl7Vvwj9SEt7vO5tyc6VtQqJSkr3uBvsJoBARGzRXiLn5AVtYpPD3rULXqLLsJz4KDB1G79kqrRWZS0ieUKzeQsmW7UbXKTBSNK8KQA/pcNS4buJZ4mR9OZ1KzbHmHf/eegYEE5SYRUCXILJDt9YWb/92XxvfE1u/zbvieuNvpe79yJ+SalGmF+qa6FNtX0WgdKpOjaF3x9fLArUZdNba7cCykzgNFZ8tSbS/UpegQmBvyLtbCUq7mohhG3bqr8ffvaLm5mJ+LQlE0kJWKtyYbb18dFFBGcAsiZH8KTAyBwjLN3w0M1y3mIWWaipRpD95aLeHsjfaC39f0/GMZdx0hNsbwS02gup+LWYEy9fVPiaOSj6V6UcXXFdLPg14PFYvJIF6hOhgN+GZeITIENKlJFt/XxCNJ5vZKATdKmKYA6DPx1EIF03xt1dNuMAFqDYbQdnDsA0g/ixAGux6FttdjgsuX/0tIyEgruWbvmqLWdqYNRFfXEBQURES0WalWFI057jx183z8s5eQ6j4B/74zbvwuypahbNY1lLKWvycp11TutFxzWtkeMGAA0dHR1KlTh7Zt2wJqMrIjR47wxhtvMHbs2NKeY5HMnj3b7jmNRoOvry8PPfQQrVu3vo2zss2YMWNYunQpPXv2ZNq0acTFxTF58mTGjBlz39VtlKgIoWrAiYnrrJJoVKo0yfmEZ2YLNihGQKMehVGDggIaDe5+fk7XPLwd5SEk9ydSrt0jCEPRWW0DwqHhy+ribmgybkYDHIi2djnXZyGMuU4tTItaZGZmHuXatV8JDh6Ev38HK6UaFFxdQqhSeQYarRtGfQ6K1vVGklW/QMujIwSGQH5MokRSGCnTSp+MpCS8hCAv+RIuvUerydBsuZJrddB7DCgaNGnJtA2FpLRkiy722gG1VJaJouppd9oClbtDo2ng6gHCSGjIaCvFueB6rPCmX1n/R3FxC3Zqo9BgSCc4eDD+fh2IT1h+Q9aFjMLVNRRFABrFrlINQHYyFNJTjT7+FkfJ3YXTynZ0dDR///03nTp1omxZNZdn165dSUpK4rHHHmPKlCmlPsmieOutt8jNzTW7rru7u5OdnQ2Ah4cHeXl5GAwGmjRpwtdff+1QabJbhb+/Pzt37uSFF16gZ8+e+Pj4MGLECF577bU7NifJrUUIQV6erbIRjiY820PVKlEoGp1qwTbqVaUaxZw5GI0Wxd3VvPNpKu8lkdwOpFy7V9CoZXJsZbUN6w/t1kBmoupqfv0iSrsPi7CEK4TasOgUtTA16NPURaYdKzUCXLXlLBI8YjDmLz41xG2L4nTZpVS/Mo6KvV6/MZUK4dAkSj06SmCIGpMokdhAyrTSJzM5GS8g/e+/CGjXFWbFWidJ0+ogapX69+lkxSIhBL69JoPLDHzzchBC2PbMAfX9t72h77+weye8OR5lZzKubqHOeRQa8wCK3ijM8bSUaVcSUfwMuBr9qFpJTeIo9DmQpzcbTMzYUKol9yZOK9uurq589tln/PDDD3z77bckJycTEBBAx44d6dixo9MTuHDhAhcuXKBRo0Z4eXk5ff33339Pv379iIqK4oknnsDb25vr16+zbds2Zs+ezZo1a8jMzGTQoEFMnjz5pjOh3yx169blu+++u6NzkNxihEAY9ShaFxRFWJXxMlGcS5Ga8MzDXANXUXSgu6FUo9VZHiWSO4SUa/cAigKeoWr22oIL0IBwVdH+d32BbLcKtH7XtiVc54GiccHVNZTatVZy/ISthekAygZ0o2qlaSg6DzXhz6lNKH4NcQ1qYrH4zLl2nfjDBwlt0gRFq0Poc8FFC3o9SgF5Z9R6YzRmYtT6WM7HMwSaRlvPU1qvJTeBlGm3BsO1VFWh7DoImnWALcsg7rTqOt57jPr3WlDhdABTThydS/5aSKBate3V0wa1/cRK6DxVVfr/twGlfe+iNwT1ekS+ncOQa+DCr79TNTISDu7BtVyopVKtN6BMHwA7NqnPUyYAJTXfEl+nCcoHexCK1jxfxd3ToQ0Go8YPDoCxk59Tn5HkzuL0Kv38+fOEhITQrl072rVrZ3FOr9cTHx9P5cqVix1nxYoVxMTEcOnSJQB+//13mjRpQq9evWjbti0TJkxwaD7PP/88L7/8skW5MW9vbwYPHkxGRgYTJ05k3759zJgxo0iXc4mkVCgYH3Q9DqXdKrulHkxWoLp111oL9wLu4gUt2BKJRFJiFI2avbZgHeqGL0NmYqGyMkXUd9VngT4T5dyXBFcbgL9fW+IvrSzgDjkSV7eKKDkpcHgJZFxE8aoAtUaAVyikp3Lp3zP8uXo17r6+RIwZoyra+Qvs1G1v4n99PqneUy3cJ43efhbHYpHWa4nk7kWjgaBQxIiZKC6uiLxcFJ2LUxZtbRk/NSeOEGhTk9B8HgsXT6GpWhdGznQoRwXunuDmARsWQ7dBcMCG4nzhFCT/CA+1Zv/775Nw4ABlKlQgYswYdZwmbSA5AWXZbEhJRKnRENFnLKJVN5SdW1TrvUnR1upgwERw8yD925WUiXvRStYVhXtwTTgA7oNqOvw5Se48Tivb1apV45dffqF58+ZW5/766y+aN2+OwWAocozFixfz6quv8tJLL9GhQweLhBNt27Zl8+bNDivbf/zxB7NmzbJ5rmrVqhw+fBiABg0a2CzlIJGUGoXjg3ReiLYfFFnq4fLljfj6PkJo6FiqVp6BonUzu4uDou54apxzpyoR0gokkTwYKBrVwt1kJmhdwV5stt36rgJO/RdRoT3Ktv/DtcHzVA2biqLzzLdgb0S5sANaf6CWqdG5QnYmfLsJUSYQWncnuFEjur79Nsb8BbZSYIFt1PjBvkwry41HtZpwLv8okUjufRSF5C83E/SfUSS/vIKgXgOLv6YAnnXzQ0e2f4x2zogbLukeXjBiWtE5KgB8qkNeDrTrBRWqY7x+DaVJG0TiRTQmxdk/CMMTI1AatiTt7FmajhmDRqvFmJeDoruRO0IEhSJGzULRahEGAygKSjHWe0PaZdBnOvXMMr/OvYnTynZRlcJycnJwc3MrdoylS5cyc+ZMZsyYYaWY165dm+PHjzs8nypVqrBy5Uq6dOlidW7FihXm7OhXrlwhMNCJBCoSiTMIAYXjg/SZ+Uk3rGMbTSiKjsCyPVS3J1PdR0WHEQ0agdnac8uRViCJ5MFBUeDID7BmEPwnybYF6Ooh+GGI6mIe2g7++eBGKZrKXcE9CNFgPMqeEaoyrvNA0WeCokO0XQWuniibl8E/B6BcBQxPjEATrHrrpO7+hoCovlyxscA2av1VN8kulol+PAOD4Fz+USKR3D9kO6dwAqAouAWHqopxQUXbNJ7BCHVG2s5RAep6q+5ohNYFZe46jHm55GXn8MWAAYR17kzDoa+i8/REn5nJ4Y0b+f3dd+n/+efknD9I4l9t8dSPo1yf1wtMRyFlS6GkZoqSb72fgeLihshX0J2NR5fc+zikbB87doyjR4+a3+/atYuLFy9a9MnOzmbDhg1Ur1692PHi4uJo2bKlzXMuLi5cv37d5jlbzJ8/n759+1K7dm0ee+wxgoKCSEpK4ssvv+T06dNs3rwZgJ07d9KmTRuHx5VInMJmfJBAOf8VrlUetxnbqJZ6iMXVrQIIVV9XUI8anc7C2iORSCSlilsQ7LmiLlLtWYBObYSUoxC5CiKi1VCWvBwUfR5Go4AaAzEGt0V7cqVZETfWHoniUxFDTi6aniPQ9H0eY24Ohjw9GkVB0WjUuM2SLLAlEokEwN0TRQHl0w+ss5oLAXu/gsjHoc3KG/W0TSg6aBOL8Arh+Gefs3XgQAJq1GDk/v3U6NqVL0aM4PMRI3Dx8CAvMxONTkePVavwCQkh/duvqHo5kxS/QrkjTBROaqYoXP3sA8rufpWrka9Tts+4Uv8oJHc/DinbmzZtIiYmBlB3b+xlHPfz83MoAVmVKlX47bffaN++vdW5ffv2UatWLUemBUCvXr347bffmD9/Ptu2bSMhIYGQkBCaNWvGpk2beOihhwB49913HR5TInEIIRAGA4pOpy5CbVmH9kehVH6M4PKDrGMb8+OyFSHUjOL5l2i0MjZbIpHcWsyleJIu4WIvSzmoyrZrIHy5Gt54QVWStTqUmSsRjw7g5K6D1Hh0KjoPT/RZmRzesJF/t2+n1ZQplM///4sCLp6ecgNRIpGUHhotXLQTl708Clo/pobClG+rJkPL3xCk1giET0WEQbArKoq8zEwSDx3i0yFD6LlmDdXat+fgihWknD6Nf/XqRIwZg09IiLpRmHbZ6Wkatf7wSybG9reuLJdnvueup/TgvStxSNmeOHEizzzzDEIIqlevztatW2ncuLFFH1dXV8qXL+/QP9ORI0cSHR1NUFAQTz75JAB5eXl89dVXvPnmm06XV2jcuDH//e9/nbpGIrkpjEbIyVIVbXRq3KMt69DVQ/DDYJR2a3DVlbWMy9bnohiM8MM26NBbJkCTSCS3DYtSPO27WmcpB7MFCK9Q2LDkhjXaoEeZMwJjk7ZkXU3hNS9vsxUIVM+cRxcvJu/cYdx2tSKtcLIz30B2xUNdX+uFoVw0SiQSRxAGPUpFO145Jw/BrMEwey3CNRDloRng4gZ5OQi9HmEwsm3IEBIPHTJfcmTjRq6cOMEze/YQGTULjc7FKjbb6O0HqU4karxNyFjuuxuHAkJ9fX2pUqUKVatW5cyZM3Tr1o0qVapYvEJCQhzetZ40aRLPPvsso0aNMte9btWqFU888QSDBw/mueeeK9HDXLhwgZ9//pmMjIwSXS+ROITRCAjITYI/58LOAXDlL6g7+kbcdUFObYRt/4diFChC/RtR8gwo32yGZ/4PGrW6kXFcIpFISpH0hAR2RUeTnpBg87zhWuqNLOUDzqpJzWoMUI/9T0PY0xA1RF28WlyoR/vZShr27w9CWCjaJpfLnJO/2UwA5Fk3HEZF3UhwVACvuuEwMko9SiQSSUGEIPCxp+DH66AoiN6j7Zc//e4TDFcuc/VCHPo8NT+UXm9EuLpzYvt2jn7yiUV3jU5Hi4kTcfHw4Oqujzj7vheXP19omcDRx9/iWBBzWS6NX6k8quT+wekEaaaEYwCZmZlkZ2db9QkICCh2nLfffpuJEyfy7bffcuXKFQICAujQoQM1azqfadRURiwhIQFFUUpcRkwiKRZTYPWJjy3jgFL+hif328jci6qAN5wAWncY0gzOnzS7YhK1Sk1OJt0rJRLJLSDzn0OwIobMNg/jE1JEtQFFg/AMhYhoFI0WhAEO/ggLH7NWtE3EnUbn6UnbmBiuHD9u5XKZl55rsyasT0gIbaOjbY8pkzVKJA8W7p6O9TMaITkeZctyuHgKpVEr6DMWMSsWZfZwy9htrU5t9w9ic6euJB4+bPa+adC/Pz3XrGH8qVMc/OADm+7iIt2TqrGZJE2v6vBj2EvuKJGUKBv53LlzWb58OQn2dsqLKf1lonr16owePdrZKVhQmmXEJJJiEQIyLlon3CiYubdCxxs1bH2qQ52RCO+KcC0VpfXjNktASCQSya1Ak5ZM21BISku2PllgkSuMRvKystC56FBctQgjKL/ttK9oA1SojjAaaD31VTQubtYul3LxKZFI7CCEoOxjT0GvgZTNy0UIYdNDVlvGT1W0t38MBZXqbzbA4V9QolcjmnVAKVBiS/QeAwHBbBs82OwqbvK+ObJxI0lHj9Jj1Soio6PzS3lZlyG8k7j7+UFq/lFyz+O0sv3WW2+xaNEiXnnlFaZPn86MGTPQarVs3LiR3Nxcpk+f7tA4BoOBffv2cfHiRZvW8SFDhjg0TmmWEZM84CQnwJbl0Hu0/XrTioBjH9hOJGQnc68xNxfFKMDHD0ZFqRZtvR60WmnRlkgktx+TK2avgQTq8xBGIwiBNjUJzeexqtVo0CTEk6NRPlpgne0XVMtR7zGgaEjJz7abUijbbmnGX7u6hlClShSurkVY5yUSyT2BMBpJj4/nwPLlXD11ioCwMCJGj8YnNNSq5KlnjTqQHG+paJvYvg7O/IPywR7EqCgUrQ6RlwM6VzIuX7ZyFTeRdPQo3uXLk3PhDB6DGtksQ2gLo0sgu76AuuG3NqeER3BN2AIeLZz39pXcfThtUouNjSUmJoZXXnkFgJ49exIVFcXff/9N3bp1+ffff4sd4+DBg4SFhdG6dWv69+/PM888Y/EaNmyYw/MpzTJikgec5AT4IEY92kOxk3XcxNVDcHiROdmZUYAeDeSXvOHkIXjEC/49JBVtiURy+zEaISkOZeUcmD4AZesKtf1/69A+WRNi56oWo9nDUMoGI2autI6JzHfRJFDN1aIPqMmuLZnoAywXhqWZtMfNLYRq1aJxc5PKtkRyr6It44cwGjn08ccsqVaNPXPncmTDBvbMncuSatU49PHH6uafCf8g3EIrqYYQW5t+AMcOwkcL1ES1q7xI3fYmiqLgFRREj9hYNDpL+VUwr0TWqeNOlSE0ugax+0v16Cj2Nh2LjPGuEA5NotSj5J7HaWX77NmzPPTQQ2i1WlxcXEhNTVUH0mh47rnnHCr9NXbsWHx9ffn+++9JTEwkJSXF4nX16lWH52MqI2YLZ8uISST2SE9IYO8bb9jPOl4QH9W1EgBFo5a8Me3UBobA4Mn2LecSiURihyKTnRUV9+juaemK+Xi1G0q1uyfKpfPWMY8nD0HUEJQuAxBfnIXhM6DLABg+Q33fdZBZrhn9gtidoB4lEonEJu6eeNSoQ3p8PJ8PH45Rb6k8G/V6Ph8+nKyUFIQQBPboD99eRnFxtV/iy0TcaRQXNzXULx9FoyF80CAmnD1LmxkzaDhgAG1mzGDC2bOEDxyolvK6lnoLHtQSe5uObnUf4ey1SNzqPmJ9kSl3ReG1YmAIjIySa8h7DKfdyMuWLWu2FleuXJmDBw+a62UnJyeTmVn8DtHff//N5s2biYyMdPb2VpR2GTHJA46NBasQAq+gIB555RV1x7XuaBR7NWkVHaLeGEBhnpcXw378kZAmTW6cl8l/JBJJCbmekMDumBhq9+hxI9mZEFAjHPZmqOEpQtzwmingLu5vMFi7YioKdO4HH863bTX6ZiOcPooyaxViVDSKVoswGECjuWtiGyUSyV1OATnkbjCQ+tdfBNWrZ1F2y0TnRYvw8PeHy3EoW5erMdizVoG9El8mKlRXS4EZsiyaFY0Gn9BQImfNsJlX4k7iXf8hvDfscu4iuYa8J3Hast2qVSt+//13AAYMGEB0dDSTJk1i6tSp5iRlxVGrVi2uXbvm/GxtcKvKiEkeMAouWGuEm3dHhdFIelwcu2Ni2DJgAMnHj4NXKCIy1rrMl6JDtF0FniHoc3JoOXky3kVl/5VIJBIbFFeuy0y+SzgfxMD0AeoxKU5tL+guPmMgikFv7Yrp5qFuMBZlNTp5CNYtQtFqoXtlkj/faLVQ9Q4JITIqylreSSuMRPJgUzhsZUU0wSFlGbV/Pw3697foWq9PH5o//zx8vRalR773zf/Wq68nhtsv8aXVYew1yu4UFEUhbdubsMqLtHwXc/P0fAPZFa8eJZJbhdOW7ejoaOLi4gCYNm0aqampbNiwgaysLDp16sTSpUuLHeOtt95iwoQJNGrUiDp16jg/60KUZhkxyQNIfjkJ8stJUDEMeo9GBIZyfu9e1nToYHZ3Svr7b0YdOIBSYyAipB3KsRXmrOOizijwCgUBLh4e9kvbSCQSSRHYtGAXQOfhYTs7L8BPX8Pq3+B/626cc/eEueusleqcLDVe0VGrUeIFm6ftlvKSVhiJ5IHDxdOzSBml+WgBYuZKeq1ZQ9LRo2YLd/vXXoOkeJQ5Iyxl2obF0G0QzFwJhc9pdYiZ+fkjtDrQetifmN7a89YUAlNbhsBIbiFOK9u1a9emdu3aALi5ubFkyRKWLFlS7HUNGza02E1KSEigQYMGhIaG4lcotb2iKPz1119Ozas0yohJHkDsLVg/WgCzYqnU+WnV3Sm/RmPi4cNsGzyYnmvWYNAEoHvohmuSPlePC4pVJk2JRHL/kJ6QwIHly9XMuXfIc8UrKMh+dt6+4yDxguU5e0q1ELBjk2o1KibreG5iPG635nEkEskdxsXTwVrXRSCEIDg8nGkZGQijEZEcb50LAsCgR5kzAmOTtrSYMIHPhw8HjYaAsDCUFdHW/fPzRxCzBpq1h60rzCW+DE+MQAkK5Z+tW6nb6wk0hdzITZiTkXXyu+nntIfJSl5XWsklhXBa2S4pERERpRYjsWfPHqf6t2nTplTuK7nPEML+gtWgR5k9HGOzjjy1eTO+FSui8/REn5nJ4U2b2DpgAK2mTKH8Qw+p/RUtLp53RxyQRCK5dRRndb7lKAoefn6qy3hhuWUvBrsopbo4q1HUKpTAEAynT3C2ZiSBterfyqeTSCS3kYIKslGvt1vruthxCpbyOn2aXh+uQlNUBnGDHu1nK2k4dCqfDx+OZ0CAGqpiL6QlP38Ek5ao3jIarboe27iR3999l/6ff07ehX/sbggatf6qst3F3+lncxS7VnIZTvPAUyJle+PGjWzevJkLFy5Y1ci2Z5V2JEu5o7Rt2xZFURD5cbUFBYMtQVG4/rZEAoAwFl1OomMftGXLESCMKKvnw8VT6CqGEd5jOI0GDWL/8uWERkTwRmAgg3fssEyEJpFIJCVEk5pEZIh6LIyLhweKTmd7UVpUDLY9pfrkIYgZhoheDc07omxZZrYaid5jUAJDQKPBs0YdqjqbzEcikdy1OFPr2h46Dw9zKS9ThnEXT08062yErRQm7jQ6T08eeuYZylSujDAYUIoKaTl5CH7bib5uc94ICiIvM9OijFf6t1+VmveNPSu13fwURXE7wmk8Q9RSYZ5Sob8bcVrZnjZtGgsWLCAiIoJatWrh6urq9E2fffZZZs6cSbVq1azOnTt3jpiYGFatWmX3+j/++MP88+XLlxk+fDjt2rWjT58+BAcHk5iYyObNm9m1axexsbFOz0/ygKApYhe1ZrjqsrR9nVX8kDY/3qjZmDEY9XqajxsnE6FJJJJSQ5OWTNtQSEpLtjqXl5WF0OttL0qLisEuzhXTaCTteg5+pqzj+Vl7kd46Esk9g6NhLoUVZBN7FyygR2ws4YMGqXHXxeAVFGRVyisvKwt9ZiY6h3JBGHjiww8x5uWCRoN4cjRKMSEtSf/8Q52ePfGvXp2IMWPwCQlRy3ilXS52vo5iz0ptNz8FJVTESwvPEGgaffvvK3EIp5XtVatWMXv2bGbMmFHim3700UeMGTPGprKdnJzM6tWri1S2GzVqZP65T58+9O/fnzfeeMOiz+OPP87kyZN5//336dSpU4nnKrmPMRrsJwZ6eiJcjrN2qwRzvJFo3hElKFQmQpNIJLcPIchKTcWz92hrl/DiYrC/2QjnTmBcvgtGzETj4mrliplz/jjui5pxNfJ1yvYZd1sfTSKR3ByOhLkIIYqtdV2tQwe8goKKjOV28fLC3c+P3TExluMIweFNmwjvMRxtEYozvceQfeEMHoMaceXlFQT1GogICkXMXGmdJE2rQ8xaBYEhBPuX48l16zDm5aLoXMzerKUZl10SxbkoRVzyYFOiTE4tWrS46Rvbiwk5efIkZcuWdXicb775xq4y3blzZ7799tsSzU9y/5KekMCe114jLzsHeo+2Lidhinv8LLbIeCNlyzIUYbz1E5ZIJJICZCQlQWAozIq1ll//fQcRXAlh65xWh3h6Ari6s6JZc+Z5efGalxdfjh5Ni4kT8QkJIfP0GfglU41xlEgk9x3CaOTA8uVWiraJoHr1yEhMxN3fn2kZGQSHh5vDNqFAnPf162h0Oq6esvYQ3Ld4MUq5CoiZK23KIaJUxTnr1HHVGycfRaOBboMRX5yF4TOgywAYPkN933UgikbDlS//C494ceXLzZZlvExx2aUgu0yK851Kgim5v3Ba2R4xYgTr1693+kbvv/8+4eHhhIeHoygKAwYMML83vWrVqsWQIUOcskR7e3uzc+dOm+e+/fZbvL29nZ5rSbhy5QpjxoyhcuXKeHl50aBBA5YtW2bVLz4+nt69e+Pj40NAQAAjRowotZrjkuIRQuAVFESb6dPRuroibC1YHak9C6oLpkZ7aycskdwhpEy7e9FnZYFGA10HQaFFKYs+RwDi0QEYtv1rcc746SnoOojstDRqP/44dXr2pM2MGUw4e5bwgepC1nAt9Q4/nURy65ByDTRarU0FGaBB//6M3L8fj7Jl2R0dzZYBA9gdE0N6XJyaYdxoJD0ujt0xMWwZOBB9Tg4BYdYegomHDvH7smV2FWfRZSDYkTeKRgNBoYhR0TB3nXoMKhRHnm1dxksiuVtx2o18zpw5TJgwgVatWtGhQwebZbtefPFFq+tCQ0OJiIgA4MiRI9SuXZugIMtYCFdXV+rWrcvw4cMdns/zzz/PrFmzSExMpGfPnpQrV47Lly+zbds21q5dS0xMjLOPWCKeeuopjh07xrx586hcuTJff/01Y8eORavVMnLkSADy8vJ49NFHAVi/fj2ZmZlMmjSJAQMG8OWXX96WeT7ICKORvKwsdC46QAdGAwa9Hm3XQdCsQ4HEQGFqTVkH4o0wGqTCLbkvkTKtdChxqTB3B0rxmBalI2aiuLgi8nJBq2P/++9zcMUKWkyYQMOhU29UUti4kX+3b6fVlClERkej0WqtXTFl+RrJfYyUa2A0GGwqyMHh4fRcs4bD69fzxYgRFpbvk19/zYjffuPwunUW7ufVO3ak8fDh7F2wwKJ/cHg4TceM4fiXX5J99QoNCsihI//dhEfZQGp17462jJ/NOSqKQtLnGwl6dyLJzy8mqNfA0v0QJJLbiXCS7777TpQpU0YoimLzpdFoih3jmWeeEadPn3b21nZZunSpqFChgvn+iqKI0NBQ8fbbb5faPYoiISFBAOLDDz+0aG/Tpo1o3769+f369euFoiji2LFj5rZvvvlGAGLfvn0O3y8tLU0AIi0t7abn/qBgNBiEUa8X+otnhHhvhhDTnhbivRnCEH9WGA0GkZeVJQw52UIIIQw52UKfmyuMiReEaK4TIgLrV3OdEIkXhTAa7+yDSSS3ACnT7BN/4ICIBhF/4MAt6S+MRmHMzVF/zM2xkDG2xjIajcKQ39+QmyOMRqNIu3BBzNbpRDSIaEURr3l6qj+DmK3TibSLF0XmmZNCtPIUl7d+fHPzlUjuEW6nXLtTMs2Rv18rGZH/OrhqlUg5c8aqvahz74eHC31urvjjo48szln1tyOHMuIuiB9CEJd2/s9qnpe3fixEBFYyytn2os5JeSe5HTjtRv7888/TtGlTDh8+TE5ODkaj0eLlSJmtDz/80GZytJIybtw4zp8/z9mzZ/n55585e/YsFy5c4IUXXii1exRFXl4eAL6+vhbtvr6+FnEu27dvJzw8nNq1a5vbOnXqREBAAF9//fVtmeuDiPl3sP1jtE/WhNi58M0GiJ2LpmcN+HotGq2WFc1bMM/Lizlu7sT+3/9B2RC7cY+meCOZqVdyPyJl2q0nPSGBXdHRpCck3Gg0GiEpDmXlHJg+QD0mxantNjC7dM6eo7p7zp5DxuXL+ISG0iM2Fo1OB0KQl6m6XBYsk1M4VlIiud+Rck1FURRLGaE20qBfP/6IjbWO5S7iXOKhQ3w6ZAgNBwxg/OnTtJkxg4YDB9JwwADL/gXkEKiJ2A4sW4Z7ufLsTlCzf98sJq8coxNeOXc0g7jkgcFpN/ILFy6wdOlS6tevfyvm4xDvv/8+zz77LG5uNyrqaTQaKleuTOXKlW1ec/jwYZKSkmjfvn2pz6dSpUp07tyZefPmUbt2bSpVqsT27dvZsWMH69atM/c7duwYderUsbhWURTq1KnDsWPHSn1eDzJCCITRiEarBSEQiRfRFJFZ3NikLS3Gj+fz/BCGhIMH2TZ0KL3WrEFYuJhXh95jVEXbwTqUEsm9hpRptx6rrMFGI2z/GGYPt5RTHy1Q80p0VUvxeAYG2qxta2LvggUM2bmT8EGDqNahAweWLSPl9GnrMjkyNlvygCHl2g0UjcZCRlyLi8PF09NmLLeLh4fdcwBHNm4k6ehRuixZYg5PAez2N5Fy+jQanc6hEmOOYK9cV1HIDOKS24HTyvYjjzzC8ePH72g5rY8++oiYmBiefvppnnrqKZo1a4aLi4tVv/j4eLZv386GDRvYt28fH3300S2b09atW+nXr595E0Kr1bJ06VJ69+5t7pOSkmIV4w7g7+/P1atX7Y6dk5NDTk6O+f39kqTjViGMRtLj4zmwfDlpcXH0XPkByqcfFJlZXPvZShoOnWpWtgEOr1tHxYcfptnYsTAyCnQ60OtBq5UWbcl9j5RptxEhIDneWtEG9f2GJYj2vQmsVYvJSUkIg4G8rCz2LVlis3TPmg4dePHiRXxCQ4mcpZb4KhybLZE8iNwquXarZFqJcz44gKLRqDIiKgqNTmc3ljsvK4u8zEyb50wkHjrEmZ07qfzII8zz9mZKamqR/QH8q1fHqNerCR+dwF5eiaKs1DIXheRO4rRpbt68eSxbtowVK1Zw+vRprl69avW61ezbt4/333+fP/74g9atW+Pj40N4eDgdOnSgW7dutGzZkpCQECpVqsSUKVN46KGHOHnypIUwLSlCCPR6vfllMBgQQjBs2DBOnjzJ+vXr+eGHH3j11VeZOHEiGzduvOl7zp8/H19fX/OrUqVKNz3m/YrJ2rOkWjX2zJ3L0f/+V01g5kBmcZ2np9UO68Wff1YzYKYmQexr6lEuViX3EVKm3QUII2xZbntD8NH+8NGvKGlXUFZEq+7lK6LRXbvCiF9/pUH//laXGPV6fn/nHYTRSNKPP7AnzIukH3+QirbkgeF2y7VbJdNMHjDXC4ablCKKopB46BDzvLzITkkhYvToG67lJoTgyKZNNB4+3PpcPhqdjogxY8hOTSUvI4Ps1FTbY9no7ywmC3Zh1/OiynXZu0YiuR04bdlu1qwZAGPGjLH7j9uRuO2bpVevXvTq1YuzZ8/y3XffsX//fhISEsjOzqZKlSp07tyZVq1a0bZtW5tW75Kye/du2rVrZ34fGRnJpEmT2Lx5M4cOHaJhw4YAtG3blsuXL/Pyyy/TP38x5O/vT1pamtWYKSkpRQrmqVOn8tJLL5nfX7t2TS5ObSCEID0+3sKtMi8zE2NeLhoHMovrMzOtdlj9q1fHaDCgCQyB4dNv1dQlkjuGlGl3FkWjsb8hWDMcYtbA/9ZDoTAYzUcLEDNX0mvNGpKOHiXx0CGLS1NOn1azjfuX44fTmdSUi0zJA8Ttlmv3ukzLy8wkIymJwNq16REbaxWe8vs779BoyBCb5wrmgkg+fhygyLFs9b/VyNhsyZ3EaWV71apVpbY7LoTgxIkTXL16lYCAAGrVquX02FWrVmXEiBGMGDGiVOZUHBEREfz+++/m9z4+Pnz22WdotVoaNGhg0bdx48asXLmSzMxMPD09qVOnDocPH7boI4Qo1i3fzc3NIj79QaNg/LXRYEDRaFAURW03GFT3J70eFIUDy5dbulUKwYmvv6b2k6NRPlpg23Kk1WF4YgSHC+1sm3ZeFRmbLbmPkTLt1uPiabuMl4unJ8JoVEsI2toQfHoiXI6zUrQBy3wTEyZYhMDAjY1CCiR+kkgeFG63XLsfZJo+K8sqlrtgvgdFUYrNBWEyWBQ3VuH+txoZmy25kzitbD/zzDOlcuP33nuP2bNnk5SUZG4rV64cs2bNYuzYsaVyj1uBj48PTZs2tWirUqUKBoOBQ4cO0ahRI3P7gQMHKFeuHJ75C62uXbvy8ccfc/LkSWrWrAnAzp07uXLlCt26dbt9D3EPUTD++uqpUwSEhdFi4kQ8/P0t2gPr1CFy1iybCTl2zYqi1oEDMCsWpXBMpFaHmBWLEhTKviVLzM0Fd16l66XkfkbKNGtKK05SCEFweDjTMjIw6vUIIcwbhRbtigYKbwgqCnTuBx/OdzrfhNwolDzoSLlWcqxiufV6FK3WvBYq6pzdsWTuCMkDjNPKdmmwYsUKxo0bx9NPP02/fv0IDg4mMTGRTZs2MW7cOFxcXG6bpbo06NatG5UrV6ZPnz5ERUUREhLCjh07zIncTPTp04d58+bRu3dv5s2bR2ZmJpMmTaJ79+40b978Dj7B3YmtbLvB4eG0mTWLv9au5YsRI25YsRWFlpMm2UzIkXjoENsGD6bXmjXQrD3KluXmzOIiP7N4dmoqtXv0oFyDBlY7rxLJg8aDLtOsMoWXAEc3CgNq1CBy1iyUsuURM1eimKzYbh7g7ulUvgl9VpbDG4WegYEWR4nkfudBl2vOoCgKlw4d4sPWrRn244+ENGni0Dl7YyV/uZmg/4ziyssrCOo18FZPXyK5q3BI2Q4PD2f9+vU0aNCAhg0bFvkPXFEU/vrrryLHe+uttxg/fjyLFy+2aO/RowdBQUEsXLjwnlK2fXx82LlzJ9OnT+fVV18lNTWVatWqsWjRIsaNG2fu5+Liwv/+9z/Gjx/P008/jU6n48knn+Stt966g7O/O7EVfw3QYuJE0uPiLBVt9QJzAo+9CxZYZeg9snEjV06c4Jk9e3AZFYWi1SHyd2RRFDz8/c0lKwq6qkskDyJSpt0czmwUunh60m72bPYtXUqzMWMwNmmL9rOVEH8GcnNsu5cXpEJ1jLk51O3Vy6mNQq+64TAySj1KJA8AUq45T8Ha2M6cs0m2k/0lkvsEh5TtiIgIvLy8zD/frBJy5swZHnvsMZvnunfvzrJly25q/DtBjRo12LRpU7H9KlSowJYtW27DjO5thNFoHX+tKDTo14+98+dbKdMA+xYvJnzQIB5fudJKGdfodLSYOBEXDw8yr1zhwIoVNH72WbPVSlEUVfEGc41IieRBRsq0kuHsRqGprE7m5cusaNqUFhMm0HDoVHSengiDwdq9vCBaHaL3GBSdC0+uW+eci2ZgCIyOtmqWiYQk9zP3i1y7lSXBJBJJ6eKQsv3hhx+afy6NWtUhISH88ssvdOzY0ercr7/+SogUHA8s6QkJ/LFqFW2mT///9u48Lqqq/wP457IMy4DsayguiRtiLo8Kqbig5ZK5p+RumeVjWuZWFpiWlUv2mJb9wjUVxXLX3NfEUsvM3RJ8JFFBAVdkme/vD2IexpmBGXbw8369eNXcuffcc2bkw5y5556jd/+1tZ0drO3tDd6XDeQMF98weDB6rliBmmFhRifkUHt4oM17nFmciIqf2V8UPjYqZ9OIEdj0yiuwtrND7S5d0GfNGt3h5bn+mW8C7j64c+wwnMZ3LpYhmpxIiKj8K45bXYiodJh9Q+rw4cMRFxdn8LkrV65g+PDhBZYxYsQITJ8+HVOnTsXJkyeRmJiI33//HVOnTsWMGTMq1BByKl73EhOx7/33ocnK0rv/OvcKkKH7snOdjo7G8UWLcq7OREai18qVCI2MhKOvL++/JqISZ2FpafYXhT/PmwfHp57CC99+m7MurQgyHzzA2XXrcOyrr4AugyCb44ERU4Hnw4ERU3Medx4IxcICGdeucogmERFROWT2BGlLly7FqFGjUKNGDb3nkpOTsWzZMixevDjfMt577z2kpKRg1qxZmDlz5v8qY2WFMWPG4N133zW3WlSJWNvZIT01FU1fe033/usC7ssGcoaL1+3RI2dY+D+daw4LJ6KSdjcxESe++QZt3nvP7C8K8xuVU7dHj5ydPHwhIyOhWFrmDC83cV4JDgsnIiIqO4W61GfsD/ylS5fg5uZm0vFz5szBtWvXsHnzZixfvhxbtmzBtWvXMHv2bE5MVUncTUzE/shI3E1MNGn/vMvh2Do7w9HXF92jonKu9PxD7wpQHlyui4jKyr3ERByIjNR+UaiTT3m+KHw8t3KdXbcOD27d0i6T02vlSoR+8L52VI6iKLj++++Y5eGB67//bnLG5Q4L51BTIqpINE7u2H8t579EFZlJV7a/+uorfPXVVwByOsrh4eGws7PT2Sc9PR3x8fHo27dvgeUtX74cXbt2hZubm96ahbdv38aWLVswePBgU9tA5ZQ59xQZWyYnaOBA1OjQQedKz6O7d9Fo0KB878smIioL95OS4F6nDrpHRelMklbQBI7dFy+G2sOjwGVyHiQnl2p7iIjKgsbZAwcSgTrOHmVdFaIiMamz7evri6ZNmwIATp8+jTp16sDDQ/cfv0qlQr169TBixIgCyxs2bBhiY2MNXgWPi4vDsGHD2Nl+ghhaJgcADn/yCfr98AMCunZFaEQELKysoPlnuS5FUXKuAHG5LiIqR7IePoRiYVH0Lwp5DzYRFSPOYE5UNkzqbL/44ot48cUXtY/ff/991KxZs9AnFRGjz6WkpMDR0bHQZVP5JyIQjSank6zR4J6BZXIAQJOVhbW9emFsfDwcfX0BQGcIJpfrIqLySrGwyPlC0NgXhQa258odPlmPwyeJqJhwBnOismH2BGl5lwHL9eDBA1y7dg21atUyemVx+/bt2L59u/bxnDlz4OXlpbNPeno69u7di2eeecbcalEFoTNc/PJlvLh4sf4yOXlosrJw4uuvERoZqe1YExGVR9b29jqPFUXB9VOnsKR1aww7dAg+TZrkuz2XucMn7d3ddf5LRFTRcXJHqizM7mzPnj0b9+/fR0REBADg0KFD6N69O+7cuYMaNWpgx44dqGVgxtWLFy9i8+bNAHI+aBw6dAg2NjY6+6hUKgQGBuLjjz8uTFuoHMr74fPx4eLW9vawWrnS6HI4uVIuX+aVayIqt/JO7qjJyoKI6HzxnPnA8JBwY9vNpf7nti61B+9tJKLypzCjdXInd3wcO+FU0Zg9k9S3334LPz8/7eO3334bDRo0wMaNG+Hu7m502a6xY8ciLi4OcXFxqFatGrZv3659nPtz4cIFbNiwAfXr1y98i6jUGZp1PO+HT6+gIIgI7j42XNyUdbMBwKVmTWiys0u0DUREhSEaDe7+/TcOTJuG78PDcWDaNNz9+2+IRlPWVSMiKhdyR+toimGyM66wQBWN2Ve2r169iqeffhoA8Pfff+PEiRM4cOAAWrdujaysLLz++usFlhEXF2d+Tancevw+IL2ZxZ9+GqEffKA/XNzEdbObjhrFGcaJqFyxsrPLd3LH7lFRCBo4EFaPrdxBRERETw6zezB2dna4c+cOAGDPnj1wcHBASEgIAMDZ2RlpaWnFW0OqMPJ++PyiRg0cnDEDp1evRuycObCwsjI4XJzrZhNRcTE0yqYkWNvbQ+3hoTdaJ5cmKwubRozA3cTE0hna7e4DvBqR818iogqCQ8LpSWD2le3mzZvjk08+gYWFBWbNmoXOnTvD8p/7af/66y889dRTxV5JqhiMffjMb7j4jVOnsGHwYPRYvhw12rfHr998w3WziahQSnq2XZ17s7OzcSAysuDJHf+Z3+Rxxfoh090HeC2y6OUQEZUiY/dlE1UmhZogrVu3bnjhhRfg7++Pjz76SPvcmjVrtFe56clirVbD1tkZB6ZN0//wWcBw8dPR0bh18SKGHjyY73I4RERlJe/tMWkJCeixZIlpkztaWaHdjBl6nWp+yCQiIqr8zL5kWL9+fVy+fBlJSUmIi4vT3r8N5CznNXv27GKtIJVv2is99+4ZHSoOFDxcvMW4cbC2s8OtS5fwsVqNG6dOsaNNROXC47fH/L5smVmTO7Z57z1O5kNERPQEMvvKdi43NzeICBITE+Hp6QkrKys0bNiwOOtG5ZyhNbONffjMHS7ec8UK1AwLw4mvvzY4XDzrnyHnRETlgaGVFDi5IxEREZmiUJ8CduzYgZYtW8LW1hbVqlXDqVOnAAAjR47EypUrTSrjzJkz6N+/P2rVqgUbGxv8+uuvAID33nsP27dvL0y1qBTpTYS2ahX+WLUKjUeM0LtynevsunV4cOsWHH19ERoZiV4rVyI0MhKOvr7aD6ScLIOIyhPRaPRXUkDJTu5oLAeZj0RERBWL2Z3t1atXo0uXLqhRowYWLlwITZ61RGvVqoUlS5YUWMauXbvQuHFjXLlyBS+//DIyMzO1z1lbW2PhwoXmVotKkcErPTDtw6fawwOKosDin0n1LB67L5vrJxJReWBtbw/FwgIWlpYGb4/JHa3TMDwcb/71F9pMnYqG4eFoM3UqxsbHI+jllwt9VdtYDjIfiYiIKhazh5FPnz4d48aNw5w5c5CdnY1XX31V+1yDBg3w+eefF1jGlClT0L9/fyxfvhxZWVmYMWOG9rnGjRvj22+/NbdaVIqMXenhzOJEVNHpzDielQVNdrbR22NOR0cj6exZdF+8GKGRkbCwtOTkjkREj+GoHHqSmd3Zvnz5Mrp06WLwObVabdI626dPn8bMmTMBQO8DibOzM5KTk82tFpUiY1d6gP99+Hz+iy/44ZOIKhSdeSj++guutWrh2cmT0fS114zem5109iwcvL2RnpKCef7+GHboEHyaNCmD2hMR5YzKKW+4+gI9ycy+zOjt7Y3z588bfO7UqVPw9/cvsAxXV1dcu3bN4HMXL16ED7/5Ktfyu9ID5FzhjtuzBxDhzOJEVCHozUOxejUOzpiBpW3awMHHB92jovK9N/t+UhIndySiMpN3VI5XUBBExKTjeNWZKMfdxETsj4zE3cTEYi3X7M52eHg4IiMjsWfPHu02RVFw+vRpfPbZZxg4cGCBZfTo0QMRERG4cOGCThnXr1/H7Nmz0bt3b3OrVWIWLlyIbt26weOfe43XrVtndN+tW7ciJCQEarUaLi4uaNeuHRISEnT2OXLkCIKDg2FnZwd/f398+umnJgdieaFYWKDpa68ZnQgtdxbe9NRUfvgkKmeYafqMzUMBAIm//ooNQ4YgaOBAjI2PN3pvdtbDh2VUeyJ60nNNNBrc/ftvHJg2Dd+Hh+PAtGm4+/ffkDzzKhnDuSCIctxLTMSBadNwr6w725GRkQgJCUHHjh3h7e0NAOjcuTMaNWqEZs2aYfLkyQWWMXPmTHh4eCAoKAgtWrQAAAwfPhx16tSBk5MTIsvRUJPly5cjOTnZ6ND5XN999x169eqFtm3bYsuWLVi2bBmaNWuG9PR07T5//vknnnvuOfj4+GDLli0YN24cPvjgA8yZM6ekm1GsFEWBo6+vSVd6iKh8YabpMzYPRa4/Vq7Esa++0l4B6rVyJUIjInRWUiCisvOk5pqVnZ3RUTlf1KiBU999Z1KHu7jwKjmRPrPv2VapVNi4cSP27duHXbt2ITk5Ga6urggLC0NYWJhJZTg5OeHIkSP47rvvsGvXLri6usLV1RWjR4/G4MGDoVKpzG5ISTly5AgsLCwQHx+P5cuXG9zn9u3bGD16NObNm4fXX39du7179+46+82aNQtubm6Ijo6GSqVChw4dkJSUhI8++ghjxoyBjY1NibalKEQEkp0NCysr7T3YQQMHokaHDvmumU1E5QszTV9+81DkSjhyBM1Hj0bi779jSatWvDebqBx5UnNN7eFhdFSOJisLm0aMQI0OHeDo61sq9eG92UT6zO5s52rXrh3atWtX6BNbW1tj2LBhGDZsWKHLKA0WJly1WLt2LbKzszFixIh899u+fTt69eql82VC//79MXPmTMTGxqJt27ZFrW6JMDRpUNPXXoOjr2/OmtkRETqdcN6fTVR+MdP0FTQPBQC41KwJTXY2IGLw9hhe0SEqO09krikKbJ2dcWDaNKOjcjRZWTjx9dcIZQeYqMyUyfi3Z599FgsXLkRSJRlmfPToUdStWxfLli2Dv78/rKys8Mwzz2D79u3afe7fv4+rV6+ibt26OsfWrVsXiqIYnXSurBU0PAkiuHXpksGJ0Pjhk6hiqsyZZoip81DkN2Sc9z0SlW+VLdes7exgYWVV4KiclMuXYWFpCfBCCFGZKJPOto+PD9555x089dRTeO6557B8+XLcvXu3LKpSLK5fv44LFy7g/fffx/Tp07F9+3ZUr14d3bt3x5kzZwAAqampAHKWNstLpVLB3t4et2/fNlr+o0ePcOfOHZ2f0pDfpEG5w5PuJiZC7eFh8EoPP3wSVUyVNdOMMXUeCo7aIaq4SjLXyiLTMh8+hCYry6xROURU+sqks71u3TrcvHkT3377LaysrPDKK6/Ay8sLvXv3xvfff49Hjx6Vep1EBFlZWdqf7Oxsk4/VaDS4d+8evvnmGwwePBgdO3ZETEwM/Pz88Omnnxa5bjNnzoSTk5P2p2rVqkUu0xQFTRqUOzzJ9rE/SkRU9php5lEsLAqccZyIylZ5zbUyyTQRpKemFnlUTmFw5CKR6crs04ODgwMGDx6MrVu3IjExEZ9//jlu376N/v37w8vLq9Trc+DAAVhbW2t/OnToYPKxLi4uAID27dtrt1lbW6NNmzbab0tzvyVNS0vTOTYjIwMPHjyAq6ur0fKnTJmCtLQ07c/Vq1dNrltRmDJpUMrly7CwsoKVnV2p1ImITMNMK9jdxEQc/Ogj7ZqaioWFdh4KzjhOVP6U11wryUyztrc3+tz9pKQyGZXDkYtEpiv0BGnFyc3NDc8++yyuXLmCCxcu4MaNG6Veh6ZNm+LYsWPax46OjiYf26BBA6PP5S4noVarUbVqVb37fS5cuAAR0bs/KC8bG5symf3S5EmDsrI48zhROcNMy5+IQO3hgTbvvQdNVhZEBIqiQFEUXD91Cktat+aM40TlTHnNtZLINBGBV1AQ3r1/Xyejclnb2yPr4UPtqJz8VocpDF69JioehepsZ2dn4+eff0ZCQoLO2oS5Bg8ebFI5f/31F6KjoxEdHY2zZ8/Cy8sL/fr1w4ABAwpTrSJxdHREs2bNCnVst27dEBERgd27d6NHjx4Acr4FPXDgANq0aaPdr3Pnzti4cSM+++wzWFtbAwDWrFkDZ2dnhISEFLkNxS130qDDn3xicCh57vCkrIwMBjJROcNMyyEiEI0GFpaW0GRn53zw/Gc+CkMrLOR+MDU0DwURla0nJdfyWwUGiqLfCc8zKqe4VofhMl5ExcPszvavv/6KXr164erVqxADky0oilJgZ3vu3LmIjo7GiRMn4OTkhN69e+OLL75A27ZtTVq+oTQdP34c8fHx2pnTjx49CgDw8PBAaGgoAKBJkybo3bs3Ro4cidu3b8PHxwcLFizAjRs3MGHCBG1ZEyZMwMqVKzFgwAC88cYb+OOPPzBr1ix89NFH5Wpt8Vx5Jw16fJI0neFJFhYMZKIK4knKtMc/sFZ99ln86/XXceq77/Qy7fAnn6B7VBSCBg7kbTFEFUxlyrXcVWAez6iUuDj0WLYM9/L5opCjcojKITFT8+bNJSgoSPbv3y83b96U1NRUvZ+CqNVqGTBggGzatEkyMjLMrUKpGjJkiADQ+wkNDdXZ7969ezJmzBjx8PAQGxsbCQkJkcOHD+uV99NPP0mLFi3ExsZG/Pz8ZObMmaLRaMyqU1pamgCQtLS0ojTNZJrsbElLSJC9U6fK9+HhsnfqVElLSBBNdnapnJ+Iik9lzrRrJ05IJCA3z54VTXa2nFy2TD60spJIQCIB+XXxYkmJi9PZlvfnQysrSUtIkPtJSRIJyLUTJ4yew9BzRFQ2yluuFTbTNBqNpF29qpdRXwUFSVZGhvy2dKnecx9aWcnJZctEk50tN8+eZXYRFVJJ/Y4oIuatBeDg4ICYmBh07ty5EF37HA8ePIB9PhM+UP7u3LkDJycnpKWloUqVKqVyTjEwFJPL4BBRcSiuTEv89Vcsad0a465cQVZ6Or6oUeN/V4YUBe/eu4fDM2fi4IwZRstoM3UqQiMiMN3aGiNPnNC7OpT466/4pmlTg88REQGFzzRNdjYOREbqZVT3xYtRo107zK9d2+htfWPj42FlY4NZHh7MLiIj7iYm4sSiRTkjQh67/bWkfkfMHrMdEBBQ5PUD2dGueBRFgYWlJYCcWcrZ0Sai8kTyTCZk6+Kit2yhtZ0drO3tucICURGJSM66zcjpHJp5zYbyYXAVGEVB4Esv4beoKC7FSlRE9xITcWDaNNz7ZxWS0mD2Pduff/45xo4di0aNGuU72+zjqlSpgn379qFp06ZwdHTMt7OmKIresgtERESG5L03Oy0hAT2WLNH7wJr58CEyHzzgCgtERZDfxF1cIq/oDK0CU5xfFOa3jBgRlQyzO9v//ve/cf36dQQGBsLX11e7JmEuRVHw+++/6x03fvx4+PxzuX78+PG8MkpEREWmN5mQoqDrggX6nWoRnF6zBo1HjChwhYX01NTSqTxRBWJs4q68kwuyw100hlaBKY4vCqWAZcSIqOSY3dlu2rRpoX5BIyIitP8fyZmriYioiOSfJbx0Pvzn06n+ed48BA0ciBe+/RabX3nF6AoLyRculHZTiMo1g79r/9BkZWHTiBGo0aFDzhVuduIKzeAqMEX8opCjEYjKltmd7aVLlxb5pO3bt8fChQsNDkO/ePEiRo0ahb179xb5PEREVHmJRqN3bzZgvFN949QpbBw2DD2WLUPNsDCc+PprpFy+DJeaNdF01CjtUoYcQk5PGkOTBokIJDsbFlZWRn/XcuXeMxwaGQnln/ldqHAUCwsEDRyIGh06aDMq88EDOFWrVuBSrI9/UcjRCERlz+zOdnHYv3+/0UnW7ty5g4MHD5ZyjYiIqKIxOJkQcjrVGwYPRo/ly1GjXTv8+n//p9Opzr16FBoRAQsrK2iysqBw4keq5PKbhTd30qA63bvD0cfHpHkQHpdy+bJ2IlUqGsXCQi+joCh6nfD8vijkaAQiw0p77oJCdbZTU1Oxbt06XLx4Eenp6XrP/+c//ymwDGO/2EeOHIGnp2dhqkVEVGzy+2BK5YOhyYRynY6ORtLZs+i+eDFCIyMNLlt4/dQpLGndGsMOHeJSOFTpPd6hNsTKzs70eRAe41KzJjTZ2exwFxNFUfQzyowvCjkagUhXWc1dYHZn+9KlSwgJCcGjR49w//59eHh44Pbt28jKyoKLiwucnJwMdrZnzpyJmTNnAsgJkHbt2sHisaErjx49QlZWFt54441CNoeIqHjcS0zEkVmz8v1gSmXL0GRCeSWdPQsHb2/tMMnHOwEOPj4ImTABDnx/6QlR0BUdtYeHWfMg5Mq9Z5hDkotf5oMHOo8NdsIfo1hYGB35kxdHI9CToiznLjC7s/3222+jRYsWiImJgVqtxrZt29CoUSOsWbMG7777LmJiYgweFxISgvHjx0NE8OGHH2LAgAHw8/PT2UelUqFevXp44YUXCtcaIqJiwJlbKwaDkwn9I+99jMbeO0cfH7TlhJ30BDAp0xQFts7OODBtmsnzIACm/a5R8Xu8E56XaDT5jvzJxdEI9CQwZ+6CkhhibnZn+5dffkFUVBRsbGwAABkZGbC0tER4eDiSk5Px5ptv4qefftI7LjQ0FKGhoQByPiC9+uqr8PX1LWL1iYiKF2durVgMTSb0+H2MRE8yUzPN3s0NFlZWhZoHgb9r5U9BI384GoGeBKbMXVDrueeg9vQssYssZne2Hz16hCpVqsDCwgKurq64du2a9rnAwEBMmTKlwDLyLgNGRFRecObWisnQZEKc8IzItEyDosArKAgTkpKKPA8ClR9FHflDVBkUNHdB/T59YO/mhrt//11iF1nM7mwHBATgypUrAIDGjRtj4cKF6NixI6ysrLBo0SKTr1b/+eefWLp0qdFJ1jZt2mRu1YiICo0zt1ZsptzHSPQkKSjT/tq5E0EDB+p8yAx5550izYNA5QtH/tCTLr+5C7yCgtBj+XKcWrlS7/aY4rzIYnZnu3///jh58iQGDRqE6dOn47nnnoOLiwsURYGIYNmyZQWWcezYMYSGhsLf3x8XL15EUFAQ0tLSEB8fDz8/Pzz99NOFagwRUWFx5tbKIb/7GImeJPllmldQEF5csgS/r1ih8yEz6cwZvHr8OO/NrkQ48oeeZPmN1mkxbhzu/v23XtYBxXuRxeyu+ttvv405c+YAAFq2bInTp09j4cKFmDNnDk6ePImXX365wDImTpyIfv364fTp0xARREVF4fLlyzh8+DAURcGkSZPMbwkRURFw5lYiqkzyyzRjHzJz781uGB6OsfHxaDN1KhqGh6PN1KkYGx+PoJdf5tXQCkhRFNw4dQofq9W4ceoUO9r0xMidu8DC6rHry4qCwJdewm9RUQVeZBGNpkh1KNQ623lVrVoVI0eONOuY33//HZMnT9Yu/ZU7jDwkJASRkZGYPHkynnvuuaJWjYjIZJy5lYgqE6OZ9s+HzMMzZxr8kGnw3mxeDa0UOPKHnjTG5i6wtrODtb19qVxkKdTXk5mZmfj6668xYsQIdOrUCZcuXQIArFmzBufOnSvweEVRoFKpoCgKPD09tfeAA4Cfnx8uXrxYmGoRERWa0W8//8GZW4moIjGWaaZ8yLxx6hSOzp2r/ZBpYWXFjjYRVUi5cxfkHa0TPH48NFlZJl9kKQqzPzVevnwZderUwcSJE/Hnn39iz549uHv3LgDg4MGD+Oyzzwoso379+vjrn5APDg7GnDlzcPr0aVy4cAGffPIJahXQcCKi4pb328/HP5zyXsUni4OPD0IjIuDg41PWVSEqNGOZlvnwITIfPCiVD5lEROVB3rkLeq1cidAPPoBiaVkqF1nMHkb+5ptvwsPDA7/88gucnZ2hUqm0z4WGhpq09NfIkSO1V7M//vhjdOrUCY0aNQIAqNVqrFu3ztxqEREVGWduJQBw9PFB28jIsq4GUZEZyzQR4RrMRPREMbRqSWksj2d2Z3v//v1YvXo13N3dkf3YN57e3t5ITEwssIxBgwZp/79evXo4d+4cYmNj8fDhQ7Rs2RKenp7mVouIqFhw5lYiqkyMZZq1nR3XYCaiJ07euQtK4yKL2Z1tKysriIjB527cuAEHBwezK+Hg4ICOHTuafRwRUUngms1EVJkYzDRF4UgeInrilfRFFrM726GhoZgzZw46d+6snU08d43tb775Bh06dDB43A8//GDWeXr16mVu1YiIihVnbqXH8X5uqsgezzSO5CEiKtmLLGZ3tj/99FOEhISgfv366N69OxRFwYIFC3D69GlcunQJv/zyi8Hj+vTpY/I5FEXRG6JO/5M7suDOnTtlXBOiykvj4IBmkydD4+BQJr9rjo6OT8wH3uLKtLv37iH9n/+qS+o9U6vR5O23IWAGU8WSX6ZdP3kS3z3/PAb++CO8n3mmxOrwpORaSWeaudsLeo7oSVHQ78jdBw/M+h0xJdMUMTYmPB9xcXGIjIzErl27kJycDFdXV4SFhWHatGlGZxLPu7yXKfz9/c2t1hMjISEBVatWLetqEFEJSktLQ5UqVcq6GqWCmUb0ZHhSco2ZRvRkMCXTCtXZprKl0Whw7dq1EvmG+M6dO6hatSquXr1a4f8gVpa2sB3lS2m140m5AgSUbKYB/LdX3lSWdgCVpy3MteLFTDNNZWkHUHnawnaYx5TfcbOHkRenH3/8EceOHcPVq1cxdepUVKtWDQcPHsTTTz8NX1/fsqxauWZhYQE/P78SPUeVKlUq9C9ZXpWlLWxH+VJZ2lEelEamAZXnPWM7yp/K0pbK0o6yxkwzT2VpB1B52sJ2FB+TOtvDhw83uUBFURAVFZXvPklJSejRoweOHj2q/dZh1KhRqFatGhYvXgy1Wo0FCxaYfE4iIiIiIiKi8sSkzvbSpUvh6OiIWrVqGV32K5cpw2XGjRuHpKQknD59GrVr14ZKpdI+FxYWhhkzZphSLSIiIiIiIqJyyaTOdnBwMI4ePYrs7GyEh4ejf//+RZrAbOvWrfi///s/1KtXT2/W8apVqyIhIaHQZVPR2NjYICIiAjY2NmVdlSKrLG1hO8qXytKOJ0llec/YjvKnsrSlsrTjSVFZ3q/K0g6g8rSF7Sh+Jk+Q9t///hfR0dFYtWoV/vjjDwQHByM8PBz9+vWDu7u7WSd1cHDA2rVr0aVLF2RnZ8Pa2hrHjx9HkyZNsGHDBgwfPhy3b98uVIOIiIiIiIiIypqFqTtWq1YNEydOxMmTJ/HHH3+gXbt2mDdvHnx9fdG5c2ds377d5JO2aNECixcvNvhcdHQ0nn32WZPLIiIiIiIiIipvirT0V3p6Oj744APMnTsX3bt3xw8//GDScbGxsWjXrh2aN2+OPn364K233sJ7772Hc+fOYevWrTh8+DCaNGlS2GoRERERERERlSmzO9vZ2dnYuXMnoqOjsXHjRlhZWaF379545ZVX8K9//cvkcmJjYzF58mQcOXIE2dnZUBQFwcHBmDVrFoKDg81uCBEREREREVF5YfIw8oMHD+L111+Hl5cX+vXrh+zsbKxcuRLXr1/HokWLTO5oZ2Rk4IcffoCXlxcOHDiAO3fuICEhAXfv3sXhw4fZ0S5BCxcuRLdu3eDh4QFFUbBu3Tqj+27duhUhISFQq9VwcXFBu3bt9CauO3LkCIKDg2FnZwd/f398+umnBc5WX1Ju3bqlXT5OrVYjMDAQX3/9td5+165dQ+/eveHo6AhXV1e88soruHPnThnUuGDnz59Hx44doVar4e3tjYkTJyIjI6Osq1WgTZs2oUWLFnB0dISPjw/69euHy5cv6+0XFRWFgIAA2NraolGjRtiyZUsZ1DbHn3/+iVGjRuGZZ56BlZUVAgMDDe6XmpqKN998E76+vrC1tUWtWrUwZ84cnX0yMjIwYcIEeHt7Q61Wo2PHjrhw4UJpNOOJw0xjppUGZhozrTQx15hrJY2ZVsqZJibw8/MTW1tb6dmzp6xdu1YePnxoymFG2djYyL59+4pUBpmvRYsW0qJFCxk8eLAAkJiYGIP7rVixQlQqlUyZMkX27t0rGzdulHfeeUcuXbqk3efSpUvi4OAgPXv2lN27d8vcuXNFpVLJrFmzSqs5Otq1ayc+Pj6yZMkS2bNnj4wfP14AyDfffKPdJyMjQwIDAyUwMFA2bdok0dHR4ufnJ127di2TOufn9u3b4uPjI23atJEff/xRoqKixMnJSUaPHl3WVcvXvn37xMLCQoYOHSq7du2S6OhoCQgIkFq1asmDBw+0+61evVoURZGpU6fK3r175bXXXhMrKyuJjY0tk3pv2LBB/Pz8pHfv3tKwYUNp0KCB3j737t2TRo0aSdOmTSU6Olr27dsnixYt0vs3/9prr4mTk5NERUXJjz/+KK1bt5annnpKUlNTS6s5TwxmGjOtpDHTmGmljbnGXCtJzLTSzzSTOtuKoohKpRIHBwdxdHTM96dKlSoFlteoUSNZtmxZkStP5snOzhYRkbi4OKMBfuvWLalSpYosXLgw37JGjhwp/v7+8ujRI+22KVOmiLOzs6SnpxdvxQuQmJgoAGTJkiU629u0aSPt27fXPl61apUoiiLnz5/XbtuxY4cAkJ9//rm0qmuSjz/+WNRqtdy6dUu7bdGiRWJpaSl///13GdYsf6+99prUqFFDNBqNdtvevXsFgBw8eFC7LSAgQAYMGKBzbHBwsHTu3LnU6ppX7u+GiMiQIUMMhvjUqVOlZs2acu/ePaPlXL16VSwtLWXRokXabbdu3RK1Wi2ffvpp8VaamGnMtBLHTGOmlTbmGnOtJDHTSj/TTBpGHhERgXfffRfvvPMOxo8fn+/P22+/XWB5M2fOxIwZM3D8+HEzr8NTUVhYFPx2r127FtnZ2RgxYkS++23fvh09evSASqXSbuvfvz9SU1MRGxtb5LqaIzMzEwDg5OSks93JyUlnqNT27dsRFBSEOnXqaLd17NgRrq6u2LZtW+lU1kTbt29HWFgYXF1dtdv69esHjUaDnTt3lmHN8peZmQlHR0coiqLdlvu+5L4Xly9fxsWLF9GvXz+dY/v37489e/bg0aNHpVfhf5jyu/Htt99i+PDhUKvVRvfZuXMnNBoN+vbtq93m6uqKTp06lbt/Y5UBM42ZVtKYacy00sZcY66VJGZa6WeayZ1tc34KMnHiRNy6dQstWrSAp6cnGjZsiKCgIO1Po0aNitwwKpyjR4+ibt26WLZsGfz9/WFlZYVnnnlGZ2m3+/fv4+rVq6hbt67OsXXr1oWiKDh//nyp1rlq1aro1KkTPv74Y5w9exZ3797F2rVrsXPnTowePVq73/nz5/XqrCgK6tatW+p1Loihujo7O8PHx6fc1TWvoUOH4uzZs1i4cCHS0tJw+fJlvPvuu2jcuLF2Sb/c+j/evnr16iEjIwNxcXGlXu+CxMfH4/r163B3d0f37t1hY2MDV1dXvPrqq7h37552v/Pnz8PT0xMuLi46x9erV69cv2+VGTOtfGCmlS/MtIqNuVY+VMRcY6aVfqZZlUipBWjatCmaNWtWFqemAly/fh0XLlzA+++/j88++ww+Pj5YsGABunfvjpMnT6JBgwZITU0FkBMoealUKtjb2+P27dulXu8ffvgBL730Eho0aAAAsLS0xPz589G7d2/tPikpKXp1BgAXF5cyqXN+KlJd82rdujXWr1+P8PBw7R/PZ555Bj/++CMsLS0B5LQN0P/3kxt85bF9169fBwC888476NWrF7Zt24ZLly5h8uTJuHfvHlavXg2g4r5vlRkzrXyoSHXNi5lWMd+3yo65Vj5UpLrmYqaV/ntWJp3tpUuXlsVpnxgiguzsbO1jRVG0v0AF0Wg0uHfvHlauXInu3bsDANq2bYuAgAB8+umnWL58eYnU2VSG2mZhYYFhw4bh0qVLWLVqFXx8fLBr1y6MGzcOLi4u6N+/fxnW+Mly5MgRDBo0CK+++iq6deuGW7duYfr06ejatSsOHToEOzu7sq5ioWg0GgBAQEAAli1bBgDo0KEDrKys8Oqrr+Kjjz5CzZo1y7KKlRozjZlWVphpVFKYa8y1ssBMK31l0tmmknXgwAG0a9dO+zg0NBT79+836djcb63at2+v3WZtbY02bdrg9OnTAP73TVdaWprOsRkZGXjw4IHOvSvFzVDb3nnnHcTExODUqVNo2LAhgJw/Ojdv3sT48eO1Ae7i4qJXZyDnW66qVauWWJ0LI7+6luTrW1Rvvvkm2rdvr7PMQsuWLVGtWjWsWLECI0eO1P4bS0tLg7e3t3a/3G9Sy2P7cuuc998ekBPkAHDmzBnUrFmzwr5v5R0zjZlWVphpFfN9qwiYa8y1ssBMK/33jJ3tSqhp06Y4duyY9rGjo6PJx+YO7TEkPT0dAKBWq1G1alW9exsuXLgAEdG7x6M4GWrbxo0bYWlpqbfmXuPGjfHtt9/iwYMHsLe3R926dfHHH3/o7CMiuHDhAjp27FhidS4MQ/cmpaWlITExsURf36I6e/YsXnzxRZ1tfn5+cHd3x19//QXgf/cAnT9/XmcClPPnz0OlUpXLqym1atWCjY2N0edzfzfq1q2LGzduICUlRed+IEP3dZHpmGk5mGmlj5nGTCspzLUczLXSxUwr/UwzaYI0qlgcHR3RrFkz7U/eX5SCdOvWDQCwe/du7baMjAwcOHAATZs21W7r3LkzNm7cqJ1dEgDWrFkDZ2dnhISEFEMrDDPUNn9/f2RnZ+PUqVM6+544cQKenp6wt7fX1vn333/HpUuXtPvs2bMHt27dQpcuXUqszoXRuXNn7N69W3vPFQDExMTAwsICnTp1KruKFcDf3x+//vqrzrYrV64gOTkZ1atXBwDUrFkTAQEBiImJ0dlvzZo16NChg86sqeWFSqVCp06dsGfPHp3tu3btAgA0adIEANCpUydYWFjg+++/1+6TkpKCnTt3lrt/YxUJMy0HM630MdOYaSWFuZaDuVa6mGllkGklsqAYlUvHjh2TmJgYWbhwoQCQ8ePHS0xMjOzfv19nv969e4uHh4dERUXJtm3bpGvXrmJrayunTp3S7nPp0iVRq9XSu3dv2bNnj8ybN09UKpXewvGl4c6dO1KtWjV5+umnZcWKFbJ7926ZOHGiWFhYyPTp07X7ZWRkSGBgoDRs2FA2b94sa9askapVq0rXrl1Lvc4FuX37tvj4+EhoaKjs2LFDFi9eLM7OzjJ69Oiyrlq+5s2bJwDkzTfflF27dkl0dLQEBgaKl5eXJCcna/fLXUfzgw8+kH379smoUaPEyspKjhw5Uib1vn//vsTExEhMTIy0bdtWqlatqn188+ZNERE5fvy4qFQqCQ8Plx07dsiXX34pjo6O8vLLL+uU9dprr4mzs7MsXrxYduzYIaGhofLUU09JampqWTStUmOmMdNKGjONmVbamGvMtZLETCv9TGNn+wkyZMgQAaD3ExoaqrPfvXv3ZMyYMeLh4SE2NjYSEhIihw8f1ivvp59+khYtWoiNjY34+fnJzJkzRaPRlFJrdF26dEn69esnvr6+Ym9vLw0aNJB58+ZJVlaWzn4JCQnSq1cvcXBwEGdnZxk+fLikpaWVSZ0LcvbsWenQoYPY2dmJp6envPPOO/Lo0aOyrla+NBqNfPXVVxIUFCRqtVq8vb2lZ8+ecu7cOb19v/32W3n66adFpVJp/6iWlbi4OIO/GwBk37592v12794tzZo1ExsbG/H29pbx48dLenq6Tlnp6ekyfvx48fT0FDs7OwkLCzPYfio6ZhozraQx05hppY25xlwrScy00s80RSTPSvJEREREREREVGS8Z5uIiIiIiIiomLGzTURERERERFTM2NkmIiIiIiIiKmbsbBMREREREREVM3a2iYiIiIiIiIoZO9tERERERERExYydbSIiIiIiIqJixs42mSQyMhKKouCpp56CRqPRe/7ZZ5+FoigYOnSoWeWmpqYiMjISZ8+e1dkeHx8PRVGwbt26olS7yObNmwdFUbSP9+/fD0VRcPz48VKrQ2RkJI4cOaK3XVEUzJ49u9TqYciGDRugKAri4+MBFO59mzdvHrZt21ZCNSQyjJmWg5mmi5lGFRlzLQdzTRdzrWyxs00ms7a2RnJyMg4ePKiz/cqVK4iNjYWDg4PZZaampmLatGl6Ae7j44PY2Fi0b9++SHUubk2aNEFsbCzq1atXauecNm2awQCPjY3Fyy+/XGr1MEVh3jcGOJUVZhozrSDMNKpomGvMtYIw10qXVVlXgCoOlUqFsLAwrF69Gm3bttVuj46ORoMGDWBpaVls57KxsUHLli2LrbziUqVKlQLr9fDhQ9jZ2ZV4Xcrj61Ne3zciQ5hpzLSClNf3jcgY5hpzrSDl9X2rrHhlm8wyYMAArFu3DpmZmdptq1atQnh4uMH9Dx48iJCQENjZ2cHd3R3Dhw/H7du3AeQMY6lRowYAoG/fvlAURTvMxdAQF41GgxkzZqB69eqwsbFB3bp1sWjRIp3zRUZGwsHBAX/88QdatWoFe3t7BAYGYseOHQW27c6dOxg8eDAcHR3h4eGBiRMnIisrS2cfQ0OTFEXBJ598gkmTJsHb2xuenp4AABHB7NmzERAQABsbG9SsWROff/653nnPnTuHXr16wdXVFfb29mjUqBFWr16tLRsAJkyYoH199u/fr33u8aFJixYtQp06dWBjY4Pq1atjxowZOkPJli5dCkVR8Ntvv6Fz585Qq9WoXbs2li9fXuDrk5mZiXHjxsHV1RVOTk4YMWIE7t27p7OPofdt06ZNaNasGRwcHODs7IxmzZppvx2tXr06rly5ggULFmjbt3TpUgDA8uXL0apVK7i6usLFxQVt27bFL7/8onM+c97v5cuXo3HjxrC1tYW7uzu6dOmCK1euaJ9PSEjAwIED4e7uDjs7O7Rp0wYnTpwo8HWhio2ZxkxjplFlw1xjrjHXyg92tsksL7zwAh49eoSdO3cCAM6ePYtTp06hf//+evueOHECHTt2hKOjI2JiYvDpp59i8+bN6Ny5M7Kzs+Hj44MffvgBAPDxxx8jNjYWsbGx8PHxMXjuCRMmIDIyEkOHDsXmzZvRqVMnjBo1Cl9++aXOfpmZmXj55ZcxdOhQrF+/Hp6enujduzdu3bqVb9uGDx+O9evX45NPPsGyZctw9uxZzJs3z6TX5YsvvsDFixcRFRWF7777DgAwduxYfPDBBxgyZAi2bt2KoUOHYtKkSfj666+1x126dAnBwcG4dOkS/vOf/2DTpk0YNmwY/vvf/wLIGX4EAGPGjNG+Pk2aNDFYh/nz52PUqFF47rnnsHnzZgwdOhSRkZGYOHGi3r4vv/wyOnXqhA0bNqBx48YYOnQozp07l28bp0yZgoULF2LChAlYu3YtsrOzMXny5HyP+euvv9CnTx80aNAA69evx5o1a9CvXz+kpKQAANavXw9vb2/06dNH276uXbsCyPljMHjwYMTExGDVqlWoVq0a2rRpg4sXL+qcw5T3e9asWRgyZAiaNm2KH374AVFRUahduzaSkpIAACkpKWjVqhVOnjyJ+fPn4/vvv4darUb79u1x8+bNfNtIFRszzTBmmmHMNKoImGuGMdcMY66VMCEyQUREhKjVahERCQ8Pl4EDB4qIyNSpUyU4OFhERBo1aiRDhgzRHtOzZ0+pVq2aZGRkaLft2LFDAMimTZtERCQuLk4ASExMjM75Ht+elJQk1tbWMnnyZJ39BgwYIB4eHpKVlaWtJwDZunWrXlkrVqww2r4zZ86IoigSFRWl3ZaVlSU1atSQvL8m+/btEwBy7Ngx7TYAUr9+fdFoNNptf/75pyiKIosWLdI5z6RJk8Tb21uys7O1r6WHh4ekpaUZrRsAmTVrVr7bs7KyxN3dXfr376+zz5QpU0SlUklycrKIiCxZskQAyIIFC7T73Lt3T+zt7WX69OlG63Dr1i2xs7OT999/X2d7mzZtBIDExcWJiP77FhMTIwDkzp07Rsv29/eX0aNHG31eRCQ7O1syMzOlTp06MmXKFO12U97v1NRUsbe3l5EjRxot/4MPPhAnJye5ceOGdlt6erpUq1ZNJkyYkG/dqGJipuVgpjHTqPJgruVgrjHXyhNe2SazDRgwABs3bsTDhw8RHR2NAQMGGNzv0KFDePHFF2Ftba3d1qlTJzg7O+Pw4cNmnfPnn39GZmYm+vbtq7P9pZdeQlJSks43aBYWFggLC9M+rl69Ouzs7JCQkGC0/GPHjkFE0LNnT+02S0tL9OjRw6T6de7cWWcmzN27dwMAevfujaysLO1PWFgYrl+/jqtXrwIA9uzZgz59+qBKlSomnceY8+fPIzk52eDrk5GRoTekp1OnTtr/V6vV8Pf3z/f1+eOPP/Dw4UOd1ye3ffkJCgqCpaUlwsPDsXnzZqSlpZnaJJw7dw49e/aEl5cXLC0tYW1tjQsXLuh9W1rQ+x0bG4sHDx5gxIgRRs+1c+dOtGvXDq6urtr3ytLSEqGhoTh27JjJdaaKiZmmj5lmGDONKgrmmj7mmmHMtZLFCdLIbM899xysra3xwQcfIC4uDv369TO4X0pKCry8vPS2e3l5ae8FMlXuUJbHy8t9nLc8Ozs7qFQqnf1UKhXS09ONlp+YmAhra2u4uLgYLL8gj++XnJwMEYG7u7vB/a9evQp/f3/cunULvr6+Jp0jP+a8PgDg7Oys89iU1weA9h6nx8s3JiAgAFu2bMHHH3+Mnj17wsLCAs8//zy+/PJLVKtWzehxd+/eRadOneDh4YG5c+fC398ftra2eOWVV/TqWdD7nTtEKb/XOTk5GUePHtX5sJGrVq1a+baRKj5mmj5mmmHMNKoomGv6mGuGMddKFjvbZDZra2v07t0bc+fORYcOHYz+Eru6uhq8h+LGjRtwdXU165y5+9+8eRNPPfWUTll5ny8sHx8fZGZmIiUlRSfEc8svSN5vSnProygKDh8+rBcuAFCnTh0AgJubG65du1aEmv/vfAD0Xu/ifH1yyzf0+ufn+eefx/PPP487d+7gxx9/xFtvvYVhw4Zhz549Ro+JjY1FQkICtmzZgkaNGmm3p6Wlwc/Pz6y6u7m5AQCuXbtm9FhXV1c8//zzmD59ut5zNjY2Zp2PKh5mmj5mmnHMNKoImGv6mGvGMddKDoeRU6G88soreOGFFzB27Fij+7Rq1QobNmzQmSVy165dSE1NRatWrQBAG275fVMHAM2bN4e1tTViYmJ0tq9duxaenp4ICAgobFMAAP/6178A5EwCkSs7OxsbNmwoVHkdOnQAkPNNXbNmzfR+HB0dAQBhYWFYt24d7t69a7Qsa2vrAl+fOnXqwMPDw+Dro1Kp0Lx580K1I1fDhg1hZ2en8/oAwPfff29yGVWqVEG/fv3Qv39/nQk+DH1T+/DhQ+1zuY4cOYL4+Hiz6x4cHAx7e3ssWbLE6D5hYWE4e/Ys6tWrp/deNWzY0OxzUsXDTMsfM00fM43KO+Za/phr+phrxY9XtqlQmjdvXmC4vffeewgJCUG3bt0wZswY3LhxA5MnT0bz5s3RpUsXAIC3tzecnZ2xevVq1KhRAzY2NggKCtIry93dHWPGjMGsWbNga2uLli1bYtu2bVi1ahXmz59f5HUj69evj549e2LcuHFIT09H9erVsXDhQmRkZBSqvICAAIwePRqDBg3ChAkT0KJFC2RmZuLixYvYt2+f9rWLiIjAli1b0KpVK0ycOBE+Pj44e/YsHjx4oJ2Zsl69eti4cSNat24NtVqNOnXqaP8A5LK0tMT777+PN998E56enujSpQuOHj2KTz/9FOPGjdN+Y1hYrq6uGDVqFD755BPY2dmhSZMmWL16Nf766698j1u0aBFiY2Px/PPPw8fHB3Fxcfjuu+907kOqV68e9u7di127dsHFxQU1atRAy5Yt4eDggNGjR2Py5Mn4+++/ERERofNNramcnJwQERGBSZMmQaPR4MUXX4RGo8G+ffswYMAANGvWDG+//TZWrlyJ0NBQjB07FtWqVUNSUhJ+/vln+Pr64q233jL7vFSxMNPyx0zLwUyjioS5lj/mWg7mWgkry9nZqOLIO8OlMY/PcCkisn//fgkODhYbGxtxdXWVoUOHyq1bt3T2Wb9+vdSrV09sbGy0syUamvkyOztbPvzwQ6lWrZpYW1tL7dq15euvvzapnk5OThIREZFv/VNSUuTll18WtVotbm5u8vbbb8usWbNMmuHS0AyUGo1G5s+fL4GBgaJSqcTV1VWCg4Nl7ty5OvudOXNGunfvLlWqVBF7e3t55plnJDo6Wvv8oUOHpEmTJmJnZycAZN++fUbP+9VXX0nt2rXF2tpaqlWrJtOnT9fOpinyvxkuk5KSdI4z9N497tGjRzJmzBhxdnaWKlWqyJAhQ2TFihX5znB55MgR6dq1q/j4+IhKpZJq1arJ2LFjdWa8PH36tLRu3VocHR0FgCxZskRERLZv3y4NGjQQW1tbCQoKkm3btkloaKh07dpVe6w57/fixYulYcOGolKpxM3NTbp16yZXrlzRPp+YmCgjRozQ1tXPz0/69OkjP/30U76vC1VMzLQczDRmGlUezLUczDXmWnmiiIiUeI+eiIiIiIiI6AnCe7aJiIiIiIiIihk720RERERERETFjJ1tIiIiIiIiomLGzjYRERERERFRMWNnm4iIiIiIiKiYsbNNJSY+Ph6KomDdunVmHbd//358/PHHetsjIyPh4OBQXNUr0Lx587Bt27ZiK2/Dhg1YuHCh3vahQ4ciMDCw2M5T3Er7dScqz5hruphrRBUbM00XM42KGzvbVO4YC/BXXnkF+/btK7V6lFaAl3el/boTVUbMtfKFuUZUNMy08oWZVn5ZlXUFqGIREWRkZMDGxqbUz+3n5wc/P79SP++T6tGjR7C2ti621z23PAsLfsdH5Qtz7cnBXKMnATPtycFMK//4SlK+cofNbNu2DY0aNYKNjQ02b94MAIiNjUX79u2hVqvh5OSE8PBw3Lx5M9/yli9fjlatWsHV1RUuLi5o27YtfvnlF+3zkZGRmDZtGu7fvw9FUaAoCtq2bat9LneIzP3796FWqzF79my9c/Tp0wfBwcHax6mpqXjjjTfg4+MDGxsbNG3aFDt37sy3ntWrV8eVK1ewYMECbT2WLl0KANBoNJgxYwaqV68OGxsb1K1bF4sWLSrwdVy2bBnOnDmjLW/o0KE6++zfvx+NGzeGWq1G8+bNceLECZ3nRQSzZ89GQEAAbGxsULNmTXz++ef5njf33IGBgdi+fTsCAwNha2uLpk2b4ujRo3pt/ve//43PPvsM/v7+sLOzw+3btw0OTbpy5Qr69OkDJycnqNVqPPfcc/jjjz9MKi+/Ou7evRtBQUGws7NDaGgo4uPjcfv2bfTr1w9VqlRBrVq1sGbNGr3jt27dihYtWsDOzg4eHh54/fXXcf/+fe3z9+/fx7///W/UqVMH9vb2qF69OkaNGoW0tDSDdV6wYAH8/f3h5OSEHj16ICkpqcDXmSoO5hpzjbnGXKtMmGnMNGZaOc40IcrHkCFDxMXFRWrVqiVLliyRPXv2yKVLl+TIkSOiUqmkR48esnnzZomOjpann35aWrZsqT02Li5OAEhMTIx227Rp02TRokWye/du2bZtmwwaNEhsbGzkwoULIiJy9epVGTFihNjZ2UlsbKzExsbKmTNnREQkIiJC1Gq1tqz+/ftL06ZNdep7584dsbW1lf/85z8iIvLo0SNp1qyZVK1aVaKiouTHH3+UgQMHipWVlZw6dcpou3/99Vfx9vaWPn36aOtx8+ZNERF5++23xdLSUiIiImTHjh0yZswYASDz5883Wt6ff/4pXbp0kZo1a2rL+/PPP7WvsZubmzRs2FBWrlwpW7ZskYYNG0rVqlUlIyNDW8aYMWPEzs5OZsyYIbt27ZJp06aJtbW1fPXVVwW+h66urlK9enVZunSpbNy4UYKDg6VKlSpy48YN7X7+/v7i7e0trVu3lvXr18umTZvkwYMHeq/7nTt3pHr16lKzZk1ZtWqV/PDDD9K0aVNxdnaW//73vwWWZ6yObm5uEhQUJNHR0fL999/LU089JSEhIRIWFiYffvih7Ny5U/r27StWVlYSHx+vPTYmJkYsLCxkxIgRsn37dlm8eLF4enrKSy+9pN3n5s2bMmrUKImJiZH9+/fLihUrpG7dutK2bVudevj7+0vVqlWlU6dOsnnzZlmyZIk4OzvrlEUVH3ONucZcY65VJsw0ZhozrfxmGjvblK8hQ4YIADl69KjO9jZt2khISIhoNBrttjNnzoiiKLJ161YRMRzgeWVnZ0tmZqbUqVNHpkyZot3+eGAY275x40YBIBcvXtRuW7ZsmVhaWsr169dFRGTx4sViZWWl/SOQq0WLFtK3b9982+7v7y+jR4/W2ZaUlCTW1tYyefJkne0DBgwQDw8PycrKMlrekCFDpEGDBga3K4oip0+f1m7bt2+fAJBDhw6JSM4fAEVRZNGiRTrHTpo0Sby9vSU7Ozvf8wKQPXv2aLelpqaKo6OjTjv8/f3Fzc1N7t27p3P846/7F198IYqiyNmzZ7Xbbt26JWq1Wt5+++0CyzNWx8dfg/nz5wsAmTRpknZbSkqKWFpayrx580RERKPRiL+/vwwYMECnvO3bt+uVl1dmZqYcPnxYAGg/POTW2c/PT9LT03Xab21tne9rTBULc425xlxjrlUmzDRmGjOt/GYah5FTgdzc3NCiRQvt4wcPHuCnn35C3759kZ2djaysLGRlZSEgIABVq1bFsWPHjJZ17tw59OzZE15eXrC0tIS1tTUuXLiAixcvml2v559/Hs7OzoiOjtZui46ORrt27eDl5QUA2LlzJxo2bIiAgABtPbOystCxY8d862nMzz//jMzMTPTt21dn+0svvYSkpKRCtQMAfH190aBBA+3j+vXrAwASEhIAALt37wYA9O7dW6cdYWFhuH79Oq5evZpv+U5OTmjfvr3O47CwMPz88886+7Vt2xZqtTrfsg4dOoTAwEDUq1dPu83V1RUdO3bE4cOHzS4v1+OvQUBAAAAgLCxMu83Z2Rmenp7a9l68eBFXrlxBv379dF6X0NBQWFhY4Pjx49pjV6xYgcaNG8PBwQHW1tZo1aqVtoy8QkNDde5zq1+/PjIzMwscdkcVC3Ptf5hrzDWq+Jhp/8NMY6aVJ+xsU4FywzBXSkoKsrOz8dZbb8Ha2lrn57///a/RMLl79y46deqEK1euYO7cuTh06BCOHTuGRo0aIT093ex6qVQq9O7dWxvgt27dwq5duxAeHq7dJzk5Gb/99ptePWfMmFFg6BmSkpICQP81yX1s7D6Xgjg7O+s8VqlUAKB9XZKTkyEicHd312lHx44dAaDAtnh4eOht8/LyQmJiosF25CclJcXgfl5eXnrtN6W8XMZeA0Pb874uANCzZ0+d18Xe3h7Z2dna12X9+vUYPHgwmjdvjrVr1+Lo0aNYv349AOj92yvovaDKgbmm23aAucZco4qMmabbdoCZxkwrHzgbORVIURSdx87OzlAUBe+++y569Oiht7+7u7vBcmJjY5GQkIAtW7agUaNG2u1paWmFnkFxwIABiIqKwqlTpxAbGwtLS0v06tVL+7yrqyuCgoIQFRVVqPIf5+rqCgC4efMmnnrqKe32Gzdu6Dxf3FxdXaEoCg4fPqwNlLzq1KmT7/GGJo24ceMGfHx8dLY9/l4bq8uFCxcMlvd4+00pryhyz/fll1/qfKOfy9fXFwAQExODZ555RmdylAMHDpRo3ah8Y679D3ONuUYVHzPtf5hpzLTyhJ1tMptarUZwcDDOnTuHGTNmmHzcw4cPAUAngI4cOYL4+HidISkqlQqPHj0yqcy2bdvC29sbq1evRmxsLDp37gwnJyft82FhYdi2bRt8fX21v8ymyvutXK7mzZvD2toaMTExaNy4sXb72rVr4enpqR1OY2p5purQoQOAnG+EX3jhBbOPT0tLw969e7XDk9LS0rB7926MHj3a7LJatWqFdevW4cKFC9o/HCkpKdi9ezdGjhxpdnlFUbduXfj5+eHy5cv5tuXhw4d6f/hWrlxZ0tWjCoS5xlxjrlFlwkxjpjHTygd2tqlQZs2ahfbt2+Oll15C//794eLigoSEBOzatQvDhg3TLgGRV8uWLeHg4IDRo0dj8uTJ+PvvvxEREaHzrSMA1KtXD1lZWfjiiy8QEhKCKlWqGP020NLSEv369cPSpUtx8+ZNnXuCAGDw4MFYtGgR2rZti3feeQcBAQFITU3Fb7/9hoyMDMycOdNoG+vVq4e9e/di165dcHFxQY0aNeDu7o4xY8Zg1qxZsLW1RcuWLbFt2zasWrUK8+fPh6WlZb7lLV68GKtXr0bt2rXh7u6O6tWrG3+R8wgICMDo0aMxaNAgTJgwAS1atEBmZiYuXryIffv2YcOGDfke7+rqihEjRmDatGlwdnbGJ598AhHBuHHjTDp/XsOGDcPnn3+Orl27YsaMGbC1tcVHH30EKyurQpVXFIqiYO7cuQgPD8f9+/fRtWtXqNVqXLlyBVu3bsXHH3+MgIAAdOzYEaNHj8b06dMRHByMbdu2Yc+ePaVaVyr/mGvMNeYaVSbMNGYaM60cKMvZ2aj8MzYro4jIsWPHpEuXLuLk5CR2dnZSu3ZtGTVqlFy9elVEDM9wuX37dmnQoIHY2tpKUFCQbNu2TUJDQ6Vr167afTIzM+WNN94QLy8vURRFQkNDRcT4zJexsbECQBwcHAwuV5CWliZvvfWWVKtWTaytrcXHx0e6dOkiW7Zsybftp0+fltatW4ujo6MAkCVLlohIzsycH374oba82rVry9dff51vWbn16N+/v7i5uQkAGTJkiIgYfo1TUlJ0zimSM5vj/PnzJTAwUFQqlbi6ukpwcLDMnTs33/Pmlr9lyxapV6+eqFQqady4sfz00086+xma0VPE8OseHx8vvXr1EkdHR7G3t5eOHTvqLc9hrLz86phX7iyfx44dK7DcnTt3SmhoqKjValGr1dKgQQMZP368pKamiohIVlaWjB8/Xjw8PMTR0VH69OkjR48e1fv3aajs9evXCwCJi4szqS1U/jHXmGvMNeZaZcJMY6Yx08pvpikiIqXXtSei0jZ06FAcP34cp0+fLuuqEBEVC+YaEVUmzLTKi7ORExERERERERUzdraJiIiIiIiIihmHkRMREREREREVM17ZJiIiIiIiIipm7GwTlbDmzZtjwYIFRp8/efIkFEXB/v37S+T8HTt2xEcffVQiZRPRk4eZRkSVDXONSgo720QlaP369YiPj8fw4cPLrA7vvvsuZs+ejZSUlDKrAxFVDsw0IqpsmGtUktjZJipB8+bNw4ABA2BnZ1dmdWjXrh1cXFywbNmyMqsDEVUOzDQiqmyYa1SS2NkmKiFxcXE4dOgQ+vTpo7N9xowZ8Pb2hoODA3r16oWbN2/qHSsimD17NgICAmBjY4OaNWvi888/19tv/fr1qFOnDmxtbdGyZUv8+uuvcHZ2RmRkpM5+ffv2ZYATUZEw04iosmGuUUljZ5uohOzZswdWVlZo3ry5dtuXX36J999/H4MGDcL333+PmjVrYsSIEXrHjh07Fh988AGGDBmCrVu3YujQoZg0aRK+/vpr7T6//fYb+vbti/r16+OHH37AkCFD8NJLL+HRo0d65YWEhODkyZNISkoqmcYSUaXHTCOiyoa5RiVOiKhEjBw5Uho0aKB9nJWVJb6+vjJo0CCd/QYNGiQAZN++fSIi8ueff4qiKLJo0SKd/SZNmiTe3t6SnZ0tIiJ9+/aVp59+WvtYRGTFihUCQCIiInSOjYuLEwCyZcuWYmwhET1JmGlEVNkw16ik8co2UQlJTEyEh4eH9nFCQgKuXbuGnj176uz3+NCl3bt3AwB69+6NrKws7U9YWBiuX7+Oq1evAgCOHTuGbt26wcLif7/GL774osG6uLu7a+tERFQYzDQiqmyYa1TSrMq6AkSVVXp6OmxsbLSPc8PT09NTZz8vLy+dx8nJyRARbeg+7urVq/D399f7AwEAjo6OsLW11Tsmtx4PHz40vyFERGCmEVHlw1yjksbONlEJcXV1RXx8vPaxj48PAOhNsnHjxg294xRFweHDh6FSqfTKrVOnjra8x+/ruXv3LtLT0/WOSU1NBQC4ubmZ3Q4iIoCZRkSVD3ONShqHkROVkDp16iAuLk772M/PDz4+Pli/fr3OfuvWrdN53KFDBwDArVu30KxZM70fR0dHAMC//vUvbNmyBRqNRnvshg0bDNYl9w9JbvgTEZmLmUZElQ1zjUoar2wTlZBnn30WH374IRISEuDn5wdLS0tMnjwZY8eOhZeXFzp27IidO3di3759OscFBARg9OjRGDRoECZMmIAWLVogMzMTFy9exL59+7QhPWXKFPzrX/9C7969MXLkSFy5cgWzZ8+Gra2tzr1BAHD8+HE4ODjgmWeeKaXWE1Flw0wjosqGuUYlrownaCOqtB49eiRubm7yzTffaLdpNBqZNm2aeHp6ir29vXTv3l1+/PFHnRkuc/ebP3++BAYGikqlEldXVwkODpa5c+fqnOP777+XgIAAsbGxkaZNm8rhw4fFyspK5s2bp7PfCy+8oDezJhGROZhpRFTZMNeopCkiImXc3yeqtMaPH4/ffvsNe/fuLZXz7dmzB2FhYdi/fz9CQ0MBACkpKfD29sauXbvQpk2bUqkHEVVOzDQiqmyYa1SS2NkmKkGJiYl4+umnceTIETRq1KjYy3/jjTfQoUMHuLm54cyZM5g+fTp8fX1x/Phx7fCkDz/8EPv37y+1PyJEVHkx04iosmGuUUniPdtEJcjHxwdLly7Vm4myuKSkpGDMmDFITk6Gk5MTnn/+ecyePVvnPiBXV1f85z//KZHzE9GThZlGRJUNc41KEq9sExERERERERUzLv1FREREREREVMzY2SYiIiIiIiIqZuxsExERERERERUzdraJiIiIiIiIihk720RERERERETFjJ1tIiIiIiIiomLGzjYRERERERFRMWNnm4iIiIiIiKiYsbNNREREREREVMz+HwVUxSj/N7BwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1564,13 +1564,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADi7klEQVR4nOydd3hU1daH3zMz6QkpJIQk1IRegoDApwihF1GkKCAgqFQFARXuFaVFELAh2CgSpIiAICgWBAsgWEDBa+g9lCRAAkkI6ZPZ3x+TGWYyJTMhkMJ+nyfPyZyzzzl72pq99l7rtxQhhEAikUgkEolEIpFIJBJJiaEq7Q5IJBKJRCKRSCQSiURS0ZDOtkQikUgkEolEIpFIJCWMdLYlEolEIpFIJBKJRCIpYaSzLZFIJBKJRCKRSCQSSQkjnW2JRCKRSCQSiUQikUhKGOlsSyQSiUQikUgkEolEUsJIZ1sikUgkEolEIpFIJJISRjrbEolEIpFIJBKJRCKRlDDS2ZZIJBKJRCKRSCQSiaSEkc62RFKG2bVrF4qisGnTptLuikQikdw2cXFxKIrCO++8U9pdkUgkEqepVasWjzzySGl3Q1KOkM62pNzw119/MX78eBo3boyXlxc1atRgwIABnDx50u55eXl5NGrUyOoALzU1lSFDhuDv7094eDgxMTEW5//99994enpy7ty5En0+Eonk3ubmzZvMnDmTHj16EBAQgKIorFy50qKdTqdj5cqV9O7dm+rVq+Pl5UWTJk2YM2cO2dnZZm1zcnJ44YUXCAoKolq1asyZM8fiepcuXcLb25vffvvtTj01iUQiseDgwYP07t2bgIAAPD09adKkCe+//75Zm6VLl1K7dm0CAgJ46qmnuHHjhtlxnU5H8+bNmTt37t3sukRSbDSl3QGJxFHefPNNfvvtN5544gkiIyO5fPkyH374IS1atODPP/+kSZMmVs/74IMPuHDhgtVjkydPZteuXURHR3P69GlGjRpFw4YNefDBBwEQQjBhwgQmTZpE7dq179hzk0gk9x7Jycm8/vrr1KhRg2bNmrFr1y6r7TIzM3nmmWf4v//7P8aOHUuVKlX4448/mDlzJj///DO//PILiqIA8Pbbb7N69Wpee+010tPTef3114mIiODJJ580Xm/KlCn07t2btm3b3o2nKZFIJOzYsYNHH32U5s2bM336dLy9vTlz5gyXLl0yttm7dy/PPfccEyZMIDw8nHnz5jFlyhSWLl1qbPPJJ5+QlpbGyy+/XBpPQyJxHiGRlBN+++03kZOTY7bv5MmTws3NTQwZMsTqOVeuXBG+vr7i9ddfF4B4++23zY4HBweLVatWGR9HRUWJV155xfh4zZo1IjQ0VKSnp5fgM3GcnTt3CkBs3Ljxjt7n5s2bd/T6EonEkuzsbJGYmCiEEOKvv/4SgPj0008t2uXk5IjffvvNYn90dLQAxI8//mjc16ZNGxEdHW18PHz4cDFo0CDj4z179ggvLy9x8eLFEnwmjnPu3DmrtrikkTZNIik7pKWlieDgYNG3b1+Rn59vs91///tf0bFjR+PjTz/9VFStWtX4OCUlRQQGBoovv/zyjvbXHjVr1hS9evW6o/fIy8uzGO9Kyi8yjFxSbnjwwQdxdXU121e3bl0aN27MsWPHrJ7zyiuvUL9+fYYOHWr1eFZWFv7+/sbHAQEBZGZmApCRkcErr7zCvHnz8Pb2dqqv8fHxjBgxgtDQUNzc3KhduzbPPfccubm5xjZnz57liSeeMIZT/d///R/fffed1evpdDreeOMNqlWrhru7O507d+b06dMW7fbt20ePHj3w9fXF09OTqKgoi1DRWbNmoSgKR48eZfDgwfj7+/PQQw8Zj3/22We0bNkSDw8PAgICGDRoEBcvXjS7RocOHWjSpAlHjx6lY8eOeHp6EhYWxltvvWXRp+zsbGbNmkW9evVwd3cnJCSEfv36cebMGbPnt3DhQho3boy7uzvBwcGMGTOGlJQUx15wiaQc4ubmRtWqVYts5+rqaoy2MaVv374AZvbPnk3T6XRMnDiR//znP1SrVs2pvqampvLiiy9Sq1Yt3NzcqFatGsOGDSM5OdnY5urVq4wYMYLg4GDc3d1p1qwZq1atsnnNZcuWERERgZubG61ateKvv/6yaHP8+HEef/xxAgICcHd35/7772fr1q1mbVauXImiKOzevZvnn3+eKlWqmD2/bdu20a5dO7y8vPDx8aFXr14cOXLE7BpPP/003t7exMfH06dPH7y9vQkKCmLy5Mnk5+ebtdXpdCxatIimTZvi7u5OUFAQPXr04O+//zZr54gtlUjuBT7//HOuXLnCG2+8gUqlIiMjA51OZ9HOnv0C/filadOm9OvXz6n7O/Kd1Wq1zJ4922iTatWqxauvvkpOTo7Va+7du5fWrVvj7u5OeHg4q1evtmiTmprKpEmTqF69Om5ubtSpU4c333zT7Lmb6lgsXLjQeP+jR48CztnA3377jZdeeomgoCC8vLzo27cvSUlJFv3atm0bUVFR+Pj4UKlSJVq1asXnn39u1saR8aTEQUrb25dIbgedTifCwsJEt27dLI7t27dPqFQq8fvvv9tcTencubPo0KGDOHnypPjhhx+Eh4eH+Oyzz4QQQrz66quidevWQqfTOdWn+Ph4ERoaKjw9PcWkSZPEkiVLxPTp00XDhg1FSkqKEEKIy5cvi+DgYOHj4yNee+01sWDBAtGsWTOhUqnE5s2bjdcyrGw3b95ctGzZUrz33nti1qxZwtPTU7Ru3drsvj///LNwdXUVDzzwgHj33XfFe++9JyIjI4Wrq6vYt2+fsd3MmTMFIBo1aiQee+wx8fHHH4uPPvpICCHEnDlzhKIoYuDAgeLjjz8W0dHRIjAwUNSqVcvYdyH0EQChoaGievXqYuLEieLjjz8WnTp1EoD4/vvvje20Wq3o3LmzAMSgQYPEhx9+KObNmyc6deokvvrqK2O7kSNHCo1GI0aNGiWWLFki/vvf/wovLy/RqlUrkZub69TrL5GUR+ytbNtix44dAhCff/65cd+IESNEkyZNRGxsrPj9999F1apVxZw5c4QQQixbtkzUqFFDZGZmOtW39PR00aRJE6FWq8WoUaPE4sWLxezZs0WrVq3EP//8I4QQIjMzUzRs2FC4uLiIF198Ubz//vuiXbt2AhALFy40Xstgi5s3by7q1Kkj3nzzTfHWW2+JwMBAUa1aNbPv++HDh4Wvr69o1KiRePPNN8WHH34o2rdvLxRFMbOTn376qdGmRUVFiQ8++EDMnz9fCCHE6tWrhaIookePHuKDDz4Qb775pqhVq5bw8/MT586dM15j+PDhwt3dXTRu3Fg8++yzYvHixaJ///4CEB9//LHZ6/H0008LQPTs2VMsXLhQvPPOO+Kxxx4TH3zwgbGNo7ZUIrkX6N+/v6hUqZL48ccfRb169QQgvLy8xNixY0VWVpax3Zo1a4Snp6fYvn27OHnypGjfvr3o0qWLEEKII0eOCDc3N/Hvv/86fX9HvrPDhw8XgHj88cfFRx99JIYNGyYA0adPH7Nr1axZU9SvX18EBweLV199VXz44YeiRYsWQlEUcfjwYWO7jIwMERkZKSpXrixeffVVsWTJEjFs2DChKIqYOHGisZ3BJjZq1EiEh4eL+fPni/fee0+cP3/eaRvYvHlz0alTJ/HBBx+Il19+WajVajFgwACz/n/66adCURTRpEkT8cYbb4iPPvpIjBw5Ujz11FPGNo6OJyWOIZ1tSblmzZo1AhAxMTFm+3U6nWjdurV48sknhRC2QxdjY2NFtWrVBCAA0b9/f5Gfny/Onj0rPDw8xB9//OF0n4YNGyZUKpX466+/LI4ZHPdJkyYJQOzZs8d4LD09XdSuXVvUqlXLGGZlcLYbNmxoFlK0aNEiAYhDhw4Zr1u3bl3RvXt3s8mBzMxMUbt2bdG1a1fjPoOzbXhtDMTFxQm1Wi3eeOMNs/2HDh0SGo3GbH9UVJQAxOrVq437cnJyRNWqVUX//v2N+1asWCEAsWDBApuvxZ49ewQg1q5da3b8hx9+sLpfIqmIFMfZ7tKli6hUqZKZ83bx4kXRuHFjo01r166dSE9PF6mpqSIoKEisX7/e6b7NmDFDAGaDOwOG7/HChQsFYJysFEKI3Nxc8cADDwhvb29x48YNIcQtW1y5cmVx/fp1Y9uvv/5aAOKbb74x7uvcubNo2rSpyM7ONrvfgw8+KOrWrWvcZxhoPvTQQ0Kr1Rr3p6enCz8/PzFq1CizPl++fFn4+vqa7TcMtF9//XWztoaJTgO//PKLAMSECRNsvhbO2FKJ5F4gMjJSeHp6Ck9PT/HCCy+IL7/8UrzwwgvGiXgDWq1W9OvXz2i/qlevLmJjY4UQQnTr1k2MHTvW6Xs78p393//+JwAxcuRIs+OTJ08WgPjll1+M+2rWrCkA8euvvxr3Xb16Vbi5uYmXX37ZuG/27NnCy8tLnDx50uyar7zyilCr1eLChQtCiFs2sVKlSuLq1atmbZ21gV26dDEbA7744otCrVaL1NRUIYQQqampwsfHR7Rp08ZsksP0tXBmPClxjFJ3tq9cuSLOnz9v8SeRFMWxY8dEpUqVxAMPPGA2wBJC7+R5eHhYGDNreYJZWVnir7/+EqdOnTLu69u3rxg6dKgQQogvv/xSREZGilq1aono6Gi7K935+fmiUqVK4rHHHrPb93r16lmsTAshxLx588ycaIOz/dZbb5m1O3jwoADE119/bfZ41apVIikpyexv5MiRws3NzejAG5zt3bt3m11zwYIFQlEUcerUKYtrNGzY0Di7LITe2fb29rZ4LXr37i2aN29ufNyrVy8RGBgo8vLybL4WEyZMEL6+vuLq1asW9/X29rb48ZNIKiLOOttvvPGG1VVXIfRO7j///COOHDli/N6/+OKL4qGHHhJC6Ce4WrduLapVqyZeeOGFInMDGzduLJo1a2a3Tbdu3UTVqlUt8jHXrVtn5kQbbPHzzz9v1u769esCEIsWLRJCCHHt2jWhKIqYPXu2hV0w5KpfunRJCHFroGmqvyGEEJs3bzYOlAtfo1u3bqJOnTrGtgZnu/Bgd8KECcLf39/4eNy4cUJRFHHt2jWbr4UztlQiuRcIDw8XgIWzPGbMGAFYOKSnTp0Sf//9t9Eh/Prrr4Wfn59ISkoSly5dEo888ogICQkRjzzyiIiPj7d7b0e+s3PnzhWAOHr0qNn+xMREAZg50TVr1hSNGjWyuEZkZKTo27ev2eMePXpY2ICffvrJbGLSYBOfeeYZs+sVxwZ+8cUXZtcw2EBDNMDGjRsFILZs2WLztXBmPClxjFJRI7927RovvPACmzdvJi8vz+yYEAJFUSxypCQSUy5fvkyvXr3w9fVl06ZNqNVq47EbN24wdepUpkyZQvXq1Yu8liEHxsAvv/zCjh07OHHiBCdOnGDQoEEsXbqUWrVq8eSTT1K9enWeeeYZq9dKSkrixo0bNpXRDZw/f542bdpY7G/YsKHxuOk1atSoYdbOkNNkyGk+deoUAMOHD7d5z7S0NLNcqMLq6qdOnUIIQd26da2e7+LiYva4WrVqRgVk037FxsYaH585c4b69euj0dg2NadOnSItLY0qVapYPX716lWb50ok9yIbNmxg2rRpjBgxgueee87iuIuLC/fdd5/x8fHjx/n444/5/fffuX79Or169eKVV16hY8eOPPPMM7zxxhtER0fbvN+ZM2fo37+/3T6dP3+eunXrolKZS8GY2jRTirJpp0+fRgjB9OnTmT59utV7Xr16lbCwMONjazYNoFOnTlbPr1SpktljQy5n4X6ZakecOXOG0NBQAgICrF7TcF9nbKlEUtHx8PAAMKuKADB48GCWLl3KH3/8YfZ9qVOnjvH/3NxcXn75ZWbOnElgYCDt2rUjJCSEb775hvnz5zN48GCblRzAse/s+fPnUalUZvcFqFq1Kn5+fkXaL7C0FadOnSI2NtbCphgoPLYpbL+KYwOLsqsGrRx7Y9TijCcl9ikVZ3vkyJHs3r2bqVOn0qhRIwvRK4nEHmlpafTs2ZPU1FT27NlDaGio2fF33nmH3NxcBg4cSFxcHICxtERKSgpxcXGEhoZa/dzl5+czceJEXnnlFcLCwpg9ezYPPvig0bkeM2YMa9eutels3ylMJxNMEUIAGMU23n77bbNBtimFRd4MP34GdDodiqKwbds2q/crfH5RfXIUnU5HlSpVWLt2rdXjtn6oJJJ7kR9//JFhw4bRq1cvlixZ4tA5L774IkOHDqVFixasWbOGgIAApk6dCsB//vOfIp3tO4GjNm3y5Ml0797datvCA2NrNg1gzZo1VoXoCk8C2uqTszhrSyWSik5oaChHjhwhODjYbL9hkt2eGOp7772HRqNh/PjxXLx4kb1793Lu3Dlq1arFW2+9RXh4OJcuXXJa9NEahRcQbOHI+Een09G1a1f+85//WG1br149s8e27JczNrAkxmXFGU9K7FMqzvbOnTt5//33GTZsWGncXlKOyc7O5tFHH+XkyZP89NNPNGrUyKLNhQsXSElJoXHjxhbH5s6dy9y5c/nnn3+sGpHFixeTnp7O5MmTAUhISDBz5kNDQ4mPj7fZv6CgICpVqsThw4ftPo+aNWty4sQJi/3Hjx83HneGiIgIQL9S06VLF6fONb2GEILatWtb/AgUl4iICPbt20deXp7N1ZyIiAh++ukn2rZta/FjI5FIbrFv3z769u3L/fffzxdffGE3YsTAt99+y++//25crUhISCAkJMR4vCibBvrvqCM2LTY2Fp1OZ7a6XVybFh4eDuhXgW/HpoF+QF/ca1i75vbt27l+/brNlbI7YUslkvJMy5Yt+fHHH4mPj6d+/frG/QkJCYDtSfXExETmzJnDxo0b0Wg0xvaGcZlhGx8fb9PZduQ7W7NmTXQ6HadOnTJG4wBcuXKF1NRUp+2X4b43b94stu0pCRtorU8Ahw8ftnDUC7e5nfGkxJxilf46cuQIgwYNMsrTHzx4EIDXXnuNbdu2FXm+n58fgYGBxbm15B4mPz+fgQMH8scff7Bx40YeeOABq+0mTJjAli1bzP6WLl0K6Mu7bNmyxSJcB+D69evMnDmTt99+G3d3dwCCg4ONg0XQl9ixV6pHpVLRp08fvvnmG4syMHBrdvHhhx9m//79/PHHH8ZjGRkZLFu2jFq1almdRLBHy5YtiYiI4J133uHmzZsWx62VfihMv379UKvVREdHW8yCCiG4du2aU30C6N+/P8nJyXz44YcWxwz3GDBgAPn5+cyePduijVarJTU11en7SiQVjWPHjtGrVy9q1arFt99+69DEVG5uLi+99BLTpk0zriAFBwdz+vRptFqt8bpFlR/r378///77L1u2bLE4ZmrTLl++zIYNG4zHtFotH3zwAd7e3kRFRTn8XEHvIHfo0IGlS5eSmJhocdwRm9a9e3cqVarE3LlzLVLWHL1GYfr3748QwmokgOG1uBO2VCIpzwwYMACAmJgYs/3Lly9Ho9HQoUMHq+e98sortG/fnh49egAYV8YN4zJD2UN7NsyR7+zDDz8MwMKFC82OL1iwAIBevXrZvL4tBgwYwB9//MH27dstjqWmphptsC1KwgYWplu3bvj4+DBv3jyys7PNjhlei5IYT0rMcXpl+8cff6RXr160bNmSIUOGMGfOHOMxFxcXPv74Y3r27Gn3Gv/5z3/44IMP6Natm0Mz8xIJwMsvv8zWrVt59NFHuX79Op999pnZcUMt7RYtWtCiRQuzY4Zw8saNG9OnTx+r158+fTpNmzbliSeeMO7r378/r7/+Os899xw1a9Zk6dKlRuNri7lz57Jjxw6ioqIYPXo0DRs2JDExkY0bN7J37178/Px45ZVXWLduHT179mTChAkEBASwatUqzp07x5dffmmR91gUKpWK5cuX07NnTxo3bswzzzxDWFgY8fHx7Ny5k0qVKvHNN9/YvUZERARz5sxh6tSpxMXF0adPH3x8fDh37hxbtmxh9OjRxhV/Rxk2bBirV6/mpZdeYv/+/bRr146MjAx++uknnn/+eR577DGioqIYM2YM8+bN43//+x/dunXDxcWFU6dOsXHjRhYtWsTjjz/u1H0lkvLChx9+SGpqqnHF5ptvvjGmvbzwwgv4+vqSnp5O9+7dSUlJYcqUKXz33Xdm14iIiLA6+bho0SIAJk6caNz38MMPM27cOAYPHsyDDz7I7NmzGTlypN0+TpkyhU2bNvHEE0/w7LPP0rJlS65fv87WrVtZsmQJzZo1Y/To0SxdupSnn36aAwcOUKtWLTZt2sRvv/3GwoUL8fHxcfq1+eijj3jooYdo2rQpo0aNIjw8nCtXrvDHH39w6dIl/v33X7vnV6pUicWLF/PUU0/RokULBg0aRFBQEBcuXOC7776jbdu2VicC7dGxY0eeeuop3n//fU6dOkWPHj3Q6XTs2bOHjh07Mn78+DtiSyWS8kzz5s159tlnWbFiBVqtlqioKHbt2sXGjRuZOnWqRTogwP79+9mwYYOZDkytWrW4//77efrppxkxYgTLly+nTZs2dleeHfnONmvWjOHDh7Ns2TJSU1OJiopi//79rFq1ij59+tCxY0enn/OUKVPYunUrjzzyCE8//TQtW7YkIyODQ4cOsWnTJuLi4opceLxdG1iYSpUq8d577zFy5EhatWrF4MGD8ff3599//yUzM5NVq1aVyHhSUghnFdVatmxprMWWl5cnFEURBw4cEEII8dVXX4mwsLAirzF+/HhRo0YNUaNGDfHUU0+JF154wezPmjy/RGIoN2Xrzx721MiF0JcAc3V1NdaMNWXlypWiVq1aonLlyuKll16yUD63xvnz58WwYcNEUFCQcHNzE+Hh4WLcuHFmqr9nzpwRjz/+uPDz8xPu7u6idevW4ttvvzW7jkGNfOPGjVafT2Hl4n/++Uf069dPVK5cWbi5uYmaNWuKAQMGiJ9//tnYxqBGnpSUZLXvX375pXjooYeEl5eX8PLyEg0aNBDjxo0TJ06cMLaJiooSjRs3tjh3+PDhombNmmb7MjMzxWuvvSZq164tXFxcRNWqVcXjjz8uzpw5Y9Zu2bJlomXLlsLDw0P4+PiIpk2biv/85z8iISHBaj8lkoqAoYyMtT9DHWjD993W3/Dhwy2ue/nyZeHj4yO2bt1qcWzbtm2iQYMGws/PTwwbNkxkZGQU2c9r166J8ePHi7CwMOHq6iqqVasmhg8fLpKTk41trly5Ip555hkRGBgoXF1dRdOmTS1slD1bDIiZM2ea7Ttz5owYNmyYqFq1qnBxcRFhYWHikUceEZs2bTK2MSjxWiu3KITejnbv3l34+voKd3d3ERERIZ5++mnx999/G9sMHz5ceHl5WZxrsJemaLVa8fbbb4sGDRoIV1dXERQUJHr27GkcCxlwxJZKJPcKubm5YtasWaJmzZrCxcVF1KlTR7z33ntW2+p0OtGmTRvx0ksvWRw7ffq0aN++vfD29hbt27e3GEtYw5HvbF5enoiOjjaOVapXry6mTp1qVnZLCL3N7tWrl8U9oqKiRFRUlNm+9PR0MXXqVFGnTh3h6uoqAgMDxYMPPijeeecdkZubK4Qoenx6OzbQMIbcuXOn2f6tW7eKBx98UHh4eIhKlSqJ1q1bi3Xr1pm1cWQ8KXEMRQjn1Izc3d355ptv6Nq1K/n5+bi4uPD333/TokULdu/eTffu3S1CEwpjLYTXFEVROHv2rDPdkkgkEolEIpFIJBKJpMzgdAx3QECAMdytMCdPnjQTXrHFuXPnnL2tRCKRSCQSiUQikUgk5QanBdL69OnDzJkzzZSUFUXh8uXLvPPOO0XW4iyPnD59mrFjx3Lfffeh0Whs1qdLTU1lwoQJhIaG4u7uTkREBO+++65Zm9zcXKZMmULVqlXx8vKia9euVlWpJRKJ5E4hbZpEIqlISJsmkUjKKk6vbM+bN4+//vqLyMhImjZtCsCzzz7L2bNnqV+/PrNmzXL4WqdPn+bkyZNWw8779evnbNfuGEeOHOG7776jTZs26HQ6Yw06UzIyMujQoQMajYb33nuP4OBgTp48yY0bN8zaTZgwgfXr17NgwQLCwsJ444036Ny5M0eOHMHX1/duPSWJRHIPI22aRCKpSEibJpFIyizFSfTOzc0VK1asEE8++aTo2rWrGDhwoPjkk0/MxJ/skZaWJjp16iRUKpVQqVRCURShKIrxsUqlKk637hj5+fnG/4cPH25VGGratGkiPDxc3Lx50+Z1Ll68KNRqtVi6dKlx37Vr14SXl5d48803S7bTEolEYgNp0yQSSUVC2jSJRFJWKVadbRcXF5555hk+//xzduzYwfr16xk5ciSurq4Onf/f//6Xy5cvs2fPHoQQbNmyhV27djFixAhq167Nn3/+WZxu3TEcKcO0fPlynn32Wby8vGy22bFjBzqdzqy0VEBAAN26deP7778vkb5KJBJJUUibJpFIKhLSpkkkkrKK0872v//+a9PgfP/992b18Gzxww8/8Nprr9GmTRsAQkNDad++PcuWLeOxxx6zyJ8p68TFxXH58mUCAwPp3bs3bm5uBAQEMGrUKLOC8MePH6dKlSr4+/ubnd+wYUOOHz9+t7stkUgkVpE2TSKRVCSkTZNIJKWF0872iy++yB9//GH12P79+3n55ZeLvMbVq1epXr06arUaLy8vrl27Zjz28MMP88MPPzjbrVLl8uXLAEyePBl/f3++//575s6dy8aNGxk1apSxXUpKCn5+fhbn+/v7c/36dZvXz8nJ4caNG8a/tLQ0kpKSEM5VbZNIJBKHkDZNIpFUJKRNk0gkpYXTzvb//vc/2rZta/XYAw88wMGDB4u8RvXq1UlOTgagbt26bN261Xjsjz/+wN3d3dlulSoGIY569eqxatUqOnfuzNixY3nnnXdYv379bdcMnzdvHr6+vsY/Pz8/qlSpQnp6ekl0XyKRSMyQNk0iubskHjxItKKQaGUMZeuYvXMk5pRXm+bseyw/E5KyREl+HsvzZ9tpZzsnJ4fc3Fybx6wpixema9eu/PTTT4B+pXzJkiW0bNmSBx54gJkzZzJs2DBnu1WqGMKNOnbsaLa/c+fOgF4l09AuLS3N4vyUlBQCAgJsXn/q1KmkpaUZ/y5evFhSXZdIJBILpE2TSCQVCWnTJBJJaeF06a/mzZuzevVqevfubXFs9erVNGvWrMhrvPnmm2RmZgLw1FNP4e3tzaZNm8jKyuLDDz9kzJgxznarVImIiMDNzc3mccMERIMGDbhy5QopKSlm+UDHjx+nQYMGNs93c3Oze32JpKKSnpjIgaVLaTlmDD4hIaXdnXsGadMkEklFQto0ieTOIMdpReP0yvbUqVPZsmULvXr1YtOmTfz+++9s2rSJXr168dVXX/Haa68VeQ1PT08CAwONj/v27cvatWvZvHkzzz33nEOqkmUJV1dXunXrxs8//2y2/8cffwSgRYsWAHTr1g2VSsWXX35pbJOSksKOHTt4+OGH716HJZJyws3ERHZHR3MzMbG0u3JPIW2aRCKpSEibJpHcGeQ4rWicXtnu1asXn3/+OVOmTGHAgAEoioIQgmrVqvH555/Tq1cvh6917Ngx/v77by5evMizzz5L1apVOX36NMHBwfj4+DjbtTtGZmamUYH9/Pnz3Lhxg02bNgEQFRVFUFAQM2fO5MEHH2TIkCEMHz6cU6dOMXXqVIYMGUJERAQA1apVY+TIkUyZMgW1Wk1YWBhz587F19e33K3mSySS8ou0aRKJpCIhbZpEUv6psKvkt1Ok+/jx4+K3334Tx48fd+q8jIwM8eSTTwq1Wi00Go1QqVTiwIEDQgghHn/8cTFlypTb6VaJc+7cOQFY/du5c6ex3U8//STuv/9+4ebmJqpWrSpefvllkZ2dbXat7Oxs8fLLL4sqVaoIDw8P0aVLF3Hs2DGn+pOWliYAkZaWVhJPTyIpsyQcOCBmgUgosA+SkkHaNImkdLiRkCB2zpwpbiQkmO23Z+tsHStN+2jreZQWFdWmOfsey99Myd2mOLbrblyrLOH0yrYp9evXL9Z5kydP5pdffuH777+nXbt2eHl5GY89/PDDvPfee7z11lu307USpVatWg6Vb+jcuTN//fWX3TZubm688847vPPOOyXVPYlEUkCFnRUtYaRNk0juLLZskSHksn7v3uXaRpW15yFtmkQiKasUy9k+ceIEX375JZcuXbJQH1cUhZiYGLvnb9q0ibfffptu3bqRn59vdqxWrVrExcUVp1sSieQep6wNACUSyb2JtEUSiUQigWI422vWrOGZZ57B3d2dmjVr4urqanZcUZQir3Hz5k1CbPz4ZGRkONsliUQikUgkknsOF0/P0u6CRCKRSOzgtLM9e/ZsHn/8cVasWIFnMY18ZGQkX375Jd26dbM49t1333H//fcX67oSiUQikUgkFR0hBMGRkbyakYFOq0UI4dBih0QikUjuLk472wkJCSxevLjYjjbA9OnTeeyxx8jMzOSJJ55AURT279/PunXrWLFihVFRUiKRSKwhc7MlEklJU17sitDpSE9I4MDSpVw/c4aAiAh9n0NDUcpZ6VSJRHLvUV5sbUnhtFVu3749hw8fvq2b9urVi/Xr17N371769OmDEILnn3+eDRs2sHbtWjp37nxb15dIJBUbWddRIpGUNLbsSnpiIrtmzSK9lO2NxsMDodMR+9lnLKpdm1/nzOHwunX8OmcOi2rXJvazzxA6Xan2USKRSIriXhvDOb2yPXfuXIYOHYq7uztdu3bFz8/Pok1AQECR13n88cd5/PHHOXnyJMnJyQQEBNCgQQNnuyORSMoJ99pMpkQiqRiUFbEzr6Ag0hMS2DpiBDqt1uyYTqtl64gR1O7cWb/CLUPKJRKJpEzgtLPdokULAJ577jmbxrywwrg96tWrR7169ZzthkQiKWfcrQGrFAySSCQVDkXB3c+P3dHRFo62AZ1Wy4ElS4iaNQtFrb7LHZRIJJI7S3kd3zntbK9YsaJEZkwvXrzIV199xcWLF62WD1u0aNFt30Mikdw7SMEgiURSUXHx8ECl0XD9zBm77VLOnkUlHW1JCSCj0SRlhfI+vnPa2X766adv+6ZffPEFTz31FDqdjipVqlgtHyadbYlE4ihSMEgikZR37K3a5GVlodNqCYiIsHsN//BwdPn50uGW3DZlJX1Ccm9TEcZ3TjvbJcGrr75Knz59WLZsGb6+vqXRBYlEUgEwFQwqnMe4d/58esfEEDl0aLkxyBKJpHxREqt/Dq3aCEF2aiotx4xh7/z5VkPJVRoNLceOlfZOIpFUCCrK+K5YPfz1118ZOnQorVu3JjIy0uKvKJKSkhg9erR0tCUSSbGVfl08PR0SDEpPTEQIUZJdlkgkEuD2VXWFTkd6fDy7o6P5cvBgdkdHkx4fb1VVPCMpCZ/QUHrHxKDSmK+VqDQaeq9YgU9ISLkKr5RIJBJrCCEqzPjOaWd7+/btdOrUieTkZP7++2+qV69OYGAgJ06cICMjg/vvv7/Ia/To0YM///yzWB2WSCQVi5uJifz+9ts2B6uFQytNV4Hc/f05sHRpkYJBshyORCK5E6hSk4gK0W+doThlvLRZWSgqFZFDhzIxLo7206bRdPBg2k+bxsS4OCKHDCkXqzySe5DkRFg6S7+VSBxA6HQVZnzndBj5zJkzmTRpEm+++SYuLi7Mnj2bFi1acP78ebp3706nTp2KvMaSJUsYOHAgmZmZdO7c2Wr5MIPquUQiqbjYC5+0doyCmc4DS5eSdukSfT79VAoGSSSSUkOVlkyHUEhKS3bqPGfKeBVGUanwCQ0lauZMVBoNOq0WRa2WK9qSsktyInwSDVG9IVDmf0vso6hUqNTqCjO+c3oK9NixY/Ts2ROVSoWiKGRkZABQs2ZNZs2axZw5c4q8Rnp6OpmZmcybN4+uXbvSqlUr49/9999Pq1atnH8mEomkXGEvfLLwsb+XLgUhzFaB/l21irzMTIcFgyQSiaRMUFDG63ZWbRRF4UpsLHO9vLgSGysdbYlEYkFx0/RKG6HTocvPrzDjO6dXtt3d3dHpdCiKQkhICGfOnKFdu3YA+Pj4cPHixSKvMWzYMC5cuMAHH3xAvXr1LNTIJRJJxcWeqNmp779n5P79HFq71uxYeNeupF24YN5eCA5v2EDzESOkYJBEIik3OF3Gy44jnZeZWdLdk0gkFYTyrCivqFQVRhDSaWe7WbNmnDhxgq5du9K5c2feeOMNAgMDcXFxYdq0aTRt2rTIa+zfv5/PP/+cPn36FKfPEonkLnHzyP9InjOJwGkL8W58n9mx4qrw2gufbDV+PDcuXjQ/pig0GTiQvfPmWbTft3AhkUOH8ujy5XwzcqTZcSkYJJFIyiSK4lQZL8qBAJBEIpGUJIqiGAUhC48Xy9v4zmlne9KkSZw7dw6AuXPn8uijj9K7d28AqlWrxpYtW4q8Rt26ddHaCJ2SSCRlh6yTR6h1ajdJJ49YONvFmjEtCJ/cHR1tOVNpw6l28fDAxdPT6irQldhYvho2jD6rV1O7Y0cOfvIJKWfP4h8eTsuxY/WGuBzMekokkoqPUYfi5k10Ol2FWbWRlC3s1WuXSMoTBkHI2p07c2DJknI7vnPa2X744YeN/4eFhXHgwAFOnz5NVlYWDRo0cCgkfMGCBUyePJkmTZrQoEEDZ7sgkUjKKfbCJ2051XlZWXZzsw+vX0/S0aP0XrGCqFmzUKnVUjBIIpGUKYROZxR3vH7mDNXbtqXVc89ViFUbSdnAoXrtEkk5oyIIQjrtbL/++uuMHDmS0AKFTEVRqFu3LgCJiYl88sknzJgxw+41Jk2axOXLl2nSpAmhoaEWauSKovDvv/862zWJRFLGycvKshk+adOpdiA3O+noUbyrViU7JYWFNWvyzJ49hMiKBhKJpJSxpVFxeN06Lv3xB31WrSr3qzaS0qfwZE5ARIQ+xSs0VH6OJHecOx1NoSgKl2Nj+bRdu3I5vnPa2Y6OjqZHjx5GZ9uUhIQEoqOji3S2W7ZsWa5mJCQSSQkhBNmpqdbDJ+041Y7mZiefOCEFgyQSSZnBnkbFobVrST52jKd//bXIVRsZGiyxhS3B0b3z59M7JobIoUOlwy25fZIT4cul0H+MsXybI9EUJWm7yuv4zmln215YSmJiotWa2YVZuXKls7eVSCQVhIykJALr17caPvnXhx/SbNgwi2NXYmP5+pln6LNqFeFduthcBdJmZZXW05JIJBJz7GlUFJB48CC/zZ9P1MyZzPXysli1kaHBEnsIIRyu1y4/N2WL4orMlhqFaqUXFU0hbdctHJrqWrduHb1796Z3794oisLLL79sfGz469atG8OGDePBBx+8030us2zdupU2bdrg4+NDSEgIAwYM4OzZsxbtYmJiqFevHu7u7jRr1oxvv/22FHorkZQO2qwso+jFxLg42k+bRtPBg2k/bRqDtm5FURSrx7q8+aZRnTJq5kz6rV1L1MyZMkzuDlJRbFp5rTUqKd84VeJLo0EUUh0XOh3p8fHsjo7my8GD2R0dTXp8vM3a25KiqSg2zYDQ6W6rXruk9DCIzN504nepTPyWud1KjVlUuza/zpnD4XXr+HXOHBbVrs2FvXul7SqEQyPU3Nxc0tPTSU9PRwhBRkaG8bHhT1EUhg0bxtKlS+90n8sku3btom/fvjRq1IgtW7awcOFC/v33X7p160aWyWrb+vXrGTVqFAMHDmTbtm088MAD9O3blz///LMUey+R3H1MRS8KO852jykKV2JjmevlxZXY2Ht2pvROU5FsWnEGNZLyTZkYlDpT4kurNYvMsTeYjf3sM4ROh8bD404/A7uUt9D2imTTDKjUasfrtUvKPTZ/y5ITYeks/dZBimsjhb/t1JigRo2o9sADZd523W0cCiMfPnw4w4cPB6Bjx44sXrxYqogXYv369dSsWZMVK1YYB/9VqlShU6dO/P3337Rr1w6AmTNnMmjQIGbPng3oX8/Y2Fhef/11vv/++1Lrv+Te5m6FMxUenNkTvShKEKO85u6UF6RNk5Rn7JUmvNP2rjglvrJTU83OdyQ02CsoqMT77gjlNTy0Ito0XX6+w/XapcNdgSkU4u0IzpZvzUhKwktREF6+HHh3kVV71mbSJNLj48us7SotnI693Llzp1VHOzc3t0Q6VF7Jy8vDx8fH7AfH19cXwBgadvbsWU6ePMmAAQPMzh00aBA///wzOTk5d6/DEokJxV35c3Rlw3RwFhwZaREuac9xlk516SBtmqSiknksFpZF67clTOHwyb8XL8YnNJTeMTGoNObrG6bijhlJSWbXcCQ02N0BjZySpjyHh1ZEm6aoVLQcM8bis2XgTtVrLxORI+WEivJaZSYng5sHKhcX69EUikKTgQP5JyamTNqu0sTpb9+aNWv44IMPjI8PHz5M3bp18fT0pEOHDly9etXu+UIIrl+/XuYM1u3y9NNPc/ToUT7++GPS0tI4e/Ysr776Ks2bN6dt27YAHD9+HMBisqJhw4bk5uZy7ty5u95viaQ4FOU8m7UtYnDmHRJC1MyZeJfAClNJXuteR9o0SUVFlZZMh1D9tqRQV/KzGvq9bfx4tgwbRtMhQyx0KCbGxRE5ZIiZuKOiUjkeGqzR3NVwTEdC28syFdGmGXRMiprMKenIA5ma4zgV6rXKyUKXl2s1msLFwwMXT88yabtKG6ed7bfffhuVyQzZCy+8gKurKwsXLiQxMZFXX33V7vl5eXlUqVKFn376yfnelmHatWvHli1beOWVV/Dz8yMiIoIrV66wbds21AWhOykpKQAWiu3+/v4AXL9+3eq1c3JyuHHjhtmfRFJaFOU8G2ZxM5KSHBqc+YSE0GHWrBIJ5yzJa93rSJsmkTiOR50Gdkt8LW/dGnc/vyLFHYVO53hocKE87zuJI6Ht6YmJdideS5uKatNsCY6aTuZI7jx3YwVblZpEVIh+e6ew+zyEICfhotVoirysLPIyM8uc7SoLOP0NjIuLo1GjRgAkJyezZ88e3n33XcaPH8/rr7/O9u3b7Z7v6upKtWrVyM/PL16Pyyi///47Tz31FKNGjeKXX35h48aN6HQ6evXqZSa8URzmzZuHr6+v8a969eol1GuJxDkccZ6zU1PZHR2NoijlfnB2LyNtmqQ8U9xBqa3UGLspM4qCW2h1u6HfhhJfQJHijo6GBpvmed9pKoLqdXm1aY6ka9kTFZXcHe7GCnZJRuXYspFFPY+s08etR1MIwZEvvqDFqFFlynaVBZz+FqpUKmN+9s6dO3FxcaFjx44AhISEcO3atSKvMW7cOBYsWEB2drazty+zTJgwgU6dOvHuu+/SsWNHHn/8cb777jsOHjzImjVrgFszo2lpaWbnGmZSAwICrF576tSppKWlGf8uXrx4B5+JRGIdR1c2vHx96NwkCHdf3zs2OJPh4nceadMk5RlnB6W2UmMcSplx80Dl4moePqkoeifJxKG2VeKrMI6GBpvmed9pKoLqdXmzac6kawGyUofEKYrluLt7kn8j1WY0RZ2ePalUrVqZsl1lAYfUyE1p1qwZH3/8MdWqVeP999+nU6dOuLm5AXDhwgWqVKlS5DUuXLjAyZMnqVGjBh06dCA4ONjMKCiKwqJFi5ztWqly9OhRHnvsMbN91apVIzAwkDMFP1CGHKDjx49Tv359Y7vjx4/j6upKeHi41Wu7ubkZX2OJpLQoamWjQZ8+aNzc8PD356FDV0GXT+3OnTmxdStXYq0LERV3cGYIF5fcOaRNk9wrCJ2O9IQEDixdyvUzZwiIiKDNpEl4+Ptb7G85ZozliqFJHmNwZCRtJk2i6cCBaDw90WZmcmjDBvYtXOhU+KRhMFu7c2cOLFlCytmz+IeH03LsWH0Orkme992gIqhelyebZu0zafWzZ4WKLip6t6qnlCcykpLwMmzvRLEoIQh85AnoO4TAvFwQwiyaQqXRoNNqUdRqFEUpU7arLOC0sz137lweeeQRIiMj8fHxMcu93rJlC61bty7yGt9++63RMP31118Wx8ujs12zZk0OHjxotu/8+fMkJydTq1YtAMLDw6lXrx4bN240M/gbNmygc+fOuLq63s0uSySOo1bbXdno8f77tB43DpISUJbNgktnoFoENfqMYvTff7Nl2DAOr19vcV5ZH5zdy0ibJqnomIqamUbsBEdG0n7GDP5ds4ZvRo40m2DcO38+vWNiiBw69JbTU5DH2GbSJKJmzEBcjUe9ah5cOoOmWgSRvUfQbOhQstPTnQqftDeYvdsYQtuLKmFWlsOWy4tNs/aZBBufvXsQZ0tW3QtkXzmFV8uCLd2N+0skx1ung+QElC+XwqUzKNUioP8YCNRP/Fgr0eqI7SpWyk45xWlnu23btsaV6YiICDMRiREjRlCnTp0ir1HW1BxLgrFjxzJp0iQmTpzIo48+yrVr15gzZw5VqlQxKyExa9YshgwZQkREBB07dmTDhg3s27ePX3/9tRR7L5HYwd0T8vMtVzYUBRcPD+r26qV3tL9fgzJ7JOTfGhyoVs5HTF9O39WrSTp61GyFuzwMzu5lpE2TVHRsiZoZasUWdrTBvFasT2iofqe7J7mX46nUqjZ8vwZVITuoLrCDHg8/RUpcnFN9VBTF6mAW7m46jWloe+HX606qXpck5cGmOVpj3Sc0tEy/1pK7i0qXCi0Ltqb7C0LFk4qR463x8NA72ts+g9dHmNk0Vs6HGTHQcygaDw+r0RS2bJdpeoROq0UIgaIoNvdXBJx2tgF8fHxo2bKlxf6HH374tjtUXpkwYQJubm4sXryYmJgYfHx8eOCBB9i4cSOVK1c2tnvyySfJzMxk/vz5zJ8/n/r167NlyxYeeOCBUuy95F7BqfCrwmFDKhWtxo/n1Pff02r8eGOYpMjP169oFxpgApCvRZk9El2LDrSZOJGtI0YA5Wdwdi8jbZqkPKPKT9EPPvNTrDcoEDX78/XZ5k5NQa3YvfPm2dWbOP7VV7R67jmjjayUn4+SnAB27CCtu+BeqVKxno+1wezdTqdxJLS9LFMebJqjQnRRs2ahyIiwu87NI/8jec4kAqctxLvxfaXdnTuKV1AQJCdYOtqgf/z6CGjVWd/ODqa267ZTdsopDjnbCxYsYMiQIQQHB7NgwQK7bRVF4cUXXyzymvHx8SxcuJC9e/dy/fp1AgICaNeuHRMnTiQsLMyx3pchFEVh7NixjB07tsi2I0aMYESB0yGR3E0yj8XCsmgy2z9g39m2ETbkFRTKqP370V2+qA+TjD+LMmMFbF5qaYwN5GtRf72cZiOmce7nn8vV4OxeRto0SXnG1kqPEWuiZjhWK7bJoEHcP2aM3rn+cuktO/ilfTvIl0vwGDWzeE+ojFCWQtudpTzYtIogRFeRyTp5hFqndpN08oiFs303ynLdNRQFDz8/+CS6RGyaxsOjZFJ2yikOOduTJ0/moYceIjg4mMmTJ9tt64izffjwYdq3b09eXh5du3blvvvu48qVKyxZsoSYmBh+/fVXGjdu7PizkEgkDlFUSJHdsKHfvkdZtR/xw1rUhmPunjBnrT5H2x7xZ1G5utFv7dpyNTiTSAojxXlun+K8hjbPSU7UO7n9x0CgE++HiaiZKUXVig2OjKTv6tUoP6y9tYrthB1UNBq9nS3H2Attl9weFUGIrkxSXDvhBM6GbJdl59zFwwNFoykxm+YVFFQyKTvlFIemCnQ6nVH4TKfT2f1zpH725MmTiYiI4MKFC2zevJnFixezefNmzp8/T3h4eJEOvUQisU16YiK7Zs0ivRi1Hu2GDQ0YD1cuopgey8mC7EyoZn9wQFg4Ij9fliSRlHvuRi3Vik5xXkOb5yQn6ldfkh2/lio/BVoIci+dtqxnLQSHN2yg+YgRVmvFtpk0CXE13jxtxhk76KAaeXmgoqtelwaO1lgvbyt9hlJPpVbyqRh24k5jt/RWciIsnVVq/c3LykJotSVj0xQFdz8/y/SIgpSdf2Ji7kiJ2LJEqXxb9+7dy7Rp04z1DA34+/vz2muvsXfv3tLolkRSISi2M2AIG7IWCqko0G0gfB1jfkwI2LEBHhsBahuBMmoNov9Y8nNz5eBMIpGUKMUZxBtCzHNP7rVaz3rfwoX4hIXx6PLl5k6PotB04EDUW4tnB+k/liwn1Mgl9x6O1lgvbxPWmcnJZtt7iWKtYJf25IAQelvVf8xt2zQXDw9UGk2xUnbAJG2inH3mTXEojNxZBcb27dvbv6lGQ05OjtVjOTk5qGVojERy1/GsXNl22JCbhz5U0tqxdQvh4aEwfbmlOJBag5gRA4Eh3HBShVcikZhTVkPYc3ISSUhYSmjoGNzc7lCIpo0Bq62SN46Qn3bVpuhXTno6zZ56ivAuXYz7K9evj8azeHaQmSsgMISMEyeK8ewl9xLlXYiuLGKzDrWN8PLi2Fpbooy2wsvtiThmJhzHs2XBtkHppGlkJCXhWb++XnW8cLSjEzYtLysLnVbrdMqOAUPaBEIU+7mUNg452x06dDDKsgNmM2rWpNmLCiXv0qULr732Gvfddx/16tUz7j916hTTp0+na9euDj8BieRepcQG3kJQtVlTpiQlIXT5KE9NhrNH4NStMl12wyRPxcLMYRC9Glp1gs3LIP6sPryo/1gI1A8OcoqxonM3S9tIJGWdslpfNjc3kfPnowkM7H3bzrYtx93mgLUoITQHMIp+zZiBysUFXV4eikZjXGWMmjEdlYsrurxcvY100g5SYAdRqSpMCLnkzlKehehKjcxEOLoUGo0BT3M7lJmcjJfJ1kh8LByMhv97wMzZTo2PJS4umoj4IsRkTXDWFuVzkXPdwEtctDiWk3wWz5YFW4euVvJos7JApYKeQ6FVZ/hySfFsmhBkp6bScswY9s6ffytk3CRlx2y/CeU1baIwDvX+n3/+4eDBg/zzzz9s376dsLAwhg4dyldffcWff/7JV199xZAhQwgLC+OHH34o8noLFixAq9XSqFEj7rvvPrp3707z5s1p2LAhWq22SMVziURSQrmjQgeZ8SgHX4efB6McmIWoVgXW/A3dB5m0KyJMcvt6ePr/EJUCEKNnwZy1+m3Q7ZVtMJS2KUuOhUQiuXPkXo3l/Plocq/GFt34dtCYD2EVReHat1/AQ15c+/YLo1Oj37+xYP9GFEVlO7SywA5SKQAxeqbeDo6cDkGh+kGrROIEiqJwJTa2XGmd3I5mzG1jcJzjHbcdWVdOQcuCrQlakUytp/VbU4osKegEeap0zlfWbx2lJO/v+E1VEBSqt2XFtGkZSUnOpexQvtMmCuPQK9WsWTPj39KlSxk0aBCrVq3i0UcfpXXr1jz66KOsXr2agQMHsnjx4iKvV6NGDQ4dOsSCBQuoV68eOp2OevXq8d577xEbG0v16tVv+4lJJBLbqCv56R3tU5/B57XhnzlwZh38MwdlXW3E2c/1KzR1I2+d9MWHiODq+rDwwgNNtQYGT0Jx8+D6gX3sbRLE1d0/lXsDKZFI7jJXT5lvSxoh8Os3BZ7N0G8LhyZm29CVMOxXFAgM1YdW2rCDuHmQsms7PORF8rcbHco1lFE8EluUJ62TUhWQTE023zpAdkHEXXahyDslPcVsa6A4kTR5Sgrnuum3t0tJRPIUC0XR2zInbJop2qwsY3rExLg42k+bRtPBg6nfu7cxZcd0f/tp05gYF0fkkCHlflUbHAwjN2X79u1s3rzZ6rFu3brRr18/h67j7e3NhAkTmDBhgrNdkEgkxcQwK+oZXhsyE2D3CBCFQneEFmX3SERoF33t2LULICyc/MdGogiB0mMIolVnFBshRbkad34+kkyEX1DpPEmJRFKm0eqSqDlcvy1MzvWL4KLf+pT0jYUOMhNQji6FG2dQKkUUhJyGguLEgM6B0Mr8G6m2HXcrGKJ4JJKyhItnaQUx2+ZulMzSpF0E/4Ktg+Sp0jlXGbyE+Uq1VpXK+W4QfiO1hHvpIO4l+B46YdOsYS89oiKnTTjtbHt7e/Pzzz9bzav+8ccf8fb2LpGOSSSSkkc/K6rgVj1Cv5pd2NE2ILQox5YgWs5CmbMWbWYmh9av56+PPmLw99/jVUUfUqS4uCLyclE0LsaZTrlCI5FI7JF/4xS1ntZvKSRqlpOeDgEFWxOKFT5pGipuiOQpPMH4v/kQFQN1h+ojfhzFJLTSmh3U+QayKwEa+gY6fk2JpIwghCA4MpJXMzLQabVW9ZlKC2frWRcHpcBhVoTjId55qnTOB0Dd64VtV7rZ9o5RKDVGCEHlR56AvkOonJdbZt5DRVG4HBvLp+3a8cyePYS0aGF3f0XAaWd73LhxzJgxgytXrtCnTx+qVKnC1atX2bJlC2vWrCE6OtrqeZUqVWLnzp20bNkSHx8fu2+4oiikpaU52zWJROIIGg8UjRvcsF9ugfSzKCo1bwUGknXtmjF/xisoCEVRSPp2I0Hvjib55WUE9R1iPE2u0EgkZZ/SVDZX3UyFSgVbR89xJnzSECqumYafNkcfKm4nkofdIyCsMx4R9Z14FiAK/pSCLQX/A+j8gtidCPVlhI+knCF0OtITEjiwdCnXz5whICJCbydCb0+DxVluHvkfyXMmEThtId6N77tr9y1piuO4O4UQ+PWdAi7T8MvT2zshxG29h3cjosFWekR5SptwFKed7WnTpuHn58f8+fNZtWqVUaU8JCSEhQsX8sILL1g97+WXXyak4Af95ZdfLhOzKxLJvYmC0Gn1IZT28AlHl5dDne7drZYd8ajXmLjqrQis1/gu9FkikZQkmcdiYVk0me0dV9u1iSGcMzWJko/9dhKLUPE60HKGXqXYTiQPR5fg3ny6E7cpnkMiI38kZRmh0xH72WdsHTHCTB167/z59I6JIXLo0JJ1uG2U3gLIOnmEWqd2k3TySLl2tu8oOh0kJ6B8uRQunUGpFoHoPwYqh/DTK69waO1aY1NH3kMhBMFNm+ojGvLyysxqeHnHaWcbYPz48Tz//PNcunSJxMREQkJCqFatGio7X8CZM2cC+jdywoQJeHl54ebmVrxeSyQSm3mPNvOZTGY/0ekQDUej/G++9QGookE0HIOidqHf2rXoCkIkTY2ud+P78F636w48M4lEcqexFYpZrBVvU2EiE33Tu1F/24Dat4r1UHGNJ7R63bFIHo0ruHkUeS9HHBKNh/XryMgfSVnFsBpa+HMNoNNq2TpiBLU7d8YnNLTkbpqcCJ9EQ1RvC2fbWbJSUvAw2VZk1L5V9I72ts8samArK+cjpi+nz6efcvXQIa7E6tXZi3oPy0pEQ0Wk2K+eSqWiRo0atGnThho1ath1tE3Jy8ujSpUq/PTTT8W9tURyT2GrlIbN0hQFg2iV6SBap4OkeJTlc+C1wSibFoNXGCIqBpRCc26KBtFhBXhU1RvYzoEFJW/k7KZEUtGxqSacnAhLZ+m3DpJ6bhfnz0eTem6X2f47kcPoVq+19VBxbRZoM8GBSB6hzYUc+zVjHXFI0hMT8QqS4eOS8oXQ6TiwdKnVeseg/3wfWLIEodMV7wZWhLoykpLMtreDLWXxksQgguZMua47gVu91pCcYOFoA5CvRZk9EpGUQJuJE80OWXsP1ZX8jBOIi2rX5tc5czi8bh2/zpnDotq1if3sM4RO55ymhcSMuz5V4erqSrVq1cjPz7/bt5ZISp2cnETOnZtFTo7jA1Zbg18lL8Vsa4bpj5ph9vPR2hAzB7avgy3LUHQ6qDMEBpyG5tOgzmD9dsBpiBgMKOjy8iDtWnGeqkQiqUgYVqCccLZzrp4x2xoo+RxGBdfqjWyEigs4swEajLCcWDSeroFGY8m+dKHIOznqkLj7+Tn3FCSSUkalVnP9jP0IkJSzZ1Gp1c6VfhKCwEeegL0Z+q1Jub3M5GSzbVmnOLWxSx4F12oN9eH3BkdbUfTjPsP7kq9F/fVymg4aZHG28T1UqwHwqNPAoQlEZzUtSprynIJTKnEB48aNY8GCBWRnZ5fG7SWSUiM3N5Hz56PJzb39GpQqbarZFrD+o2Zt9vPJSXDlEsqw1rD7Z2g6FTqt1W93/6zff+0yutss8yCRSCR3HI2HPgTcVqj4oYXgFQZRy61G8hAVA54h5F5JsH0Pd09Qqx13SDQam6HkEklZRJefT0CE/QgQ//BwdPn5lvXpbV7UEFU3Wx9Vt3w2JMXr999FilXN4I6joFJ5cktW0UHcK6O4uMGlM1A3EmasgD03YW+GfjtjhX5//Fk0np4Wdsj4Hubng4cXbqHVHZpAdAurya4EfaWF0sCQgnO3BT1LgmLlbN8uFy5c4OTJk9SoUYMOHToQHBxsFqKqKAqLFi0qja5JJOUXC6GMOjB6hvnsJ+hnPrsNhE/nwfGDekd89kh9rqKJc618uQT1qBml8EQkEkm5IjfFfFuAKiMdPAq2t4mtGrYFd0Lo8m2LPl6PhZ3DoOMaCOsCR5dA+lnwCYd6I8ErFG6k4hocahnqapjA7DuEwLxchE5H9bZtObxunc2++oeHo9Nq0WbZD0mXSMoSikpFyzFj2Dt/vlXHS6XR0HLsWIfydzUeHjZzilk5H2bEQE8ny+3dBk5VMyhxLJ1qIQRVH11AmMtH5OflOCREJoTAt0B3R+Tno3ToA9GrICMeDs3TTzZWioCoEfDwUNi5BW1mppkdUmk0tBo/HkWlMpYFU4FjE4guLvyW6iErLBSDUnG2v/32W9zc3HBzc+Ovv/6yOC6dbYmkaAwDWTeVt/UfNXdPeO51/eynKW4e+mOm+4Uwc7QBiD+rrxvrgGCQRCIpPUqzjBcAeanm2wKULL2NUrJKxtm2qGFrIvqo6HR6UUdboo9nN0Hrd+F6hj6Cx91Tb/N2rIfftsHTU3Gv10wfFZSXq7eJBZFBhZV+Wz33HJf++MNM6deAwSG5k3mjEsmdQFEUfEJD6R0TYxFSbCj96RMS4pB+i1dQkN2cYl4fAa2cL7dX3rDmVFOMslyFxcvaT59OYJfHUU6ugV9Hmtu8/82H9ssRXYZy+utvjLtVGg3DfvkFr6Ag8jIz0bjoXUCRn8+DkyeTdOSIUUytMHIC8fYoEWc7MzOThIQEIiIiHPoSnjt3riRuK5Hc0xgGst7VbAhl5GTpB5PVCq322NpfmLBwRF4uShGCQRKJpHQx6DrU793bYWe7bIZV2qPQ6lChSB5GTIfa9aH9csvBpyFU3CMIXukJpw/diuTpPgje+BySElCWzdI71c3awuPP2Vb6nRFD31WrSD52jMSDB43HTB2S5BMn7s7LIpGUIIpKReTQodTu3JkDS5aQcvas1dKf9i+i4OHnp9d4KOxoG8jXwpdLcB/peLk9h9Dc+frQjlLYQa7eti2tnnvuViWD/HxcPDzIy8qyWZZL7VvFavWDxgMHEFjdx9LWgf7xryOhWhcq169H08GD8Q8Pp9X48fpJECFQpyah2hpjnESs2m8Mo//+my3DhnF4/Xqzy8kJxNvHaWf7nXfeISMjw1jKa8+ePfTu3ZsbN25Qu3Zttm/fTkQROR8SSalip65jWcRWiS89Cp5hLWH5HHOhDDcPvVO9YwM8NkIftmU4LoT1/aaoNdB/LNnxFyp8CQ2J5F7EVlilzdKBpYkQhBasDom8XMtIHkWB6ctRftoEHQdD1Q5wcvmtUPFGY8E9GGY8BacKVm6yM/V5jdGr4YfP9ak0BlvYpitcvmBb6ff1EYhWnXn611/5bf58qw6JXAGSlFcUlQqf0FCiZs5EpdGg02pR1GqLxTQXT+uOrYuHB4pGYxlVV5j4syguRZTbs6JgbhUh8Os3BTTT8NPm6Mc5d6SCStF51hrfMKsOcnjXrqRduMC+RYt4ZNkymg4ciMbTE21mJoc2bGDfokUWZbnc6rU2Fy9TqfCsXJk63bqhHJ5nPYoHQGhRji4hsOUss/KtCAHbPkNtau/QTyIyfTl9V68m6ehR4wq3nEAsGZwWSFu+fDnVqlUzPn7ppZdo3LgxX3/9NYGBgbz66qsOXSc5OZnXXnuNLl260LhxY7p06cK0adNIKgH5f4nELsVQ1S1NbJX4AgWNpgihjEr+UCUMpi/XO9AG1i20vh/0j2eugMAQss5I4yqRlHXsOci2SgfavJa10oFFkJOebrYtUQqXLTx9GJIKRfIYUmN2fQVP3W8p+picAdeuwE+bzK/95CS4Gm/uaBs0Lb6Osbsqp3y5BBcPd6JmTKff2rVEzZgu69FKKgyKonAlNpa5Xl5ciY01c7SFEARHRvJqRgbBkZH60GgT8rKyEFqtw9FzVsvt2VEwt2yrg8x4lH/mwM+D9dvMeP1+U2531btg0q99+wxCH11gs0/eER3NHWRFwcXLiyYDBxK/fz8j//yTyG4d0ayaB68NRrNqHpHdOjLyzz+5+NtvJmW5FFyqNeTA0qU06NOH8SdOMCMvlylXr6Lx8LQtCGkg/SyKSl1wJX3/uXoJpZCjDRjLhSkpV3lsxQqaDh5M+2nTmBgXR+SQIXIC8TZxemX74sWL1KlTB4D4+HgOHDjA7t27adeuHVqtlueee67Ia+zbt48ePXqg0+no0qUL9erV48qVK3zwwQd88MEH7NixgzZt2jj/bCSSckxOTiIJCUsJDR2Dm5v9FXchBCG9FxCm+Qgh8uH5N1CCq1kKZTQfoR88PjwU0boLypdLIP6s/kcuIx0efgqldRcw2U//sfoVf5WK/BupJfb8ynPZBomkLGNwkJOsOMjFCTG3Sk4StCzYFj6Ung4BJeVs61eONL5hNlew+XSe7ZSZ7essRR/rRsKav/XnGgaapkKRpteypmlhjXj9QDb5240EvTWCay8vI6jvkBJ4/hJJ2SEv01zLpXBotNV8YyHISk3Fs/+Y4kXPWYi9RhREIoaCaYh1JT+9Q33qM9g9wjJvOSoG6g4FFKO2g1+elVVvR5xwh/qkoFJ54R7Wkl9fn0NQo0a0mTTJuIKNLp9G/fvDts9QFXJ41SvnI6Yvp2G/IQVluTTgXR2VixvV27alw+vRkJGAcmAW3DgLHVbox3j28AmHvByY9cwtwdwtnxQ5iVh1tPlqeFHpwXJsVzROO9seHh7cuHEDgJ9//hlvb28efPBBAPz8/EhLSyvyGuPGjaNx48Z8//33VKpUybg/LS2Nnj17Mn78eKvCaRWB48eP88ILL/D777/j4+PDsGHDmDNnDq6urqXdNYk97kLouaEsWGBgb7vOthA6cnMTSEhYSlbWGTw8IggNHYOrWoVyYBqcNhHtMQhl1HuKtMw8vIdPNYYtHf5iA361w6nZrh2MmoGicdHnaGtc7kj4laFsg6TiIe1axSfryik8WhZs6V7oaDFL2BRGCEINk4i6PL0TvW6R5Qq2qSNsSJspnBpjKvp4Khain0FEr4JWnVA2L9OvaFtzqp3QtEBXUD5HlkiscEibZom10GjALN/YUGYqIykJz/r19arjhdMxTKPndm4zd7adUDD3rNMAMhMsHW3QP949AsI6g8oXZeWblk6yotgJPbcz6WelTyiKMdUFXT5NnnySqBkzEFfjUa+ap7czQydDQBW7K8uibS+Eb4B+ckD1CkKXT0T3bnDqMxTT51mtCzQYoR/jWQslVzT6Sgvb1uonIG0J5ppSNxJadzG+BAqOWXQ5tisap53t1q1bM3/+fFQqFW+//TY9e/ZEXVAY/cyZM4SFhRV5jSNHjrBx40YzRxvA19eXV155hYEDBzrbrXJBSkoKnTp1om7dumzevJn4+HheeuklMjMz+fDDD0u7exJ7GELPo3rf9TxvJT0FVOAqVAih48qVzzhxYgTCxMBeuDCf+vWWE9zhU5Trh/SlbuCWUEaNHvofkVu/I/rU7ZdeYtDWrbjkZeExtBnJcnVG4iTSrpU8pa4uboXs1FQ8TLYGTKNsdFrHSthYReggMwHl6DK4eRHFuzo0GAkr/4SZw2D7enNHuG6kPgy820D9QDI3CzSu8NaX8J/+FoN78UB3EHDyz4NEFEw6ivx8/eDbrB+Oa1qgyJDxisi9ZtMcsTeiQEG7sKMN+jrMW0eMoHbnznoBLtCHHKtUeke0VWfHoucK1P8dUjD38MItrDr8M9tu3jJHl0DkVIiZc2t/wjl9yazMBJSjS+HGGX3ZwEZjwDMUUGxP+plq4uRr4c8d0HMoIjtTn6cOoMsnsEED2Psdqin99JNy7p56XYnCkTSmvLQAlV8AIiMB5VhBvyInIzyqmDvaAIcW6lfto5bDbiuCkO1j9CUN1xVUdipqErH7IL1+RXIiLJ1lN6JA4jzFEkh75JFHePTRR6lZsyZvvPGG8diGDRuMq9z2qFOnDqk2VO3S0tIIDw93tlvlgiVLlnDjxg22bNlCQEAAAFqtlueff55XX32VUBNRBEkFJTvp1tbHsVM0aZdQVfbEL7guubkJFo42gBBaTpwcib9fB1ybTtQbZgPhj6O4Vca38mW9oMaNM2gqRRDZdwTNhg7l2JYtNOzbR67OSIqFtGt6StJBLrHQ7zuMzSgb11AURYXtFe9C+4UOzn+HyLkGzV9B0XgitJlw5gsUtwD9IDDuOFy5pHeEB02AUTMs02bqj4T2j8COK/D5e2aDeyUwBAGE3H8/e+bP58alS7QeP56q/cboxYFMB8DrFurr1JqGnRswWZWzFwEkQyvLL+XZphXnc+eIvRE6HQeWLrVafxv0DveBJUuIKhBPNqJSQVAoYuR0FBdX+9FzQqePICxKwXz0LNhzU289HMhbxs3zloNcNxJmfqoPPS+s5J1+DjqsQuRngUpj7JNQC5SVf8K/v0Hj1rfKBv65A9o9AgiU3CQ4HGO0RUrDMfBgD/j4x1vniHxo3Rl+3aqPtjF13Dv1hwHj4NQaFKPzrEDUcpR/rAihXY+FncOg42oI7QTHlt0ShGwwGjyq6icpDYKQ9iYRbQlFgtnqvSFqQeI8TjvbjRo14uzZs1y7do3KlSubHXv33XepWrVqkdd4++23GTduHNWrVycqKsq4f9euXcyaNatCzhwCbNu2jS5duhiNN8CAAQMYO3YsO3bs4Omnny69zknuDtnJ5tsiEEIQ+mg01TTzESKfuLhZFo72rbZaEi4vp1bEVPjtBdBmQUBTvTE+vdbEgOtR/28+ov1yGvYfgkqtsaoIqvMNZFcCNPQNdP65Su4JpF3TU1Yd5DulLm43yqZ+DMHBQwnt/Z5+dcgkRNNa3VklJwVRowe5OfEkXJx3y3GvMQJXtzAQCnz2N4qi1mtUoKCc/w5+7GeRpymiYlDqDkWMnIHi4oLIy0HRuIKioIBeZXn6NFQurujy8kCttgx1LQg7Z9YqsKNpYY+KHlpZkScTyrNNuxOfO0WlQqVWc/2Mfcc25exZVBqNpVOmKHptg3dH246eU6tBpXZMK0Gt5qtnnqH3siWoHMlbzs68JcL25CT9JF1hRzsgEjqsRCiQq00i4XLMLTtUdSSuLtVRGjc1n9xr9bzeDhhrXeeDxkM/9jI47pGtQKVGAYROC03vR1nzt6Xjrs2DjATzVWqNhz6f3NaEwpn1kHIUHlwE988CRa3vw8E98M4jtxxtA7YmEa0JRRowiSgwRC1InKfYdbYrV66MEILExESqVKmCRqOhadOmDp07ZcoU0tLS6NSpE76+vgQFBZGUlERaWhr+/v7897//5b///S+gV0T8999/7V7v2rVr7N+/n8TERLKysqhcuTL169fnvvvuK1442x3i+PHjPPvss2b7/Pz8CAkJ4fjx46XUK8ndRr+iY0lmcpJx6+NjvmqUnX2Jhg0/JSvL9g+Rl1ckfn5dQO0Gz2boV4ZuXkLJumoZZgT60hC/jkSEdkJ4hlqtp63zC2J3ItT3k0ZWYp3yYtdslamp6NgTTysuQgj7UTYnRuDv3xnXG5ch9l1jiKbwDEXk61AVhFuqNBoQAuHmx5XLn3Hi5Eiz62VlnaNhw1Xk5iWar56HjMG1Rg+U8Mf1A07jzbUou0cgwjqTl5KO646WpHpPxX/ANGMTxWTgbxQ1sxXqqiiOr8rdY1TkyYTyYtPuFkKnQ5efT0ARZX39w8PRabW2VavtRc/l5+vDrR3QStBmZvLvypXUbN+eyL4jUBeVt7yjwEYYRBEPWVkpvj8aoShW7ZB+AnE5wVUGo5z/Bm6c0jvUlSIgrBMcfh/RfhlEDCyIyskClRsowqbjTrP/M04AChc1uLqjHP3MvF/aLNBm2hdCux4L8T8jqrZjno83/7l6Fc3+ny0dbdDvmzkMXl9zSzA34Rz0GKwPsy8iosBj1Mx79nf0dimWs719+3ZmzpzJP//8Q35+Pvv376dFixaMHj2aqKgohgyxn/PZsmXL23aC09LSWLVqFatWreJ///ufRekBRVHw9vamb9++jBo1irZt297W/UqClJQU/Pz8LPb7+/tz/fp1m+fl5OSQk5NjfGwQqHOUk5f17cMDPdEUDHKupmWTmpWLj7sLIX4eFm1r+Hni7q5vm3wzm+s3c/FwVVE9wLtYbc9cvUm+TkeonyfeBW1TM7K5mp6Lq0ZFrcDitY1LvkmuVkcVH1f8vNwBuJmtJSE103bbrDz8CvYZ2qpVKiKq3Gp78fpNsnJ1BHi7Euitv24WrlxKyUF19WaRbbOztVxI1f+w1Kuq1yYQQuAV9gTtqw9Bp8s15jYa2ibHHkDl74nu8gVErcKrRgr16n2Eh4d1o1ulyiAaNFhNbm4icXGzzEM6XYItB6UGhBbV8WWIljO56BpEYobAJ1t76/3M0pLiH8aVm1pM1y9u970vic+J4f283c9J4ffembaOvvcVmeLYtbtp09Iyc6nStCmvZmSg02oRQpCalUvSjZzbsmnn07SkX75h9vnL1rhzNjWPnOSbRdq0i+cu8mvMWu4bMpDGDWsb28Yl3yQ+NY9sjbtxn+Hzl5puPhgyfFZVWggq1LbwZ/VyNqRcvmH2Wc3VabiQreF6IZt21dWXuAyBcjPb2DZHB8naSsRna/BDR0LCUvtRNglLqFV9Kpz/Wj9o9KwKjZ4jT3uZhIu3HOfq1V8hPz/FYoDr5RVJgwafFthBK4PfessJ7rgaJeXoLY0KMNaXdWk5k+RsDfEaDR4mNu1qWjZxGQJVnsnKtEpFmncQPiOnozJxqlMKPic5O7+h6Ue3VuVM308Dabn61/dO2LSzqXmkVapi9b2XNq3kKQ2bBtbtmq3f4H8OneHoho10GzOEoOrV9W2LOVYzdQSsfbZvZGvxzMmnxZgx7J0/32oouUqjoeXYsdy4dp0U/zAuppv3Nz4LcirVJLuQrTqXIch39UcNeg2EIhTM8x8byaH163Hx9GTfokU0G/aUPpqlcE6zotGrkZvmLRsEFi1WihVEjV7k5sRb2CHQ27NLl94nMLAf6n77UVSu+sUMlQtK/E5E3z/NonJ8fdsSGvocV66stZiQNE4g5idbpt80GoNyZa/JWE3AmQ1FCqGJhmO5fvoMeRkZHNqwgcjeI1Dbeg1/2oR4eSF5/lXRFNg7wLGIAo3G+Dt6IyuP6xk5BHq7F2nX0ipV4WxqHj7ZWmPbG9laq5+Ti+n6/Teyb+2vCHbNaWd73bp1DB06lAEDBjBq1ChGjRplPBYREcGnn35apLO9cuVKpztqyty5c3nnnXfw9/fniSeeYObMmTRr1ozAwEDc3NxITU0lLi6Ov//+m23bttG5c2ceeugh3n//fRo1anRb9y4N5s2bR3R0dLHP77ZwDwAxw1rSuVHVgn27Sc3S4qJSODX3YYu20b0bMvxBfe58z4V7SLqZi1qlcMZK2+c7hPOfHg0B6PvR71xMyUJR4Ny8Xsa2nRfsBmDg/dV48/FmADyxdB+nrurzbs7Nt2zbtWEVPhneCoBnVh7gn4upAMSZtO3wjr5tm9r+bBij1wt4fu0Bfj2VbLPtff7wVcG+qZtj+SY20aJt+7d2I4DalT3ZOaUjAJ/WeIS3vr4O7DZrG/X2bnQCqvq68efULgCs+COOt7afMF7XXm7jqeSbHL+czqMPT8Hd5VV0unwrq0aCq1c3EBIyggsX5lsZlK7m6tXPnRuUGkg/i6LS0LXTSrIPCxY0TKRfS/2P91M7kkkdvZRvtiVxpv2tUwzv/X+61+f5jvpSgI98sJfLaTmoFDhr5b0f/mANonvro1+eWPwH565l2nzvH40M4YPBLQAYGvMXhxNu2Hw/29cNZPUIfanAMZ8dZN+5FJttm1f3Y8s4/cTbixv+4cdjVy3adnxH/97XreLNjy/p01xmf3uEDX9fsmjb/u3dCAHV/T3Y899OALy/6xQf7zpr0VZyi7tl04ROR37yFX79ZJl5mZqqIczceZTvDiUW26YN2p4E25PMbNq2p95h3Y5klB27i7RpYzce5Yi2Kaw6Stz8W8624bMa3H8GEwr2mdq0Z0xeB0PbJh7ufFuwz5ZNe+xfX3T/7jGzaT/mdGD8+aaIo+Y2rV3bFeQcdqPqxb1Gm/bVVR/mJ3yOh4uKY4raySibbFC7Wgk7V6hRY6pVx71atUnk5sZb2DQoQqMCjDbtocR1ZOcJFhy5ZdN6vP8r1zP88Wq3gl3kGk9p9vqPKAq8e3Ix7YY+SVDfIfRctIfLaTmoqcQZk1U5U5s2vmDf6CMenP1nz52zaWNjmGLyFKVNK1vcrk0D63ZtyA/J3Bi9lG+3JXHa5De479rjQFOu/3aOFwbpP9vFHav9/sQtd8d0rDapQD5p7K7ruP/1J9+Ma0vvmBgLkTSVRkPvFSvwCQnhhVV/8u3opXy1LYm4gixRIQQN+g/AffAQcnLyjAsNervmj9JuFfu5oV95DgxFNz0G1WxLBXPx1mZUwdVo+uSTNH/2WbRZWXptiDpDIDgKTi6/lbfccDTCKwxlhkneck4WaHMtV4o1nqCoSEj8xOoEoulixsXET4xjuLCw8bhU68KVy2vMnHR//67k5FywcLSLnECsb2WsVoQQmoiKAa8QfnlNLyy9b+FCmg0dipi+3FL1vEBvQucbyGMf/sapy2mc3vsk4pfrlkKRhQkLR5ebw5annyEgIoJmo0ZTLTSUz/Zd4Om2+t8va3bNOySEzc/FsHlHMu3PHTDatf/+nsr/Cn1OAAZsS4LRSzm1N4XvCiTAKoJdc9rZnj17NpMmTeLdd98lPz/fzNlu3Lgx7733Xol20Bq7du1i8+bNdOjQwerxwMBAAgMDuf/++xk7diwpKSl8+OGH7Nq1q1SdbX9/f6ul0VJSUsxygwozdepUXnrpJePjGzduUL1gJlPiPIYfiYykJG7Nsd4ZGob42M1tbNbsZ5qEPUR45XQSL71OVtZZGjRYYXXweenSQoKDh1K//nIzQ31bg1IAn3BEfh7ZeToZHilxmuLYtbth0+yVqXl0eQwLhgzhTNLNEr1neSAiyAuEwK/vFHq5TKNLbh5bYy8bj6vyU/BQq8jBzer52dp8hMh3KsqmevXJuLhUsbCBKpUHarWnFcddoUqVgVy4MM8xjYrCds0nXJ+76CRCQH5ONp6BhTUq9HbRcv9dRKFC5keXRcqqTStNjiWm89LGWBYNHUrtzp05sGQJKWfP4h8eTvMxY/AtqLN9Lind7Dx7dbn/L7yycRLRiEqF6DEE7f2d0GxZakzr0A2aiOIbgLhyEc1Xy+HSGTRDJyMCqqC8/JheXKzbVBPxsu0oD1VF/F83lB0bTJxOBRqMslgpVmxMINpbzHB3j8Dfv1Oh1XDbtqvIsdqJkfj7FhqrmQqhhXXRq6sXTCiIRmPBM4T9H37E0U2bALgSG8uWYcPou3q1voyXFb2JWd8c4Vhiuj6aICuDnISLuDsQURD72VoOr1sH3PodfWqo/cVVvX6JHFcqonD8dRG4u7vz3Xff0blzZ/Lz83FxceHvv/+mRYsW7Ny5k4cffpgsW/ka9zjt27encuXKbNmyxbjPkKe+YsUKh0U3bty4ga+vL2lpaRbl06whw8jN26r2fEOdN4eS9NpnePQc6FjIyfGDZA19gEsf7EIV0dTh8JTgSu64q6/y55+1LYyrl1ckLVv+zdWr64yDUJXKk/btMzh6dDBXr66zeC9NB7KJiZ+QlXWOBg1iOH9+DufPz7Fob6BmzWnUqj4VZYWX+QFFA4PjyMxy49V69/HEpi9p+WBL4/t56Lf9xDzaj6e/2sx97VsbT5Nh5HpKOzSpLFASdq2kbVpVX3fS4+NZVLu2zZDHiXFxqCpXwdvdxeK69j7XiQcPsqxlS7r/so+Ahg2Mn7/Egwd5v01bHtm+i7DIxkXatBO/72fxI/0YvGUzraNufbfikm8SH3uEb7t3YMK+3whp0eJWGPmJ4/z0cEee2bOHkBYtzG3aotEkvbzMwqYlbVlL0BtDOfTyZwT27EvVSu4oyQl61d9LZ6BaBKLfGJQgfXmXlC/moEqeR5z3dML6TTJ+ri+vn4PmxkfEu08k8qn/kpsbb2HXbtk004GpQrt2N7lwYZ4VG2X9WFF20ECVKoNp1GgtxHhCfsG4Q9GgG3QWxTOEa0srE+89lfoDJpuHkX+ziYgPnkP3yhKjWNPJyzdQzh2h5gvtcP1sPzRoYXzvPS8epdpzD8BnB6BBC7P3M+P3nzk2tAchMd+hNH+oTNs0j6w0zqyKoeWYMSj+QdKm2aA0bBpYt2u2foN/+2UfGx/vz8QfNlO7tX5/scPI406yrGVLRh84QGa1esbPa/rRWJa1bMmg3/ahhDcwfgaFEIj8fFQaDfl5eegUNS4afVqGwa6N2LGNJi0aW53wVGk0xrrch7//nqC5w1BP+cD4XbxyIwt/D1dcVKCo1Yj8fL2/9v1nt1ZrFQX23IRP590q62VQ9zZEoXQfpM9PvnYF5culkHIVXl2iP//0WhORNAUxMpu487MtbFT9+ivw9+/Ivn11C43hnLVd9uzgLayO1RQNousWqPkwCIGiUiN0eqHI83v2sKZLF4vXd8CWLdR7+GH9++TiYqY3YXjvc3Z+Q9N3h3L9zW8J6NgTse0zFCs10cX0GET3J1l2//1ciY01u8/EuDh8QkNRFMUpu2br92//7v183rcfz327mfoP6vdXhLGa0yvbVatW5fjx43Tu3NniWGxsLDVr1iyRjlVEevbsydy5c0lNTTXmA23cuBGVSkW3bt3u2H2tfYiq+LpTxdfdobaB3u7GD2dx25p+6A34ebkbvyDFbWv6hTbg7a6x2jdD2yRN0W1Nf6gMeJBLXX83KNQ/a23ddUnUu7QM0fI14uKs5zbemuW8tdqj02WRn59pc9Xo6tX1ZGQcpUGDFdSqNQtF0de4txfSqT9+FkXjCWoPs0EpHVaAZwgZF07gnxJPuJ+L8ccYINBDg39KPMHe5qbidt/7kvicWHvvS/Jz4khbq++9jbYVldKwa0XZNF1+vmNlagoJPDnzua7pqyGkUHt3bTbhfi6EFPoMWftcV3LXf7eq+5h/t2oFeuPm54K7Ntu4z9tdQ91gH0RgC1qb5J7XCvTWC4z1eQKeGEJgXi6KRm31eYRV8SOgkjts+8yijq1iUt5F7VuFSqmZ1HDX4m943kIQ3H8Kiss0KufloACurqHUrx9jZr+srdzYXr0GW+kxRdlBAx4e4QhtJoqJTRPtY1C8w8hNOEfgvzdQunqb2bQqvu4oXgqV829iqs9er2olSHUDbq2IG9/7VFez+5q+n+kFIpKjg6tafB4KtzVQWjYt8eBpo2J+SEiItGk2KEtjNVu/weF+LvinxOOuMfm9LuZYLTHu1n6zz3bBtpK7ua1TFIXLsbF82q6dceIPk7ZVclKIqBXiUF3uOk0a4KHKMfsuVvF2Iz0hgd+WLSPt4kW6vf02HvnZ5mHRhvxr01xjIcxF2Lavhyb/hzJoAmLMTKOTqly+CHUGQ9UOt0LPU88QGjqmUJqe7VVqW3bNlu2ybwdvYRyrtYyGtBP6FeyGY8ErhNyMTLh6Gre9XUl1n4j/gGnUbNeOiXFxZpEGLceOxSckBEWlIvnrdRYq8Ib3Pqngo5J/IxVUKhQrQpG6vqOhclW2DBtm5mgb3kfD76iiVjtlq2z9/lX30e+vZGKzK8JYzWlne/DgwcyaNYsGDRoYw7gVReHw4cO89dZbPPfccyXdR7u8/vrrNo+pVCp8fX257777aNeu3V3slXXGjh3LBx98QJ8+fXj11VeJj49nypQpjB07tkzXbZQUg8xEiH0L5f6ZNoyrLSNuOzfbeOnMo7hqAuHkKvhtAmLYVccGpUKLEvnyrZymghAkFJVt9VCJpAjKol1zuEyNWl2s699tRVZroZhtJk3Cw98fJTlBv2pz6Yw+767/GAgMtShN5VmnASQn3HK0TWu8mpR3cavbGs6bnKjTQU4WSsGgXgHI16Ko1QQHD8HfN4qEy8vJyjpHcPBgzp+fY2a3inKcrafHFG0HFUVDaOhYSDmmHzj7hJNfbyQqn2ogIOP4cdwOgK6H/22++pJ7jbJo08oieZnm6uJCCIIjI/UiWvn57J41y+aEZ1CjRmRcuULVZs1gbwaBebn6iUMhzFfDFYVHPv4YZeUi8xXXnCy9Y20v17j7IBgwDpERj3JsKdw4g1IpAtFwDIoATp+FpvrQc0Wbh6tabTaBaM9Btm3XSmACUZcPzV8zTg5cP32GX14bSGCDBkTNmKYvHVvg0yoqlb6c4YxpqFzc0BWUOjQTobanAm9KoZro6PK58Osefpj4iIWjbeB2fkfvJZx2tmfNmsWRI0fo2rWrsc52z549SUpK4pFHHuGVV14p8U7a47333iM3N9cYuu7u7k52tn5FwMPDg7y8PPLz82nRogXff/89QaVYJ87f35+ff/6ZF154gT59+uDj48PIkSN54403Sq1PktsjPTGRA0uX6nOQTPPpUpJAm4XQ5Vk1rvaMuK3cbNAPMOvXX4Gre3WUvCyo9RikHCc0pPCMLGbnhIaOBdSI5tNQNG4IbQ6K2rXIHO2KXEtVUjKURbvmcJma/HynBgpmg8mC1eU7WV5S4+FhNfc8ODKSqBkz4Ps1lrVRTVapjQ63ouAWWh2Wz4bwRvq6qt0G3spv3LFBX4P1yyW4jpwGGk/UvlX0jjYCcpPgcMyt+rL3vQIZKSjbH8O1yThqRUzVr8ZgLcrGvuOckRHL8ePP0LDhavz9u5CQsISsrLPodJm4udWwWD3XP50CO+gagvCrgtJpLbq8HPJztahQUFQq/WqNRFIMyqJNK+uYTgimXbpEn08/tTnh2WTQIH1OcXICyrJZxolCUTBReGbHDqOtc/Hw0NftLqyWLYTebj02wnqucd1IiF6NOPO5hVK58r/5iKjlKM0Gw7BWcPE0/HgVZecWgjs9ib9vRxIuLyMr6xw6XY4NB9m2XbvdCcQTW7eyof/jeAYEkJl8K6e96eDBqFzc9BGKZucppG55G/+b80grVOrQaQylEReMQffLdc79/LNNRxuK9zt6L+K0s+3q6srXX3/Nzp07+fHHH0lOTiYgIIAuXbrQpUsXpztw8eJFLl68SLNmzfDy8ir6hEL88ssvDBw4kJkzZ/LYY4/h7e3NzZs32bJlC6+//jqrV68mMzOToUOHMmXKlNtWQr9dGjZsyE8//VSqfZCUHDcTE41heabOdta5U3i4VyY/6YKV0CT7s5z6wecwGjRYjZ9fJxITl5GVdRYPj3B9jUa3UJT0OESjsShNxoEuH1cF6tVbzsmTNpxz1xAUReHajk+ofPm/XK/6JpUfHl/k86vItVQlJUdZs2uKSkVLB8rUKIVWf+1hT+jH3nVsTsg5gFdQkNVQzDaTJiGuxqMq7GiD2So1QQWrcG4e+pWKgCqw5m/IiNfXmjU4z1EjoNdQOH8KRa2BZzPwydfql7FPfmaS2wigQPOpcGwpXDuoH8juHgkaT5tRNkVNIAYE6ENzc68pVKs6FRcPT/KyMkk+dozghkPx9+9sdMI9PMIJDR2Lq6tBeEdnvJaLp+cdnfyQ3DuUNZtWVrE6Iago9ProI6sTnsGRkfRdvRpl++cWatnKyvmI6cvp8+mnXD10iCuxseRlZaHNzERjbQV73UJ4eChMX2456TjkRURWomVJMNCXB9w9EhHaBWV6DHzxkX7icddXKCvewPXJidTqPhXFzROhzSO06iirDvItu2Y+IXhrAnGV0xOILppgds2cBTqdmaMNBY5tXg6qfBuRiFoHV7AdoUA4raR/R+9VnHa2L1y4QEhICB07dqRjx45mx7RaLQkJCdSoUaPI6yxbtozo6GguX9aroP7111+0aNGCvn370qFDByZOnOhQf8aNG8fLL79sVm7M29ubp556ioyMDCZNmsS+ffuYNm2a3ZBziaRI3B0MHRUC9y7PgWo8ap0OtQL16y0vpFgpuHr1C0JCrBvxq1fXk5l5kvvu20WtmtNv1XU8sx7l8Efoum7h31Wr+Ok//yUzOZkmgwbRZ81q/P06kXh5mcWgVFH0xlDn4w+XMvVbiaSCoigKPqGhRZapcdQxs6dsbhD60Xh4WD3X1oScA08Cdz8/dkdHmw90FIWmAweiXjXPunIs6Pd/uQTGzNI/zslC5OWhPP5cIWGgAv43H7puhtq99Oeq1HqbkRFv2VbjoS+VY1arVoA2A85sILSG5cqN6QSi6eDT1EYJnWBtz55cOXQIFw8PY4hqo8cfp9fixUaNCiHyAZXxvSuxFR2JROI0VicEheDwhg00HzHCwlEraqJQmT0SXYsOtJk4ka0jRoAQtmtHn4qFmcMgWq+8fSvXOALx8FCUA9HWa1OD3uE+tgTRchbKzBWI/Hx9Gs72dXqRsNkj9ZOU1evguuZvK2M4fUrfjbQ/CA62PiEICq6uodSsPg2Vxg2dNgdQbLZ3dQ1hy1OWudFwy7HNu3jMRp2Ikifr9HH8O/Yssd/RexmnpyNq167NP//8Y/XYv//+S+3ata0eM2XhwoW88MILDBs2jO3bt2MqiN6hQwc2btzocH/++ecfm6JstWrV4tChQwA0adLEaikHiaRIhIA6kbA3Q7+1J+AvdJARj3JgFvw8BEXkoZzdRHDwYP6v9Wlq1pxGlSqDqVlzGpUr98TNrRr16y1HUcznvRRFQ7VqE1Gr3FE2t4YVXigrvFB+HYNoMhE8Qti3cJFx5vPw+vXEtPk/VLoAatacSaNGa6lZYzqurqFGR9seMlxcUtFQVCoihw5lYlwc7adNo+ngwbSfNo2JcXFEDhni8Gy8EKJIoZ/0xES8SjhFycXDA5VGYxGK6eLhgcbT0zKssjDxZ0GlBrUa3DzIz86CrMuWzjNA+ONQowdkJMA/s+HnISDy4Ngyy7baLP0KSuFatYByaCGubmFWbVpS0iauX9+Oq2sItWrNolGjtdSqNQtXdRUQ8NXw4fpBphBmuaDHv/oKbU4Omef3sXdvEAlbXrAc3JXkio5EInGMgglBa2KU+xYuxCcsjEeXL0dlEHEzTBRujbE7Uaj+ejlNBw0yu5ZSJQwxfbm+VrQpP22CP7YjAkMQo2fBnLWI0TNRVJpCE4JWSD+LolLzXo0aKCoVuj4jb13fILZ2KhZl5jCCgwbzf23izMZwrVuexsfnAbJvpBud6kaN1lKz+jTj2EtRFBK3vsSvv3qRuPVFFEVBUVRW2yMgolu3W69XAaaObc6p/UW9KyVG/o3UEvsdvddxemXbXqWwnJwc3NyKnnP54IMPmD59OtOmTSM/37wWZv369Tlx4oTD/alZsybLly+nR48eFseWLVtmdMSvXbtGYGnWyJSYcTuhlXcVnU4vKmRSJseaAJGbn5/e0T61Rh9SKbT61R/1Woj7CuWfN3BtOtGY2yi0maD2QDmznuDwwfj7dSgQGSqY5QwZhatbNZSc61DzUfO6ih5V+WrYcIsSDG0mTcLFw4OEo9s4c30A1T2WUbuV/RqIBmS4uKQiYhSPmTkTlUaDTqsX9ipqJt7UPnlVqeKYsvnMmSXa97ysLHRarUUopt2wSlPC9EI7lXv2g96DUOvy4cDbls5zQKS+huvpzy1tl9XBqoAzG6DBCItatVyPRdk5jOCOq/EPKLSCXWUkrh7VUAQInRY0atBqUTSuCCGI6NaNIxs22Fw9ubpzJVp1spX+SCSS0sDWhCDo6z1/NWwYfVavpnbHjhz85BNuxMc7PFGo8fRE4+GBNiuryNrRIjCErJQU9i1aRNrFi/hWr06HWTNQrEwImuETjjYrkxuXLpGXnY0mSO/QFw5v56dN0H0wLm0fpnroq2jcPMjLyuTIhg14BAZR7+GHURSFhK0vcSZwJRHJwwnr97HJjQQ6nfmEoNX2ikKklTrmpuri+WlXi3hXSp7i/o7a415b4HHI2T5+/DhHjx41Pt61axeXLl0ya5Odnc26desIDw8v8nrx8fE8+OCDVo+5uLhw8+ZNR7oFwLx58xgwYAD169fnkUceISgoiKSkJL799lvOnj1rXCX/+eefad++vcPXldxZih1aeTfR6ayWyTEVIDKEjlYKDdWvCu02WTUyXQE6s84kt9EDRZsFz96ElKMom++3dMTPrEe5sE0vRNRyFqjURlEzIQRd3nwT/9q1rRrj3KxUC8Mukdyr2CtTYwuDfWrQpw8+ISGOKZtrNDZDyYuFEGSnplrmzNkLqzSg1iD6jyUvM4vf3nzTKFhk1XluOkkfLm7Ldlnj0EKoOxSilpufB3B2E9QZgmuNh6lVfbremdbmQJ4WBQVUKhK+Mh9kKg4MMrVp8RBwOy+oRCIpSWxNCBo4vH49SUeP0nvFCqJmzUJVUDNbcWCiUJuZaVYl5eimTTQZMkRfO3rUDBSNC0KbByo1J7/7ji/69TObqPOPCKdZv1EohScEDSga8uuO5NC69fqw9/XrqffII3h0H4yuRQfUXy+/Vf6qzyiU4Gpkp6ayb+FCbly6RKWwMDP7pMfSqbaPFSfcEXXxO4xnwcKkp8kCZXF+R+1xNxZ4ytKinkPO9oYNG4iOjgb0L7gtxXE/Pz+HBMhq1qzJ/v376dSpk8Wxffv2Ua9ePUe6BUDfvn3Zv38/8+bNY8uWLSQmJhISEkKrVq3YsGED9913HwAfffSRw9eU3JuYfTGrVjUvk2OKiQCRt68PUWEq1K4ucGhpIaNubQVI3Ap5NDlm7ogXHFc0iAcXgoA9v3qZDUx9QkNpP2Ma6lIyxhJJeaNwmRpHEDqd48rmWm2Jl9DLSEoisH59i5y5fQsX0mzoUOurMGoNYuYKqFyVla1bk3jwYEH5nI/QWDjPCkQMhH/mOWC7TLgeC7ueQXRcDaFdUI4tuRV902A0wjOEtHNx+BlSvAQo7p4m1Q9sDzKlXZNIygm2JgRNSDp6FO+qVcm5eA6Pp+6DXWno+oxCVcREoU4I2k+bZnXiLamgdnT22ljy1G4WjjbAnwveI3LIEIiKsRRJUzSI9jEoXqHsW7QI0NvUyKFDObltG9nXr9Fk+FQ0np5oMzM5/MUG/GqHU7NdO6Kmv3bHneASVRcvBoaUKGupUcX5HS0tytKinkPB9pMmTeLcuXOcPXsWIQSbN2/m3LlzZn/x8fFcu3aN3r17F3m9UaNGMWfOHGJiYrhx4wYAeXl5fPfdd7z99tuMGTPGqSfRvHlzvvjiC86ePUtWVhZnz541c7QlFZf0xER2zZpFemKicydaETszfDFvJibqQ8K/XFqkAJF7UBU6DAxAUamtrxodWgheYfoVoEI5jBz+ELyqQ1RMwTETR1zRIDqsAM8QspKOodNlIjx8jKcqisLlbwrygL55UQ5IJZI7hEHZvHAenQGDcE12amqJ31ublWU1Z65+795kp6fDw0/BN3EwYhr0GAwjpiG+iYMeQ9gyfLje0Qb9avj6DeTXHWFuh6yKnRVgz3YpGkT17gidjhM/7UfbZCp0Wou2yVT+t/FHlrdug9rNjcyL+/j1Vy8SvnmxyDKDUAbsWmAIjJqp30okkiLJSEoyilHayzXOOnMChEBRq/W1nK3lX6s1iOkxEBCMi6cnUTNm0G/tWqJmzLCs+pCThVtodZspPldiY9ny1DCIGIwYHAfNp0GdwdB8mv5x3SF89cwzxnS8K7GxfP3MM9Tr1Yvwrt3YM38+Xz/7LHvmzSO8azdqtmuHolKReDftk9SiqDA4tLLt6+uLr68vAOfOnSMkJARXV9di33Ty5MlcuHCB0aNHGx3rtm3bAvD888/z/PPPF+u6t1tGTFL6OBv24fTMlRAEPvIE9B1CYF6uXgSjkMFUVCq9sJADeUWKiytEKghdvvX8oOuxsHOYPicytJNecKhgBYh6I0EIRN2hENoJ5dhSs9UhvPSCGelXLsDvQMdmZpd20XlTPSkTF+FjeV+JRFIiOKpsnuyE1ogjuHjemhC8FVo4HZWLK7q8XBSNC4qiIIJCYfQslIIQTRSFvxYv5tDatYYngIuHB/sWLdKvhrdfjmIQSbMXLm7HdomGY8ArlAt79rLxiQHo8vONCuKF86x1amcHjM6GYpYggSG3FNwlEkmRmE4I2s01vpEKOVno8nI5tuUrGva1DNfOf2wkSlAoxzZvpmH//lw5dMh22LKbByoXV7spPofXr8evVi06z52LaH4rpcVeOp4xcnD6azYibErRPknKLU4LpJkqf2dmZpKdnW3RJiCg6MSq999/n0mTJvHjjz9y7do1AgIC6Ny5M3Xr1nW2S8YyYomJiSiKUuwyYpLSx5bzXCK5FwViZ0qB2JliQ+xM6HSgy9eLodmibiQMeVmffzT8Kuh0iIZjrOcHnVkPqSfhkV3QfDpoXPUqlz9uQPgGwkO90KoCUN93K0dHm6vFBUWvkJlfld2vQf0DDcwuq/asTu1LcK1adbP9GiWQuJUQMV4KAkokJYEjg8mSCiEXQhAcGcmrGRnotFqEEAUKtgrJ324k6N3RXHt5GUF9h9yq/b1sGWkXL+JfuzZRM2Zw8bffCI6MpM2kSTQdONAYDnnht9+o0W4IhHW+NbmXcrxI2yV6/4poPgOVxgVtViaH1q3n2okTdHrjDSbGxck8a4nkDlFehKQcEtESgpyEi1R/8EGW/9//0WrcOJqahGsfWr+evz76iEFbtxpXsW2GLRc47kWl+Kg0GnQ6HWmb38L/5jxSC8KyDU61rdzoy9/YEjsrm2j9won7CryeLlo3qyxTXj7vzlIsNfI5c+awdOlSEm2E7hZWGLdFeHi40yHjhVm4cCH//e9/eemll+jcuTPdunUzHjOUEZPOdvnntnMvnBA7A0BR6R1xa3lF3Qfp6zpeu4KyLBquXER5oDui2wBE1HKUwoJBigYROQlcvVA2LoZjB6BKmHEWNzc9HbdKldBpc42nuHh6FhmiZKiVXbhmtkYVxPlVoJlQsqWIJJJ7mTuhyFoYo/O8dCnXz5whICJCP8FoGkKZnYm6kp/12t+KwoOTJ9OgTx/6rlqFuBqvr8d96QyaahHU6DMSRVGRr66MqmByT+RrQaVC2MptjJyEULmxrOX9XD91ymzwW6lGDe5/7rlSzbPWeftBasFWIqlglKdKIY6IaBlqNxvqaG8dOdJqVEyRNqTAcbeXL25I8THazkJh2fZzo8vmCrZO5QcHQNfVz2y/NrABq9bB6MkNrJ7nFKWYTlOePu/O4LSz/d5777FgwQL+85//8NprrzFt2jTUajXr168nNzeX1157zaHr5Ofns2/fPi5dumR1dXzYsGEOXacky4hJKihCOCR2ZiYGoSj6Fe8ZMebn1Y3UO9q/bYP06/DMK/r87+xMlLjjiLpPIcK6oBxdYl6uyzOE5GPH8X/kGTQDxhlFN0zLRlz7eiaZmg/w1I6nyuNvFvm0dC6B7PoGGkbKFWyJ5G5Q0oqsplh1noG98+fTOyaGyKFDUVfyA8CjTgPrtb+F4MyOHTR6vD98/xmqQuJpqpXzEdOXo+o+mGWtWnH91CkC6tRh9IEDKHWGIEI6ohxfZma7hFsVtgx9iiv//mvWX5VGQ4M+ffR1ZEtxFcjWpKPdc3wD2ZUADX2l7ZRIShp7IlqmtZvtRQo5gsFxLyrFp0jHvRzlRuvU/npnu4fj9s5pZDpNieO0sx0TE0N0dDTjxo3jtddeo0+fPrRo0YLp06fTu3dvTp8+XeQ1Dh48SL9+/bh48aLVut2KojjsbJdkGTFJBcVBsTOPUTPN8iRRqRA9h0KrzrfqOg55GZFxA6VtT325nEPz9OJClSKg3ggUXT7CLRjRchaKSo3Q5XPz8hU8XfNx9fZmz/z5NstGqD2rUetSpkVYuC10rkHs/hbqR8sVbInkblLSiqxCCOvOM/o63ltHjKB25854RNQHRcEttDp/vj7beu1vBUhKtFQpB8jXosweia5FB9pMmMDWESMKhISeos/q1eSrAtAY01lyUdQaTn33HUc3bTK7jOVA9s6vAqndw6h5DdQeYQ61t1a+xoDOL4jdiVDfT9pOiaQ0sKdD4Sgl6bhLJHcSp53tuLg47rvvPtRqNS4uLqQWKLCqVCqef/55Ro4cydy5c+1e47nnnsPX15dVq1bRqFGj2xJbK8kyYpIKSlFiZ3UjoXUXFJXCqxkZCK1WL1wmBCe/+46sa8nGMhAiPx8FAafXwq+FwsX/Nx/aL0epMwRtTi7v1ahBZnIyAMGRkfpakzNnolKrrYZbFmeFRiKRlH+ETmdTVRf0DveBJUuImjHdvjCQolCnazeUVfPsTi6qv15O0+FT2TpiBGBeD7eqsYqHXjyyXq9edvOySxqh+JhtDah9alH7EiQ1rOXQdbwaRsKomfrt7SJVyiWSEseaDkWxrlMCjrtEcidx+peycuXKxtXiGjVqcNBQWgRITk4m04EZ/yNHjjB//nyioqIICgoyqp2b/jlKSZcRk1Qc0hMT2RUdrc9JtCV21n0QrPkbwmrD0lnw2mCUT6IRSfEAHNmwga+feZY3vL15OyhIP7jMiLd0tEH/+NeRkJmAxt2d3IwM4yFDrcmsglI41spGGMLCdS63F9pYUQUmJJKKiKJSoVKr7arqAqScPYvKRT8xbUsYyMXDA42np0OVFDSenmY6FVdiY/lzwQJUajWsCiRty9t6YTbjQHZaQRmeaZZleGxgy3G2h07tY7YtNoZQyJJwkEvyWhKJxJzs24+KURSFa99uhIe8uPbtxnLhaBvKuZqWdZVUTJx2ttu2bctff/0FwODBg5k1axaTJ09m6tSpRpGyoqhXr57RMb5dJk+ezLPPPsvo0aMJKsi5bdu2LY899hhPPfVUscuISco/NxMT2T1rFlkpqXqxs8I1HQ351z98Do9FQMwc2L4OYuagPFobvl9Dn08/JTgyEoQg8/p1hNDBieWWjrYBoYXjnyCEzqhObBpyefPMTpvhloawcJ3r7YU2GgQmiq3aLpFI7gounp4InQ5dfn6Rqrr+4eHo8nIhO9MoDFS4rm1eVhbazEz7lRQAwsLRZmZaKKjr75EDOdfM9iuKQtqWt2GFl9EJdwRbjnNxnHCJRCIpkhJw3OHu2Cidl4/Z9k5gL51Gcvdw2tmeNWsW7dq1A+DVV19lxIgRrFu3jqVLl9K5c2cWL15c5DXee+895s2bx/Hjx53vsRXef/99Tp06xUcffcScOXP48MMPOXbsGO+//36JXF9Svsm+cQMRGIqYvtzc4X5yElyNBzu5jSIpgTYFavYuHh4oKrU+R9se6WdRVGrue/pp2k+bxsS4OCKHDEFRqVB89SHiLjWalOAzdJySWj2XSCTFx7S8V3BkJIpKZdV5NmBQ1c2JvwDohYEMtb/NzhGCwxu/QPQdZTm5aECtIf+xkRxav97qPfIuHrPd8RISEiqx1WuJRCK5DYzq3io/8/0laKNKcwXbIPxrJgAsues4nbNdv3596tevD4CbmxuLFi1i0aJFRZ7XtGlTs9nwxMREmjRpQmhoKH5+fmZtFUXh30LKp0VREmXEJBUT90qVyEpJwb37YHQtOqD+ejkknIMeg/Wr2U7kNiLy9WJo9vAJR+jyeezTTy3KA/k27UvNhKv4hva1OM1W+HdJhoVLUTWJpHSxVt6r1fjxRufZnqpuys5teGBfGKhOj54QFGRZSQFArUHMiEEJCmWfye+26T3Sf/wOt7v4ejhKSVZfkKk2EokE7o66t9a3OuQWbB3tl40SXyWJrMpw93Da2S4uLVu2LLEcil9//dWp9u3bty+R+0rKIYqCu58fu6OjObF1K20mTqRpgdgZ4FRuY15mJjqtDqXBaJT/zbceSq5oEA3GAApzvbwsygO5uYVQu/Ysq7eyVV+wotYdlEjuJTQeHnbLew37+edbzvPSpfqqBdWq6etsF4iR5d9I1ZcaLMCuMFBBJQUMlRTCwqH/WAgMITs1lfq9e1OlSRMLwbO89Nw7Psizh6FeduG62SU5UShtqkRyb6Hz9oNUS7tSktgKPRcu/pBbsHWQuzEJIKsy3D2K5WyvX7+ejRs3cvHiRYsa2bZWpVeuXFmsDlqjQ4cOKIpiLBtm6sQLISyc+sL1tyX3Di4eHqg0Gq6fOcOV2Fi2jhjB1pEjcfH05JWU66iczG08+d131O/9KKL9cpTCImmKBtE+BrxDyU5NK/HyQCWBXNGRSEoHr6Agu+W9VnfuzMuXL+MTGkqHmTNR1GpEfj6oVPrfNCEIfOQJ6DuEwLxcEHq1cEVRuLpnJydG9aP+J5sJ7tRdf1GVCoJCESOno7i4IkwccQ9/f6JmGEp8mVdGsDXIs7fS4qLzoeY1cBHmg0xbjrM9hI8/ZBRsHaAkV7wlEknFpKSqvdgrQViSoecltuosKymUCZzO2X711VcZPHgwFy5coG7durRs2dLsr4XJKp4tnn32Wc6dO2f12Pnz53n22Wftnv/PP/9w8OBB/vnnH7Zv305YWBhDhw7lq6++4s8//+Srr75iyJAhhIWF8cMPPzj7FCUViLysLHRarbn4kBAFjrCCro/93EbRfyw6IWg/bRpNBw/mRnw8oEDdoeQPOA3Np0GdwdB8mv5x3SEg4Obly3fj6TmNFE+TSEqBgggbe+W9Gj3+OB6+vpAUj7Jslr4ywrJZKDeug06n3798tn7/8tmQFK/fj36FYufZTHSFVygKSuvwkJd+W+BQF0fwzOiEqy0Hqy46H2pf029N8ahd12zrCBolkLiV+q0jlJSwZHGRE5gSScVDo/Oj5g791hQl4H7Or9Rv7ySGVWcLm+4sdiopSNt193B6ZXvFihW8/vrrTJs2rdg3XblyJWPHjqV27doWx5KTk1m1ahUrVqyweX6zZs2M/z/++OMMGjSIt956y6zNo48+ypQpU1i8eDFdu3Ytdl8l5RwhyE5NpeWYMeydP9840HXx8EDl4oIuSC+cphQWSVNrENNjICAYF7XaLEwTRQEB+ZpAlPturQ7l52pRoS+VU1jlVyKR3LuYRthYIzgykr6rV8MPa81tUd1IGDUDvl9jKeS4cr4+L7vnULMSXlaxpdBbUoJnNla9PQOD4HzB1gTjQLa1eXsAjSqI86tAM6F8hDbKkHRJRcDF09Ni373sjLkIf0J3QFKrQhE+dtJZVN7h8CWo+oab7fet2hh+jsK3c+Pb7ldJqotL23X3cHplG6BNmza3fWNbM+mnTp2icuXKDl9n+/btNp3pbt268eOPPxarf5I7jzXjfifISEqyUO7Ny8oiLzOTY5s3I7oPJn/LaRgxTS+aNmIa+VtOI7o/ydHNmxE6nUX9RkWlKui/4XOs4OLpaaw9ey//SEkk9yq2bJrVCBsT2kyahLgabznpV0TFBF4fAcmJpa40a2vV29U1hJo1Z+Lqam4H1ZXqcn6lfnu7SFsrkRSfwpURDOmZUP4i4Qyh1zonQq+Lc44t1H4N2P2hfmtKQPX76PD0LgKq32e2371AHNq9kEi0PaS6ePnEaWd75MiRfP75507faPHixURGRhIZGYmiKAwePNj42PBXr149hg0b5tRKtLe3Nz///LPVYz/++CPe3t5O97U4XLt2jbFjx1KjRg28vLxo0qQJS5YssWiXkJBA//798fHxISAggJEjR5ZYzfHygj3jXtK4eHqizcoyKvdOjIvTh4Q/+STJx49T/cEHWf5//0fsDz+jHT4V5qxFO3wqsT/8zPL/+z+qt21rdKALrw4pisK1PzfCCi+u/bnRbAKpvP1ISSSFkTbNcYq0aSYRNhblvRSFpgMHot4aY+5QKwp0Gwhfx9itmMCXS/BwYrBmoDj51LawtdpiEIR0czO3gyUWIom0tRLnkHbtFkKnIz0+nt3R0Xw5eDC7o6NJj49HFKSnlDeKY1dK0hY5i0dIXbOtpOLidBj57NmzmThxIm3btqVz585Wy3a9+OKLFueFhobSsmVLAA4fPkz9+vUJKjQz4+rqSsOGDRlhKLPkAOPGjWPGjBlcuXKFPn36UKVKFa5evcqWLVtYs2YN0dHRzj7FYvHEE09w/Phx5s6dS40aNfj+++957rnnUKvVjBo1CoC8vDy6d9eL13z++edkZmYyefJkBg8ezLfffntX+lnaWCt703LMGHxCQ285tU5ibTXJdPCr02r1wnkWyr15KGo1bSZOvCWcVqA6bloKp8h8xhIKxZRIyhLSpjmGozYtIymJwPr1Lcp7uXh46KsjFK6M4OahVx53oGKCotEUHUpeCG1AXXYthoav3f5Az6thJIyaqd9KJGUYadf02KuM0DsmhsihQ4s9JpM4hmulSH3kTyUn7KYUPCuXOO1s//LLL6xatYr09HT++OMPi+O2nO3HHnuMxx57zPh4xowZVnO2nWXatGn4+fkxf/58Vq1aZVQpDwkJYeHChbzwwgu3fY+iuHz5Mjt37uTTTz/l6aefBqBTp0789ddfrF+/3mjAN23axJEjRzh27JixVrm/vz/du3dn//79tG7d+o73tTRxxLg7M2C06lArSpGD3+RvNxL07miuvbyMoL5DrNaqNS2FA7ZXbqQSrqQiIm1a0RRVyquwTTONsDGzNxERiHwtSuHKCDlZ+mgaByomCK3WaZ0IZ0tp2VXHNYjw3EFkuLjkdpF2TY8Qwm5lhK0jRlC7c2f9mKmESvaWNmVxrGavFKxNbNhaaR/LNk5PW40bN47777+fQ4cOkZOTg06nM/tzpMzWp59+WiKOtoHx48dz4cIF4uLi+P3334mLi+PixYt3xdEG/SwogK+vr9l+X19fs3DCbdu2ERkZaTTeAF27diUgIIDvv//+rvS1tHDEuKcnOp57aC38KePqVePgd1Ht2vw6Zw6H163j1zlzWFS7NrGffYbQ6VBX8jMLCTeueM+cSb+1a4maOdNiVcpWnkxpK+FKJHcCadOKpqhSXrZsmoW9mTEDVGroP8a8MoIQsGMDPDbCbsUE+o8lKzW1hJ+dJSUZblmcgaEMFy8Z7pZWSllE2jU9QqezWxlBp9VyYMkSu+HkpencFSs3u4KP1aR9LBnSExPZNWsW6YmJJXpdp53tixcv8sorr9C4cWNcXFxKtDOOsnjxYnJycsz2qVQqatSoQZs2bahRowaqQuEvhw4d4pdffrkj/alevTrdunVj7ty5HD16lPT0dL744gt27NjBuHHjjO2OHz9OgwbmwgmKotCgQQOOHz9+R/pWVnDUuBclFGG6mlTYoT69bRs3Ll0qcvDrEVHf4rqKonAlNpa5Xl5ciY21nM2VoTuSewhp04rAgVJe9myaVXsTGKpXFzd1rNcthCphMH25pcOt1sDMFRAYQkZSUok9tZIUDLKFHBjefe6mVkpZpaLZteJOnKjUapuVEQyknD2LSq22edzZ73Bx7Ioth74086wlFZubiYnsjo7mZgk7206HkT/00EOcOHGiVMtprVy5kujoaJ588kmeeOKJ/2/vvuOauho3gD8BEkZAIGwcOMGBOLAq1IoDrau0ipPWba2ttdpaV4dAXfXVWlurLf3V2aoozroH7op91Q7rthV8HaiggBNZ5/cHL3mJSSCBJITwfD8fPm1u7j05N5GHnHvPwAsvvKCx4X/r1i3s2rULa9euxa+//ooVK1YYrU6bNm3CgAED0KRJ4dT+1tbWWLRoESIjI5X7ZGRkqI1xBwq7J92/f19r2c+ePVO5uGBuk3Q8TE3F6bi4wq7aWoJX53AvZeyh1rtJEgma9O+PY3PmlPrlN2z6p1rLL1x/WwMTdJMkMidVOdNKU9pSXkVKyzSVvLGyArq/AbzQGdj4HXDzKlC9LvD4IdBjMNA6XHV75JjCXDLwUoNFX2QDKuiLLLtDGp4x5kqprIyVa6bMNG1D6HRVkJ+vdWWEIq5166IgP7/EBrc+ypIrFbk0VYnDZoj0pHdje/bs2Rg6dChkMhnCw8M1BpJCoTBE3bT69ddfsXnzZnz11Vf4+uuvIZVK4e/vDw8PD9ja2iIzMxPJycm4e/cuFAoFhg4dip9++gne3t7lfm0hhEpXeYlEAisrKwwfPhxXrlzBmjVr4OPjg3379mHChAlwdXXFwIEDy/Wac+bMMdlEb2VRdCUoICJCa2Nb53Avaezhf+8mHY6NVWtQS+3tIXVw0O3Lr1RWOPkQETHTyqC0pbyKlJppz7OyAjx8IUZ9ColUBpGbA4mNtHBmcm3bTcRUjWCu/WpYVXUiLFPnmqkyzRAXTiRWVgh+6y0c+/xzjTcnrGxsEDxmjEn+XZiqUatvfvGiIxmS3r9JL7zwAs6fP48xY8agQYMG8PDwUPsxhd69e+PQoUP4559/8M033yA0NBSOjo7Iz8+Hn58f3nrrLezevRu3bt3C/PnzDdLQBoDDhw9DKpUqfzp37owdO3YgISEBGzZswKBBg9ChQwfMmjULQ4YMwcSJE5XHurq6IisrS63MjIyMEi9QTJs2DVlZWcqf69evG+RcTKko3NWWvfmvonDPLmHsoYObm9a7SUXrZuv05Tc3p3DyoUqOYUyGUJUzrczjs0payuu/imeaXt09JRKkb08A2skL/1vUoNa2vRTaJnfUF7t+Vz66zpViiV3KTZ1rpsg0Xeak0YVEIoGTry8ili5Vyy+9VmLRgyG7hJvrnA+G/E7GvLUset/ZXrZsmcF+AYUQuHz5Mu7fvw+FQgF/f3+9y65duzZGjRqFUaNGGaROpQkODsbJkyeVj52cnLB161ZYW1sjMDBQZd8WLVrghx9+wJMnT+Dg4ICGDRvir7/+UtlHCFFqt3xbW1vY2toa9kRMrHi4P/+Hv3i4p1+6pHZsUZepSWlp2u+QC4Gz69ahxciRpV6tfXbzP7CE+9q8A0SGUJUzraReOaU1kLUt5QUUZk3/zZvh5OMDUVBQtu6e2VqGtGjbroW2yR3J8uk6V0pYTAwkBuoubC5MnWvGzjRDzCD+/JA/XVZiMRRDfl8x1+8+5lovqnh6N7aLlksoryVLluCzzz5DWrGJXTw9PTF9+nS8/fbbBnkNY3ByckKrVq1Utvn5+SE/Px9nzpxBs2bNlNtPnz4NT09POPz3S1v37t3x008/4cqVK2jQoHBt08TERNy7dw89evQw3UlUEI3L3jwX7s93t3y+y1Tohx9q7f7068KFCHrjjVIb9BkHd1lEY5vIEJhpqnQdD6l1Ka+6ddHm/fdh7+LCcbJUoQwxEVZlZWm5ZogLJ89fXCy+MoKVjQ0K8vIgsba2mOW+iMyF3o1tQ/j+++/x7rvvYtCgQRgwYAC8vLxw584drFu3Du+++y6kUqnJ7lQbQo8ePVCrVi307dsX0dHR8PHxwd69e5UTuRXp27cvZs+ejcjISMyePRtPnjzBhx9+iJ49e1b6dRt1pWu4a1vDNu3cObx56hRe+eEHbBs1SuUPT9r587hx4kSpDfr8B5kGOx925SZLVFUzrSzjITVmmpWVzutvExlLRUyEZc4qc64Z68KJRCLB7TNnsPyllzD86FH4tGxZnmoSkQY6NbaDgoKwZs0aBAYGomnTpiVe9ZJIJPjzzz9LLO/LL7/Ee++9h4ULF6psj4iIgIeHB+bPn1+pGttOTk5ITEzExx9/jClTpiAzMxN16tTBggUL8O677yr3k0ql2L17N9577z0MGjQINjY26NOnD7788ssKrL3xaJulXJdw1zbr+J0zZ7BlyBC8tmoV6oaHa21Qm+pqLbsNkSWqapmm7eIeoNtEUsUzbcK1a8jLzi61uye7dZOxmdNEWOagMueasS+caF2JxcjM9YaFudaLKiedGtvBwcGQy+XK/y9voyU5ORm9evXS+FzPnj3x3Xfflav8ilC/fn2sW7eu1P2qV6+OjRs3mqBGFa+0Wcq1hbtULtc66zgAnI2PR9r584hYtgxhMTGwsrZWa1Dzai1R+VSlTNO6pCDUx0OWJPfp0xKzq6i80999h7DoaL3raajJzqhq0HWulKrUbbiy5lpluXCibyO1om9YaKtvRdeLLItOje3ly5cr/98Qa1X7+PggKSkJ4eHhas+dOHECPrySVCUpx0o+egQAJXaZunPmDE4sWIA+q1fjX+7uGLx3r8YGtT5Xa3klk6gKKmFJwSLFx0OWxFDrb2tTpsnO3H2AN6ML/0tVji5zpZD5qywXTipbI1Xf+vJ7IpWF3mO2R4wYgU8//RR16tRRe+7atWuIjY3FsmXLSixj5MiR+Oyzz/Ds2TP07dsXXl5euHv3LhISEjBv3jxMnz5d32pRJacyVvLqVby6bJnOa9g+vXfPIHWobH8kiKj89GogW1uXuOSWodbftvdvgpQGYXD3b1L6CZTG3Qd4K6b85VClxYmwLAMvnJTMFA1hfk+kstC7sb1ixQqMGTNGY2M7PT0dK1euLLWx/fHHHyMjIwPz5s3DnDlz/lcZGxuMGzcOH330kb7VokpK21jJuuHhOi3jVdK63EREpdGrgZyfD5S0JnGx9bfLk12OTZrDce0hHc/AsHjnxjJxaJVl4IUT7dgQpueVtoSnqZTpMpi2X+orV67Azc1Np+O/+OIL3Lp1C9u2bcOqVauwfft23Lp1C/Pnz2doVCHaxkr+unAhnKpXxys//AArG9VrQsW7TD0utnQcEZHeijWQn8+aIvqMh3yclqbs7lkZs6voC6umeTao8quoibDIcCQSCe6cOYPZcjnunDnD78xEzym+hKdXUBBESRfJTUCnO9vffvstvv32WwCFv+RRUVGwf26sWXZ2NlJSUtCvX79Sy1u1ahV69uwJNzc3tTUL79+/j+3bt2PIkCG6ngNVViWMlSw+63idTp3w2/ff67Quty4KnN1x6BbQyJmTDBFRYQPZPSDAIOMhS1p/u7zZRURUhBdOiNSVZQlPY9Opse3r64vg4GAAwNmzZxEQEACP5yZokclkaNSoEUaOHFlqecOHD0dSUpLGu+DJyckYPnw4G9tVQGljJYtmHe/21VdaZx0viwIXDxxOBQJcuPQOEeneQNYHu3sSEZGlqAxDjMqzhKcx6dTYfvXVV/Hqq68qH3/66aeoW7dumV+0pNv5GRkZcHJyKnPZVHnoMlbyzpkzSE5MRK127TBbLjfIWLPKEBhEZHqGbiCbapwsM42IiIzJ3MfECyF0XsLT1Be99Z4grfgyYEWePHmCW7duoV69elpPYNeuXdi1a5fy8RdffAEvLy+VfbKzs3HgwAE0b95c32pRZaTnZEKG6jJl7oFBRIalT2O0tAZyWRq2xu7uyUwjIqKqTBQU4HRcXOlLeEZH4/DMmYVdy010gVrvxvb8+fPx+PFjREdHAwCOHj2KiIgIPHjwAHXq1MGePXtQT8OdysuXL2Pbtm0ACr/MHD16FLa2tir7yGQyBAYGYvbs2WU5F6qEdB0rmX7pkt5l824PEQFla4xqayBXaMOWa2YTERGpsbK21m0JTxsb/PKvfyEgIsJ8G9s//PADJk2apHz8wQcfoEmTJpg6dSpmzpyJjz76COvWrVM7bvz48Rg/fjwAoE6dOtiyZQuaNWtWjqpTZVDatPvGnEyId3uIyKJwzWwiIiI1Bfn5ui3hmZdn8glK9W5sX79+HfXr1wcA3Lx5E6dPn8bhw4fx0ksvIS8vD2+//XapZSQnJ+tfU6pUik+7X5CXByFEiWMkOJkQERERERHpS2JlpfOwVFPTe0o2e3t7PHjwAACQmJgIR0dHhIaGAgBcXFyQlZVl2BpSpSMKCvDw5k0cjo3FxqgoHI6NxcObNyEKCko8jmtHEhERERGRLh6mpuJQTAyepKfDydcXEUuXwspG9V5y8WGpj9PSTF5Hve9st27dGp9//jmsrKwwb948dO/eHdbW1gCAf/75B9WrVzd4JalysLG3N8i0+1w7kogsHeeUICIiKp9Hqak4HBuLgIgIyD08jDIstbzKNEFar1698Morr8DPzw+zZs1SPrdu3TrlXW6qeuQeHjpPu09EVJVxTgkiIiLDMsdhqXp3I2/cuDGuXr2KtLQ0JCcnK8dvA4XLec2fP9+gFaRKQiKBnYuLTtPul9adnIiIiIiISF/mNixV78Z2ETc3NwghcOvWLeT9t3HVtGlTeHh4GKxyVHlI7e1hZWOj27T71tbsQklEVIGYwUREZMnMZVhqmRrbe/bsQdu2bWFnZ4datWrhzJkzAIDRo0dj9erVOpVx7tw5DBw4EPXq1YOtrS1+++03AMDHH3+MXbt2laVaVIFynz5FQV6ebtPu5+cru1Caao07IiL6H2YwERGR8end2F67di169OiBOnXqYMmSJSgo1iW4Xr16WL58eall7Nu3Dy1atMC1a9fw+uuvIzc3V/mcVCrFkiVL9K0WVTCpvT2yMzMR/NZbarMAFimadr+0CdL0wbszRERERERkjvRu9cyYMQMTJkzA2rVrMWzYMJXnmjRpgrNnz5ZaxrRp0zBw4EAkJSVh+vTpKs+1aNECv//+u77VogpSfD1tOxcXnabdN+TYCd6dISIiIiIic6T3bORXr15Fjx49ND4nl8t1Wmf77NmzmDNnDgCoNbxcXFyQnp6ub7WoAoiCAjy8dQun4+Jw/59/oKhXD20mTCh12n0iIiIiIiJLp3dj29vbGxcvXkTnzp3Vnjtz5gz8/PxKLUOhUODWrVsan7t8+TJ8eJfS7JW0nnb/TZvg37OnWU27T0REREREZEp632aMiopCTEwMEhMTldskEgnOnj2Lf/3rX3jjjTdKLeO1115DdHQ0Ll26pFLG7du3MX/+fERGRupbLaNZsmQJevXqBQ8PD0gkEmzYsEHrvjt27EBoaCjkcjlcXV3RsWNH3LhxQ2Wf48ePIyQkBPb29vDz88PcuXMhhDD2aRjEw9RUHJk1CzlPnpS4nvb6Pn3wMDUV2ZmZZjPtPhEVYqYRka4epqbiUEwMHqamVnRVSsRcIyJzpXdjOyYmBqGhoejSpQu8vb0BAN27d0ezZs3QqlUrTJ06tdQy5syZAw8PDwQFBaFNmzYAgBEjRiAgIADOzs6IiYnRt1pGs2rVKqSnp2vtOl/kp59+Qp8+fdChQwds374dK1euRKtWrZCdna3c5++//8bLL78MHx8fbN++HRMmTMD06dPxxRdfGPs0yk0IAbmHB9p//DFsbG11Wk/bzsXFbKbdJ6JCzDQi0tWj1FQcjo3FIzNvbDPXiMhc6d2NXCaTYevWrTh48CD27duH9PR0KBQKhIeHIzw8XKcynJ2dcfz4cfz000/Yt28fFAoFFAoFxo4diyFDhkAmk+l9IsZy/PhxWFlZISUlBatWrdK4z/379zF27FgsXLgQb7/9tnJ7RESEyn7z5s2Dm5sb4uPjIZPJ0LlzZ6SlpWHWrFkYN24cbG1tjXouZVV8bHbWjRt4bfly3dbTtrGBjb29iWpJRLqw5Ex7mJqK03FxCH7rLU6aSFSFWHKuEVHlpndju0jHjh3RsWPHMr+wVCrF8OHDMXz48DKXYQpWOkzotX79euTn52PkyJEl7rdr1y706dNH5WLCwIEDMWfOHCQlJaFDhw7lra7BqY3NlkjQc/Fi3dbTzstD3tOnJqopEenCkjOt6C5cQEQEG9tEVYgl5xoRmY7UwcHgZVbI1NAvvvgilixZgrS0tIp4eYM7ceIEGjZsiJUrV8LPzw82NjZo3rw5du3apdzn8ePHuH79Oho2bKhybMOGDSGRSHDx4kVTV7tUQgj1sdlC4Oy6dWgxcmSp62lnZ2aarrJEZDCWmmlEVHUx14hIm+JLGXsFBRl0joYKaWz7+Pjgww8/RPXq1fHyyy9j1apVePjwYUVUxSBu376NS5cu4dNPP8WMGTOwa9cu1K5dGxERETh37hwAIPO/DU8XFxeVY2UyGRwcHHD//n2t5T979gwPHjxQ+TEFUVCgcWz2rwsXwql6dbzyww8lrqf92EIuphBVNZU50/S9Km2Mq9hEZH6MmWsV9T2NiMpPFBTg4c2bOBwbi41RUTgcG4uHN29CFBQYpPwydyMvjw0bNuDRo0fYtGkT1q1bh1GjRmHMmDHo3r07oqKi0KtXL5OPiRFCID8/X/lYIpHA2tpap2MLCgrw6NEjrF69Wjn2p0OHDvD398fcuXO1jh/S1Zw5cxAbG1uuMsrCytpa49jsO2fOYMuQIXht1SrU6dgRv/3f/2lcT9uQXcgdfXwQFh0NR3YNJdJJVcu04lelC/LyIIQocRUEffcnqqrM6YKUueZaRX1PI6LyKWkp44ilSxH0xhuQ6DBMpSQVcmcbABwdHTFkyBDs2LEDqamp+PLLL3H//n0MHDgQXl5eJq/P4cOHIZVKlT+a1hHXxtXVFQDQqVMn5TapVIr27dsrr5YWXSXNyspSOTYnJwdPnjyBQqHQWv60adOQlZWl/Ll+/brOdSuPgvx8rWOzz8bH4/9atcLjtDSExcSgz+rVCIuOhpOvb7n/UWri5OODDjExHIdJpKOqlGn6XpU29lVsIktgzG6VZWWuuVZR39MMgTczqKrSOFz2vwry8vDzyJF4mJpa7uyrkDvbz3Nzc8OLL76Ia9eu4dKlS7hz547J6xAcHIyTJ08qHzs5Oel8bJMmTbQ+V7SchFwuR82aNdXG+1y6dAlCCLXxQcXZ2tpWyOyXEisrBL/1Fo59/rnGZb7Szp+Ho7c3sjMysNDPD8OPHoVPy5YmrycRqasqmabvVWld9i/LKgr8wkqWpPgqJPf/+QeKevUKZ/k30gV1XZlrrlXU9zR9aeqlUHQzg6iq0TZctkjRUsZhMTGQ6NiDRpMyJWZ+fj6OHz+O9evXY9WqVWo/uvrnn38wa9YsNG3aFM2aNcOKFSvQv39/HD9+vCzVKhcnJye0atVK+RMQEKDzsb169QIA7N+/X7ktJycHhw8fRnBwsHJb9+7dsXXrVuTm5iq3rVu3Di4uLggNDTXAWRiWRCKBk68vIpYuLXVsNtfTJjIvVSHT9L0qrev+cg8PvevC3jdkKYouSH1Vpw6OzJyJs2vX4sjMmfiqTh2c+emnCu0BUhVyzRjMsZcCUUWSWFlpHS5bXMbVq7AqR0MbKMOd7d9++w19+vTB9evXNf6ySiQSDBkypMQyFixYgPj4eJw+fRrOzs6IjIzEV199hQ4dOui0fIMpnTp1CikpKcqZ00+cOAEA8PDwQFhYGACgZcuWiIyMxOjRo3H//n34+Phg8eLFuHPnDiZNmqQsa9KkSVi9ejUGDRqEd955B3/99RfmzZuHWbNmmdXa4sVJrKwQ9MYbqNO5M05/953Rx2YTkXFZUqbpe1Va5/2jo41ZbaIKoUvvC10uSNXp3LnwDrcZzXFgSblmaObaS4GoIomCghKHyxZxrVsXBfn55Wpw693Yfvvtt+Hs7IyVK1eicePGZQqe6dOnIyIiAp9++im6desGqVSqdxmm8s0332DlypXKx1988QUAICwsDIcOHVJuX7lyJaZNm4apU6fiwYMHCA4Oxv79+9G0aVPlPvXr18fevXvxwQcfoEePHvDw8EBsbCwmTpxosvMpC4mVFZx8fREWHQ0rGxsU5OVBYm1d6h9adqskMj+WlGn6XpXWeX8bmzJ1JScyZ7p0FzZVt0pDs6RcMyRTTP5EVFmVNly2aCnj8v6O6N3YPnfuHBISEpRXCsvi7t27cDCj2S1LsmLFCqxYsaLU/eRyOb7++mt8/fXXJe4XGhqqvOJamUgkEtw+cwbLX3pJ57HZHAdEZH4sKdP0vSqt8/55eXhx8mReKKRK6WFqKk7HxRXevdTz37CpulUamiXlmqFU1l4KRKZSfLjs878nxYfLlvf3Q++mur+/f7nXD6wsDW1S5ejjg9BJk/gFlIjMQtFV6efnlCjy/FVpnfe3tub4a6q0HqWm4nBsLB6lpup8zMPUVByKjUVBXp7OF7DIvOnaS4GrMFBVVjRcdnxKCtp/8gmaRkWh/SefYHxKCoJef90gPT/0LuHLL7/EnDlz1GZqLE21atVw+vRpAIUTXFSrVk3rj7Ozs77VIhPgBEBEZE50ncSx6Kq0vvsbAofTUGXwKDUVh2NikJ2ZqdcFLKoYuuRKZe2lQGRqxYfLGmMpY727kb/77ru4ffs2AgMD4evrq1yTUFlhiQR//vmn2nETJ06Ez39DYeLEieyyQkRE5abLJI7l2b+8OJyGKpPHaWlwDwgwerdKKh9dcsVUkz8RWYKyDJfVld6N7eDg4DKFbHSx2V1j+MWDiIgMRN9JHMs66SORJZM6OCDv6VOTX5Ai4zDV5E9EFU3T+vFlZYyljPVubOsyAUVpOnXqhCVLlqBhw4Zqz12+fBljxozBgQMHyv06VPmwyyWZWnkmEyLzoe9VaWNexSaqTIqvwVyQlwchBC9IWQBTTf5EVFE0ZpcZ/nvWu7FtCIcOHdI6ydqDBw9w5MgRE9eIzAW7XJKpFU0mFBARwca2BdD3qrQxrmITVRalrcHMC1KVG3spkKUqz/rxhrwTrosyNbYzMzOxYcMGXL58GdnZ2WrPl7akAgCtVx6OHz8OT0/PslSLiIiqMPaMIdKdLmsw29jb84JUJcdeCmRpdM0uteMq6E643o3tK1euIDQ0FM+ePcPjx4/h4eGB+/fvIy8vD66urnB2dtbY2J4zZw7mzJkDoLCh3bFjR1g9d+Xh2bNnyMvLwzvvvFPG0yEiMgx2L6982DOGSDe6rsEs9/CooBqSIXHYDFmKsmZXee6El5feje0PPvgAbdq0QUJCAuRyOXbu3IlmzZph3bp1+Oijj5CQkKDxuNDQUEycOBFCCHz22WcYNGgQatSoobKPTCZDo0aN8Morr5TtbIiIDITdy4nIUum6BnNYscltqfJjLwWq7PTNLht7e53uhBuzwa13Y/vf//43li5dCltbWwBATk4OrK2tERUVhfT0dLz33nv45Zdf1I4LCwtDWFgYgMIrbG+++SZ8fX3LWX0iovLTNn7H1ON6iIhMQec1mG1sNHbHJCKqCPpml9zDQ6c74U5GbJPq3Yx/9uwZqlWrBisrKygUCty6dUv5XGBgIP74449Sy4iOjmZDm4gqXPHxO15BQRBClLidiMgS6LwGc14eXpw8mfMgEJFZ0Ce78rKzYefiotOdcFFQYIzqAijDnW1/f39cu3YNANCiRQssWbIEXbp0gY2NDeLi4nRuRP/9999YsWKF1knWfv75Z32rRkSkM03jd9pMmAB7V9cKG9dDRGQKOq/BbG3NeRCIyGzoml3ZmZmQ2tvDysZGtzvh1taAkSZL07uxPXDgQPzxxx8YPHgwZsyYgZdffhmurq6QSCQQQmDlypWllnHy5EmEhYXBz88Ply9fRlBQELKyspCSkoIaNWqgfv36ZToZIiJdaBq/4xUUhPbTp+PPH3/EtlGjKmRcDxGRKXANZiKqjHTNrvRLl5D79CkK8vJ0uxOenw8YqRdjmSZIK9K2bVucPXsWu3btQnZ2Njp16oTAwMBSy5g8eTL69++PpUuXQiqVYunSpWjZsiWOHz+OQYMGYcqUKfpWi4hIJ9pmsmwzYQIe3ryp1tAG1Mf18AsoEVV2XIOZiCojXbLLzsUFYdOnIy8nR7dePOY0QdrzatasidGjR+t1zJ9//ompU6cql/4q6kYeGhqKmJgYTJ06FS+//HJ5q0ZEpEbjTJYSCQIHDMCxOXNKn+EyJgYSa2sT1ZaIyHi4BjMRVUalZVfxpUCldnYV2ounTM343NxcfPfddxg5ciS6du2KK1euAADWrVuHCxculHq8RCKBTCaDRCKBp6encgw4ANSoUQOXL18uS7WIiEqlaSZLqb09pA4Ouo/rISIyY/qspCCRSHDnzBnMlstx58wZNrSJqFLQNbuK7oSPT0lB+08+QdOoKLT/5BOMT0lB0Ouvm98621evXkV4eDjS09PRokULHDt2DA8fPgQAHDlyBLt378by5ctLLKNx48b4559/0LFjR4SEhOCLL75A06ZNIZVK8fnnn6NeKX3riYj0IYSAKCiAlbW1xpksc58+Re6TJzqP62GDm4jMUfGVFAry8iCE0LnxzDWYiagy0iW7KrIXj95N+ffeew8eHh64evUqEhMTVZbECQsLw5EjR0otY/To0bh9+zYAYPbs2bhz5w6aNWuGxo0b4+TJk5g/f76+1SIi0kgUFODhzZs4HBODjVFRuPPnnwh+6y1Y2RS71igEzq5bhxYjR6puL8YU43qIiMpKmXWxsdgYFYXDsbF4ePOmUZe0ISKqLCqqF4/ed7YPHTqEtWvXwt3dHfn5+SrPeXt7IzU1tdQyBg8erPz/Ro0a4cKFC0hKSsLTp0/Rtm1beHp66lstIiI1mmYdTzt3Dm+eOoVXfvhBZTK0XxcuRNAbb6htBzg7LxGZN01ZB+i+koKjjw/CoqO5njYRWTxT9+LRu7FtY2Ojcje7uDt37sDR0VHvSjg6OqJLly56H0fmgX+kyRxpm3X8zpkz2DJkCF5btQp1w8NVZrJ89vAhmg0erLads/MSkbnSlnWA7ispFJ9MiIiIDEfvxnZYWBi++OILdO/eXTmbeNEa299//z06d+6s8bhNmzbp9Tp9+vTRt2pUQfhHmsyRxlnH/+tsfDzSzp9HxLJlCIuJKRzLXWz8DmfnJaLKoqSsA7iSAhFRRdK7sT137lyEhoaicePGiIiIgEQiweLFi3H27FlcuXIF//73vzUe17dvX51fQyKRqHVRp/8p6lnw4MGDCq4JkXm7cfEisrU8d+3MGRyYOxcRP/yAhbVrY+CWLfBu3lz5/O0//sBP3brhjd27VbabipOTU5Vp4FdUpj189AjZ//2vnHlKlVhJWQcANy9dwqPHj01WH22qSq6Z4/c05h1ZIn3/XZe0f1l+R3TJNInQ1ie8BMnJyYiJicG+ffuQnp4OhUKB8PBwxMbGap1JvPjyXrrw8/PTt1pVxo0bN1CzZs2KrgYRGVFWVhaqVatW0dUwCWYaUdVQVXKNmUZUNeiSaWVqbFPFKigowK1bt4xyhfjBgweoWbMmrl+/Xun/IFrKufA8zIupzqOq3AECjJtpAP/tmRtLOQ/Acs6FuWZYzDTdWMp5AJZzLjwP/ejyO653N3JD2r17N06ePInr16/jk08+Qa1atXDkyBHUr18fvr6+FVk1s2ZlZYUaNWoY9TWqVatWqX/JirOUc+F5mBdLOQ9zYIpMAyznM+N5mB9LORdLOY+KxkzTj6WcB2A558LzMBydGtsjRozQuUCJRIKlS5eWuE9aWhpee+01nDhxQnnVYcyYMahVqxaWLVsGuVyOxYsX6/yaREREREREROZEp8b2ihUr4OTkhHr16mld9quILt1lJkyYgLS0NJw9exYNGjSATCZTPhceHo6ZM2fqUi0iIiIiIiIis6RTYzskJAQnTpxAfn4+oqKiMHDgwHJNYLZjxw783//9Hxo1aqQ263jNmjVx48aNMpdN5WNra4vo6GjY2tpWdFXKzVLOhedhXizlPKoSS/nMeB7mx1LOxVLOo6qwlM/LUs4DsJxz4XkYns4TpP3nP/9BfHw81qxZg7/++gshISGIiopC//794e7urteLOjo6Yv369ejRowfy8/MhlUpx6tQptGzZElu2bMGIESNw//79Mp0QERERERERUUWz0nXHWrVqYfLkyfjjjz/w119/oWPHjli4cCF8fX3RvXt37Nq1S+cXbdOmDZYtW6bxufj4eLz44os6l0VERERERERkbsq19Fd2djamT5+OBQsWICIiAps2bdLpuKSkJHTs2BGtW7dG37598f777+Pjjz/GhQsXsGPHDhw7dgwtW7Ysa7WIiIiIiIiIKpTeje38/Hzs3bsX8fHx2Lp1K2xsbBAZGYlRo0bhhRde0LmcpKQkTJ06FcePH0d+fj4kEglCQkIwb948hISE6H0iREREREREROZC527kR44cwdtvvw0vLy/0798f+fn5WL16NW7fvo24uDidG9o5OTnYtGkTvLy8cPjwYTx48AA3btzAw4cPcezYMTa0jWjJkiXo1asXPDw8IJFIsGHDBq377tixA6GhoZDL5XB1dUXHjh3VJq47fvw4QkJCYG9vDz8/P8ydO7fU2eqN5d69e8rl4+RyOQIDA/Hdd9+p7Xfr1i1ERkbCyckJCoUCo0aNwoMHDyqgxqW7ePEiunTpArlcDm9vb0yePBk5OTkVXa1S/fzzz2jTpg2cnJzg4+OD/v374+rVq2r7LV26FP7+/rCzs0OzZs2wffv2Cqhtob///htjxoxB8+bNYWNjg8DAQI37ZWZm4r333oOvry/s7OxQr149fPHFFyr75OTkYNKkSfD29oZcLkeXLl1w6dIlU5xGlcNMY6aZAjONmWZKzDXmmrEx00ycaUIHNWrUEHZ2dqJ3795i/fr14unTp7ocppWtra04ePBgucog/bVp00a0adNGDBkyRAAQCQkJGvf78ccfhUwmE9OmTRMHDhwQW7duFR9++KG4cuWKcp8rV64IR0dH0bt3b7F//36xYMECIZPJxLx580x1Oio6duwofHx8xPLly0ViYqKYOHGiACC+//575T45OTkiMDBQBAYGip9//lnEx8eLGjVqiJ49e1ZInUty//594ePjI9q3by92794tli5dKpydncXYsWMrumolOnjwoLCyshLDhg0T+/btE/Hx8cLf31/Uq1dPPHnyRLnf2rVrhUQiEZ988ok4cOCAeOutt4SNjY1ISkqqkHpv2bJF1KhRQ0RGRoqmTZuKJk2aqO3z6NEj0axZMxEcHCzi4+PFwYMHRVxcnNq/+bfeeks4OzuLpUuXit27d4uXXnpJVK9eXWRmZprqdKoMZhozzdiYacw0U2OuMdeMiZlm+kzTqbEtkUiETCYTjo6OwsnJqcSfatWqlVpes2bNxMqVK8tdedJPfn6+EEKI5ORkrQF+7949Ua1aNbFkyZISyxo9erTw8/MTz549U26bNm2acHFxEdnZ2YateClSU1MFALF8+XKV7e3btxedOnVSPl6zZo2QSCTi4sWLym179uwRAMSvv/5qqurqZPbs2UIul4t79+4pt8XFxQlra2tx8+bNCqxZyd566y1Rp04dUVBQoNx24MABAUAcOXJEuc3f318MGjRI5diQkBDRvXt3k9W1uKLfDSGEGDp0qMYQ/+STT0TdunXFo0ePtJZz/fp1YW1tLeLi4pTb7t27J+RyuZg7d65hK03MNGaa0THTmGmmxlxjrhkTM830maZTN/Lo6Gh89NFH+PDDDzFx4sQSfz744INSy5szZw5mzpyJU6dO6XkfnsrDyqr0j3v9+vXIz8/HyJEjS9xv165deO211yCTyZTbBg4ciMzMTCQlJZW7rvrIzc0FADg7O6tsd3Z2VukqtWvXLgQFBSEgIEC5rUuXLlAoFNi5c6dpKqujXbt2ITw8HAqFQrmtf//+KCgowN69eyuwZiXLzc2Fk5MTJBKJclvR51L0WVy9ehWXL19G//79VY4dOHAgEhMT8ezZM9NV+L90+d344YcfMGLECMjlcq377N27FwUFBejXr59ym0KhQNeuXc3u35glYKYx04yNmcZMMzXmGnPNmJhpps80nRvb+vyUZvLkybh37x7atGkDT09PNG3aFEFBQcqfZs2alfvEqGxOnDiBhg0bYuXKlfDz84ONjQ2aN2+usrTb48ePcf36dTRs2FDl2IYNG0IikeDixYsmrXPNmjXRtWtXzJ49G+fPn8fDhw+xfv167N27F2PHjlXud/HiRbU6SyQSNGzY0OR1Lo2murq4uMDHx8fs6lrcsGHDcP78eSxZsgRZWVm4evUqPvroI7Ro0UK5pF9R/Z8/v0aNGiEnJwfJyckmr3dpUlJScPv2bbi7uyMiIgK2trZQKBR488038ejRI+V+Fy9ehKenJ1xdXVWOb9SokVl/bpaMmWYemGnmhZlWuTHXzENlzDVmmukzzcYopZYiODgYrVq1qoiXplLcvn0bly5dwqeffop//etf8PHxweLFixEREYE//vgDTZo0QWZmJoDCQClOJpPBwcEB9+/fN3m9N23ahAEDBqBJkyYAAGtrayxatAiRkZHKfTIyMtTqDACurq4VUueSVKa6FvfSSy9h8+bNiIqKUv7xbN68OXbv3g1ra2sAhecGqP/7KQo+czy/27dvAwA+/PBD9OnTBzt37sSVK1cwdepUPHr0CGvXrgVQeT83S8ZMMw+Vqa7FMdMq5+dm6Zhr5qEy1bUIM830n1mFNLZXrFhRES9bZQghkJ+fr3wskUiUv0ClKSgowKNHj7B69WpEREQAADp06AB/f3/MnTsXq1atMkqddaXp3KysrDB8+HBcuXIFa9asgY+PD/bt24cJEybA1dUVAwcOrMAaVy3Hjx/H4MGD8eabb6JXr164d+8eZsyYgZ49e+Lo0aOwt7ev6CqWSUFBAQDA398fK1euBAB07twZNjY2ePPNNzFr1izUrVu3Iqto0ZhpzLSKwkwjY2GuMdcqAjPN9CqksU3GdfjwYXTs2FH5OCwsDIcOHdLp2KKrVp06dVJuk0qlaN++Pc6ePQvgf1e6srKyVI7NycnBkydPVMauGJqmc/vwww+RkJCAM2fOoGnTpgAK/+jcvXsXEydOVAa4q6urWp2BwqtcNWvWNFqdy6Kkuhrz/S2v9957D506dVJZZqFt27aoVasWfvzxR4wePVr5bywrKwve3t7K/YqupJrj+RXVufi/PaAwyAHg3LlzqFu3bqX93MwdM42ZVlGYaZXzc6sMmGvMtYrATDP9Z8bGtgUKDg7GyZMnlY+dnJx0Praoa48m2dnZAAC5XI6aNWuqjW24dOkShBBqYzwMSdO5bd26FdbW1mpr7rVo0QI//PADnjx5AgcHBzRs2BB//fWXyj5CCFy6dAldunQxWp3LQtPYpKysLKSmphr1/S2v8+fP49VXX1XZVqNGDbi7u+Off/4B8L8xQBcvXlSZAOXixYuQyWRmeTelXr16sLW11fp80e9Gw4YNcefOHWRkZKiMB9I0rot0x0wrxEwzPWYaM81YmGuFmGumxUwzfabpNEEaVS5OTk5o1aqV8qf4L0ppevXqBQDYv3+/cltOTg4OHz6M4OBg5bbu3btj69atytklAWDdunVwcXFBaGioAc5CM03n5ufnh/z8fJw5c0Zl39OnT8PT0xMODg7KOv/555+4cuWKcp/ExETcu3cPPXr0MFqdy6J79+7Yv3+/cswVACQkJMDKygpdu3atuIqVws/PD7/99pvKtmvXriE9PR21a9cGANStWxf+/v5ISEhQ2W/dunXo3Lmzyqyp5kImk6Fr165ITExU2b5v3z4AQMuWLQEAXbt2hZWVFTZu3KjcJyMjA3v37jW7f2OVCTOtEDPN9JhpzDRjYa4VYq6ZFjOtAjLNKAuKkVk6efKkSEhIEEuWLBEAxMSJE0VCQoI4dOiQyn6RkZHCw8NDLF26VOzcuVP07NlT2NnZiTNnzij3uXLlipDL5SIyMlIkJiaKhQsXCplMprZwvCk8ePBA1KpVS9SvX1/8+OOPYv/+/WLy5MnCyspKzJgxQ7lfTk6OCAwMFE2bNhXbtm0T69atEzVr1hQ9e/Y0eZ1Lc//+feHj4yPCwsLEnj17xLJly4SLi4sYO3ZsRVetRAsXLhQAxHvvvSf27dsn4uPjRWBgoPDy8hLp6enK/YrW0Zw+fbo4ePCgGDNmjLCxsRHHjx+vkHo/fvxYJCQkiISEBNGhQwdRs2ZN5eO7d+8KIYQ4deqUkMlkIioqSuzZs0d88803wsnJSbz++usqZb311lvCxcVFLFu2TOzZs0eEhYWJ6tWri8zMzIo4NYvGTGOmGRszjZlmasw15poxMdNMn2lsbFchQ4cOFQDUfsLCwlT2e/TokRg3bpzw8PAQtra2IjQ0VBw7dkytvF9++UW0adNG2Nraiho1aog5c+aIgoICE52NqitXroj+/fsLX19f4eDgIJo0aSIWLlwo8vLyVPa7ceOG6NOnj3B0dBQuLi5ixIgRIisrq0LqXJrz58+Lzp07C3t7e+Hp6Sk+/PBD8ezZs4quVokKCgrEt99+K4KCgoRcLhfe3t6id+/e4sKFC2r7/vDDD6J+/fpCJpMp/6hWlOTkZI2/GwDEwYMHlfvt379ftGrVStja2gpvb28xceJEkZ2drVJWdna2mDhxovD09BT29vYiPDxc4/lT+THTmGnGxkxjppkac425ZkzMNNNnmkSIYivJExEREREREVG5ccw2ERERERERkYGxsU1ERERERERkYGxsExERERERERkYG9tEREREREREBsbGNhEREREREZGBsbFNREREREREZGBsbBMREREREREZGBvbpJOYmBhIJBJUr14dBQUFas+/+OKLkEgkGDZsmF7lZmZmIiYmBufPn1fZnpKSAolEgg0bNpSn2uW2cOFCSCQS5eNDhw5BIpHg1KlTJqtDTEwMjh8/rrZdIpFg/vz5JquHJlu2bIFEIkFKSgqAsn1uCxcuxM6dO41UQyLNmGmFmGmqmGlUmTHXCjHXVDHXKhYb26QzqVSK9PR0HDlyRGX7tWvXkJSUBEdHR73LzMzMRGxsrFqA+/j4ICkpCZ06dSpXnQ2tZcuWSEpKQqNGjUz2mrGxsRoDPCkpCa+//rrJ6qGLsnxuDHCqKMw0ZlppmGlU2TDXmGulYa6Zlk1FV4AqD5lMhvDwcKxduxYdOnRQbo+Pj0eTJk1gbW1tsNeytbVF27ZtDVaeoVSrVq3Uej19+hT29vZGr4s5vj/m+rkRacJMY6aVxlw/NyJtmGvMtdKY6+dmqXhnm/QyaNAgbNiwAbm5ucpta9asQVRUlMb9jxw5gtDQUNjb28Pd3R0jRozA/fv3ARR2Y6lTpw4AoF+/fpBIJMpuLpq6uBQUFGDmzJmoXbs2bG1t0bBhQ8TFxam8XkxMDBwdHfHXX3+hXbt2cHBwQGBgIPbs2VPquT148ABDhgyBk5MTPDw8MHnyZOTl5anso6lrkkQiweeff44pU6bA29sbnp6eAAAhBObPnw9/f3/Y2tqibt26+PLLL9Ve98KFC+jTpw8UCgUcHBzQrFkzrF27Vlk2AEyaNEn5/hw6dEj53PNdk+Li4hAQEABbW1vUrl0bM2fOVOlKtmLFCkgkEvz+++/o3r075HI5GjRogFWrVpX6/uTm5mLChAlQKBRwdnbGyJEj8ejRI5V9NH1uP//8M1q1agVHR0e4uLigVatWyqujtWvXxrVr17B48WLl+a1YsQIAsGrVKrRr1w4KhQKurq7o0KED/v3vf6u8nj6f96pVq9CiRQvY2dnB3d0dPXr0wLVr15TP37hxA2+88Qbc3d1hb2+P9u3b4/Tp06W+L1S5MdOYacw0sjTMNeYac818sLFNennllVfw7Nkz7N27FwBw/vx5nDlzBgMHDlTb9/Tp0+jSpQucnJyQkJCAuXPnYtu2bejevTvy8/Ph4+ODTZs2AQBmz56NpKQkJCUlwcfHR+NrT5o0CTExMRg2bBi2bduGrl27YsyYMfjmm29U9svNzcXrr7+OYcOGYfPmzfD09ERkZCTu3btX4rmNGDECmzdvxueff46VK1fi/PnzWLhwoU7vy1dffYXLly9j6dKl+OmnnwAA48ePx/Tp0zF06FDs2LEDw4YNw5QpU/Ddd98pj7ty5QpCQkJw5coVfP311/j5558xfPhw/Oc//wFQ2P0IAMaNG6d8f1q2bKmxDosWLcKYMWPw8ssvY9u2bRg2bBhiYmIwefJktX1ff/11dO3aFVu2bEGLFi0wbNgwXLhwocRznDZtGpYsWYJJkyZh/fr1yM/Px9SpU0s85p9//kHfvn3RpEkTbN68GevWrUP//v2RkZEBANi8eTO8vb3Rt29f5fn17NkTQOEfgyFDhiAhIQFr1qxBrVq10L59e1y+fFnlNXT5vOfNm4ehQ4ciODgYmzZtwtKlS9GgQQOkpaUBADIyMtCuXTv88ccfWLRoETZu3Ai5XI5OnTrh7t27JZ4jVW7MNM2YaZox06gyYK5pxlzTjLlmZIJIB9HR0UIulwshhIiKihJvvPGGEEKITz75RISEhAghhGjWrJkYOnSo8pjevXuLWrVqiZycHOW2PXv2CADi559/FkIIkZycLACIhIQEldd7fntaWpqQSqVi6tSpKvsNGjRIeHh4iLy8PGU9AYgdO3aolfXjjz9qPb9z584JiUQili5dqtyWl5cn6tSpI4r/mhw8eFAAECdPnlRuAyAaN24sCgoKlNv+/vtvIZFIRFxcnMrrTJkyRXh7e4v8/Hzle+nh4SGysrK01g2AmDdvXonb8/LyhLu7uxg4cKDKPtOmTRMymUykp6cLIYRYvny5ACAWL16s3OfRo0fCwcFBzJgxQ2sd7t27J+zt7cWnn36qsr19+/YCgEhOThZCqH9uCQkJAoB48OCB1rL9/PzE2LFjtT4vhBD5+fkiNzdXBAQEiGnTpim36/J5Z2ZmCgcHBzF69Git5U+fPl04OzuLO3fuKLdlZ2eLWrVqiUmTJpVYN6qcmGmFmGnMNLIczLVCzDXmmjnhnW3S26BBg7B161Y8ffoU8fHxGDRokMb9jh49ildffRVSqVS5rWvXrnBxccGxY8f0es1ff/0Vubm56Nevn8r2AQMGIC0tTeUKmpWVFcLDw5WPa9euDXt7e9y4cUNr+SdPnoQQAr1791Zus7a2xmuvvaZT/bp3764yE+b+/fsBAJGRkcjLy1P+hIeH4/bt27h+/ToAIDExEX379kW1atV0eh1tLl68iPT0dI3vT05OjlqXnq5duyr/Xy6Xw8/Pr8T356+//sLTp09V3p+i8ytJUFAQrK2tERUVhW3btiErK0vXU8KFCxfQu3dveHl5wdraGlKpFJcuXVK7Wlra552UlIQnT55g5MiRWl9r79696NixIxQKhfKzsra2RlhYGE6ePKlznalyYqapY6ZpxkyjyoK5po65phlzzbg4QRrp7eWXX4ZUKsX06dORnJyM/v37a9wvIyMDXl5eatu9vLyUY4F0VdSV5fnyih4XL8/e3h4ymUxlP5lMhuzsbK3lp6amQiqVwtXVVWP5pXl+v/T0dAgh4O7urnH/69evw8/PD/fu3YOvr69Or1ESfd4fAHBxcVF5rMv7A0A5xun58rXx9/fH9u3bMXv2bPTu3RtWVlbo1q0bvvnmG9SqVUvrcQ8fPkTXrl3h4eGBBQsWwM/PD3Z2dhg1apRaPUv7vIu6KJX0Pqenp+PEiRMqXzaK1KtXr8RzpMqPmaaOmaYZM40qC+aaOuaaZsw142Jjm/QmlUoRGRmJBQsWoHPnzlp/iRUKhcYxFHfu3IFCodDrNYv2v3v3LqpXr65SVvHny8rHxwe5ubnIyMhQCfGi8ktT/EppUX0kEgmOHTumFi4AEBAQAABwc3PDrVu3ylHz/70eALX325DvT1H5mt7/knTr1g3dunXDgwcPsHv3brz//vsYPnw4EhMTtR6TlJSEGzduYPv27WjWrJlye1ZWFmrUqKFX3d3c3AAAt27d0nqsQqFAt27dMGPGDLXnbG1t9Xo9qnyYaeqYadox06gyYK6pY65px1wzHnYjpzIZNWoUXnnlFYwfP17rPu3atcOWLVtUZonct28fMjMz0a5dOwBQhltJV+oAoHXr1pBKpUhISFDZvn79enh6esLf37+spwIAeOGFFwAUTgJRJD8/H1u2bClTeZ07dwZQeKWuVatWaj9OTk4AgPDwcGzYsAEPHz7UWpZUKi31/QkICICHh4fG90cmk6F169ZlOo8iTZs2hb29vcr7AwAbN27UuYxq1aqhf//+GDhwoMoEH5qu1D59+lT5XJHjx48jJSVF77qHhITAwcEBy5cv17pPeHg4zp8/j0aNGql9Vk2bNtX7NanyYaaVjJmmjplG5o65VjLmmjrmmuHxzjaVSevWrUsNt48//hihoaHo1asXxo0bhzt37mDq1Klo3bo1evToAQDw9vaGi4sL1q5dizp16sDW1hZBQUFqZbm7u2PcuHGYN28e7Ozs0LZtW+zcuRNr1qzBokWLyr1uZOPGjdG7d29MmDAB2dnZqF27NpYsWYKcnJwylefv74+xY8di8ODBmDRpEtq0aYPc3FxcvnwZBw8eVL530dHR2L59O9q1a4fJkyfDx8cH58+fx5MnT5QzUzZq1Ahbt27FSy+9BLlcjoCAAOUfgCLW1tb49NNP8d5778HT0xM9evTAiRMnMHfuXEyYMEF5xbCsFAoFxowZg88//xz29vZo2bIl1q5di3/++afE4+Li4pCUlIRu3brBx8cHycnJ+Omnn1TGITVq1AgHDhzAvn374Orqijp16qBt27ZwdHTE2LFjMXXqVNy8eRPR0dEqV2p15ezsjOjoaEyZMgUFBQV49dVXUVBQgIMHD2LQoEFo1aoVPvjgA6xevRphYWEYP348atWqhbS0NPz666/w9fXF+++/r/frUuXCTCsZM60QM40qE+ZayZhrhZhrRlaRs7NR5VF8hkttnp/hUgghDh06JEJCQoStra1QKBRi2LBh4t69eyr7bN68WTRq1EjY2toqZ0vUNPNlfn6++Oyzz0StWrWEVCoVDRo0EN99951O9XR2dhbR0dEl1j8jI0O8/vrrQi6XCzc3N/HBBx+IefPm6TTDpaYZKAsKCsSiRYtEYGCgkMlkQqFQiJCQELFgwQKV/c6dOyciIiJEtWrVhIODg2jevLmIj49XPn/06FHRsmVLYW9vLwCIgwcPan3db7/9VjRo0EBIpVJRq1YtMWPGDOVsmkL8b4bLtLQ0leM0fXbPe/bsmRg3bpxwcXER1apVE0OHDhU//vhjiTNcHj9+XPTs2VP4+PgImUwmatWqJcaPH68y4+XZs2fFSy+9JJycnAQAsXz5ciGEELt27RJNmjQRdnZ2IigoSOzcuVOEhYWJnj17Ko/V5/NetmyZaNq0qZDJZMLNzU306tVLXLt2Tfl8amqqGDlypLKuNWrUEH379hW//PJLie8LVU7MtELMNGYaWQ7mWiHmGnPNnEiEEMLoLXoiIiIiIiKiKoRjtomIiIiIiIgMjI1tIiIiIiIiIgNjY5uIiIiIiIjIwNjYJiIiIiIiIjIwNraJiIiIiIiIDIyNbTKalJQUSCQSbNiwQa/jDh06hNmzZ6ttj4mJgaOjo6GqV6qFCxdi586dBitvy5YtWLJkidr2YcOGITAw0GCvY2imft+JzBlzTRVzjahyY6apYqaRobGxTWZHW4CPGjUKBw8eNFk9TBXg5s7U7zuRJWKumRfmGlH5MNPMCzPNfNlUdAWochFCICcnB7a2tiZ/7Ro1aqBGjRomf92q6tmzZ5BKpQZ734vKs7LiNT4yL8y1qoO5RlUBM63qYKaZP76TVKKibjM7d+5Es2bNYGtri23btgEAkpKS0KlTJ8jlcjg7OyMqKgp3794tsbxVq1ahXbt2UCgUcHV1RYcOHfDvf/9b+XxMTAxiY2Px+PFjSCQSSCQSdOjQQflcUReZx48fQy6XY/78+Wqv0bdvX4SEhCgfZ2Zm4p133oGPjw9sbW0RHByMvXv3lljP2rVr49q1a1i8eLGyHitWrAAAFBQUYObMmahduzZsbW3RsGFDxMXFlfo+rly5EufOnVOWN2zYMJV9Dh06hBYtWkAul6N169Y4ffq0yvNCCMyfPx/+/v6wtbVF3bp18eWXX5b4ukWvHRgYiF27diEwMBB2dnYIDg7GiRMn1M753Xffxb/+9S/4+fnB3t4e9+/f19g16dq1a+jbty+cnZ0hl8vx8ssv46+//tKpvJLquH//fgQFBcHe3h5hYWFISUnB/fv30b9/f1SrVg316tXDunXr1I7fsWMH2rRpA3t7e3h4eODtt9/G48ePlc8/fvwY7777LgICAuDg4IDatWtjzJgxyMrK0ljnxYsXw8/PD87OznjttdeQlpZW6vtMlQdzjbnGXGOuWRJmGjONmWbGmSaISjB06FDh6uoq6tWrJ5YvXy4SExPFlStXxPHjx4VMJhOvvfaa2LZtm4iPjxf169cXbdu2VR6bnJwsAIiEhATlttjYWBEXFyf2798vdu7cKQYPHixsbW3FpUuXhBBCXL9+XYwcOVLY29uLpKQkkZSUJM6dOyeEECI6OlrI5XJlWQMHDhTBwcEq9X3w4IGws7MTX3/9tRBCiGfPnolWrVqJmjVriqVLl4rdu3eLN954Q9jY2IgzZ85oPe/ffvtNeHt7i759+yrrcffuXSGEEB988IGwtrYW0dHRYs+ePWLcuHECgFi0aJHW8v7++2/Ro0cPUbduXWV5f//9t/I9dnNzE02bNhWrV68W27dvF02bNhU1a9YUOTk5yjLGjRsn7O3txcyZM8W+fftEbGyskEql4ttvvy31M1QoFKJ27dpixYoVYuvWrSIkJERUq1ZN3LlzR7mfn5+f8Pb2Fi+99JLYvHmz+Pnnn8WTJ0/U3vcHDx6I2rVri7p164o1a9aITZs2ieDgYOHi4iL+85//lFqetjq6ubmJoKAgER8fLzZu3CiqV68uQkNDRXh4uPjss8/E3r17Rb9+/YSNjY1ISUlRHpuQkCCsrKzEyJEjxa5du8SyZcuEp6enGDBggHKfu3fvijFjxoiEhARx6NAh8eOPP4qGDRuKDh06qNTDz89P1KxZU3Tt2lVs27ZNLF++XLi4uKiURZUfc425xlxjrlkSZhozjZlmvpnGxjaVaOjQoQKAOHHihMr29u3bi9DQUFFQUKDcdu7cOSGRSMSOHTuEEJoDvLj8/HyRm5srAgICxLRp05Tbnw8Mbdu3bt0qAIjLly8rt61cuVJYW1uL27dvCyGEWLZsmbCxsVH+ESjSpk0b0a9fvxLP3c/PT4wdO1ZlW1pampBKpWLq1Kkq2wcNGiQ8PDxEXl6e1vKGDh0qmjRponG7RCIRZ8+eVW47ePCgACCOHj0qhCj8AyCRSERcXJzKsVOmTBHe3t4iPz+/xNcFIBITE5XbMjMzhZOTk8p5+Pn5CTc3N/Ho0SOV459/37/66ishkUjE+fPnldvu3bsn5HK5+OCDD0otT1sdn38PFi1aJACIKVOmKLdlZGQIa2trsXDhQiGEEAUFBcLPz08MGjRIpbxdu3aplVdcbm6uOHbsmACg/PJQVOcaNWqI7OxslfOXSqUlvsdUuTDXmGvMNeaaJWGmMdOYaeabaexGTqVyc3NDmzZtlI+fPHmCX375Bf369UN+fj7y8vKQl5cHf39/1KxZEydPntRa1oULF9C7d294eXnB2toaUqkUly5dwuXLl/WuV7du3eDi4oL4+Hjltvj4eHTs2BFeXl4AgL1796Jp06bw9/dX1jMvLw9dunQpsZ7a/Prrr8jNzUW/fv1Utg8YMABpaWllOg8A8PX1RZMmTZSPGzduDAC4ceMGAGD//v0AgMjISJXzCA8Px+3bt3H9+vUSy3d2dkanTp1UHoeHh+PXX39V2a9Dhw6Qy+UllnX06FEEBgaiUaNGym0KhQJdunTBsWPH9C6vyPPvgb+/PwAgPDxcuc3FxQWenp7K8718+TKuXbuG/v37q7wvYWFhsLKywqlTp5TH/vjjj2jRogUcHR0hlUrRrl07ZRnFhYWFqYxza9y4MXJzc0vtdkeVC3Ptf5hrzDWq/Jhp/8NMY6aZEza2qVRFYVgkIyMD+fn5eP/99yGVSlV+/vOf/2gNk4cPH6Jr1664du0aFixYgKNHj+LkyZNo1qwZsrOz9a6XTCZDZGSkMsDv3buHffv2ISoqSrlPeno6fv/9d7V6zpw5s9TQ0yQjIwOA+ntS9FjbOJfSuLi4qDyWyWQAoHxf0tPTIYSAu7u7ynl06dIFAEo9Fw8PD7VtXl5eSE1N1XgeJcnIyNC4n5eXl9r561JeEW3vgabtxd8XAOjdu7fK++Lg4ID8/Hzl+7J582YMGTIErVu3xvr163HixAls3rwZANT+7ZX2WZBlYK6pnjvAXGOuUWXGTFM9d4CZxkwzD5yNnEolkUhUHru4uEAikeCjjz7Ca6+9pra/u7u7xnKSkpJw48YNbN++Hc2aNVNuz8rKKvMMioMGDcLSpUtx5swZJCUlwdraGn369FE+r1AoEBQUhKVLl5ap/OcpFAoAwN27d1G9enXl9jt37qg8b2gKhQISiQTHjh1TBkpxAQEBJR6vadKIO3fuwMfHR2Xb85+1trpcunRJY3nPn78u5ZVH0et98803Klf0i/j6+gIAEhIS0Lx5c5XJUQ4fPmzUupF5Y679D3ONuUaVHzPtf5hpzDRzwsY26U0ulyMkJAQXLlzAzJkzdT7u6dOnAKASQMePH0dKSopKlxSZTIZnz57pVGaHDh3g7e2NtWvXIikpCd27d4ezs7Py+fDwcOzcuRO+vr7KX2ZdFb8qV6R169aQSqVISEhAixYtlNvXr18PT09PZXcaXcvTVefOnQEUXhF+5ZVX9D4+KysLBw4cUHZPysrKwv79+zF27Fi9y2rXrh02bNiAS5cuKf9wZGRkYP/+/Rg9erTe5ZVHw4YNUaNGDVy9erXEc3n69KnaH77Vq1cbu3pUiTDXmGvMNbIkzDRmGjPNPLCxTWUyb948dOrUCQMGDMDAgQPh6uqKGzduYN++fRg+fLhyCYji2rZtC0dHR4wdOxZTp07FzZs3ER0drXLVEQAaNWqEvLw8fPXVVwgNDUW1atW0Xg20trZG//79sWLFCty9e1dlTBAADBkyBHFxcejQoQM+/PBD+Pv7IzMzE7///jtycnIwZ84crefYqFEjHDhwAPv27YOrqyvq1KkDd3d3jBs3DvPmzYOdnR3atm2LnTt3Ys2aNVi0aBGsra1LLG/ZsmVYu3YtGjRoAHd3d9SuXVv7m1yMv78/xo4di8GDB2PSpElo06YNcnNzcfnyZRw8eBBbtmwp8XiFQoGRI0ciNjYWLi4u+PzzzyGEwIQJE3R6/eKGDx+OL7/8Ej179sTMmTNhZ2eHWbNmwcbGpkzllYdEIsGCBQsQFRWFx48fo2fPnpDL5bh27Rp27NiB2bNnw9/fH126dMHYsWMxY8YMhISEYOfOnUhMTDRpXcn8MdeYa8w1siTMNGYaM80MVOTsbGT+tM3KKIQQJ0+eFD169BDOzs7C3t5eNGjQQIwZM0Zcv35dCKF5hstdu3aJJk2aCDs7OxEUFCR27twpwsLCRM+ePZX75ObminfeeUd4eXkJiUQiwsLChBDaZ75MSkoSAISjo6PG5QqysrLE+++/L2rVqiWkUqnw8fERPXr0ENu3by/x3M+ePSteeukl4eTkJACI5cuXCyEKZ+b87LPPlOU1aNBAfPfddyWWVVSPgQMHCjc3NwFADB06VAih+T3OyMhQeU0hCmdzXLRokQgMDBQymUwoFAoREhIiFixYUOLrFpW/fft20ahRIyGTyUSLFi3EL7/8orKfphk9hdD8vqekpIg+ffoIJycn4eDgILp06aK2PIe28kqqY3FFs3yePHmy1HL37t0rwsLChFwuF3K5XDRp0kRMnDhRZGZmCiGEyMvLExMnThQeHh7CyclJ9O3bV5w4cULt36emsjdv3iwAiOTkZJ3Ohcwfc425xlxjrlkSZhozjZlmvpkmEUII0zXticjUhg0bhlOnTuHs2bMVXRUiIoNgrhGRJWGmWS7ORk5ERERERERkYGxsExERERERERkYu5ETERERERERGRjvbBMREREREREZGBvbREbWunVrLF68WOvzf/zxByQSCQ4dOmSU1+/SpQtmzZpllLKJqOphphGRpWGukbGwsU1kRJs3b0ZKSgpGjBhRYXX46KOPMH/+fGRkZFRYHYjIMjDTiMjSMNfImNjYJjKihQsXYtCgQbC3t6+wOnTs2BGurq5YuXJlhdWBiCwDM42ILA1zjYyJjW0iI0lOTsbRo0fRt29fle0zZ86Et7c3HB0d0adPH9y9e1ftWCEE5s+fD39/f9ja2qJu3br48ssv1fbbvHkzAgICYGdnh7Zt2+K3336Di4sLYmJiVPbr168fA5yIyoWZRkSWhrlGxsbGNpGRJCYmwsbGBq1bt1Zu++abb/Dpp59i8ODB2LhxI+rWrYuRI0eqHTt+/HhMnz4dQ4cOxY4dOzBs2DBMmTIF3333nXKf33//Hf369UPjxo2xadMmDB06FAMGDMCzZ8/UygsNDcUff/yBtLQ045wsEVk8ZhoRWRrmGhmdICKjGD16tGjSpInycV5envD19RWDBw9W2W/w4MECgDh48KAQQoi///5bSCQSERcXp7LflClThLe3t8jPzxdCCNGvXz9Rv3595WMhhPjxxx8FABEdHa1ybHJysgAgtm/fbsAzJKKqhJlGRJaGuUbGxjvbREaSmpoKDw8P5eMbN27g1q1b6N27t8p+z3dd2r9/PwAgMjISeXl5yp/w8HDcvn0b169fBwCcPHkSvXr1gpXV/36NX331VY11cXd3V9aJiKgsmGlEZGmYa2RsNhVdASJLlZ2dDVtbW+XjovD09PRU2c/Ly0vlcXp6OoQQytB93vXr1+Hn56f2BwIAnJycYGdnp3ZMUT2ePn2q/4kQEYGZRkSWh7lGxsbGNpGRKBQKpKSkKB/7+PgAgNokG3fu3FE7TiKR4NixY5DJZGrlBgQEKMt7flzPw4cPkZ2drXZMZmYmAMDNzU3v8yAiAphpRGR5mGtkbOxGTmQkAQEBSE5OVj6uUaMGfHx8sHnzZpX9NmzYoPK4c+fOAIB79+6hVatWaj9OTk4AgBdeeAHbt29HQUGB8tgtW7ZorEvRH5Ki8Cci0hczjYgsDXONjI13tomM5MUXX8Rnn32GGzduoEaNGrC2tsbUqVMxfvx4eHl5oUuXLti7dy8OHjyocpy/vz/Gjh2LwYMHY9KkSWjTpg1yc3Nx+fJlHDx4UBnS06ZNwwsvvIDIyEiMHj0a165dw/z582FnZ6cyNggATp06BUdHRzRv3txEZ09EloaZRkSWhrlGRlfBE7QRWaxnz54JNzc38f333yu3FRQUiNjYWOHp6SkcHBxERESE2L17t8oMl0X7LVq0SAQGBgqZTCYUCoUICQkRCxYsUHmNjRs3Cn9/f2FrayuCg4PFsWPHhI2NjVi4cKHKfq+88orazJpERPpgphGRpWGukbFJhBCigtv7RBZr4sSJ+P3333HgwAGTvF5iYiLCw8Nx6NAhhIWFAQAyMjLg7e2Nffv2oX379iapBxFZJmYaEVka5hoZExvbREaUmpqK+vXr4/jx42jWrJnBy3/nnXfQuXNnuLm54dy5c5gxYwZ8fX1x6tQpZfekzz77DIcOHTLZHxEislzMNCKyNMw1MiaO2SYyIh8fH6xYsUJtJkpDycjIwLhx45Ceng5nZ2d069YN8+fPVxkHpFAo8PXXXxvl9YmoamGmEZGlYa6RMfHONhEREREREZGBcekvIiIiIiIiIgNjY5uIiIiIiIjIwNjYJiIiIiIiIjIwNraJiIiIiIiIDIyNbSIiIiIiIiIDY2ObiIiIiIiIyMDY2CYiIiIiIiIyMDa2iYiIiIiIiAyMjW0iIiIiIiIiA/t/U3j6UF1/vDQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADi7klEQVR4nOydd3hU1daH3zMz6QkpJIQk1IRegoDApwihF1GkKCAgqFQFARXuFaVFELAh2CgSpIiAICgWBAsgWEDBa+g9lCRAAkkI6ZPZ3x+TGWYyJTMhkMJ+nyfPyZyzzzl72pq99l7rtxQhhEAikUgkEolEIpFIJBJJiaEq7Q5IJBKJRCKRSCQSiURS0ZDOtkQikUgkEolEIpFIJCWMdLYlEolEIpFIJBKJRCIpYaSzLZFIJBKJRCKRSCQSSQkjnW2JRCKRSCQSiUQikUhKGOlsSyQSiUQikUgkEolEUsJIZ1sikUgkEolEIpFIJJISRjrbEolEIpFIJBKJRCKRlDDS2ZZIJBKJRCKRSCQSiaSEkc62RFKG2bVrF4qisGnTptLuikQikdw2cXFxKIrCO++8U9pdkUgkEqepVasWjzzySGl3Q1KOkM62pNzw119/MX78eBo3boyXlxc1atRgwIABnDx50u55eXl5NGrUyOoALzU1lSFDhuDv7094eDgxMTEW5//99994enpy7ty5En0+Eonk3ubmzZvMnDmTHj16EBAQgKIorFy50qKdTqdj5cqV9O7dm+rVq+Pl5UWTJk2YM2cO2dnZZm1zcnJ44YUXCAoKolq1asyZM8fiepcuXcLb25vffvvtTj01iUQiseDgwYP07t2bgIAAPD09adKkCe+//75Zm6VLl1K7dm0CAgJ46qmnuHHjhtlxnU5H8+bNmTt37t3sukRSbDSl3QGJxFHefPNNfvvtN5544gkiIyO5fPkyH374IS1atODPP/+kSZMmVs/74IMPuHDhgtVjkydPZteuXURHR3P69GlGjRpFw4YNefDBBwEQQjBhwgQmTZpE7dq179hzk0gk9x7Jycm8/vrr1KhRg2bNmrFr1y6r7TIzM3nmmWf4v//7P8aOHUuVKlX4448/mDlzJj///DO//PILiqIA8Pbbb7N69Wpee+010tPTef3114mIiODJJ580Xm/KlCn07t2btm3b3o2nKZFIJOzYsYNHH32U5s2bM336dLy9vTlz5gyXLl0yttm7dy/PPfccEyZMIDw8nHnz5jFlyhSWLl1qbPPJJ5+QlpbGyy+/XBpPQyJxHiGRlBN+++03kZOTY7bv5MmTws3NTQwZMsTqOVeuXBG+vr7i9ddfF4B4++23zY4HBweLVatWGR9HRUWJV155xfh4zZo1IjQ0VKSnp5fgM3GcnTt3CkBs3Ljxjt7n5s2bd/T6EonEkuzsbJGYmCiEEOKvv/4SgPj0008t2uXk5IjffvvNYn90dLQAxI8//mjc16ZNGxEdHW18PHz4cDFo0CDj4z179ggvLy9x8eLFEnwmjnPu3DmrtrikkTZNIik7pKWlieDgYNG3b1+Rn59vs91///tf0bFjR+PjTz/9VFStWtX4OCUlRQQGBoovv/zyjvbXHjVr1hS9evW6o/fIy8uzGO9Kyi8yjFxSbnjwwQdxdXU121e3bl0aN27MsWPHrJ7zyiuvUL9+fYYOHWr1eFZWFv7+/sbHAQEBZGZmApCRkcErr7zCvHnz8Pb2dqqv8fHxjBgxgtDQUNzc3KhduzbPPfccubm5xjZnz57liSeeMIZT/d///R/fffed1evpdDreeOMNqlWrhru7O507d+b06dMW7fbt20ePHj3w9fXF09OTqKgoi1DRWbNmoSgKR48eZfDgwfj7+/PQQw8Zj3/22We0bNkSDw8PAgICGDRoEBcvXjS7RocOHWjSpAlHjx6lY8eOeHp6EhYWxltvvWXRp+zsbGbNmkW9evVwd3cnJCSEfv36cebMGbPnt3DhQho3boy7uzvBwcGMGTOGlJQUx15wiaQc4ubmRtWqVYts5+rqaoy2MaVv374AZvbPnk3T6XRMnDiR//znP1SrVs2pvqampvLiiy9Sq1Yt3NzcqFatGsOGDSM5OdnY5urVq4wYMYLg4GDc3d1p1qwZq1atsnnNZcuWERERgZubG61ateKvv/6yaHP8+HEef/xxAgICcHd35/7772fr1q1mbVauXImiKOzevZvnn3+eKlWqmD2/bdu20a5dO7y8vPDx8aFXr14cOXLE7BpPP/003t7exMfH06dPH7y9vQkKCmLy5Mnk5+ebtdXpdCxatIimTZvi7u5OUFAQPXr04O+//zZr54gtlUjuBT7//HOuXLnCG2+8gUqlIiMjA51OZ9HOnv0C/filadOm9OvXz6n7O/Kd1Wq1zJ4922iTatWqxauvvkpOTo7Va+7du5fWrVvj7u5OeHg4q1evtmiTmprKpEmTqF69Om5ubtSpU4c333zT7Lmb6lgsXLjQeP+jR48CztnA3377jZdeeomgoCC8vLzo27cvSUlJFv3atm0bUVFR+Pj4UKlSJVq1asXnn39u1saR8aTEQUrb25dIbgedTifCwsJEt27dLI7t27dPqFQq8fvvv9tcTencubPo0KGDOHnypPjhhx+Eh4eH+Oyzz4QQQrz66quidevWQqfTOdWn+Ph4ERoaKjw9PcWkSZPEkiVLxPTp00XDhg1FSkqKEEKIy5cvi+DgYOHj4yNee+01sWDBAtGsWTOhUqnE5s2bjdcyrGw3b95ctGzZUrz33nti1qxZwtPTU7Ru3drsvj///LNwdXUVDzzwgHj33XfFe++9JyIjI4Wrq6vYt2+fsd3MmTMFIBo1aiQee+wx8fHHH4uPPvpICCHEnDlzhKIoYuDAgeLjjz8W0dHRIjAwUNSqVcvYdyH0EQChoaGievXqYuLEieLjjz8WnTp1EoD4/vvvje20Wq3o3LmzAMSgQYPEhx9+KObNmyc6deokvvrqK2O7kSNHCo1GI0aNGiWWLFki/vvf/wovLy/RqlUrkZub69TrL5GUR+ytbNtix44dAhCff/65cd+IESNEkyZNRGxsrPj9999F1apVxZw5c4QQQixbtkzUqFFDZGZmOtW39PR00aRJE6FWq8WoUaPE4sWLxezZs0WrVq3EP//8I4QQIjMzUzRs2FC4uLiIF198Ubz//vuiXbt2AhALFy40Xstgi5s3by7q1Kkj3nzzTfHWW2+JwMBAUa1aNbPv++HDh4Wvr69o1KiRePPNN8WHH34o2rdvLxRFMbOTn376qdGmRUVFiQ8++EDMnz9fCCHE6tWrhaIookePHuKDDz4Qb775pqhVq5bw8/MT586dM15j+PDhwt3dXTRu3Fg8++yzYvHixaJ///4CEB9//LHZ6/H0008LQPTs2VMsXLhQvPPOO+Kxxx4TH3zwgbGNo7ZUIrkX6N+/v6hUqZL48ccfRb169QQgvLy8xNixY0VWVpax3Zo1a4Snp6fYvn27OHnypGjfvr3o0qWLEEKII0eOCDc3N/Hvv/86fX9HvrPDhw8XgHj88cfFRx99JIYNGyYA0adPH7Nr1axZU9SvX18EBweLV199VXz44YeiRYsWQlEUcfjwYWO7jIwMERkZKSpXrixeffVVsWTJEjFs2DChKIqYOHGisZ3BJjZq1EiEh4eL+fPni/fee0+cP3/eaRvYvHlz0alTJ/HBBx+Il19+WajVajFgwACz/n/66adCURTRpEkT8cYbb4iPPvpIjBw5Ujz11FPGNo6OJyWOIZ1tSblmzZo1AhAxMTFm+3U6nWjdurV48sknhRC2QxdjY2NFtWrVBCAA0b9/f5Gfny/Onj0rPDw8xB9//OF0n4YNGyZUKpX466+/LI4ZHPdJkyYJQOzZs8d4LD09XdSuXVvUqlXLGGZlcLYbNmxoFlK0aNEiAYhDhw4Zr1u3bl3RvXt3s8mBzMxMUbt2bdG1a1fjPoOzbXhtDMTFxQm1Wi3eeOMNs/2HDh0SGo3GbH9UVJQAxOrVq437cnJyRNWqVUX//v2N+1asWCEAsWDBApuvxZ49ewQg1q5da3b8hx9+sLpfIqmIFMfZ7tKli6hUqZKZ83bx4kXRuHFjo01r166dSE9PF6mpqSIoKEisX7/e6b7NmDFDAGaDOwOG7/HChQsFYJysFEKI3Nxc8cADDwhvb29x48YNIcQtW1y5cmVx/fp1Y9uvv/5aAOKbb74x7uvcubNo2rSpyM7ONrvfgw8+KOrWrWvcZxhoPvTQQ0Kr1Rr3p6enCz8/PzFq1CizPl++fFn4+vqa7TcMtF9//XWztoaJTgO//PKLAMSECRNsvhbO2FKJ5F4gMjJSeHp6Ck9PT/HCCy+IL7/8UrzwwgvGiXgDWq1W9OvXz2i/qlevLmJjY4UQQnTr1k2MHTvW6Xs78p393//+JwAxcuRIs+OTJ08WgPjll1+M+2rWrCkA8euvvxr3Xb16Vbi5uYmXX37ZuG/27NnCy8tLnDx50uyar7zyilCr1eLChQtCiFs2sVKlSuLq1atmbZ21gV26dDEbA7744otCrVaL1NRUIYQQqampwsfHR7Rp08ZsksP0tXBmPClxjFJ3tq9cuSLOnz9v8SeRFMWxY8dEpUqVxAMPPGA2wBJC7+R5eHhYGDNreYJZWVnir7/+EqdOnTLu69u3rxg6dKgQQogvv/xSREZGilq1aono6Gi7K935+fmiUqVK4rHHHrPb93r16lmsTAshxLx588ycaIOz/dZbb5m1O3jwoADE119/bfZ41apVIikpyexv5MiRws3NzejAG5zt3bt3m11zwYIFQlEUcerUKYtrNGzY0Di7LITe2fb29rZ4LXr37i2aN29ufNyrVy8RGBgo8vLybL4WEyZMEL6+vuLq1asW9/X29rb48ZNIKiLOOttvvPGG1VVXIfRO7j///COOHDli/N6/+OKL4qGHHhJC6Ce4WrduLapVqyZeeOGFInMDGzduLJo1a2a3Tbdu3UTVqlUt8jHXrVtn5kQbbPHzzz9v1u769esCEIsWLRJCCHHt2jWhKIqYPXu2hV0w5KpfunRJCHFroGmqvyGEEJs3bzYOlAtfo1u3bqJOnTrGtgZnu/Bgd8KECcLf39/4eNy4cUJRFHHt2jWbr4UztlQiuRcIDw8XgIWzPGbMGAFYOKSnTp0Sf//9t9Eh/Prrr4Wfn59ISkoSly5dEo888ogICQkRjzzyiIiPj7d7b0e+s3PnzhWAOHr0qNn+xMREAZg50TVr1hSNGjWyuEZkZKTo27ev2eMePXpY2ICffvrJbGLSYBOfeeYZs+sVxwZ+8cUXZtcw2EBDNMDGjRsFILZs2WLztXBmPClxjFJRI7927RovvPACmzdvJi8vz+yYEAJFUSxypCQSUy5fvkyvXr3w9fVl06ZNqNVq47EbN24wdepUpkyZQvXq1Yu8liEHxsAvv/zCjh07OHHiBCdOnGDQoEEsXbqUWrVq8eSTT1K9enWeeeYZq9dKSkrixo0bNpXRDZw/f542bdpY7G/YsKHxuOk1atSoYdbOkNNkyGk+deoUAMOHD7d5z7S0NLNcqMLq6qdOnUIIQd26da2e7+LiYva4WrVqRgVk037FxsYaH585c4b69euj0dg2NadOnSItLY0qVapYPX716lWb50ok9yIbNmxg2rRpjBgxgueee87iuIuLC/fdd5/x8fHjx/n444/5/fffuX79Or169eKVV16hY8eOPPPMM7zxxhtER0fbvN+ZM2fo37+/3T6dP3+eunXrolKZS8GY2jRTirJpp0+fRgjB9OnTmT59utV7Xr16lbCwMONjazYNoFOnTlbPr1SpktljQy5n4X6ZakecOXOG0NBQAgICrF7TcF9nbKlEUtHx8PAAMKuKADB48GCWLl3KH3/8YfZ9qVOnjvH/3NxcXn75ZWbOnElgYCDt2rUjJCSEb775hvnz5zN48GCblRzAse/s+fPnUalUZvcFqFq1Kn5+fkXaL7C0FadOnSI2NtbCphgoPLYpbL+KYwOLsqsGrRx7Y9TijCcl9ikVZ3vkyJHs3r2bqVOn0qhRIwvRK4nEHmlpafTs2ZPU1FT27NlDaGio2fF33nmH3NxcBg4cSFxcHICxtERKSgpxcXGEhoZa/dzl5+czceJEXnnlFcLCwpg9ezYPPvig0bkeM2YMa9eutels3ylMJxNMEUIAGMU23n77bbNBtimFRd4MP34GdDodiqKwbds2q/crfH5RfXIUnU5HlSpVWLt2rdXjtn6oJJJ7kR9//JFhw4bRq1cvlixZ4tA5L774IkOHDqVFixasWbOGgIAApk6dCsB//vOfIp3tO4GjNm3y5Ml0797datvCA2NrNg1gzZo1VoXoCk8C2uqTszhrSyWSik5oaChHjhwhODjYbL9hkt2eGOp7772HRqNh/PjxXLx4kb1793Lu3Dlq1arFW2+9RXh4OJcuXXJa9NEahRcQbOHI+Een09G1a1f+85//WG1br149s8e27JczNrAkxmXFGU9K7FMqzvbOnTt5//33GTZsWGncXlKOyc7O5tFHH+XkyZP89NNPNGrUyKLNhQsXSElJoXHjxhbH5s6dy9y5c/nnn3+sGpHFixeTnp7O5MmTAUhISDBz5kNDQ4mPj7fZv6CgICpVqsThw4ftPo+aNWty4sQJi/3Hjx83HneGiIgIQL9S06VLF6fONb2GEILatWtb/AgUl4iICPbt20deXp7N1ZyIiAh++ukn2rZta/FjI5FIbrFv3z769u3L/fffzxdffGE3YsTAt99+y++//25crUhISCAkJMR4vCibBvrvqCM2LTY2Fp1OZ7a6XVybFh4eDuhXgW/HpoF+QF/ca1i75vbt27l+/brNlbI7YUslkvJMy5Yt+fHHH4mPj6d+/frG/QkJCYDtSfXExETmzJnDxo0b0Wg0xvaGcZlhGx8fb9PZduQ7W7NmTXQ6HadOnTJG4wBcuXKF1NRUp+2X4b43b94stu0pCRtorU8Ahw8ftnDUC7e5nfGkxJxilf46cuQIgwYNMsrTHzx4EIDXXnuNbdu2FXm+n58fgYGBxbm15B4mPz+fgQMH8scff7Bx40YeeOABq+0mTJjAli1bzP6WLl0K6Mu7bNmyxSJcB+D69evMnDmTt99+G3d3dwCCg4ONg0XQl9ixV6pHpVLRp08fvvnmG4syMHBrdvHhhx9m//79/PHHH8ZjGRkZLFu2jFq1almdRLBHy5YtiYiI4J133uHmzZsWx62VfihMv379UKvVREdHW8yCCiG4du2aU30C6N+/P8nJyXz44YcWxwz3GDBgAPn5+cyePduijVarJTU11en7SiQVjWPHjtGrVy9q1arFt99+69DEVG5uLi+99BLTpk0zriAFBwdz+vRptFqt8bpFlR/r378///77L1u2bLE4ZmrTLl++zIYNG4zHtFotH3zwAd7e3kRFRTn8XEHvIHfo0IGlS5eSmJhocdwRm9a9e3cqVarE3LlzLVLWHL1GYfr3748QwmokgOG1uBO2VCIpzwwYMACAmJgYs/3Lly9Ho9HQoUMHq+e98sortG/fnh49egAYV8YN4zJD2UN7NsyR7+zDDz8MwMKFC82OL1iwAIBevXrZvL4tBgwYwB9//MH27dstjqWmphptsC1KwgYWplu3bvj4+DBv3jyys7PNjhlei5IYT0rMcXpl+8cff6RXr160bNmSIUOGMGfOHOMxFxcXPv74Y3r27Gn3Gv/5z3/44IMP6Natm0Mz8xIJwMsvv8zWrVt59NFHuX79Op999pnZcUMt7RYtWtCiRQuzY4Zw8saNG9OnTx+r158+fTpNmzbliSeeMO7r378/r7/+Os899xw1a9Zk6dKlRuNri7lz57Jjxw6ioqIYPXo0DRs2JDExkY0bN7J37178/Px45ZVXWLduHT179mTChAkEBASwatUqzp07x5dffmmR91gUKpWK5cuX07NnTxo3bswzzzxDWFgY8fHx7Ny5k0qVKvHNN9/YvUZERARz5sxh6tSpxMXF0adPH3x8fDh37hxbtmxh9OjRxhV/Rxk2bBirV6/mpZdeYv/+/bRr146MjAx++uknnn/+eR577DGioqIYM2YM8+bN43//+x/dunXDxcWFU6dOsXHjRhYtWsTjjz/u1H0lkvLChx9+SGpqqnHF5ptvvjGmvbzwwgv4+vqSnp5O9+7dSUlJYcqUKXz33Xdm14iIiLA6+bho0SIAJk6caNz38MMPM27cOAYPHsyDDz7I7NmzGTlypN0+TpkyhU2bNvHEE0/w7LPP0rJlS65fv87WrVtZsmQJzZo1Y/To0SxdupSnn36aAwcOUKtWLTZt2sRvv/3GwoUL8fHxcfq1+eijj3jooYdo2rQpo0aNIjw8nCtXrvDHH39w6dIl/v33X7vnV6pUicWLF/PUU0/RokULBg0aRFBQEBcuXOC7776jbdu2VicC7dGxY0eeeuop3n//fU6dOkWPHj3Q6XTs2bOHjh07Mn78+DtiSyWS8kzz5s159tlnWbFiBVqtlqioKHbt2sXGjRuZOnWqRTogwP79+9mwYYOZDkytWrW4//77efrppxkxYgTLly+nTZs2dleeHfnONmvWjOHDh7Ns2TJSU1OJiopi//79rFq1ij59+tCxY0enn/OUKVPYunUrjzzyCE8//TQtW7YkIyODQ4cOsWnTJuLi4opceLxdG1iYSpUq8d577zFy5EhatWrF4MGD8ff3599//yUzM5NVq1aVyHhSUghnFdVatmxprMWWl5cnFEURBw4cEEII8dVXX4mwsLAirzF+/HhRo0YNUaNGDfHUU0+JF154wezPmjy/RGIoN2Xrzx721MiF0JcAc3V1NdaMNWXlypWiVq1aonLlyuKll16yUD63xvnz58WwYcNEUFCQcHNzE+Hh4WLcuHFmqr9nzpwRjz/+uPDz8xPu7u6idevW4ttvvzW7jkGNfOPGjVafT2Hl4n/++Uf069dPVK5cWbi5uYmaNWuKAQMGiJ9//tnYxqBGnpSUZLXvX375pXjooYeEl5eX8PLyEg0aNBDjxo0TJ06cMLaJiooSjRs3tjh3+PDhombNmmb7MjMzxWuvvSZq164tXFxcRNWqVcXjjz8uzpw5Y9Zu2bJlomXLlsLDw0P4+PiIpk2biv/85z8iISHBaj8lkoqAoYyMtT9DHWjD993W3/Dhwy2ue/nyZeHj4yO2bt1qcWzbtm2iQYMGws/PTwwbNkxkZGQU2c9r166J8ePHi7CwMOHq6iqqVasmhg8fLpKTk41trly5Ip555hkRGBgoXF1dRdOmTS1slD1bDIiZM2ea7Ttz5owYNmyYqFq1qnBxcRFhYWHikUceEZs2bTK2MSjxWiu3KITejnbv3l34+voKd3d3ERERIZ5++mnx999/G9sMHz5ceHl5WZxrsJemaLVa8fbbb4sGDRoIV1dXERQUJHr27GkcCxlwxJZKJPcKubm5YtasWaJmzZrCxcVF1KlTR7z33ntW2+p0OtGmTRvx0ksvWRw7ffq0aN++vfD29hbt27e3GEtYw5HvbF5enoiOjjaOVapXry6mTp1qVnZLCL3N7tWrl8U9oqKiRFRUlNm+9PR0MXXqVFGnTh3h6uoqAgMDxYMPPijeeecdkZubK4Qoenx6OzbQMIbcuXOn2f6tW7eKBx98UHh4eIhKlSqJ1q1bi3Xr1pm1cWQ8KXEMRQjn1Izc3d355ptv6Nq1K/n5+bi4uPD333/TokULdu/eTffu3S1CEwpjLYTXFEVROHv2rDPdkkgkEolEIpFIJBKJpMzgdAx3QECAMdytMCdPnjQTXrHFuXPnnL2tRCKRSCQSiUQikUgk5QanBdL69OnDzJkzzZSUFUXh8uXLvPPOO0XW4iyPnD59mrFjx3Lfffeh0Whs1qdLTU1lwoQJhIaG4u7uTkREBO+++65Zm9zcXKZMmULVqlXx8vKia9euVlWpJRKJ5E4hbZpEIqlISJsmkUjKKk6vbM+bN4+//vqLyMhImjZtCsCzzz7L2bNnqV+/PrNmzXL4WqdPn+bkyZNWw8779evnbNfuGEeOHOG7776jTZs26HQ6Yw06UzIyMujQoQMajYb33nuP4OBgTp48yY0bN8zaTZgwgfXr17NgwQLCwsJ444036Ny5M0eOHMHX1/duPSWJRHIPI22aRCKpSEibJpFIyizFSfTOzc0VK1asEE8++aTo2rWrGDhwoPjkk0/MxJ/skZaWJjp16iRUKpVQqVRCURShKIrxsUqlKk637hj5+fnG/4cPH25VGGratGkiPDxc3Lx50+Z1Ll68KNRqtVi6dKlx37Vr14SXl5d48803S7bTEolEYgNp0yQSSUVC2jSJRFJWKVadbRcXF5555hk+//xzduzYwfr16xk5ciSurq4Onf/f//6Xy5cvs2fPHoQQbNmyhV27djFixAhq167Nn3/+WZxu3TEcKcO0fPlynn32Wby8vGy22bFjBzqdzqy0VEBAAN26deP7778vkb5KJBJJUUibJpFIKhLSpkkkkrKK0872v//+a9PgfP/992b18Gzxww8/8Nprr9GmTRsAQkNDad++PcuWLeOxxx6zyJ8p68TFxXH58mUCAwPp3bs3bm5uBAQEMGrUKLOC8MePH6dKlSr4+/ubnd+wYUOOHz9+t7stkUgkVpE2TSKRVCSkTZNIJKWF0872iy++yB9//GH12P79+3n55ZeLvMbVq1epXr06arUaLy8vrl27Zjz28MMP88MPPzjbrVLl8uXLAEyePBl/f3++//575s6dy8aNGxk1apSxXUpKCn5+fhbn+/v7c/36dZvXz8nJ4caNG8a/tLQ0kpKSEM5VbZNIJBKHkDZNIpFUJKRNk0gkpYXTzvb//vc/2rZta/XYAw88wMGDB4u8RvXq1UlOTgagbt26bN261Xjsjz/+wN3d3dlulSoGIY569eqxatUqOnfuzNixY3nnnXdYv379bdcMnzdvHr6+vsY/Pz8/qlSpQnp6ekl0XyKRSMyQNk0iubskHjxItKKQaGUMZeuYvXMk5pRXm+bseyw/E5KyREl+HsvzZ9tpZzsnJ4fc3Fybx6wpixema9eu/PTTT4B+pXzJkiW0bNmSBx54gJkzZzJs2DBnu1WqGMKNOnbsaLa/c+fOgF4l09AuLS3N4vyUlBQCAgJsXn/q1KmkpaUZ/y5evFhSXZdIJBILpE2TSCQVCWnTJBJJaeF06a/mzZuzevVqevfubXFs9erVNGvWrMhrvPnmm2RmZgLw1FNP4e3tzaZNm8jKyuLDDz9kzJgxznarVImIiMDNzc3mccMERIMGDbhy5QopKSlm+UDHjx+nQYMGNs93c3Oze32JpKKSnpjIgaVLaTlmDD4hIaXdnXsGadMkEklFQto0ieTOIMdpReP0yvbUqVPZsmULvXr1YtOmTfz+++9s2rSJXr168dVXX/Haa68VeQ1PT08CAwONj/v27cvatWvZvHkzzz33nEOqkmUJV1dXunXrxs8//2y2/8cffwSgRYsWAHTr1g2VSsWXX35pbJOSksKOHTt4+OGH716HJZJyws3ERHZHR3MzMbG0u3JPIW2aRCKpSEibJpHcGeQ4rWicXtnu1asXn3/+OVOmTGHAgAEoioIQgmrVqvH555/Tq1cvh6917Ngx/v77by5evMizzz5L1apVOX36NMHBwfj4+DjbtTtGZmamUYH9/Pnz3Lhxg02bNgEQFRVFUFAQM2fO5MEHH2TIkCEMHz6cU6dOMXXqVIYMGUJERAQA1apVY+TIkUyZMgW1Wk1YWBhz587F19e33K3mSySS8ou0aRKJpCIhbZpEUv6psKvkt1Ok+/jx4+K3334Tx48fd+q8jIwM8eSTTwq1Wi00Go1QqVTiwIEDQgghHn/8cTFlypTb6VaJc+7cOQFY/du5c6ex3U8//STuv/9+4ebmJqpWrSpefvllkZ2dbXat7Oxs8fLLL4sqVaoIDw8P0aVLF3Hs2DGn+pOWliYAkZaWVhJPTyIpsyQcOCBmgUgosA+SkkHaNImkdLiRkCB2zpwpbiQkmO23Z+tsHStN+2jreZQWFdWmOfsey99Myd2mOLbrblyrLOH0yrYp9evXL9Z5kydP5pdffuH777+nXbt2eHl5GY89/PDDvPfee7z11lu307USpVatWg6Vb+jcuTN//fWX3TZubm688847vPPOOyXVPYlEUkCFnRUtYaRNk0juLLZskSHksn7v3uXaRpW15yFtmkQiKasUy9k+ceIEX375JZcuXbJQH1cUhZiYGLvnb9q0ibfffptu3bqRn59vdqxWrVrExcUVp1sSieQep6wNACUSyb2JtEUSiUQigWI422vWrOGZZ57B3d2dmjVr4urqanZcUZQir3Hz5k1CbPz4ZGRkONsliUQikUgkknsOF0/P0u6CRCKRSOzgtLM9e/ZsHn/8cVasWIFnMY18ZGQkX375Jd26dbM49t1333H//fcX67oSiUQikUgkFR0hBMGRkbyakYFOq0UI4dBih0QikUjuLk472wkJCSxevLjYjjbA9OnTeeyxx8jMzOSJJ55AURT279/PunXrWLFihVFRUiKRSKwhc7MlEklJU17sitDpSE9I4MDSpVw/c4aAiAh9n0NDUcpZ6VSJRHLvUV5sbUnhtFVu3749hw8fvq2b9urVi/Xr17N371769OmDEILnn3+eDRs2sHbtWjp37nxb15dIJBUbWddRIpGUNLbsSnpiIrtmzSK9lO2NxsMDodMR+9lnLKpdm1/nzOHwunX8OmcOi2rXJvazzxA6Xan2USKRSIriXhvDOb2yPXfuXIYOHYq7uztdu3bFz8/Pok1AQECR13n88cd5/PHHOXnyJMnJyQQEBNCgQQNnuyORSMoJ99pMpkQiqRiUFbEzr6Ag0hMS2DpiBDqt1uyYTqtl64gR1O7cWb/CLUPKJRKJpEzgtLPdokULAJ577jmbxrywwrg96tWrR7169ZzthkQiKWfcrQGrFAySSCQVDkXB3c+P3dHRFo62AZ1Wy4ElS4iaNQtFrb7LHZRIJJI7S3kd3zntbK9YsaJEZkwvXrzIV199xcWLF62WD1u0aNFt30Mikdw7SMEgiURSUXHx8ECl0XD9zBm77VLOnkUlHW1JCSCj0SRlhfI+vnPa2X766adv+6ZffPEFTz31FDqdjipVqlgtHyadbYlE4ihSMEgikZR37K3a5GVlodNqCYiIsHsN//BwdPn50uGW3DZlJX1Ccm9TEcZ3TjvbJcGrr75Knz59WLZsGb6+vqXRBYlEUgEwFQwqnMe4d/58esfEEDl0aLkxyBKJpHxREqt/Dq3aCEF2aiotx4xh7/z5VkPJVRoNLceOlfZOIpFUCCrK+K5YPfz1118ZOnQorVu3JjIy0uKvKJKSkhg9erR0tCUSSbGVfl08PR0SDEpPTEQIUZJdlkgkEuD2VXWFTkd6fDy7o6P5cvBgdkdHkx4fb1VVPCMpCZ/QUHrHxKDSmK+VqDQaeq9YgU9ISLkKr5RIJBJrCCEqzPjOaWd7+/btdOrUieTkZP7++2+qV69OYGAgJ06cICMjg/vvv7/Ia/To0YM///yzWB2WSCQVi5uJifz+9ts2B6uFQytNV4Hc/f05sHRpkYJBshyORCK5E6hSk4gK0W+doThlvLRZWSgqFZFDhzIxLo7206bRdPBg2k+bxsS4OCKHDCkXqzySe5DkRFg6S7+VSBxA6HQVZnzndBj5zJkzmTRpEm+++SYuLi7Mnj2bFi1acP78ebp3706nTp2KvMaSJUsYOHAgmZmZdO7c2Wr5MIPquUQiqbjYC5+0doyCmc4DS5eSdukSfT79VAoGSSSSUkOVlkyHUEhKS3bqPGfKeBVGUanwCQ0lauZMVBoNOq0WRa2WK9qSsktyInwSDVG9IVDmf0vso6hUqNTqCjO+c3oK9NixY/Ts2ROVSoWiKGRkZABQs2ZNZs2axZw5c4q8Rnp6OpmZmcybN4+uXbvSqlUr49/9999Pq1atnH8mEomkXGEvfLLwsb+XLgUhzFaB/l21irzMTIcFgyQSiaRMUFDG63ZWbRRF4UpsLHO9vLgSGysdbYlEYkFx0/RKG6HTocvPrzDjO6dXtt3d3dHpdCiKQkhICGfOnKFdu3YA+Pj4cPHixSKvMWzYMC5cuMAHH3xAvXr1LNTIJRJJxcWeqNmp779n5P79HFq71uxYeNeupF24YN5eCA5v2EDzESOkYJBEIik3OF3Gy44jnZeZWdLdk0gkFYTyrCivqFQVRhDSaWe7WbNmnDhxgq5du9K5c2feeOMNAgMDcXFxYdq0aTRt2rTIa+zfv5/PP/+cPn36FKfPEonkLnHzyP9InjOJwGkL8W58n9mx4qrw2gufbDV+PDcuXjQ/pig0GTiQvfPmWbTft3AhkUOH8ujy5XwzcqTZcSkYJJFIyiSK4lQZL8qBAJBEIpGUJIqiGAUhC48Xy9v4zmlne9KkSZw7dw6AuXPn8uijj9K7d28AqlWrxpYtW4q8Rt26ddHaCJ2SSCRlh6yTR6h1ajdJJ49YONvFmjEtCJ/cHR1tOVNpw6l28fDAxdPT6irQldhYvho2jD6rV1O7Y0cOfvIJKWfP4h8eTsuxY/WGuBzMekokkoqPUYfi5k10Ol2FWbWRlC3s1WuXSMoTBkHI2p07c2DJknI7vnPa2X744YeN/4eFhXHgwAFOnz5NVlYWDRo0cCgkfMGCBUyePJkmTZrQoEEDZ7sgkUjKKfbCJ2051XlZWXZzsw+vX0/S0aP0XrGCqFmzUKnVUjBIIpGUKYROZxR3vH7mDNXbtqXVc89ViFUbSdnAoXrtEkk5oyIIQjrtbL/++uuMHDmS0AKFTEVRqFu3LgCJiYl88sknzJgxw+41Jk2axOXLl2nSpAmhoaEWauSKovDvv/862zWJRFLGycvKshk+adOpdiA3O+noUbyrViU7JYWFNWvyzJ49hMiKBhKJpJSxpVFxeN06Lv3xB31WrSr3qzaS0qfwZE5ARIQ+xSs0VH6OJHecOx1NoSgKl2Nj+bRdu3I5vnPa2Y6OjqZHjx5GZ9uUhIQEoqOji3S2W7ZsWa5mJCQSSQkhBNmpqdbDJ+041Y7mZiefOCEFgyQSSZnBnkbFobVrST52jKd//bXIVRsZGiyxhS3B0b3z59M7JobIoUOlwy25fZIT4cul0H+MsXybI9EUJWm7yuv4zmln215YSmJiotWa2YVZuXKls7eVSCQVhIykJALr17caPvnXhx/SbNgwi2NXYmP5+pln6LNqFeFduthcBdJmZZXW05JIJBJz7GlUFJB48CC/zZ9P1MyZzPXysli1kaHBEnsIIRyu1y4/N2WL4orMlhqFaqUXFU0hbdctHJrqWrduHb1796Z3794oisLLL79sfGz469atG8OGDePBBx+8030us2zdupU2bdrg4+NDSEgIAwYM4OzZsxbtYmJiqFevHu7u7jRr1oxvv/22FHorkZQO2qwso+jFxLg42k+bRtPBg2k/bRqDtm5FURSrx7q8+aZRnTJq5kz6rV1L1MyZMkzuDlJRbFp5rTUqKd84VeJLo0EUUh0XOh3p8fHsjo7my8GD2R0dTXp8vM3a25KiqSg2zYDQ6W6rXruk9DCIzN504nepTPyWud1KjVlUuza/zpnD4XXr+HXOHBbVrs2FvXul7SqEQyPU3Nxc0tPTSU9PRwhBRkaG8bHhT1EUhg0bxtKlS+90n8sku3btom/fvjRq1IgtW7awcOFC/v33X7p160aWyWrb+vXrGTVqFAMHDmTbtm088MAD9O3blz///LMUey+R3H1MRS8KO852jykKV2JjmevlxZXY2Ht2pvROU5FsWnEGNZLyTZkYlDpT4kurNYvMsTeYjf3sM4ROh8bD404/A7uUt9D2imTTDKjUasfrtUvKPTZ/y5ITYeks/dZBimsjhb/t1JigRo2o9sADZd523W0cCiMfPnw4w4cPB6Bjx44sXrxYqogXYv369dSsWZMVK1YYB/9VqlShU6dO/P3337Rr1w6AmTNnMmjQIGbPng3oX8/Y2Fhef/11vv/++1Lrv+Te5m6FMxUenNkTvShKEKO85u6UF6RNk5Rn7JUmvNP2rjglvrJTU83OdyQ02CsoqMT77gjlNTy0Ito0XX6+w/XapcNdgSkU4u0IzpZvzUhKwktREF6+HHh3kVV71mbSJNLj48us7SotnI693Llzp1VHOzc3t0Q6VF7Jy8vDx8fH7AfH19cXwBgadvbsWU6ePMmAAQPMzh00aBA///wzOTk5d6/DEokJxV35c3Rlw3RwFhwZaREuac9xlk516SBtmqSiknksFpZF67clTOHwyb8XL8YnNJTeMTGoNObrG6bijhlJSWbXcCQ02N0BjZySpjyHh1ZEm6aoVLQcM8bis2XgTtVrLxORI+WEivJaZSYng5sHKhcX69EUikKTgQP5JyamTNqu0sTpb9+aNWv44IMPjI8PHz5M3bp18fT0pEOHDly9etXu+UIIrl+/XuYM1u3y9NNPc/ToUT7++GPS0tI4e/Ysr776Ks2bN6dt27YAHD9+HMBisqJhw4bk5uZy7ty5u95viaQ4FOU8m7UtYnDmHRJC1MyZeJfAClNJXuteR9o0SUVFlZZMh1D9tqRQV/KzGvq9bfx4tgwbRtMhQyx0KCbGxRE5ZIiZuKOiUjkeGqzR3NVwTEdC28syFdGmGXRMiprMKenIA5ma4zgV6rXKyUKXl2s1msLFwwMXT88yabtKG6ed7bfffhuVyQzZCy+8gKurKwsXLiQxMZFXX33V7vl5eXlUqVKFn376yfnelmHatWvHli1beOWVV/Dz8yMiIoIrV66wbds21AWhOykpKQAWiu3+/v4AXL9+3eq1c3JyuHHjhtmfRFJaFOU8G2ZxM5KSHBqc+YSE0GHWrBIJ5yzJa93rSJsmkTiOR50Gdkt8LW/dGnc/vyLFHYVO53hocKE87zuJI6Ht6YmJdideS5uKatNsCY6aTuZI7jx3YwVblZpEVIh+e6ew+zyEICfhotVoirysLPIyM8uc7SoLOP0NjIuLo1GjRgAkJyezZ88e3n33XcaPH8/rr7/O9u3b7Z7v6upKtWrVyM/PL16Pyyi///47Tz31FKNGjeKXX35h48aN6HQ6evXqZSa8URzmzZuHr6+v8a969eol1GuJxDkccZ6zU1PZHR2NoijlfnB2LyNtmqQ8U9xBqa3UGLspM4qCW2h1u6HfhhJfQJHijo6GBpvmed9pKoLqdXm1aY6ka9kTFZXcHe7GCnZJRuXYspFFPY+s08etR1MIwZEvvqDFqFFlynaVBZz+FqpUKmN+9s6dO3FxcaFjx44AhISEcO3atSKvMW7cOBYsWEB2drazty+zTJgwgU6dOvHuu+/SsWNHHn/8cb777jsOHjzImjVrgFszo2lpaWbnGmZSAwICrF576tSppKWlGf8uXrx4B5+JRGIdR1c2vHx96NwkCHdf3zs2OJPh4nceadMk5RlnB6W2UmMcSplx80Dl4moePqkoeifJxKG2VeKrMI6GBpvmed9pKoLqdXmzac6kawGyUofEKYrluLt7kn8j1WY0RZ2ePalUrVqZsl1lAYfUyE1p1qwZH3/8MdWqVeP999+nU6dOuLm5AXDhwgWqVKlS5DUuXLjAyZMnqVGjBh06dCA4ONjMKCiKwqJFi5ztWqly9OhRHnvsMbN91apVIzAwkDMFP1CGHKDjx49Tv359Y7vjx4/j6upKeHi41Wu7ubkZX2OJpLQoamWjQZ8+aNzc8PD356FDV0GXT+3OnTmxdStXYq0LERV3cGYIF5fcOaRNk9wrCJ2O9IQEDixdyvUzZwiIiKDNpEl4+Ptb7G85ZozliqFJHmNwZCRtJk2i6cCBaDw90WZmcmjDBvYtXOhU+KRhMFu7c2cOLFlCytmz+IeH03LsWH0Orkme992gIqhelyebZu0zafWzZ4WKLip6t6qnlCcykpLwMmzvRLEoIQh85AnoO4TAvFwQwiyaQqXRoNNqUdRqFEUpU7arLOC0sz137lweeeQRIiMj8fHxMcu93rJlC61bty7yGt9++63RMP31118Wx8ujs12zZk0OHjxotu/8+fMkJydTq1YtAMLDw6lXrx4bN240M/gbNmygc+fOuLq63s0uSySOo1bbXdno8f77tB43DpISUJbNgktnoFoENfqMYvTff7Nl2DAOr19vcV5ZH5zdy0ibJqnomIqamUbsBEdG0n7GDP5ds4ZvRo40m2DcO38+vWNiiBw69JbTU5DH2GbSJKJmzEBcjUe9ah5cOoOmWgSRvUfQbOhQstPTnQqftDeYvdsYQtuLKmFWlsOWy4tNs/aZBBufvXsQZ0tW3QtkXzmFV8uCLd2N+0skx1ung+QElC+XwqUzKNUioP8YCNRP/Fgr0eqI7SpWyk45xWlnu23btsaV6YiICDMRiREjRlCnTp0ir1HW1BxLgrFjxzJp0iQmTpzIo48+yrVr15gzZw5VqlQxKyExa9YshgwZQkREBB07dmTDhg3s27ePX3/9tRR7L5HYwd0T8vMtVzYUBRcPD+r26qV3tL9fgzJ7JOTfGhyoVs5HTF9O39WrSTp61GyFuzwMzu5lpE2TVHRsiZoZasUWdrTBvFasT2iofqe7J7mX46nUqjZ8vwZVITuoLrCDHg8/RUpcnFN9VBTF6mAW7m46jWloe+HX606qXpck5cGmOVpj3Sc0tEy/1pK7i0qXCi0Ltqb7C0LFk4qR463x8NA72ts+g9dHmNk0Vs6HGTHQcygaDw+r0RS2bJdpeoROq0UIgaIoNvdXBJx2tgF8fHxo2bKlxf6HH374tjtUXpkwYQJubm4sXryYmJgYfHx8eOCBB9i4cSOVK1c2tnvyySfJzMxk/vz5zJ8/n/r167NlyxYeeOCBUuy95F7BqfCrwmFDKhWtxo/n1Pff02r8eGOYpMjP169oFxpgApCvRZk9El2LDrSZOJGtI0YA5Wdwdi8jbZqkPKPKT9EPPvNTrDcoEDX78/XZ5k5NQa3YvfPm2dWbOP7VV7R67jmjjayUn4+SnAB27CCtu+BeqVKxno+1wezdTqdxJLS9LFMebJqjQnRRs2ahyIiwu87NI/8jec4kAqctxLvxfaXdnTuKV1AQJCdYOtqgf/z6CGjVWd/ODqa267ZTdsopDjnbCxYsYMiQIQQHB7NgwQK7bRVF4cUXXyzymvHx8SxcuJC9e/dy/fp1AgICaNeuHRMnTiQsLMyx3pchFEVh7NixjB07tsi2I0aMYESB0yGR3E0yj8XCsmgy2z9g39m2ETbkFRTKqP370V2+qA+TjD+LMmMFbF5qaYwN5GtRf72cZiOmce7nn8vV4OxeRto0SXnG1kqPEWuiZjhWK7bJoEHcP2aM3rn+cuktO/ilfTvIl0vwGDWzeE+ojFCWQtudpTzYtIogRFeRyTp5hFqndpN08oiFs303ynLdNRQFDz8/+CS6RGyaxsOjZFJ2yikOOduTJ0/moYceIjg4mMmTJ9tt64izffjwYdq3b09eXh5du3blvvvu48qVKyxZsoSYmBh+/fVXGjdu7PizkEgkDlFUSJHdsKHfvkdZtR/xw1rUhmPunjBnrT5H2x7xZ1G5utFv7dpyNTiTSAojxXlun+K8hjbPSU7UO7n9x0CgE++HiaiZKUXVig2OjKTv6tUoP6y9tYrthB1UNBq9nS3H2Attl9weFUGIrkxSXDvhBM6GbJdl59zFwwNFoykxm+YVFFQyKTvlFIemCnQ6nVH4TKfT2f1zpH725MmTiYiI4MKFC2zevJnFixezefNmzp8/T3h4eJEOvUQisU16YiK7Zs0ivRi1Hu2GDQ0YD1cuopgey8mC7EyoZn9wQFg4Ij9fliSRlHvuRi3Vik5xXkOb5yQn6ldfkh2/lio/BVoIci+dtqxnLQSHN2yg+YgRVmvFtpk0CXE13jxtxhk76KAaeXmgoqtelwaO1lgvbyt9hlJPpVbyqRh24k5jt/RWciIsnVVq/c3LykJotSVj0xQFdz8/y/SIgpSdf2Ji7kiJ2LJEqXxb9+7dy7Rp04z1DA34+/vz2muvsXfv3tLolkRSISi2M2AIG7IWCqko0G0gfB1jfkwI2LEBHhsBahuBMmoNov9Y8nNz5eBMIpGUKMUZxBtCzHNP7rVaz3rfwoX4hIXx6PLl5k6PotB04EDUW4tnB+k/liwn1Mgl9x6O1lgvbxPWmcnJZtt7iWKtYJf25IAQelvVf8xt2zQXDw9UGk2xUnbAJG2inH3mTXEojNxZBcb27dvbv6lGQ05OjtVjOTk5qGVojERy1/GsXNl22JCbhz5U0tqxdQvh4aEwfbmlOJBag5gRA4Eh3HBShVcikZhTVkPYc3ISSUhYSmjoGNzc7lCIpo0Bq62SN46Qn3bVpuhXTno6zZ56ivAuXYz7K9evj8azeHaQmSsgMISMEyeK8ewl9xLlXYiuLGKzDrWN8PLi2Fpbooy2wsvtiThmJhzHs2XBtkHppGlkJCXhWb++XnW8cLSjEzYtLysLnVbrdMqOAUPaBEIU+7mUNg452x06dDDKsgNmM2rWpNmLCiXv0qULr732Gvfddx/16tUz7j916hTTp0+na9euDj8BieRepcQG3kJQtVlTpiQlIXT5KE9NhrNH4NStMl12wyRPxcLMYRC9Glp1gs3LIP6sPryo/1gI1A8OcoqxonM3S9tIJGWdslpfNjc3kfPnowkM7H3bzrYtx93mgLUoITQHMIp+zZiBysUFXV4eikZjXGWMmjEdlYsrurxcvY100g5SYAdRqSpMCLnkzlKehehKjcxEOLoUGo0BT3M7lJmcjJfJ1kh8LByMhv97wMzZTo2PJS4umoj4IsRkTXDWFuVzkXPdwEtctDiWk3wWz5YFW4euVvJos7JApYKeQ6FVZ/hySfFsmhBkp6bScswY9s6ffytk3CRlx2y/CeU1baIwDvX+n3/+4eDBg/zzzz9s376dsLAwhg4dyldffcWff/7JV199xZAhQwgLC+OHH34o8noLFixAq9XSqFEj7rvvPrp3707z5s1p2LAhWq22SMVziURSQrmjQgeZ8SgHX4efB6McmIWoVgXW/A3dB5m0KyJMcvt6ePr/EJUCEKNnwZy1+m3Q7ZVtMJS2KUuOhUQiuXPkXo3l/Plocq/GFt34dtCYD2EVReHat1/AQ15c+/YLo1Oj37+xYP9GFEVlO7SywA5SKQAxeqbeDo6cDkGh+kGrROIEiqJwJTa2XGmd3I5mzG1jcJzjHbcdWVdOQcuCrQlakUytp/VbU4osKegEeap0zlfWbx2lJO/v+E1VEBSqt2XFtGkZSUnOpexQvtMmCuPQK9WsWTPj39KlSxk0aBCrVq3i0UcfpXXr1jz66KOsXr2agQMHsnjx4iKvV6NGDQ4dOsSCBQuoV68eOp2OevXq8d577xEbG0v16tVv+4lJJBLbqCv56R3tU5/B57XhnzlwZh38MwdlXW3E2c/1KzR1I2+d9MWHiODq+rDwwgNNtQYGT0Jx8+D6gX3sbRLE1d0/lXsDKZFI7jJXT5lvSxoh8Os3BZ7N0G8LhyZm29CVMOxXFAgM1YdW2rCDuHmQsms7PORF8rcbHco1lFE8EluUJ62TUhWQTE023zpAdkHEXXahyDslPcVsa6A4kTR5Sgrnuum3t0tJRPIUC0XR2zInbJop2qwsY3rExLg42k+bRtPBg6nfu7cxZcd0f/tp05gYF0fkkCHlflUbHAwjN2X79u1s3rzZ6rFu3brRr18/h67j7e3NhAkTmDBhgrNdkEgkxcQwK+oZXhsyE2D3CBCFQneEFmX3SERoF33t2LULICyc/MdGogiB0mMIolVnFBshRbkad34+kkyEX1DpPEmJRFKm0eqSqDlcvy1MzvWL4KLf+pT0jYUOMhNQji6FG2dQKkUUhJyGguLEgM6B0Mr8G6m2HXcrGKJ4JJKyhItnaQUx2+ZulMzSpF0E/4Ktg+Sp0jlXGbyE+Uq1VpXK+W4QfiO1hHvpIO4l+B46YdOsYS89oiKnTTjtbHt7e/Pzzz9bzav+8ccf8fb2LpGOSSSSkkc/K6rgVj1Cv5pd2NE2ILQox5YgWs5CmbMWbWYmh9av56+PPmLw99/jVUUfUqS4uCLyclE0LsaZTrlCI5FI7JF/4xS1ntZvKSRqlpOeDgEFWxOKFT5pGipuiOQpPMH4v/kQFQN1h+ojfhzFJLTSmh3U+QayKwEa+gY6fk2JpIwghCA4MpJXMzLQabVW9ZlKC2frWRcHpcBhVoTjId55qnTOB0Dd64VtV7rZ9o5RKDVGCEHlR56AvkOonJdbZt5DRVG4HBvLp+3a8cyePYS0aGF3f0XAaWd73LhxzJgxgytXrtCnTx+qVKnC1atX2bJlC2vWrCE6OtrqeZUqVWLnzp20bNkSHx8fu2+4oiikpaU52zWJROIIGg8UjRvcsF9ugfSzKCo1bwUGknXtmjF/xisoCEVRSPp2I0Hvjib55WUE9R1iPE2u0EgkZZ/SVDZX3UyFSgVbR89xJnzSECqumYafNkcfKm4nkofdIyCsMx4R9Z14FiAK/pSCLQX/A+j8gtidCPVlhI+knCF0OtITEjiwdCnXz5whICJCbydCb0+DxVluHvkfyXMmEThtId6N77tr9y1piuO4O4UQ+PWdAi7T8MvT2zshxG29h3cjosFWekR5SptwFKed7WnTpuHn58f8+fNZtWqVUaU8JCSEhQsX8sILL1g97+WXXyak4Af95ZdfLhOzKxLJvYmC0Gn1IZT28AlHl5dDne7drZYd8ajXmLjqrQis1/gu9FkikZQkmcdiYVk0me0dV9u1iSGcMzWJko/9dhKLUPE60HKGXqXYTiQPR5fg3ny6E7cpnkMiI38kZRmh0xH72WdsHTHCTB167/z59I6JIXLo0JJ1uG2U3gLIOnmEWqd2k3TySLl2tu8oOh0kJ6B8uRQunUGpFoHoPwYqh/DTK69waO1aY1NH3kMhBMFNm+ojGvLyysxqeHnHaWcbYPz48Tz//PNcunSJxMREQkJCqFatGio7X8CZM2cC+jdywoQJeHl54ebmVrxeSyQSm3mPNvOZTGY/0ekQDUej/G++9QGookE0HIOidqHf2rXoCkIkTY2ud+P78F636w48M4lEcqexFYpZrBVvU2EiE33Tu1F/24Dat4r1UHGNJ7R63bFIHo0ruHkUeS9HHBKNh/XryMgfSVnFsBpa+HMNoNNq2TpiBLU7d8YnNLTkbpqcCJ9EQ1RvC2fbWbJSUvAw2VZk1L5V9I72ts8samArK+cjpi+nz6efcvXQIa7E6tXZi3oPy0pEQ0Wk2K+eSqWiRo0atGnThho1ath1tE3Jy8ujSpUq/PTTT8W9tURyT2GrlIbN0hQFg2iV6SBap4OkeJTlc+C1wSibFoNXGCIqBpRCc26KBtFhBXhU1RvYzoEFJW/k7KZEUtGxqSacnAhLZ+m3DpJ6bhfnz0eTem6X2f47kcPoVq+19VBxbRZoM8GBSB6hzYUc+zVjHXFI0hMT8QqS4eOS8oXQ6TiwdKnVeseg/3wfWLIEodMV7wZWhLoykpLMtreDLWXxksQgguZMua47gVu91pCcYOFoA5CvRZk9EpGUQJuJE80OWXsP1ZX8jBOIi2rX5tc5czi8bh2/zpnDotq1if3sM4RO55ymhcSMuz5V4erqSrVq1cjPz7/bt5ZISp2cnETOnZtFTo7jA1Zbg18lL8Vsa4bpj5ph9vPR2hAzB7avgy3LUHQ6qDMEBpyG5tOgzmD9dsBpiBgMKOjy8iDtWnGeqkQiqUgYVqCccLZzrp4x2xoo+RxGBdfqjWyEigs4swEajLCcWDSeroFGY8m+dKHIOznqkLj7+Tn3FCSSUkalVnP9jP0IkJSzZ1Gp1c6VfhKCwEeegL0Z+q1Jub3M5GSzbVmnOLWxSx4F12oN9eH3BkdbUfTjPsP7kq9F/fVymg4aZHG28T1UqwHwqNPAoQlEZzUtSprynIJTKnEB48aNY8GCBWRnZ5fG7SWSUiM3N5Hz56PJzb39GpQqbarZFrD+o2Zt9vPJSXDlEsqw1rD7Z2g6FTqt1W93/6zff+0yutss8yCRSCR3HI2HPgTcVqj4oYXgFQZRy61G8hAVA54h5F5JsH0Pd09Qqx13SDQam6HkEklZRJefT0CE/QgQ//BwdPn5lvXpbV7UEFU3Wx9Vt3w2JMXr999FilXN4I6joFJ5cktW0UHcK6O4uMGlM1A3EmasgD03YW+GfjtjhX5//Fk0np4Wdsj4Hubng4cXbqHVHZpAdAurya4EfaWF0sCQgnO3BT1LgmLlbN8uFy5c4OTJk9SoUYMOHToQHBxsFqKqKAqLFi0qja5JJOUXC6GMOjB6hvnsJ+hnPrsNhE/nwfGDekd89kh9rqKJc618uQT1qBml8EQkEkm5IjfFfFuAKiMdPAq2t4mtGrYFd0Lo8m2LPl6PhZ3DoOMaCOsCR5dA+lnwCYd6I8ErFG6k4hocahnqapjA7DuEwLxchE5H9bZtObxunc2++oeHo9Nq0WbZD0mXSMoSikpFyzFj2Dt/vlXHS6XR0HLsWIfydzUeHjZzilk5H2bEQE8ny+3dBk5VMyhxLJ1qIQRVH11AmMtH5OflOCREJoTAt0B3R+Tno3ToA9GrICMeDs3TTzZWioCoEfDwUNi5BW1mppkdUmk0tBo/HkWlMpYFU4FjE4guLvyW6iErLBSDUnG2v/32W9zc3HBzc+Ovv/6yOC6dbYmkaAwDWTeVt/UfNXdPeO51/eynKW4e+mOm+4Uwc7QBiD+rrxvrgGCQRCIpPUqzjBcAeanm2wKULL2NUrJKxtm2qGFrIvqo6HR6UUdboo9nN0Hrd+F6hj6Cx91Tb/N2rIfftsHTU3Gv10wfFZSXq7eJBZFBhZV+Wz33HJf++MNM6deAwSG5k3mjEsmdQFEUfEJD6R0TYxFSbCj96RMS4pB+i1dQkN2cYl4fAa2cL7dX3rDmVFOMslyFxcvaT59OYJfHUU6ugV9Hmtu8/82H9ssRXYZy+utvjLtVGg3DfvkFr6Ag8jIz0bjoXUCRn8+DkyeTdOSIUUytMHIC8fYoEWc7MzOThIQEIiIiHPoSnjt3riRuK5Hc0xgGst7VbAhl5GTpB5PVCq322NpfmLBwRF4uShGCQRKJpHQx6DrU793bYWe7bIZV2qPQ6lChSB5GTIfa9aH9csvBpyFU3CMIXukJpw/diuTpPgje+BySElCWzdI71c3awuPP2Vb6nRFD31WrSD52jMSDB43HTB2S5BMn7s7LIpGUIIpKReTQodTu3JkDS5aQcvas1dKf9i+i4OHnp9d4KOxoG8jXwpdLcB/peLk9h9Dc+frQjlLYQa7eti2tnnvuViWD/HxcPDzIy8qyWZZL7VvFavWDxgMHEFjdx9LWgf7xryOhWhcq169H08GD8Q8Pp9X48fpJECFQpyah2hpjnESs2m8Mo//+my3DhnF4/Xqzy8kJxNvHaWf7nXfeISMjw1jKa8+ePfTu3ZsbN25Qu3Zttm/fTkQROR8SSalip65jWcRWiS89Cp5hLWH5HHOhDDcPvVO9YwM8NkIftmU4LoT1/aaoNdB/LNnxFyp8CQ2J5F7EVlilzdKBpYkQhBasDom8XMtIHkWB6ctRftoEHQdD1Q5wcvmtUPFGY8E9GGY8BacKVm6yM/V5jdGr4YfP9ak0BlvYpitcvmBb6ff1EYhWnXn611/5bf58qw6JXAGSlFcUlQqf0FCiZs5EpdGg02pR1GqLxTQXT+uOrYuHB4pGYxlVV5j4syguRZTbs6JgbhUh8Os3BTTT8NPm6Mc5d6SCStF51hrfMKsOcnjXrqRduMC+RYt4ZNkymg4ciMbTE21mJoc2bGDfokUWZbnc6rU2Fy9TqfCsXJk63bqhHJ5nPYoHQGhRji4hsOUss/KtCAHbPkNtau/QTyIyfTl9V68m6ehR4wq3nEAsGZwWSFu+fDnVqlUzPn7ppZdo3LgxX3/9NYGBgbz66qsOXSc5OZnXXnuNLl260LhxY7p06cK0adNIKgH5f4nELsVQ1S1NbJX4AgWNpgihjEr+UCUMpi/XO9AG1i20vh/0j2eugMAQss5I4yqRlHXsOci2SgfavJa10oFFkJOebrYtUQqXLTx9GJIKRfIYUmN2fQVP3W8p+picAdeuwE+bzK/95CS4Gm/uaBs0Lb6Osbsqp3y5BBcPd6JmTKff2rVEzZgu69FKKgyKonAlNpa5Xl5ciY01c7SFEARHRvJqRgbBkZH60GgT8rKyEFqtw9FzVsvt2VEwt2yrg8x4lH/mwM+D9dvMeP1+U2531btg0q99+wxCH11gs0/eER3NHWRFwcXLiyYDBxK/fz8j//yTyG4d0ayaB68NRrNqHpHdOjLyzz+5+NtvJmW5FFyqNeTA0qU06NOH8SdOMCMvlylXr6Lx8LQtCGkg/SyKSl1wJX3/uXoJpZCjDRjLhSkpV3lsxQqaDh5M+2nTmBgXR+SQIXIC8TZxemX74sWL1KlTB4D4+HgOHDjA7t27adeuHVqtlueee67Ia+zbt48ePXqg0+no0qUL9erV48qVK3zwwQd88MEH7NixgzZt2jj/bCSSckxOTiIJCUsJDR2Dm5v9FXchBCG9FxCm+Qgh8uH5N1CCq1kKZTQfoR88PjwU0boLypdLIP6s/kcuIx0efgqldRcw2U//sfoVf5WK/BupJfb8ynPZBomkLGNwkJOsOMjFCTG3Sk4StCzYFj6Ung4BJeVs61eONL5hNlew+XSe7ZSZ7essRR/rRsKav/XnGgaapkKRpteypmlhjXj9QDb5240EvTWCay8vI6jvkBJ4/hJJ2SEv01zLpXBotNV8YyHISk3Fs/+Y4kXPWYi9RhREIoaCaYh1JT+9Q33qM9g9wjJvOSoG6g4FFKO2g1+elVVvR5xwh/qkoFJ54R7Wkl9fn0NQo0a0mTTJuIKNLp9G/fvDts9QFXJ41SvnI6Yvp2G/IQVluTTgXR2VixvV27alw+vRkJGAcmAW3DgLHVbox3j28AmHvByY9cwtwdwtnxQ5iVh1tPlqeFHpwXJsVzROO9seHh7cuHEDgJ9//hlvb28efPBBAPz8/EhLSyvyGuPGjaNx48Z8//33VKpUybg/LS2Nnj17Mn78eKvCaRWB48eP88ILL/D777/j4+PDsGHDmDNnDq6urqXdNYk97kLouaEsWGBgb7vOthA6cnMTSEhYSlbWGTw8IggNHYOrWoVyYBqcNhHtMQhl1HuKtMw8vIdPNYYtHf5iA361w6nZrh2MmoGicdHnaGtc7kj4laFsg6TiIe1axSfryik8WhZs6V7oaDFL2BRGCEINk4i6PL0TvW6R5Qq2qSNsSJspnBpjKvp4Khain0FEr4JWnVA2L9OvaFtzqp3QtEBXUD5HlkiscEibZom10GjALN/YUGYqIykJz/r19arjhdMxTKPndm4zd7adUDD3rNMAMhMsHW3QP949AsI6g8oXZeWblk6yotgJPbcz6WelTyiKMdUFXT5NnnySqBkzEFfjUa+ap7czQydDQBW7K8uibS+Eb4B+ckD1CkKXT0T3bnDqMxTT51mtCzQYoR/jWQslVzT6Sgvb1uonIG0J5ppSNxJadzG+BAqOWXQ5tisap53t1q1bM3/+fFQqFW+//TY9e/ZEXVAY/cyZM4SFhRV5jSNHjrBx40YzRxvA19eXV155hYEDBzrbrXJBSkoKnTp1om7dumzevJn4+HheeuklMjMz+fDDD0u7exJ7GELPo3rf9TxvJT0FVOAqVAih48qVzzhxYgTCxMBeuDCf+vWWE9zhU5Trh/SlbuCWUEaNHvofkVu/I/rU7ZdeYtDWrbjkZeExtBnJcnVG4iTSrpU8pa4uboXs1FQ8TLYGTKNsdFrHSthYReggMwHl6DK4eRHFuzo0GAkr/4SZw2D7enNHuG6kPgy820D9QDI3CzSu8NaX8J/+FoN78UB3EHDyz4NEFEw6ivx8/eDbrB+Oa1qgyJDxisi9ZtMcsTeiQEG7sKMN+jrMW0eMoHbnznoBLtCHHKtUeke0VWfHoucK1P8dUjD38MItrDr8M9tu3jJHl0DkVIiZc2t/wjl9yazMBJSjS+HGGX3ZwEZjwDMUUGxP+plq4uRr4c8d0HMoIjtTn6cOoMsnsEED2Psdqin99JNy7p56XYnCkTSmvLQAlV8AIiMB5VhBvyInIzyqmDvaAIcW6lfto5bDbiuCkO1j9CUN1xVUdipqErH7IL1+RXIiLJ1lN6JA4jzFEkh75JFHePTRR6lZsyZvvPGG8diGDRuMq9z2qFOnDqk2VO3S0tIIDw93tlvlgiVLlnDjxg22bNlCQEAAAFqtlueff55XX32VUBNRBEkFJTvp1tbHsVM0aZdQVfbEL7guubkJFo42gBBaTpwcib9fB1ybTtQbZgPhj6O4Vca38mW9oMaNM2gqRRDZdwTNhg7l2JYtNOzbR67OSIqFtGt6StJBLrHQ7zuMzSgb11AURYXtFe9C+4UOzn+HyLkGzV9B0XgitJlw5gsUtwD9IDDuOFy5pHeEB02AUTMs02bqj4T2j8COK/D5e2aDeyUwBAGE3H8/e+bP58alS7QeP56q/cboxYFMB8DrFurr1JqGnRswWZWzFwEkQyvLL+XZphXnc+eIvRE6HQeWLrVafxv0DveBJUuIKhBPNqJSQVAoYuR0FBdX+9FzQqePICxKwXz0LNhzU289HMhbxs3zloNcNxJmfqoPPS+s5J1+DjqsQuRngUpj7JNQC5SVf8K/v0Hj1rfKBv65A9o9AgiU3CQ4HGO0RUrDMfBgD/j4x1vniHxo3Rl+3aqPtjF13Dv1hwHj4NQaFKPzrEDUcpR/rAihXY+FncOg42oI7QTHlt0ShGwwGjyq6icpDYKQ9iYRbQlFgtnqvSFqQeI8TjvbjRo14uzZs1y7do3KlSubHXv33XepWrVqkdd4++23GTduHNWrVycqKsq4f9euXcyaNatCzhwCbNu2jS5duhiNN8CAAQMYO3YsO3bs4Omnny69zknuDtnJ5tsiEEIQ+mg01TTzESKfuLhZFo72rbZaEi4vp1bEVPjtBdBmQUBTvTE+vdbEgOtR/28+ov1yGvYfgkqtsaoIqvMNZFcCNPQNdP65Su4JpF3TU1Yd5DulLm43yqZ+DMHBQwnt/Z5+dcgkRNNa3VklJwVRowe5OfEkXJx3y3GvMQJXtzAQCnz2N4qi1mtUoKCc/w5+7GeRpymiYlDqDkWMnIHi4oLIy0HRuIKioIBeZXn6NFQurujy8kCttgx1LQg7Z9YqsKNpYY+KHlpZkScTyrNNuxOfO0WlQqVWc/2Mfcc25exZVBqNpVOmKHptg3dH246eU6tBpXZMK0Gt5qtnnqH3siWoHMlbzs68JcL25CT9JF1hRzsgEjqsRCiQq00i4XLMLTtUdSSuLtVRGjc1n9xr9bzeDhhrXeeDxkM/9jI47pGtQKVGAYROC03vR1nzt6Xjrs2DjATzVWqNhz6f3NaEwpn1kHIUHlwE988CRa3vw8E98M4jtxxtA7YmEa0JRRowiSgwRC1InKfYdbYrV66MEILExESqVKmCRqOhadOmDp07ZcoU0tLS6NSpE76+vgQFBZGUlERaWhr+/v7897//5b///S+gV0T8999/7V7v2rVr7N+/n8TERLKysqhcuTL169fnvvvuK1442x3i+PHjPPvss2b7/Pz8CAkJ4fjx46XUK8ndRr+iY0lmcpJx6+NjvmqUnX2Jhg0/JSvL9g+Rl1ckfn5dQO0Gz2boV4ZuXkLJumoZZgT60hC/jkSEdkJ4hlqtp63zC2J3ItT3k0ZWYp3yYtdslamp6NgTTysuQgj7UTYnRuDv3xnXG5ch9l1jiKbwDEXk61AVhFuqNBoQAuHmx5XLn3Hi5Eiz62VlnaNhw1Xk5iWar56HjMG1Rg+U8Mf1A07jzbUou0cgwjqTl5KO646WpHpPxX/ANGMTxWTgbxQ1sxXqqiiOr8rdY1TkyYTyYtPuFkKnQ5efT0ARZX39w8PRabW2VavtRc/l5+vDrR3QStBmZvLvypXUbN+eyL4jUBeVt7yjwEYYRBEPWVkpvj8aoShW7ZB+AnE5wVUGo5z/Bm6c0jvUlSIgrBMcfh/RfhlEDCyIyskClRsowqbjTrP/M04AChc1uLqjHP3MvF/aLNBm2hdCux4L8T8jqrZjno83/7l6Fc3+ny0dbdDvmzkMXl9zSzA34Rz0GKwPsy8iosBj1Mx79nf0dimWs719+3ZmzpzJP//8Q35+Pvv376dFixaMHj2aqKgohgyxn/PZsmXL23aC09LSWLVqFatWreJ///ufRekBRVHw9vamb9++jBo1irZt297W/UqClJQU/Pz8LPb7+/tz/fp1m+fl5OSQk5NjfGwQqHOUk5f17cMDPdEUDHKupmWTmpWLj7sLIX4eFm1r+Hni7q5vm3wzm+s3c/FwVVE9wLtYbc9cvUm+TkeonyfeBW1TM7K5mp6Lq0ZFrcDitY1LvkmuVkcVH1f8vNwBuJmtJSE103bbrDz8CvYZ2qpVKiKq3Gp78fpNsnJ1BHi7Euitv24WrlxKyUF19WaRbbOztVxI1f+w1Kuq1yYQQuAV9gTtqw9Bp8s15jYa2ibHHkDl74nu8gVErcKrRgr16n2Eh4d1o1ulyiAaNFhNbm4icXGzzEM6XYItB6UGhBbV8WWIljO56BpEYobAJ1t76/3M0pLiH8aVm1pM1y9u970vic+J4f283c9J4ffembaOvvcVmeLYtbtp09Iyc6nStCmvZmSg02oRQpCalUvSjZzbsmnn07SkX75h9vnL1rhzNjWPnOSbRdq0i+cu8mvMWu4bMpDGDWsb28Yl3yQ+NY9sjbtxn+Hzl5puPhgyfFZVWggq1LbwZ/VyNqRcvmH2Wc3VabiQreF6IZt21dWXuAyBcjPb2DZHB8naSsRna/BDR0LCUvtRNglLqFV9Kpz/Wj9o9KwKjZ4jT3uZhIu3HOfq1V8hPz/FYoDr5RVJgwafFthBK4PfessJ7rgaJeXoLY0KMNaXdWk5k+RsDfEaDR4mNu1qWjZxGQJVnsnKtEpFmncQPiOnozJxqlMKPic5O7+h6Ue3VuVM308Dabn61/dO2LSzqXmkVapi9b2XNq3kKQ2bBtbtmq3f4H8OneHoho10GzOEoOrV9W2LOVYzdQSsfbZvZGvxzMmnxZgx7J0/32oouUqjoeXYsdy4dp0U/zAuppv3Nz4LcirVJLuQrTqXIch39UcNeg2EIhTM8x8byaH163Hx9GTfokU0G/aUPpqlcE6zotGrkZvmLRsEFi1WihVEjV7k5sRb2CHQ27NLl94nMLAf6n77UVSu+sUMlQtK/E5E3z/NonJ8fdsSGvocV66stZiQNE4g5idbpt80GoNyZa/JWE3AmQ1FCqGJhmO5fvoMeRkZHNqwgcjeI1Dbeg1/2oR4eSF5/lXRFNg7wLGIAo3G+Dt6IyuP6xk5BHq7F2nX0ipV4WxqHj7ZWmPbG9laq5+Ti+n6/Teyb+2vCHbNaWd73bp1DB06lAEDBjBq1ChGjRplPBYREcGnn35apLO9cuVKpztqyty5c3nnnXfw9/fniSeeYObMmTRr1ozAwEDc3NxITU0lLi6Ov//+m23bttG5c2ceeugh3n//fRo1anRb9y4N5s2bR3R0dLHP77ZwDwAxw1rSuVHVgn27Sc3S4qJSODX3YYu20b0bMvxBfe58z4V7SLqZi1qlcMZK2+c7hPOfHg0B6PvR71xMyUJR4Ny8Xsa2nRfsBmDg/dV48/FmADyxdB+nrurzbs7Nt2zbtWEVPhneCoBnVh7gn4upAMSZtO3wjr5tm9r+bBij1wt4fu0Bfj2VbLPtff7wVcG+qZtj+SY20aJt+7d2I4DalT3ZOaUjAJ/WeIS3vr4O7DZrG/X2bnQCqvq68efULgCs+COOt7afMF7XXm7jqeSbHL+czqMPT8Hd5VV0unwrq0aCq1c3EBIyggsX5lsZlK7m6tXPnRuUGkg/i6LS0LXTSrIPCxY0TKRfS/2P91M7kkkdvZRvtiVxpv2tUwzv/X+61+f5jvpSgI98sJfLaTmoFDhr5b0f/mANonvro1+eWPwH565l2nzvH40M4YPBLQAYGvMXhxNu2Hw/29cNZPUIfanAMZ8dZN+5FJttm1f3Y8s4/cTbixv+4cdjVy3adnxH/97XreLNjy/p01xmf3uEDX9fsmjb/u3dCAHV/T3Y899OALy/6xQf7zpr0VZyi7tl04ROR37yFX79ZJl5mZqqIczceZTvDiUW26YN2p4E25PMbNq2p95h3Y5klB27i7RpYzce5Yi2Kaw6Stz8W8624bMa3H8GEwr2mdq0Z0xeB0PbJh7ufFuwz5ZNe+xfX3T/7jGzaT/mdGD8+aaIo+Y2rV3bFeQcdqPqxb1Gm/bVVR/mJ3yOh4uKY4raySibbFC7Wgk7V6hRY6pVx71atUnk5sZb2DQoQqMCjDbtocR1ZOcJFhy5ZdN6vP8r1zP88Wq3gl3kGk9p9vqPKAq8e3Ix7YY+SVDfIfRctIfLaTmoqcQZk1U5U5s2vmDf6CMenP1nz52zaWNjmGLyFKVNK1vcrk0D63ZtyA/J3Bi9lG+3JXHa5De479rjQFOu/3aOFwbpP9vFHav9/sQtd8d0rDapQD5p7K7ruP/1J9+Ma0vvmBgLkTSVRkPvFSvwCQnhhVV/8u3opXy1LYm4gixRIQQN+g/AffAQcnLyjAsNervmj9JuFfu5oV95DgxFNz0G1WxLBXPx1mZUwdVo+uSTNH/2WbRZWXptiDpDIDgKTi6/lbfccDTCKwxlhkneck4WaHMtV4o1nqCoSEj8xOoEoulixsXET4xjuLCw8bhU68KVy2vMnHR//67k5FywcLSLnECsb2WsVoQQmoiKAa8QfnlNLyy9b+FCmg0dipi+3FL1vEBvQucbyGMf/sapy2mc3vsk4pfrlkKRhQkLR5ebw5annyEgIoJmo0ZTLTSUz/Zd4Om2+t8va3bNOySEzc/FsHlHMu3PHTDatf/+nsr/Cn1OAAZsS4LRSzm1N4XvCiTAKoJdc9rZnj17NpMmTeLdd98lPz/fzNlu3Lgx7733Xol20Bq7du1i8+bNdOjQwerxwMBAAgMDuf/++xk7diwpKSl8+OGH7Nq1q1SdbX9/f6ul0VJSUsxygwozdepUXnrpJePjGzduUL1gJlPiPIYfiYykJG7Nsd4ZGob42M1tbNbsZ5qEPUR45XQSL71OVtZZGjRYYXXweenSQoKDh1K//nIzQ31bg1IAn3BEfh7ZeToZHilxmuLYtbth0+yVqXl0eQwLhgzhTNLNEr1neSAiyAuEwK/vFHq5TKNLbh5bYy8bj6vyU/BQq8jBzer52dp8hMh3KsqmevXJuLhUsbCBKpUHarWnFcddoUqVgVy4MM8xjYrCds0nXJ+76CRCQH5ONp6BhTUq9HbRcv9dRKFC5keXRcqqTStNjiWm89LGWBYNHUrtzp05sGQJKWfP4h8eTvMxY/AtqLN9Lind7Dx7dbn/L7yycRLRiEqF6DEE7f2d0GxZakzr0A2aiOIbgLhyEc1Xy+HSGTRDJyMCqqC8/JheXKzbVBPxsu0oD1VF/F83lB0bTJxOBRqMslgpVmxMINpbzHB3j8Dfv1Oh1XDbtqvIsdqJkfj7FhqrmQqhhXXRq6sXTCiIRmPBM4T9H37E0U2bALgSG8uWYcPou3q1voyXFb2JWd8c4Vhiuj6aICuDnISLuDsQURD72VoOr1sH3PodfWqo/cVVvX6JHFcqonD8dRG4u7vz3Xff0blzZ/Lz83FxceHvv/+mRYsW7Ny5k4cffpgsW/ka9zjt27encuXKbNmyxbjPkKe+YsUKh0U3bty4ga+vL2lpaRbl06whw8jN26r2fEOdN4eS9NpnePQc6FjIyfGDZA19gEsf7EIV0dTh8JTgSu64q6/y55+1LYyrl1ckLVv+zdWr64yDUJXKk/btMzh6dDBXr66zeC9NB7KJiZ+QlXWOBg1iOH9+DufPz7Fob6BmzWnUqj4VZYWX+QFFA4PjyMxy49V69/HEpi9p+WBL4/t56Lf9xDzaj6e/2sx97VsbT5Nh5HpKOzSpLFASdq2kbVpVX3fS4+NZVLu2zZDHiXFxqCpXwdvdxeK69j7XiQcPsqxlS7r/so+Ahg2Mn7/Egwd5v01bHtm+i7DIxkXatBO/72fxI/0YvGUzraNufbfikm8SH3uEb7t3YMK+3whp0eJWGPmJ4/z0cEee2bOHkBYtzG3aotEkvbzMwqYlbVlL0BtDOfTyZwT27EvVSu4oyQl61d9LZ6BaBKLfGJQgfXmXlC/moEqeR5z3dML6TTJ+ri+vn4PmxkfEu08k8qn/kpsbb2HXbtk004GpQrt2N7lwYZ4VG2X9WFF20ECVKoNp1GgtxHhCfsG4Q9GgG3QWxTOEa0srE+89lfoDJpuHkX+ziYgPnkP3yhKjWNPJyzdQzh2h5gvtcP1sPzRoYXzvPS8epdpzD8BnB6BBC7P3M+P3nzk2tAchMd+hNH+oTNs0j6w0zqyKoeWYMSj+QdKm2aA0bBpYt2u2foN/+2UfGx/vz8QfNlO7tX5/scPI406yrGVLRh84QGa1esbPa/rRWJa1bMmg3/ahhDcwfgaFEIj8fFQaDfl5eegUNS4afVqGwa6N2LGNJi0aW53wVGk0xrrch7//nqC5w1BP+cD4XbxyIwt/D1dcVKCo1Yj8fL2/9v1nt1ZrFQX23IRP590q62VQ9zZEoXQfpM9PvnYF5culkHIVXl2iP//0WhORNAUxMpu487MtbFT9+ivw9+/Ivn11C43hnLVd9uzgLayO1RQNousWqPkwCIGiUiN0eqHI83v2sKZLF4vXd8CWLdR7+GH9++TiYqY3YXjvc3Z+Q9N3h3L9zW8J6NgTse0zFCs10cX0GET3J1l2//1ciY01u8/EuDh8QkNRFMUpu2br92//7v183rcfz327mfoP6vdXhLGa0yvbVatW5fjx43Tu3NniWGxsLDVr1iyRjlVEevbsydy5c0lNTTXmA23cuBGVSkW3bt3u2H2tfYiq+LpTxdfdobaB3u7GD2dx25p+6A34ebkbvyDFbWv6hTbg7a6x2jdD2yRN0W1Nf6gMeJBLXX83KNQ/a23ddUnUu7QM0fI14uKs5zbemuW8tdqj02WRn59pc9Xo6tX1ZGQcpUGDFdSqNQtF0de4txfSqT9+FkXjCWoPs0EpHVaAZwgZF07gnxJPuJ+L8ccYINBDg39KPMHe5qbidt/7kvicWHvvS/Jz4khbq++9jbYVldKwa0XZNF1+vmNlagoJPDnzua7pqyGkUHt3bTbhfi6EFPoMWftcV3LXf7eq+5h/t2oFeuPm54K7Ntu4z9tdQ91gH0RgC1qb5J7XCvTWC4z1eQKeGEJgXi6KRm31eYRV8SOgkjts+8yijq1iUt5F7VuFSqmZ1HDX4m943kIQ3H8Kiss0KufloACurqHUrx9jZr+srdzYXr0GW+kxRdlBAx4e4QhtJoqJTRPtY1C8w8hNOEfgvzdQunqb2bQqvu4oXgqV829iqs9er2olSHUDbq2IG9/7VFez+5q+n+kFIpKjg6tafB4KtzVQWjYt8eBpo2J+SEiItGk2KEtjNVu/weF+LvinxOOuMfm9LuZYLTHu1n6zz3bBtpK7ua1TFIXLsbF82q6dceIPk7ZVclKIqBXiUF3uOk0a4KHKMfsuVvF2Iz0hgd+WLSPt4kW6vf02HvnZ5mHRhvxr01xjIcxF2Lavhyb/hzJoAmLMTKOTqly+CHUGQ9UOt0LPU88QGjqmUJqe7VVqW3bNlu2ybwdvYRyrtYyGtBP6FeyGY8ErhNyMTLh6Gre9XUl1n4j/gGnUbNeOiXFxZpEGLceOxSckBEWlIvnrdRYq8Ib3Pqngo5J/IxVUKhQrQpG6vqOhclW2DBtm5mgb3kfD76iiVjtlq2z9/lX30e+vZGKzK8JYzWlne/DgwcyaNYsGDRoYw7gVReHw4cO89dZbPPfccyXdR7u8/vrrNo+pVCp8fX257777aNeu3V3slXXGjh3LBx98QJ8+fXj11VeJj49nypQpjB07tkzXbZQUg8xEiH0L5f6ZNoyrLSNuOzfbeOnMo7hqAuHkKvhtAmLYVccGpUKLEvnyrZymghAkFJVt9VCJpAjKol1zuEyNWl2s699tRVZroZhtJk3Cw98fJTlBv2pz6Yw+767/GAgMtShN5VmnASQn3HK0TWu8mpR3cavbGs6bnKjTQU4WSsGgXgHI16Ko1QQHD8HfN4qEy8vJyjpHcPBgzp+fY2a3inKcrafHFG0HFUVDaOhYSDmmHzj7hJNfbyQqn2ogIOP4cdwOgK6H/22++pJ7jbJo08oieZnm6uJCCIIjI/UiWvn57J41y+aEZ1CjRmRcuULVZs1gbwaBebn6iUMhzFfDFYVHPv4YZeUi8xXXnCy9Y20v17j7IBgwDpERj3JsKdw4g1IpAtFwDIoATp+FpvrQc0Wbh6tabTaBaM9Btm3XSmACUZcPzV8zTg5cP32GX14bSGCDBkTNmKYvHVvg0yoqlb6c4YxpqFzc0BWUOjQTobanAm9KoZro6PK58Osefpj4iIWjbeB2fkfvJZx2tmfNmsWRI0fo2rWrsc52z549SUpK4pFHHuGVV14p8U7a47333iM3N9cYuu7u7k52tn5FwMPDg7y8PPLz82nRogXff/89QaVYJ87f35+ff/6ZF154gT59+uDj48PIkSN54403Sq1PktsjPTGRA0uX6nOQTPPpUpJAm4XQ5Vk1rvaMuK3cbNAPMOvXX4Gre3WUvCyo9RikHCc0pPCMLGbnhIaOBdSI5tNQNG4IbQ6K2rXIHO2KXEtVUjKURbvmcJma/HynBgpmg8mC1eU7WV5S4+FhNfc8ODKSqBkz4Ps1lrVRTVapjQ63ouAWWh2Wz4bwRvq6qt0G3spv3LFBX4P1yyW4jpwGGk/UvlX0jjYCcpPgcMyt+rL3vQIZKSjbH8O1yThqRUzVr8ZgLcrGvuOckRHL8ePP0LDhavz9u5CQsISsrLPodJm4udWwWD3XP50CO+gagvCrgtJpLbq8HPJztahQUFQq/WqNRFIMyqJNK+uYTgimXbpEn08/tTnh2WTQIH1OcXICyrJZxolCUTBReGbHDqOtc/Hw0NftLqyWLYTebj02wnqucd1IiF6NOPO5hVK58r/5iKjlKM0Gw7BWcPE0/HgVZecWgjs9ib9vRxIuLyMr6xw6XY4NB9m2XbvdCcQTW7eyof/jeAYEkJl8K6e96eDBqFzc9BGKZucppG55G/+b80grVOrQaQylEReMQffLdc79/LNNRxuK9zt6L+K0s+3q6srXX3/Nzp07+fHHH0lOTiYgIIAuXbrQpUsXpztw8eJFLl68SLNmzfDy8ir6hEL88ssvDBw4kJkzZ/LYY4/h7e3NzZs32bJlC6+//jqrV68mMzOToUOHMmXKlNtWQr9dGjZsyE8//VSqfZCUHDcTE41heabOdta5U3i4VyY/6YKV0CT7s5z6wecwGjRYjZ9fJxITl5GVdRYPj3B9jUa3UJT0OESjsShNxoEuH1cF6tVbzsmTNpxz1xAUReHajk+ofPm/XK/6JpUfHl/k86vItVQlJUdZs2uKSkVLB8rUKIVWf+1hT+jH3nVsTsg5gFdQkNVQzDaTJiGuxqMq7GiD2So1QQWrcG4e+pWKgCqw5m/IiNfXmjU4z1EjoNdQOH8KRa2BZzPwydfql7FPfmaS2wigQPOpcGwpXDuoH8juHgkaT5tRNkVNIAYE6ENzc68pVKs6FRcPT/KyMkk+dozghkPx9+9sdMI9PMIJDR2Lq6tBeEdnvJaLp+cdnfyQ3DuUNZtWVrE6Iago9ProI6sTnsGRkfRdvRpl++cWatnKyvmI6cvp8+mnXD10iCuxseRlZaHNzERjbQV73UJ4eChMX2456TjkRURWomVJMNCXB9w9EhHaBWV6DHzxkX7icddXKCvewPXJidTqPhXFzROhzSO06iirDvItu2Y+IXhrAnGV0xOILppgds2cBTqdmaMNBY5tXg6qfBuRiFoHV7AdoUA4raR/R+9VnHa2L1y4QEhICB07dqRjx45mx7RaLQkJCdSoUaPI6yxbtozo6GguX9aroP7111+0aNGCvn370qFDByZOnOhQf8aNG8fLL79sVm7M29ubp556ioyMDCZNmsS+ffuYNm2a3ZBziaRI3B0MHRUC9y7PgWo8ap0OtQL16y0vpFgpuHr1C0JCrBvxq1fXk5l5kvvu20WtmtNv1XU8sx7l8Efoum7h31Wr+Ok//yUzOZkmgwbRZ81q/P06kXh5mcWgVFH0xlDn4w+XMvVbiaSCoigKPqGhRZapcdQxs6dsbhD60Xh4WD3X1oScA08Cdz8/dkdHmw90FIWmAweiXjXPunIs6Pd/uQTGzNI/zslC5OWhPP5cIWGgAv43H7puhtq99Oeq1HqbkRFv2VbjoS+VY1arVoA2A85sILSG5cqN6QSi6eDT1EYJnWBtz55cOXQIFw8PY4hqo8cfp9fixUaNCiHyAZXxvSuxFR2JROI0VicEheDwhg00HzHCwlEraqJQmT0SXYsOtJk4ka0jRoAQtmtHn4qFmcMgWq+8fSvXOALx8FCUA9HWa1OD3uE+tgTRchbKzBWI/Hx9Gs72dXqRsNkj9ZOU1evguuZvK2M4fUrfjbQ/CA62PiEICq6uodSsPg2Vxg2dNgdQbLZ3dQ1hy1OWudFwy7HNu3jMRp2Ikifr9HH8O/Yssd/RexmnpyNq167NP//8Y/XYv//+S+3ata0eM2XhwoW88MILDBs2jO3bt2MqiN6hQwc2btzocH/++ecfm6JstWrV4tChQwA0adLEaikHiaRIhIA6kbA3Q7+1J+AvdJARj3JgFvw8BEXkoZzdRHDwYP6v9Wlq1pxGlSqDqVlzGpUr98TNrRr16y1HUcznvRRFQ7VqE1Gr3FE2t4YVXigrvFB+HYNoMhE8Qti3cJFx5vPw+vXEtPk/VLoAatacSaNGa6lZYzqurqFGR9seMlxcUtFQVCoihw5lYlwc7adNo+ngwbSfNo2JcXFEDhni8Gy8EKJIoZ/0xES8SjhFycXDA5VGYxGK6eLhgcbT0zKssjDxZ0GlBrUa3DzIz86CrMuWzjNA+ONQowdkJMA/s+HnISDy4Ngyy7baLP0KSuFatYByaCGubmFWbVpS0iauX9+Oq2sItWrNolGjtdSqNQtXdRUQ8NXw4fpBphBmuaDHv/oKbU4Omef3sXdvEAlbXrAc3JXkio5EInGMgglBa2KU+xYuxCcsjEeXL0dlEHEzTBRujbE7Uaj+ejlNBw0yu5ZSJQwxfbm+VrQpP22CP7YjAkMQo2fBnLWI0TNRVJpCE4JWSD+LolLzXo0aKCoVuj4jb13fILZ2KhZl5jCCgwbzf23izMZwrVuexsfnAbJvpBud6kaN1lKz+jTj2EtRFBK3vsSvv3qRuPVFFEVBUVRW2yMgolu3W69XAaaObc6p/UW9KyVG/o3UEvsdvddxemXbXqWwnJwc3NyKnnP54IMPmD59OtOmTSM/37wWZv369Tlx4oTD/alZsybLly+nR48eFseWLVtmdMSvXbtGYGnWyJSYcTuhlXcVnU4vKmRSJseaAJGbn5/e0T61Rh9SKbT61R/1Woj7CuWfN3BtOtGY2yi0maD2QDmznuDwwfj7dSgQGSqY5QwZhatbNZSc61DzUfO6ih5V+WrYcIsSDG0mTcLFw4OEo9s4c30A1T2WUbuV/RqIBmS4uKQiYhSPmTkTlUaDTqsX9ipqJt7UPnlVqeKYsvnMmSXa97ysLHRarUUopt2wSlPC9EI7lXv2g96DUOvy4cDbls5zQKS+huvpzy1tl9XBqoAzG6DBCItatVyPRdk5jOCOq/EPKLSCXWUkrh7VUAQInRY0atBqUTSuCCGI6NaNIxs22Fw9ubpzJVp1spX+SCSS0sDWhCDo6z1/NWwYfVavpnbHjhz85BNuxMc7PFGo8fRE4+GBNiuryNrRIjCErJQU9i1aRNrFi/hWr06HWTNQrEwImuETjjYrkxuXLpGXnY0mSO/QFw5v56dN0H0wLm0fpnroq2jcPMjLyuTIhg14BAZR7+GHURSFhK0vcSZwJRHJwwnr97HJjQQ6nfmEoNX2ikKklTrmpuri+WlXi3hXSp7i/o7a415b4HHI2T5+/DhHjx41Pt61axeXLl0ya5Odnc26desIDw8v8nrx8fE8+OCDVo+5uLhw8+ZNR7oFwLx58xgwYAD169fnkUceISgoiKSkJL799lvOnj1rXCX/+eefad++vcPXldxZih1aeTfR6ayWyTEVIDKEjlYKDdWvCu02WTUyXQE6s84kt9EDRZsFz96ElKMom++3dMTPrEe5sE0vRNRyFqjURlEzIQRd3nwT/9q1rRrj3KxUC8Mukdyr2CtTYwuDfWrQpw8+ISGOKZtrNDZDyYuFEGSnplrmzNkLqzSg1iD6jyUvM4vf3nzTKFhk1XluOkkfLm7Ldlnj0EKoOxSilpufB3B2E9QZgmuNh6lVfbremdbmQJ4WBQVUKhK+Mh9kKg4MMrVp8RBwOy+oRCIpSWxNCBo4vH49SUeP0nvFCqJmzUJVUDNbcWCiUJuZaVYl5eimTTQZMkRfO3rUDBSNC0KbByo1J7/7ji/69TObqPOPCKdZv1EohScEDSga8uuO5NC69fqw9/XrqffII3h0H4yuRQfUXy+/Vf6qzyiU4Gpkp6ayb+FCbly6RKWwMDP7pMfSqbaPFSfcEXXxO4xnwcKkp8kCZXF+R+1xNxZ4ytKinkPO9oYNG4iOjgb0L7gtxXE/Pz+HBMhq1qzJ/v376dSpk8Wxffv2Ua9ePUe6BUDfvn3Zv38/8+bNY8uWLSQmJhISEkKrVq3YsGED9913HwAfffSRw9eU3JuYfTGrVjUvk2OKiQCRt68PUWEq1K4ucGhpIaNubQVI3Ap5NDlm7ogXHFc0iAcXgoA9v3qZDUx9QkNpP2Ma6lIyxhJJeaNwmRpHEDqd48rmWm2Jl9DLSEoisH59i5y5fQsX0mzoUOurMGoNYuYKqFyVla1bk3jwYEH5nI/QWDjPCkQMhH/mOWC7TLgeC7ueQXRcDaFdUI4tuRV902A0wjOEtHNx+BlSvAQo7p4m1Q9sDzKlXZNIygm2JgRNSDp6FO+qVcm5eA6Pp+6DXWno+oxCVcREoU4I2k+bZnXiLamgdnT22ljy1G4WjjbAnwveI3LIEIiKsRRJUzSI9jEoXqHsW7QI0NvUyKFDObltG9nXr9Fk+FQ0np5oMzM5/MUG/GqHU7NdO6Kmv3bHneASVRcvBoaUKGupUcX5HS0tytKinkPB9pMmTeLcuXOcPXsWIQSbN2/m3LlzZn/x8fFcu3aN3r17F3m9UaNGMWfOHGJiYrhx4wYAeXl5fPfdd7z99tuMGTPGqSfRvHlzvvjiC86ePUtWVhZnz541c7QlFZf0xER2zZpFemKicydaETszfDFvJibqQ8K/XFqkAJF7UBU6DAxAUamtrxodWgheYfoVoEI5jBz+ELyqQ1RMwTETR1zRIDqsAM8QspKOodNlIjx8jKcqisLlbwrygL55UQ5IJZI7hEHZvHAenQGDcE12amqJ31ublWU1Z65+795kp6fDw0/BN3EwYhr0GAwjpiG+iYMeQ9gyfLje0Qb9avj6DeTXHWFuh6yKnRVgz3YpGkT17gidjhM/7UfbZCp0Wou2yVT+t/FHlrdug9rNjcyL+/j1Vy8SvnmxyDKDUAbsWmAIjJqp30okkiLJSEoyilHayzXOOnMChEBRq/W1nK3lX6s1iOkxEBCMi6cnUTNm0G/tWqJmzLCs+pCThVtodZspPldiY9ny1DCIGIwYHAfNp0GdwdB8mv5x3SF89cwzxnS8K7GxfP3MM9Tr1Yvwrt3YM38+Xz/7LHvmzSO8azdqtmuHolKReDftk9SiqDA4tLLt6+uLr68vAOfOnSMkJARXV9di33Ty5MlcuHCB0aNHGx3rtm3bAvD888/z/PPPF+u6t1tGTFL6OBv24fTMlRAEPvIE9B1CYF6uXgSjkMFUVCq9sJADeUWKiytEKghdvvX8oOuxsHOYPicytJNecKhgBYh6I0EIRN2hENoJ5dhSs9UhvPSCGelXLsDvQMdmZpd20XlTPSkTF+FjeV+JRFIiOKpsnuyE1ogjuHjemhC8FVo4HZWLK7q8XBSNC4qiIIJCYfQslIIQTRSFvxYv5tDatYYngIuHB/sWLdKvhrdfjmIQSbMXLm7HdomGY8ArlAt79rLxiQHo8vONCuKF86x1amcHjM6GYpYggSG3FNwlEkmRmE4I2s01vpEKOVno8nI5tuUrGva1DNfOf2wkSlAoxzZvpmH//lw5dMh22LKbByoXV7spPofXr8evVi06z52LaH4rpcVeOp4xcnD6azYibErRPknKLU4LpJkqf2dmZpKdnW3RJiCg6MSq999/n0mTJvHjjz9y7do1AgIC6Ny5M3Xr1nW2S8YyYomJiSiKUuwyYpLSx5bzXCK5FwViZ0qB2JliQ+xM6HSgy9eLodmibiQMeVmffzT8Kuh0iIZjrOcHnVkPqSfhkV3QfDpoXPUqlz9uQPgGwkO90KoCUN93K0dHm6vFBUWvkJlfld2vQf0DDcwuq/asTu1LcK1adbP9GiWQuJUQMV4KAkokJYEjg8mSCiEXQhAcGcmrGRnotFqEEAUKtgrJ324k6N3RXHt5GUF9h9yq/b1sGWkXL+JfuzZRM2Zw8bffCI6MpM2kSTQdONAYDnnht9+o0W4IhHW+NbmXcrxI2yV6/4poPgOVxgVtViaH1q3n2okTdHrjDSbGxck8a4nkDlFehKQcEtESgpyEi1R/8EGW/9//0WrcOJqahGsfWr+evz76iEFbtxpXsW2GLRc47kWl+Kg0GnQ6HWmb38L/5jxSC8KyDU61rdzoy9/YEjsrm2j9won7CryeLlo3qyxTXj7vzlIsNfI5c+awdOlSEm2E7hZWGLdFeHi40yHjhVm4cCH//e9/eemll+jcuTPdunUzHjOUEZPOdvnntnMvnBA7A0BR6R1xa3lF3Qfp6zpeu4KyLBquXER5oDui2wBE1HKUwoJBigYROQlcvVA2LoZjB6BKmHEWNzc9HbdKldBpc42nuHh6FhmiZKiVXbhmtkYVxPlVoJlQsqWIJJJ7mTuhyFoYo/O8dCnXz5whICJCP8FoGkKZnYm6kp/12t+KwoOTJ9OgTx/6rlqFuBqvr8d96QyaahHU6DMSRVGRr66MqmByT+RrQaVC2MptjJyEULmxrOX9XD91ymzwW6lGDe5/7rlSzbPWeftBasFWIqlglKdKIY6IaBlqNxvqaG8dOdJqVEyRNqTAcbeXL25I8THazkJh2fZzo8vmCrZO5QcHQNfVz2y/NrABq9bB6MkNrJ7nFKWYTlOePu/O4LSz/d5777FgwQL+85//8NprrzFt2jTUajXr168nNzeX1157zaHr5Ofns2/fPi5dumR1dXzYsGEOXacky4hJKihCOCR2ZiYGoSj6Fe8ZMebn1Y3UO9q/bYP06/DMK/r87+xMlLjjiLpPIcK6oBxdYl6uyzOE5GPH8X/kGTQDxhlFN0zLRlz7eiaZmg/w1I6nyuNvFvm0dC6B7PoGGkbKFWyJ5G5Q0oqsplh1noG98+fTOyaGyKFDUVfyA8CjTgPrtb+F4MyOHTR6vD98/xmqQuJpqpXzEdOXo+o+mGWtWnH91CkC6tRh9IEDKHWGIEI6ohxfZma7hFsVtgx9iiv//mvWX5VGQ4M+ffR1ZEtxFcjWpKPdc3wD2ZUADX2l7ZRIShp7IlqmtZvtRQo5gsFxLyrFp0jHvRzlRuvU/npnu4fj9s5pZDpNieO0sx0TE0N0dDTjxo3jtddeo0+fPrRo0YLp06fTu3dvTp8+XeQ1Dh48SL9+/bh48aLVut2KojjsbJdkGTFJBcVBsTOPUTPN8iRRqRA9h0KrzrfqOg55GZFxA6VtT325nEPz9OJClSKg3ggUXT7CLRjRchaKSo3Q5XPz8hU8XfNx9fZmz/z5NstGqD2rUetSpkVYuC10rkHs/hbqR8sVbInkblLSiqxCCOvOM/o63ltHjKB25854RNQHRcEttDp/vj7beu1vBUhKtFQpB8jXosweia5FB9pMmMDWESMKhISeos/q1eSrAtAY01lyUdQaTn33HUc3bTK7jOVA9s6vAqndw6h5DdQeYQ61t1a+xoDOL4jdiVDfT9pOiaQ0sKdD4Sgl6bhLJHcSp53tuLg47rvvPtRqNS4uLqQWKLCqVCqef/55Ro4cydy5c+1e47nnnsPX15dVq1bRqFGj2xJbK8kyYpIKSlFiZ3UjoXUXFJXCqxkZCK1WL1wmBCe/+46sa8nGMhAiPx8FAafXwq+FwsX/Nx/aL0epMwRtTi7v1ahBZnIyAMGRkfpakzNnolKrrYZbFmeFRiKRlH+ETmdTVRf0DveBJUuImjHdvjCQolCnazeUVfPsTi6qv15O0+FT2TpiBGBeD7eqsYqHXjyyXq9edvOySxqh+JhtDah9alH7EiQ1rOXQdbwaRsKomfrt7SJVyiWSEseaDkWxrlMCjrtEcidx+peycuXKxtXiGjVqcNBQWgRITk4m04EZ/yNHjjB//nyioqIICgoyqp2b/jlKSZcRk1Qc0hMT2RUdrc9JtCV21n0QrPkbwmrD0lnw2mCUT6IRSfEAHNmwga+feZY3vL15OyhIP7jMiLd0tEH/+NeRkJmAxt2d3IwM4yFDrcmsglI41spGGMLCdS63F9pYUQUmJJKKiKJSoVKr7arqAqScPYvKRT8xbUsYyMXDA42np0OVFDSenmY6FVdiY/lzwQJUajWsCiRty9t6YTbjQHZaQRmeaZZleGxgy3G2h07tY7YtNoZQyJJwkEvyWhKJxJzs24+KURSFa99uhIe8uPbtxnLhaBvKuZqWdZVUTJx2ttu2bctff/0FwODBg5k1axaTJ09m6tSpRpGyoqhXr57RMb5dJk+ezLPPPsvo0aMJKsi5bdu2LY899hhPPfVUscuISco/NxMT2T1rFlkpqXqxs8I1HQ351z98Do9FQMwc2L4OYuagPFobvl9Dn08/JTgyEoQg8/p1hNDBieWWjrYBoYXjnyCEzqhObBpyefPMTpvhloawcJ3r7YU2GgQmiq3aLpFI7gounp4InQ5dfn6Rqrr+4eHo8nIhO9MoDFS4rm1eVhbazEz7lRQAwsLRZmZaKKjr75EDOdfM9iuKQtqWt2GFl9EJdwRbjnNxnHCJRCIpkhJw3OHu2Cidl4/Z9k5gL51Gcvdw2tmeNWsW7dq1A+DVV19lxIgRrFu3jqVLl9K5c2cWL15c5DXee+895s2bx/Hjx53vsRXef/99Tp06xUcffcScOXP48MMPOXbsGO+//36JXF9Svsm+cQMRGIqYvtzc4X5yElyNBzu5jSIpgTYFavYuHh4oKrU+R9se6WdRVGrue/pp2k+bxsS4OCKHDEFRqVB89SHiLjWalOAzdJySWj2XSCTFx7S8V3BkJIpKZdV5NmBQ1c2JvwDohYEMtb/NzhGCwxu/QPQdZTm5aECtIf+xkRxav97qPfIuHrPd8RISEiqx1WuJRCK5DYzq3io/8/0laKNKcwXbIPxrJgAsues4nbNdv3596tevD4CbmxuLFi1i0aJFRZ7XtGlTs9nwxMREmjRpQmhoKH5+fmZtFUXh30LKp0VREmXEJBUT90qVyEpJwb37YHQtOqD+ejkknIMeg/Wr2U7kNiLy9WJo9vAJR+jyeezTTy3KA/k27UvNhKv4hva1OM1W+HdJhoVLUTWJpHSxVt6r1fjxRufZnqpuys5teGBfGKhOj54QFGRZSQFArUHMiEEJCmWfye+26T3Sf/wOt7v4ejhKSVZfkKk2EokE7o66t9a3OuQWbB3tl40SXyWJrMpw93Da2S4uLVu2LLEcil9//dWp9u3bty+R+0rKIYqCu58fu6OjObF1K20mTqRpgdgZ4FRuY15mJjqtDqXBaJT/zbceSq5oEA3GAApzvbwsygO5uYVQu/Ysq7eyVV+wotYdlEjuJTQeHnbLew37+edbzvPSpfqqBdWq6etsF4iR5d9I1ZcaLMCuMFBBJQUMlRTCwqH/WAgMITs1lfq9e1OlSRMLwbO89Nw7Psizh6FeduG62SU5UShtqkRyb6Hz9oNUS7tSktgKPRcu/pBbsHWQuzEJIKsy3D2K5WyvX7+ejRs3cvHiRYsa2bZWpVeuXFmsDlqjQ4cOKIpiLBtm6sQLISyc+sL1tyX3Di4eHqg0Gq6fOcOV2Fi2jhjB1pEjcfH05JWU66iczG08+d131O/9KKL9cpTCImmKBtE+BrxDyU5NK/HyQCWBXNGRSEoHr6Agu+W9VnfuzMuXL+MTGkqHmTNR1GpEfj6oVPrfNCEIfOQJ6DuEwLxcEHq1cEVRuLpnJydG9aP+J5sJ7tRdf1GVCoJCESOno7i4IkwccQ9/f6JmGEp8mVdGsDXIs7fS4qLzoeY1cBHmg0xbjrM9hI8/ZBRsHaAkV7wlEknFpKSqvdgrQViSoecltuosKymUCZzO2X711VcZPHgwFy5coG7durRs2dLsr4XJKp4tnn32Wc6dO2f12Pnz53n22Wftnv/PP/9w8OBB/vnnH7Zv305YWBhDhw7lq6++4s8//+Srr75iyJAhhIWF8cMPPzj7FCUViLysLHRarbn4kBAFjrCCro/93EbRfyw6IWg/bRpNBw/mRnw8oEDdoeQPOA3Np0GdwdB8mv5x3SEg4Obly3fj6TmNFE+TSEqBgggbe+W9Gj3+OB6+vpAUj7Jslr4ywrJZKDeug06n3798tn7/8tmQFK/fj36FYufZTHSFVygKSuvwkJd+W+BQF0fwzOiEqy0Hqy46H2pf029N8ahd12zrCBolkLiV+q0jlJSwZHGRE5gSScVDo/Oj5g791hQl4H7Or9Rv7ySGVWcLm+4sdiopSNt193B6ZXvFihW8/vrrTJs2rdg3XblyJWPHjqV27doWx5KTk1m1ahUrVqyweX6zZs2M/z/++OMMGjSIt956y6zNo48+ypQpU1i8eDFdu3Ytdl8l5RwhyE5NpeWYMeydP9840HXx8EDl4oIuSC+cphQWSVNrENNjICAYF7XaLEwTRQEB+ZpAlPturQ7l52pRoS+VU1jlVyKR3LuYRthYIzgykr6rV8MPa81tUd1IGDUDvl9jKeS4cr4+L7vnULMSXlaxpdBbUoJnNla9PQOD4HzB1gTjQLa1eXsAjSqI86tAM6F8hDbKkHRJRcDF09Ni373sjLkIf0J3QFKrQhE+dtJZVN7h8CWo+oab7fet2hh+jsK3c+Pb7ldJqotL23X3cHplG6BNmza3fWNbM+mnTp2icuXKDl9n+/btNp3pbt268eOPPxarf5I7jzXjfifISEqyUO7Ny8oiLzOTY5s3I7oPJn/LaRgxTS+aNmIa+VtOI7o/ydHNmxE6nUX9RkWlKui/4XOs4OLpaaw9ey//SEkk9yq2bJrVCBsT2kyahLgabznpV0TFBF4fAcmJpa40a2vV29U1hJo1Z+Lqam4H1ZXqcn6lfnu7SFsrkRSfwpURDOmZUP4i4Qyh1zonQq+Lc44t1H4N2P2hfmtKQPX76PD0LgKq32e2371AHNq9kEi0PaS6ePnEaWd75MiRfP75507faPHixURGRhIZGYmiKAwePNj42PBXr149hg0b5tRKtLe3Nz///LPVYz/++CPe3t5O97U4XLt2jbFjx1KjRg28vLxo0qQJS5YssWiXkJBA//798fHxISAggJEjR5ZYzfHygj3jXtK4eHqizcoyKvdOjIvTh4Q/+STJx49T/cEHWf5//0fsDz+jHT4V5qxFO3wqsT/8zPL/+z+qt21rdKALrw4pisK1PzfCCi+u/bnRbAKpvP1ISSSFkTbNcYq0aSYRNhblvRSFpgMHot4aY+5QKwp0Gwhfx9itmMCXS/BwYrBmoDj51LawtdpiEIR0czO3gyUWIom0tRLnkHbtFkKnIz0+nt3R0Xw5eDC7o6NJj49HFKSnlDeKY1dK0hY5i0dIXbOtpOLidBj57NmzmThxIm3btqVz585Wy3a9+OKLFueFhobSsmVLAA4fPkz9+vUJKjQz4+rqSsOGDRlhKLPkAOPGjWPGjBlcuXKFPn36UKVKFa5evcqWLVtYs2YN0dHRzj7FYvHEE09w/Phx5s6dS40aNfj+++957rnnUKvVjBo1CoC8vDy6d9eL13z++edkZmYyefJkBg8ezLfffntX+lnaWCt703LMGHxCQ285tU5ibTXJdPCr02r1wnkWyr15KGo1bSZOvCWcVqA6bloKp8h8xhIKxZRIyhLSpjmGozYtIymJwPr1Lcp7uXh46KsjFK6M4OahVx53oGKCotEUHUpeCG1AXXYthoav3f5Az6thJIyaqd9KJGUYadf02KuM0DsmhsihQ4s9JpM4hmulSH3kTyUn7KYUPCuXOO1s//LLL6xatYr09HT++OMPi+O2nO3HHnuMxx57zPh4xowZVnO2nWXatGn4+fkxf/58Vq1aZVQpDwkJYeHChbzwwgu3fY+iuHz5Mjt37uTTTz/l6aefBqBTp0789ddfrF+/3mjAN23axJEjRzh27JixVrm/vz/du3dn//79tG7d+o73tTRxxLg7M2C06lArSpGD3+RvNxL07miuvbyMoL5DrNaqNS2FA7ZXbqQSrqQiIm1a0RRVyquwTTONsDGzNxERiHwtSuHKCDlZ+mgaByomCK3WaZ0IZ0tp2VXHNYjw3EFkuLjkdpF2TY8Qwm5lhK0jRlC7c2f9mKmESvaWNmVxrGavFKxNbNhaaR/LNk5PW40bN47777+fQ4cOkZOTg06nM/tzpMzWp59+WiKOtoHx48dz4cIF4uLi+P3334mLi+PixYt3xdEG/SwogK+vr9l+X19fs3DCbdu2ERkZaTTeAF27diUgIIDvv//+rvS1tHDEuKcnOp57aC38KePqVePgd1Ht2vw6Zw6H163j1zlzWFS7NrGffYbQ6VBX8jMLCTeueM+cSb+1a4maOdNiVcpWnkxpK+FKJHcCadOKpqhSXrZsmoW9mTEDVGroP8a8MoIQsGMDPDbCbsUE+o8lKzW1hJ+dJSUZblmcgaEMFy8Z7pZWSllE2jU9QqezWxlBp9VyYMkSu+HkpencFSs3u4KP1aR9LBnSExPZNWsW6YmJJXpdp53tixcv8sorr9C4cWNcXFxKtDOOsnjxYnJycsz2qVQqatSoQZs2bahRowaqQuEvhw4d4pdffrkj/alevTrdunVj7ty5HD16lPT0dL744gt27NjBuHHjjO2OHz9OgwbmwgmKotCgQQOOHz9+R/pWVnDUuBclFGG6mlTYoT69bRs3Ll0qcvDrEVHf4rqKonAlNpa5Xl5ciY21nM2VoTuSewhp04rAgVJe9myaVXsTGKpXFzd1rNcthCphMH25pcOt1sDMFRAYQkZSUok9tZIUDLKFHBjefe6mVkpZpaLZteJOnKjUapuVEQyknD2LSq22edzZ73Bx7Ioth74086wlFZubiYnsjo7mZgk7206HkT/00EOcOHGiVMtprVy5kujoaJ588kmeeOKJ/2/vvuOauho3gD8BEkZAIGwcOMGBOLAq1IoDrau0ipPWba2ttdpaV4dAXfXVWlurLf3V2aoozroH7op91Q7rthV8HaiggBNZ5/cHL3mJSSCBJITwfD8fPm1u7j05N5GHnHvPwAsvvKCx4X/r1i3s2rULa9euxa+//ooVK1YYrU6bNm3CgAED0KRJ4dT+1tbWWLRoESIjI5X7ZGRkqI1xBwq7J92/f19r2c+ePVO5uGBuk3Q8TE3F6bi4wq7aWoJX53AvZeyh1rtJEgma9O+PY3PmlPrlN2z6p1rLL1x/WwMTdJMkMidVOdNKU9pSXkVKyzSVvLGyArq/AbzQGdj4HXDzKlC9LvD4IdBjMNA6XHV75JjCXDLwUoNFX2QDKuiLLLtDGp4x5kqprIyVa6bMNG1D6HRVkJ+vdWWEIq5166IgP7/EBrc+ypIrFbk0VYnDZoj0pHdje/bs2Rg6dChkMhnCw8M1BpJCoTBE3bT69ddfsXnzZnz11Vf4+uuvIZVK4e/vDw8PD9ja2iIzMxPJycm4e/cuFAoFhg4dip9++gne3t7lfm0hhEpXeYlEAisrKwwfPhxXrlzBmjVr4OPjg3379mHChAlwdXXFwIEDy/Wac+bMMdlEb2VRdCUoICJCa2Nb53Avaezhf+8mHY6NVWtQS+3tIXVw0O3Lr1RWOPkQETHTyqC0pbyKlJppz7OyAjx8IUZ9ColUBpGbA4mNtHBmcm3bTcRUjWCu/WpYVXUiLFPnmqkyzRAXTiRWVgh+6y0c+/xzjTcnrGxsEDxmjEn+XZiqUatvfvGiIxmS3r9JL7zwAs6fP48xY8agQYMG8PDwUPsxhd69e+PQoUP4559/8M033yA0NBSOjo7Iz8+Hn58f3nrrLezevRu3bt3C/PnzDdLQBoDDhw9DKpUqfzp37owdO3YgISEBGzZswKBBg9ChQwfMmjULQ4YMwcSJE5XHurq6IisrS63MjIyMEi9QTJs2DVlZWcqf69evG+RcTKko3NWWvfmvonDPLmHsoYObm9a7SUXrZuv05Tc3p3DyoUqOYUyGUJUzrczjs0payuu/imeaXt09JRKkb08A2skL/1vUoNa2vRTaJnfUF7t+Vz66zpViiV3KTZ1rpsg0Xeak0YVEIoGTry8ili5Vyy+9VmLRgyG7hJvrnA+G/E7GvLUset/ZXrZsmcF+AYUQuHz5Mu7fvw+FQgF/f3+9y65duzZGjRqFUaNGGaROpQkODsbJkyeVj52cnLB161ZYW1sjMDBQZd8WLVrghx9+wJMnT+Dg4ICGDRvir7/+UtlHCFFqt3xbW1vY2toa9kRMrHi4P/+Hv3i4p1+6pHZsUZepSWlp2u+QC4Gz69ahxciRpV6tfXbzP7CE+9q8A0SGUJUzraReOaU1kLUt5QUUZk3/zZvh5OMDUVBQtu6e2VqGtGjbroW2yR3J8uk6V0pYTAwkBuoubC5MnWvGzjRDzCD+/JA/XVZiMRRDfl8x1+8+5lovqnh6N7aLlksoryVLluCzzz5DWrGJXTw9PTF9+nS8/fbbBnkNY3ByckKrVq1Utvn5+SE/Px9nzpxBs2bNlNtPnz4NT09POPz3S1v37t3x008/4cqVK2jQoHBt08TERNy7dw89evQw3UlUEI3L3jwX7s93t3y+y1Tohx9q7f7068KFCHrjjVIb9BkHd1lEY5vIEJhpqnQdD6l1Ka+6ddHm/fdh7+LCcbJUoQwxEVZlZWm5ZogLJ89fXCy+MoKVjQ0K8vIgsba2mOW+iMyF3o1tQ/j+++/x7rvvYtCgQRgwYAC8vLxw584drFu3Du+++y6kUqnJ7lQbQo8ePVCrVi307dsX0dHR8PHxwd69e5UTuRXp27cvZs+ejcjISMyePRtPnjzBhx9+iJ49e1b6dRt1pWu4a1vDNu3cObx56hRe+eEHbBs1SuUPT9r587hx4kSpDfr8B5kGOx925SZLVFUzrSzjITVmmpWVzutvExlLRUyEZc4qc64Z68KJRCLB7TNnsPyllzD86FH4tGxZnmoSkQY6NbaDgoKwZs0aBAYGomnTpiVe9ZJIJPjzzz9LLO/LL7/Ee++9h4ULF6psj4iIgIeHB+bPn1+pGttOTk5ITEzExx9/jClTpiAzMxN16tTBggUL8O677yr3k0ql2L17N9577z0MGjQINjY26NOnD7788ssKrL3xaJulXJdw1zbr+J0zZ7BlyBC8tmoV6oaHa21Qm+pqLbsNkSWqapmm7eIeoNtEUsUzbcK1a8jLzi61uye7dZOxmdNEWOagMueasS+caF2JxcjM9YaFudaLKiedGtvBwcGQy+XK/y9voyU5ORm9evXS+FzPnj3x3Xfflav8ilC/fn2sW7eu1P2qV6+OjRs3mqBGFa+0Wcq1hbtULtc66zgAnI2PR9r584hYtgxhMTGwsrZWa1Dzai1R+VSlTNO6pCDUx0OWJPfp0xKzq6i80999h7DoaL3raajJzqhq0HWulKrUbbiy5lpluXCibyO1om9YaKtvRdeLLItOje3ly5cr/98Qa1X7+PggKSkJ4eHhas+dOHECPrySVCUpx0o+egQAJXaZunPmDE4sWIA+q1fjX+7uGLx3r8YGtT5Xa3klk6gKKmFJwSLFx0OWxFDrb2tTpsnO3H2AN6ML/0tVji5zpZD5qywXTipbI1Xf+vJ7IpWF3mO2R4wYgU8//RR16tRRe+7atWuIjY3FsmXLSixj5MiR+Oyzz/Ds2TP07dsXXl5euHv3LhISEjBv3jxMnz5d32pRJacyVvLqVby6bJnOa9g+vXfPIHWobH8kiKj89GogW1uXuOSWodbftvdvgpQGYXD3b1L6CZTG3Qd4K6b85VClxYmwLAMvnJTMFA1hfk+kstC7sb1ixQqMGTNGY2M7PT0dK1euLLWx/fHHHyMjIwPz5s3DnDlz/lcZGxuMGzcOH330kb7VokpK21jJuuHhOi3jVdK63EREpdGrgZyfD5S0JnGx9bfLk12OTZrDce0hHc/AsHjnxjJxaJVl4IUT7dgQpueVtoSnqZTpMpi2X+orV67Azc1Np+O/+OIL3Lp1C9u2bcOqVauwfft23Lp1C/Pnz2doVCHaxkr+unAhnKpXxys//AArG9VrQsW7TD0utnQcEZHeijWQn8+aIvqMh3yclqbs7lkZs6voC6umeTao8quoibDIcCQSCe6cOYPZcjnunDnD78xEzym+hKdXUBBESRfJTUCnO9vffvstvv32WwCFv+RRUVGwf26sWXZ2NlJSUtCvX79Sy1u1ahV69uwJNzc3tTUL79+/j+3bt2PIkCG6ngNVViWMlSw+63idTp3w2/ff67Quty4KnN1x6BbQyJmTDBFRYQPZPSDAIOMhS1p/u7zZRURUhBdOiNSVZQlPY9Opse3r64vg4GAAwNmzZxEQEACP5yZokclkaNSoEUaOHFlqecOHD0dSUpLGu+DJyckYPnw4G9tVQGljJYtmHe/21VdaZx0viwIXDxxOBQJcuPQOEeneQNYHu3sSEZGlqAxDjMqzhKcx6dTYfvXVV/Hqq68qH3/66aeoW7dumV+0pNv5GRkZcHJyKnPZVHnoMlbyzpkzSE5MRK127TBbLjfIWLPKEBhEZHqGbiCbapwsM42IiIzJ3MfECyF0XsLT1Be99Z4grfgyYEWePHmCW7duoV69elpPYNeuXdi1a5fy8RdffAEvLy+VfbKzs3HgwAE0b95c32pRZaTnZEKG6jJl7oFBRIalT2O0tAZyWRq2xu7uyUwjIqKqTBQU4HRcXOlLeEZH4/DMmYVdy010gVrvxvb8+fPx+PFjREdHAwCOHj2KiIgIPHjwAHXq1MGePXtQT8OdysuXL2Pbtm0ACr/MHD16FLa2tir7yGQyBAYGYvbs2WU5F6qEdB0rmX7pkt5l824PEQFla4xqayBXaMOWa2YTERGpsbK21m0JTxsb/PKvfyEgIsJ8G9s//PADJk2apHz8wQcfoEmTJpg6dSpmzpyJjz76COvWrVM7bvz48Rg/fjwAoE6dOtiyZQuaNWtWjqpTZVDatPvGnEyId3uIyKJwzWwiIiI1Bfn5ui3hmZdn8glK9W5sX79+HfXr1wcA3Lx5E6dPn8bhw4fx0ksvIS8vD2+//XapZSQnJ+tfU6pUik+7X5CXByFEiWMkOJkQERERERHpS2JlpfOwVFPTe0o2e3t7PHjwAACQmJgIR0dHhIaGAgBcXFyQlZVl2BpSpSMKCvDw5k0cjo3FxqgoHI6NxcObNyEKCko8jmtHEhERERGRLh6mpuJQTAyepKfDydcXEUuXwspG9V5y8WGpj9PSTF5Hve9st27dGp9//jmsrKwwb948dO/eHdbW1gCAf/75B9WrVzd4JalysLG3N8i0+1w7kogsHeeUICIiKp9Hqak4HBuLgIgIyD08jDIstbzKNEFar1698Morr8DPzw+zZs1SPrdu3TrlXW6qeuQeHjpPu09EVJVxTgkiIiLDMsdhqXp3I2/cuDGuXr2KtLQ0JCcnK8dvA4XLec2fP9+gFaRKQiKBnYuLTtPul9adnIiIiIiISF/mNixV78Z2ETc3NwghcOvWLeT9t3HVtGlTeHh4GKxyVHlI7e1hZWOj27T71tbsQklEVIGYwUREZMnMZVhqmRrbe/bsQdu2bWFnZ4datWrhzJkzAIDRo0dj9erVOpVx7tw5DBw4EPXq1YOtrS1+++03AMDHH3+MXbt2laVaVIFynz5FQV6ebtPu5+cru1Caao07IiL6H2YwERGR8end2F67di169OiBOnXqYMmSJSgo1iW4Xr16WL58eall7Nu3Dy1atMC1a9fw+uuvIzc3V/mcVCrFkiVL9K0WVTCpvT2yMzMR/NZbarMAFimadr+0CdL0wbszRERERERkjvRu9cyYMQMTJkzA2rVrMWzYMJXnmjRpgrNnz5ZaxrRp0zBw4EAkJSVh+vTpKs+1aNECv//+u77VogpSfD1tOxcXnabdN+TYCd6dISIiIiIic6T3bORXr15Fjx49ND4nl8t1Wmf77NmzmDNnDgCoNbxcXFyQnp6ub7WoAoiCAjy8dQun4+Jw/59/oKhXD20mTCh12n0iIiIiIiJLp3dj29vbGxcvXkTnzp3Vnjtz5gz8/PxKLUOhUODWrVsan7t8+TJ8eJfS7JW0nnb/TZvg37OnWU27T0REREREZEp632aMiopCTEwMEhMTldskEgnOnj2Lf/3rX3jjjTdKLeO1115DdHQ0Ll26pFLG7du3MX/+fERGRupbLaNZsmQJevXqBQ8PD0gkEmzYsEHrvjt27EBoaCjkcjlcXV3RsWNH3LhxQ2Wf48ePIyQkBPb29vDz88PcuXMhhDD2aRjEw9RUHJk1CzlPnpS4nvb6Pn3wMDUV2ZmZZjPtPhEVYqYRka4epqbiUEwMHqamVnRVSsRcIyJzpXdjOyYmBqGhoejSpQu8vb0BAN27d0ezZs3QqlUrTJ06tdQy5syZAw8PDwQFBaFNmzYAgBEjRiAgIADOzs6IiYnRt1pGs2rVKqSnp2vtOl/kp59+Qp8+fdChQwds374dK1euRKtWrZCdna3c5++//8bLL78MHx8fbN++HRMmTMD06dPxxRdfGPs0yk0IAbmHB9p//DFsbG11Wk/bzsXFbKbdJ6JCzDQi0tWj1FQcjo3FIzNvbDPXiMhc6d2NXCaTYevWrTh48CD27duH9PR0KBQKhIeHIzw8XKcynJ2dcfz4cfz000/Yt28fFAoFFAoFxo4diyFDhkAmk+l9IsZy/PhxWFlZISUlBatWrdK4z/379zF27FgsXLgQb7/9tnJ7RESEyn7z5s2Dm5sb4uPjIZPJ0LlzZ6SlpWHWrFkYN24cbG1tjXouZVV8bHbWjRt4bfly3dbTtrGBjb29iWpJRLqw5Ex7mJqK03FxCH7rLU6aSFSFWHKuEVHlpndju0jHjh3RsWPHMr+wVCrF8OHDMXz48DKXYQpWOkzotX79euTn52PkyJEl7rdr1y706dNH5WLCwIEDMWfOHCQlJaFDhw7lra7BqY3NlkjQc/Fi3dbTzstD3tOnJqopEenCkjOt6C5cQEQEG9tEVYgl5xoRmY7UwcHgZVbI1NAvvvgilixZgrS0tIp4eYM7ceIEGjZsiJUrV8LPzw82NjZo3rw5du3apdzn8ePHuH79Oho2bKhybMOGDSGRSHDx4kVTV7tUQgj1sdlC4Oy6dWgxcmSp62lnZ2aarrJEZDCWmmlEVHUx14hIm+JLGXsFBRl0joYKaWz7+Pjgww8/RPXq1fHyyy9j1apVePjwYUVUxSBu376NS5cu4dNPP8WMGTOwa9cu1K5dGxERETh37hwAIPO/DU8XFxeVY2UyGRwcHHD//n2t5T979gwPHjxQ+TEFUVCgcWz2rwsXwql6dbzyww8lrqf92EIuphBVNZU50/S9Km2Mq9hEZH6MmWsV9T2NiMpPFBTg4c2bOBwbi41RUTgcG4uHN29CFBQYpPwydyMvjw0bNuDRo0fYtGkT1q1bh1GjRmHMmDHo3r07oqKi0KtXL5OPiRFCID8/X/lYIpHA2tpap2MLCgrw6NEjrF69Wjn2p0OHDvD398fcuXO1jh/S1Zw5cxAbG1uuMsrCytpa49jsO2fOYMuQIXht1SrU6dgRv/3f/2lcT9uQXcgdfXwQFh0NR3YNJdJJVcu04lelC/LyIIQocRUEffcnqqrM6YKUueZaRX1PI6LyKWkp44ilSxH0xhuQ6DBMpSQVcmcbABwdHTFkyBDs2LEDqamp+PLLL3H//n0MHDgQXl5eJq/P4cOHIZVKlT+a1hHXxtXVFQDQqVMn5TapVIr27dsrr5YWXSXNyspSOTYnJwdPnjyBQqHQWv60adOQlZWl/Ll+/brOdSuPgvx8rWOzz8bH4/9atcLjtDSExcSgz+rVCIuOhpOvb7n/UWri5OODDjExHIdJpKOqlGn6XpU29lVsIktgzG6VZWWuuVZR39MMgTczqKrSOFz2vwry8vDzyJF4mJpa7uyrkDvbz3Nzc8OLL76Ia9eu4dKlS7hz547J6xAcHIyTJ08qHzs5Oel8bJMmTbQ+V7SchFwuR82aNdXG+1y6dAlCCLXxQcXZ2tpWyOyXEisrBL/1Fo59/rnGZb7Szp+Ho7c3sjMysNDPD8OPHoVPy5YmrycRqasqmabvVWld9i/LKgr8wkqWpPgqJPf/+QeKevUKZ/k30gV1XZlrrlXU9zR9aeqlUHQzg6iq0TZctkjRUsZhMTGQ6NiDRpMyJWZ+fj6OHz+O9evXY9WqVWo/uvrnn38wa9YsNG3aFM2aNcOKFSvQv39/HD9+vCzVKhcnJye0atVK+RMQEKDzsb169QIA7N+/X7ktJycHhw8fRnBwsHJb9+7dsXXrVuTm5iq3rVu3Di4uLggNDTXAWRiWRCKBk68vIpYuLXVsNtfTJjIvVSHT9L0qrev+cg8PvevC3jdkKYouSH1Vpw6OzJyJs2vX4sjMmfiqTh2c+emnCu0BUhVyzRjMsZcCUUWSWFlpHS5bXMbVq7AqR0MbKMOd7d9++w19+vTB9evXNf6ySiQSDBkypMQyFixYgPj4eJw+fRrOzs6IjIzEV199hQ4dOui0fIMpnTp1CikpKcqZ00+cOAEA8PDwQFhYGACgZcuWiIyMxOjRo3H//n34+Phg8eLFuHPnDiZNmqQsa9KkSVi9ejUGDRqEd955B3/99RfmzZuHWbNmmdXa4sVJrKwQ9MYbqNO5M05/953Rx2YTkXFZUqbpe1Va5/2jo41ZbaIKoUvvC10uSNXp3LnwDrcZzXFgSblmaObaS4GoIomCghKHyxZxrVsXBfn55Wpw693Yfvvtt+Hs7IyVK1eicePGZQqe6dOnIyIiAp9++im6desGqVSqdxmm8s0332DlypXKx1988QUAICwsDIcOHVJuX7lyJaZNm4apU6fiwYMHCA4Oxv79+9G0aVPlPvXr18fevXvxwQcfoEePHvDw8EBsbCwmTpxosvMpC4mVFZx8fREWHQ0rGxsU5OVBYm1d6h9adqskMj+WlGn6XpXWeX8bmzJ1JScyZ7p0FzZVt0pDs6RcMyRTTP5EVFmVNly2aCnj8v6O6N3YPnfuHBISEpRXCsvi7t27cDCj2S1LsmLFCqxYsaLU/eRyOb7++mt8/fXXJe4XGhqqvOJamUgkEtw+cwbLX3pJ57HZHAdEZH4sKdP0vSqt8/55eXhx8mReKKRK6WFqKk7HxRXevdTz37CpulUamiXlmqFU1l4KRKZSfLjs878nxYfLlvf3Q++mur+/f7nXD6wsDW1S5ejjg9BJk/gFlIjMQtFV6efnlCjy/FVpnfe3tub4a6q0HqWm4nBsLB6lpup8zMPUVByKjUVBXp7OF7DIvOnaS4GrMFBVVjRcdnxKCtp/8gmaRkWh/SefYHxKCoJef90gPT/0LuHLL7/EnDlz1GZqLE21atVw+vRpAIUTXFSrVk3rj7Ozs77VIhPgBEBEZE50ncSx6Kq0vvsbAofTUGXwKDUVh2NikJ2ZqdcFLKoYuuRKZe2lQGRqxYfLGmMpY727kb/77ru4ffs2AgMD4evrq1yTUFlhiQR//vmn2nETJ06Ez39DYeLEieyyQkRE5abLJI7l2b+8OJyGKpPHaWlwDwgwerdKKh9dcsVUkz8RWYKyDJfVld6N7eDg4DKFbHSx2V1j+MWDiIgMRN9JHMs66SORJZM6OCDv6VOTX5Ai4zDV5E9EFU3T+vFlZYyljPVubOsyAUVpOnXqhCVLlqBhw4Zqz12+fBljxozBgQMHyv06VPmwyyWZWnkmEyLzoe9VaWNexSaqTIqvwVyQlwchBC9IWQBTTf5EVFE0ZpcZ/nvWu7FtCIcOHdI6ydqDBw9w5MgRE9eIzAW7XJKpFU0mFBARwca2BdD3qrQxrmITVRalrcHMC1KVG3spkKUqz/rxhrwTrosyNbYzMzOxYcMGXL58GdnZ2WrPl7akAgCtVx6OHz8OT0/PslSLiIiqMPaMIdKdLmsw29jb84JUJcdeCmRpdM0uteMq6E643o3tK1euIDQ0FM+ePcPjx4/h4eGB+/fvIy8vD66urnB2dtbY2J4zZw7mzJkDoLCh3bFjR1g9d+Xh2bNnyMvLwzvvvFPG0yEiMgx2L6982DOGSDe6rsEs9/CooBqSIXHYDFmKsmZXee6El5feje0PPvgAbdq0QUJCAuRyOXbu3IlmzZph3bp1+Oijj5CQkKDxuNDQUEycOBFCCHz22WcYNGgQatSoobKPTCZDo0aN8Morr5TtbIiIDITdy4nIUum6BnNYscltqfJjLwWq7PTNLht7e53uhBuzwa13Y/vf//43li5dCltbWwBATk4OrK2tERUVhfT0dLz33nv45Zdf1I4LCwtDWFgYgMIrbG+++SZ8fX3LWX0iovLTNn7H1ON6iIhMQec1mG1sNHbHJCKqCPpml9zDQ6c74U5GbJPq3Yx/9uwZqlWrBisrKygUCty6dUv5XGBgIP74449Sy4iOjmZDm4gqXPHxO15BQRBClLidiMgS6LwGc14eXpw8mfMgEJFZ0Ce78rKzYefiotOdcFFQYIzqAijDnW1/f39cu3YNANCiRQssWbIEXbp0gY2NDeLi4nRuRP/9999YsWKF1knWfv75Z32rRkSkM03jd9pMmAB7V9cKG9dDRGQKOq/BbG3NeRCIyGzoml3ZmZmQ2tvDysZGtzvh1taAkSZL07uxPXDgQPzxxx8YPHgwZsyYgZdffhmurq6QSCQQQmDlypWllnHy5EmEhYXBz88Ply9fRlBQELKyspCSkoIaNWqgfv36ZToZIiJdaBq/4xUUhPbTp+PPH3/EtlGjKmRcDxGRKXANZiKqjHTNrvRLl5D79CkK8vJ0uxOenw8YqRdjmSZIK9K2bVucPXsWu3btQnZ2Njp16oTAwMBSy5g8eTL69++PpUuXQiqVYunSpWjZsiWOHz+OQYMGYcqUKfpWi4hIJ9pmsmwzYQIe3ryp1tAG1Mf18AsoEVV2XIOZiCojXbLLzsUFYdOnIy8nR7dePOY0QdrzatasidGjR+t1zJ9//ompU6cql/4q6kYeGhqKmJgYTJ06FS+//HJ5q0ZEpEbjTJYSCQIHDMCxOXNKn+EyJgYSa2sT1ZaIyHi4BjMRVUalZVfxpUCldnYV2ounTM343NxcfPfddxg5ciS6du2KK1euAADWrVuHCxculHq8RCKBTCaDRCKBp6encgw4ANSoUQOXL18uS7WIiEqlaSZLqb09pA4Ouo/rISIyY/qspCCRSHDnzBnMlstx58wZNrSJqFLQNbuK7oSPT0lB+08+QdOoKLT/5BOMT0lB0Ouvm98621evXkV4eDjS09PRokULHDt2DA8fPgQAHDlyBLt378by5ctLLKNx48b4559/0LFjR4SEhOCLL75A06ZNIZVK8fnnn6NeKX3riYj0IYSAKCiAlbW1xpksc58+Re6TJzqP62GDm4jMUfGVFAry8iCE0LnxzDWYiagy0iW7KrIXj95N+ffeew8eHh64evUqEhMTVZbECQsLw5EjR0otY/To0bh9+zYAYPbs2bhz5w6aNWuGxo0b4+TJk5g/f76+1SIi0kgUFODhzZs4HBODjVFRuPPnnwh+6y1Y2RS71igEzq5bhxYjR6puL8YU43qIiMpKmXWxsdgYFYXDsbF4ePOmUZe0ISKqLCqqF4/ed7YPHTqEtWvXwt3dHfn5+SrPeXt7IzU1tdQyBg8erPz/Ro0a4cKFC0hKSsLTp0/Rtm1beHp66lstIiI1mmYdTzt3Dm+eOoVXfvhBZTK0XxcuRNAbb6htBzg7LxGZN01ZB+i+koKjjw/CoqO5njYRWTxT9+LRu7FtY2Ojcje7uDt37sDR0VHvSjg6OqJLly56H0fmgX+kyRxpm3X8zpkz2DJkCF5btQp1w8NVZrJ89vAhmg0erLads/MSkbnSlnWA7ispFJ9MiIiIDEfvxnZYWBi++OILdO/eXTmbeNEa299//z06d+6s8bhNmzbp9Tp9+vTRt2pUQfhHmsyRxlnH/+tsfDzSzp9HxLJlCIuJKRzLXWz8DmfnJaLKoqSsA7iSAhFRRdK7sT137lyEhoaicePGiIiIgEQiweLFi3H27FlcuXIF//73vzUe17dvX51fQyKRqHVRp/8p6lnw4MGDCq4JkXm7cfEisrU8d+3MGRyYOxcRP/yAhbVrY+CWLfBu3lz5/O0//sBP3brhjd27VbabipOTU5Vp4FdUpj189AjZ//2vnHlKlVhJWQcANy9dwqPHj01WH22qSq6Z4/c05h1ZIn3/XZe0f1l+R3TJNInQ1ie8BMnJyYiJicG+ffuQnp4OhUKB8PBwxMbGap1JvPjyXrrw8/PTt1pVxo0bN1CzZs2KrgYRGVFWVhaqVatW0dUwCWYaUdVQVXKNmUZUNeiSaWVqbFPFKigowK1bt4xyhfjBgweoWbMmrl+/Xun/IFrKufA8zIupzqOq3AECjJtpAP/tmRtLOQ/Acs6FuWZYzDTdWMp5AJZzLjwP/ejyO653N3JD2r17N06ePInr16/jk08+Qa1atXDkyBHUr18fvr6+FVk1s2ZlZYUaNWoY9TWqVatWqX/JirOUc+F5mBdLOQ9zYIpMAyznM+N5mB9LORdLOY+KxkzTj6WcB2A558LzMBydGtsjRozQuUCJRIKlS5eWuE9aWhpee+01nDhxQnnVYcyYMahVqxaWLVsGuVyOxYsX6/yaREREREREROZEp8b2ihUr4OTkhHr16mld9quILt1lJkyYgLS0NJw9exYNGjSATCZTPhceHo6ZM2fqUi0iIiIiIiIis6RTYzskJAQnTpxAfn4+oqKiMHDgwHJNYLZjxw783//9Hxo1aqQ263jNmjVx48aNMpdN5WNra4vo6GjY2tpWdFXKzVLOhedhXizlPKoSS/nMeB7mx1LOxVLOo6qwlM/LUs4DsJxz4XkYns4TpP3nP/9BfHw81qxZg7/++gshISGIiopC//794e7urteLOjo6Yv369ejRowfy8/MhlUpx6tQptGzZElu2bMGIESNw//79Mp0QERERERERUUWz0nXHWrVqYfLkyfjjjz/w119/oWPHjli4cCF8fX3RvXt37Nq1S+cXbdOmDZYtW6bxufj4eLz44os6l0VERERERERkbsq19Fd2djamT5+OBQsWICIiAps2bdLpuKSkJHTs2BGtW7dG37598f777+Pjjz/GhQsXsGPHDhw7dgwtW7Ysa7WIiIiIiIiIKpTeje38/Hzs3bsX8fHx2Lp1K2xsbBAZGYlRo0bhhRde0LmcpKQkTJ06FcePH0d+fj4kEglCQkIwb948hISE6H0iREREREREROZC527kR44cwdtvvw0vLy/0798f+fn5WL16NW7fvo24uDidG9o5OTnYtGkTvLy8cPjwYTx48AA3btzAw4cPcezYMTa0jWjJkiXo1asXPDw8IJFIsGHDBq377tixA6GhoZDL5XB1dUXHjh3VJq47fvw4QkJCYG9vDz8/P8ydO7fU2eqN5d69e8rl4+RyOQIDA/Hdd9+p7Xfr1i1ERkbCyckJCoUCo0aNwoMHDyqgxqW7ePEiunTpArlcDm9vb0yePBk5OTkVXa1S/fzzz2jTpg2cnJzg4+OD/v374+rVq2r7LV26FP7+/rCzs0OzZs2wffv2Cqhtob///htjxoxB8+bNYWNjg8DAQI37ZWZm4r333oOvry/s7OxQr149fPHFFyr75OTkYNKkSfD29oZcLkeXLl1w6dIlU5xGlcNMY6aZAjONmWZKzDXmmrEx00ycaUIHNWrUEHZ2dqJ3795i/fr14unTp7ocppWtra04ePBgucog/bVp00a0adNGDBkyRAAQCQkJGvf78ccfhUwmE9OmTRMHDhwQW7duFR9++KG4cuWKcp8rV64IR0dH0bt3b7F//36xYMECIZPJxLx580x1Oio6duwofHx8xPLly0ViYqKYOHGiACC+//575T45OTkiMDBQBAYGip9//lnEx8eLGjVqiJ49e1ZInUty//594ePjI9q3by92794tli5dKpydncXYsWMrumolOnjwoLCyshLDhg0T+/btE/Hx8cLf31/Uq1dPPHnyRLnf2rVrhUQiEZ988ok4cOCAeOutt4SNjY1ISkqqkHpv2bJF1KhRQ0RGRoqmTZuKJk2aqO3z6NEj0axZMxEcHCzi4+PFwYMHRVxcnNq/+bfeeks4OzuLpUuXit27d4uXXnpJVK9eXWRmZprqdKoMZhozzdiYacw0U2OuMdeMiZlm+kzTqbEtkUiETCYTjo6OwsnJqcSfatWqlVpes2bNxMqVK8tdedJPfn6+EEKI5ORkrQF+7949Ua1aNbFkyZISyxo9erTw8/MTz549U26bNm2acHFxEdnZ2YateClSU1MFALF8+XKV7e3btxedOnVSPl6zZo2QSCTi4sWLym179uwRAMSvv/5qqurqZPbs2UIul4t79+4pt8XFxQlra2tx8+bNCqxZyd566y1Rp04dUVBQoNx24MABAUAcOXJEuc3f318MGjRI5diQkBDRvXt3k9W1uKLfDSGEGDp0qMYQ/+STT0TdunXFo0ePtJZz/fp1YW1tLeLi4pTb7t27J+RyuZg7d65hK03MNGaa0THTmGmmxlxjrhkTM830maZTN/Lo6Gh89NFH+PDDDzFx4sQSfz744INSy5szZw5mzpyJU6dO6XkfnsrDyqr0j3v9+vXIz8/HyJEjS9xv165deO211yCTyZTbBg4ciMzMTCQlJZW7rvrIzc0FADg7O6tsd3Z2VukqtWvXLgQFBSEgIEC5rUuXLlAoFNi5c6dpKqujXbt2ITw8HAqFQrmtf//+KCgowN69eyuwZiXLzc2Fk5MTJBKJclvR51L0WVy9ehWXL19G//79VY4dOHAgEhMT8ezZM9NV+L90+d344YcfMGLECMjlcq377N27FwUFBejXr59ym0KhQNeuXc3u35glYKYx04yNmcZMMzXmGnPNmJhpps80nRvb+vyUZvLkybh37x7atGkDT09PNG3aFEFBQcqfZs2alfvEqGxOnDiBhg0bYuXKlfDz84ONjQ2aN2+usrTb48ePcf36dTRs2FDl2IYNG0IikeDixYsmrXPNmjXRtWtXzJ49G+fPn8fDhw+xfv167N27F2PHjlXud/HiRbU6SyQSNGzY0OR1Lo2murq4uMDHx8fs6lrcsGHDcP78eSxZsgRZWVm4evUqPvroI7Ro0UK5pF9R/Z8/v0aNGiEnJwfJyckmr3dpUlJScPv2bbi7uyMiIgK2trZQKBR488038ejRI+V+Fy9ehKenJ1xdXVWOb9SokVl/bpaMmWYemGnmhZlWuTHXzENlzDVmmukzzcYopZYiODgYrVq1qoiXplLcvn0bly5dwqeffop//etf8PHxweLFixEREYE//vgDTZo0QWZmJoDCQClOJpPBwcEB9+/fN3m9N23ahAEDBqBJkyYAAGtrayxatAiRkZHKfTIyMtTqDACurq4VUueSVKa6FvfSSy9h8+bNiIqKUv7xbN68OXbv3g1ra2sAhecGqP/7KQo+czy/27dvAwA+/PBD9OnTBzt37sSVK1cwdepUPHr0CGvXrgVQeT83S8ZMMw+Vqa7FMdMq5+dm6Zhr5qEy1bUIM830n1mFNLZXrFhRES9bZQghkJ+fr3wskUiUv0ClKSgowKNHj7B69WpEREQAADp06AB/f3/MnTsXq1atMkqddaXp3KysrDB8+HBcuXIFa9asgY+PD/bt24cJEybA1dUVAwcOrMAaVy3Hjx/H4MGD8eabb6JXr164d+8eZsyYgZ49e+Lo0aOwt7ev6CqWSUFBAQDA398fK1euBAB07twZNjY2ePPNNzFr1izUrVu3Iqto0ZhpzLSKwkwjY2GuMdcqAjPN9CqksU3GdfjwYXTs2FH5OCwsDIcOHdLp2KKrVp06dVJuk0qlaN++Pc6ePQvgf1e6srKyVI7NycnBkydPVMauGJqmc/vwww+RkJCAM2fOoGnTpgAK/+jcvXsXEydOVAa4q6urWp2BwqtcNWvWNFqdy6Kkuhrz/S2v9957D506dVJZZqFt27aoVasWfvzxR4wePVr5bywrKwve3t7K/YqupJrj+RXVufi/PaAwyAHg3LlzqFu3bqX93MwdM42ZVlGYaZXzc6sMmGvMtYrATDP9Z8bGtgUKDg7GyZMnlY+dnJx0Praoa48m2dnZAAC5XI6aNWuqjW24dOkShBBqYzwMSdO5bd26FdbW1mpr7rVo0QI//PADnjx5AgcHBzRs2BB//fWXyj5CCFy6dAldunQxWp3LQtPYpKysLKSmphr1/S2v8+fP49VXX1XZVqNGDbi7u+Off/4B8L8xQBcvXlSZAOXixYuQyWRmeTelXr16sLW11fp80e9Gw4YNcefOHWRkZKiMB9I0rot0x0wrxEwzPWYaM81YmGuFmGumxUwzfabpNEEaVS5OTk5o1aqV8qf4L0ppevXqBQDYv3+/cltOTg4OHz6M4OBg5bbu3btj69atytklAWDdunVwcXFBaGioAc5CM03n5ufnh/z8fJw5c0Zl39OnT8PT0xMODg7KOv/555+4cuWKcp/ExETcu3cPPXr0MFqdy6J79+7Yv3+/cswVACQkJMDKygpdu3atuIqVws/PD7/99pvKtmvXriE9PR21a9cGANStWxf+/v5ISEhQ2W/dunXo3Lmzyqyp5kImk6Fr165ITExU2b5v3z4AQMuWLQEAXbt2hZWVFTZu3KjcJyMjA3v37jW7f2OVCTOtEDPN9JhpzDRjYa4VYq6ZFjOtAjLNKAuKkVk6efKkSEhIEEuWLBEAxMSJE0VCQoI4dOiQyn6RkZHCw8NDLF26VOzcuVP07NlT2NnZiTNnzij3uXLlipDL5SIyMlIkJiaKhQsXCplMprZwvCk8ePBA1KpVS9SvX1/8+OOPYv/+/WLy5MnCyspKzJgxQ7lfTk6OCAwMFE2bNhXbtm0T69atEzVr1hQ9e/Y0eZ1Lc//+feHj4yPCwsLEnj17xLJly4SLi4sYO3ZsRVetRAsXLhQAxHvvvSf27dsn4uPjRWBgoPDy8hLp6enK/YrW0Zw+fbo4ePCgGDNmjLCxsRHHjx+vkHo/fvxYJCQkiISEBNGhQwdRs2ZN5eO7d+8KIYQ4deqUkMlkIioqSuzZs0d88803wsnJSbz++usqZb311lvCxcVFLFu2TOzZs0eEhYWJ6tWri8zMzIo4NYvGTGOmGRszjZlmasw15poxMdNMn2lsbFchQ4cOFQDUfsLCwlT2e/TokRg3bpzw8PAQtra2IjQ0VBw7dkytvF9++UW0adNG2Nraiho1aog5c+aIgoICE52NqitXroj+/fsLX19f4eDgIJo0aSIWLlwo8vLyVPa7ceOG6NOnj3B0dBQuLi5ixIgRIisrq0LqXJrz58+Lzp07C3t7e+Hp6Sk+/PBD8ezZs4quVokKCgrEt99+K4KCgoRcLhfe3t6id+/e4sKFC2r7/vDDD6J+/fpCJpMp/6hWlOTkZI2/GwDEwYMHlfvt379ftGrVStja2gpvb28xceJEkZ2drVJWdna2mDhxovD09BT29vYiPDxc4/lT+THTmGnGxkxjppkac425ZkzMNNNnmkSIYivJExEREREREVG5ccw2ERERERERkYGxsU1ERERERERkYGxsExERERERERkYG9tEREREREREBsbGNhEREREREZGBsbFNREREREREZGBsbBMREREREREZGBvbpJOYmBhIJBJUr14dBQUFas+/+OKLkEgkGDZsmF7lZmZmIiYmBufPn1fZnpKSAolEgg0bNpSn2uW2cOFCSCQS5eNDhw5BIpHg1KlTJqtDTEwMjh8/rrZdIpFg/vz5JquHJlu2bIFEIkFKSgqAsn1uCxcuxM6dO41UQyLNmGmFmGmqmGlUmTHXCjHXVDHXKhYb26QzqVSK9PR0HDlyRGX7tWvXkJSUBEdHR73LzMzMRGxsrFqA+/j4ICkpCZ06dSpXnQ2tZcuWSEpKQqNGjUz2mrGxsRoDPCkpCa+//rrJ6qGLsnxuDHCqKMw0ZlppmGlU2TDXmGulYa6Zlk1FV4AqD5lMhvDwcKxduxYdOnRQbo+Pj0eTJk1gbW1tsNeytbVF27ZtDVaeoVSrVq3Uej19+hT29vZGr4s5vj/m+rkRacJMY6aVxlw/NyJtmGvMtdKY6+dmqXhnm/QyaNAgbNiwAbm5ucpta9asQVRUlMb9jxw5gtDQUNjb28Pd3R0jRozA/fv3ARR2Y6lTpw4AoF+/fpBIJMpuLpq6uBQUFGDmzJmoXbs2bG1t0bBhQ8TFxam8XkxMDBwdHfHXX3+hXbt2cHBwQGBgIPbs2VPquT148ABDhgyBk5MTPDw8MHnyZOTl5anso6lrkkQiweeff44pU6bA29sbnp6eAAAhBObPnw9/f3/Y2tqibt26+PLLL9Ve98KFC+jTpw8UCgUcHBzQrFkzrF27Vlk2AEyaNEn5/hw6dEj53PNdk+Li4hAQEABbW1vUrl0bM2fOVOlKtmLFCkgkEvz+++/o3r075HI5GjRogFWrVpX6/uTm5mLChAlQKBRwdnbGyJEj8ejRI5V9NH1uP//8M1q1agVHR0e4uLigVatWyqujtWvXxrVr17B48WLl+a1YsQIAsGrVKrRr1w4KhQKurq7o0KED/v3vf6u8nj6f96pVq9CiRQvY2dnB3d0dPXr0wLVr15TP37hxA2+88Qbc3d1hb2+P9u3b4/Tp06W+L1S5MdOYacw0sjTMNeYac818sLFNennllVfw7Nkz7N27FwBw/vx5nDlzBgMHDlTb9/Tp0+jSpQucnJyQkJCAuXPnYtu2bejevTvy8/Ph4+ODTZs2AQBmz56NpKQkJCUlwcfHR+NrT5o0CTExMRg2bBi2bduGrl27YsyYMfjmm29U9svNzcXrr7+OYcOGYfPmzfD09ERkZCTu3btX4rmNGDECmzdvxueff46VK1fi/PnzWLhwoU7vy1dffYXLly9j6dKl+OmnnwAA48ePx/Tp0zF06FDs2LEDw4YNw5QpU/Ddd98pj7ty5QpCQkJw5coVfP311/j5558xfPhw/Oc//wFQ2P0IAMaNG6d8f1q2bKmxDosWLcKYMWPw8ssvY9u2bRg2bBhiYmIwefJktX1ff/11dO3aFVu2bEGLFi0wbNgwXLhwocRznDZtGpYsWYJJkyZh/fr1yM/Px9SpU0s85p9//kHfvn3RpEkTbN68GevWrUP//v2RkZEBANi8eTO8vb3Rt29f5fn17NkTQOEfgyFDhiAhIQFr1qxBrVq10L59e1y+fFnlNXT5vOfNm4ehQ4ciODgYmzZtwtKlS9GgQQOkpaUBADIyMtCuXTv88ccfWLRoETZu3Ai5XI5OnTrh7t27JZ4jVW7MNM2YaZox06gyYK5pxlzTjLlmZIJIB9HR0UIulwshhIiKihJvvPGGEEKITz75RISEhAghhGjWrJkYOnSo8pjevXuLWrVqiZycHOW2PXv2CADi559/FkIIkZycLACIhIQEldd7fntaWpqQSqVi6tSpKvsNGjRIeHh4iLy8PGU9AYgdO3aolfXjjz9qPb9z584JiUQili5dqtyWl5cn6tSpI4r/mhw8eFAAECdPnlRuAyAaN24sCgoKlNv+/vtvIZFIRFxcnMrrTJkyRXh7e4v8/Hzle+nh4SGysrK01g2AmDdvXonb8/LyhLu7uxg4cKDKPtOmTRMymUykp6cLIYRYvny5ACAWL16s3OfRo0fCwcFBzJgxQ2sd7t27J+zt7cWnn36qsr19+/YCgEhOThZCqH9uCQkJAoB48OCB1rL9/PzE2LFjtT4vhBD5+fkiNzdXBAQEiGnTpim36/J5Z2ZmCgcHBzF69Git5U+fPl04OzuLO3fuKLdlZ2eLWrVqiUmTJpVYN6qcmGmFmGnMNLIczLVCzDXmmjnhnW3S26BBg7B161Y8ffoU8fHxGDRokMb9jh49ildffRVSqVS5rWvXrnBxccGxY8f0es1ff/0Vubm56Nevn8r2AQMGIC0tTeUKmpWVFcLDw5WPa9euDXt7e9y4cUNr+SdPnoQQAr1791Zus7a2xmuvvaZT/bp3764yE+b+/fsBAJGRkcjLy1P+hIeH4/bt27h+/ToAIDExEX379kW1atV0eh1tLl68iPT0dI3vT05OjlqXnq5duyr/Xy6Xw8/Pr8T356+//sLTp09V3p+i8ytJUFAQrK2tERUVhW3btiErK0vXU8KFCxfQu3dveHl5wdraGlKpFJcuXVK7Wlra552UlIQnT55g5MiRWl9r79696NixIxQKhfKzsra2RlhYGE6ePKlznalyYqapY6ZpxkyjyoK5po65phlzzbg4QRrp7eWXX4ZUKsX06dORnJyM/v37a9wvIyMDXl5eatu9vLyUY4F0VdSV5fnyih4XL8/e3h4ymUxlP5lMhuzsbK3lp6amQiqVwtXVVWP5pXl+v/T0dAgh4O7urnH/69evw8/PD/fu3YOvr69Or1ESfd4fAHBxcVF5rMv7A0A5xun58rXx9/fH9u3bMXv2bPTu3RtWVlbo1q0bvvnmG9SqVUvrcQ8fPkTXrl3h4eGBBQsWwM/PD3Z2dhg1apRaPUv7vIu6KJX0Pqenp+PEiRMqXzaK1KtXr8RzpMqPmaaOmaYZM40qC+aaOuaaZsw142Jjm/QmlUoRGRmJBQsWoHPnzlp/iRUKhcYxFHfu3IFCodDrNYv2v3v3LqpXr65SVvHny8rHxwe5ubnIyMhQCfGi8ktT/EppUX0kEgmOHTumFi4AEBAQAABwc3PDrVu3ylHz/70eALX325DvT1H5mt7/knTr1g3dunXDgwcPsHv3brz//vsYPnw4EhMTtR6TlJSEGzduYPv27WjWrJlye1ZWFmrUqKFX3d3c3AAAt27d0nqsQqFAt27dMGPGDLXnbG1t9Xo9qnyYaeqYadox06gyYK6pY65px1wzHnYjpzIZNWoUXnnlFYwfP17rPu3atcOWLVtUZonct28fMjMz0a5dOwBQhltJV+oAoHXr1pBKpUhISFDZvn79enh6esLf37+spwIAeOGFFwAUTgJRJD8/H1u2bClTeZ07dwZQeKWuVatWaj9OTk4AgPDwcGzYsAEPHz7UWpZUKi31/QkICICHh4fG90cmk6F169ZlOo8iTZs2hb29vcr7AwAbN27UuYxq1aqhf//+GDhwoMoEH5qu1D59+lT5XJHjx48jJSVF77qHhITAwcEBy5cv17pPeHg4zp8/j0aNGql9Vk2bNtX7NanyYaaVjJmmjplG5o65VjLmmjrmmuHxzjaVSevWrUsNt48//hihoaHo1asXxo0bhzt37mDq1Klo3bo1evToAQDw9vaGi4sL1q5dizp16sDW1hZBQUFqZbm7u2PcuHGYN28e7Ozs0LZtW+zcuRNr1qzBokWLyr1uZOPGjdG7d29MmDAB2dnZqF27NpYsWYKcnJwylefv74+xY8di8ODBmDRpEtq0aYPc3FxcvnwZBw8eVL530dHR2L59O9q1a4fJkyfDx8cH58+fx5MnT5QzUzZq1Ahbt27FSy+9BLlcjoCAAOUfgCLW1tb49NNP8d5778HT0xM9evTAiRMnMHfuXEyYMEF5xbCsFAoFxowZg88//xz29vZo2bIl1q5di3/++afE4+Li4pCUlIRu3brBx8cHycnJ+Omnn1TGITVq1AgHDhzAvn374Orqijp16qBt27ZwdHTE2LFjMXXqVNy8eRPR0dEqV2p15ezsjOjoaEyZMgUFBQV49dVXUVBQgIMHD2LQoEFo1aoVPvjgA6xevRphYWEYP348atWqhbS0NPz666/w9fXF+++/r/frUuXCTCsZM60QM40qE+ZayZhrhZhrRlaRs7NR5VF8hkttnp/hUgghDh06JEJCQoStra1QKBRi2LBh4t69eyr7bN68WTRq1EjY2toqZ0vUNPNlfn6++Oyzz0StWrWEVCoVDRo0EN99951O9XR2dhbR0dEl1j8jI0O8/vrrQi6XCzc3N/HBBx+IefPm6TTDpaYZKAsKCsSiRYtEYGCgkMlkQqFQiJCQELFgwQKV/c6dOyciIiJEtWrVhIODg2jevLmIj49XPn/06FHRsmVLYW9vLwCIgwcPan3db7/9VjRo0EBIpVJRq1YtMWPGDOVsmkL8b4bLtLQ0leM0fXbPe/bsmRg3bpxwcXER1apVE0OHDhU//vhjiTNcHj9+XPTs2VP4+PgImUwmatWqJcaPH68y4+XZs2fFSy+9JJycnAQAsXz5ciGEELt27RJNmjQRdnZ2IigoSOzcuVOEhYWJnj17Ko/V5/NetmyZaNq0qZDJZMLNzU306tVLXLt2Tfl8amqqGDlypLKuNWrUEH379hW//PJLie8LVU7MtELMNGYaWQ7mWiHmGnPNnEiEEMLoLXoiIiIiIiKiKoRjtomIiIiIiIgMjI1tIiIiIiIiIgNjY5uIiIiIiIjIwNjYJiIiIiIiIjIwNraJiIiIiIiIDIyNbTKalJQUSCQSbNiwQa/jDh06hNmzZ6ttj4mJgaOjo6GqV6qFCxdi586dBitvy5YtWLJkidr2YcOGITAw0GCvY2imft+JzBlzTRVzjahyY6apYqaRobGxTWZHW4CPGjUKBw8eNFk9TBXg5s7U7zuRJWKumRfmGlH5MNPMCzPNfNlUdAWochFCICcnB7a2tiZ/7Ro1aqBGjRomf92q6tmzZ5BKpQZ734vKs7LiNT4yL8y1qoO5RlUBM63qYKaZP76TVKKibjM7d+5Es2bNYGtri23btgEAkpKS0KlTJ8jlcjg7OyMqKgp3794tsbxVq1ahXbt2UCgUcHV1RYcOHfDvf/9b+XxMTAxiY2Px+PFjSCQSSCQSdOjQQflcUReZx48fQy6XY/78+Wqv0bdvX4SEhCgfZ2Zm4p133oGPjw9sbW0RHByMvXv3lljP2rVr49q1a1i8eLGyHitWrAAAFBQUYObMmahduzZsbW3RsGFDxMXFlfo+rly5EufOnVOWN2zYMJV9Dh06hBYtWkAul6N169Y4ffq0yvNCCMyfPx/+/v6wtbVF3bp18eWXX5b4ukWvHRgYiF27diEwMBB2dnYIDg7GiRMn1M753Xffxb/+9S/4+fnB3t4e9+/f19g16dq1a+jbty+cnZ0hl8vx8ssv46+//tKpvJLquH//fgQFBcHe3h5hYWFISUnB/fv30b9/f1SrVg316tXDunXr1I7fsWMH2rRpA3t7e3h4eODtt9/G48ePlc8/fvwY7777LgICAuDg4IDatWtjzJgxyMrK0ljnxYsXw8/PD87OznjttdeQlpZW6vtMlQdzjbnGXGOuWRJmGjONmWbGmSaISjB06FDh6uoq6tWrJ5YvXy4SExPFlStXxPHjx4VMJhOvvfaa2LZtm4iPjxf169cXbdu2VR6bnJwsAIiEhATlttjYWBEXFyf2798vdu7cKQYPHixsbW3FpUuXhBBCXL9+XYwcOVLY29uLpKQkkZSUJM6dOyeEECI6OlrI5XJlWQMHDhTBwcEq9X3w4IGws7MTX3/9tRBCiGfPnolWrVqJmjVriqVLl4rdu3eLN954Q9jY2IgzZ85oPe/ffvtNeHt7i759+yrrcffuXSGEEB988IGwtrYW0dHRYs+ePWLcuHECgFi0aJHW8v7++2/Ro0cPUbduXWV5f//9t/I9dnNzE02bNhWrV68W27dvF02bNhU1a9YUOTk5yjLGjRsn7O3txcyZM8W+fftEbGyskEql4ttvvy31M1QoFKJ27dpixYoVYuvWrSIkJERUq1ZN3LlzR7mfn5+f8Pb2Fi+99JLYvHmz+Pnnn8WTJ0/U3vcHDx6I2rVri7p164o1a9aITZs2ieDgYOHi4iL+85//lFqetjq6ubmJoKAgER8fLzZu3CiqV68uQkNDRXh4uPjss8/E3r17Rb9+/YSNjY1ISUlRHpuQkCCsrKzEyJEjxa5du8SyZcuEp6enGDBggHKfu3fvijFjxoiEhARx6NAh8eOPP4qGDRuKDh06qNTDz89P1KxZU3Tt2lVs27ZNLF++XLi4uKiURZUfc425xlxjrlkSZhozjZlmvpnGxjaVaOjQoQKAOHHihMr29u3bi9DQUFFQUKDcdu7cOSGRSMSOHTuEEJoDvLj8/HyRm5srAgICxLRp05Tbnw8Mbdu3bt0qAIjLly8rt61cuVJYW1uL27dvCyGEWLZsmbCxsVH+ESjSpk0b0a9fvxLP3c/PT4wdO1ZlW1pampBKpWLq1Kkq2wcNGiQ8PDxEXl6e1vKGDh0qmjRponG7RCIRZ8+eVW47ePCgACCOHj0qhCj8AyCRSERcXJzKsVOmTBHe3t4iPz+/xNcFIBITE5XbMjMzhZOTk8p5+Pn5CTc3N/Ho0SOV459/37/66ishkUjE+fPnldvu3bsn5HK5+OCDD0otT1sdn38PFi1aJACIKVOmKLdlZGQIa2trsXDhQiGEEAUFBcLPz08MGjRIpbxdu3aplVdcbm6uOHbsmACg/PJQVOcaNWqI7OxslfOXSqUlvsdUuTDXmGvMNeaaJWGmMdOYaeabaexGTqVyc3NDmzZtlI+fPHmCX375Bf369UN+fj7y8vKQl5cHf39/1KxZEydPntRa1oULF9C7d294eXnB2toaUqkUly5dwuXLl/WuV7du3eDi4oL4+Hjltvj4eHTs2BFeXl4AgL1796Jp06bw9/dX1jMvLw9dunQpsZ7a/Prrr8jNzUW/fv1Utg8YMABpaWllOg8A8PX1RZMmTZSPGzduDAC4ceMGAGD//v0AgMjISJXzCA8Px+3bt3H9+vUSy3d2dkanTp1UHoeHh+PXX39V2a9Dhw6Qy+UllnX06FEEBgaiUaNGym0KhQJdunTBsWPH9C6vyPPvgb+/PwAgPDxcuc3FxQWenp7K8718+TKuXbuG/v37q7wvYWFhsLKywqlTp5TH/vjjj2jRogUcHR0hlUrRrl07ZRnFhYWFqYxza9y4MXJzc0vtdkeVC3Ptf5hrzDWq/Jhp/8NMY6aZEza2qVRFYVgkIyMD+fn5eP/99yGVSlV+/vOf/2gNk4cPH6Jr1664du0aFixYgKNHj+LkyZNo1qwZsrOz9a6XTCZDZGSkMsDv3buHffv2ISoqSrlPeno6fv/9d7V6zpw5s9TQ0yQjIwOA+ntS9FjbOJfSuLi4qDyWyWQAoHxf0tPTIYSAu7u7ynl06dIFAEo9Fw8PD7VtXl5eSE1N1XgeJcnIyNC4n5eXl9r561JeEW3vgabtxd8XAOjdu7fK++Lg4ID8/Hzl+7J582YMGTIErVu3xvr163HixAls3rwZANT+7ZX2WZBlYK6pnjvAXGOuUWXGTFM9d4CZxkwzD5yNnEolkUhUHru4uEAikeCjjz7Ca6+9pra/u7u7xnKSkpJw48YNbN++Hc2aNVNuz8rKKvMMioMGDcLSpUtx5swZJCUlwdraGn369FE+r1AoEBQUhKVLl5ap/OcpFAoAwN27d1G9enXl9jt37qg8b2gKhQISiQTHjh1TBkpxAQEBJR6vadKIO3fuwMfHR2Xb85+1trpcunRJY3nPn78u5ZVH0et98803Klf0i/j6+gIAEhIS0Lx5c5XJUQ4fPmzUupF5Y679D3ONuUaVHzPtf5hpzDRzwsY26U0ulyMkJAQXLlzAzJkzdT7u6dOnAKASQMePH0dKSopKlxSZTIZnz57pVGaHDh3g7e2NtWvXIikpCd27d4ezs7Py+fDwcOzcuRO+vr7KX2ZdFb8qV6R169aQSqVISEhAixYtlNvXr18PT09PZXcaXcvTVefOnQEUXhF+5ZVX9D4+KysLBw4cUHZPysrKwv79+zF27Fi9y2rXrh02bNiAS5cuKf9wZGRkYP/+/Rg9erTe5ZVHw4YNUaNGDVy9erXEc3n69KnaH77Vq1cbu3pUiTDXmGvMNbIkzDRmGjPNPLCxTWUyb948dOrUCQMGDMDAgQPh6uqKGzduYN++fRg+fLhyCYji2rZtC0dHR4wdOxZTp07FzZs3ER0drXLVEQAaNWqEvLw8fPXVVwgNDUW1atW0Xg20trZG//79sWLFCty9e1dlTBAADBkyBHFxcejQoQM+/PBD+Pv7IzMzE7///jtycnIwZ84crefYqFEjHDhwAPv27YOrqyvq1KkDd3d3jBs3DvPmzYOdnR3atm2LnTt3Ys2aNVi0aBGsra1LLG/ZsmVYu3YtGjRoAHd3d9SuXVv7m1yMv78/xo4di8GDB2PSpElo06YNcnNzcfnyZRw8eBBbtmwp8XiFQoGRI0ciNjYWLi4u+PzzzyGEwIQJE3R6/eKGDx+OL7/8Ej179sTMmTNhZ2eHWbNmwcbGpkzllYdEIsGCBQsQFRWFx48fo2fPnpDL5bh27Rp27NiB2bNnw9/fH126dMHYsWMxY8YMhISEYOfOnUhMTDRpXcn8MdeYa8w1siTMNGYaM80MVOTsbGT+tM3KKIQQJ0+eFD169BDOzs7C3t5eNGjQQIwZM0Zcv35dCKF5hstdu3aJJk2aCDs7OxEUFCR27twpwsLCRM+ePZX75ObminfeeUd4eXkJiUQiwsLChBDaZ75MSkoSAISjo6PG5QqysrLE+++/L2rVqiWkUqnw8fERPXr0ENu3by/x3M+ePSteeukl4eTkJACI5cuXCyEKZ+b87LPPlOU1aNBAfPfddyWWVVSPgQMHCjc3NwFADB06VAih+T3OyMhQeU0hCmdzXLRokQgMDBQymUwoFAoREhIiFixYUOLrFpW/fft20ahRIyGTyUSLFi3EL7/8orKfphk9hdD8vqekpIg+ffoIJycn4eDgILp06aK2PIe28kqqY3FFs3yePHmy1HL37t0rwsLChFwuF3K5XDRp0kRMnDhRZGZmCiGEyMvLExMnThQeHh7CyclJ9O3bV5w4cULt36emsjdv3iwAiOTkZJ3Ohcwfc425xlxjrlkSZhozjZlmvpkmEUII0zXticjUhg0bhlOnTuHs2bMVXRUiIoNgrhGRJWGmWS7ORk5ERERERERkYGxsExERERERERkYu5ETERERERERGRjvbBMREREREREZGBvbREbWunVrLF68WOvzf/zxByQSCQ4dOmSU1+/SpQtmzZpllLKJqOphphGRpWGukbGwsU1kRJs3b0ZKSgpGjBhRYXX46KOPMH/+fGRkZFRYHYjIMjDTiMjSMNfImNjYJjKihQsXYtCgQbC3t6+wOnTs2BGurq5YuXJlhdWBiCwDM42ILA1zjYyJjW0iI0lOTsbRo0fRt29fle0zZ86Et7c3HB0d0adPH9y9e1ftWCEE5s+fD39/f9ja2qJu3br48ssv1fbbvHkzAgICYGdnh7Zt2+K3336Di4sLYmJiVPbr168fA5yIyoWZRkSWhrlGxsbGNpGRJCYmwsbGBq1bt1Zu++abb/Dpp59i8ODB2LhxI+rWrYuRI0eqHTt+/HhMnz4dQ4cOxY4dOzBs2DBMmTIF3333nXKf33//Hf369UPjxo2xadMmDB06FAMGDMCzZ8/UygsNDcUff/yBtLQ045wsEVk8ZhoRWRrmGhmdICKjGD16tGjSpInycV5envD19RWDBw9W2W/w4MECgDh48KAQQoi///5bSCQSERcXp7LflClThLe3t8jPzxdCCNGvXz9Rv3595WMhhPjxxx8FABEdHa1ybHJysgAgtm/fbsAzJKKqhJlGRJaGuUbGxjvbREaSmpoKDw8P5eMbN27g1q1b6N27t8p+z3dd2r9/PwAgMjISeXl5yp/w8HDcvn0b169fBwCcPHkSvXr1gpXV/36NX331VY11cXd3V9aJiKgsmGlEZGmYa2RsNhVdASJLlZ2dDVtbW+XjovD09PRU2c/Ly0vlcXp6OoQQytB93vXr1+Hn56f2BwIAnJycYGdnp3ZMUT2ePn2q/4kQEYGZRkSWh7lGxsbGNpGRKBQKpKSkKB/7+PgAgNokG3fu3FE7TiKR4NixY5DJZGrlBgQEKMt7flzPw4cPkZ2drXZMZmYmAMDNzU3v8yAiAphpRGR5mGtkbOxGTmQkAQEBSE5OVj6uUaMGfHx8sHnzZpX9NmzYoPK4c+fOAIB79+6hVatWaj9OTk4AgBdeeAHbt29HQUGB8tgtW7ZorEvRH5Ki8Cci0hczjYgsDXONjI13tomM5MUXX8Rnn32GGzduoEaNGrC2tsbUqVMxfvx4eHl5oUuXLti7dy8OHjyocpy/vz/Gjh2LwYMHY9KkSWjTpg1yc3Nx+fJlHDx4UBnS06ZNwwsvvIDIyEiMHj0a165dw/z582FnZ6cyNggATp06BUdHRzRv3txEZ09EloaZRkSWhrlGRlfBE7QRWaxnz54JNzc38f333yu3FRQUiNjYWOHp6SkcHBxERESE2L17t8oMl0X7LVq0SAQGBgqZTCYUCoUICQkRCxYsUHmNjRs3Cn9/f2FrayuCg4PFsWPHhI2NjVi4cKHKfq+88orazJpERPpgphGRpWGukbFJhBCigtv7RBZr4sSJ+P3333HgwAGTvF5iYiLCw8Nx6NAhhIWFAQAyMjLg7e2Nffv2oX379iapBxFZJmYaEVka5hoZExvbREaUmpqK+vXr4/jx42jWrJnBy3/nnXfQuXNnuLm54dy5c5gxYwZ8fX1x6tQpZfekzz77DIcOHTLZHxEislzMNCKyNMw1MiaO2SYyIh8fH6xYsUJtJkpDycjIwLhx45Ceng5nZ2d069YN8+fPVxkHpFAo8PXXXxvl9YmoamGmEZGlYa6RMfHONhEREREREZGBcekvIiIiIiIiIgNjY5uIiIiIiIjIwNjYJiIiIiIiIjIwNraJiIiIiIiIDIyNbSIiIiIiIiIDY2ObiIiIiIiIyMDY2CYiIiIiIiIyMDa2iYiIiIiIiAyMjW0iIiIiIiIiA/t/U3j6UF1/vDQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1582,13 +1582,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADauElEQVR4nOydeXyM1/fH38/MZE9kkUUSa2Jfomj5tUoQ1NLai6KUUJSiLW2tSeytfpXqIoral9pa1frSjVYXRfttlCq1SyISEiL7zNzfH2NGJjOTZCKxxH2/XnmNeZ773OeOJCf3POecz1GEEAKJRCKRSCQSiUQikUgkpYbqXi9AIpFIJBKJRCKRSCSS8oZ0tiUSiUQikUgkEolEIillpLMtkUgkEolEIpFIJBJJKSOdbYlEIpFIJBKJRCKRSEoZ6WxLJBKJRCKRSCQSiURSykhnWyKRSCQSiUQikUgkklJGOtsSiUQikUgkEolEIpGUMtLZlkgkEolEIpFIJBKJpJSRzrZEIpFIJBKJRCKRSCSljHS2JZL7mH379qEoClu3br3XS5FIJJI75ty5cyiKwjvvvHOvlyKRSCR2U716dZ5++ul7vQzJA4R0tiUPDIcOHWLs2LE0aNAANzc3qlatSt++fTl58mSh1+Xl5VG/fn2rG7y0tDQGDhyIt7c3ISEhrFixwuL6w4cP4+rqytmzZ0v180gkkoebmzdvEhUVRadOnfDx8UFRFFatWmUxTq/Xs2rVKrp160aVKlVwc3OjYcOGzJ49m+zsbLOxOTk5vPzyy/j5+VG5cmVmz55tMd+lS5dwd3fnp59+KquPJpFIJBb8/vvvdOvWDR8fH1xdXWnYsCHvvfee2ZjY2Fhq1KiBj48Pzz//PDdu3DA7r9fradKkCXPnzr2bS5dISozmXi9AIikub731Fj/99BPPPvssYWFhXL58mffff5+mTZvy66+/0rBhQ6vXLVmyhAsXLlg9N3HiRPbt20dMTAz//vsvI0aMoF69ejzxxBMACCEYN24cEyZMoEaNGmX22SQSycNHSkoKM2fOpGrVqjRu3Jh9+/ZZHZeZmcnQoUP5v//7P0aNGoW/vz+//PILUVFRfPvtt3z33XcoigLAggULWLNmDVOnTiU9PZ2ZM2cSGhrKc889Z5pv0qRJdOvWjZYtW96NjymRSCTs3buXZ555hiZNmjB9+nTc3d05ffo0ly5dMo05cOAAo0ePZty4cYSEhDBv3jwmTZpEbGysaczHH3/M9evXee211+7Fx5BI7EdIJA8IP/30k8jJyTE7dvLkSeHk5CQGDhxo9ZqkpCTh6ekpZs6cKQCxYMECs/MBAQFi9erVpvfh4eHizTffNL1fu3atCAoKEunp6aX4SYrP999/LwCxZcuWMr3PzZs3y3R+iURiSXZ2tkhMTBRCCHHo0CEBiE8++cRiXE5Ojvjpp58sjsfExAhAfP3116ZjLVq0EDExMab3Q4YMEf379ze9//HHH4Wbm5u4ePFiKX6S4nP27Fmrtri0kTZNIrl/uH79uggICBA9e/YUOp3O5rg33nhDtG3b1vT+k08+EZUqVTK9T01NFb6+vmLbtm1lut7CqFatmujatWuZ3iMvL89ivyt5cJFp5JIHhieeeAJHR0ezY7Vq1aJBgwb8/fffVq958803qVOnDoMGDbJ6PisrC29vb9N7Hx8fMjMzAcjIyODNN99k3rx5uLu727XW+Ph4IiMjCQoKwsnJiRo1ajB69Ghyc3NNY86cOcOzzz5rSqf6v//7P7788kur8+n1eubMmUPlypVxdnYmIiKCf//912LcwYMH6dSpE56enri6uhIeHm6RKhodHY2iKBw/fpwBAwbg7e3Nk08+aTq/bt06mjVrhouLCz4+PvTv35+LFy+azdGmTRsaNmzI8ePHadu2La6urgQHB/P2229brCk7O5vo6Ghq166Ns7MzgYGB9OrVi9OnT5t9vkWLFtGgQQOcnZ0JCAhg5MiRpKamFu8/XCJ5AHFycqJSpUpFjnN0dDRl2+SnZ8+eAGb2rzCbptfrGT9+PK+//jqVK1e2a61paWm88sorVK9eHScnJypXrszgwYNJSUkxjbly5QqRkZEEBATg7OxM48aNWb16tc05ly1bRmhoKE5OTjz22GMcOnTIYsyJEyfo06cPPj4+ODs78+ijj7Jz506zMatWrUJRFPbv389LL72Ev7+/2efbvXs3rVq1ws3NDQ8PD7p27cqxY8fM5njhhRdwd3cnPj6eHj164O7ujp+fHxMnTkSn05mN1ev1LF68mEaNGuHs7Iyfnx+dOnXi8OHDZuOKY0slkoeBDRs2kJSUxJw5c1CpVGRkZKDX6y3GFWa/wLB/adSoEb169bLr/sX5ndVqtcyaNctkk6pXr86UKVPIycmxOueBAwdo3rw5zs7OhISEsGbNGosxaWlpTJgwgSpVquDk5ETNmjV56623zD57fh2LRYsWme5//PhxwD4b+NNPP/Hqq6/i5+eHm5sbPXv2JDk52WJdu3fvJjw8HA8PDypUqMBjjz3Ghg0bzMYUZz8pKSb32tuXSO4EvV4vgoODRceOHS3OHTx4UKhUKvHzzz/bjKZERESINm3aiJMnT4r//ve/wsXFRaxbt04IIcSUKVNE8+bNhV6vt2tN8fHxIigoSLi6uooJEyaIpUuXiunTp4t69eqJ1NRUIYQQly9fFgEBAcLDw0NMnTpVLFy4UDRu3FioVCqxfft201zGyHaTJk1Es2bNxLvvviuio6OFq6uraN68udl9v/32W+Ho6Cgef/xx8Z///Ee8++67IiwsTDg6OoqDBw+axkVFRQlA1K9fX3Tv3l18+OGH4oMPPhBCCDF79myhKIro16+f+PDDD0VMTIzw9fUV1atXN61dCEMGQFBQkKhSpYoYP368+PDDD0W7du0EIL766ivTOK1WKyIiIgQg+vfvL95//30xb9480a5dO/HZZ5+Zxg0fPlxoNBoxYsQIsXTpUvHGG28INzc38dhjj4nc3Fy7/v8lkgeRwiLbtti7d68AxIYNG0zHIiMjRcOGDUVcXJz4+eefRaVKlcTs2bOFEEIsW7ZMVK1aVWRmZtq1tvT0dNGwYUOhVqvFiBEjxEcffSRmzZolHnvsMfHHH38IIYTIzMwU9erVEw4ODuKVV14R7733nmjVqpUAxKJFi0xzGW1xkyZNRM2aNcVbb70l3n77beHr6ysqV65s9vv+119/CU9PT1G/fn3x1ltviffff1+0bt1aKIpiZic/+eQTk00LDw8XS5YsEfPnzxdCCLFmzRqhKIro1KmTWLJkiXjrrbdE9erVhZeXlzh79qxpjiFDhghnZ2fRoEEDMWzYMPHRRx+J3r17C0B8+OGHZv8fL7zwggBE586dxaJFi8Q777wjunfvLpYsWWIaU1xbKpE8DPTu3VtUqFBBfP3116J27doCEG5ubmLUqFEiKyvLNG7t2rXC1dVV7NmzR5w8eVK0bt1atG/fXgghxLFjx4STk5P4888/7b5/cX5nhwwZIgDRp08f8cEHH4jBgwcLQPTo0cNsrmrVqok6deqIgIAAMWXKFPH++++Lpk2bCkVRxF9//WUal5GRIcLCwkTFihXFlClTxNKlS8XgwYOFoihi/PjxpnFGm1i/fn0REhIi5s+fL959911x/vx5u21gkyZNRLt27cSSJUvEa6+9JtRqtejbt6/Z+j/55BOhKIpo2LChmDNnjvjggw/E8OHDxfPPP28aU9z9pKR4SGdb8kCzdu1aAYgVK1aYHdfr9aJ58+biueeeE0LYTl2Mi4sTlStXFoAARO/evYVOpxNnzpwRLi4u4pdffrF7TYMHDxYqlUocOnTI4pzRcZ8wYYIAxI8//mg6l56eLmrUqCGqV69uSrMyOtv16tUzSylavHixAMTRo0dN89aqVUs89dRTZg8HMjMzRY0aNUSHDh1Mx4zOtvH/xsi5c+eEWq0Wc+bMMTt+9OhRodFozI6Hh4cLQKxZs8Z0LCcnR1SqVEn07t3bdGzlypUCEAsXLrT5f/Hjjz8KQKxfv97s/H//+1+rxyWS8khJnO327duLChUqmDlvFy9eFA0aNDDZtFatWon09HSRlpYm/Pz8xKZNm+xe24wZMwRgtrkzYvw9XrRokQBMDyuFECI3N1c8/vjjwt3dXdy4cUMIcdsWV6xYUVy7ds009vPPPxeA+OKLL0zHIiIiRKNGjUR2drbZ/Z544glRq1Yt0zHjRvPJJ58UWq3WdDw9PV14eXmJESNGmK358uXLwtPT0+y4caM9c+ZMs7HGB51GvvvuOwGIcePG2fy/sMeWSiQPA2FhYcLV1VW4urqKl19+WWzbtk28/PLLpgfxRrRarejVq5fJflWpUkXExcUJIYTo2LGjGDVqlN33Ls7v7P/+9z8BiOHDh5udnzhxogDEd999ZzpWrVo1AYgffvjBdOzKlSvCyclJvPbaa6Zjs2bNEm5ubuLkyZNmc7755ptCrVaLCxcuCCFu28QKFSqIK1eumI211wa2b9/ebA/4yiuvCLVaLdLS0oQQQqSlpQkPDw/RokULs4cc+f8v7NlPSorHPXe2k5KSxPnz5y2+JJKi+Pvvv0WFChXE448/brbBEsLg5Lm4uFgYM2t1gllZWeLQoUPi1KlTpmM9e/YUgwYNEkIIsW3bNhEWFiaqV68uYmJiCo1063Q6UaFCBdG9e/dC1167dm2LyLQQQsybN8/MiTY622+//bbZuN9//10A4vPPPzd7v3r1apGcnGz2NXz4cOHk5GRy4I3O9v79+83mXLhwoVAURZw6dcpijnr16pmeLgthcLbd3d0t/i+6desmmjRpYnrftWtX4evrK/Ly8mz+X4wbN054enqKK1euWNzX3d3d4o+fRFIesdfZnjNnjtWoqxAGJ/ePP/4Qx44dM/3ev/LKK+LJJ58UQhgecDVv3lxUrlxZvPzyy0XWBjZo0EA0bty40DEdO3YUlSpVsqjH3Lhxo5kTbbTFL730ktm4a9euCUAsXrxYCCHE1atXhaIoYtasWRZ2wVirfunSJSHE7Y1mfv0NIYTYvn27aaNccI6OHTuKmjVrmsYane2Cm91x48YJb29v0/sxY8YIRVHE1atXbf5f2GNLJZKHgZCQEAFYOMsjR44UgIVDeurUKXH48GGTQ/j5558LLy8vkZycLC5duiSefvppERgYKJ5++mkRHx9f6L2L8zs7d+5cAYjjx4+bHU9MTBSAmRNdrVo1Ub9+fYs5wsLCRM+ePc3ed+rUycIGfPPNN2YPJo02cejQoWbzlcQGfvrpp2ZzGG2gMRtgy5YtAhA7duyw+X9hz35SUjzuiRr51atXefnll9m+fTt5eXlm54QQKIpiUSMlkeTn8uXLdO3aFU9PT7Zu3YparTadu3HjBpMnT2bSpElUqVKlyLmMNTBGvvvuO/bu3cs///zDP//8Q//+/YmNjaV69eo899xzVKlShaFDh1qdKzk5mRs3bthURjdy/vx5WrRoYXG8Xr16pvP556hatarZOGNNk7Gm+dSpUwAMGTLE5j2vX79uVgtVUF391KlTCCGoVauW1esdHBzM3leuXNmkgJx/XXFxcab3p0+fpk6dOmg0tk3NqVOnuH79Ov7+/lbPX7lyxea1EsnDyObNm5k2bRqRkZGMHj3a4ryDgwOPPPKI6f2JEyf48MMP+fnnn7l27Rpdu3blzTffpG3btgwdOpQ5c+YQExNj836nT5+md+/eha7p/Pnz1KpVC5XKXAomv03LT1E27d9//0UIwfTp05k+fbrVe165coXg4GDTe2s2DaBdu3ZWr69QoYLZe2MtZ8F15deOOH36NEFBQfj4+Fid03hfe2ypRFLecXFxATDrigAwYMAAYmNj+eWXX8x+X2rWrGn6d25uLq+99hpRUVH4+vrSqlUrAgMD+eKLL5g/fz4DBgyw2ckBivc7e/78eVQqldl9ASpVqoSXl1eR9gssbcWpU6eIi4uzsClGCu5tCtqvktjAouyqUSunsD1qSfaTksK5J8728OHD2b9/P5MnT6Z+/foWolcSSWFcv36dzp07k5aWxo8//khQUJDZ+XfeeYfc3Fz69evHuXPnAEytJVJTUzl37hxBQUFWf+50Oh3jx4/nzTffJDg4mFmzZvHEE0+YnOuRI0eyfv16m852WZH/YUJ+hBAAJrGNBQsWmG2y81NQ5M34x8+IXq9HURR2795t9X4Fry9qTcVFr9fj7+/P+vXrrZ639YdKInkY+frrrxk8eDBdu3Zl6dKlxbrmlVdeYdCgQTRt2pS1a9fi4+PD5MmTAXj99deLdLbLguLatIkTJ/LUU09ZHVtwY2zNpgGsXbvWqhBdwYeAttZkL/baUomkvBMUFMSxY8cICAgwO258yF6YGOq7776LRqNh7NixXLx4kQMHDnD27FmqV6/O22+/TUhICJcuXbJb9NEaBQMItijO/kev19OhQwdef/11q2Nr165t9t6W/bLHBpbGvqwk+0lJ4dwTZ/v777/nvffeY/Dgwffi9pIHmOzsbJ555hlOnjzJN998Q/369S3GXLhwgdTUVBo0aGBxbu7cucydO5c//vjDqhH56KOPSE9PZ+LEiQAkJCSYOfNBQUHEx8fbXJ+fnx8VKlTgr7/+KvRzVKtWjX/++cfi+IkTJ0zn7SE0NBQwRGrat29v17X55xBCUKNGDYs/AiUlNDSUgwcPkpeXZzOaExoayjfffEPLli0t/thIJJLbHDx4kJ49e/Loo4/y6aefFpoxYmTXrl38/PPPpmhFQkICgYGBpvNF2TQw/I4Wx6bFxcWh1+vNotsltWkhISGAIQp8JzYNDBv6ks5hbc49e/Zw7do1m5GysrClEsmDTLNmzfj666+Jj4+nTp06puMJCQmA7YfqiYmJzJ49my1btqDRaEzjjfsy42t8fLxNZ7s4v7PVqlVDr9dz6tQpUzYOQFJSEmlpaXbbL+N9b968WWLbUxo20NqaAP766y8LR73gmDvZT0rMKVHrr2PHjtG/f3+TPP3vv/8OwNSpU9m9e3eR13t5eeHr61uSW0seYnQ6Hf369eOXX35hy5YtPP7441bHjRs3jh07dph9xcbGAob2Ljt27LBI1wG4du0aUVFRLFiwAGdnZwACAgJMm0UwtNgprFWPSqWiR48efPHFFxZtYOD208UuXbrw22+/8csvv5jOZWRksGzZMqpXr271IUJhNGvWjNDQUN555x1u3rxpcd5a64eC9OrVC7VaTUxMjMVTUCEEV69etWtNAL179yYlJYX333/f4pzxHn379kWn0zFr1iyLMVqtlrS0NLvvK5GUN/7++2+6du1K9erV2bVrV7EeTOXm5vLqq68ybdo0UwQpICCAf//9F61Wa5q3qPZjvXv35s8//2THjh0W5/LbtMuXL7N582bTOa1Wy5IlS3B3dyc8PLzYnxUMDnKbNm2IjY0lMTHR4nxxbNpTTz1FhQoVmDt3rkXJWnHnKEjv3r0RQljNBDD+X5SFLZVIHmT69u0LwIoVK8yOL1++HI1GQ5s2baxe9+abb9K6dWs6deoEYIqMG/dlxraHhdmw4vzOdunSBYBFixaZnV+4cCEAXbt2tTm/Lfr27csvv/zCnj17LM6lpaWZbLAtSsMGFqRjx454eHgwb948srOzzc4Z/y9KYz8pMcfuyPbXX39N165dadasGQMHDmT27Nmmcw4ODnz44Yd07ty50Dlef/11lixZQseOHYv1ZF4iAXjttdfYuXMnzzzzDNeuXWPdunVm5429tJs2bUrTpk3NzhnTyRs0aECPHj2szj99+nQaNWrEs88+azrWu3dvZs6cyejRo6lWrRqxsbEm42uLuXPnsnfvXsLDw3nxxRepV68eiYmJbNmyhQMHDuDl5cWbb77Jxo0b6dy5M+PGjcPHx4fVq1dz9uxZtm3bZlH3WBQqlYrly5fTuXNnGjRowNChQwkODiY+Pp7vv/+eChUq8MUXXxQ6R2hoKLNnz2by5MmcO3eOHj164OHhwdmzZ9mxYwcvvviiKeJfXAYPHsyaNWt49dVX+e2332jVqhUZGRl88803vPTSS3Tv3p3w8HBGjhzJvHnz+N///kfHjh1xcHDg1KlTbNmyhcWLF9OnTx+77iuRPCi8//77pKWlmSI2X3zxhans5eWXX8bT05P09HSeeuopUlNTmTRpEl9++aXZHKGhoVYfPi5evBiA8ePHm4516dKFMWPGMGDAAJ544glmzZrF8OHDC13jpEmT2Lp1K88++yzDhg2jWbNmXLt2jZ07d7J06VIaN27Miy++SGxsLC+88AJHjhyhevXqbN26lZ9++olFixbh4eFh9//NBx98wJNPPkmjRo0YMWIEISEhJCUl8csvv3Dp0iX+/PPPQq+vUKECH330Ec8//zxNmzalf//++Pn5ceHCBb788ktatmxp9UFgYbRt25bnn3+e9957j1OnTtGpUyf0ej0//vgjbdu2ZezYsWViSyWSB5kmTZowbNgwVq5ciVarJTw8nH379rFlyxYmT55sUQ4I8Ntvv7F582YzHZjq1avz6KOP8sILLxAZGcny5ctp0aJFoZHn4vzONm7cmCFDhrBs2TLS0tIIDw/nt99+Y/Xq1fTo0YO2bdva/ZknTZrEzp07efrpp3nhhRdo1qwZGRkZHD16lK1bt3Lu3LkiA493agMLUqFCBd59912GDx/OY489xoABA/D29ubPP/8kMzOT1atXl8p+UlIAexXVmjVrZurFlpeXJxRFEUeOHBFCCPHZZ5+J4ODgIucYO3asqFq1qqhatap4/vnnxcsvv2z2ZU2eXyIxtpuy9VUYhamRC2FoAebo6GjqGZufVatWierVq4uKFSuKV1991UL53Brnz58XgwcPFn5+fsLJyUmEhISIMWPGmKn+nj59WvTp00d4eXkJZ2dn0bx5c7Fr1y6zeYxq5Fu2bLH6eQoqF//xxx+iV69eomLFisLJyUlUq1ZN9O3bV3z77bemMUY18uTkZKtr37Ztm3jyySeFm5ubcHNzE3Xr1hVjxowR//zzj2lMeHi4aNCggcW1Q4YMEdWqVTM7lpmZKaZOnSpq1KghHBwcRKVKlUSfPn3E6dOnzcYtW7ZMNGvWTLi4uAgPDw/RqFEj8frrr4uEhASr65RIygPGNjLWvox9oI2/77a+hgwZYjHv5cuXhYeHh9i5c6fFud27d4u6desKLy8vMXjwYJGRkVHkOq9evSrGjh0rgoODhaOjo6hcubIYMmSISElJMY1JSkoSQ4cOFb6+vsLR0VE0atTIwkYVZosBERUVZXbs9OnTYvDgwaJSpUrCwcFBBAcHi6efflps3brVNMaoxGut3aIQBjv61FNPCU9PT+Hs7CxCQ0PFCy+8IA4fPmwaM2TIEOHm5mZxrdFe5ker1YoFCxaIunXrCkdHR+Hn5yc6d+5s2gsZKY4tlUgeFnJzc0V0dLSoVq2acHBwEDVr1hTvvvuu1bF6vV60aNFCvPrqqxbn/v33X9G6dWvh7u4uWrdubbGXsEZxfmfz8vJETEyMaa9SpUoVMXnyZLO2W0IYbHbXrl0t7hEeHi7Cw8PNjqWnp4vJkyeLmjVrCkdHR+Hr6yueeOIJ8c4774jc3FwhRNH70zuxgcY95Pfff292fOfOneKJJ54QLi4uokKFCqJ58+Zi48aNZmOKs5+UFA9FCPvUjJydnfniiy/o0KEDOp0OBwcHDh8+TNOmTdm/fz9PPfWURWpCQayl8OZHURTOnDljz7IkEolEIpFIJBKJRCK5b7A7h9vHx8eU7laQkydPmgmv2OLs2bP23lYikUgkEolEIpFIJJIHBrsF0nr06EFUVJSZkrKiKFy+fJl33nmnyF6cDyL//vsvo0aN4pFHHkGj0djsT5eWlsa4ceMICgrC2dmZ0NBQ/vOf/5iNyc3NZdKkSVSqVAk3Nzc6dOhgVZVaIpFIygpp0yQSSXlC2jSJRHK/Yndke968eRw6dIiwsDAaNWoEwLBhwzhz5gx16tQhOjq62HP9+++/nDx50mraea9evexdWplx7NgxvvzyS1q0aIFerzf1oMtPRkYGbdq0QaPR8O677xIQEMDJkye5ceOG2bhx48axadMmFi5cSHBwMHPmzCEiIoJjx47h6el5tz6SRCJ5iJE2TSKRlCekTZNIJPctJSn0zs3NFStXrhTPPfec6NChg+jXr5/4+OOPzcSfCuP69euiXbt2QqVSCZVKJRRFEYqimN6rVKqSLKvM0Ol0pn8PGTLEqjDUtGnTREhIiLh586bNeS5evCjUarWIjY01Hbt69apwc3MTb731VukuWiKRSGwgbZpEIilPSJsmkUjuV0rUZ9vBwYGhQ4eyYcMG9u7dy6ZNmxg+fDiOjo7Fuv6NN97g8uXL/Pjjjwgh2LFjB/v27SMyMpIaNWrw66+/lmRZZUZx2jAtX76cYcOG4ebmZnPM3r170ev1Zq2lfHx86NixI1999VWprFUikUiKQto0iURSnpA2TSKR3K/Y7Wz/+eefNg3OV199ZdYPzxb//e9/mTp1Ki1atAAgKCiI1q1bs2zZMrp3725RP3O/c+7cOS5fvoyvry/dunXDyckJHx8fRowYYdYQ/sSJE/j7++Pt7W12fb169Thx4sTdXrZEIpFYRdo0iURSnpA2TSKR3CvsdrZfeeUVfvnlF6vnfvvtN1577bUi57hy5QpVqlRBrVbj5ubG1atXTee6dOnCf//7X3uXdU+5fPkyABMnTsTb25uvvvqKuXPnsmXLFkaMGGEal5qaipeXl8X13t7eXLt2zeb8OTk53Lhxw/R1/fp1kpOTEfZ1bZNIJJJiIW2aRCIpT0ibJpFI7hV2O9v/+9//aNmypdVzjz/+OL///nuRc1SpUoWUlBQAatWqxc6dO03nfvnlF5ydne1d1j3FKMRRu3ZtVq9eTUREBKNGjeKdd95h06ZNd9wzfN68eXh6epq+vLy88Pf3Jz09vTSWL5FIJGZImyaRlA3piYnsi44mPTHR7Hji778ToygkWtlDFXZOUjykTZNIygZbNq20sWUH7bWP98Ke2u1s5+TkkJuba/OcNWXxgnTo0IFvvvkGMETKly5dSrNmzXj88ceJiopi8ODB9i7rnmJMN2rbtq3Z8YiICMCgkmkcd/36dYvrU1NT8fHxsTn/5MmTuX79uunr4sWLpbV0iUQisUDaNImkbLiZmMj+mBhulvHGVGKOtGkSSdkgbVrR2N36q0mTJqxZs4Zu3bpZnFuzZg2NGzcuco633nqLzMxMAJ5//nnc3d3ZunUrWVlZvP/++4wcOdLeZd1TQkNDcXJysnne+ACibt26JCUlkZqaalYPdOLECerWrWvzeicnp0Lnl0gkktJE2jSJRFKekDZNIpHcK+yObE+ePJkdO3bQtWtXtm7dys8//8zWrVvp2rUrn332GVOnTi1yDldXV3x9fU3ve/bsyfr169m+fTujR48ulqrk/YSjoyMdO3bk22+/NTv+9ddfA9C0aVMAOnbsiEqlYtu2baYxqamp7N27ly5duty9BUskEkkhSJsmkUjKE9KmSSR3n7uVYn6/Y3dku2vXrmzYsIFJkybRt29fFEVBCEHlypXZsGEDXbt2LfZcf//9N4cPH+bixYsMGzaMSpUq8e+//xIQEICHh4e9SyszMjMzTQrs58+f58aNG2zduhWA8PBw/Pz8iIqK4oknnmDgwIEMGTKEU6dOMXnyZAYOHEhoaCgAlStXZvjw4UyaNAm1Wk1wcDBz587F09PzgYvmSySSBxdp0yQSSXlC2jSJ5P7DmGJep1s3PAID7/Vy7h130qT7xIkT4qeffhInTpyw67qMjAzx3HPPCbVaLTQajVCpVOLIkSNCCCH69OkjJk2adCfLKnXOnj0rAKtf33//vWncN998Ix599FHh5OQkKlWqJF577TWRnZ1tNld2drZ47bXXhL+/v3BxcRHt27cXf//9t13ruX79ugDE9evXS+PjSSSShwxp0ySSe0PCkSMiGkTCrT1PUceLOicxIG2aRFLGJCcIsTTK8JqPu2W7SmI77ZmnLLE7sp2fOnXqlOi6iRMn8t133/HVV1/RqlUr3NzcTOe6dOnCu+++y9tvv30nSytVqlevXqz2DRERERw6dKjQMU5OTrzzzju88847pbU8iURyi/TERI7ExtJs5MiH+ylqEUibJpFIyhPSpkkkZUxKInwcA+HdwFfur+yhRM72P//8w7Zt27h06ZKF+riiKKxYsaLQ67du3cqCBQvo2LEjOp3O7Fz16tU5d+5cSZYlkUgecgpLWUpPTOSPlStpMmyYdMQlEknZkpII22Kh98gy25jKh4sSieRB5GGzXXY722vXrmXo0KE4OztTrVo1HB0dzc4rilLkHDdv3iTQxn9uRkaGvUuSSCSSQhFC4ObnR+upU9FrtQghimWrJBKJpESUchTIwdXV4pish5RIJA8iD5vtstvZnjVrFn369GHlypW4WjH+xSEsLIxt27bRsWNHi3Nffvkljz76aInmlUgkkoKbUqHXk56QwJHYWK6dPo1PaKjhaWpQEMoD1vlAIpHcfe5lFEYIQUBYGFMyMuSDQolEInkAsdvZTkhI4KOPPiqxow0wffp0unfvTmZmJs8++yyKovDbb7+xceNGVq5caVKUlEgkkuJibVOKEMStW8fOyEj0Wq1p7IH58+m2YgVhgwZJh1sikRTKvYrCyAeFEolE8uBjt7Vu3bo1f/311x3dtGvXrmzatIkDBw7Qo0cPhBC89NJLbN68mfXr1xMREXFH80skkocLodeTHh/P/pgYtg0YwP6YGPIyM0lPSLBwtAH0Wi07IyNJT0wslqiORCKR3E2EXk/cunUsrlGDH2bP5q+NG/lh9mwW16hB3Lp1CL0ejYuL1fRyiUQiKTEpiRAbbXjNR0ZystmrpPjYHdmeO3cugwYNwtnZmQ4dOuDl5WUxxsfHp8h5+vTpQ58+fTh58iQpKSn4+PhQt25de5cjkUgecoybUjOnWlF4cvJkjsTGWjjaRvRaLUeWLiU8OhpFrb6LK5ZIJBLbCCEKfVB4cPFi6vXuTcVatWR6uUQiKVUy/o7D7eMYMuo/jlur25k8mSkpuOV7lRQfu53tpk2bAjB69Gibhr2gwnhh1K5dm9q1a9u7DIlEIrG5KXW4FfG5dvp0odennjmDSjraEomkpJSi6rgxSi30epsPChv270+PNWu4mZjI7x9/LNPLJRJJqSKd6tLHbmd75cqVpfL09OLFi3z22WdcvHjRavuwxYsX3/E9JBJJ+cbWpjQvK4u8zEx8QkMLvd47JAS9TicdbolEUjJKQXW8oN6ESq22+qAwICyMHmvWcHTDBr4YPlzqUEgkEskDgN3O9gsvvHDHN/300095/vnn0ev1+Pv7W20fJp1tiURSFLY2pQjBX5s30yQykgPz51uNEKk0GpqNGiU3phKJ5J5hIYJWsybhM2ZYfVDYYsIE0uPjLRxtuK1DUSMiwhDhlinlEomkFDNv7gceVI2Ke7LLnDJlCj169CAlJYX4+HjOnj1r9nXmzJl7sSyJRPIAIIQwbTT1Op3N6PXBRYvwCA7mmeXLUWnMnyuqNBq6rVyJR2Cg3JRKJJISU1LRII2Li3URtFmziFu3jqYjRpjbLUWhYb9+/LFiRZE6FEKvL/HnkUgk5Qhj5k0BsbMHjfzZPwFhYQ+csK3dkW2AH374gWXLlnHy5EmLFHCAuLi4Qq9PTk7mxRdfxNPTsyS3l0gkDykFo0BPTJxIs5EjrUavk+Li+HzoUHquWUNI+/YcWbqU1DNn8A4JodmoUQZHW0a1JRLJHVDS+kY3Pz+bImi/vvsujQYOpNuKFabzUodCIpHYS0ZyMm7G14Ia1A9I1Ls8tEC029nes2cPXbt2pX379hw+fJjOnTuTlZXFTz/9ROXKlQkPDy9yjk6dOvHrr7/KFl8SiaTYWFMdTz52jBGHD/PM8uUWqZUqjYbQp54CwCMoiPCoKFQaDXqtFkWtlhFtiURSZhS6yVUUnL282B8TYzVKnRQXx2eDB9Nz7VpqREQYHhSePYs2J0fqUEgkkmJT6MPAUtCbKGusdpvBXKNC4+Ji97x3Ox3dbmc7KiqKCRMm8NZbb+Hg4MCsWbNo2rQp58+f56mnnqJdu3ZFzrF06VL69etHZmYmERERVtuHGVXPJRLJw0t6YiJ/rFzJ/73yCtnXrlkYXOOmtEcxoteX4+L4pFUrhv74I4HSvkgkkjKksE2ua8WKqDSaQqPUf23ahFf16rSbO/f2g0K93mYmD0gdColEUn4oqgWiUaPCzc/Prjnzi1HerZaJdjvbf//9N3PmzEGlUqEoChkZGQBUq1aN6OhooqOjGTRoUKFzpKenk5mZybx585g/f77ZOeMHt6d9mEQiKX8IIXDz86P11KnodTqbrXD+2rSJ5OPH6bZyJeHR0ajUaqvRa/fAQJ6YNAn3wPvzCa5EIinfGDd6k5KTC9WbMKLSaBB6PUm3HhSOOHwY3zp1zNLL84+VOhQSiaS8UFgLRLitUREeFVWsSPW9TEe329l2dnZGr9ejKAqBgYGcPn2aVq1aAeDh4cHFixeLnGPw4MFcuHCBJUuWULt2bQs1colE8nCT3yhev3SJHp98UmgUKCkujl8XLqTX+vW87evL83v3WkSvPQIDaRMdXcYrl0gkDyrpiYkciY01bMBK46Gc8+0NoD16E2AZpc7LzESblYWiUhE2aNDt9HKpQyGRSO4xZZGWbbPbzC0CwsKo0b49KEqRkeripKOXpe2029lu3Lgx//zzDx06dCAiIoI5c+bg6+uLg4MD06ZNo1GjRkXO8dtvv7FhwwZ69OhRkjVLJJJyjIVRVBS6fvBB8WoVtVqyrl69SyuVSCTliZuJieyPiaFOt2535mwLge/Tz0LPgfhq8xB6PSe//JJPe/Uqtt5EYVFqRaWSOhQSieSOKFRXopiUZVp2Ydk/Dfv3p8eaNQabHR1daKS6uOnoZdky0W43fsKECabFzJ07Fw8PD7p160bnzp25evUqH3zwQZFz1KpVC62NtACJRPLwYtUo5uuZXbCFlxFjFCg7Le3uLVYikUgKotdDcjzK8lkwdQDKxzMhOYFanTpRv08f0zCj3kSjAQMYf+4cradNo9GAAbSeNo3x584RNnBgoZEWRVFIiotjrpsbSXFx0tGWSCR2kZmSYvZqL0KvJz0+nv0xMWwbMID9MTGkx8eXWutBRaWi2ciRFvu+gLAweqxZw9ENG3gvNPR228TZs1lcowZx69aZraG46ehl2TLR7sh2ly5dTP8ODg7myJEj/Pvvv2RlZVG3bt1ipYQvXLiQiRMn0rBhQ+rWLeHjFIlEUu6wZRQPLlpE2KBBRUaBMq9eJTwqStZlSySSUkOVlkx4oOHVFuoKXgZHe/c6mBkJuts2Slk1H6Yvp+eaNSQfP07SrfaoxdWbKIy8zMw7+mwSiURiD+oKXnclLVtRFDyCgiw0KlpMmEB6fLzFXhCsR6qLSkeHsm+ZaPf/xMyZM0lISDC9VxSFWrVqERYWxtWrV5k5c2aRc0yYMIFLly7RsGFDqlatSlhYmNlX48aN7V2WRCK5z0lPTGRfdDTpiYkWx3+YM4f0y5dtGsX8UaBxp0/bjAK5+fnRJjq6dOotJRKJBFBdT6FNkOHVFq4160JKgoWjDYBOizJrOCI5gRbjx5udMupNqNRq3vb1lVFqiURyX+NSs26RadnpiYkIIe74XkaNClP2z8CBNBowgD9WrCh2pLo4YpTGlollhd2R7ZiYGDp16kRQUJDFuYSEBGJiYpgxY0ahczRr1kz+MZFIHjJuJiby84IFZvWQZorjWm2hRrE0okASiURS6igKTsFV4eOZlo62EZ0W9efLaTRkMjsjI81OSb0JiUTyQODihlNQFX6dOatolfBSEqQtqFEB2BWpNqaj38uWiXY724UVvycmJlrtmV2QVatW2XtbiUTyAGNNRINb9dn52zC0fPPNQo1i8vHjuFeqZDKKtmq4JRKJ5K4RUAVF4wCXCt8AEn8GjasrGhcXtFlZgNSbkEgk9yHOBdTF84k+qvQ6akRE8M/OnaaSmIKYnN1SCoQoisLluDg+ad2aN9PSih2pVt0KxlhLR4e71zKxWG78xo0b6datG926dUNRFF577TXTe+NXx44dGTx4ME888USZLfZ+Z+fOnbRo0QIPDw8CAwPp27cvZ86csRi3YsUKateujbOzM40bN2bXrl33YLUSyd2hoIjG4dhYEIK4detYXKOGmbjFqtatcQ8MpNuKFRaOtOwje/eRNk0iuUXBzSeGh4i+3frDrvMInQ4qF74BJDgE7a0WXmBu0zKSbdeD28I9MFBqVNiJtGmS8oitMj27MTrVBzIMr0JYiD4SG03VOiG8ePgwDfv3tzqNKS1biFJtC5aXkUF2WppV4TQj1iLVFunodohRlgbFmj03N5f09HTS09MRQpCRkWF6b/xSFIXBgwcTGxtbpgu+X9m3bx89e/akfv367Nixg0WLFvHnn3/SsWNHsm79YQXYtGkTI0aMoF+/fuzevZvHH3+cnj178uuvv97D1UskZYNRRCO/U+3g6sr1Cxes1vsk/v47nw0Zck+NosSAtGkSicGhrnhr81nx6WdNdYhCr4cr8SjLog2q4yf/RPQaCWob2TZqDaL3KJL//tuqTdPm+50qLh6BgVKjwg6kTZOUV4xtC2/eibNdsJPCjo8NzvbudfBMDVgxG/ZshBWzUfUIRdmzgZ5r1hAQFmY2jUqj4bGxY1FUKlNGY0BYWKnUcIOhVZkxUm1PUCZ/Onqv9esJj4qyaBNWVhQrB3PIkCEMGTIEgLZt2/LRRx9JFfECbNq0iWrVqrFy5UrTN9jf35927dpx+PBhWrVqBUBUVBT9+/dn1qxZgOH/My4ujpkzZ/LVV1/ds/VLJKWN1TZeikLDfv04MG+ezXqfo+vXU/nxx3l09GjZR/YeIm2apNySkgjbYqH3SPC17agKvd6i1KXFhAm4eHvDV2tRZg2/XaN95hjK2sOI6cvNj4PB0Z6+AnwrEVCxEr3Wr5c27R4gbZrkgaeYtssebHZSaNEBLl8oVPRR37QNLcaPN+lQqDQaBn/3HW5+fqTHx5vZTms9sEuCNivLFKmuERHBkaVLST1zBu+QEJqNGmVwtG3cw5SO3qoVQ3/8kcCmTe9oLcXF7oLH77//3urx3NzcYrX9Kq/k5eXh4eFh9ofT09MTwPQ058yZM5w8eZK33nrL7Nr+/fszadIkcnJycHJyunuLlkhKGyFA6EGlBr2ejCtX8Ktf31TX4+DigoOra5HiFpd+/pnmY8aQnpTEHytX0mTYMBm9uctImyYpt6QkwscxEN7NbMNqbPHlqM222dombPBgXLRZlg71qTiIGowSswbRvD3KtqUQfwaCQ9B1H47iF0R22nXQ61lUrdpd3ehJDEibJnngsWG77gSrnRQUBTr2g0/mFSn62DhyGme//RbvkBAeGzsWNz+/ItuCaVxc7njdBYXT7HmAebdbJtr9eGHt2rUsWbLE9P6vv/6iVq1auLq60qZNG65cuVLo9UIIrl27Rk5Ojv2rvY954YUXOH78OB9++CHXr1/nzJkzTJkyhSZNmtCyZUsATpw4AWCRFVCvXj1yc3M5e/bsXV+3RFIihAD9rTYJep1ZXQ+x0YYUpGXRBARWNKvrycvKIi8zs9jiFh6BgbSeOlU62vcAadMk5RVjfXTBOmljiy/XgADrrW1UKnxCQlC2x1rfgO7ZBM8/inL1MuLFaJi9Hu2QyRzd+x2n9uzBxcuLjORkuzd6sja7dJA2TSIpgKLgFFTFEC3Pb9OcXAw6FcUQfVQ5OpnSst38/YvVFszNz69UarkVRSEpLo65bm73ddtEu53tBQsWoMoXnn/55ZdxdHRk0aJFJCYmMmXKlEKvz8vLw9/fn2+++cb+1d7HtGrVih07dvDmm2/i5eVFaGgoSUlJ7N69G/Ut+fnU1FQAC8V2b29vAK5du2Z17pycHG7cuGH2JZHcMwo41WxdWkhdT03zuh4h+GvzZppERtolbiG5+0ibJimvZKakmL2acWvzeSQ21mKz6Orjg6JWF74BPRUH6xeiqNXsGjmSH+fNI6RDR2p36SJrs+8x0qZJJAVwckFxcLS0aTlZkJ1ZLNFHodWanF2h11u1nUb86tcnIykJZ2/vUq3lvtuRanuxezd77tw56tevD0BKSgo//vgj//nPfxg7diwzZ85kz549hV7v6OhI5cqV0ZVh8/B7wc8//8zzzz/PiBEj+O6779iyZQt6vZ6uXbuaCW+UhHnz5uHp6Wn6qlKlSimtWiKxE2NdT36n2tm1yLoekZxAi/HjATi4aBEewcE8s3y5VBy/j5E2TfJQ4uSCysHRaqlL5rVrxVYdFzodT8fGEj5j+l0T4ZEUjrRpkgeGlERDQCPlDtXFiyInC5GXa2nThIC9m6F7ZKGij/QeRVZaGnmZmSgqFSq12maZYMP+/Rlx+DAuFSuyPzqabQMGsD8mhvT4eIPgZDnGbuuvUqnIzc0FDPXbDg4OtG3bFoDAwECuXr1a5Bxjxoxh4cKFZGdn23v7+5Zx48bRrl07/vOf/9C2bVv69OnDl19+ye+//87atWuB209Gr1+/bnat8Umqj4+P1bknT57M9evXTV8XL14sw08ikdhACNt1PZ+vKLKup9GtVPKkuDg+HzpUKo7f50ibJnkoyclCn5drvdRFr+fa6dPFUh3XZd6EJ924umuLfHB4nyBtmuSBwVibXdbOthDkJFw0CK4VtGkbF4F/MExfbnlOrUHMWIHwDST7VhaH0OvR63RWbWdAWBg91qzh6IYNLKlZ06zl6+IaNYhbt65cO9x2C6Q1btyYDz/8kMqVK/Pee+/Rrl07k1jEhQsX8Pf3L3KOCxcucPLkSapWrUqbNm0ICAgw+2OkKAqLFy+2d2n3lOPHj9O9e3ezY5UrV8bX15fTt57yGGuATpw4QZ06dUzjTpw4gaOjIyEhIVbndnJykoIcknuP0N9RXY/G1ZVHXniBCpUrG9LEFaXE4haSskfaNMlDiZMLOQkXaTZyJAfmz7dIh/xu6lT6bN5sW3V8xgrwDSTj0AE8s+/v1MaHDWnTJA86GcnJuBlfi9sUyrnw2ujMf0/g3LYzzFhhHkw5FQcxQxHRq8Gm6GMazhUqmOZSVCqrtrPFhAmkx8fzxfDhNmu5a0REGLKAyuEe0G5ne+7cuTz99NOEhYXh4eFhVnu9Y8cOmjdvXuQcu3btMhmmQ4cOWZx/EJ3tatWq8fvvv5sdO3/+PCkpKVSvXh2AkJAQateuzZYtW8wM/ubNm4mIiHio1dwlDwAqK7WK9tT16HR0/+QTC6f6ZnKyVBy/D5E2TfIwYeqn3XMgTnl5OKvVdFuxwkLo58Rnn5Fy8iS+XZ63UB0XvUeBr6HtTG6CjGzeb0ibJnlQsOVUZ6ak4JbvtVCEwPeWTfPNyzVkJxZ0ZJ1d0d1IA5UKOg+CxyIgn03T93wR9HouHDtJ5SGT0bi6os3M5OimTRxcvJg63boRHhVlms4YRDGzncVo+arXajmydCnh0dEGXYxyht3OdsuWLU2R6dDQUDMRicjISGrWrFnkHOVRzXHUqFFMmDCB8ePH88wzz3D16lVmz56Nv78/ffv2NY2Ljo5m4MCBhIaG0rZtWzZv3szBgwf54Ycf7uHqJZJioLdSq5i/rmfVfOup5GoN+p4voigKc93cLFreGBXHJfcX0qZJHmTSExM5Ehtr6O1axEM8W/20i+rjKvyCEC8aNodCpwOVqlxGZcoL0qZJHhTscqqtoddDSgLKtli4dBqlcuit3txBBsfamiOuUoFfEGL4dINoml7HhR9+5L/jnza0b1UUHFxczMTI/Bs2RKXRmLXyKtgD+0Z8fLFavqaeOYOqHDraUAJnG8DDw4NmzZpZHO/SpcsdL+hBZdy4cTg5OfHRRx+xYsUKPDw8ePzxx9myZQsVK1Y0jXvuuefIzMxk/vz5zJ8/nzp16rBjxw4ef/zxe7h6iaRohKKCXiNRCjrVGxdBl0GGuh5raZXTV5iiPaWhOim5O0ibJnmQuZmYyP6YGOp062bT2VZX8LLZT/vA/Pn03b6d2l27Ej5jBioHB/R5uSgaB5NDrSgKyTs34ffBBFLGLMKv58C78tkkJUPaNEl5R+PiclvItqBo7ar5sPRbaPykTUdcKAoCUAC9gLPffmtwtAGEsFD99g4JQa/VWnRZsOiBbaOW22Iuna5cOtzFcrYXLlzIwIEDCQgIYOHChYWOVRSFV155pcg54+PjWbRoEQcOHODatWv4+PjQqlUrxo8fT3BwcPFWfx+hKAqjRo1i1KhRRY6NjIwkMjLyLqxKIrlDUhINddq9RyK8/VEqVrKsVSxGXc/f27dTr1cvWr7+uuwV+4AgbZqkvONSs26hPWE/7dWL8efO4ZCXhcugxlx9bZl1hzrNSgsxyX2HtGmSe0K+fRS+t/c/9mTfFBc3Pz9LIVsjIfWh0eM2HXExYwV0HsThZR9z8aefeGLiRJvaFXC7TWt2WprVtSiKwuW4OD5p1YoJ588Xa67yKo5bLGd74sSJPPnkkwQEBDBx4sRCxxbH2f7rr79o3bo1eXl5dOjQgUceeYSkpCSWLl3KihUr+OGHH2jQoEHxP4VEIikbjIqYbXqg8g3k4JIlPDZqFPqmbVB/vtysVlHYqOs59MEH9N+5E0Wtpk109L3+RBKJRGLqp/3rzFlF1xHOmG7QprADV19fs1eJRPKQYtxHhXczc7Yz/46DZTFktn68dJxtRcHFy8twL2slfc9NgCvxttu0zoxE1yQcBxcX/tq4keRjxxhx+DDPLF9uIWyWv01ryj//FLqsvMxMMpKT8a1Tx6oOxsPQ8rVYzrY+nxy7vhSk2SdOnEhoaCh79+41tVkAQ2uFjh07MnHiRHbv3n3H95FIJHeGSaTjShIuNXVkXrnCskcfpcX48TQyOtVZWagcHTn55Zds6d0bvU5nqut5GIyoRCJ5ACmkn3Z+Us+cQeXgaOi8YAdufn5mrxKJRJIf1fUU2gRB8vXSyYxxcHFB0Wisd4cxtmn9ZF7RbVqHTGZnZCRJcXF8NngwPdasIaR9e5vaFQVTyK2hzcqyqOW2Nld5pUQ123fKgQMHWL9+vZmjDYb+hlOnTuX555+/F8uSSCQFyC/S4ZqvpcPOyEh2Dh9ucqob9u9PjzVrGH/u3ENnRCUSSdlT6imXhfXTzod3SAj6vFxU8mGhRCK5j8nLykJotYYa7ILY2aZV4+KCNiuLvzZtIvn4cbqtXEl4dDQqtdpCu8IeLGq5H5KWr8Vytu1VYGzdunXhN9VoyMnJsXouJycHdTksjpdIHnSstXQwimUc37qVhgMHUrtLl4fOiEokkrLHpuCZjXrIIhGi0H7aAIFNm9LyzTcNDwsPZNhun1MKuAcGEh4VJTUtJBJJyRACnVaL2pqQrR1tWrWZmWbR6qS4OH5duJBe69dDhC9Xxy6+IzHI/LXcBbvTlFeK5Wy3adMGRVFMSsL5N89CCIvNtE6nK3S+9u3bM3XqVB555BFq165tOn7q1CmmT59Ohw4div0BJBJJGeN1u+awOGlAN5OSZN9siURyd7BRD6lKSyY80PBqi6x/T+DdtvPtB4jGEpisLBoNGEDP1avhaiLKGhvtc0oRj8BAqWkhkUhKjqKg0mjAmpCtEPD1p4ieIywdcSNqDbruwzm6aZPFKVOGz/Wrpbbcgsrm5ZliOdt//PGH6d9XrlwhMjKStm3b0qdPHwICAkhKSmLLli3s27ePFStWFDnfwoULCQ8Pp379+jRs2JCAgACuXLnC0aNHqVq1apGK5xKJpOwRQuDbrb+hD6NOZ3qwVlQakOybLZFI7jVF1kN6+aK7kWZ6gFivd280DhpUjk6GNEm1BnavQ7HWPueWam9pO9wSiURSUhxcXFBpNLaFbJ/oBN7+lo44mNq0Kn5BHFy82Gxeo1J4TvwF7FOukBgplrPduHFj07/79OlD//79efvtt83GPPPMM0yaNImPPvqoyMh01apVOXr0KCtXruTAgQOkpqZSu3Zthg0bxtChQ3F3dy/BR5FIJCUmJRE+Xwndh4FvIEKvh+QElO23Izqi10iEXxCKSmVwujUG86HS3BPpB4lEIrEbqw8RAYeMVFPfWdWgiQgff0tHGwzvZ0bCYxHgF3RPPoNE8lBT0tKRck5eVhZ6rda6kG1mJioHB8588w0hTw2w2lGGipX4bMiQ2321MVcKT/1+t3S2S4jdu+Q9e/awfft2q+c6duxIr169ijWPu7s748aNY9y4cfYuQSKRlCZCILx8USKnIrR5oNfDV+tQZplvNJVV8xHTlyO6PC8FzyQSyX2BqWNCcjJudW8fV+lSodmt11tYPERs3BLRZzQifwRbUWD6cpQiVHvZthRGRttemG8gjIiSzoBEUtrYKB0pTUokyHgXHgJYs2tgKJdpW8OF7CuXrQrZAkzJyODPVav4ZtIkC0f80sGDVHnSn4i5c/GuUcNqiaDuRlqZfKaHAbt3zO7u7nz77bdWz3399dcyKi2RPEjo9YjkeJSPZ8LUASinjho2o7Ns9GGcNRxSEk36DRKJRHIvyUxJMXs1otKnGTal+jTglqP91VqUbjVgxWzYsxGcXVEuXzCPYNuh2otKDbYEXX0DDc64dLYlkrtDSiLERhte7xCjIOPNxAJzFXYP40OAUri/LQraNTBk6/i1akvr0xk4+wWYhGxVGg0IQV5mJnlZWeRlZuITGkpSXBw7IyOZ4+7OXDc35ri5sbpdOz5+9FEykpMJj46m1/r1hM+YjkdQkAyulAJ2R7bHjBnDjBkzSEpKokePHvj7+3PlyhV27NjB2rVriYmJsXpdhQoV+P7772nWrBkeHh6FKhQrisL169ftXZpEIrEHvb5EER1l21LEi9G2N5kSiURyP6BxBQybUcNDxHx1irb6ztqh2oteh+utFqauvr6Fj7+FVB2XSMqIuxDxzvg7DrePY8io/zhurYp3D1vZN6WB0OtJT0jgSGws106fxic0lBYTJlgVshVCmHdfuOWIG0k+fhz3SpXIuXgWl0GNufrasjtSHZfcxm5ne9q0aXh5eTF//nxWr15tUikPDAxk0aJFvPzyy1ave+211wi89cfltddek+2AJJJ7iRCIlARzR9uzYrEjOop0tCUSyX2KEALPnpPAYRqeeTmg1xtSx/M71bYi2ELA3s3QPdIghmZDtZfeo0BR4ebnB2B6LQqpOi6RPLhkpqTglu+1rK4pCrWnP0KvJ27dOlMrViMH5s+n7/bt1O7alfAZM1A5OJh6Yzu4uJi1bzViUZud/fAohd8NSqRsNHbsWF566SUuXbpEYmIigYGBVK5cGVUhqQZRUVGA4Y/guHHjcHNzw8nJqWSrlkgkd4QQeoMYUEh9eG6CIcLj7Ap6HTw/Ec4cg1Nx1i8ODkHodNLhlkgk9x0FIz3+jRrRavJkS6e6sAj2xkXQZRBMXw5WVHuJWmmInMmggUTyYHOfiq3Zqs024lS7OekJCRZOM4Beq+XTXr0Yf+4cDnlZ5lFqRSmyfauszS59SiwjrFKpqFq1KlWrVrXrury8PPz9/fn888/p2rVrSW8vkUjuAEWlBh9/WHsYMuLh6Dy4cRoqhEK9kYbjUYNhT4F+i2qNQbVS1vBIJJL7CHUFL+uRns2befL11w09so0oiiGybSuCfSrOYP9i1kDz9gYxtFuqvfQeZdiUG22gFEKTSB5YSpIWbnOuUkwXt1abbULjhkPlevw8c7aFo21Er9VyZOlSwmdMNzxUzIepfeuM6agcHE1R75JmHMvSmKK56ztmR0dHKleujE6nu9u3lkgeetITE/lhzhxDBLvPaDi9AT6tBX/MhtMbDa8ba8CZDYaNZq2w2xerNYgZK8A3UJaBSCSSu4oqLZnwQMOrNVxq1rUe6dHruXb6NKLXSKjbFGashB9vwoEM6NQfKlWBt7cZItb5+WYr/LLH0ApxxAyYvR4xfLqh3Vf+h41SCE0ieWCxJbB4r+eyihB49ZwEw26iUmuoERFBQFiYzeGpZ86gcnA0PFgsgKIoXN21BZ504+quLXe0pzOWxhRbtf0h5J6Ep8aMGcPChQvJzs6+F7eXSB5aso9+T42kjxEoiKzL8MNwEAWejAot7B+OyLli2Jh2GgCR0xBfnIPOg6QypUQiuTNKoBqsup5CmyDDqwUubjgFVeFIbOxtR1tRcHB1BUXhu6lTwS8IseY3CG9ryOT5dgD8ORduXkK0fhqxNwkip5nsHV+cg5ZdQKUi5YtP4Uk3UnZtkanjEskDSHpiIvuio0kvqC5ug6Ie7t0Vbgk8AoaWrMnxKMtnw9QBEBtN1TohvHj4MA3797d6uXdICPq8XEPJjC1kbfZdocRp5HfChQsXOHnyJFWrVqVNmzYEBASYPVVRFIXFixffi6VJJOUWIQS+7fuhdByA0OtQ/o61dLRNg7Uox5cimkWjzF6P0OlApZIRbYlEcseUWuqmEPg+/Sz0HIhKr6NGRAQpJ05Qs0sXGvXrZ+oh++/evYCAf9fD/khzu/e/+RC+AqXWIMTwGSgODohbaZVmjrXclEokDyzGVl51unUrVgTW+HAv2drDvbLGGMF2mIZXXq7B0d69Dmaat2RVrZqPmL6cnmvWkHz8OElxt3V2VBoNzUaNIif+ApZx7cLRe/qyLwHqeRavw4KkaO5JiGrXrl04OTnh5ubGoUOH2LVrF1988YXZl0QiKRk3j/2PCy925+ax/5mOCaGHjHiUI9Hw/VBDzfaNIlTH088YxnWtSsrOTdLRlkgkpUJh6ZbFjkCZIj2zbkd6Gjekz+bNNO7UDs3qeTB1AJrV86jdIQIyE1EKOtpgeLC4PxIyE8mOPy8j2BKJ5K6g05/jXKQrOv252wcLRLCVf/+C5AQLR9swgRZl1nBEcgItxo83Hc6vLJ51+h+716X38mN/ouFVUjqUSmQ7MzOThIQEQkNDi7UhP3v2bGncViKRFEAIgVvdRrgv+xyh0xn6yyLg1FqU/caUcQVafWAQQysMjxCENhcl6eLdWLpEIpHYjEDlKamc7QhunirrkZ5aYahGzEB8tRbVrOEGXQonF8jNRjVsMsQVnsnD8aU4N7EUE5JIJJI7wZqyuBACv24TUTtMRZeXgxACRQhzu6Yoho4In8yz3oIQQKdF/flyGkdO48KBA1SoXJlmI0dKZfH7DLsj2++88w4xMTGm9z/++CPBwcHUqVOHWrVqcfp0EdEyiURSJgi9Hq7EoyyLgeihhletFjIS8jnaAAJOb4a6kaDYeN6maKD+KLIvXbhr65dIJOULe+skC0OrSuNiJ1dca9aDFCuRnucmGOzfpvdg6rLbImg/pIOTa/EyeTTWxYRcfX3NXiUSyf1HRnKy2ev9QkFlcaHXkx4fzw8zZ7NtwAB+mDmbvMxMREG75uRiaMlasG1hfmqFQYv2qBw0dF+5kjbRUXgEBZWJto4xvVx/j9LLH2TVc7u/G8uXL6dy5cqm96+++ioNGjTg888/x9fXlylTphRrnpSUFKZOnUr79u1p0KAB7du3Z9q0aSTfZ78kEsmDgNDr4cddKIe+gaFvQvQnMOxNFLXKem320UXgFgzhyy0dbkUDbVaCayBcuwLITaZEIikEG4Jnxij1TTucbWvCREIIgjtPonXrDNyCGxn64upuC6Hh4gYd+8Gx32DVr+YiaEfng15b7Ewea2JCbn5+Zq8SicQ6pfmAzV7KXA28CIzZN3mKeW/sPFU6ZyuC8HY3tSdcXKMGP8yezV8bN/LDnDmoFAUlv10Dgy3KzoTKNmzXU/0NbVpr1YDD0fDtAJQj0SiZ8SD0pf757nV6uS3Vc3ud8HvhtNudRn7x4kVq1qwJQHx8PEeOHGH//v20atUKrVbL6NGji5zj4MGDdOrUCb1eT/v27alduzZJSUksWbKEJUuWsHfvXlq0aGH/p5FIHkKEEJCeitKy862e2fPh5kWoUAOazbAe0bkWB98PhrZrIKgt/P0xpJ8BjxCoP8rgaCsqXFydAbnJlEgedtITEzkSG2tKUTQjJRE+joHwbnfcAkt34xTVXjC8wlOGKFBCAkdiY7l+6RI9PvnEEOmpFWaIZnfsZ4j+CB1E9IZT6yy7LFQIgXojDGJo1lLJ82Xy2CsmJJFIbmOvEFl5QqtK43xHCCmQup2nSue8DzxWvbl5e0JFwcHFBRQFjauVCLYQsHczdI+EVfPNHfFaYYb2rKc3WNq7W6KP1BqEuoJXmX3e+wWjE15W40sDuyPbLi4u3LhxA4Bvv/0Wd3d3nnjiCQC8vLy4fv16kXOMGTOGBg0acPHiRbZt28aHH37Itm3buHDhAg0aNGDs2LH2LuuB4cSJE3To0AE3NzcqVarE66+/Tm5u7r1eluQBQwiBMBlXPXh4Q9JPiMv7EE3ehLafIBpPROjzIKCl9UlOb4Ltj0JWMqJZNLRbD82iwDUIlFumwTcQRkTJHrKSQpF2rfxTkih1SdCLi5zvCGoPrXkUaM4cjm/ZYmhl06aHIaKTP4Kd8idkJlpvZ3j0XcMDxPAVhWbylERMSFI+kTatlClBu7/7EZ3+HGeHYC5qdguVLt3s1RwF5+BmHImNxa9+fbqtXMnUmzeZkpHB61euGOyatQj2xkXgH2yo3Vbns13PTYDMhELatxpEH11C65T0o0pKEbsj282bN2f+/PmoVCoWLFhA586dUavVAJw+fZrg4OAi5zh27BhbtmyhQoUKZsc9PT1588036devn73LeiBITU2lXbt21KpVi+3btxMfH8+rr75KZmYm77///r1enuQBQQg9ubkJJCTEkpV1GheXUCoHT0AT1Jrc7BokXJxnOh4UOALHBqNQrvxiaHtTkNTjCNdKhn//PgfqDjNsSo34BsLI6LvyuSQPJtKuSWxRkl61ishAo/HF/VYU6ODixTy9bJmplZfQ6xHt+6CcXJtvo6kYSmL+mGc9cm3K5FkLwRFwfKnVTB4nR8OWSJbNPNxIm1YGlCD7pdBsGjtR5SYT/rThtTgYnWqXAk61TonnfCOodS3e4hpFpJu95juDRlMRtYMTrv7+vHj4MOJKPOrV8+DSaTSVQ9EPfh3RayRKwQj2qTiIGgwxaxDN26NsWwoJZ6HLQPhjVtGij01nFOvzSsoWu53td955h6effppnnnmGatWqMWfOHNO5zZs3m6LchVGzZk3S0tKsnrt+/TohISH2LuuBYOnSpdy4cYMdO3bg4+MDgFar5aWXXmLKlCkEBQXd4xVK7neE0JOUtI5//ok0Rbbd3MKoVm0GSUlr+eef4fki3nDhwnzq1FlBQNvVKKl/w9Xfb0+maBDhK8A1EEVRQdOpd/vjSMoB0q5JMpKTcTO+1r193FavWmNto1OB2kYhBEE9FxOsvI8QOnJvZjL8118BgaIxPNRHEaDNhr/eu73R1LiApggRtNObwKM6PDYX0WQ6isYRoc1BUTua2nzJ2mwJSJt2v1CaKemqvBTaPAPJeea2yJpSOBTuVNuFEAQ9s5Bghw8QOh3Nx7wEX60z75iQk4Xqp68Qq39DzFiBUlD88ZutiI4D4MkuaF+YgsblVrFLcUQf1Q5WRR9LwoMsUHavsTuNvH79+pw5c4bk5GTOnj1rqt8G+M9//sM777xT5BwLFiwgKiqK/fv3mx3ft28f0dHRxZrjQWT37t20b9/eZLwB+vbti16vZ+/evfdwZZL7FUO6uO7Wvw0R7fyONkDlyhPIzY23cLQN12j5559IcnMvI7r9AE2mQc0B0GQaYsA5qDXI4GhLJCVE2jWJLWEiWxtZvYgnvosvenF7IyuEntyceM6di+b48QGcOxeNyikXRaMmT3fF7Hiu7iqi568Q2t9wsTYLtJlFi6ApGkBP2va3YaUbadsXyH7aEgukTXt4KKgUfmcoqFSuwC2bUrBn9sk/ITnRsmPCjzeh71iUpdOh8yDEzjMQOQ06DYDIaYgvzsGTXbjw0wFAACD0uuKJPup1VkUfS4ItgbLCkA66gRL32a5YsSJCCBITE/H390ej0dCoUaNiXTtp0iSuX79Ou3bt8PT0xM/Pj+TkZK5fv463tzdvvPEGb7zxBgCKovDnn38WOt/Vq1f57bffSExMJCsri4oVK1KnTh0eeeSRYvX9vlucOHGCYcOGmR3z8vIiMDCQEydO3KNVSe4bMhPh5Fqo/Ty4Bt7afCaQkBhLVtYZ6tZdSUJCbAGHWsHfvx8XLsyzcLSNCKElIWEp1atHI5pFo6jUBgOsqO6r3w/Jg4m0axJb6Lho6I0tLt4+KATB3WdTWTXPYIeEQCAsMnOKzNipvZyAtmtQUo8b0sSN7QyLEEEzxRi0sp+2xDrSpt3f2MqkKQxVeqrZa8kp4FAbyR/Bzss1ONrGntlCD54VYfpylB93wapfEbps0KhRAOGghqf6oKidUQ5+g/7RtuiGTEbj6oo2M5PUs2fx9QukatNQlL/mwY3TKGETod7Iwu1d3RGGYEopRbZLwr0QI7sfKZGzvWfPHqKiovjjjz/Q6XT89ttvNG3alBdffJHw8HAGDhxY6PXNmjW7403+9evXWb16NatXr+Z///ufQZE5H4qi4O7uTs+ePRkxYgQtW9oQibqLpKam4uXlZXHc29uba9eu2bwuJyeHnJwc03ujQF1xOXnZMD7E1xWNxvAtv3I9m7SsXDycHQj0crEYW9XLFWdnw9iUm9lcu5mLi6OKKj7uJRp7+spNdHo9QV6uuN8am5aRzZX0XBw1Kqr7lmzsuZSb5Gr1+Hs44uVmUM6+ma0lIS3TrrFqlYpQ/9tjL167SVauHh93R3zd7R+bna3lQpphM1e70m1tgsS0LNKz8/ByccTf0zA2N/eWKqWzP8ojr9/agOrNNpkqlSsq1XqysszThlQqF9RqV4vjBcnKOoOiqEk69DV/LRuHe993qNq8XZHf+9L4ObH2/SyNnxPj9/NOf04Kfj/v9OfE1ve+vFISuyZt2gNo07RaUr2DOZOWR/4YRWJaFucz07jS1RvvW2nhxt+BG7nZZFZ2JTTlJmCIXqPNApUGUIPQItCQm5to4VAXmbFzcjjeXm1wbDQeZX+koZ1hrUGG2u39BUSD8omgXbuZy8VsDRq9s9mcJy/fQEnNoRpqHG8dM37vXdNzqZxvrLRp5Zt7YdOgfNi1G9kGO3ExXWtmJ85fz0Xl6IdHVh5et44VZddIumzSfMj/81ohJQU3DJk01/L9vBozabJyUzl5+YbZz7bqZhrXta5cSrmJuJlt+tnO0UOKtgLx2Rq88603NVdNjtaJ67kqjEpUWq2eQJNDnWNQC1cUQ+vV5ASU7R/DtcsovUYifPxRfvoKseUYVAlFUdSGLMWIPqAIcvOuknBhxW19nUqRODpWQWkRgUpRodfmGW6qUvCtVxdOrkXJL4aWegx6HbZt71qvANcg9Fot8cIdRXf7tPF7n5MN+QtmjN9PJU9rMba07Zqtn5PyatfsdrY3btzIoEGD6Nu3LyNGjGDEiBGmc6GhoXzyySdFOturVq2ye6H5mTt3Lu+88w7e3t48++yzREVF0bhxY3x9fXFyciItLY1z585x+PBhdu/eTUREBE8++STvvfce9evXv6N73wvmzZtHTExMia/vuOhHAFYMbkZE/Uq3ju0nLUuLg0rh1NwuFmNjutVjyBOG2vnOi34k+WYuapXCaStjX2oTwuud6gHQ84OfuZiahaLA2XldTWMjFhpKBvo9Wpm3+jQG4NnYg5y6chMFODvfcmyHev58POQxAIauOsIfF9MAOJdvbJt3DGNb1PBm80iDXsBL64/ww6kUm2MbBlVg17hWAEzeHscXcYkWY1u/vR8B1KjoyveT2gKwYO/frP75gsXY8AX70Quo5OnEr5PbA7Dyl3O8vecfi7Gt3v4erV7g4+bA79M7AuDgoDJsQMWtDSjKrXTx25tMvT4LnS4TFxfztCFbxwvi4hKCEDpcqzRkrO98sr4Dx/37ODmns2mM8fu58NkwejWrAkCn937gWkYeGpXCv1a+968/VYeX2hpKSZ5ecoDL13NQKXDGyvd+yBNVielmyH559qNfOHs10+b3/pmwQJYMaArAoBWH+CvhhsX/pfH72bqWL2siDa0CR677nYNnU22ObVLFix1jDA/eXtn8B1//fcVibNt3DN/7Wv7ufP1qOACzdh1j8+FLFmNbL9iPEFDF24Uf32gHwHv7TvHhvjMWYyW3kTbtwbNpn57K5LMXY/lsbwrn2t3+Xvx0OoWn+76Is8MY9LochBD8GZ/GhdQsuj37Dk4OixG63Ft9XwW52mQSLhs3mTWpXn0GCYklzNi5vJzqoZMNyrv52xkGtzcTQdPXG4XKzSCC1n7Rfq5lNKKa5j0+80kyzWf83i+o1IZnbx0z2jQ1gvyPM6VNkxTkTm0alA+79uqBVI69GMtnu5M5F377s4XvSIHWn9Dyu6usb2I4VqRdc8lm1y3Nh/x27VC+zsD57dr2amnQDNZdgmW3PnP+ebtfWcb5i14ELDlgsmufXfFgfsIGQHAu3/diyLHHuJrXiTqu59kDoNejupqAyuhQ+1SCfi+Blx/8/iMEBCFGzbjtVOfkIuZsMGQnnosmK+s0np4tCQoaTVLSeotyQFO2TqXnIesKmmPvw43TaMImIlz8zR1tKNTeUXs4uAXBzRtsPXmT11t/wvjEdF65deltu1bBql17tqYLRje1rOzaGz+n8T8rPyfl1a7Z7WzPmjWLCRMm8J///AedTmfmbDdo0IB33323VBdojX379rF9+3batGlj9byvry++vr48+uijjBo1itTUVN5//3327dt3T51tb29vq63RUlNTzWqDCjJ58mReffVV0/sbN25QpUqVMlmj5O4iLDagttLFBVeubCYwMJILF+bnO2fr+G0URUNgkCF90iMwEI2TE+ToLMZJJCWhJHZN2rQHDwfdDQwPA29nkQmhp3M9SLw083aEJmgkzUOCeEybi6LSGwYqKgSQdHkd/5y8/RBRpXKlRo2Zd5axo3EFtQvosuDMVqg5EKp2MYmg5eTlkXg9h+ruUptCUjykTStnCIFXr0ns6+tETl6eyXEz4uKgJltrvndSFMPx0ICKhpTwP35E8S/gUGfcRMnNhmatbDjV5mK23t4dyMm5YOFoG5Z4K1vHOwLHi1/DH7MxdllQbHVZOL0JUo9D+EpoFg0qNWRnwtebDQ8BWnbhk5+O2v5vQWFfAtTzlN0XyhpFFMy/LgJnZ2e+/PJLIiIi0Ol0ODg4cPjwYZo2bcr3339Ply5dyMoqnWL88kbr1q2pWLEiO3bsMB0z1qmvXLmSF154oVjz3LhxA09PT65fv27RPs0a5SE16YFLubSRnvLvr4dI3bYSv2eHUe2xRwFB0uW1pg2oSuVK69YZHD8+gCtXNpp9H93cwmjW7DBXrmywqG20dhwMjnadOisJCBhoEkKz53sv08jv79Sk+4HSsGvSpt3/Nu3SvnU4Hx/DuRrv82jn5612RgDw9x9IvXqryc1NNLUnrFJlIg4O/hw8WMMigt2q1U0uXJjH+fOzi3HcnGrVplG96jSU/cMMYkD1R6HcauOV+ulsdGkfEO88njp9J5rZtMTPFxGSGYPWZyrefaeZvvfK2WNUe7kVjut+g7pNb6eRXzxO5dGPw7ojULeptGnlnHth06B82LV/fv6Nj57uxYAd22ke3tw09sTuL3GbNRT1zFUEtTdE3Yuya6ofv6DmW4NInroOl879bqeR//Q5fnMMx7PDu5t+XtVfvYN32nTiPWaR0XYcni6OBFRwNPSjPh5rUO+uEIqoNxLFLQiBgsjLReXohC43F5WDg6HEVQj0ulxUGieEPg9FLxBqTT4NHcODxeCgsTg4+lnYwTp1VuLt3ZaDB2vls3d22LQqk1FWuhk6LAzLgG8HwOmNNq+h5gBotx7mjgRvf+g9ytBeTaXi151fcn7icP7vgxVU69DF7HuffvIEu8Jb8OKRIwQ2vW3XlPMn2PB/huMOteuXiV27ePYiP6xYzyMD+9GgXg2LseXNrtkd2a5UqRInTpwgIiLC4lxcXBzVqlUrlYWVRzp37szcuXNJS0sz1QNt2bIFlUpFx44dy+y+1n6I/D2dTTXDRY31dXc2/XCWdGz+H3ojXm7Opl+Qko7N/wttxN1ZY3Vt9ozNb1RKMtbZylghBKEtmqL832OGp6JCkJt7ySzSU1haeEZGHCdODKZu3TV4ebUjMXEZWVlncHEJQadNIyDgeby925OQsNR0PChoFI6OgWaK4/Z870vj58Ta97M0fk6sfT/vh58Ta9/78sy9sGvSptk/9k5tmktmGhWdtSjiOkIIq50R3NzCqFv3k1ubT6NdU6hTZ7mNlPA7y9gJChoFigO0W2/RxgvAl8uonbUmBwMMPydqV3c8fsrmagcv0/HalSpAmhNwO+vH9L1PcyQ/0qaVb+RezRx77FoFZw3eqfFU8TB3Lypmp+GXm0xyPoGyon5ek/NNkX9s/k7Z+X9ejTO7qiG4UgVD6cqpdYYyk/xBiP/NR3TYDlW7muyFogh0OTmonRxBm4Wiun1zodZYfbDo7ByKt3e7Asetl8CUKFunuF0WbqmOK1NiEXk5KJrbdrBa5UD2nLpM64qVTMON3/vEBPPvkfH7mf94Wdm1KjWqMHD2m8UaWx7smt3O9oABA4iOjqZu3bqmNG5FUfjrr794++23GT16dGmvsVBmzpxp85xKpcLT05NHHnmEVq1a3cVVWWfUqFEsWbKEHj16MGXKFOLj45k0aRKjRo2SfRvLOebK4vlrFT8uZrq4gStXNpGZeZJHHvmB6tWiUFQahC4HtLkoOh2OVKR69WhDmpNeC4paKo5LyhRp1x5QMhPhxEqoOwxcb0vUpCcmciQ2lmYjR95u8SIEPh1HgGYsPtocQG+l1MW6qFlRm8xLlxYREDCIOnWWm11n6zgYM3ZW4OgYSMYv23E/MYQ098mmKHVR6NXecAT0nbzNT/gGwogow6vkoUXaNANWbcGDcg8hDBHtAo42ACF9UKp2QmQmoPrbEPFWBbREaTCagroSxqwcy9RvBX//vsV2qu3S19FmouhuZQgXs8tC7rmjOO1raZcdlNw97Ha2o6OjOXbsGB06dKBixYqA4SlgcnIyTz/9NG++afmkoix59913yc3NNaWuOzs7k52dDYCLiwt5eXnodDqaNm3KV199hZ+fX2HTlSne3t58++23vPzyy/To0QMPDw+GDx/OnDlz7tmaJGXArd7Yikpzq8WWYtG+xlatIhS9yaxceQJqtQuKNhdUGpQ8HXy9FeHlh9KyC9yKYud/MiuRlBXSrj2ACAHOftB0Kui1JlVdgOyj31P9ZAzZR2vjETjAEB3KTEC5lYapeNWFZjOs2C7rEZ2iNpnGjJ169dZaZObodOlFZuzkXTphdxsvl9oNOFcrHN/aDcxP+AbCyGi75pKUP6RNM3AzMZH9MTHU6datzJztEt/D2bWIAXpD6nhBB9UnzCAq9u8GlPwq3qF9MZT15deVsJ2VY79TXcxsnUrDDbXYRorZZSHn1Jc42WkHZQ/su4fdu3FHR0c+//xzvv/+e77++mtSUlLw8fGhffv2tG/f3u4FXLx4kYsXL9K4cWPc3Nzsvv67776jX79+REVF0b17d9zd3bl58yY7duxg5syZrFmzhszMTAYNGsSkSZPuWAn9TqlXrx7ffPPNPV2DpAwpsDHliffIVbItnOaSposbN5lkZcLqt+HKJfAPRvQehXKrRkciudtIu/YAcctG5a9hpP5IcA0CRYUm7QzV28ANcdNGGqaCaPKmhe2yHcEuepOZnLyVmjUX4aircDszR+jg4mnITcQxpJ75cVR3lLHj3uAR3DfuK/4FMuL90CFtWuHcjai3VYTA9+lnoedAfPNyzR4UAoY6Z7UDKGqDfStIowmQEV/AcVUQVbuSmxNfQMDRdlZOSZzqorN1VuLoFIRydPHt6QpTHa8/ypCVpKjQXTcXfSsOsgf23cNuZ/vChQsEBgbStm1b2rZta3ZOq9WSkJBA1apVi5xn2bJlxMTEcPnyZQAOHTpE06ZN6dmzJ23atGH8+PHFWs+YMWN47bXXzNqNubu78/zzz5ORkcGECRM4ePAg06ZNKzTlXCIpESmJsC0W+o4Br4oFNqYqaLeWhHPRdtQqGjBLFy+4+bz5O9RtCi9GgVoNOi2KSm3+B0cikUi4vSl+bMwY3HwL2qhb/G8+hK+AWoNQe/pDGjjVbm47DROFoMARZrarsAeIxdlkOjj4oU+7jHr1O5CahOLth677cFTBhvmufDefU06LqHHlWYJ7fWi6Xq/yMqSE56u/BnD28oK0W693iox4SyRm3I2otwV6PaQkoGyLhUunUSqHQu+R4BsEioJXz0ngMA2vvBzQ66zUOisQ2g8KqntrXEFRWZT1FZ6VY79TbQikDKVevdW2s3UuHzAojOfHSpcFaxoV1pDR6/sDu8NgNWrU4I8//rB67s8//6RGjRpWz+Vn0aJFvPzyywwePJg9e/aQXxC9TZs2bNmypdjr+eOPP2yKslWvXp2jRw2y9w0bNrTaykEiuSNSEuHjGIPBK7gxdfZBUdSF1io6OgZTp85yFMX8uZdZuviWpTB3FMrSaHB2g7pNUVQqg6MNoNZIR1sikVjFuClWrNkoI0JrOJ6ZiFOt5qBxw7FKfetpmBoXFJUDjo5B1Kmd33bd3nwWtGfGbB1//wH83/+do1q1afj7D6BatWn8X4uzBAQMAAE6N0/0kVNgylL0kdPQefqCoqCoVGivx6PVplh8PlP9tdq8/tqlRi2zV4nkYSc9MZF90dGkJybe66XYhbqCl8HR3r0OnqkBK2bDno2G1yVvGqLbyfEoy+dA9FDDa062IWMnvy3SuBgcaysRb+t7Nds2DfLv4VaYnTc61QEBgyzsXWjoW4CCo2MQ1apMo3799VSrMg1HxyCDkG2lJ2HAOWgyzaAy3mSa4X1VQ4lg2va3YaUbadsXmO37TA8dVV5mazRGr+15ICId9NLH7sh2YZ3CcnJycHJyKnKOJUuWMH36dKZNm4ZOZ97vt06dOvzzzz/FXk+1atVYvnw5nTp1sji3bNkykyN+9epVfH1lLzlJ6ZKRnIybixvCwxPl98XmG9PsawihK1GtYlDgizg6BoHAkCKuViN0OlDdWfqkRCJ5CFEUXLy94PcY6yI7YDh+fCmOzaJh2E0UsJ6GeUshVzm/i4AaA/D2akPC5eVkZZ1Br8/EyakqdeqssBAUSk7eir//QCr6dDFl6+jyctDlakEYHGoHV1eENs+0ZgdX1yLtnd7T13qvWG8/81eJ5CHnnkSjSwHXmnUhJQFmRoIun/2qFQZRn8CBLyH9Ggx901DLnZ0JB79GtHoawlegGB8w2lL31mYi9Ll2Z+VkZh7nxo1fCQgYhLd3hEWkGhQcHQJtlsAk7HyV076rCE0ZcjtbR1GBaxCiyTQUjZP1CLaV2myboo8lQKaXlz7FcrZPnDjB8eO30xr27dvHpUuXzMZkZ2ezceNGQkJCipwvPj6eJ554wuo5BwcHbt68WZxlATBv3jz69u1LnTp1ePrpp/Hz8yM5OZldu3Zx5swZU5T822+/pXXr1sWeVyIpEiFw/b+28KOtjakerp8mKHBk0bWKDpWoXuW2cSVPi4JiqMFOSYQv16J0fV7WDEokEguKqp90cHFBUWusO89GfMIguL1pTyf0OhSrLWeEQSE3qC3Kjv/DseEYqodORtG4IrSZkPgDAZUGWG4+K72Io2MlSE8Dd0+4lZiT36FWFIWUXVvw+8+LXH1tGX49b5eHCcXD7NWI3suP/YlQx0s61RJJuUNRcAqqAstnmTvaAM9NMNiTlp0NddhH593WoXgkEkUIRK1BiMC2KCeWGWqdU09AvZEF1L0FXPiKoCDLvVp+DR1bqd8I0Kj8zZxqvVYPAhSVivjtYznrv9miBAYEer0VUTNFIW37ArxvzpPq4uWEYjnbmzdvJiYmBjD8MbSlOO7l5VUsAbJq1arx22+/0a5dO4tzBw8epHbt2sVZFgA9e/bkt99+Y968eezYsYPExEQCAwN57LHH2Lx5M4888ggAH3zwQbHnlEiKxFQ7tAyuxMP0ZVZ7ISqHpuLYfnOh7WscHPwMjrWivnVcDc75nmT6BsKQ1+/Kx5JIJA8eRUWs8rKyEDqtDecZCO1vEODJTITD0QbV8bCJVjaltzAq5DYab4ga7R9uSC/XZhrSNjtsx7FqF6oHT0FxdEHkZMLezXCrY8KVfZvJ3D8cxyZvEdRjrOV6sq1FbjzMXiUSyUOAkwuKgyNcKvCgUFHgqf6gcYB/18MPwy11KFovR6k5EL1LILqGk9G4uILQgQBaLze7RjkchWOvI4Vn5VTsYuZQX/v3NOkJP1KtVStUGg16bS5qBzVCq0WlccyXlaO3WgJTJHaqi0vuX4rlbE+YMIEXXngBIQQhISFs376dJk2amI1xdHSkUqVKxUpxHTFiBNHR0fj5+dGrVy8A8vLy+PLLL1mwYIHd7RWaNGnCp59+atc1EkmJ0esNaUs3rt5OWxJ6qPei5cb07FaUYx8Q0GBMoe1rAEPtdf5XiUQiKQ2EICs1Ddf6VpznfK1wzBR6U49Br8PWW86kHoekXw0Od6U28M/HtxVy645AuFeGG2koGxbBlUsoBTomKNf1VP8yk+RHip/yqNF7UW0vaJp7Fe8C10BoGmXWQ1wikTxg5GQh8nINYmj5cXIBR2dIv2DpaIPh/Q/DIagtKvcqzPP0Q1EUXr9yBc1Pu6DtAIPtOrncZLuU3BuGlHCvdiQkxlot6zv00VKuHD2Km58fzUaNolqrVgYNHeDyF1bSwu8SrrfKZF1luex9SbF29Z6ennh6egJw9uxZAgMDcXR0LPFNJ06cyIULF3jxxRcZOXIkAC1btgTgpZde4qWXXirRvHfaRkwisYUxTbPl66/jkJcFT3QyT1sKaAkNRhsUfQsKEP3yKop3GI6BrUq1fY1EInnIMHY/6D3S7pKSjORkXOvWsbRRVlvhUHjLmdrDwT0YhEA4VER5ZBo4OEFeDvrcXNDq0Du5on5xBopag8jLQdEUrZwLtmuwHYQ3QXsh+TFzB92mmI9rIDwabdf/kUTyMHLX2ngV2RvbCkKQk3AR594jYdX826nkudmGIMc/ywvXoTjxMaJZNNpMQ5T46ObNhHVsi/qF/zN0kek42bAubS7k5KBMHYDj/3Wk+lOTUZxcDVk5ezahfPoBYuFOHh01EpVag/6WTTPfw9lIC78LuPn5mb1K7i/sViOvVq2aydHOzMzk2rVrFl/F4b333uPUqVN88MEHzJ49m/fff5+///6b9957z94lsWzZMoKDg6lWrRqtWrUyCaz17NmTxYsXF3G1RFI0NxMT2T9zJhpHR0O94ekN8Gkt+GM2nN4IP481bExrDrRUkuz7LwQ8gbiRCkKBTUtQrl6RjrZEIrEPY/eDlOKrCavSkgkPBH3iBYP4Tq1B+WzUQIOdOrHC+ob19CbY/ihkXoZm0dBuPTSaDPu/hSEtEKkpXLsYjzbPIHSqzdMRt2Urp/bsQe3oSOq+PfCkGym7tha7Y4KxBltfoAbb6ITrCzjhJVHblUgktzGWodwsK5VyY2/sAxmG10KEli1wdiXz3xPgG4SYseJ25p+jM6hs9NLOT/oZFJUajasrDq6uHFy82JBp038czBkJrdwNX1otrHkb9m5GmRmJ8qQ7POmG0tINZWYknPgdZdtSFL2OH35wI/GLV+QeTlJsSqRGPnv2bGJjY0m08YtZUGHcFiEhIabIdklZtGgRb7zxBq+++ioRERF07NjRdM7YRqy4PbslksJwrVgRRa22nbb073pI/Rue3gdNpoPG0VB7+PVmRAVflFZdDRvO/i/fk/VLJJL7h8KiSaUZaVJdT6FNECRfv1UzKACVJxij0VD4hvVaHBxdaHC0I3zh+lVQaxBRK8HbDyct/Dh/PjcuXaJCcDDNRo3CIzAQRaVCdyPNav11SZBCaBLJA0hhvbFVKtPDQFVastllQggqPv0s9ByIV14eAqDTQHRNwlF/vhwSzhqi0bZ0KIx4hKDX5vFGcjIaV1e0mZlc+OVnqnUehGjeHmXbUoPujrOreV24EJa2K/4MioMTBiN659gSfZSUP+x2tt99910WLlzI66+/ztSpU5k2bRpqtZpNmzaRm5vL1KlTizWPTqfj4MGDXLp0iezsbIvzgwcPLtY8pdlGTCKxhhCCgLAwJiUnGxR6C0tbuvo7xL1t2MjGDAP/YHTdh6MKqAwgn4RKJBKgcFGzsmjRY9ardmYk6HXg5Qt7E4u1YSUvBx5/CoJDzOqv3fz9CZ8+DZWDI/q8XBSNg7RzEslDjIOrKxoXF3N7k19JfNV8mLECOg/CQWjNHwYCQq8nPSGBI7GxXDt9micmTsTN359N3bvz2JgxNBoyGY2rK3qtFqX+SBRrIo4AigZRfxRKbg6a1W/BpdNoKodSrddIUBQUvyDE8GkoDk4Inc6yLrwgwSGIvBz0+iyrp+11nqXo48OD3c72ihUriImJYcyYMUydOpUePXrQtGlTpk+fTrdu3fj333+LnOP333+nV69eXLx40WrfbkVRiu1sl2YbMYmkIPmN/s0rV3gmNrZYaUs4OEHUSvS5OejytKgUxSSiIZFIJCUhIzkZN+NrXfuutdqrNi0FdHqoO8K66jgY1MXrjUSoHVBmr7eovy6sXZdEInl4MAYmpmRkIPR6REqCIQW7YMsundZghx6LwCW0jvkcej1x69axMzISvVYLikK35cs5MG8eib//zs7ISHYOH46Diwu91q+nTrdnEK2XoxTMNlQ0iDYrwaUSyuDmcOL326fyOfvp362mQvwr5Lb9CaeCdeH5UWug9yiyL8VR7So4CEsHWaVUodpeUDWvYn6pCKbaUVAHBZsdt1v0sTB8A2FElGwPe59i9+7/3LlzPPLII6jVahwcHEhLSzNMpFLx0ksvFav11+jRo/H09OS7774jKSmJ1NRUs6/i1n3D7TZi1rC3jZhEkh+j0V9cowY/zJ7N78uXI/S6YkWBhP5WloVKbegjKx1tiURyh2SmpJi9FhtvP0Ov2m2x5htJIQydFdyDDa1wlALP3xUNtF4BbkHkJp6Fl9249vnH1uuv7UgXt1V/DYUInkkkkvsWodeTHh/P/pgYtg0ciNDmGVLHrTmuYDi+bSnOwVVvzyEE6QkJZo62a8WKOLi6cu20eYp3XlYWoR07cnzrNkTIAHTP/mumlSP6n4GaA1Cihpg52qZ7z4yElEScajUHbSY5J38zpLbnrws3otZA1ErwDSTn33+psRfUmDvUYBBxrLHX8Gp2uao6NVYbXoszvkT4BsLIaOls36fYHdmuWLGiKVpctWpVfv/9d1O/7JSUFDIzi/6De+zYMbZs2UJ4eLi9t7egtNuISR5ShDCkVao1oNMiVGoykpPNjL6DszPX/j2NT72i05Z0Obm87evL0B9/JLBp07v/eSQSyUOPEALfbv2h50AUsOxVCxAbBa2evt3GK18rHGoPB4/KICDjxAmcfslE3+7ON4aF1V8bBc8KIp1wieT+Q+PiYhGNdnB1RbV+vXV7k5/4M4Ye2k4ugMFhPxIbi1/9+rSYMIFG/fqhcXVF6HQ8MXEiyceOkRQXB4CDiwsOrq6c+Owzfpwzhxbjx9PoOUMvbW1WJiqNA6otS2H3euv3vuXsOw6fZnh7/QqoVNB5EDwWAduWQvwZCA6B3qMMTqxKRd5NPRwBfac7t4Mladeld/eCtFuvkgcGu53tli1bcujQIbp06cKAAQOIjo7m8uXLODg48PHHHxMREVHkHLVr1+bGjRslWnBByqqNmOQh4paAB7cEPLgl4OFWsRKPv/oqFevWNRl9bXY2ODkiwlegFGzxpWgQ4SvBNZC81DSemDRJbgwlEsk9Qej1kJyAsj3WsGmcsdJg2wpyKg5mPA8xa8Ch4m3htLwcg0IvChjFzuzEVhuvkmDLCZdIJPcONz8/82g0kJeVhTYzE02xaqBzUXKyQK1GpVbj6u/Pi4cPI67Eo149zySqVqnXSF48fJgdgwfz16ZN5GVlkZeZiU9oKH9t3GiWXg4wJSMD/vyp8PsbBc/iXNC38TIcU6kgfy23HW0L7aUk7br0Ht5mr5IHA7ud7ejoaOLj4wGYMmUKaWlpbNy4kaysLDp06MCSJUuKnOPdd99l/PjxNG7cmLp17Sw8s8J7773HhAkT+Prrr7l69So+Pj5ERERQq1atO55bUs6xIeChrJqP+OhbIubNQ1y+gOqW0ddUDkXffxxKrUGI4AiUfL1nRb1R4BaIoqhw8fGRG0OJRFL62OhV6+B6+7jQ6+GrtSizht+2a83bQ/dI6zWJezbB+ZOIZftBpUHBoLerOLuaNpklcZylgrhEUo5RFJy9vNgfE2NytAEQwtDPulsk6qJqoOMv4OLsCjodep2O5qNHw3/Xo8pvu7hVZz19OT3XrCH5+HGS4uL4a/NmmkRGcmD+fMP9hSAvMxMUxT5n/9cs9BH5nFdFIfHLj8n94w0cm7xFUI+xd/gfZT+2ItgliYZL7j12O9t16tShTh2DoIGTkxOLFy8uVi/rRo0amSmUJiYm0rBhQ4KCgvDy8jIbqygKf/75p13rKo02YpKHhJRE+HwlDHwFblyzVMoECKmPEvY4Yvc6VAXOq1bNR7y9DVo9jWgWjaJSG2q0FZVU4ZVIJGWDsVdtz4H45uUaSl8UxSBK1KgRUzIy0OflGURHkxPMHW2AjYugyyCYvhwKnlNrEP3HIxydUanVsNqXNJcJePedZhpSEsfZVuq3TAmXSB58HFxcUGk05vXUtzi4aBGNBw1CTF9uaYtu1UAL30CcdDo4kEHFvFyDts2VeMvxADqt4Xjz9nRfuZJfFi4kLzMTz6pV6bZihVlkHSH4a8unNO45wuCkF+XsW/tswpugLzNJfuTeRJBtRbBLEg2X3HvsdrZLSrNmzUrNEfnhhx/sGt+6detSua+kHCAEePlB5FTQ6SwFg4w8N8Fg9G0oaSqv90Z8cQ6dmye/tqhBrffWEdDuqbvyESQSyUOGjV61wjeIrNRUDi5axLXTp/GpVYs2M2YYUscL2q1TcRA12JAu/lg72L7MVJOo6z4cxS+Iv7dvp17P7qhyrmJ1B2ontlK/ZUq4RPLgk5eVhV6rxSfUMoKcFBfHjsGD6blmDeLRdqh2LDOrgRa+gea2q2ZN2kTZsF1GdFqUbUup9GI0vdavR5+XC4pC2KBB1IiI4MjSpaSeOYN3SAg1O3UGPz+D4FnBfVw+wbOs73eXhqkrdfQOvuz7AuqFyQh2eaBEzvamTZvYsmULFy9etOiRbSsqXRyV8uLSpk0blFtP9I33NCKEsHDqC/bfljyk5K/NTroE0Z9YF/BQFOjYDz6ZV6TRV78YjbbPGFzrhZXt2iUSyUODKi2Z8EBw1GYX3qt2+nKcnxrAPzt3khQXh6uvL21jYmwLE+3ZBGeOw8TFBuValRptZiZHN23i0Acf0H/nTvIu/o3TXfmUEomktElPTORIbCzNRo7Eo6wzR4QgOy2NZiNH3k7lzsdfmzZx9eRJXvjhBxxejEJRaxDaPFCpOfnll3zaq5fpGgdXV9rOnFk8UTW1GiJ8uTp2saHVoKLgERRE+IxpqByc0N+qs1YUpUjBs5JoUdhLiYTQHP3YvwvqxBSIYLsGQtMow6vkgcHufkRTpkxhwIABXLhwgVq1atGsWTOzr6bFUF4eNmwYZ8+etXru/PnzDBs2rNDr//jjD37//Xf++OMP9uzZQ3BwMIMGDeKzzz7j119/5bPPPmPgwIEEBwfz3//+196PKCmPGDesz9SAFbPhy9WGVjXWanqcXAx1kcU0+m2io8v+j5pEInloUF1PoU0QuAUEWPbGNnIrrVIkJ9Bi/HgcXF3JTE1F6HTW7ZqRU3Hw27dos3OY6+bGHDc3do0cSYsJE/AIDESfkgBHwMk3pNjrlXWEEsn9wc3ERPbHxHAzMfGu3C8jORmPoCC6rViBSmMev1NpNLSYMAEHFxdS9+2BJ93Ijr9AekKCmaMNt0XVCrVdYKqz5vpVs8OKonB9xwJY6cb1HQtuB91MgmfTYfZ6w6tfkOH4XcJm6ndJemO7BsKj0dLZfsCwO7K9cuVKZs6cybRp04oebINVq1YxatQoatSoYXEuJSWF1atXs3LlSpvXN27c2PTvPn360L9/f95++22zMc888wyTJk3io48+okOHDiVeq6QcIITlhlUI2LvZumBQTpZtRzw/wSGGdmEqddmtXSKRPJwoCk7BVeHjmbYzbELqo75+lUeGDKHJsGFoMzPJuXkTp14jC61VFL1Hkfz339Tt0QPvkBCajRqFR2AgikqFS4VKcARcXym+eKlbvTAYEWV4lUgkDw3arCwUlcpqKnd+u6K7kQY5WTgFVeHXmbMsouB2i6rZXJCV9sOKQsquLfj950VSXltmiIbfDxh7Y0vKPSV6tNOiRYs7vrGt+u1Tp05RsWLFYs+zZ88em850x44d+frrr0u0Pkk5Quit12ZvXAT+wQbBIHW+505CwNefInqOMD+en1tGH+XuPR2VSCQPEZ4VUTQOtjNsnuoPaw+DV0WUZdEwdQCa1fNwzLlpiORMX2Fpv9QaxAxDrWJAWBi91q8nfMZ0PIKCDOJEULJoi3HTaM81Eomk3KCoVIZU7qgog12JijK3KwBOLqgcHK0KqoFBVE3xD0YU3JOBeZ316X9KtshsK464nRi7MuitdGVwqd2Ac7XCcand4I7vIylf2O0pDB8+nA0bNth9o48++oiwsDDCwsJQFIUBAwaY3hu/ateuzeDBg+2KRLu7u/Ptt99aPff111/j7u5u91pLwtWrVxk1ahRVq1bFzc2Nhg0bsnTpUotxCQkJ9O7dGw8PD3x8fBg+fHip9RyX2ECltr5hNQoGdRoAn5+GyGmGf0dOQ9eiI/hXLtLol0XvRYnkfkDatHuDEIKKTz8L3yTbTgmvFWYQOvvvBuhR01Aas2cjrJiN6pnq8L8D0GUQ4otzZnZNfHEOOg9EUam4uutTeNKNq7u2mD/8lo6zpBwj7VrZoSgKSXFxzHVzIykuzjKolpOFPi/XqqAa3BZVo9NAC9vFF+eg08BSr7O2twTG2JVBb6Urg3uDR6i+cR/uDR4ptfVJygd2p5HPmjWL8ePH07JlSyIiIqy27XrllVcsrgsKCqJZs2YA/PXXX9SpUwe/AvULjo6O1KtXj8jIyGKvZ8yYMcyYMYOkpCR69OiBv78/V65cYceOHaxdu5aYmBh7P2KJePbZZzlx4gRz586latWqfPXVV4wePRq1Ws2IESMAyMvL46mnDIrVGzZsIDMzk4kTJzJgwAB27dp1V9b5MCL0OoN6rzWMgkEzViJejEZR3xYMuvrPP7SbMweleXub4hoSSXlF2jT7sCVMVJhgUf7e2GDoj52XlYXGwfCnWVEURM8XLVPCb3VLsGjhBYZa7tERiN2XDBHuW3ZN6HSgKtCe0I5Ij2zXJSkPSLtW9uRl2rArQpCTcNGmoBrA8a1beWrRItz8DXXWioOjoRe2xqFMght3pZVWSbKFJOUKu53t7777jtWrV5Oens4vv/xicd6Ws929e3e6d+9uej9jxgyrNdv2Mm3aNLy8vJg/fz6rV682qZQHBgayaNEiXn755Tu+R1FcvnyZ77//nk8++YQXXngBgHbt2nHo0CE2bdpkMuBbt27l2LFj/P3336Ze5d7e3jz11FP89ttvNG/evMzX+nCioO8xApWtOqAzx9F5+hK3ejW7X37Z7A9FhapVeWz0aJQRUaDRgFYLarWMaEvKNdKm2Y9RmKhOt25mTrW140IIAsLCDL2xtVpDZ41bX+q0ZFQ7VxiycRq3hD6jETNW3G5DWNxuCZvfh5HRJO/chN8HE0gZs8isVtGYDlnPSjqkNWS7LsmDjrRr956sf0/g3bbz7d7YOh0OLi7kZWWhUqvptnIlbn5+KIpCsp111nqVFxwBfQevMv8cdiFrsx967Ha2x4wZw6OPPsp7771H7dq1cXBwsPumn3zyid3XFMbYsWN56aWXuHTpEomJiQQGBlK5cmVUdynymJeXB4Cnp6fZcU9PT27evGl6v3v3bsLCwkzGG6BDhw74+Pjw1VdfSQNeCHfSzkJRqRB+QYjpy1EKRoLUGsT0FSh+QRxcvNjM0VZpNNTt0cOwuU1Lhs9XQvdh8umkpNwjbVrZIfR60hMSOBIba+gvGxrKk1OmoHFygt3rUOe3UXs2ohz9BRG9GvFYBMq2pYaIdjG7JaBSGx4OpqVYnDamQ9axkg4pkZRHpF0rXQpm5hQH3Y00k6Bavd690ThoUDk6oc/NQZunxcHFxbzO247sG73a2+Bsd/K2e133GzKTqHxht7N98eJFlixZQoMG904A4KOPPmLYsGE4Od3uBqpSqahatSpVq1a1es3Ro0dJTk6mXbt2pb6eKlWq0LFjR+bOnUudOnWoUqUKu3fvZu/evaxfv9407sSJE9Sta67wqigKdevW5cSJE6W+rvKEraiRLYQQCJ0OlUaDXqfj7+3bqddzAPqmbVB/vtyUEi56j4KKlfhsyBCS4uJM16s0GrqtXGlQ0lQUg4MdObUsP6JEct8gbVrpo3FxQej1xK1bZ4joGFMoFYXwGTMQSZdQWUsL370e5ezf6GP3IYZPR+XgiNAVUhpjxNgtQacrmw8kkTxgSLtWOljLzLElemyG823nXAEcMlJRtsXCpdOoKofi0HskiotNnfGHCplJVL6w29l+8skn+eeff+5pO61Vq1YRExPDc889x7PPPstjjz1mNcKekJDA7t272bhxIwcPHmTVqlVltqbt27fTr18/00MItVrNkiVL6N27t2lMamqqRY07GNKTrl27ZnPunJwccnJyTO+lSEfhFIwcPTFxIlWeeILl//d/PDZmDI2GTEbj6oo2M5NLBw9S5Ul/2r/1Ft41alhtWSGRPIxIm2adkmbZuPn5kZ6QYO5oY4gOqdQq+Oxj22nhJ35HteZt9JHT+HzYMJqPHUulItp7Gbsl2JsuLpGUZ8rKrj3INs0erGXmNBs50lJ5PP81RtHHngOpmJeH0OtRdq+7XRpzC2XVfJixAjoPum81cWTEuXxzJ1m0hWG3sz137lyGDBmCo6Mj7du3t2qQfHx8SmNtNjl48CA7duxg8eLFvPfeezg4OFC7dm38/PxwcnIiLS2Ns2fPcuXKFXx8fBgyZAjr1q2jUqVKd3xvIQS6fJECRVFQqVQMHTqUU6dOsWHDBgIDA/n666+ZMGEC3t7e9O/f/47uOW/evLsm9PagYy1ylHzsGCMOH6b5uHF8MXw4O4cPN9QIZWai0mjou2MHtbt0ITwqyhAJ12pR1OriPamVSB5wpE2zD3uzbABQFJy9vNgfE2NVFMhmx4T8xJ9B5ehE95Ur0eflGdLDZ6yAAhvWgt0SZLq45GHkbtu1B9mmFUb+VHGrmTnAgfnz6bZiBWGDBqEpEJm2FvyoFOxvabfA8H5mJDwWAX5BZfq5SoqMOJdvSvT3vRjY7Ww/9thjAIwaNcqmM6K7C2lrPXv2pGfPnpw7d45vvvmGw4cPk5iYSHZ2NtWqVaNjx460bNmSNm3alKiu3Bb79++nbdu2pvfh4eFMnDiRLVu2EBcXR6NGjQBo06YNV65c4bXXXjMZcG9vb65fv24xZ2pqKlWqVLF5z8mTJ/Pqq6+a3t+4caPQ8eUVC+Xe/Knitxxka5GjpLg4Phs8mB5r1hDSvj1Hli61GsG+/L//8UmrVgz98UcCmza92x9PIrknSJtW9ji4uKDSaKz2l83LzESfl4uqGGnhQqdFCffkqlEwqPMgw8ZUdkuQSMy423atvNk0a6ni1vZXAHqtlp2RkdSIiDCpelstm1EUui9fjrK6cHFHti2VgmKScoXdzvbKlStLLeInhODkyZNcu3YNHx8fateubffc1atXZ/jw4QwfPrxU1lQUzZo149ChQ6b3Hh4efP7556jVaho2bGg2tkmTJixfvpzMzExcXV2pW7cuR48eNRsjhCgyLd/JycmsPr08Yy2Fw5Zyr1kqU82ahM+YwZHYWKuRo782bSL5+HG6rVxJeHQ0KrXaIoLtHhjIE5MmyfQgyUOFtGllT15WFnqt1np/WSE4+dVX1CkiLVz0HkVuUgJO+QWDVCpDe68StMiR6ZCS8szdtmsPik0rjqiZRap4EfsrMDjcR5YuJTwqCrBeNuPg4oLG1U5xx1LC3n7aEklpYrezbWyXcKd8+OGHzJw5k+TkZNMxf39/ZsyYwejRo0vlHmWBh4cHjz76qNmxatWqodPpiIuLo3HjxqbjR44cwd/fH9dbxq1z586sW7eOU6dOUatWLQC+/fZbrl69SpcuXe7eh7iPuZmYyM8LFphSOAoa/SotW/LY6NEWqUwOrq60nTnTauTISFJcHL8uXEiv9et529eX5/fuNYtgy/QgycOItGl3ASHITkuz2V9234woah85AvlbfBlRaxBRK1F8A8n4fjcW23lFIcXOFjkg7Z2kfCPtmjnFETWzJeJYnP0VQOqZM6g0GjSurlbLZvKystBmZqK5B+KONvtpyx7YkruA3c52abBs2TLGjh3Lc889R79+/QgICCApKYnNmzczduxYHBwc7lqkujTo0qULVatWpU+fPkRFRREYGMjevXtNQm5G+vTpw9y5c+nduzdz584lMzOTiRMn0rVrV9lKAit/DKwY/ZAOHbh+4YJFKlNeVhZ5mZnWI0f58A4JQa/V0nzsWBnRkUhs8LDbtLIQSclITsa3Tp3b/WXz2a/k48e5+MsvVO086HaLr3wdE5RbaeG6G2m2b2BHixyJ5GHkYbVrxRU1syXiaO/+SgHrZTNCcHTzZsK6RaIuhrijLUo1Sm2jB7aMhEtKk2I522FhYWzYsIGGDRvSqFGjQlO9FUXhzz//LHS+d999l3HjxrFo0SKz4926dcPPz4933nnngXK2PTw8+Pbbb5k6dSpvvPEGaWlp1KhRg4ULFzJ27FjTOAcHB/773/8ybtw4nnvuOTQaDb169eLdd9+9h6u/P7AmouHm72/RIqdhv34cmDfPMpVJCP7avJkmkZFWI0dgMP7NRo1CUatlREciKYSH3aaVhUiKNivL1F+2RkSETe2IkqaFSySSwnkY7VqxRc0KE3G0Y3+VnZZWaNnMwUWLaDxoEGL6cpSCrQ4LiDvawmaUuhS5G/eQPDwUy9lu1qwZbm5upn/fac322bNnefrpp62e69q1K0uXLr2j+e8FNWvWZPPmzUWOCw4OZtu2bXdhRQ8O1kQ0ui1fbuFUO7i44ODqajOV6eCiRYQNGsQzy5fzxfDhZtda9M2WSCSFIm1a2aCoVHgEBdnuflBIWritNl6FtfeStdkSyW0eJrtmj6iZa8WKNkUcofj7q5R//im0bCYpLo4dgwfTc80aaN7eLItHijtKyivFcrY/+eQT079Lo1d1YGAgv/zyC+3bt7c49+uvvxIoNwUPDdb+GNhyqotKZTKqjvdcu7ZQ1XGJRCK5mxQUJVIUhctxcYV3P7CSFu5aLwxejDK85qOw9l6yNlsieTgRen2homZ+9euTkZREQOPGTEpORq/T3fH+SpuVBRReNnN861YaDhxI7S5dECNmoGgcZBaPpFxjt+cxbNgwzp49a/Xc+fPnGTZsWJFzREZGMmvWLKZNm8b//vc/EhMT+fPPP5k2bRqzZ89+oFLIJSUjPTGRfTExCJ3O4o+BTac6XyqTSmP9OdHxrVvJvHrVFDnqtX494VFRFrVJEolEUtbk16EICAszdFLIR16mfXXWRse5NPt/SiSS8oeiUqFSq21Gqhv278+Iw4dxqViR/dHRbBswgKQ//6TZyJGlsr/KXzYz/tw5Wk+bRqMBA2g9bRrjz52jdpcuKCoVKV98Ck+6kbJryx072sYMH72VDB+7hdCkcNo9IT0xkX3R0aQnJt7rpZQqdnsfq1atMlMQz09KSgqrV68uco6pU6fy8ssvs2DBApo1a0blypVp2rQpCxYs4OWXX2bKlCn2LkvygHEzMZFD779vU0TDllN9cNEiPIKDeWb5cotzxlQmNz8/FEUxnVdpNDJ1XCKR3FWEXk96fDz7Y2LYNmAA+2NiSI+PR+j193ppEomknCP0epuR6oCwMHqsWcPRDRtYUrMmP8yezV8bN/L50KG4BQQUa3+VFBfHXDc3kuLiCtdxMpbNzJhhcM5nzLB0zktJ3NGY4aO3kuFjEkKzx9m2Z7ykVDDqpdwsZ852idTIbf1inTp1iooVKxbr+v/85z9MmTKFgwcPkpqaio+PD82bNy/W9ZIHG2O0p7C0JVv1QUlxcXw+dCg9Vq+WqeISieS+w1b7HLAiSmSDwmqwJRKJpDgo/9/encdFVb1/AP9clmEZEBh2RHEFFwQVUyEVFzS3TEVNcddSy0zT3MoEcy3NLNOkX7iVimIuueWKW2Cp1RdxQVMwF1RQwBVZ5vn9YdwYZ2EGGGYYnvfrxavm3nPPPeeOPNxz71nMzFSOm241aRIe3bqlNPa6qKt47/Xrtbq/0rZnjiAIuHPunOZhM7rgt86sktGqsf3tt9/i22+/BfDilyYiIgI2L90o5ObmIi0tDf379y8xv/Xr16NHjx5wdnZWWrPwwYMH2L17N4YNG6ZtHVglomrWcXWTaGgK+oIgaJ5kiDHGDEDd8jmA8qRE6mgag60KT4LGGHtZ0X2SwrhpTau6AEiOjUXGhQvotXo1QqOiYGZuXm73V7oOm1FLzXJdjBkrrRrbXl5eCAoKAgAkJyfDz88Pri/dKEgkEjRs2BCjR48uMb+RI0ciMTFR5Vvs1NRUjBw5khvbJuDltWpVve3JOH8eb585o3KGy+KTaKhrVAvFuoozxpgq5b1u9ssTnok0LZ/zL3lBAc6uWoXQyMgyl6MIT4LGGFPl5eUGH966pXFVF+DFy45TS5ei74YN+NzFBUMPHCj72+hS4LWumanQqoXyxhtv4I033hA/f/LJJ6hTp06pT/ryJDHFZWVlwd7evtR5M+NRfK1aOw8PlW97tO22dOevv8qvCxJjrEpRt262ro3w4hOeyQsKQEQKb3tKWj6nSNa1azCzsNDYlZwxxsrjQaHScoMaZh0v4lSnDuQFBXh2/36pzlkedF3rmnv4MGOl8+vA4suAFXn69Clu376NunXrqu1msm/fPuzbt0/8/MUXX8Dd3V0hTW5uLo4cOYKmTZvqWixm5DQtQaFtt6Vy64LEGGNQ3whX5eUhMLK6dV/cAHt5AYJQ4jwUxRXdyBYtk8MYY6roEqM0Kb7c4KTr11UO3ytiZmGBoHHjkJudXYaSlwMdx2ZzDx9mrHRubC9ZsgRPnjxB5L9d4E6cOIFevXrh4cOHqF27Nvbv34+6Km40Ll++jF27dgF48Ut/4sQJWFlZKaSRSCTw9/fHggULSlMXZqRKWoICMJ5uS4wx9jJ1E55lpaai97p1eKzFPBRFjOZGljFW5eQ/fapxDeyiWcftPT2RmZJiwJKCx2Yzk6FzY/v777/H1KlTxc+TJ09G48aNMWPGDMybNw8fffQRNm/erHTcxIkTMXHiRABA7dq1sWPHDgQGBpah6Kyy0LQERXFFb3tavvcedwNijBkFIlI5BMY9IABvrFmDpB9/VJhvQtM8FEZ1I8sYq5KKr4FdNJZb1fC9iuh5w+OyWVWgc2P7xo0bqFevHgDg1q1bOHv2LI4dO4a2bduioKAA77zzTol5pKam6l5SVqmpW4KiSNHbHsHcXGU3IB6LwxgzBHVDYMq6fI6mG1mOd4wxfVMay10Os47rGrt0HZfNWGWkc2PbxsYGDx8+BAAcPnwYdnZ2CAkJAQA4OjoiJyenfEvITILKJSj+Vfxtj7ogz2NxGGMVTe0QGD0vn8PxjjFWEYqP5S6PCWg5djGmTOfGdsuWLbFo0SKYmZlh8eLF6NatG8zNzQEAV69eRfXq1cu9kMw0aNNtiTHGjIW6ITCWNjaVZvkcxpjpKe/lDHkCWsb0R+fWzZIlS5Ceno7XX38djx8/xvz588V9mzdvFt9yM6ZK8W5LfTdsQGhkJOy9vLihzRgzSkVDYMws/ns2nf/sGfKfPq0Uy+cwxkxP0Szlj9PTDV0UxlgJdG7hNGrUCNeuXUNGRgZSU1PF8dvAi+W8lixZUq4FZJWbpa2t0jZBEHA3KQkLpFLcTUoq0/ggxhjTp+JDYMQGNxGSN29Gs9GjFRrhxfGs44wxxhgr9etEZ2dnEBFu376Ngn/HrDVp0gSuPMkBw4sZfN0DAvDRkydwDwgAESml4W5LjDFjVfxBYdEQmIlpaWg3axaaREQg/+lTONSsqdgI/1fxeSieZGSozJ8nQWOMMcZMX6ka2/v370fr1q1hbW2NmjVrIikpCQAwZswYbNiwQas8zp8/j4EDB6Ju3bqwsrLCH3/8AQD4+OOPsW/fvtIUixkJksvx6NYtHJszBz9FRODYnDl4dOsWSC4X0/CNJmPMGKl7UPjyEJgWY8cCgqDUCG83axYmpqUhYPBgjbOOF00kVB7jLRnTxqP0dByNisIj7nrMjIWLJ/B25Iv/MmaidG5sb9q0Cd27d0ft2rWxcuVKyIs1oOrWrYs1a9aUmMfBgwfRrFkzXL9+HYMHD0Z+fr64z9LSEitXrtS1WMxIkFyOpB9/xFe1a+P4vHlI3rQJx+fNw1e1ayPpxx/FBjffaDLGjE1JDwpVDYHheShYZcHjfJnRcfEExkZxY5uVu9I+XFQ1/LWsdL4bmDt3LiZNmoRNmzZhxIgRCvsaN26M5OTkEvOYOXMmBg4ciMTERMyePVthX7NmzfDnn3/qWixmQEX/oPOePsWj27eVlvYCAHlBAX4ePRqP0tNVdilnjDFDsbCx0fpBIaA8BIbnoWCMGQt9NBYYq2x0fbiozfDX0tK5sX3t2jV0795d5T6pVKrVOtvJyckYOnQoACjdlDg6OiIzM1PXYjEDepyejoQlS2AhkeBsdLTKdWeBFw3us6tWKdy0MsaYoUldXcvlQSHPQ8EYMxR9NhYYM2XaDH8tC50b2x4eHrh06ZLKfUlJSfDx8SkxD5lMhtu3b6vcd/nyZXhy1+JKQwzujx/DzMJC47qzAJB17RrM/l2XnTHGDE4QYO3oyA8KGWOVlr4bC4yZKl16tZWWzo3tiIgIREVF4fDhw+I2QRCQnJyMzz//HEOGDCkxj969eyMyMhIpKSkKedy5cwdLlixBeHi4rsXSm5UrV6Jnz55wdXWFIAjYunWr2rR79uxBSEgIpFIpnJyc0KFDB9y8eVMhTUJCAoKDg2FjYwMfHx989tlnlfbpo0JwHzwYBc+fa7fubGFhBZWQMfYyU45ppRmjZWljo9uDQu4izpjRMeW4pomuQ2AYY/8hogoZ/qpzYzsqKgohISHo3LkzPDw8AADdunVDYGAgWrRogRkzZpSYx8KFC+Hq6oqAgAC0atUKADBq1Cj4+fnBwcEBUVFRuhZLb9avX4/MzEy1XeeL/Pjjj+jbty/at2+P3bt3Y926dWjRogVyc3PFNH///Tdee+01eHp6Yvfu3Zg0aRJmz56NL774Qt/VKBeP0tNxfP58PMnIUA7uGzfi3MaNWq07yxMHMWY4phzTNI3RUjeOMf/ZM8gLCrR/UGiEN9yMVTRjm9nclOOaJuU1BIaxqojk8grp1aa6VaSBRCLBzp07ER8fj4MHDyIzMxMymQxhYWEICwvTKg8HBwckJCTgxx9/xMGDByGTySCTyTB+/HgMGzYMEolE54roS0JCAszMzJCWlob169erTPPgwQOMHz8ey5YtwzvvvCNu79Wrl0K6xYsXw9nZGbGxsZBIJOjUqRMyMjIwf/58TJgwAVZWVnqtS1kQEaSurmj38ceQy+Uqg/tvy5YhYMgQvP7999j11lsK+4qvO8uTBzFmOFUtphUfxygvKAARKcYgIuRmZyNo7FicXLRI5R9dflDImKKiB1t+vXoZxaoiVS2uARCHwBybM6fExkKoEb3EYsxYmJmbV8jwV50b20U6dOiADh06lPrElpaWGDlyJEaOHFnqPCqCmRY3V1u2bEFhYSFGjx6tMd2+ffvQt29fhYcJAwcOxMKFC5GYmIj27duXtbh6Qf82rs9GR+PBtWt4Y/VqlU+C7iYlYcewYei9fj1qd+yIP777DlnXrsGpTh0EjRv3oqHNN6uMGVRVimkKsevqVcjq1kXQ2LEKS3NZ2triSUYGXPz80CsmRukhIj8oZMz4VaW4VoSHwDBWNvLCQq17tZWlwW2Qls+rr76KlStXIiMjwxCnL3enTp1CgwYNsG7dOvj4+MDCwgJNmzbFvn37xDRPnjzBjRs30KBBA4VjGzRoAEEQ1E46Z2gvdxdP2bEDFlZWaoN7cmws/q9FC2RdvYrQqChed5axSqiyx7SSxjFe3rMHJJeLb7yd69cHBAEBQ4ZgYloa2s2ahSYREWg3axYmpqUhYPDgUscvO09PhEZGws4I3v4xVpVV9rj2Mh4Cw1jZCGZmCBo7Vu/DXw3S+vH09MSHH36I6tWr47XXXsP69evx6NEjQxSlXNy5cwcpKSn45JNPMHfuXOzbtw+1atVCr169cP78eQBAdnY2gBdLmxUnkUhga2uLBw8eqM3/+fPnePjwocJPRVA1cUD+s2fIf/pUY3C/m5SE1MOHASJed5axSqiyxzRN4xgb9euHel274tHt20oz9wKAvZcXQiMjy+1Bob2nJ9pHRRlFV1vG1DG2Mdj6oM+4ZpD7tGJDYHiuHMZ0JwgC7L280CsmRul3qDx7tRnkt2/r1q24d+8evv/+e1hYWOCtt96Cu7s7wsPD8dNPP+H58+cVXiYiQkFBgfhTqMOM2XK5HI8fP8Z3332HYcOGoXPnzoiLi4O3tzc+++yzMpdt4cKFcHBwEH9q1KhR5jy1oXLiACIkb96s1URoudnZvO4sYwZSZWOahqW83AMC0Hv9epzbuFHtzL0gwv0rV/hBIatSNE0uaEyMNa4Z6j7tSUZGhTQWXsY9dpipEMzM9NKrrTiDPeqys7PDsGHDsGfPHqSnp+PLL7/EgwcPMHDgQLi7u1d4eY4dOwZLS0vxp1OnTlof6+TkBADo2LGjuM3S0hLt2rUTn5YWPSXNyclRODYvLw9Pnz6FTCZTm//MmTORk5Mj/ty4cUPrspWFuokDflu2DPbVq+P177/XGNyfmMgwAcYqo6oa0zSNY2w1aRIe3bqlNIEjoDhzr9TVlR8UMmaEjDWuGeo+reDZswppLLyMe+wwUyKYmZV7r7biSj1BWnlydnbGq6++iuvXryMlJQV3796t8DIEBQXh9OnT4md7e3utj23cuLHafUXLSUilUtSoUUNpvE9KSgqISGl8UHFWVlYGmf1S3cQB2k6EVvDsWYWXmTH2QlWNaWrHMQoC/N98EycXLix55t7ISLX58xsdxgzHWOOaoe7TihRvLJhZWEBeUADB3Jx75jCmJUEQcCcpCWvatsXIEyfg2bx5ueVdqiZ7YWEhEhISsGXLFqxfv17pR1tXr17F/Pnz0aRJEwQGBmLt2rUYMGAAEhISSlOsMrG3t0eLFi3EHz8/P62P7dmzJwDg0KFD4ra8vDwcO3YMQUFB4rZu3bph586dyM/PF7dt3rwZjo6OCAkJKYdalC9NEwckx8YipnVr2MhkensSxBgrvSob09SMY7S0sYGlra12M/daWMDCxkblfn6jw5jhVNm4pgVBEHA3KYmHwDBWBvro1abzm+0//vgDffv2xY0bN0AqZjYUBAHDhg3TmMfSpUsRGxuLs2fPwsHBAeHh4fjqq6/Qvn17rZZvqEhnzpxBWlqaOHP6qVOnAACurq4IDQ0FADRv3hzh4eEYM2YMHjx4AE9PT6xYsQJ3797F1KlTxbymTp2KDRs2YNCgQXj33Xdx7tw5LF68GPPnzzeqtcWLFJ84QNVyOK0mTYKljQ2e3r+Ps999h2ajRvENKGNGrirENFVLeWkzuSPw78y9BQXcM4exSqQqxDVt8RAYxoyLzo3td955Bw4ODli3bh0aNWpUqsAze/Zs9OrVC5988gm6du0KS0tLnfOoKN988w3WrVsnfv7iiy8AAKGhoTh69Ki4fd26dZg5cyZmzJiBhw8fIigoCIcOHUKTJk3ENPXq1cOBAwcwefJkdO/eHa6urpgzZw6mTJlSYfXRVdFYoNqdOuHsqlUqu4tLXV3R7uOPDV1UxpgWqkJMKz6OsXjsyrx0CUFjx+LkokUqu5IXn9yRMVZ5VIW4Vpnx8BtWlenc2D5//jzi4uLEJ4Wlce/ePdja2pb6+Iq0du1arF27tsR0UqkUX3/9Nb7++muN6UJCQsQnrpUFjwVizHRUpZimMnaZmantrVM0uWNmSooBS81Y2TxKT8fZ6GgEjR1bZXqbVaW4VhkVDb9hrCrSuc+2r69vmdcPrCwNbfYfQRDwJCMDx+fPx5OMDG5oM8YqBaVxjFrM3MtdyFllVlHLeFnyvRxjjJVI5zfbX375JSZOnIjAwECNs82+rFq1aoiPj0dQUBDs7e01NtYEQVBadoEZnr2np07dxbnbEGOsoqlrABQfx8i9dRgrPSKCe0AAPnryBPKCAhAR/+5UAnxPxphh6NzYfu+993Dnzh34+/vDy8tLXJOwiCAI+N///qd03JQpU+D57y/4lClTODBXAdxtiDFWUXRtAJT3Mh98I8uqApLL8ej2bZyNjsaDq1chq1v3RXd1XonE6Ol6T8YxjRmCKfaY0bmxHRQUVKqGcmSxdUujuAHGGGOsnJSlAVBeM/fyw0Vm6kguR9KPPyrNd3By0SL0iolBwJAh3ODWA303PtQ1qjmmsYpkyj1mdG5sazMBRUk6duyIlStXquyGfvnyZYwbNw5Hjhwp83kYY4yZNm0aAOrWzGaMaYeI8Oj2baXfMwCQFxTg59GjUbtTpxcPuEzkBtnQKqrxwY1qZmim3mPGIDU4evSo2knWHj58iOPHj1dwiRhjjFU22jQAHqWnQ+rqaqASMla5PUpPx9E5c0CFhTgbHa1yyTzgxe/b2VWrQHJ5BZfQNJFcjke3buHYnDn4KSICx+bMwaNbt/j6MpNT9MD8q9q1cXzePCRv2oTj8+bhq9q1kfTjjybxb17nN9sAkJ2dja1bt+Ly5cvIzc1V2l/SkgoA1D6dS0hIgJubW2mKxRhjrAohuVyrBkBosWFMjDHtPU5PR8Lnn6N9ZCQeXL2qMW3WtWswMzevoJKZLu6tw6qKqtJjRufG9pUrVxASEoLnz5/jyZMncHV1xYMHD1BQUAAnJyc4ODiobGwvXLgQCxcuBPCiod2hQweYvdQ14Pnz5ygoKMC7775byuowxhirKszMzbVrAFhY8M0pY9A8/lftTP7PnkFeUABZ3boa83aqUwfywkJucJeBto0P7q3DTIHWD8yjoiCUIq4Yy2RrOje2J0+ejFatWiEuLg5SqRR79+5FYGAgNm/ejI8++ghxcXEqjwsJCcGUKVNARPj0008xaNAgeHt7K6SRSCRo2LAhXn/99dLVhjHGWJUhLyzUrgFQUMBrZ7MqTdP43xLHBhMhNzsbQWPH4uSiRSpvjM0sLBA0bpxJjK80JO6tw6oSrR+Y69jQNrbJ1nRubP/++++IiYmBlZUVACAvLw/m5uaIiIhAZmYm3n//ffz6669Kx4WGhiI0NBTAizfbb7/9Nry8vMpYfMYYY1WVYGamVQMgNzu74gvHmJHQNPkQgBInJrK0tcWTjAy4+PmhV0yM0ltXMwsL9Fq9GvaenpW6q6cx4N46rCrR+oG5Dj1mjHGyNZ0b28+fP0e1atVgZmYGmUyG27dvi/v8/f0xc+bMEvOI5CdyjDHGykgQBNh7eZXYAMhMSTFgKRkzDAsbG7Xjf6/s3Yu3fv8d5zZsUDk2eMC2bfDt0UPh7RAEAQFDhqB2p044u2oVsq5dg1OdOggaN+5FQ5vfapeZLr11+MEGq+y0fWCubWwx1uUJdW5s+/r64vr16wCAZs2aYeXKlejcuTMsLCwQHR2t9dvqv//+G2vXrlU7ydrPP/+sa9EYY0xnj9LTcTY6+sWTz5fWGWXGTzAzK7EBoGsXcnXrzjJWmUhdXdWO/33lvffw8MYNlfsa9euHel27qn07ZO/lhdDISJhZWLxo9Jmbc8OvnJTU+PBs3hyvzpgBAEbTRZax0tL2gbk2/76NebI1nRvbAwcOxF9//YWhQ4di7ty5eO211+Dk5ARBEEBEWLduXYl5nD59GqGhofDx8cHly5cREBCAnJwcpKWlwdvbG/Xq1StVZRhjTFeP09ORsHgx/Hr1EhvbRAQqLOSbyUpCMDMr1wYArzvLKj1BgLWjI47NmaPcaBME+L/5Jk4uXKi0zz0gAL3Xr8e5jRux66231L4dun/lCv6vRQuMPHECns2bV0SNqgRNjY8mgwej97p1ePzvA2Jj6SLLWFlo88BcG/qebK0sSjVBWpHWrVsjOTkZ+/btQ25uLjp27Ah/f/8S85g2bRoGDBiAmJgYWFpaIiYmBs2bN0dCQgIGDRqE6dOn61osxhjTmapJNPDv01G+malcBEHAnaQkrGnblhsArMqztLGBmYWFyvG/ljY2sLS1Vbmv1aRJeHTrllJDG1CeDTv/6VO9lb8qU9X48A4JwSvvvMNLgjGTVB4PzPU12Vp5KNU628XVqFEDY8aM0emY//3vf5gxY4a49FdRN/KQkBBERUVhxowZeO2118paNMYYU+vlSTRqvPqqVjcz3OA2btwAYAyAIKhdriv/2TPkP32qvE/DG+8iPBt2xVBqfPz794qXBGOmqqwPzPUx2Vp5KdVdY35+PlatWoXRo0ejS5cuuHLlCgBg8+bNuHjxYonHC4IAiUQCQRDg5uYmjgEHAG9vb1y+fLk0xWKMMa0UTaLxVe3aOD5vHpI3bYKlrS1y/vlH483Mo/T0F2+/GWPMCIm9dR4/Bv4d/2tmYfFyIiRv3oxmo0cr7NP0xrs4ng27YgiCgLtJSVhgZwdo2UXW2tGxYgvJWDkr7QNzQV28+5chlyfU+YzXrl2Dn58fpk2bhr///huHDx/Go0ePAADHjx/H559/XmIejRo1wtV/g3lwcDC++OILJCcnIyUlBYsWLULdEp5MMMZYaamcROPfNzp/xsSUeDNDcnkFlpYxxrRDcjke3bqFY3Pm4KeICJz59ltx/O/LN6Cnv/kG1WrUUNin9o33S3jt+gpGpHZIQHH8EIRVZcXnO3g53hl6eUKdu5G///77cHV1xe+//w5HR0dIJBJxX2hoqFZLf40ZM0Z8m71gwQJ06dIFgYGBAACpVIqtW7fqWizGGNOKqkk0dHqjY4DxPqxseHZxZupULXmTvGkTbiYmove6dSonHxJULOWVeekSr11vZPKfPVM7JKA4fgjCqrrymmytvOnc2D569Cg2bdoEFxcXFBYWKuzz8PBAenp6iXkMHTpU/P+GDRvi4sWLSExMxLNnz9C6dWu4ubnpWizGGNOKqkk0dHqjY4DxPqxseHZxZso0LXlzbsMGZF68iBHHj6udfEhpYiIzM1673pgQITc7mx+CMKaF8l6dpDzo3MS3sLBQO2bx7t27sLOz07kQdnZ26Ny5M3r16sUNbcaYXqmcREPNGMbiDDnehzHG1ClpyZv0P/7Ar4sWAQAWSKW4m5SkcOMpjg0u2vfv26GJaWloN2sWmkREoN2sWZiYloaAwYNLtXY9K5snGRladZF9kpFhoBIyZjyUYpqBl27V+c12aGgovvjiC3Tr1k2cTbxoje3vvvsOnTp1Unnctm3bdDpP3759dS0aY4yVqGgSjZffEPy2bBkChgzB699/r7TsjaHH+zD94O7lzBRoveSNhpclgOLERMb4dqgqK3j2TKsusvwQhLH/6DrZmr7uCXRubH/22WcICQlBo0aN0KtXLwiCgBUrViA5ORlXrlzB77//rvK4fv36aX0OQRCUuqiz/xT9sXz48KGBS8JY5UR2duj4zTfYO3485P/GmutJSdg0ZAh6rlqFkefO4a/Vq5GdlgbHWrXQdNQo2Ht44NHjxxVWRnt7+ypzY1teMe3R48fI/fe/Um3ykkrRfPJkUDmcmzFDkRcWwsrbG7ka0kiqV0f2gwd4/OyZyt8Pdb87d/76Cz927Yohv/wCj6ZNS0xfkqoS1/QZ08jODs0++EB8CELm5uLfptJ+L4wZg/L891uqvEpxT6BNTBOoFOvYpKamIioqCgcPHkRmZiZkMhnCwsIwZ84ctTOJF1/eSxs+Pj66FqvKuHnzJmrUqGHoYjDG9CgnJwfVqlUzdDEqBMc0xqqGqhLXOKYxVjVoE9NK1dhmhiWXy3H79m29PCF++PAhatSogRs3blT6P4imUheuh3GpqHpUlTdAgH5jGsD/9oyNqdQDMJ26cFwrXxzTtGMq9QBMpy5cD91o8zuuczfy8vTLL7/g9OnTuHHjBmbNmoWaNWvi+PHjqFevHry8vAxZNKNmZmYGb29vvZ6jWrVqlfqXrDhTqQvXw7iYSj2MQUXENMB0vjOuh/ExlbqYSj0MjWOabkylHoDp1IXrUX60amyPGjVK6wwFQUBMTIzGNBkZGejduzdOnTolPnUYN24catasidWrV0MqlWLFihVan5MxxhhjjDHGGDMmWjW2165dC3t7e9StW1fjTJYAtOouM2nSJGRkZCA5ORn169eHRCIR94WFhWHevHnaFIsxxhhjjDHGGDNKWjW2g4ODcerUKRQWFiIiIgIDBw4s0wRme/bswf/93/+hYcOGSrOO16hRAzdv3ix13qxsrKysEBkZCSsrK0MXpcxMpS5cD+NiKvWoSkzlO+N6GB9TqYup1KOqMJXvy1TqAZhOXbge5U/rCdL++ecfxMbGYuPGjTh37hyCg4MRERGBAQMGwMXFRaeT2tnZYcuWLejevTsKCwthaWmJM2fOoHnz5tixYwdGjRqFBw8elKpCjDHGGGOMMcaYoZlpm7BmzZqYNm0a/vrrL5w7dw4dOnTAsmXL4OXlhW7dumHfvn1an7RVq1ZYvXq1yn2xsbF49dVXtc6LMcYYY4wxxhgzNmVa+is3NxezZ8/G0qVL0atXL2zbtk2r4xITE9GhQwe0bNkS/fr1wwcffICPP/4YFy9exJ49e3Dy5Ek0b968tMVijDHGGGOMMcYMSufGdmFhIQ4cOIDY2Fjs3LkTFhYWCA8Px1tvvYVXXnlF63wSExMxY8YMJCQkoLCwEIIgIDg4GIsXL0ZwcLDOFWGMMcYYY4wxxoyF1t3Ijx8/jnfeeQfu7u4YMGAACgsLsWHDBty5cwfR0dFaN7Tz8vKwbds2uLu749ixY3j48CFu3ryJR48e4eTJk9zQ1qOVK1eiZ8+ecHV1hSAI2Lp1q9q0e/bsQUhICKRSKZycnNChQweliesSEhIQHBwMGxsb+Pj44LPPPitxtnp9uX//vrh8nFQqhb+/P1atWqWU7vbt2wgPD4e9vT1kMhneeustPHz40AAlLtmlS5fQuXNnSKVSeHh4YNq0acjLyzN0sUr0888/o1WrVrC3t4enpycGDBiAa9euKaWLiYmBr68vrK2tERgYiN27dxugtC/8/fffGDduHJo2bQoLCwv4+/urTJednY33338fXl5esLa2Rt26dfHFF18opMnLy8PUqVPh4eEBqVSKzp07IyUlpSKqUeVwTOOYVhE4pnFMq0gc1ziu6RvHtAqOaaQFb29vsra2pj59+tCWLVvo2bNn2hymlpWVFcXHx5cpD6a7Vq1aUatWrWjYsGEEgOLi4lSm++GHH0gikdDMmTPpyJEjtHPnTvrwww/pypUrYporV66QnZ0d9enThw4dOkRLly4liURCixcvrqjqKOjQoQN5enrSmjVr6PDhwzRlyhQCQN99952YJi8vj/z9/cnf359+/vlnio2NJW9vb+rRo4dByqzJgwcPyNPTk9q1a0e//PILxcTEkIODA40fP97QRdMoPj6ezMzMaMSIEXTw4EGKjY0lX19fqlu3Lj19+lRMt2nTJhIEgWbNmkVHjhyhsWPHkoWFBSUmJhqk3Dt27CBvb28KDw+nJk2aUOPGjZXSPH78mAIDAykoKIhiY2MpPj6eoqOjlf7Njx07lhwcHCgmJoZ++eUXatu2LVWvXp2ys7MrqjpVBsc0jmn6xjGNY1pF47jGcU2fOKZVfEzTqrEtCAJJJBKys7Mje3t7jT/VqlUrMb/AwEBat25dmQvPdFNYWEhERKmpqWoD+P3796latWq0cuVKjXmNGTOGfHx86Pnz5+K2mTNnkqOjI+Xm5pZvwUuQnp5OAGjNmjUK29u1a0cdO3YUP2/cuJEEQaBLly6J2/bv308A6Lfffquo4mplwYIFJJVK6f79++K26OhoMjc3p1u3bhmwZJqNHTuWateuTXK5XNx25MgRAkDHjx8Xt/n6+tKgQYMUjg0ODqZu3bpVWFmLK/rdICIaPny4yiA+a9YsqlOnDj1+/FhtPjdu3CBzc3OKjo4Wt92/f5+kUil99tln5VtoxjGNY5recUzjmFbROK5xXNMnjmkVH9O06kYeGRmJjz76CB9++CGmTJmi8Wfy5Mkl5rdw4ULMmzcPZ86c0fE9PCsLM7OSv+4tW7agsLAQo0eP1phu37596N27NyQSibht4MCByM7ORmJiYpnLqov8/HwAgIODg8J2BwcHha5S+/btQ0BAAPz8/MRtnTt3hkwmw969eyumsFrat28fwsLCIJPJxG0DBgyAXC7HgQMHDFgyzfLz82Fvbw9BEMRtRd9L0Xdx7do1XL58GQMGDFA4duDAgTh8+DCeP39ecQX+lza/G99//z1GjRoFqVSqNs2BAwcgl8vRv39/cZtMJkOXLl2M7t+YKeCYxjFN3zimcUyraBzXOK7pE8e0io9pWje2dfkpybRp03D//n20atUKbm5uaNKkCQICAsSfwMDAMleMlc6pU6fQoEEDrFu3Dj4+PrCwsEDTpk0VlnZ78uQJbty4gQYNGigc26BBAwiCgEuXLlVomWvUqIEuXbpgwYIFuHDhAh49eoQtW7bgwIEDGD9+vJju0qVLSmUWBAENGjSo8DKXRFVZHR0d4enpaXRlLW7EiBG4cOECVq5ciZycHFy7dg0fffQRmjVrJi7pV1T+l+vXsGFD5OXlITU1tcLLXZK0tDTcuXMHLi4u6NWrF6ysrCCTyfD222/j8ePHYrpLly7Bzc0NTk5OCsc3bNjQqL83U8YxzThwTDMuHNMqN45rxqEyxjWOaRUf0yz0kmsJgoKC0KJFC0OcmpXgzp07SElJwSeffILPP/8cnp6eWLFiBXr16oW//voLjRs3RnZ2NoAXAaU4iUQCW1tbPHjwoMLLvW3bNrz55pto3LgxAMDc3BzLly9HeHi4mCYrK0upzADg5ORkkDJrUpnKWlzbtm2xfft2REREiH88mzZtil9++QXm5uYAXtQNUP73UxT4jLF+d+7cAQB8+OGH6Nu3L/bu3YsrV65gxowZePz4MTZt2gSg8n5vpoxjmnGoTGUtjmNa5fzeTB3HNeNQmcpahGNaxX9nBmlsr1271hCnrTKICIWFheJnQRDEX6CSyOVyPH78GBs2bECvXr0AAO3bt4evry8+++wzrF+/Xi9l1paqupmZmWHkyJG4cuUKNm7cCE9PTxw8eBCTJk2Ck5MTBg4caMASVy0JCQkYOnQo3n77bfTs2RP379/H3Llz0aNHD5w4cQI2NjaGLmKpyOVyAICvry/WrVsHAOjUqRMsLCzw9ttvY/78+ahTp44hi2jSOKZxTDMUjmlMXziucVwzBI5pFc8gjW2mX8eOHUOHDh3Ez6GhoTh69KhWxxY9terYsaO4zdLSEu3atUNycjKA/5505eTkKBybl5eHp0+fKoxdKW+q6vbhhx8iLi4OSUlJaNKkCYAXf3Tu3buHKVOmiAHcyclJqczAi6dcNWrU0FuZS0NTWfV5fcvq/fffR8eOHRWWWWjdujVq1qyJH374AWPGjBH/jeXk5MDDw0NMV/Qk1RjrV1Tm4v/2gBeBHADOnz+POnXqVNrvzdhxTOOYZigc0yrn91YZcFzjuGYIHNMq/jvjxrYJCgoKwunTp8XP9vb2Wh9b1LVHldzcXACAVCpFjRo1lMY2pKSkgIiUxniUJ1V127lzJ8zNzZXW3GvWrBm+//57PH36FLa2tmjQoAHOnTunkIaIkJKSgs6dO+utzKWhamxSTk4O0tPT9Xp9y+rChQt44403FLZ5e3vDxcUFV69eBfDfGKBLly4pTIBy6dIlSCQSo3ybUrduXVhZWandX/S70aBBA9y9exdZWVkK44FUjeti2uOY9gLHtIrHMY1jmr5wXHuB41rF4phW8TFNqwnSWOVib2+PFi1aiD/Ff1FK0rNnTwDAoUOHxG15eXk4duwYgoKCxG3dunXDzp07xdklAWDz5s1wdHRESEhIOdRCNVV18/HxQWFhIZKSkhTSnj17Fm5ubrC1tRXL/L///Q9XrlwR0xw+fBj3799H9+7d9Vbm0ujWrRsOHTokjrkCgLi4OJiZmaFLly6GK1gJfHx88Mcffyhsu379OjIzM1GrVi0AQJ06deDr64u4uDiFdJs3b0anTp0UZk01FhKJBF26dMHhw4cVth88eBAA0Lx5cwBAly5dYGZmhp9++klMk5WVhQMHDhjdv7HKhGPaCxzTKh7HNI5p+sJx7QWOaxWLY5oBYppeFhRjRun06dMUFxdHK1euJAA0ZcoUiouLo6NHjyqkCw8PJ1dXV4qJiaG9e/dSjx49yNrampKSksQ0V65cIalUSuHh4XT48GFatmwZSSQSpYXjK8LDhw+pZs2aVK9ePfrhhx/o0KFDNG3aNDIzM6O5c+eK6fLy8sjf35+aNGlCu3btos2bN1ONGjWoR48eFV7mkjx48IA8PT0pNDSU9u/fT6tXryZHR0caP368oYum0bJlywgAvf/++3Tw4EGKjY0lf39/cnd3p8zMTDFd0Tqas2fPpvj4eBo3bhxZWFhQQkKCQcr95MkTiouLo7i4OGrfvj3VqFFD/Hzv3j0iIjpz5gxJJBKKiIig/fv30zfffEP29vY0ePBghbzGjh1Ljo6OtHr1atq/fz+FhoZS9erVKTs72xBVM2kc0zim6RvHNI5pFY3jGsc1feKYVvExjRvbVcjw4cMJgNJPaGioQrrHjx/ThAkTyNXVlaysrCgkJIROnjyplN+vv/5KrVq1IisrK/L29qaFCxeSXC6voNoounLlCg0YMIC8vLzI1taWGjduTMuWLaOCggKFdDdv3qS+ffuSnZ0dOTo60qhRoygnJ8cgZS7JhQsXqFOnTmRjY0Nubm704Ycf0vPnzw1dLI3kcjl9++23FBAQQFKplDw8PKhPnz508eJFpbTff/891atXjyQSifhH1VBSU1NV/m4AoPj4eDHdoUOHqEWLFmRlZUUeHh40ZcoUys3NVcgrNzeXpkyZQm5ubmRjY0NhYWEq68/KjmMaxzR945jGMa2icVzjuKZPHNMqPqYJRMVWkmeMMcYYY4wxxliZ8ZhtxhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7YZY4wxxhhjjLFyxo1txhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7aZVqKioiAIAqpXrw65XK60/9VXX4UgCBgxYoRO+WZnZyMqKgoXLlxQ2J6WlgZBELB169ayFLvMli1bBkEQxM9Hjx6FIAg4c+ZMhZUhKioKCQkJStsFQcCSJUsqrByq7NixA4IgIC0tDUDpvrdly5Zh7969eiohY6pxTHuBY5oijmmsMuO49gLHNUUc1wyLG9tMa5aWlsjMzMTx48cVtl+/fh2JiYmws7PTOc/s7GzMmTNHKYB7enoiMTERHTt2LFOZy1vz5s2RmJiIhg0bVtg558yZozKAJyYmYvDgwRVWDm2U5nvjAM4MhWMax7SScExjlQ3HNY5rJeG4VrEsDF0AVnlIJBKEhYVh06ZNaN++vbg9NjYWjRs3hrm5ebmdy8rKCq1bty63/MpLtWrVSizXs2fPYGNjo/eyGOP1MdbvjTFVOKZxTCuJsX5vjKnDcY3jWkmM9XszVfxmm+lk0KBB2Lp1K/Lz88VtGzduREREhMr0x48fR0hICGxsbODi4oJRo0bhwYMHAF50Y6lduzYAoH///hAEQezmoqqLi1wux7x581CrVi1YWVmhQYMGiI6OVjhfVFQU7OzscO7cObRp0wa2trbw9/fH/v37S6zbw4cPMWzYMNjb28PV1RXTpk1DQUGBQhpVXZMEQcCiRYswffp0eHh4wM3NDQBARFiyZAl8fX1hZWWFOnXq4Msvv1Q678WLF9G3b1/IZDLY2toiMDAQmzZtEvMGgKlTp4rX5+jRo+K+l7smRUdHw8/PD1ZWVqhVqxbmzZun0JVs7dq1EAQBf/75J7p16wapVIr69etj/fr1JV6f/Px8TJo0CTKZDA4ODhg9ejQeP36skEbV9/bzzz+jRYsWsLOzg6OjI1q0aCE+Ha1VqxauX7+OFStWiPVbu3YtAGD9+vVo06YNZDIZnJyc0L59e/z+++8K59Pl+16/fj2aNWsGa2truLi4oHv37rh+/bq4/+bNmxgyZAhcXFxgY2ODdu3a4ezZsyVeF1a5cUzjmMYxjZkajmsc1ziuGQ9ubDOdvP7663j+/DkOHDgAALhw4QKSkpIwcOBApbRnz55F586dYW9vj7i4OHz22WfYtWsXunXrhsLCQnh6emLbtm0AgAULFiAxMRGJiYnw9PRUee6pU6ciKioKI0aMwK5du9ClSxeMGzcO33zzjUK6/Px8DB48GCNGjMD27dvh5uaG8PBw3L9/X2PdRo0ahe3bt2PRokVYt24dLly4gGXLlml1Xb766itcvnwZMTEx+PHHHwEAEydOxOzZszF8+HDs2bMHI0aMwPTp07Fq1SrxuCtXriA4OBhXrlzB119/jZ9//hkjR47EP//8A+BF9yMAmDBhgnh9mjdvrrIMy5cvx7hx4/Daa69h165dGDFiBKKiojBt2jSltIMHD0aXLl2wY8cONGvWDCNGjMDFixc11nHmzJlYuXIlpk6dii1btqCwsBAzZszQeMzVq1fRr18/NG7cGNu3b8fmzZsxYMAAZGVlAQC2b98ODw8P9OvXT6xfjx49ALz4YzBs2DDExcVh48aNqFmzJtq1a4fLly8rnEOb73vx4sUYPnw4goKCsG3bNsTExKB+/frIyMgAAGRlZaFNmzb466+/sHz5cvz000+QSqXo2LEj7t27p7GOrHLjmKYaxzTVOKaxyoDjmmoc11TjuKZnxJgWIiMjSSqVEhFRREQEDRkyhIiIZs2aRcHBwUREFBgYSMOHDxeP6dOnD9WsWZPy8vLEbfv37ycA9PPPPxMRUWpqKgGguLg4hfO9vD0jI4MsLS1pxowZCukGDRpErq6uVFBQIJYTAO3Zs0cprx9++EFt/c6fP0+CIFBMTIy4raCggGrXrk3Ff03i4+MJAJ0+fVrcBoAaNWpEcrlc3Pb333+TIAgUHR2tcJ7p06eTh4cHFRYWitfS1dWVcnJy1JYNAC1evFjj9oKCAnJxcaGBAwcqpJk5cyZJJBLKzMwkIqI1a9YQAFqxYoWY5vHjx2Rra0tz585VW4b79++TjY0NffLJJwrb27VrRwAoNTWViJS/t7i4OAJADx8+VJu3j48PjR8/Xu1+IqLCwkLKz88nPz8/mjlzprhdm+87OzubbG1tacyYMWrznz17Njk4ONDdu3fFbbm5uVSzZk2aOnWqxrKxyolj2gsc0zimMdPBce0Fjmsc14wJv9lmOhs0aBB27tyJZ8+eITY2FoMGDVKZ7sSJE3jjjTdgaWkpbuvSpQscHR1x8uRJnc7522+/IT8/H/3791fY/uabbyIjI0PhCZqZmRnCwsLEz7Vq1YKNjQ1u3rypNv/Tp0+DiNCnTx9xm7m5OXr37q1V+bp166YwE+ahQ4cAAOHh4SgoKBB/wsLCcOfOHdy4cQMAcPjwYfTr1w/VqlXT6jzqXLp0CZmZmSqvT15enlKXni5duoj/L5VK4ePjo/H6nDt3Ds+ePVO4PkX10yQgIADm5uaIiIjArl27kJOTo22VcPHiRfTp0wfu7u4wNzeHpaUlUlJSlJ6WlvR9JyYm4unTpxg9erTacx04cAAdOnSATCYTvytzc3OEhobi9OnTWpeZVU4c05RxTFONYxqrLDiuKeO4phrHNf3iCdKYzl577TVYWlpi9uzZSE1NxYABA1Smy8rKgru7u9J2d3d3cSyQtoq6srycX9Hn4vnZ2NhAIpEopJNIJMjNzVWbf3p6OiwtLeHk5KQy/5K8nC4zMxNEBBcXF5Xpb9y4AR8fH9y/fx9eXl5anUMTXa4PADg6Oip81ub6ABDHOL2cvzq+vr7YvXs3FixYgD59+sDMzAxdu3bFN998g5o1a6o97tGjR+jSpQtcXV2xdOlS+Pj4wNraGm+99ZZSOUv6vou6KGm6zpmZmTh16pTCzUaRunXraqwjq/w4pinjmKYaxzRWWXBcU8ZxTTWOa/rFjW2mM0tLS4SHh2Pp0qXo1KmT2l9imUymcgzF3bt3IZPJdDpnUfp79+6hevXqCnkV319anp6eyM/PR1ZWlkIQL8q/JMWflBaVRxAEnDx5Uim4AICfnx8AwNnZGbdv3y5Dyf87HwCl612e16cof1XXX5OuXbuia9euePjwIX755Rd88MEHGDlyJA4fPqz2mMTERNy8eRO7d+9GYGCguD0nJwfe3t46ld3Z2RkAcPv2bbXHymQydO3aFXPnzlXaZ2VlpdP5WOXDMU0ZxzT1OKaxyoDjmjKOa+pxXNMf7kbOSuWtt97C66+/jokTJ6pN06ZNG+zYsUNhlsiDBw8iOzsbbdq0AQAxuGl6UgcALVu2hKWlJeLi4hS2b9myBW5ubvD19S1tVQAAr7zyCoAXk0AUKSwsxI4dO0qVX6dOnQC8eFLXokULpR97e3sAQFhYGLZu3YpHjx6pzcvS0rLE6+Pn5wdXV1eV10cikaBly5alqkeRJk2awMbGRuH6AMBPP/2kdR7VqlXDgAEDMHDgQIUJPlQ9qX327Jm4r0hCQgLS0tJ0LntwcDBsbW2xZs0atWnCwsJw4cIFNGzYUOm7atKkic7nZJUPxzTNOKYp45jGjB3HNc04rinjuFb++M02K5WWLVuWGNw+/vhjhISEoGfPnpgwYQLu3r2LGTNmoGXLlujevTsAwMPDA46Ojti0aRNq164NKysrBAQEKOXl4uKCCRMmYPHixbC2tkbr1q2xd+9ebNy4EcuXLy/zupGNGjVCnz59MGnSJOTm5qJWrVpYuXIl8vLySpWfr68vxo8fj6FDh2Lq1Klo1aoV8vPzcfnyZcTHx4vXLjIyErt370abNm0wbdo0eHp64sKFC3j69Kk4M2XDhg2xc+dOtG3bFlKpFH5+fuIfgCLm5ub45JNP8P7778PNzQ3du3fHqVOn8Nlnn2HSpEniE8PSkslkGDduHBYtWgQbGxs0b94cmzZtwtWrVzUeFx0djcTERHTt2hWenp5ITU3Fjz/+qDAOqWHDhjhy5AgOHjwIJycn1K5dG61bt4adnR3Gjx+PGTNm4NatW4iMjFR4UqstBwcHREZGYvr06ZDL5XjjjTcgl8sRHx+PQYMGoUWLFpg8eTI2bNiA0NBQTJw4ETVr1kRGRgZ+++03eHl54YMPPtD5vKxy4ZimGce0FzimscqE45pmHNde4LimZ4acnY1VHsVnuFTn5RkuiYiOHj1KwcHBZGVlRTKZjEaMGEH3799XSLN9+3Zq2LAhWVlZibMlqpr5srCwkD799FOqWbMmWVpaUv369WnVqlValdPBwYEiIyM1lj8rK4sGDx5MUqmUnJ2dafLkybR48WKtZrhUNQOlXC6n5cuXk7+/P0kkEpLJZBQcHExLly5VSHf+/Hnq1asXVatWjWxtbalp06YUGxsr7j9x4gQ1b96cbGxsCADFx8erPe+3335L9evXJ0tLS6pZsybNnTtXnE2T6L8ZLjMyMhSOU/Xdvez58+c0YcIEcnR0pGrVqtHw4cPphx9+0DjDZUJCAvXo0YM8PT1JIpFQzZo1aeLEiQozXiYnJ1Pbtm3J3t6eANCaNWuIiGjfvn3UuHFjsra2poCAANq7dy+FhoZSjx49xGN1+b5Xr15NTZo0IYlEQs7OztSzZ0+6fv26uD89PZ1Gjx4tltXb25v69etHv/76q8brwionjmkvcEzjmMZMB8e1FziucVwzJgIRkd5b9IwxxhhjjDHGWBXCY7YZY4wxxhhjjLFyxo1txhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7YZY4wxxhhjjLFyxo1tpjdpaWkQBAFbt27V6bijR49iwYIFStujoqJgZ2dXXsUr0bJly7B3795yy2/Hjh1YuXKl0vYRI0bA39+/3M5T3ir6ujNmzDiuKeK4xljlxjFNEcc0Vt64sc2MjroA/tZbbyE+Pr7CylFRAdzYVfR1Z8wUcVwzLhzXGCsbjmnGhWOa8bIwdAFY5UJEyMvLg5WVVYWf29vbG97e3hV+3qrq+fPnsLS0LLfrXpSfmRk/42PGheNa1cFxjVUFHNOqDo5pxo+vJNOoqNvM3r17ERgYCCsrK+zatQsAkJiYiI4dO0IqlcLBwQERERG4d++exvzWr1+PNm3aQCaTwcnJCe3bt8fvv/8u7o+KisKcOXPw5MkTCIIAQRDQvn17cV9RF5knT55AKpViyZIlSufo168fgoODxc/Z2dl499134enpCSsrKwQFBeHAgQMay1mrVi1cv34dK1asEMuxdu1aAIBcLse8efNQq1YtWFlZoUGDBoiOji7xOq5btw7nz58X8xsxYoRCmqNHj6JZs2aQSqVo2bIlzp49q7CfiLBkyRL4+vrCysoKderUwZdffqnxvEXn9vf3x759++Dv7w9ra2sEBQXh1KlTSnV+77338Pnnn8PHxwc2NjZ48OCByq5J169fR79+/eDg4ACpVIrXXnsN586d0yo/TWU8dOgQAgICYGNjg9DQUKSlpeHBgwcYMGAAqlWrhrp162Lz5s1Kx+/ZswetWrWCjY0NXF1d8c477+DJkyfi/idPnuC9996Dn58fbG1tUatWLYwbNw45OTkqy7xixQr4+PjAwcEBvXv3RkZGRonXmVUeHNc4rnFc47hmSjimcUzjmGbEMY0Y02D48OHk5OREdevWpTVr1tDhw4fpypUrlJCQQBKJhHr37k27du2i2NhYqlevHrVu3Vo8NjU1lQBQXFycuG3OnDkUHR1Nhw4dor1799LQoUPJysqKUlJSiIjoxo0bNHr0aLKxsaHExERKTEyk8+fPExFRZGQkSaVSMa+BAwdSUFCQQnkfPnxI1tbW9PXXXxMR0fPnz6lFixZUo0YNiomJoV9++YWGDBlCFhYWlJSUpLbef/zxB3l4eFC/fv3Ecty7d4+IiCZPnkzm5uYUGRlJ+/fvpwkTJhAAWr58udr8/v77b+revTvVqVNHzO/vv/8Wr7GzszM1adKENmzYQLt376YmTZpQjRo1KC8vT8xjwoQJZGNjQ/PmzaODBw/SnDlzyNLSkr799tsSv0OZTEa1atWitWvX0s6dOyk4OJiqVatGd+/eFdP5+PiQh4cHtW3blrZv304///wzPX36VOm6P3z4kGrVqkV16tShjRs30rZt2ygoKIgcHR3pn3/+KTE/dWV0dnamgIAAio2NpZ9++omqV69OISEhFBYWRp9++ikdOHCA+vfvTxYWFpSWliYeGxcXR2ZmZjR69Gjat28frV69mtzc3OjNN98U09y7d4/GjRtHcXFxdPToUfrhhx+oQYMG1L59e4Vy+Pj4UI0aNahLly60a9cuWrNmDTk6OirkxSo/jmsc1ziucVwzJRzTOKZxTDPemMaNbabR8OHDCQCdOnVKYXu7du0oJCSE5HK5uO38+fMkCALt2bOHiFQH8OIKCwspPz+f/Pz8aObMmeL2lwOGuu07d+4kAHT58mVx27p168jc3Jzu3LlDRESrV68mCwsL8Y9AkVatWlH//v011t3Hx4fGjx+vsC0jI4MsLS1pxowZCtsHDRpErq6uVFBQoDa/4cOHU+PGjVVuFwSBkpOTxW3x8fEEgE6cOEFEL/4ACIJA0dHRCsdOnz6dPDw8qLCwUON5AdDhw4fFbdnZ2WRvb69QDx8fH3J2dqbHjx8rHP/ydf/qq69IEAS6cOGCuO3+/fsklUpp8uTJJeanrowvX4Ply5cTAJo+fbq4LSsri8zNzWnZsmVERCSXy8nHx4cGDRqkkN++ffuU8isuPz+fTp48SQDEm4eiMnt7e1Nubq5C/S0tLTVeY1a5cFzjuMZxjeOaKeGYxjGNY5rxxjTuRs5K5OzsjFatWomfnz59il9//RX9+/dHYWEhCgoKUFBQAF9fX9SoUQOnT59Wm9fFixfRp08fuLu7w9zcHJaWlkhJScHly5d1LlfXrl3h6OiI2NhYcVtsbCw6dOgAd3d3AMCBAwfQpEkT+Pr6iuUsKChA586dNZZTnd9++w35+fno37+/wvY333wTGRkZpaoHAHh5eaFx48bi50aNGgEAbt68CQA4dOgQACA8PFyhHmFhYbhz5w5u3LihMX8HBwd07NhR4XNYWBh+++03hXTt27eHVCrVmNeJEyfg7++Phg0bittkMhk6d+6MkydP6pxfkZevga+vLwAgLCxM3Obo6Ag3NzexvpcvX8b169cxYMAAhesSGhoKMzMznDlzRjz2hx9+QLNmzWBnZwdLS0u0adNGzKO40NBQhXFujRo1Qn5+fond7ljlwnHtPxzXOK6xyo9j2n84pnFMMybc2GYlKgqGRbKyslBYWIgPPvgAlpaWCj///POP2mDy6NEjdOnSBdevX8fSpUtx4sQJnD59GoGBgcjNzdW5XBKJBOHh4WIAv3//Pg4ePIiIiAgxTWZmJv7880+lcs6bN6/EoKdKVlYWAOVrUvRZ3TiXkjg6Oip8lkgkACBel8zMTBARXFxcFOrRuXNnACixLq6urkrb3N3dkZ6errIemmRlZalM5+7urlR/bfIrou4aqNpe/LoAQJ8+fRSui62tLQoLC8Xrsn37dgwbNgwtW7bEli1bcOrUKWzfvh0AlP7tlfRdMNPAcU2x7gDHNY5rrDLjmKZYd4BjGsc048CzkbMSCYKg8NnR0RGCIOCjjz5C7969ldK7uLiozCcxMRE3b97E7t27ERgYKG7Pyckp9QyKgwYNQkxMDJKSkpCYmAhzc3P07dtX3C+TyRAQEICYmJhS5f8ymUwGALh37x6qV68ubr97967C/vImk8kgCAJOnjwpBpTi/Pz8NB6vatKIu3fvwtPTU2Hby9+1urKkpKSozO/l+muTX1kUne+bb75ReKJfxMvLCwAQFxeHpk2bKkyOcuzYMb2WjRk3jmv/4bjGcY1VfhzT/sMxjWOaMeHGNtOZVCpFcHAwLl68iHnz5ml93LNnzwBAIQAlJCQgLS1NoUuKRCLB8+fPtcqzffv28PDwwKZNm5CYmIhu3brBwcFB3B8WFoa9e/fCy8tL/GXWVvGnckVatmwJS0tLxMXFoVmzZuL2LVu2wM3NTexOo21+2urUqROAF0+EX3/9dZ2Pz8nJwZEjR8TuSTk5OTh06BDGjx+vc15t2rTB1q1bkZKSIv7hyMrKwqFDhzBmzBid8yuLBg0awNvbG9euXdNYl2fPnin94duwYYO+i8cqEY5rHNc4rjFTwjGNYxrHNOPAjW1WKosXL0bHjh3x5ptvYuDAgXBycsLNmzdx8OBBjBw5UlwCorjWrVvDzs4O48ePx4wZM3Dr1i1ERkYqPHUEgIYNG6KgoABfffUVQkJCUK1aNbVPA83NzTFgwACsXbsW9+7dUxgTBADDhg1DdHQ02rdvjw8//BC+vr7Izs7Gn3/+iby8PCxcuFBtHRs2bIgjR47g4MGDcHJyQu3ateHi4oIJEyZg8eLFsLa2RuvWrbF3715s3LgRy5cvh7m5ucb8Vq9ejU2bNqF+/fpwcXFBrVq11F/kYnx9fTF+/HgMHToUU6dORatWrZCfn4/Lly8jPj4eO3bs0Hi8TCbD6NGjMWfOHDg6OmLRokUgIkyaNEmr8xc3cuRIfPnll+jRowfmzZsHa2trzJ8/HxYWFqXKrywEQcDSpUsRERGBJ0+eoEePHpBKpbh+/Tr27NmDBQsWwNfXF507d8b48eMxd+5cBAcHY+/evTh8+HCFlpUZP45rHNc4rjFTwjGNYxrHNCNgyNnZmPFTNysjEdHp06epe/fu5ODgQDY2NlS/fn0aN24c3bhxg4hUz3C5b98+aty4MVlbW1NAQADt3buXQkNDqUePHmKa/Px8evfdd8nd3Z0EQaDQ0FAiUj/zZWJiIgEgOzs7lcsV5OTk0AcffEA1a9YkS0tL8vT0pO7du9Pu3bs11j05OZnatm1L9vb2BIDWrFlDRC9m5vz000/F/OrXr0+rVq3SmFdROQYOHEjOzs4EgIYPH05Eqq9xVlaWwjmJXszmuHz5cvL39yeJREIymYyCg4Np6dKlGs9blP/u3bupYcOGJJFIqFmzZvTrr78qpFM1oyeR6uuelpZGffv2JXt7e7K1taXOnTsrLc+hLj9NZSyuaJbP06dPl5jvgQMHKDQ0lKRSKUmlUmrcuDFNmTKFsrOziYiooKCApkyZQq6urmRvb0/9+vWjU6dOKf37VJX39u3bCQClpqZqVRdm/DiucVzjuMZxzZRwTOOYxjHNeGOaQERUcU17xlhFGzFiBM6cOYPk5GRDF4UxxsoFxzXGmCnhmGa6eDZyxhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fcjZwxxhhjjDHGGCtn/GabMcYYY4wxxhgrZ9zYZkzPWrZsiRUrVqjd/9dff0EQBBw9elQv5+/cuTPmz5+vl7wZY1UPxzTGmKnhuMb0hRvbjOnR9u3bkZaWhlGjRhmsDB999BGWLFmCrKwsg5WBMWYaOKYxxkwNxzWmT9zYZkyPli1bhkGDBsHGxsZgZejQoQOcnJywbt06g5WBMWYaOKYxxkwNxzWmT9zYZkxPUlNTceLECfTr109h+7x58+Dh4QE7Ozv07dsX9+7dUzqWiLBkyRL4+vrCysoKderUwZdffqmUbvv27fDz84O1tTVat26NP/74A46OjoiKilJI179/fw7gjLEy4ZjGGDM1HNeYvnFjmzE9OXz4MCwsLNCyZUtx2zfffINPPvkEQ4cOxU8//YQ6depg9OjRSsdOnDgRs2fPxvDhw7Fnzx6MGDEC06dPx6pVq8Q0f/75J/r3749GjRph27ZtGD58ON588008f/5cKb+QkBD89ddfyMjI0E9lGWMmj2MaY8zUcFxjekeMMb0YM2YMNW7cWPxcUFBAXl5eNHToUIV0Q4cOJQAUHx9PRER///03CYJA0dHRCummT59OHh4eVFhYSERE/fv3p3r16omfiYh++OEHAkCRkZEKx6amphIA2r17dznWkDFWlXBMY4yZGo5rTN/4zTZjepKeng5XV1fx882bN3H79m306dNHId3LXZcOHToEAAgPD0dBQYH4ExYWhjt37uDGjRsAgNOnT6Nnz54wM/vv1/iNN95QWRYXFxexTIwxVhoc0xhjpobjGtM3C0MXgDFTlZubCysrK/FzUfB0c3NTSOfu7q7wOTMzE0QkBt2X3bhxAz4+Pkp/IADA3t4e1tbWSscUlePZs2e6V4QxxsAxjTFmejiuMX3jxjZjeiKTyZCWliZ+9vT0BAClSTbu3r2rdJwgCDh58iQkEolSvn5+fmJ+L4/refToEXJzc5WOyc7OBgA4OzvrXA/GGAM4pjHGTA/HNaZv3I2cMT3x8/NDamqq+Nnb2xuenp7Yvn27QrqtW7cqfO7UqRMA4P79+2jRooXSj729PQDglVdewe7duyGXy8Vjd+zYobIsRX9IioI/Y4zpimMaY8zUcFxj+sZvthnTk1dffRWffvopbt68CW9vb5ibm2PGjBmYOHEi3N3d0blzZxw4cADx8fEKx/n6+mL8+PEYOnQopk6dilatWiE/Px+XL19GfHy8GKRnzpyJV155BeHh4RgzZgyuX7+OJUuWwNraWmFsEACcOXMGdnZ2aNq0aQXVnjFmajimMcZMDcc1pncGnqCNMZP1/PlzcnZ2pu+++07cJpfLac6cOeTm5ka2trbUq1cv+uWXXxRmuCxKt3z5cvL39yeJREIymYyCg4Np6dKlCuf46aefyNfXl6ysrCgoKIhOnjxJFhYWtGzZMoV0r7/+utLMmowxpguOaYwxU8NxjembQERk4PY+YyZrypQp+PPPP3HkyJEKOd/hw4cRFhaGo0ePIjQ0FACQlZUFDw8PHDx4EO3atauQcjDGTBPHNMaYqeG4xvSJG9uM6VF6ejrq1auHhIQEBAYGlnv+7777Ljp16gRnZ2ecP38ec+fOhZeXF86cOSN2T/r0009x9OjRCvsjwhgzXRzTGGOmhuMa0yces82YHnl6emLt2rVKM1GWl6ysLEyYMAGZmZlwcHBA165dsWTJEoVxQDKZDF9//bVezs8Yq1o4pjHGTA3HNaZP/GabMcYYY4wxxhgrZ7z0F2OMMcYYY4wxVs64sc0YY4wxxhhjjJUzbmwzxhhjjDHGGGPljBvbjDHGGGOMMcZYOePGNmOMMcYYY4wxVs64sc0YY4wxxhhjjJUzbmwzxhhjjDHGGGPljBvbjDHGGGOMMcZYOePGNmOMMcYYY4wxVs7+H+i8RKv+7h5uAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADauElEQVR4nOydeXyM1/fH38/MZE9kkUUSa2Jfomj5tUoQ1NLai6KUUJSiLW2tSeytfpXqIoral9pa1frSjVYXRfttlCq1SyISEiL7zNzfH2NGJjOTZCKxxH2/XnmNeZ773OeOJCf3POecz1GEEAKJRCKRSCQSiUQikUgkpYbqXi9AIpFIJBKJRCKRSCSS8oZ0tiUSiUQikUgkEolEIillpLMtkUgkEolEIpFIJBJJKSOdbYlEIpFIJBKJRCKRSEoZ6WxLJBKJRCKRSCQSiURSykhnWyKRSCQSiUQikUgkklJGOtsSiUQikUgkEolEIpGUMtLZlkgkEolEIpFIJBKJpJSRzrZEIpFIJBKJRCKRSCSljHS2JZL7mH379qEoClu3br3XS5FIJJI75ty5cyiKwjvvvHOvlyKRSCR2U716dZ5++ul7vQzJA4R0tiUPDIcOHWLs2LE0aNAANzc3qlatSt++fTl58mSh1+Xl5VG/fn2rG7y0tDQGDhyIt7c3ISEhrFixwuL6w4cP4+rqytmzZ0v180gkkoebmzdvEhUVRadOnfDx8UFRFFatWmUxTq/Xs2rVKrp160aVKlVwc3OjYcOGzJ49m+zsbLOxOTk5vPzyy/j5+VG5cmVmz55tMd+lS5dwd3fnp59+KquPJpFIJBb8/vvvdOvWDR8fH1xdXWnYsCHvvfee2ZjY2Fhq1KiBj48Pzz//PDdu3DA7r9fradKkCXPnzr2bS5dISozmXi9AIikub731Fj/99BPPPvssYWFhXL58mffff5+mTZvy66+/0rBhQ6vXLVmyhAsXLlg9N3HiRPbt20dMTAz//vsvI0aMoF69ejzxxBMACCEYN24cEyZMoEaNGmX22SQSycNHSkoKM2fOpGrVqjRu3Jh9+/ZZHZeZmcnQoUP5v//7P0aNGoW/vz+//PILUVFRfPvtt3z33XcoigLAggULWLNmDVOnTiU9PZ2ZM2cSGhrKc889Z5pv0qRJdOvWjZYtW96NjymRSCTs3buXZ555hiZNmjB9+nTc3d05ffo0ly5dMo05cOAAo0ePZty4cYSEhDBv3jwmTZpEbGysaczHH3/M9evXee211+7Fx5BI7EdIJA8IP/30k8jJyTE7dvLkSeHk5CQGDhxo9ZqkpCTh6ekpZs6cKQCxYMECs/MBAQFi9erVpvfh4eHizTffNL1fu3atCAoKEunp6aX4SYrP999/LwCxZcuWMr3PzZs3y3R+iURiSXZ2tkhMTBRCCHHo0CEBiE8++cRiXE5Ojvjpp58sjsfExAhAfP3116ZjLVq0EDExMab3Q4YMEf379ze9//HHH4Wbm5u4ePFiKX6S4nP27Fmrtri0kTZNIrl/uH79uggICBA9e/YUOp3O5rg33nhDtG3b1vT+k08+EZUqVTK9T01NFb6+vmLbtm1lut7CqFatmujatWuZ3iMvL89ivyt5cJFp5JIHhieeeAJHR0ezY7Vq1aJBgwb8/fffVq958803qVOnDoMGDbJ6PisrC29vb9N7Hx8fMjMzAcjIyODNN99k3rx5uLu727XW+Ph4IiMjCQoKwsnJiRo1ajB69Ghyc3NNY86cOcOzzz5rSqf6v//7P7788kur8+n1eubMmUPlypVxdnYmIiKCf//912LcwYMH6dSpE56enri6uhIeHm6RKhodHY2iKBw/fpwBAwbg7e3Nk08+aTq/bt06mjVrhouLCz4+PvTv35+LFy+azdGmTRsaNmzI8ePHadu2La6urgQHB/P2229brCk7O5vo6Ghq166Ns7MzgYGB9OrVi9OnT5t9vkWLFtGgQQOcnZ0JCAhg5MiRpKamFu8/XCJ5AHFycqJSpUpFjnN0dDRl2+SnZ8+eAGb2rzCbptfrGT9+PK+//jqVK1e2a61paWm88sorVK9eHScnJypXrszgwYNJSUkxjbly5QqRkZEEBATg7OxM48aNWb16tc05ly1bRmhoKE5OTjz22GMcOnTIYsyJEyfo06cPPj4+ODs78+ijj7Jz506zMatWrUJRFPbv389LL72Ev7+/2efbvXs3rVq1ws3NDQ8PD7p27cqxY8fM5njhhRdwd3cnPj6eHj164O7ujp+fHxMnTkSn05mN1ev1LF68mEaNGuHs7Iyfnx+dOnXi8OHDZuOKY0slkoeBDRs2kJSUxJw5c1CpVGRkZKDX6y3GFWa/wLB/adSoEb169bLr/sX5ndVqtcyaNctkk6pXr86UKVPIycmxOueBAwdo3rw5zs7OhISEsGbNGosxaWlpTJgwgSpVquDk5ETNmjV56623zD57fh2LRYsWme5//PhxwD4b+NNPP/Hqq6/i5+eHm5sbPXv2JDk52WJdu3fvJjw8HA8PDypUqMBjjz3Ghg0bzMYUZz8pKSb32tuXSO4EvV4vgoODRceOHS3OHTx4UKhUKvHzzz/bjKZERESINm3aiJMnT4r//ve/wsXFRaxbt04IIcSUKVNE8+bNhV6vt2tN8fHxIigoSLi6uooJEyaIpUuXiunTp4t69eqJ1NRUIYQQly9fFgEBAcLDw0NMnTpVLFy4UDRu3FioVCqxfft201zGyHaTJk1Es2bNxLvvviuio6OFq6uraN68udl9v/32W+Ho6Cgef/xx8Z///Ee8++67IiwsTDg6OoqDBw+axkVFRQlA1K9fX3Tv3l18+OGH4oMPPhBCCDF79myhKIro16+f+PDDD0VMTIzw9fUV1atXN61dCEMGQFBQkKhSpYoYP368+PDDD0W7du0EIL766ivTOK1WKyIiIgQg+vfvL95//30xb9480a5dO/HZZ5+Zxg0fPlxoNBoxYsQIsXTpUvHGG28INzc38dhjj4nc3Fy7/v8lkgeRwiLbtti7d68AxIYNG0zHIiMjRcOGDUVcXJz4+eefRaVKlcTs2bOFEEIsW7ZMVK1aVWRmZtq1tvT0dNGwYUOhVqvFiBEjxEcffSRmzZolHnvsMfHHH38IIYTIzMwU9erVEw4ODuKVV14R7733nmjVqpUAxKJFi0xzGW1xkyZNRM2aNcVbb70l3n77beHr6ysqV65s9vv+119/CU9PT1G/fn3x1ltviffff1+0bt1aKIpiZic/+eQTk00LDw8XS5YsEfPnzxdCCLFmzRqhKIro1KmTWLJkiXjrrbdE9erVhZeXlzh79qxpjiFDhghnZ2fRoEEDMWzYMPHRRx+J3r17C0B8+OGHZv8fL7zwggBE586dxaJFi8Q777wjunfvLpYsWWIaU1xbKpE8DPTu3VtUqFBBfP3116J27doCEG5ubmLUqFEiKyvLNG7t2rXC1dVV7NmzR5w8eVK0bt1atG/fXgghxLFjx4STk5P4888/7b5/cX5nhwwZIgDRp08f8cEHH4jBgwcLQPTo0cNsrmrVqok6deqIgIAAMWXKFPH++++Lpk2bCkVRxF9//WUal5GRIcLCwkTFihXFlClTxNKlS8XgwYOFoihi/PjxpnFGm1i/fn0REhIi5s+fL959911x/vx5u21gkyZNRLt27cSSJUvEa6+9JtRqtejbt6/Z+j/55BOhKIpo2LChmDNnjvjggw/E8OHDxfPPP28aU9z9pKR4SGdb8kCzdu1aAYgVK1aYHdfr9aJ58+biueeeE0LYTl2Mi4sTlStXFoAARO/evYVOpxNnzpwRLi4u4pdffrF7TYMHDxYqlUocOnTI4pzRcZ8wYYIAxI8//mg6l56eLmrUqCGqV69uSrMyOtv16tUzSylavHixAMTRo0dN89aqVUs89dRTZg8HMjMzRY0aNUSHDh1Mx4zOtvH/xsi5c+eEWq0Wc+bMMTt+9OhRodFozI6Hh4cLQKxZs8Z0LCcnR1SqVEn07t3bdGzlypUCEAsXLrT5f/Hjjz8KQKxfv97s/H//+1+rxyWS8khJnO327duLChUqmDlvFy9eFA0aNDDZtFatWon09HSRlpYm/Pz8xKZNm+xe24wZMwRgtrkzYvw9XrRokQBMDyuFECI3N1c8/vjjwt3dXdy4cUMIcdsWV6xYUVy7ds009vPPPxeA+OKLL0zHIiIiRKNGjUR2drbZ/Z544glRq1Yt0zHjRvPJJ58UWq3WdDw9PV14eXmJESNGmK358uXLwtPT0+y4caM9c+ZMs7HGB51GvvvuOwGIcePG2fy/sMeWSiQPA2FhYcLV1VW4urqKl19+WWzbtk28/PLLpgfxRrRarejVq5fJflWpUkXExcUJIYTo2LGjGDVqlN33Ls7v7P/+9z8BiOHDh5udnzhxogDEd999ZzpWrVo1AYgffvjBdOzKlSvCyclJvPbaa6Zjs2bNEm5ubuLkyZNmc7755ptCrVaLCxcuCCFu28QKFSqIK1eumI211wa2b9/ebA/4yiuvCLVaLdLS0oQQQqSlpQkPDw/RokULs4cc+f8v7NlPSorHPXe2k5KSxPnz5y2+JJKi+Pvvv0WFChXE448/brbBEsLg5Lm4uFgYM2t1gllZWeLQoUPi1KlTpmM9e/YUgwYNEkIIsW3bNhEWFiaqV68uYmJiCo1063Q6UaFCBdG9e/dC1167dm2LyLQQQsybN8/MiTY622+//bbZuN9//10A4vPPPzd7v3r1apGcnGz2NXz4cOHk5GRy4I3O9v79+83mXLhwoVAURZw6dcpijnr16pmeLgthcLbd3d0t/i+6desmmjRpYnrftWtX4evrK/Ly8mz+X4wbN054enqKK1euWNzX3d3d4o+fRFIesdfZnjNnjtWoqxAGJ/ePP/4Qx44dM/3ev/LKK+LJJ58UQhgecDVv3lxUrlxZvPzyy0XWBjZo0EA0bty40DEdO3YUlSpVsqjH3Lhxo5kTbbTFL730ktm4a9euCUAsXrxYCCHE1atXhaIoYtasWRZ2wVirfunSJSHE7Y1mfv0NIYTYvn27aaNccI6OHTuKmjVrmsYane2Cm91x48YJb29v0/sxY8YIRVHE1atXbf5f2GNLJZKHgZCQEAFYOMsjR44UgIVDeurUKXH48GGTQ/j5558LLy8vkZycLC5duiSefvppERgYKJ5++mkRHx9f6L2L8zs7d+5cAYjjx4+bHU9MTBSAmRNdrVo1Ub9+fYs5wsLCRM+ePc3ed+rUycIGfPPNN2YPJo02cejQoWbzlcQGfvrpp2ZzGG2gMRtgy5YtAhA7duyw+X9hz35SUjzuiRr51atXefnll9m+fTt5eXlm54QQKIpiUSMlkeTn8uXLdO3aFU9PT7Zu3YparTadu3HjBpMnT2bSpElUqVKlyLmMNTBGvvvuO/bu3cs///zDP//8Q//+/YmNjaV69eo899xzVKlShaFDh1qdKzk5mRs3bthURjdy/vx5WrRoYXG8Xr16pvP556hatarZOGNNk7Gm+dSpUwAMGTLE5j2vX79uVgtVUF391KlTCCGoVauW1esdHBzM3leuXNmkgJx/XXFxcab3p0+fpk6dOmg0tk3NqVOnuH79Ov7+/lbPX7lyxea1EsnDyObNm5k2bRqRkZGMHj3a4ryDgwOPPPKI6f2JEyf48MMP+fnnn7l27Rpdu3blzTffpG3btgwdOpQ5c+YQExNj836nT5+md+/eha7p/Pnz1KpVC5XKXAomv03LT1E27d9//0UIwfTp05k+fbrVe165coXg4GDTe2s2DaBdu3ZWr69QoYLZe2MtZ8F15deOOH36NEFBQfj4+Fid03hfe2ypRFLecXFxATDrigAwYMAAYmNj+eWXX8x+X2rWrGn6d25uLq+99hpRUVH4+vrSqlUrAgMD+eKLL5g/fz4DBgyw2ckBivc7e/78eVQqldl9ASpVqoSXl1eR9gssbcWpU6eIi4uzsClGCu5tCtqvktjAouyqUSunsD1qSfaTksK5J8728OHD2b9/P5MnT6Z+/foWolcSSWFcv36dzp07k5aWxo8//khQUJDZ+XfeeYfc3Fz69evHuXPnAEytJVJTUzl37hxBQUFWf+50Oh3jx4/nzTffJDg4mFmzZvHEE0+YnOuRI0eyfv16m852WZH/YUJ+hBAAJrGNBQsWmG2y81NQ5M34x8+IXq9HURR2795t9X4Fry9qTcVFr9fj7+/P+vXrrZ639YdKInkY+frrrxk8eDBdu3Zl6dKlxbrmlVdeYdCgQTRt2pS1a9fi4+PD5MmTAXj99deLdLbLguLatIkTJ/LUU09ZHVtwY2zNpgGsXbvWqhBdwYeAttZkL/baUomkvBMUFMSxY8cICAgwO258yF6YGOq7776LRqNh7NixXLx4kQMHDnD27FmqV6/O22+/TUhICJcuXbJb9NEaBQMItijO/kev19OhQwdef/11q2Nr165t9t6W/bLHBpbGvqwk+0lJ4dwTZ/v777/nvffeY/Dgwffi9pIHmOzsbJ555hlOnjzJN998Q/369S3GXLhwgdTUVBo0aGBxbu7cucydO5c//vjDqhH56KOPSE9PZ+LEiQAkJCSYOfNBQUHEx8fbXJ+fnx8VKlTgr7/+KvRzVKtWjX/++cfi+IkTJ0zn7SE0NBQwRGrat29v17X55xBCUKNGDYs/AiUlNDSUgwcPkpeXZzOaExoayjfffEPLli0t/thIJJLbHDx4kJ49e/Loo4/y6aefFpoxYmTXrl38/PPPpmhFQkICgYGBpvNF2TQw/I4Wx6bFxcWh1+vNotsltWkhISGAIQp8JzYNDBv6ks5hbc49e/Zw7do1m5GysrClEsmDTLNmzfj666+Jj4+nTp06puMJCQmA7YfqiYmJzJ49my1btqDRaEzjjfsy42t8fLxNZ7s4v7PVqlVDr9dz6tQpUzYOQFJSEmlpaXbbL+N9b968WWLbUxo20NqaAP766y8LR73gmDvZT0rMKVHrr2PHjtG/f3+TPP3vv/8OwNSpU9m9e3eR13t5eeHr61uSW0seYnQ6Hf369eOXX35hy5YtPP7441bHjRs3jh07dph9xcbGAob2Ljt27LBI1wG4du0aUVFRLFiwAGdnZwACAgJMm0UwtNgprFWPSqWiR48efPHFFxZtYOD208UuXbrw22+/8csvv5jOZWRksGzZMqpXr271IUJhNGvWjNDQUN555x1u3rxpcd5a64eC9OrVC7VaTUxMjMVTUCEEV69etWtNAL179yYlJYX333/f4pzxHn379kWn0zFr1iyLMVqtlrS0NLvvK5GUN/7++2+6du1K9erV2bVrV7EeTOXm5vLqq68ybdo0UwQpICCAf//9F61Wa5q3qPZjvXv35s8//2THjh0W5/LbtMuXL7N582bTOa1Wy5IlS3B3dyc8PLzYnxUMDnKbNm2IjY0lMTHR4nxxbNpTTz1FhQoVmDt3rkXJWnHnKEjv3r0RQljNBDD+X5SFLZVIHmT69u0LwIoVK8yOL1++HI1GQ5s2baxe9+abb9K6dWs6deoEYIqMG/dlxraHhdmw4vzOdunSBYBFixaZnV+4cCEAXbt2tTm/Lfr27csvv/zCnj17LM6lpaWZbLAtSsMGFqRjx454eHgwb948srOzzc4Z/y9KYz8pMcfuyPbXX39N165dadasGQMHDmT27Nmmcw4ODnz44Yd07ty50Dlef/11lixZQseOHYv1ZF4iAXjttdfYuXMnzzzzDNeuXWPdunVm5429tJs2bUrTpk3NzhnTyRs0aECPHj2szj99+nQaNWrEs88+azrWu3dvZs6cyejRo6lWrRqxsbEm42uLuXPnsnfvXsLDw3nxxRepV68eiYmJbNmyhQMHDuDl5cWbb77Jxo0b6dy5M+PGjcPHx4fVq1dz9uxZtm3bZlH3WBQqlYrly5fTuXNnGjRowNChQwkODiY+Pp7vv/+eChUq8MUXXxQ6R2hoKLNnz2by5MmcO3eOHj164OHhwdmzZ9mxYwcvvviiKeJfXAYPHsyaNWt49dVX+e2332jVqhUZGRl88803vPTSS3Tv3p3w8HBGjhzJvHnz+N///kfHjh1xcHDg1KlTbNmyhcWLF9OnTx+77iuRPCi8//77pKWlmSI2X3zxhans5eWXX8bT05P09HSeeuopUlNTmTRpEl9++aXZHKGhoVYfPi5evBiA8ePHm4516dKFMWPGMGDAAJ544glmzZrF8OHDC13jpEmT2Lp1K88++yzDhg2jWbNmXLt2jZ07d7J06VIaN27Miy++SGxsLC+88AJHjhyhevXqbN26lZ9++olFixbh4eFh9//NBx98wJNPPkmjRo0YMWIEISEhJCUl8csvv3Dp0iX+/PPPQq+vUKECH330Ec8//zxNmzalf//++Pn5ceHCBb788ktatmxp9UFgYbRt25bnn3+e9957j1OnTtGpUyf0ej0//vgjbdu2ZezYsWViSyWSB5kmTZowbNgwVq5ciVarJTw8nH379rFlyxYmT55sUQ4I8Ntvv7F582YzHZjq1avz6KOP8sILLxAZGcny5ctp0aJFoZHn4vzONm7cmCFDhrBs2TLS0tIIDw/nt99+Y/Xq1fTo0YO2bdva/ZknTZrEzp07efrpp3nhhRdo1qwZGRkZHD16lK1bt3Lu3LkiA493agMLUqFCBd59912GDx/OY489xoABA/D29ubPP/8kMzOT1atXl8p+UlIAexXVmjVrZurFlpeXJxRFEUeOHBFCCPHZZ5+J4ODgIucYO3asqFq1qqhatap4/vnnxcsvv2z2ZU2eXyIxtpuy9VUYhamRC2FoAebo6GjqGZufVatWierVq4uKFSuKV1991UL53Brnz58XgwcPFn5+fsLJyUmEhISIMWPGmKn+nj59WvTp00d4eXkJZ2dn0bx5c7Fr1y6zeYxq5Fu2bLH6eQoqF//xxx+iV69eomLFisLJyUlUq1ZN9O3bV3z77bemMUY18uTkZKtr37Ztm3jyySeFm5ubcHNzE3Xr1hVjxowR//zzj2lMeHi4aNCggcW1Q4YMEdWqVTM7lpmZKaZOnSpq1KghHBwcRKVKlUSfPn3E6dOnzcYtW7ZMNGvWTLi4uAgPDw/RqFEj8frrr4uEhASr65RIygPGNjLWvox9oI2/77a+hgwZYjHv5cuXhYeHh9i5c6fFud27d4u6desKLy8vMXjwYJGRkVHkOq9evSrGjh0rgoODhaOjo6hcubIYMmSISElJMY1JSkoSQ4cOFb6+vsLR0VE0atTIwkYVZosBERUVZXbs9OnTYvDgwaJSpUrCwcFBBAcHi6efflps3brVNMaoxGut3aIQBjv61FNPCU9PT+Hs7CxCQ0PFCy+8IA4fPmwaM2TIEOHm5mZxrdFe5ker1YoFCxaIunXrCkdHR+Hn5yc6d+5s2gsZKY4tlUgeFnJzc0V0dLSoVq2acHBwEDVr1hTvvvuu1bF6vV60aNFCvPrqqxbn/v33X9G6dWvh7u4uWrdubbGXsEZxfmfz8vJETEyMaa9SpUoVMXnyZLO2W0IYbHbXrl0t7hEeHi7Cw8PNjqWnp4vJkyeLmjVrCkdHR+Hr6yueeOIJ8c4774jc3FwhRNH70zuxgcY95Pfff292fOfOneKJJ54QLi4uokKFCqJ58+Zi48aNZmOKs5+UFA9FCPvUjJydnfniiy/o0KEDOp0OBwcHDh8+TNOmTdm/fz9PPfWURWpCQayl8OZHURTOnDljz7IkEolEIpFIJBKJRCK5b7A7h9vHx8eU7laQkydPmgmv2OLs2bP23lYikUgkEolEIpFIJJIHBrsF0nr06EFUVJSZkrKiKFy+fJl33nmnyF6cDyL//vsvo0aN4pFHHkGj0djsT5eWlsa4ceMICgrC2dmZ0NBQ/vOf/5iNyc3NZdKkSVSqVAk3Nzc6dOhgVZVaIpFIygpp0yQSSXlC2jSJRHK/Yndke968eRw6dIiwsDAaNWoEwLBhwzhz5gx16tQhOjq62HP9+++/nDx50mraea9evexdWplx7NgxvvzyS1q0aIFerzf1oMtPRkYGbdq0QaPR8O677xIQEMDJkye5ceOG2bhx48axadMmFi5cSHBwMHPmzCEiIoJjx47h6el5tz6SRCJ5iJE2TSKRlCekTZNIJPctJSn0zs3NFStXrhTPPfec6NChg+jXr5/4+OOPzcSfCuP69euiXbt2QqVSCZVKJRRFEYqimN6rVKqSLKvM0Ol0pn8PGTLEqjDUtGnTREhIiLh586bNeS5evCjUarWIjY01Hbt69apwc3MTb731VukuWiKRSGwgbZpEIilPSJsmkUjuV0rUZ9vBwYGhQ4eyYcMG9u7dy6ZNmxg+fDiOjo7Fuv6NN97g8uXL/Pjjjwgh2LFjB/v27SMyMpIaNWrw66+/lmRZZUZx2jAtX76cYcOG4ebmZnPM3r170ev1Zq2lfHx86NixI1999VWprFUikUiKQto0iURSnpA2TSKR3K/Y7Wz/+eefNg3OV199ZdYPzxb//e9/mTp1Ki1atAAgKCiI1q1bs2zZMrp3725RP3O/c+7cOS5fvoyvry/dunXDyckJHx8fRowYYdYQ/sSJE/j7++Pt7W12fb169Thx4sTdXrZEIpFYRdo0iURSnpA2TSKR3CvsdrZfeeUVfvnlF6vnfvvtN1577bUi57hy5QpVqlRBrVbj5ubG1atXTee6dOnCf//7X3uXdU+5fPkyABMnTsTb25uvvvqKuXPnsmXLFkaMGGEal5qaipeXl8X13t7eXLt2zeb8OTk53Lhxw/R1/fp1kpOTEfZ1bZNIJJJiIW2aRCIpT0ibJpFI7hV2O9v/+9//aNmypdVzjz/+OL///nuRc1SpUoWUlBQAatWqxc6dO03nfvnlF5ydne1d1j3FKMRRu3ZtVq9eTUREBKNGjeKdd95h06ZNd9wzfN68eXh6epq+vLy88Pf3Jz09vTSWL5FIJGZImyaRlA3piYnsi44mPTHR7Hji778ToygkWtlDFXZOUjykTZNIygZbNq20sWUH7bWP98Ke2u1s5+TkkJuba/OcNWXxgnTo0IFvvvkGMETKly5dSrNmzXj88ceJiopi8ODB9i7rnmJMN2rbtq3Z8YiICMCgkmkcd/36dYvrU1NT8fHxsTn/5MmTuX79uunr4sWLpbV0iUQisUDaNImkbLiZmMj+mBhulvHGVGKOtGkSSdkgbVrR2N36q0mTJqxZs4Zu3bpZnFuzZg2NGzcuco633nqLzMxMAJ5//nnc3d3ZunUrWVlZvP/++4wcOdLeZd1TQkNDcXJysnne+ACibt26JCUlkZqaalYPdOLECerWrWvzeicnp0Lnl0gkktJE2jSJRFKekDZNIpHcK+yObE+ePJkdO3bQtWtXtm7dys8//8zWrVvp2rUrn332GVOnTi1yDldXV3x9fU3ve/bsyfr169m+fTujR48ulqrk/YSjoyMdO3bk22+/NTv+9ddfA9C0aVMAOnbsiEqlYtu2baYxqamp7N27ly5duty9BUskEkkhSJsmkUjKE9KmSSR3n7uVYn6/Y3dku2vXrmzYsIFJkybRt29fFEVBCEHlypXZsGEDXbt2LfZcf//9N4cPH+bixYsMGzaMSpUq8e+//xIQEICHh4e9SyszMjMzTQrs58+f58aNG2zduhWA8PBw/Pz8iIqK4oknnmDgwIEMGTKEU6dOMXnyZAYOHEhoaCgAlStXZvjw4UyaNAm1Wk1wcDBz587F09PzgYvmSySSBxdp0yQSSXlC2jSJ5P7DmGJep1s3PAID7/Vy7h130qT7xIkT4qeffhInTpyw67qMjAzx3HPPCbVaLTQajVCpVOLIkSNCCCH69OkjJk2adCfLKnXOnj0rAKtf33//vWncN998Ix599FHh5OQkKlWqJF577TWRnZ1tNld2drZ47bXXhL+/v3BxcRHt27cXf//9t13ruX79ugDE9evXS+PjSSSShwxp0ySSe0PCkSMiGkTCrT1PUceLOicxIG2aRFLGJCcIsTTK8JqPu2W7SmI77ZmnLLE7sp2fOnXqlOi6iRMn8t133/HVV1/RqlUr3NzcTOe6dOnCu+++y9tvv30nSytVqlevXqz2DRERERw6dKjQMU5OTrzzzju88847pbU8iURyi/TERI7ExtJs5MiH+ylqEUibJpFIyhPSpkkkZUxKInwcA+HdwFfur+yhRM72P//8w7Zt27h06ZKF+riiKKxYsaLQ67du3cqCBQvo2LEjOp3O7Fz16tU5d+5cSZYlkUgecgpLWUpPTOSPlStpMmyYdMQlEknZkpII22Kh98gy25jKh4sSieRB5GGzXXY722vXrmXo0KE4OztTrVo1HB0dzc4rilLkHDdv3iTQxn9uRkaGvUuSSCSSQhFC4ObnR+upU9FrtQghimWrJBKJpESUchTIwdXV4pish5RIJA8iD5vtstvZnjVrFn369GHlypW4WjH+xSEsLIxt27bRsWNHi3Nffvkljz76aInmlUgkkoKbUqHXk56QwJHYWK6dPo1PaKjhaWpQEMoD1vlAIpHcfe5lFEYIQUBYGFMyMuSDQolEInkAsdvZTkhI4KOPPiqxow0wffp0unfvTmZmJs8++yyKovDbb7+xceNGVq5caVKUlEgkkuJibVOKEMStW8fOyEj0Wq1p7IH58+m2YgVhgwZJh1sikRTKvYrCyAeFEolE8uBjt7Vu3bo1f/311x3dtGvXrmzatIkDBw7Qo0cPhBC89NJLbN68mfXr1xMREXFH80skkocLodeTHh/P/pgYtg0YwP6YGPIyM0lPSLBwtAH0Wi07IyNJT0wslqiORCKR3E2EXk/cunUsrlGDH2bP5q+NG/lh9mwW16hB3Lp1CL0ejYuL1fRyiUQiKTEpiRAbbXjNR0ZystmrpPjYHdmeO3cugwYNwtnZmQ4dOuDl5WUxxsfHp8h5+vTpQ58+fTh58iQpKSn4+PhQt25de5cjkUgecoybUjOnWlF4cvJkjsTGWjjaRvRaLUeWLiU8OhpFrb6LK5ZIJBLbCCEKfVB4cPFi6vXuTcVatWR6uUQiKVUy/o7D7eMYMuo/jlur25k8mSkpuOV7lRQfu53tpk2bAjB69Gibhr2gwnhh1K5dm9q1a9u7DIlEIrG5KXW4FfG5dvp0odennjmDSjraEomkpJSi6rgxSi30epsPChv270+PNWu4mZjI7x9/LNPLJRJJqSKd6tLHbmd75cqVpfL09OLFi3z22WdcvHjRavuwxYsX3/E9JBJJ+cbWpjQvK4u8zEx8QkMLvd47JAS9TicdbolEUjJKQXW8oN6ESq22+qAwICyMHmvWcHTDBr4YPlzqUEgkEskDgN3O9gsvvHDHN/300095/vnn0ev1+Pv7W20fJp1tiURSFLY2pQjBX5s30yQykgPz51uNEKk0GpqNGiU3phKJ5J5hIYJWsybhM2ZYfVDYYsIE0uPjLRxtuK1DUSMiwhDhlinlEomkFDNv7gceVI2Ke7LLnDJlCj169CAlJYX4+HjOnj1r9nXmzJl7sSyJRPIAIIQwbTT1Op3N6PXBRYvwCA7mmeXLUWnMnyuqNBq6rVyJR2Cg3JRKJJISU1LRII2Li3URtFmziFu3jqYjRpjbLUWhYb9+/LFiRZE6FEKvL/HnkUgk5Qhj5k0BsbMHjfzZPwFhYQ+csK3dkW2AH374gWXLlnHy5EmLFHCAuLi4Qq9PTk7mxRdfxNPTsyS3l0gkDykFo0BPTJxIs5EjrUavk+Li+HzoUHquWUNI+/YcWbqU1DNn8A4JodmoUQZHW0a1JRLJHVDS+kY3Pz+bImi/vvsujQYOpNuKFabzUodCIpHYS0ZyMm7G14Ia1A9I1Ls8tEC029nes2cPXbt2pX379hw+fJjOnTuTlZXFTz/9ROXKlQkPDy9yjk6dOvHrr7/KFl8SiaTYWFMdTz52jBGHD/PM8uUWqZUqjYbQp54CwCMoiPCoKFQaDXqtFkWtlhFtiURSZhS6yVUUnL282B8TYzVKnRQXx2eDB9Nz7VpqREQYHhSePYs2J0fqUEgkkmJT6MPAUtCbKGusdpvBXKNC4+Ji97x3Ox3dbmc7KiqKCRMm8NZbb+Hg4MCsWbNo2rQp58+f56mnnqJdu3ZFzrF06VL69etHZmYmERERVtuHGVXPJRLJw0t6YiJ/rFzJ/73yCtnXrlkYXOOmtEcxoteX4+L4pFUrhv74I4HSvkgkkjKksE2ua8WKqDSaQqPUf23ahFf16rSbO/f2g0K93mYmD0gdColEUn4oqgWiUaPCzc/Prjnzi1HerZaJdjvbf//9N3PmzEGlUqEoChkZGQBUq1aN6OhooqOjGTRoUKFzpKenk5mZybx585g/f77ZOeMHt6d9mEQiKX8IIXDz86P11KnodTqbrXD+2rSJ5OPH6bZyJeHR0ajUaqvRa/fAQJ6YNAn3wPvzCa5EIinfGDd6k5KTC9WbMKLSaBB6PUm3HhSOOHwY3zp1zNLL84+VOhQSiaS8UFgLRLitUREeFVWsSPW9TEe329l2dnZGr9ejKAqBgYGcPn2aVq1aAeDh4cHFixeLnGPw4MFcuHCBJUuWULt2bQs1colE8nCT3yhev3SJHp98UmgUKCkujl8XLqTX+vW87evL83v3WkSvPQIDaRMdXcYrl0gkDyrpiYkciY01bMBK46Gc8+0NoD16E2AZpc7LzESblYWiUhE2aNDt9HKpQyGRSO4xZZGWbbPbzC0CwsKo0b49KEqRkeripKOXpe2029lu3Lgx//zzDx06dCAiIoI5c+bg6+uLg4MD06ZNo1GjRkXO8dtvv7FhwwZ69OhRkjVLJJJyjIVRVBS6fvBB8WoVtVqyrl69SyuVSCTliZuJieyPiaFOt2535mwLge/Tz0LPgfhq8xB6PSe//JJPe/Uqtt5EYVFqRaWSOhQSieSOKFRXopiUZVp2Ydk/Dfv3p8eaNQabHR1daKS6uOnoZdky0W43fsKECabFzJ07Fw8PD7p160bnzp25evUqH3zwQZFz1KpVC62NtACJRPLwYtUo5uuZXbCFlxFjFCg7Le3uLVYikUgKotdDcjzK8lkwdQDKxzMhOYFanTpRv08f0zCj3kSjAQMYf+4cradNo9GAAbSeNo3x584RNnBgoZEWRVFIiotjrpsbSXFx0tGWSCR2kZmSYvZqL0KvJz0+nv0xMWwbMID9MTGkx8eXWutBRaWi2ciRFvu+gLAweqxZw9ENG3gvNPR228TZs1lcowZx69aZraG46ehl2TLR7sh2ly5dTP8ODg7myJEj/Pvvv2RlZVG3bt1ipYQvXLiQiRMn0rBhQ+rWLeHjFIlEUu6wZRQPLlpE2KBBRUaBMq9eJTwqStZlSySSUkOVlkx4oOHVFuoKXgZHe/c6mBkJuts2Slk1H6Yvp+eaNSQfP07SrfaoxdWbKIy8zMw7+mwSiURiD+oKXnclLVtRFDyCgiw0KlpMmEB6fLzFXhCsR6qLSkeHsm+ZaPf/xMyZM0lISDC9VxSFWrVqERYWxtWrV5k5c2aRc0yYMIFLly7RsGFDqlatSlhYmNlX48aN7V2WRCK5z0lPTGRfdDTpiYkWx3+YM4f0y5dtGsX8UaBxp0/bjAK5+fnRJjq6dOotJRKJBFBdT6FNkOHVFq4160JKgoWjDYBOizJrOCI5gRbjx5udMupNqNRq3vb1lVFqiURyX+NSs26RadnpiYkIIe74XkaNClP2z8CBNBowgD9WrCh2pLo4YpTGlollhd2R7ZiYGDp16kRQUJDFuYSEBGJiYpgxY0ahczRr1kz+MZFIHjJuJiby84IFZvWQZorjWm2hRrE0okASiURS6igKTsFV4eOZlo62EZ0W9efLaTRkMjsjI81OSb0JiUTyQODihlNQFX6dOatolfBSEqQtqFEB2BWpNqaj38uWiXY724UVvycmJlrtmV2QVatW2XtbiUTyAGNNRINb9dn52zC0fPPNQo1i8vHjuFeqZDKKtmq4JRKJ5K4RUAVF4wCXCt8AEn8GjasrGhcXtFlZgNSbkEgk9yHOBdTF84k+qvQ6akRE8M/OnaaSmIKYnN1SCoQoisLluDg+ad2aN9PSih2pVt0KxlhLR4e71zKxWG78xo0b6datG926dUNRFF577TXTe+NXx44dGTx4ME888USZLfZ+Z+fOnbRo0QIPDw8CAwPp27cvZ86csRi3YsUKateujbOzM40bN2bXrl33YLUSyd2hoIjG4dhYEIK4detYXKOGmbjFqtatcQ8MpNuKFRaOtOwje/eRNk0iuUXBzSeGh4i+3frDrvMInQ4qF74BJDgE7a0WXmBu0zKSbdeD28I9MFBqVNiJtGmS8oitMj27MTrVBzIMr0JYiD4SG03VOiG8ePgwDfv3tzqNKS1biFJtC5aXkUF2WppV4TQj1iLVFunodohRlgbFmj03N5f09HTS09MRQpCRkWF6b/xSFIXBgwcTGxtbpgu+X9m3bx89e/akfv367Nixg0WLFvHnn3/SsWNHsm79YQXYtGkTI0aMoF+/fuzevZvHH3+cnj178uuvv97D1UskZYNRRCO/U+3g6sr1Cxes1vsk/v47nw0Zck+NosSAtGkSicGhrnhr81nx6WdNdYhCr4cr8SjLog2q4yf/RPQaCWob2TZqDaL3KJL//tuqTdPm+50qLh6BgVKjwg6kTZOUV4xtC2/eibNdsJPCjo8NzvbudfBMDVgxG/ZshBWzUfUIRdmzgZ5r1hAQFmY2jUqj4bGxY1FUKlNGY0BYWKnUcIOhVZkxUm1PUCZ/Onqv9esJj4qyaBNWVhQrB3PIkCEMGTIEgLZt2/LRRx9JFfECbNq0iWrVqrFy5UrTN9jf35927dpx+PBhWrVqBUBUVBT9+/dn1qxZgOH/My4ujpkzZ/LVV1/ds/VLJKWN1TZeikLDfv04MG+ezXqfo+vXU/nxx3l09GjZR/YeIm2apNySkgjbYqH3SPC17agKvd6i1KXFhAm4eHvDV2tRZg2/XaN95hjK2sOI6cvNj4PB0Z6+AnwrEVCxEr3Wr5c27R4gbZrkgaeYtssebHZSaNEBLl8oVPRR37QNLcaPN+lQqDQaBn/3HW5+fqTHx5vZTms9sEuCNivLFKmuERHBkaVLST1zBu+QEJqNGmVwtG3cw5SO3qoVQ3/8kcCmTe9oLcXF7oLH77//3urx3NzcYrX9Kq/k5eXh4eFh9ofT09MTwPQ058yZM5w8eZK33nrL7Nr+/fszadIkcnJycHJyunuLlkhKGyFA6EGlBr2ejCtX8Ktf31TX4+DigoOra5HiFpd+/pnmY8aQnpTEHytX0mTYMBm9uctImyYpt6QkwscxEN7NbMNqbPHlqM222dombPBgXLRZlg71qTiIGowSswbRvD3KtqUQfwaCQ9B1H47iF0R22nXQ61lUrdpd3ehJDEibJnngsWG77gSrnRQUBTr2g0/mFSn62DhyGme//RbvkBAeGzsWNz+/ItuCaVxc7njdBYXT7HmAebdbJtr9eGHt2rUsWbLE9P6vv/6iVq1auLq60qZNG65cuVLo9UIIrl27Rk5Ojv2rvY954YUXOH78OB9++CHXr1/nzJkzTJkyhSZNmtCyZUsATpw4AWCRFVCvXj1yc3M5e/bsXV+3RFIihAD9rTYJep1ZXQ+x0YYUpGXRBARWNKvrycvKIi8zs9jiFh6BgbSeOlU62vcAadMk5RVjfXTBOmljiy/XgADrrW1UKnxCQlC2x1rfgO7ZBM8/inL1MuLFaJi9Hu2QyRzd+x2n9uzBxcuLjORkuzd6sja7dJA2TSIpgKLgFFTFEC3Pb9OcXAw6FcUQfVQ5OpnSst38/YvVFszNz69UarkVRSEpLo65bm73ddtEu53tBQsWoMoXnn/55ZdxdHRk0aJFJCYmMmXKlEKvz8vLw9/fn2+++cb+1d7HtGrVih07dvDmm2/i5eVFaGgoSUlJ7N69G/Ut+fnU1FQAC8V2b29vAK5du2Z17pycHG7cuGH2JZHcMwo41WxdWkhdT03zuh4h+GvzZppERtolbiG5+0ibJimvZKakmL2acWvzeSQ21mKz6Orjg6JWF74BPRUH6xeiqNXsGjmSH+fNI6RDR2p36SJrs+8x0qZJJAVwckFxcLS0aTlZkJ1ZLNFHodWanF2h11u1nUb86tcnIykJZ2/vUq3lvtuRanuxezd77tw56tevD0BKSgo//vgj//nPfxg7diwzZ85kz549hV7v6OhI5cqV0ZVh8/B7wc8//8zzzz/PiBEj+O6779iyZQt6vZ6uXbuaCW+UhHnz5uHp6Wn6qlKlSimtWiKxE2NdT36n2tm1yLoekZxAi/HjATi4aBEewcE8s3y5VBy/j5E2TfJQ4uSCysHRaqlL5rVrxVYdFzodT8fGEj5j+l0T4ZEUjrRpkgeGlERDQCPlDtXFiyInC5GXa2nThIC9m6F7ZKGij/QeRVZaGnmZmSgqFSq12maZYMP+/Rlx+DAuFSuyPzqabQMGsD8mhvT4eIPgZDnGbuuvUqnIzc0FDPXbDg4OtG3bFoDAwECuXr1a5Bxjxoxh4cKFZGdn23v7+5Zx48bRrl07/vOf/9C2bVv69OnDl19+ye+//87atWuB209Gr1+/bnat8Umqj4+P1bknT57M9evXTV8XL14sw08ikdhACNt1PZ+vKLKup9GtVPKkuDg+HzpUKo7f50ibJnkoyclCn5drvdRFr+fa6dPFUh3XZd6EJ924umuLfHB4nyBtmuSBwVibXdbOthDkJFw0CK4VtGkbF4F/MExfbnlOrUHMWIHwDST7VhaH0OvR63RWbWdAWBg91qzh6IYNLKlZ06zl6+IaNYhbt65cO9x2C6Q1btyYDz/8kMqVK/Pee+/Rrl07k1jEhQsX8Pf3L3KOCxcucPLkSapWrUqbNm0ICAgw+2OkKAqLFy+2d2n3lOPHj9O9e3ezY5UrV8bX15fTt57yGGuATpw4QZ06dUzjTpw4gaOjIyEhIVbndnJykoIcknuP0N9RXY/G1ZVHXniBCpUrG9LEFaXE4haSskfaNMlDiZMLOQkXaTZyJAfmz7dIh/xu6lT6bN5sW3V8xgrwDSTj0AE8s+/v1MaHDWnTJA86GcnJuBlfi9sUyrnw2ujMf0/g3LYzzFhhHkw5FQcxQxHRq8Gm6GMazhUqmOZSVCqrtrPFhAmkx8fzxfDhNmu5a0REGLKAyuEe0G5ne+7cuTz99NOEhYXh4eFhVnu9Y8cOmjdvXuQcu3btMhmmQ4cOWZx/EJ3tatWq8fvvv5sdO3/+PCkpKVSvXh2AkJAQateuzZYtW8wM/ubNm4mIiHio1dwlDwAqK7WK9tT16HR0/+QTC6f6ZnKyVBy/D5E2TfIwYeqn3XMgTnl5OKvVdFuxwkLo58Rnn5Fy8iS+XZ63UB0XvUeBr6HtTG6CjGzeb0ibJnlQsOVUZ6ak4JbvtVCEwPeWTfPNyzVkJxZ0ZJ1d0d1IA5UKOg+CxyIgn03T93wR9HouHDtJ5SGT0bi6os3M5OimTRxcvJg63boRHhVlms4YRDGzncVo+arXajmydCnh0dEGXYxyht3OdsuWLU2R6dDQUDMRicjISGrWrFnkHOVRzXHUqFFMmDCB8ePH88wzz3D16lVmz56Nv78/ffv2NY2Ljo5m4MCBhIaG0rZtWzZv3szBgwf54Ycf7uHqJZJioLdSq5i/rmfVfOup5GoN+p4voigKc93cLFreGBXHJfcX0qZJHmTSExM5Ehtr6O1axEM8W/20i+rjKvyCEC8aNodCpwOVqlxGZcoL0qZJHhTscqqtoddDSgLKtli4dBqlcuit3txBBsfamiOuUoFfEGL4dINoml7HhR9+5L/jnza0b1UUHFxczMTI/Bs2RKXRmLXyKtgD+0Z8fLFavqaeOYOqHDraUAJnG8DDw4NmzZpZHO/SpcsdL+hBZdy4cTg5OfHRRx+xYsUKPDw8ePzxx9myZQsVK1Y0jXvuuefIzMxk/vz5zJ8/nzp16rBjxw4ef/zxe7h6iaRohKKCXiNRCjrVGxdBl0GGuh5raZXTV5iiPaWhOim5O0ibJnmQuZmYyP6YGOp062bT2VZX8LLZT/vA/Pn03b6d2l27Ej5jBioHB/R5uSgaB5NDrSgKyTs34ffBBFLGLMKv58C78tkkJUPaNEl5R+PiclvItqBo7ar5sPRbaPykTUdcKAoCUAC9gLPffmtwtAGEsFD99g4JQa/VWnRZsOiBbaOW22Iuna5cOtzFcrYXLlzIwIEDCQgIYOHChYWOVRSFV155pcg54+PjWbRoEQcOHODatWv4+PjQqlUrxo8fT3BwcPFWfx+hKAqjRo1i1KhRRY6NjIwkMjLyLqxKIrlDUhINddq9RyK8/VEqVrKsVSxGXc/f27dTr1cvWr7+uuwV+4AgbZqkvONSs26hPWE/7dWL8efO4ZCXhcugxlx9bZl1hzrNSgsxyX2HtGmSe0K+fRS+t/c/9mTfFBc3Pz9LIVsjIfWh0eM2HXExYwV0HsThZR9z8aefeGLiRJvaFXC7TWt2WprVtSiKwuW4OD5p1YoJ588Xa67yKo5bLGd74sSJPPnkkwQEBDBx4sRCxxbH2f7rr79o3bo1eXl5dOjQgUceeYSkpCSWLl3KihUr+OGHH2jQoEHxP4VEIikbjIqYbXqg8g3k4JIlPDZqFPqmbVB/vtysVlHYqOs59MEH9N+5E0Wtpk109L3+RBKJRGLqp/3rzFlF1xHOmG7QprADV19fs1eJRPKQYtxHhXczc7Yz/46DZTFktn68dJxtRcHFy8twL2slfc9NgCvxttu0zoxE1yQcBxcX/tq4keRjxxhx+DDPLF9uIWyWv01ryj//FLqsvMxMMpKT8a1Tx6oOxsPQ8rVYzrY+nxy7vhSk2SdOnEhoaCh79+41tVkAQ2uFjh07MnHiRHbv3n3H95FIJHeGSaTjShIuNXVkXrnCskcfpcX48TQyOtVZWagcHTn55Zds6d0bvU5nqut5GIyoRCJ5ACmkn3Z+Us+cQeXgaOi8YAdufn5mrxKJRJIf1fUU2gRB8vXSyYxxcHFB0Wisd4cxtmn9ZF7RbVqHTGZnZCRJcXF8NngwPdasIaR9e5vaFQVTyK2hzcqyqOW2Nld5pUQ123fKgQMHWL9+vZmjDYb+hlOnTuX555+/F8uSSCQFyC/S4ZqvpcPOyEh2Dh9ucqob9u9PjzVrGH/u3ENnRCUSSdlT6imXhfXTzod3SAj6vFxU8mGhRCK5j8nLykJotYYa7ILY2aZV4+KCNiuLvzZtIvn4cbqtXEl4dDQqtdpCu8IeLGq5H5KWr8Vytu1VYGzdunXhN9VoyMnJsXouJycHdTksjpdIHnSstXQwimUc37qVhgMHUrtLl4fOiEokkrLHpuCZjXrIIhGi0H7aAIFNm9LyzTcNDwsPZNhun1MKuAcGEh4VJTUtJBJJyRACnVaL2pqQrR1tWrWZmWbR6qS4OH5duJBe69dDhC9Xxy6+IzHI/LXcBbvTlFeK5Wy3adMGRVFMSsL5N89CCIvNtE6nK3S+9u3bM3XqVB555BFq165tOn7q1CmmT59Ohw4div0BJBJJGeN1u+awOGlAN5OSZN9siURyd7BRD6lKSyY80PBqi6x/T+DdtvPtB4jGEpisLBoNGEDP1avhaiLKGhvtc0oRj8BAqWkhkUhKjqKg0mjAmpCtEPD1p4ieIywdcSNqDbruwzm6aZPFKVOGz/Wrpbbcgsrm5ZliOdt//PGH6d9XrlwhMjKStm3b0qdPHwICAkhKSmLLli3s27ePFStWFDnfwoULCQ8Pp379+jRs2JCAgACuXLnC0aNHqVq1apGK5xKJpOwRQuDbrb+hD6NOZ3qwVlQakOybLZFI7jVF1kN6+aK7kWZ6gFivd280DhpUjk6GNEm1BnavQ7HWPueWam9pO9wSiURSUhxcXFBpNLaFbJ/oBN7+lo44mNq0Kn5BHFy82Gxeo1J4TvwF7FOukBgplrPduHFj07/79OlD//79efvtt83GPPPMM0yaNImPPvqoyMh01apVOXr0KCtXruTAgQOkpqZSu3Zthg0bxtChQ3F3dy/BR5FIJCUmJRE+Xwndh4FvIEKvh+QElO23Izqi10iEXxCKSmVwujUG86HS3BPpB4lEIrEbqw8RAYeMVFPfWdWgiQgff0tHGwzvZ0bCYxHgF3RPPoNE8lBT0tKRck5eVhZ6rda6kG1mJioHB8588w0hTw2w2lGGipX4bMiQ2321MVcKT/1+t3S2S4jdu+Q9e/awfft2q+c6duxIr169ijWPu7s748aNY9y4cfYuQSKRlCZCILx8USKnIrR5oNfDV+tQZplvNJVV8xHTlyO6PC8FzyQSyX2BqWNCcjJudW8fV+lSodmt11tYPERs3BLRZzQifwRbUWD6cpQiVHvZthRGRttemG8gjIiSzoBEUtrYKB0pTUokyHgXHgJYs2tgKJdpW8OF7CuXrQrZAkzJyODPVav4ZtIkC0f80sGDVHnSn4i5c/GuUcNqiaDuRlqZfKaHAbt3zO7u7nz77bdWz3399dcyKi2RPEjo9YjkeJSPZ8LUASinjho2o7Ns9GGcNRxSEk36DRKJRHIvyUxJMXs1otKnGTal+jTglqP91VqUbjVgxWzYsxGcXVEuXzCPYNuh2otKDbYEXX0DDc64dLYlkrtDSiLERhte7xCjIOPNxAJzFXYP40OAUri/LQraNTBk6/i1akvr0xk4+wWYhGxVGg0IQV5mJnlZWeRlZuITGkpSXBw7IyOZ4+7OXDc35ri5sbpdOz5+9FEykpMJj46m1/r1hM+YjkdQkAyulAJ2R7bHjBnDjBkzSEpKokePHvj7+3PlyhV27NjB2rVriYmJsXpdhQoV+P7772nWrBkeHh6FKhQrisL169ftXZpEIrEHvb5EER1l21LEi9G2N5kSiURyP6BxBQybUcNDxHx1irb6ztqh2oteh+utFqauvr6Fj7+FVB2XSMqIuxDxzvg7DrePY8io/zhurYp3D1vZN6WB0OtJT0jgSGws106fxic0lBYTJlgVshVCmHdfuOWIG0k+fhz3SpXIuXgWl0GNufrasjtSHZfcxm5ne9q0aXh5eTF//nxWr15tUikPDAxk0aJFvPzyy1ave+211wi89cfltddek+2AJJJ7iRCIlARzR9uzYrEjOop0tCUSyX2KEALPnpPAYRqeeTmg1xtSx/M71bYi2ELA3s3QPdIghmZDtZfeo0BR4ebnB2B6LQqpOi6RPLhkpqTglu+1rK4pCrWnP0KvJ27dOlMrViMH5s+n7/bt1O7alfAZM1A5OJh6Yzu4uJi1bzViUZud/fAohd8NSqRsNHbsWF566SUuXbpEYmIigYGBVK5cGVUhqQZRUVGA4Y/guHHjcHNzw8nJqWSrlkgkd4QQeoMYUEh9eG6CIcLj7Ap6HTw/Ec4cg1Nx1i8ODkHodNLhlkgk9x0FIz3+jRrRavJkS6e6sAj2xkXQZRBMXw5WVHuJWmmInMmggUTyYHOfiq3Zqs024lS7OekJCRZOM4Beq+XTXr0Yf+4cDnlZ5lFqRSmyfauszS59SiwjrFKpqFq1KlWrVrXrury8PPz9/fn888/p2rVrSW8vkUjuAEWlBh9/WHsYMuLh6Dy4cRoqhEK9kYbjUYNhT4F+i2qNQbVS1vBIJJL7CHUFL+uRns2befL11w09so0oiiGybSuCfSrOYP9i1kDz9gYxtFuqvfQeZdiUG22gFEKTSB5YSpIWbnOuUkwXt1abbULjhkPlevw8c7aFo21Er9VyZOlSwmdMNzxUzIepfeuM6agcHE1R75JmHMvSmKK56ztmR0dHKleujE6nu9u3lkgeetITE/lhzhxDBLvPaDi9AT6tBX/MhtMbDa8ba8CZDYaNZq2w2xerNYgZK8A3UJaBSCSSu4oqLZnwQMOrNVxq1rUe6dHruXb6NKLXSKjbFGashB9vwoEM6NQfKlWBt7cZItb5+WYr/LLH0ApxxAyYvR4xfLqh3Vf+h41SCE0ieWCxJbB4r+eyihB49ZwEw26iUmuoERFBQFiYzeGpZ86gcnA0PFgsgKIoXN21BZ504+quLXe0pzOWxhRbtf0h5J6Ep8aMGcPChQvJzs6+F7eXSB5aso9+T42kjxEoiKzL8MNwEAWejAot7B+OyLli2Jh2GgCR0xBfnIPOg6QypUQiuTNKoBqsup5CmyDDqwUubjgFVeFIbOxtR1tRcHB1BUXhu6lTwS8IseY3CG9ryOT5dgD8ORduXkK0fhqxNwkip5nsHV+cg5ZdQKUi5YtP4Uk3UnZtkanjEskDSHpiIvuio0kvqC5ug6Ie7t0Vbgk8AoaWrMnxKMtnw9QBEBtN1TohvHj4MA3797d6uXdICPq8XEPJjC1kbfZdocRp5HfChQsXOHnyJFWrVqVNmzYEBASYPVVRFIXFixffi6VJJOUWIQS+7fuhdByA0OtQ/o61dLRNg7Uox5cimkWjzF6P0OlApZIRbYlEcseUWuqmEPg+/Sz0HIhKr6NGRAQpJ05Qs0sXGvXrZ+oh++/evYCAf9fD/khzu/e/+RC+AqXWIMTwGSgODohbaZVmjrXclEokDyzGVl51unUrVgTW+HAv2drDvbLGGMF2mIZXXq7B0d69Dmaat2RVrZqPmL6cnmvWkHz8OElxt3V2VBoNzUaNIif+ApZx7cLRe/qyLwHqeRavw4KkaO5JiGrXrl04OTnh5ubGoUOH2LVrF1988YXZl0QiKRk3j/2PCy925+ax/5mOCaGHjHiUI9Hw/VBDzfaNIlTH088YxnWtSsrOTdLRlkgkpUJh6ZbFjkCZIj2zbkd6Gjekz+bNNO7UDs3qeTB1AJrV86jdIQIyE1EKOtpgeLC4PxIyE8mOPy8j2BKJ5K6g05/jXKQrOv252wcLRLCVf/+C5AQLR9swgRZl1nBEcgItxo83Hc6vLJ51+h+716X38mN/ouFVUjqUSmQ7MzOThIQEQkNDi7UhP3v2bGncViKRFEAIgVvdRrgv+xyh0xn6yyLg1FqU/caUcQVafWAQQysMjxCENhcl6eLdWLpEIpHYjEDlKamc7QhunirrkZ5aYahGzEB8tRbVrOEGXQonF8jNRjVsMsQVnsnD8aU4N7EUE5JIJJI7wZqyuBACv24TUTtMRZeXgxACRQhzu6Yoho4In8yz3oIQQKdF/flyGkdO48KBA1SoXJlmI0dKZfH7DLsj2++88w4xMTGm9z/++CPBwcHUqVOHWrVqcfp0EdEyiURSJgi9Hq7EoyyLgeihhletFjIS8jnaAAJOb4a6kaDYeN6maKD+KLIvXbhr65dIJOULe+skC0OrSuNiJ1dca9aDFCuRnucmGOzfpvdg6rLbImg/pIOTa/EyeTTWxYRcfX3NXiUSyf1HRnKy2ev9QkFlcaHXkx4fzw8zZ7NtwAB+mDmbvMxMREG75uRiaMlasG1hfmqFQYv2qBw0dF+5kjbRUXgEBZWJto4xvVx/j9LLH2TVc7u/G8uXL6dy5cqm96+++ioNGjTg888/x9fXlylTphRrnpSUFKZOnUr79u1p0KAB7du3Z9q0aSTfZ78kEsmDgNDr4cddKIe+gaFvQvQnMOxNFLXKem320UXgFgzhyy0dbkUDbVaCayBcuwLITaZEIikEG4Jnxij1TTucbWvCREIIgjtPonXrDNyCGxn64upuC6Hh4gYd+8Gx32DVr+YiaEfng15b7Ewea2JCbn5+Zq8SicQ6pfmAzV7KXA28CIzZN3mKeW/sPFU6ZyuC8HY3tSdcXKMGP8yezV8bN/LDnDmoFAUlv10Dgy3KzoTKNmzXU/0NbVpr1YDD0fDtAJQj0SiZ8SD0pf757nV6uS3Vc3ud8HvhtNudRn7x4kVq1qwJQHx8PEeOHGH//v20atUKrVbL6NGji5zj4MGDdOrUCb1eT/v27alduzZJSUksWbKEJUuWsHfvXlq0aGH/p5FIHkKEEJCeitKy862e2fPh5kWoUAOazbAe0bkWB98PhrZrIKgt/P0xpJ8BjxCoP8rgaCsqXFydAbnJlEgedtITEzkSG2tKUTQjJRE+joHwbnfcAkt34xTVXjC8wlOGKFBCAkdiY7l+6RI9PvnEEOmpFWaIZnfsZ4j+CB1E9IZT6yy7LFQIgXojDGJo1lLJ82Xy2CsmJJFIbmOvEFl5QqtK43xHCCmQup2nSue8DzxWvbl5e0JFwcHFBRQFjauVCLYQsHczdI+EVfPNHfFaYYb2rKc3WNq7W6KP1BqEuoJXmX3e+wWjE15W40sDuyPbLi4u3LhxA4Bvv/0Wd3d3nnjiCQC8vLy4fv16kXOMGTOGBg0acPHiRbZt28aHH37Itm3buHDhAg0aNGDs2LH2LuuB4cSJE3To0AE3NzcqVarE66+/Tm5u7r1eluQBQwiBMBlXPXh4Q9JPiMv7EE3ehLafIBpPROjzIKCl9UlOb4Ltj0JWMqJZNLRbD82iwDUIlFumwTcQRkTJHrKSQpF2rfxTkih1SdCLi5zvCGoPrXkUaM4cjm/ZYmhl06aHIaKTP4Kd8idkJlpvZ3j0XcMDxPAVhWbylERMSFI+kTatlClBu7/7EZ3+HGeHYC5qdguVLt3s1RwF5+BmHImNxa9+fbqtXMnUmzeZkpHB61euGOyatQj2xkXgH2yo3Vbns13PTYDMhELatxpEH11C65T0o0pKEbsj282bN2f+/PmoVCoWLFhA586dUavVAJw+fZrg4OAi5zh27BhbtmyhQoUKZsc9PT1588036devn73LeiBITU2lXbt21KpVi+3btxMfH8+rr75KZmYm77///r1enuQBQQg9ubkJJCTEkpV1GheXUCoHT0AT1Jrc7BokXJxnOh4UOALHBqNQrvxiaHtTkNTjCNdKhn//PgfqDjNsSo34BsLI6LvyuSQPJtKuSWxRkl61ishAo/HF/VYU6ODixTy9bJmplZfQ6xHt+6CcXJtvo6kYSmL+mGc9cm3K5FkLwRFwfKnVTB4nR8OWSJbNPNxIm1YGlCD7pdBsGjtR5SYT/rThtTgYnWqXAk61TonnfCOodS3e4hpFpJu95juDRlMRtYMTrv7+vHj4MOJKPOrV8+DSaTSVQ9EPfh3RayRKwQj2qTiIGgwxaxDN26NsWwoJZ6HLQPhjVtGij01nFOvzSsoWu53td955h6effppnnnmGatWqMWfOHNO5zZs3m6LchVGzZk3S0tKsnrt+/TohISH2LuuBYOnSpdy4cYMdO3bg4+MDgFar5aWXXmLKlCkEBQXd4xVK7neE0JOUtI5//ok0Rbbd3MKoVm0GSUlr+eef4fki3nDhwnzq1FlBQNvVKKl/w9Xfb0+maBDhK8A1EEVRQdOpd/vjSMoB0q5JMpKTcTO+1r193FavWmNto1OB2kYhBEE9FxOsvI8QOnJvZjL8118BgaIxPNRHEaDNhr/eu73R1LiApggRtNObwKM6PDYX0WQ6isYRoc1BUTua2nzJ2mwJSJt2v1CaKemqvBTaPAPJeea2yJpSOBTuVNuFEAQ9s5Bghw8QOh3Nx7wEX60z75iQk4Xqp68Qq39DzFiBUlD88ZutiI4D4MkuaF+YgsblVrFLcUQf1Q5WRR9LwoMsUHavsTuNvH79+pw5c4bk5GTOnj1rqt8G+M9//sM777xT5BwLFiwgKiqK/fv3mx3ft28f0dHRxZrjQWT37t20b9/eZLwB+vbti16vZ+/evfdwZZL7FUO6uO7Wvw0R7fyONkDlyhPIzY23cLQN12j5559IcnMvI7r9AE2mQc0B0GQaYsA5qDXI4GhLJCVE2jWJLWEiWxtZvYgnvosvenF7IyuEntyceM6di+b48QGcOxeNyikXRaMmT3fF7Hiu7iqi568Q2t9wsTYLtJlFi6ApGkBP2va3YaUbadsXyH7aEgukTXt4KKgUfmcoqFSuwC2bUrBn9sk/ITnRsmPCjzeh71iUpdOh8yDEzjMQOQ06DYDIaYgvzsGTXbjw0wFAACD0uuKJPup1VkUfS4ItgbLCkA66gRL32a5YsSJCCBITE/H390ej0dCoUaNiXTtp0iSuX79Ou3bt8PT0xM/Pj+TkZK5fv463tzdvvPEGb7zxBgCKovDnn38WOt/Vq1f57bffSExMJCsri4oVK1KnTh0eeeSRYvX9vlucOHGCYcOGmR3z8vIiMDCQEydO3KNVSe4bMhPh5Fqo/Ty4Bt7afCaQkBhLVtYZ6tZdSUJCbAGHWsHfvx8XLsyzcLSNCKElIWEp1atHI5pFo6jUBgOsqO6r3w/Jg4m0axJb6Lho6I0tLt4+KATB3WdTWTXPYIeEQCAsMnOKzNipvZyAtmtQUo8b0sSN7QyLEEEzxRi0sp+2xDrSpt3f2MqkKQxVeqrZa8kp4FAbyR/Bzss1ONrGntlCD54VYfpylB93wapfEbps0KhRAOGghqf6oKidUQ5+g/7RtuiGTEbj6oo2M5PUs2fx9QukatNQlL/mwY3TKGETod7Iwu1d3RGGYEopRbZLwr0QI7sfKZGzvWfPHqKiovjjjz/Q6XT89ttvNG3alBdffJHw8HAGDhxY6PXNmjW7403+9evXWb16NatXr+Z///ufQZE5H4qi4O7uTs+ePRkxYgQtW9oQibqLpKam4uXlZXHc29uba9eu2bwuJyeHnJwc03ujQF1xOXnZMD7E1xWNxvAtv3I9m7SsXDycHQj0crEYW9XLFWdnw9iUm9lcu5mLi6OKKj7uJRp7+spNdHo9QV6uuN8am5aRzZX0XBw1Kqr7lmzsuZSb5Gr1+Hs44uVmUM6+ma0lIS3TrrFqlYpQ/9tjL167SVauHh93R3zd7R+bna3lQpphM1e70m1tgsS0LNKz8/ByccTf0zA2N/eWKqWzP8ojr9/agOrNNpkqlSsq1XqysszThlQqF9RqV4vjBcnKOoOiqEk69DV/LRuHe993qNq8XZHf+9L4ObH2/SyNnxPj9/NOf04Kfj/v9OfE1ve+vFISuyZt2gNo07RaUr2DOZOWR/4YRWJaFucz07jS1RvvW2nhxt+BG7nZZFZ2JTTlJmCIXqPNApUGUIPQItCQm5to4VAXmbFzcjjeXm1wbDQeZX+koZ1hrUGG2u39BUSD8omgXbuZy8VsDRq9s9mcJy/fQEnNoRpqHG8dM37vXdNzqZxvrLRp5Zt7YdOgfNi1G9kGO3ExXWtmJ85fz0Xl6IdHVh5et44VZddIumzSfMj/81ohJQU3DJk01/L9vBozabJyUzl5+YbZz7bqZhrXta5cSrmJuJlt+tnO0UOKtgLx2Rq88603NVdNjtaJ67kqjEpUWq2eQJNDnWNQC1cUQ+vV5ASU7R/DtcsovUYifPxRfvoKseUYVAlFUdSGLMWIPqAIcvOuknBhxW19nUqRODpWQWkRgUpRodfmGW6qUvCtVxdOrkXJL4aWegx6HbZt71qvANcg9Fot8cIdRXf7tPF7n5MN+QtmjN9PJU9rMba07Zqtn5PyatfsdrY3btzIoEGD6Nu3LyNGjGDEiBGmc6GhoXzyySdFOturVq2ye6H5mTt3Lu+88w7e3t48++yzREVF0bhxY3x9fXFyciItLY1z585x+PBhdu/eTUREBE8++STvvfce9evXv6N73wvmzZtHTExMia/vuOhHAFYMbkZE/Uq3ju0nLUuLg0rh1NwuFmNjutVjyBOG2vnOi34k+WYuapXCaStjX2oTwuud6gHQ84OfuZiahaLA2XldTWMjFhpKBvo9Wpm3+jQG4NnYg5y6chMFODvfcmyHev58POQxAIauOsIfF9MAOJdvbJt3DGNb1PBm80iDXsBL64/ww6kUm2MbBlVg17hWAEzeHscXcYkWY1u/vR8B1KjoyveT2gKwYO/frP75gsXY8AX70Quo5OnEr5PbA7Dyl3O8vecfi7Gt3v4erV7g4+bA79M7AuDgoDJsQMWtDSjKrXTx25tMvT4LnS4TFxfztCFbxwvi4hKCEDpcqzRkrO98sr4Dx/37ODmns2mM8fu58NkwejWrAkCn937gWkYeGpXCv1a+968/VYeX2hpKSZ5ecoDL13NQKXDGyvd+yBNVielmyH559qNfOHs10+b3/pmwQJYMaArAoBWH+CvhhsX/pfH72bqWL2siDa0CR677nYNnU22ObVLFix1jDA/eXtn8B1//fcVibNt3DN/7Wv7ufP1qOACzdh1j8+FLFmNbL9iPEFDF24Uf32gHwHv7TvHhvjMWYyW3kTbtwbNpn57K5LMXY/lsbwrn2t3+Xvx0OoWn+76Is8MY9LochBD8GZ/GhdQsuj37Dk4OixG63Ft9XwW52mQSLhs3mTWpXn0GCYklzNi5vJzqoZMNyrv52xkGtzcTQdPXG4XKzSCC1n7Rfq5lNKKa5j0+80kyzWf83i+o1IZnbx0z2jQ1gvyPM6VNkxTkTm0alA+79uqBVI69GMtnu5M5F377s4XvSIHWn9Dyu6usb2I4VqRdc8lm1y3Nh/x27VC+zsD57dr2amnQDNZdgmW3PnP+ebtfWcb5i14ELDlgsmufXfFgfsIGQHAu3/diyLHHuJrXiTqu59kDoNejupqAyuhQ+1SCfi+Blx/8/iMEBCFGzbjtVOfkIuZsMGQnnosmK+s0np4tCQoaTVLSeotyQFO2TqXnIesKmmPvw43TaMImIlz8zR1tKNTeUXs4uAXBzRtsPXmT11t/wvjEdF65deltu1bBql17tqYLRje1rOzaGz+n8T8rPyfl1a7Z7WzPmjWLCRMm8J///AedTmfmbDdo0IB33323VBdojX379rF9+3batGlj9byvry++vr48+uijjBo1itTUVN5//3327dt3T51tb29vq63RUlNTzWqDCjJ58mReffVV0/sbN25QpUqVMlmj5O4iLDagttLFBVeubCYwMJILF+bnO2fr+G0URUNgkCF90iMwEI2TE+ToLMZJJCWhJHZN2rQHDwfdDQwPA29nkQmhp3M9SLw083aEJmgkzUOCeEybi6LSGwYqKgSQdHkd/5y8/RBRpXKlRo2Zd5axo3EFtQvosuDMVqg5EKp2MYmg5eTlkXg9h+ruUptCUjykTStnCIFXr0ns6+tETl6eyXEz4uKgJltrvndSFMPx0ICKhpTwP35E8S/gUGfcRMnNhmatbDjV5mK23t4dyMm5YOFoG5Z4K1vHOwLHi1/DH7MxdllQbHVZOL0JUo9D+EpoFg0qNWRnwtebDQ8BWnbhk5+O2v5vQWFfAtTzlN0XyhpFFMy/LgJnZ2e+/PJLIiIi0Ol0ODg4cPjwYZo2bcr3339Ply5dyMoqnWL88kbr1q2pWLEiO3bsMB0z1qmvXLmSF154oVjz3LhxA09PT65fv27RPs0a5SE16YFLubSRnvLvr4dI3bYSv2eHUe2xRwFB0uW1pg2oSuVK69YZHD8+gCtXNpp9H93cwmjW7DBXrmywqG20dhwMjnadOisJCBhoEkKz53sv08jv79Sk+4HSsGvSpt3/Nu3SvnU4Hx/DuRrv82jn5612RgDw9x9IvXqryc1NNLUnrFJlIg4O/hw8WMMigt2q1U0uXJjH+fOzi3HcnGrVplG96jSU/cMMYkD1R6HcauOV+ulsdGkfEO88njp9J5rZtMTPFxGSGYPWZyrefaeZvvfK2WNUe7kVjut+g7pNb6eRXzxO5dGPw7ojULeptGnlnHth06B82LV/fv6Nj57uxYAd22ke3tw09sTuL3GbNRT1zFUEtTdE3Yuya6ofv6DmW4NInroOl879bqeR//Q5fnMMx7PDu5t+XtVfvYN32nTiPWaR0XYcni6OBFRwNPSjPh5rUO+uEIqoNxLFLQiBgsjLReXohC43F5WDg6HEVQj0ulxUGieEPg9FLxBqTT4NHcODxeCgsTg4+lnYwTp1VuLt3ZaDB2vls3d22LQqk1FWuhk6LAzLgG8HwOmNNq+h5gBotx7mjgRvf+g9ytBeTaXi151fcn7icP7vgxVU69DF7HuffvIEu8Jb8OKRIwQ2vW3XlPMn2PB/huMOteuXiV27ePYiP6xYzyMD+9GgXg2LseXNrtkd2a5UqRInTpwgIiLC4lxcXBzVqlUrlYWVRzp37szcuXNJS0sz1QNt2bIFlUpFx44dy+y+1n6I/D2dTTXDRY31dXc2/XCWdGz+H3ojXm7Opl+Qko7N/wttxN1ZY3Vt9ozNb1RKMtbZylghBKEtmqL832OGp6JCkJt7ySzSU1haeEZGHCdODKZu3TV4ebUjMXEZWVlncHEJQadNIyDgeby925OQsNR0PChoFI6OgWaK4/Z870vj58Ta97M0fk6sfT/vh58Ta9/78sy9sGvSptk/9k5tmktmGhWdtSjiOkIIq50R3NzCqFv3k1ubT6NdU6hTZ7mNlPA7y9gJChoFigO0W2/RxgvAl8uonbUmBwMMPydqV3c8fsrmagcv0/HalSpAmhNwO+vH9L1PcyQ/0qaVb+RezRx77FoFZw3eqfFU8TB3Lypmp+GXm0xyPoGyon5ek/NNkX9s/k7Z+X9ejTO7qiG4UgVD6cqpdYYyk/xBiP/NR3TYDlW7muyFogh0OTmonRxBm4Wiun1zodZYfbDo7ByKt3e7Asetl8CUKFunuF0WbqmOK1NiEXk5KJrbdrBa5UD2nLpM64qVTMON3/vEBPPvkfH7mf94Wdm1KjWqMHD2m8UaWx7smt3O9oABA4iOjqZu3bqmNG5FUfjrr794++23GT16dGmvsVBmzpxp85xKpcLT05NHHnmEVq1a3cVVWWfUqFEsWbKEHj16MGXKFOLj45k0aRKjRo2SfRvLOebK4vlrFT8uZrq4gStXNpGZeZJHHvmB6tWiUFQahC4HtLkoOh2OVKR69WhDmpNeC4paKo5LyhRp1x5QMhPhxEqoOwxcb0vUpCcmciQ2lmYjR95u8SIEPh1HgGYsPtocQG+l1MW6qFlRm8xLlxYREDCIOnWWm11n6zgYM3ZW4OgYSMYv23E/MYQ098mmKHVR6NXecAT0nbzNT/gGwogow6vkoUXaNANWbcGDcg8hDBHtAo42ACF9UKp2QmQmoPrbEPFWBbREaTCagroSxqwcy9RvBX//vsV2qu3S19FmouhuZQgXs8tC7rmjOO1raZcdlNw97Ha2o6OjOXbsGB06dKBixYqA4SlgcnIyTz/9NG++afmkoix59913yc3NNaWuOzs7k52dDYCLiwt5eXnodDqaNm3KV199hZ+fX2HTlSne3t58++23vPzyy/To0QMPDw+GDx/OnDlz7tmaJGXArd7Yikpzq8WWYtG+xlatIhS9yaxceQJqtQuKNhdUGpQ8HXy9FeHlh9KyC9yKYud/MiuRlBXSrj2ACAHOftB0Kui1JlVdgOyj31P9ZAzZR2vjETjAEB3KTEC5lYapeNWFZjOs2C7rEZ2iNpnGjJ169dZaZObodOlFZuzkXTphdxsvl9oNOFcrHN/aDcxP+AbCyGi75pKUP6RNM3AzMZH9MTHU6datzJztEt/D2bWIAXpD6nhBB9UnzCAq9u8GlPwq3qF9MZT15deVsJ2VY79TXcxsnUrDDbXYRorZZSHn1Jc42WkHZQ/su4fdu3FHR0c+//xzvv/+e77++mtSUlLw8fGhffv2tG/f3u4FXLx4kYsXL9K4cWPc3Nzsvv67776jX79+REVF0b17d9zd3bl58yY7duxg5syZrFmzhszMTAYNGsSkSZPuWAn9TqlXrx7ffPPNPV2DpAwpsDHliffIVbItnOaSposbN5lkZcLqt+HKJfAPRvQehXKrRkciudtIu/YAcctG5a9hpP5IcA0CRYUm7QzV28ANcdNGGqaCaPKmhe2yHcEuepOZnLyVmjUX4aircDszR+jg4mnITcQxpJ75cVR3lLHj3uAR3DfuK/4FMuL90CFtWuHcjai3VYTA9+lnoedAfPNyzR4UAoY6Z7UDKGqDfStIowmQEV/AcVUQVbuSmxNfQMDRdlZOSZzqorN1VuLoFIRydPHt6QpTHa8/ypCVpKjQXTcXfSsOsgf23cNuZ/vChQsEBgbStm1b2rZta3ZOq9WSkJBA1apVi5xn2bJlxMTEcPnyZQAOHTpE06ZN6dmzJ23atGH8+PHFWs+YMWN47bXXzNqNubu78/zzz5ORkcGECRM4ePAg06ZNKzTlXCIpESmJsC0W+o4Br4oFNqYqaLeWhHPRdtQqGjBLFy+4+bz5O9RtCi9GgVoNOi2KSm3+B0cikUi4vSl+bMwY3HwL2qhb/G8+hK+AWoNQe/pDGjjVbm47DROFoMARZrarsAeIxdlkOjj4oU+7jHr1O5CahOLth677cFTBhvmufDefU06LqHHlWYJ7fWi6Xq/yMqSE56u/BnD28oK0W693iox4SyRm3I2otwV6PaQkoGyLhUunUSqHQu+R4BsEioJXz0ngMA2vvBzQ66zUOisQ2g8KqntrXEFRWZT1FZ6VY79TbQikDKVevdW2s3UuHzAojOfHSpcFaxoV1pDR6/sDu8NgNWrU4I8//rB67s8//6RGjRpWz+Vn0aJFvPzyywwePJg9e/aQXxC9TZs2bNmypdjr+eOPP2yKslWvXp2jRw2y9w0bNrTaykEiuSNSEuHjGIPBK7gxdfZBUdSF1io6OgZTp85yFMX8uZdZuviWpTB3FMrSaHB2g7pNUVQqg6MNoNZIR1sikVjFuClWrNkoI0JrOJ6ZiFOt5qBxw7FKfetpmBoXFJUDjo5B1Kmd33bd3nwWtGfGbB1//wH83/+do1q1afj7D6BatWn8X4uzBAQMAAE6N0/0kVNgylL0kdPQefqCoqCoVGivx6PVplh8PlP9tdq8/tqlRi2zV4nkYSc9MZF90dGkJybe66XYhbqCl8HR3r0OnqkBK2bDno2G1yVvGqLbyfEoy+dA9FDDa062IWMnvy3SuBgcaysRb+t7Nds2DfLv4VaYnTc61QEBgyzsXWjoW4CCo2MQ1apMo3799VSrMg1HxyCDkG2lJ2HAOWgyzaAy3mSa4X1VQ4lg2va3YaUbadsXmO37TA8dVV5mazRGr+15ICId9NLH7sh2YZ3CcnJycHJyKnKOJUuWMH36dKZNm4ZOZ97vt06dOvzzzz/FXk+1atVYvnw5nTp1sji3bNkykyN+9epVfH1lLzlJ6ZKRnIybixvCwxPl98XmG9PsawihK1GtYlDgizg6BoHAkCKuViN0OlDdWfqkRCJ5CFEUXLy94PcY6yI7YDh+fCmOzaJh2E0UsJ6GeUshVzm/i4AaA/D2akPC5eVkZZ1Br8/EyakqdeqssBAUSk7eir//QCr6dDFl6+jyctDlakEYHGoHV1eENs+0ZgdX1yLtnd7T13qvWG8/81eJ5CHnnkSjSwHXmnUhJQFmRoIun/2qFQZRn8CBLyH9Ggx901DLnZ0JB79GtHoawlegGB8w2lL31mYi9Ll2Z+VkZh7nxo1fCQgYhLd3hEWkGhQcHQJtlsAk7HyV076rCE0ZcjtbR1GBaxCiyTQUjZP1CLaV2myboo8lQKaXlz7FcrZPnDjB8eO30xr27dvHpUuXzMZkZ2ezceNGQkJCipwvPj6eJ554wuo5BwcHbt68WZxlATBv3jz69u1LnTp1ePrpp/Hz8yM5OZldu3Zx5swZU5T822+/pXXr1sWeVyIpEiFw/b+28KOtjakerp8mKHBk0bWKDpWoXuW2cSVPi4JiqMFOSYQv16J0fV7WDEokEguKqp90cHFBUWusO89GfMIguL1pTyf0OhSrLWeEQSE3qC3Kjv/DseEYqodORtG4IrSZkPgDAZUGWG4+K72Io2MlSE8Dd0+4lZiT36FWFIWUXVvw+8+LXH1tGX49b5eHCcXD7NWI3suP/YlQx0s61RJJuUNRcAqqAstnmTvaAM9NMNiTlp0NddhH593WoXgkEkUIRK1BiMC2KCeWGWqdU09AvZEF1L0FXPiKoCDLvVp+DR1bqd8I0Kj8zZxqvVYPAhSVivjtYznrv9miBAYEer0VUTNFIW37ArxvzpPq4uWEYjnbmzdvJiYmBjD8MbSlOO7l5VUsAbJq1arx22+/0a5dO4tzBw8epHbt2sVZFgA9e/bkt99+Y968eezYsYPExEQCAwN57LHH2Lx5M4888ggAH3zwQbHnlEiKxFQ7tAyuxMP0ZVZ7ISqHpuLYfnOh7WscHPwMjrWivnVcDc75nmT6BsKQ1+/Kx5JIJA8eRUWs8rKyEDqtDecZCO1vEODJTITD0QbV8bCJVjaltzAq5DYab4ga7R9uSC/XZhrSNjtsx7FqF6oHT0FxdEHkZMLezXCrY8KVfZvJ3D8cxyZvEdRjrOV6sq1FbjzMXiUSyUOAkwuKgyNcKvCgUFHgqf6gcYB/18MPwy11KFovR6k5EL1LILqGk9G4uILQgQBaLze7RjkchWOvI4Vn5VTsYuZQX/v3NOkJP1KtVStUGg16bS5qBzVCq0WlccyXlaO3WgJTJHaqi0vuX4rlbE+YMIEXXngBIQQhISFs376dJk2amI1xdHSkUqVKxUpxHTFiBNHR0fj5+dGrVy8A8vLy+PLLL1mwYIHd7RWaNGnCp59+atc1EkmJ0esNaUs3rt5OWxJ6qPei5cb07FaUYx8Q0GBMoe1rAEPtdf5XiUQiKQ2EICs1Ddf6VpznfK1wzBR6U49Br8PWW86kHoekXw0Od6U28M/HtxVy645AuFeGG2koGxbBlUsoBTomKNf1VP8yk+RHip/yqNF7UW0vaJp7Fe8C10BoGmXWQ1wikTxg5GQh8nINYmj5cXIBR2dIv2DpaIPh/Q/DIagtKvcqzPP0Q1EUXr9yBc1Pu6DtAIPtOrncZLuU3BuGlHCvdiQkxlot6zv00VKuHD2Km58fzUaNolqrVgYNHeDyF1bSwu8SrrfKZF1luex9SbF29Z6ennh6egJw9uxZAgMDcXR0LPFNJ06cyIULF3jxxRcZOXIkAC1btgTgpZde4qWXXirRvHfaRkwisYUxTbPl66/jkJcFT3QyT1sKaAkNRhsUfQsKEP3yKop3GI6BrUq1fY1EInnIMHY/6D3S7pKSjORkXOvWsbRRVlvhUHjLmdrDwT0YhEA4VER5ZBo4OEFeDvrcXNDq0Du5on5xBopag8jLQdEUrZwLtmuwHYQ3QXsh+TFzB92mmI9rIDwabdf/kUTyMHLX2ngV2RvbCkKQk3AR594jYdX826nkudmGIMc/ywvXoTjxMaJZNNpMQ5T46ObNhHVsi/qF/zN0kek42bAubS7k5KBMHYDj/3Wk+lOTUZxcDVk5ezahfPoBYuFOHh01EpVag/6WTTPfw9lIC78LuPn5mb1K7i/sViOvVq2aydHOzMzk2rVrFl/F4b333uPUqVN88MEHzJ49m/fff5+///6b9957z94lsWzZMoKDg6lWrRqtWrUyCaz17NmTxYsXF3G1RFI0NxMT2T9zJhpHR0O94ekN8Gkt+GM2nN4IP481bExrDrRUkuz7LwQ8gbiRCkKBTUtQrl6RjrZEIrEPY/eDlOKrCavSkgkPBH3iBYP4Tq1B+WzUQIOdOrHC+ob19CbY/ihkXoZm0dBuPTSaDPu/hSEtEKkpXLsYjzbPIHSqzdMRt2Urp/bsQe3oSOq+PfCkGym7tha7Y4KxBltfoAbb6ITrCzjhJVHblUgktzGWodwsK5VyY2/sAxmG10KEli1wdiXz3xPgG4SYseJ25p+jM6hs9NLOT/oZFJUajasrDq6uHFy82JBp038czBkJrdwNX1otrHkb9m5GmRmJ8qQ7POmG0tINZWYknPgdZdtSFL2OH35wI/GLV+QeTlJsSqRGPnv2bGJjY0m08YtZUGHcFiEhIabIdklZtGgRb7zxBq+++ioRERF07NjRdM7YRqy4PbslksJwrVgRRa22nbb073pI/Rue3gdNpoPG0VB7+PVmRAVflFZdDRvO/i/fk/VLJJL7h8KiSaUZaVJdT6FNECRfv1UzKACVJxij0VD4hvVaHBxdaHC0I3zh+lVQaxBRK8HbDyct/Dh/PjcuXaJCcDDNRo3CIzAQRaVCdyPNav11SZBCaBLJA0hhvbFVKtPDQFVastllQggqPv0s9ByIV14eAqDTQHRNwlF/vhwSzhqi0bZ0KIx4hKDX5vFGcjIaV1e0mZlc+OVnqnUehGjeHmXbUoPujrOreV24EJa2K/4MioMTBiN659gSfZSUP+x2tt99910WLlzI66+/ztSpU5k2bRpqtZpNmzaRm5vL1KlTizWPTqfj4MGDXLp0iezsbIvzgwcPLtY8pdlGTCKxhhCCgLAwJiUnGxR6C0tbuvo7xL1t2MjGDAP/YHTdh6MKqAwgn4RKJBKgcFGzsmjRY9ardmYk6HXg5Qt7E4u1YSUvBx5/CoJDzOqv3fz9CZ8+DZWDI/q8XBSNg7RzEslDjIOrKxoXF3N7k19JfNV8mLECOg/CQWjNHwYCQq8nPSGBI7GxXDt9micmTsTN359N3bvz2JgxNBoyGY2rK3qtFqX+SBRrIo4AigZRfxRKbg6a1W/BpdNoKodSrddIUBQUvyDE8GkoDk4Inc6yLrwgwSGIvBz0+iyrp+11nqXo48OD3c72ihUriImJYcyYMUydOpUePXrQtGlTpk+fTrdu3fj333+LnOP333+nV69eXLx40WrfbkVRiu1sl2YbMYmkIPmN/s0rV3gmNrZYaUs4OEHUSvS5OejytKgUxSSiIZFIJCUhIzkZN+NrXfuutdqrNi0FdHqoO8K66jgY1MXrjUSoHVBmr7eovy6sXZdEInl4MAYmpmRkIPR6REqCIQW7YMsundZghx6LwCW0jvkcej1x69axMzISvVYLikK35cs5MG8eib//zs7ISHYOH46Diwu91q+nTrdnEK2XoxTMNlQ0iDYrwaUSyuDmcOL326fyOfvp362mQvwr5Lb9CaeCdeH5UWug9yiyL8VR7So4CEsHWaVUodpeUDWvYn6pCKbaUVAHBZsdt1v0sTB8A2FElGwPe59i9+7/3LlzPPLII6jVahwcHEhLSzNMpFLx0ksvFav11+jRo/H09OS7774jKSmJ1NRUs6/i1n3D7TZi1rC3jZhEkh+j0V9cowY/zJ7N78uXI/S6YkWBhP5WloVKbegjKx1tiURyh2SmpJi9FhtvP0Ov2m2x5htJIQydFdyDDa1wlALP3xUNtF4BbkHkJp6Fl9249vnH1uuv7UgXt1V/DYUInkkkkvsWodeTHh/P/pgYtg0ciNDmGVLHrTmuYDi+bSnOwVVvzyEE6QkJZo62a8WKOLi6cu20eYp3XlYWoR07cnzrNkTIAHTP/mumlSP6n4GaA1Cihpg52qZ7z4yElEScajUHbSY5J38zpLbnrws3otZA1ErwDSTn33+psRfUmDvUYBBxrLHX8Gp2uao6NVYbXoszvkT4BsLIaOls36fYHdmuWLGiKVpctWpVfv/9d1O/7JSUFDIzi/6De+zYMbZs2UJ4eLi9t7egtNuISR5ShDCkVao1oNMiVGoykpPNjL6DszPX/j2NT72i05Z0Obm87evL0B9/JLBp07v/eSQSyUOPEALfbv2h50AUsOxVCxAbBa2evt3GK18rHGoPB4/KICDjxAmcfslE3+7ON4aF1V8bBc8KIp1wieT+Q+PiYhGNdnB1RbV+vXV7k5/4M4Ye2k4ugMFhPxIbi1/9+rSYMIFG/fqhcXVF6HQ8MXEiyceOkRQXB4CDiwsOrq6c+Owzfpwzhxbjx9PoOUMvbW1WJiqNA6otS2H3euv3vuXsOw6fZnh7/QqoVNB5EDwWAduWQvwZCA6B3qMMTqxKRd5NPRwBfac7t4Mladeld/eCtFuvkgcGu53tli1bcujQIbp06cKAAQOIjo7m8uXLODg48PHHHxMREVHkHLVr1+bGjRslWnBByqqNmOQh4paAB7cEPLgl4OFWsRKPv/oqFevWNRl9bXY2ODkiwlegFGzxpWgQ4SvBNZC81DSemDRJbgwlEsk9Qej1kJyAsj3WsGmcsdJg2wpyKg5mPA8xa8Ch4m3htLwcg0IvChjFzuzEVhuvkmDLCZdIJPcONz8/82g0kJeVhTYzE02xaqBzUXKyQK1GpVbj6u/Pi4cPI67Eo149zySqVqnXSF48fJgdgwfz16ZN5GVlkZeZiU9oKH9t3GiWXg4wJSMD/vyp8PsbBc/iXNC38TIcU6kgfy23HW0L7aUk7br0Ht5mr5IHA7ud7ejoaOLj4wGYMmUKaWlpbNy4kaysLDp06MCSJUuKnOPdd99l/PjxNG7cmLp17Sw8s8J7773HhAkT+Prrr7l69So+Pj5ERERQq1atO55bUs6xIeChrJqP+OhbIubNQ1y+gOqW0ddUDkXffxxKrUGI4AiUfL1nRb1R4BaIoqhw8fGRG0OJRFL62OhV6+B6+7jQ6+GrtSizht+2a83bQ/dI6zWJezbB+ZOIZftBpUHBoLerOLuaNpklcZylgrhEUo5RFJy9vNgfE2NytAEQwtDPulsk6qJqoOMv4OLsCjodep2O5qNHw3/Xo8pvu7hVZz19OT3XrCH5+HGS4uL4a/NmmkRGcmD+fMP9hSAvMxMUxT5n/9cs9BH5nFdFIfHLj8n94w0cm7xFUI+xd/gfZT+2ItgliYZL7j12O9t16tShTh2DoIGTkxOLFy8uVi/rRo0amSmUJiYm0rBhQ4KCgvDy8jIbqygKf/75p13rKo02YpKHhJRE+HwlDHwFblyzVMoECKmPEvY4Yvc6VAXOq1bNR7y9DVo9jWgWjaJSG2q0FZVU4ZVIJGWDsVdtz4H45uUaSl8UxSBK1KgRUzIy0OflGURHkxPMHW2AjYugyyCYvhwKnlNrEP3HIxydUanVsNqXNJcJePedZhpSEsfZVuq3TAmXSB58HFxcUGk05vXUtzi4aBGNBw1CTF9uaYtu1UAL30CcdDo4kEHFvFyDts2VeMvxADqt4Xjz9nRfuZJfFi4kLzMTz6pV6bZihVlkHSH4a8unNO45wuCkF+XsW/tswpugLzNJfuTeRJBtRbBLEg2X3HvsdrZLSrNmzUrNEfnhhx/sGt+6detSua+kHCAEePlB5FTQ6SwFg4w8N8Fg9G0oaSqv90Z8cQ6dmye/tqhBrffWEdDuqbvyESQSyUOGjV61wjeIrNRUDi5axLXTp/GpVYs2M2YYUscL2q1TcRA12JAu/lg72L7MVJOo6z4cxS+Iv7dvp17P7qhyrmJ1B2ontlK/ZUq4RPLgk5eVhV6rxSfUMoKcFBfHjsGD6blmDeLRdqh2LDOrgRa+gea2q2ZN2kTZsF1GdFqUbUup9GI0vdavR5+XC4pC2KBB1IiI4MjSpaSeOYN3SAg1O3UGPz+D4FnBfVw+wbOs73eXhqkrdfQOvuz7AuqFyQh2eaBEzvamTZvYsmULFy9etOiRbSsqXRyV8uLSpk0blFtP9I33NCKEsHDqC/bfljyk5K/NTroE0Z9YF/BQFOjYDz6ZV6TRV78YjbbPGFzrhZXt2iUSyUODKi2Z8EBw1GYX3qt2+nKcnxrAPzt3khQXh6uvL21jYmwLE+3ZBGeOw8TFBuValRptZiZHN23i0Acf0H/nTvIu/o3TXfmUEomktElPTORIbCzNRo7Eo6wzR4QgOy2NZiNH3k7lzsdfmzZx9eRJXvjhBxxejEJRaxDaPFCpOfnll3zaq5fpGgdXV9rOnFk8UTW1GiJ8uTp2saHVoKLgERRE+IxpqByc0N+qs1YUpUjBs5JoUdhLiYTQHP3YvwvqxBSIYLsGQtMow6vkgcHufkRTpkxhwIABXLhwgVq1atGsWTOzr6bFUF4eNmwYZ8+etXru/PnzDBs2rNDr//jjD37//Xf++OMP9uzZQ3BwMIMGDeKzzz7j119/5bPPPmPgwIEEBwfz3//+196PKCmPGDesz9SAFbPhy9WGVjXWanqcXAx1kcU0+m2io8v+j5pEInloUF1PoU0QuAUEWPbGNnIrrVIkJ9Bi/HgcXF3JTE1F6HTW7ZqRU3Hw27dos3OY6+bGHDc3do0cSYsJE/AIDESfkgBHwMk3pNjrlXWEEsn9wc3ERPbHxHAzMfGu3C8jORmPoCC6rViBSmMev1NpNLSYMAEHFxdS9+2BJ93Ijr9AekKCmaMNt0XVCrVdYKqz5vpVs8OKonB9xwJY6cb1HQtuB91MgmfTYfZ6w6tfkOH4XcJm6ndJemO7BsKj0dLZfsCwO7K9cuVKZs6cybRp04oebINVq1YxatQoatSoYXEuJSWF1atXs3LlSpvXN27c2PTvPn360L9/f95++22zMc888wyTJk3io48+okOHDiVeq6QcIITlhlUI2LvZumBQTpZtRzw/wSGGdmEqddmtXSKRPJwoCk7BVeHjmbYzbELqo75+lUeGDKHJsGFoMzPJuXkTp14jC61VFL1Hkfz339Tt0QPvkBCajRqFR2AgikqFS4VKcARcXym+eKlbvTAYEWV4lUgkDw3arCwUlcpqKnd+u6K7kQY5WTgFVeHXmbMsouB2i6rZXJCV9sOKQsquLfj950VSXltmiIbfDxh7Y0vKPSV6tNOiRYs7vrGt+u1Tp05RsWLFYs+zZ88em850x44d+frrr0u0Pkk5Quit12ZvXAT+wQbBIHW+505CwNefInqOMD+en1tGH+XuPR2VSCQPEZ4VUTQOtjNsnuoPaw+DV0WUZdEwdQCa1fNwzLlpiORMX2Fpv9QaxAxDrWJAWBi91q8nfMZ0PIKCDOJEULJoi3HTaM81Eomk3KCoVIZU7qgog12JijK3KwBOLqgcHK0KqoFBVE3xD0YU3JOBeZ316X9KtshsK464nRi7MuitdGVwqd2Ac7XCcand4I7vIylf2O0pDB8+nA0bNth9o48++oiwsDDCwsJQFIUBAwaY3hu/ateuzeDBg+2KRLu7u/Ptt99aPff111/j7u5u91pLwtWrVxk1ahRVq1bFzc2Nhg0bsnTpUotxCQkJ9O7dGw8PD3x8fBg+fHip9RyX2ECltr5hNQoGdRoAn5+GyGmGf0dOQ9eiI/hXLtLol0XvRYnkfkDatHuDEIKKTz8L3yTbTgmvFWYQOvvvBuhR01Aas2cjrJiN6pnq8L8D0GUQ4otzZnZNfHEOOg9EUam4uutTeNKNq7u2mD/8lo6zpBwj7VrZoSgKSXFxzHVzIykuzjKolpOFPi/XqqAa3BZVo9NAC9vFF+eg08BSr7O2twTG2JVBb6Urg3uDR6i+cR/uDR4ptfVJygd2p5HPmjWL8ePH07JlSyIiIqy27XrllVcsrgsKCqJZs2YA/PXXX9SpUwe/AvULjo6O1KtXj8jIyGKvZ8yYMcyYMYOkpCR69OiBv78/V65cYceOHaxdu5aYmBh7P2KJePbZZzlx4gRz586latWqfPXVV4wePRq1Ws2IESMAyMvL46mnDIrVGzZsIDMzk4kTJzJgwAB27dp1V9b5MCL0OoN6rzWMgkEzViJejEZR3xYMuvrPP7SbMweleXub4hoSSXlF2jT7sCVMVJhgUf7e2GDoj52XlYXGwfCnWVEURM8XLVPCb3VLsGjhBYZa7tERiN2XDBHuW3ZN6HSgKtCe0I5Ij2zXJSkPSLtW9uRl2rArQpCTcNGmoBrA8a1beWrRItz8DXXWioOjoRe2xqFMght3pZVWSbKFJOUKu53t7777jtWrV5Oens4vv/xicd6Ws929e3e6d+9uej9jxgyrNdv2Mm3aNLy8vJg/fz6rV682qZQHBgayaNEiXn755Tu+R1FcvnyZ77//nk8++YQXXngBgHbt2nHo0CE2bdpkMuBbt27l2LFj/P3336Ze5d7e3jz11FP89ttvNG/evMzX+nCioO8xApWtOqAzx9F5+hK3ejW7X37Z7A9FhapVeWz0aJQRUaDRgFYLarWMaEvKNdKm2Y9RmKhOt25mTrW140IIAsLCDL2xtVpDZ41bX+q0ZFQ7VxiycRq3hD6jETNW3G5DWNxuCZvfh5HRJO/chN8HE0gZs8isVtGYDlnPSjqkNWS7LsmDjrRr956sf0/g3bbz7d7YOh0OLi7kZWWhUqvptnIlbn5+KIpCsp111nqVFxwBfQevMv8cdiFrsx967Ha2x4wZw6OPPsp7771H7dq1cXBwsPumn3zyid3XFMbYsWN56aWXuHTpEomJiQQGBlK5cmVUdynymJeXB4Cnp6fZcU9PT27evGl6v3v3bsLCwkzGG6BDhw74+Pjw1VdfSQNeCHfSzkJRqRB+QYjpy1EKRoLUGsT0FSh+QRxcvNjM0VZpNNTt0cOwuU1Lhs9XQvdh8umkpNwjbVrZIfR60hMSOBIba+gvGxrKk1OmoHFygt3rUOe3UXs2ohz9BRG9GvFYBMq2pYaIdjG7JaBSGx4OpqVYnDamQ9axkg4pkZRHpF0rXQpm5hQH3Y00k6Bavd690ThoUDk6oc/NQZunxcHFxbzO247sG73a2+Bsd/K2e133GzKTqHxht7N98eJFlixZQoMG904A4KOPPmLYsGE4Od3uBqpSqahatSpVq1a1es3Ro0dJTk6mXbt2pb6eKlWq0LFjR+bOnUudOnWoUqUKu3fvZu/evaxfv9407sSJE9Sta67wqigKdevW5cSJE6W+rvKEraiRLYQQCJ0OlUaDXqfj7+3bqddzAPqmbVB/vtyUEi56j4KKlfhsyBCS4uJM16s0GrqtXGlQ0lQUg4MdObUsP6JEct8gbVrpo3FxQej1xK1bZ4joGFMoFYXwGTMQSZdQWUsL370e5ezf6GP3IYZPR+XgiNAVUhpjxNgtQacrmw8kkTxgSLtWOljLzLElemyG823nXAEcMlJRtsXCpdOoKofi0HskiotNnfGHCplJVL6w29l+8skn+eeff+5pO61Vq1YRExPDc889x7PPPstjjz1mNcKekJDA7t272bhxIwcPHmTVqlVltqbt27fTr18/00MItVrNkiVL6N27t2lMamqqRY07GNKTrl27ZnPunJwccnJyTO+lSEfhFIwcPTFxIlWeeILl//d/PDZmDI2GTEbj6oo2M5NLBw9S5Ul/2r/1Ft41alhtWSGRPIxIm2adkmbZuPn5kZ6QYO5oY4gOqdQq+Oxj22nhJ35HteZt9JHT+HzYMJqPHUulItp7Gbsl2JsuLpGUZ8rKrj3INs0erGXmNBs50lJ5PP81RtHHngOpmJeH0OtRdq+7XRpzC2XVfJixAjoPum81cWTEuXxzJ1m0hWG3sz137lyGDBmCo6Mj7du3t2qQfHx8SmNtNjl48CA7duxg8eLFvPfeezg4OFC7dm38/PxwcnIiLS2Ns2fPcuXKFXx8fBgyZAjr1q2jUqVKd3xvIQS6fJECRVFQqVQMHTqUU6dOsWHDBgIDA/n666+ZMGEC3t7e9O/f/47uOW/evLsm9PagYy1ylHzsGCMOH6b5uHF8MXw4O4cPN9QIZWai0mjou2MHtbt0ITwqyhAJ12pR1OriPamVSB5wpE2zD3uzbABQFJy9vNgfE2NVFMhmx4T8xJ9B5ehE95Ur0eflGdLDZ6yAAhvWgt0SZLq45GHkbtu1B9mmFUb+VHGrmTnAgfnz6bZiBWGDBqEpEJm2FvyoFOxvabfA8H5mJDwWAX5BZfq5SoqMOJdvSvT3vRjY7Ww/9thjAIwaNcqmM6K7C2lrPXv2pGfPnpw7d45vvvmGw4cPk5iYSHZ2NtWqVaNjx460bNmSNm3alKiu3Bb79++nbdu2pvfh4eFMnDiRLVu2EBcXR6NGjQBo06YNV65c4bXXXjMZcG9vb65fv24xZ2pqKlWqVLF5z8mTJ/Pqq6+a3t+4caPQ8eUVC+Xe/Knitxxka5GjpLg4Phs8mB5r1hDSvj1Hli61GsG+/L//8UmrVgz98UcCmza92x9PIrknSJtW9ji4uKDSaKz2l83LzESfl4uqGGnhQqdFCffkqlEwqPMgw8ZUdkuQSMy423atvNk0a6ni1vZXAHqtlp2RkdSIiDCpelstm1EUui9fjrK6cHFHti2VgmKScoXdzvbKlStLLeInhODkyZNcu3YNHx8fateubffc1atXZ/jw4QwfPrxU1lQUzZo149ChQ6b3Hh4efP7556jVaho2bGg2tkmTJixfvpzMzExcXV2pW7cuR48eNRsjhCgyLd/JycmsPr08Yy2Fw5Zyr1kqU82ahM+YwZHYWKuRo782bSL5+HG6rVxJeHQ0KrXaIoLtHhjIE5MmyfQgyUOFtGllT15WFnqt1np/WSE4+dVX1CkiLVz0HkVuUgJO+QWDVCpDe68StMiR6ZCS8szdtmsPik0rjqiZRap4EfsrMDjcR5YuJTwqCrBeNuPg4oLG1U5xx1LC3n7aEklpYrezbWyXcKd8+OGHzJw5k+TkZNMxf39/ZsyYwejRo0vlHmWBh4cHjz76qNmxatWqodPpiIuLo3HjxqbjR44cwd/fH9dbxq1z586sW7eOU6dOUatWLQC+/fZbrl69SpcuXe7eh7iPuZmYyM8LFphSOAoa/SotW/LY6NEWqUwOrq60nTnTauTISFJcHL8uXEiv9et529eX5/fuNYtgy/QgycOItGl3ASHITkuz2V9234woah85AvlbfBlRaxBRK1F8A8n4fjcW23lFIcXOFjkg7Z2kfCPtmjnFETWzJeJYnP0VQOqZM6g0GjSurlbLZvKystBmZqK5B+KONvtpyx7YkruA3c52abBs2TLGjh3Lc889R79+/QgICCApKYnNmzczduxYHBwc7lqkujTo0qULVatWpU+fPkRFRREYGMjevXtNQm5G+vTpw9y5c+nduzdz584lMzOTiRMn0rVrV9lKAit/DKwY/ZAOHbh+4YJFKlNeVhZ5mZnWI0f58A4JQa/V0nzsWBnRkUhs8LDbtLIQSclITsa3Tp3b/WXz2a/k48e5+MsvVO086HaLr3wdE5RbaeG6G2m2b2BHixyJ5GHkYbVrxRU1syXiaO/+SgHrZTNCcHTzZsK6RaIuhrijLUo1Sm2jB7aMhEtKk2I522FhYWzYsIGGDRvSqFGjQlO9FUXhzz//LHS+d999l3HjxrFo0SKz4926dcPPz4933nnngXK2PTw8+Pbbb5k6dSpvvPEGaWlp1KhRg4ULFzJ27FjTOAcHB/773/8ybtw4nnvuOTQaDb169eLdd9+9h6u/P7AmouHm72/RIqdhv34cmDfPMpVJCP7avJkmkZFWI0dgMP7NRo1CUatlREciKYSH3aaVhUiKNivL1F+2RkSETe2IkqaFSySSwnkY7VqxRc0KE3G0Y3+VnZZWaNnMwUWLaDxoEGL6cpSCrQ4LiDvawmaUuhS5G/eQPDwUy9lu1qwZbm5upn/fac322bNnefrpp62e69q1K0uXLr2j+e8FNWvWZPPmzUWOCw4OZtu2bXdhRQ8O1kQ0ui1fbuFUO7i44ODqajOV6eCiRYQNGsQzy5fzxfDhZtda9M2WSCSFIm1a2aCoVHgEBdnuflBIWritNl6FtfeStdkSyW0eJrtmj6iZa8WKNkUcofj7q5R//im0bCYpLo4dgwfTc80aaN7eLItHijtKyivFcrY/+eQT079Lo1d1YGAgv/zyC+3bt7c49+uvvxIoNwUPDdb+GNhyqotKZTKqjvdcu7ZQ1XGJRCK5mxQUJVIUhctxcYV3P7CSFu5aLwxejDK85qOw9l6yNlsieTgRen2homZ+9euTkZREQOPGTEpORq/T3fH+SpuVBRReNnN861YaDhxI7S5dECNmoGgcZBaPpFxjt+cxbNgwzp49a/Xc+fPnGTZsWJFzREZGMmvWLKZNm8b//vc/EhMT+fPPP5k2bRqzZ89+oFLIJSUjPTGRfTExCJ3O4o+BTac6XyqTSmP9OdHxrVvJvHrVFDnqtX494VFRFrVJEolEUtbk16EICAszdFLIR16mfXXWRse5NPt/SiSS8oeiUqFSq21Gqhv278+Iw4dxqViR/dHRbBswgKQ//6TZyJGlsr/KXzYz/tw5Wk+bRqMBA2g9bRrjz52jdpcuKCoVKV98Ck+6kbJryx072sYMH72VDB+7hdCkcNo9IT0xkX3R0aQnJt7rpZQqdnsfq1atMlMQz09KSgqrV68uco6pU6fy8ssvs2DBApo1a0blypVp2rQpCxYs4OWXX2bKlCn2LkvygHEzMZFD779vU0TDllN9cNEiPIKDeWb5cotzxlQmNz8/FEUxnVdpNDJ1XCKR3FWEXk96fDz7Y2LYNmAA+2NiSI+PR+j193ppEomknCP0epuR6oCwMHqsWcPRDRtYUrMmP8yezV8bN/L50KG4BQQUa3+VFBfHXDc3kuLiCtdxMpbNzJhhcM5nzLB0zktJ3NGY4aO3kuFjEkKzx9m2Z7ykVDDqpdwsZ852idTIbf1inTp1iooVKxbr+v/85z9MmTKFgwcPkpqaio+PD82bNy/W9ZIHG2O0p7C0JVv1QUlxcXw+dCg9Vq+WqeISieS+w1b7HLAiSmSDwmqwJRKJpDgo/9/encdFVb1/AP9clmEZEBh2RHEFFwQVUyEVFzS3TEVNcddSy0zT3MoEcy3NLNOkX7iVimIuueWKW2Cp1RdxQVMwF1RQwBVZ5vn9YdwYZ2EGGGYYnvfrxavm3nPPPeeOPNxz71nMzFSOm241aRIe3bqlNPa6qKt47/Xrtbq/0rZnjiAIuHPunOZhM7rgt86sktGqsf3tt9/i22+/BfDilyYiIgI2L90o5ObmIi0tDf379y8xv/Xr16NHjx5wdnZWWrPwwYMH2L17N4YNG6ZtHVglomrWcXWTaGgK+oIgaJ5kiDHGDEDd8jmA8qRE6mgag60KT4LGGHtZ0X2SwrhpTau6AEiOjUXGhQvotXo1QqOiYGZuXm73V7oOm1FLzXJdjBkrrRrbXl5eCAoKAgAkJyfDz88Pri/dKEgkEjRs2BCjR48uMb+RI0ciMTFR5Vvs1NRUjBw5khvbJuDltWpVve3JOH8eb585o3KGy+KTaKhrVAvFuoozxpgq5b1u9ssTnok0LZ/zL3lBAc6uWoXQyMgyl6MIT4LGGFPl5eUGH966pXFVF+DFy45TS5ei74YN+NzFBUMPHCj72+hS4LWumanQqoXyxhtv4I033hA/f/LJJ6hTp06pT/ryJDHFZWVlwd7evtR5M+NRfK1aOw8PlW97tO22dOevv8qvCxJjrEpRt262ro3w4hOeyQsKQEQKb3tKWj6nSNa1azCzsNDYlZwxxsrjQaHScoMaZh0v4lSnDuQFBXh2/36pzlkedF3rmnv4MGOl8+vA4suAFXn69Clu376NunXrqu1msm/fPuzbt0/8/MUXX8Dd3V0hTW5uLo4cOYKmTZvqWixm5DQtQaFtt6Vy64LEGGNQ3whX5eUhMLK6dV/cAHt5AYJQ4jwUxRXdyBYtk8MYY6roEqM0Kb7c4KTr11UO3ytiZmGBoHHjkJudXYaSlwMdx2ZzDx9mrHRubC9ZsgRPnjxB5L9d4E6cOIFevXrh4cOHqF27Nvbv34+6Km40Ll++jF27dgF48Ut/4sQJWFlZKaSRSCTw9/fHggULSlMXZqRKWoICMJ5uS4wx9jJ1E55lpaai97p1eKzFPBRFjOZGljFW5eQ/fapxDeyiWcftPT2RmZJiwJKCx2Yzk6FzY/v777/H1KlTxc+TJ09G48aNMWPGDMybNw8fffQRNm/erHTcxIkTMXHiRABA7dq1sWPHDgQGBpah6Kyy0LQERXFFb3tavvcedwNijBkFIlI5BMY9IABvrFmDpB9/VJhvQtM8FEZ1I8sYq5KKr4FdNJZb1fC9iuh5w+OyWVWgc2P7xo0bqFevHgDg1q1bOHv2LI4dO4a2bduioKAA77zzTol5pKam6l5SVqmpW4KiSNHbHsHcXGU3IB6LwxgzBHVDYMq6fI6mG1mOd4wxfVMay10Os47rGrt0HZfNWGWkc2PbxsYGDx8+BAAcPnwYdnZ2CAkJAQA4OjoiJyenfEvITILKJSj+Vfxtj7ogz2NxGGMVTe0QGD0vn8PxjjFWEYqP5S6PCWg5djGmTOfGdsuWLbFo0SKYmZlh8eLF6NatG8zNzQEAV69eRfXq1cu9kMw0aNNtiTHGjIW6ITCWNjaVZvkcxpjpKe/lDHkCWsb0R+fWzZIlS5Ceno7XX38djx8/xvz588V9mzdvFt9yM6ZK8W5LfTdsQGhkJOy9vLihzRgzSkVDYMws/ns2nf/sGfKfPq0Uy+cwxkxP0Szlj9PTDV0UxlgJdG7hNGrUCNeuXUNGRgZSU1PF8dvAi+W8lixZUq4FZJWbpa2t0jZBEHA3KQkLpFLcTUoq0/ggxhjTp+JDYMQGNxGSN29Gs9GjFRrhxfGs44wxxhgr9etEZ2dnEBFu376Ngn/HrDVp0gSuPMkBw4sZfN0DAvDRkydwDwgAESml4W5LjDFjVfxBYdEQmIlpaWg3axaaREQg/+lTONSsqdgI/1fxeSieZGSozJ8nQWOMMcZMX6ka2/v370fr1q1hbW2NmjVrIikpCQAwZswYbNiwQas8zp8/j4EDB6Ju3bqwsrLCH3/8AQD4+OOPsW/fvtIUixkJksvx6NYtHJszBz9FRODYnDl4dOsWSC4X0/CNJmPMGKl7UPjyEJgWY8cCgqDUCG83axYmpqUhYPBgjbOOF00kVB7jLRnTxqP0dByNisIj7nrMjIWLJ/B25Iv/MmaidG5sb9q0Cd27d0ft2rWxcuVKyIs1oOrWrYs1a9aUmMfBgwfRrFkzXL9+HYMHD0Z+fr64z9LSEitXrtS1WMxIkFyOpB9/xFe1a+P4vHlI3rQJx+fNw1e1ayPpxx/FBjffaDLGjE1JDwpVDYHheShYZcHjfJnRcfEExkZxY5uVu9I+XFQ1/LWsdL4bmDt3LiZNmoRNmzZhxIgRCvsaN26M5OTkEvOYOXMmBg4ciMTERMyePVthX7NmzfDnn3/qWixmQEX/oPOePsWj27eVlvYCAHlBAX4ePRqP0tNVdilnjDFDsbCx0fpBIaA8BIbnoWCMGQt9NBYYq2x0fbiozfDX0tK5sX3t2jV0795d5T6pVKrVOtvJyckYOnQoACjdlDg6OiIzM1PXYjEDepyejoQlS2AhkeBsdLTKdWeBFw3us6tWKdy0MsaYoUldXcvlQSHPQ8EYMxR9NhYYM2XaDH8tC50b2x4eHrh06ZLKfUlJSfDx8SkxD5lMhtu3b6vcd/nyZXhy1+JKQwzujx/DzMJC47qzAJB17RrM/l2XnTHGDE4QYO3oyA8KGWOVlr4bC4yZKl16tZWWzo3tiIgIREVF4fDhw+I2QRCQnJyMzz//HEOGDCkxj969eyMyMhIpKSkKedy5cwdLlixBeHi4rsXSm5UrV6Jnz55wdXWFIAjYunWr2rR79uxBSEgIpFIpnJyc0KFDB9y8eVMhTUJCAoKDg2FjYwMfHx989tlnlfbpo0JwHzwYBc+fa7fubGFhBZWQMfYyU45ppRmjZWljo9uDQu4izpjRMeW4pomuQ2AYY/8hogoZ/qpzYzsqKgohISHo3LkzPDw8AADdunVDYGAgWrRogRkzZpSYx8KFC+Hq6oqAgAC0atUKADBq1Cj4+fnBwcEBUVFRuhZLb9avX4/MzEy1XeeL/Pjjj+jbty/at2+P3bt3Y926dWjRogVyc3PFNH///Tdee+01eHp6Yvfu3Zg0aRJmz56NL774Qt/VKBeP0tNxfP58PMnIUA7uGzfi3MaNWq07yxMHMWY4phzTNI3RUjeOMf/ZM8gLCrR/UGiEN9yMVTRjm9nclOOaJuU1BIaxqojk8grp1aa6VaSBRCLBzp07ER8fj4MHDyIzMxMymQxhYWEICwvTKg8HBwckJCTgxx9/xMGDByGTySCTyTB+/HgMGzYMEolE54roS0JCAszMzJCWlob169erTPPgwQOMHz8ey5YtwzvvvCNu79Wrl0K6xYsXw9nZGbGxsZBIJOjUqRMyMjIwf/58TJgwAVZWVnqtS1kQEaSurmj38ceQy+Uqg/tvy5YhYMgQvP7999j11lsK+4qvO8uTBzFmOFUtphUfxygvKAARKcYgIuRmZyNo7FicXLRI5R9dflDImKKiB1t+vXoZxaoiVS2uARCHwBybM6fExkKoEb3EYsxYmJmbV8jwV50b20U6dOiADh06lPrElpaWGDlyJEaOHFnqPCqCmRY3V1u2bEFhYSFGjx6tMd2+ffvQt29fhYcJAwcOxMKFC5GYmIj27duXtbh6Qf82rs9GR+PBtWt4Y/VqlU+C7iYlYcewYei9fj1qd+yIP777DlnXrsGpTh0EjRv3oqHNN6uMGVRVimkKsevqVcjq1kXQ2LEKS3NZ2triSUYGXPz80CsmRukhIj8oZMz4VaW4VoSHwDBWNvLCQq17tZWlwW2Qls+rr76KlStXIiMjwxCnL3enTp1CgwYNsG7dOvj4+MDCwgJNmzbFvn37xDRPnjzBjRs30KBBA4VjGzRoAEEQ1E46Z2gvdxdP2bEDFlZWaoN7cmws/q9FC2RdvYrQqChed5axSqiyx7SSxjFe3rMHJJeLb7yd69cHBAEBQ4ZgYloa2s2ahSYREWg3axYmpqUhYPDgUscvO09PhEZGws4I3v4xVpVV9rj2Mh4Cw1jZCGZmCBo7Vu/DXw3S+vH09MSHH36I6tWr47XXXsP69evx6NEjQxSlXNy5cwcpKSn45JNPMHfuXOzbtw+1atVCr169cP78eQBAdnY2gBdLmxUnkUhga2uLBw8eqM3/+fPnePjwocJPRVA1cUD+s2fIf/pUY3C/m5SE1MOHASJed5axSqiyxzRN4xgb9euHel274tHt20oz9wKAvZcXQiMjy+1Bob2nJ9pHRRlFV1vG1DG2Mdj6oM+4ZpD7tGJDYHiuHMZ0JwgC7L280CsmRul3qDx7tRnkt2/r1q24d+8evv/+e1hYWOCtt96Cu7s7wsPD8dNPP+H58+cVXiYiQkFBgfhTqMOM2XK5HI8fP8Z3332HYcOGoXPnzoiLi4O3tzc+++yzMpdt4cKFcHBwEH9q1KhR5jy1oXLiACIkb96s1URoudnZvO4sYwZSZWOahqW83AMC0Hv9epzbuFHtzL0gwv0rV/hBIatSNE0uaEyMNa4Z6j7tSUZGhTQWXsY9dpipEMzM9NKrrTiDPeqys7PDsGHDsGfPHqSnp+PLL7/EgwcPMHDgQLi7u1d4eY4dOwZLS0vxp1OnTlof6+TkBADo2LGjuM3S0hLt2rUTn5YWPSXNyclRODYvLw9Pnz6FTCZTm//MmTORk5Mj/ty4cUPrspWFuokDflu2DPbVq+P177/XGNyfmMgwAcYqo6oa0zSNY2w1aRIe3bqlNIEjoDhzr9TVlR8UMmaEjDWuGeo+reDZswppLLyMe+wwUyKYmZV7r7biSj1BWnlydnbGq6++iuvXryMlJQV3796t8DIEBQXh9OnT4md7e3utj23cuLHafUXLSUilUtSoUUNpvE9KSgqISGl8UHFWVlYGmf1S3cQB2k6EVvDsWYWXmTH2QlWNaWrHMQoC/N98EycXLix55t7ISLX58xsdxgzHWOOaoe7TihRvLJhZWEBeUADB3Jx75jCmJUEQcCcpCWvatsXIEyfg2bx5ueVdqiZ7YWEhEhISsGXLFqxfv17pR1tXr17F/Pnz0aRJEwQGBmLt2rUYMGAAEhISSlOsMrG3t0eLFi3EHz8/P62P7dmzJwDg0KFD4ra8vDwcO3YMQUFB4rZu3bph586dyM/PF7dt3rwZjo6OCAkJKYdalC9NEwckx8YipnVr2MhkensSxBgrvSob09SMY7S0sYGlra12M/daWMDCxkblfn6jw5jhVNm4pgVBEHA3KYmHwDBWBvro1abzm+0//vgDffv2xY0bN0AqZjYUBAHDhg3TmMfSpUsRGxuLs2fPwsHBAeHh4fjqq6/Qvn17rZZvqEhnzpxBWlqaOHP6qVOnAACurq4IDQ0FADRv3hzh4eEYM2YMHjx4AE9PT6xYsQJ3797F1KlTxbymTp2KDRs2YNCgQXj33Xdx7tw5LF68GPPnzzeqtcWLFJ84QNVyOK0mTYKljQ2e3r+Ps999h2ajRvENKGNGrirENFVLeWkzuSPw78y9BQXcM4exSqQqxDVt8RAYxoyLzo3td955Bw4ODli3bh0aNWpUqsAze/Zs9OrVC5988gm6du0KS0tLnfOoKN988w3WrVsnfv7iiy8AAKGhoTh69Ki4fd26dZg5cyZmzJiBhw8fIigoCIcOHUKTJk3ENPXq1cOBAwcwefJkdO/eHa6urpgzZw6mTJlSYfXRVdFYoNqdOuHsqlUqu4tLXV3R7uOPDV1UxpgWqkJMKz6OsXjsyrx0CUFjx+LkokUqu5IXn9yRMVZ5VIW4Vpnx8BtWlenc2D5//jzi4uLEJ4Wlce/ePdja2pb6+Iq0du1arF27tsR0UqkUX3/9Nb7++muN6UJCQsQnrpUFjwVizHRUpZimMnaZmantrVM0uWNmSooBS81Y2TxKT8fZ6GgEjR1bZXqbVaW4VhkVDb9hrCrSuc+2r69vmdcPrCwNbfYfQRDwJCMDx+fPx5OMDG5oM8YqBaVxjFrM3MtdyFllVlHLeFnyvRxjjJVI5zfbX375JSZOnIjAwECNs82+rFq1aoiPj0dQUBDs7e01NtYEQVBadoEZnr2np07dxbnbEGOsoqlrABQfx8i9dRgrPSKCe0AAPnryBPKCAhAR/+5UAnxPxphh6NzYfu+993Dnzh34+/vDy8tLXJOwiCAI+N///qd03JQpU+D57y/4lClTODBXAdxtiDFWUXRtAJT3Mh98I8uqApLL8ej2bZyNjsaDq1chq1v3RXd1XonE6Ol6T8YxjRmCKfaY0bmxHRQUVKqGcmSxdUujuAHGGGOsnJSlAVBeM/fyw0Vm6kguR9KPPyrNd3By0SL0iolBwJAh3ODWA303PtQ1qjmmsYpkyj1mdG5sazMBRUk6duyIlStXquyGfvnyZYwbNw5Hjhwp83kYY4yZNm0aAOrWzGaMaYeI8Oj2baXfMwCQFxTg59GjUbtTpxcPuEzkBtnQKqrxwY1qZmim3mPGIDU4evSo2knWHj58iOPHj1dwiRhjjFU22jQAHqWnQ+rqaqASMla5PUpPx9E5c0CFhTgbHa1yyTzgxe/b2VWrQHJ5BZfQNJFcjke3buHYnDn4KSICx+bMwaNbt/j6MpNT9MD8q9q1cXzePCRv2oTj8+bhq9q1kfTjjybxb17nN9sAkJ2dja1bt+Ly5cvIzc1V2l/SkgoA1D6dS0hIgJubW2mKxRhjrAohuVyrBkBosWFMjDHtPU5PR8Lnn6N9ZCQeXL2qMW3WtWswMzevoJKZLu6tw6qKqtJjRufG9pUrVxASEoLnz5/jyZMncHV1xYMHD1BQUAAnJyc4ODiobGwvXLgQCxcuBPCiod2hQweYvdQ14Pnz5ygoKMC7775byuowxhirKszMzbVrAFhY8M0pY9A8/lftTP7PnkFeUABZ3boa83aqUwfywkJucJeBto0P7q3DTIHWD8yjoiCUIq4Yy2RrOje2J0+ejFatWiEuLg5SqRR79+5FYGAgNm/ejI8++ghxcXEqjwsJCcGUKVNARPj0008xaNAgeHt7K6SRSCRo2LAhXn/99dLVhjHGWJUhLyzUrgFQUMBrZ7MqTdP43xLHBhMhNzsbQWPH4uSiRSpvjM0sLBA0bpxJjK80JO6tw6oSrR+Y69jQNrbJ1nRubP/++++IiYmBlZUVACAvLw/m5uaIiIhAZmYm3n//ffz6669Kx4WGhiI0NBTAizfbb7/9Nry8vMpYfMYYY1WVYGamVQMgNzu74gvHmJHQNPkQgBInJrK0tcWTjAy4+PmhV0yM0ltXMwsL9Fq9GvaenpW6q6cx4N46rCrR+oG5Dj1mjHGyNZ0b28+fP0e1atVgZmYGmUyG27dvi/v8/f0xc+bMEvOI5CdyjDHGykgQBNh7eZXYAMhMSTFgKRkzDAsbG7Xjf6/s3Yu3fv8d5zZsUDk2eMC2bfDt0UPh7RAEAQFDhqB2p044u2oVsq5dg1OdOggaN+5FQ5vfapeZLr11+MEGq+y0fWCubWwx1uUJdW5s+/r64vr16wCAZs2aYeXKlejcuTMsLCwQHR2t9dvqv//+G2vXrlU7ydrPP/+sa9EYY0xnj9LTcTY6+sWTz5fWGWXGTzAzK7EBoGsXcnXrzjJWmUhdXdWO/33lvffw8MYNlfsa9euHel27qn07ZO/lhdDISJhZWLxo9Jmbc8OvnJTU+PBs3hyvzpgBAEbTRZax0tL2gbk2/76NebI1nRvbAwcOxF9//YWhQ4di7ty5eO211+Dk5ARBEEBEWLduXYl5nD59GqGhofDx8cHly5cREBCAnJwcpKWlwdvbG/Xq1StVZRhjTFeP09ORsHgx/Hr1EhvbRAQqLOSbyUpCMDMr1wYArzvLKj1BgLWjI47NmaPcaBME+L/5Jk4uXKi0zz0gAL3Xr8e5jRux66231L4dun/lCv6vRQuMPHECns2bV0SNqgRNjY8mgwej97p1ePzvA2Jj6SLLWFlo88BcG/qebK0sSjVBWpHWrVsjOTkZ+/btQ25uLjp27Ah/f/8S85g2bRoGDBiAmJgYWFpaIiYmBs2bN0dCQgIGDRqE6dOn61osxhjTmapJNPDv01G+malcBEHAnaQkrGnblhsArMqztLGBmYWFyvG/ljY2sLS1Vbmv1aRJeHTrllJDG1CeDTv/6VO9lb8qU9X48A4JwSvvvMNLgjGTVB4PzPU12Vp5KNU628XVqFEDY8aM0emY//3vf5gxY4a49FdRN/KQkBBERUVhxowZeO2118paNMYYU+vlSTRqvPqqVjcz3OA2btwAYAyAIKhdriv/2TPkP32qvE/DG+8iPBt2xVBqfPz794qXBGOmqqwPzPUx2Vp5KdVdY35+PlatWoXRo0ejS5cuuHLlCgBg8+bNuHjxYonHC4IAiUQCQRDg5uYmjgEHAG9vb1y+fLk0xWKMMa0UTaLxVe3aOD5vHpI3bYKlrS1y/vlH483Mo/T0F2+/GWPMCIm9dR4/Bv4d/2tmYfFyIiRv3oxmo0cr7NP0xrs4ng27YgiCgLtJSVhgZwdo2UXW2tGxYgvJWDkr7QNzQV28+5chlyfU+YzXrl2Dn58fpk2bhr///huHDx/Go0ePAADHjx/H559/XmIejRo1wtV/g3lwcDC++OILJCcnIyUlBYsWLULdEp5MMMZYaamcROPfNzp/xsSUeDNDcnkFlpYxxrRDcjke3bqFY3Pm4KeICJz59ltx/O/LN6Cnv/kG1WrUUNin9o33S3jt+gpGpHZIQHH8EIRVZcXnO3g53hl6eUKdu5G///77cHV1xe+//w5HR0dIJBJxX2hoqFZLf40ZM0Z8m71gwQJ06dIFgYGBAACpVIqtW7fqWizGGNOKqkk0dHqjY4DxPqxseHZxZupULXmTvGkTbiYmove6dSonHxJULOWVeekSr11vZPKfPVM7JKA4fgjCqrrymmytvOnc2D569Cg2bdoEFxcXFBYWKuzz8PBAenp6iXkMHTpU/P+GDRvi4sWLSExMxLNnz9C6dWu4ubnpWizGGNOKqkk0dHqjY4DxPqxseHZxZso0LXlzbsMGZF68iBHHj6udfEhpYiIzM1673pgQITc7mx+CMKaF8l6dpDzo3MS3sLBQO2bx7t27sLOz07kQdnZ26Ny5M3r16sUNbcaYXqmcREPNGMbiDDnehzHG1ClpyZv0P/7Ar4sWAQAWSKW4m5SkcOMpjg0u2vfv26GJaWloN2sWmkREoN2sWZiYloaAwYNLtXY9K5snGRladZF9kpFhoBIyZjyUYpqBl27V+c12aGgovvjiC3Tr1k2cTbxoje3vvvsOnTp1Unnctm3bdDpP3759dS0aY4yVqGgSjZffEPy2bBkChgzB699/r7TsjaHH+zD94O7lzBRoveSNhpclgOLERMb4dqgqK3j2TKsusvwQhLH/6DrZmr7uCXRubH/22WcICQlBo0aN0KtXLwiCgBUrViA5ORlXrlzB77//rvK4fv36aX0OQRCUuqiz/xT9sXz48KGBS8JY5UR2duj4zTfYO3485P/GmutJSdg0ZAh6rlqFkefO4a/Vq5GdlgbHWrXQdNQo2Ht44NHjxxVWRnt7+ypzY1teMe3R48fI/fe/Um3ykkrRfPJkUDmcmzFDkRcWwsrbG7ka0kiqV0f2gwd4/OyZyt8Pdb87d/76Cz927Yohv/wCj6ZNS0xfkqoS1/QZ08jODs0++EB8CELm5uLfptJ+L4wZg/L891uqvEpxT6BNTBOoFOvYpKamIioqCgcPHkRmZiZkMhnCwsIwZ84ctTOJF1/eSxs+Pj66FqvKuHnzJmrUqGHoYjDG9CgnJwfVqlUzdDEqBMc0xqqGqhLXOKYxVjVoE9NK1dhmhiWXy3H79m29PCF++PAhatSogRs3blT6P4imUheuh3GpqHpUlTdAgH5jGsD/9oyNqdQDMJ26cFwrXxzTtGMq9QBMpy5cD91o8zuuczfy8vTLL7/g9OnTuHHjBmbNmoWaNWvi+PHjqFevHry8vAxZNKNmZmYGb29vvZ6jWrVqlfqXrDhTqQvXw7iYSj2MQUXENMB0vjOuh/ExlbqYSj0MjWOabkylHoDp1IXrUX60amyPGjVK6wwFQUBMTIzGNBkZGejduzdOnTolPnUYN24catasidWrV0MqlWLFihVan5MxxhhjjDHGGDMmWjW2165dC3t7e9StW1fjTJYAtOouM2nSJGRkZCA5ORn169eHRCIR94WFhWHevHnaFIsxxhhjjDHGGDNKWjW2g4ODcerUKRQWFiIiIgIDBw4s0wRme/bswf/93/+hYcOGSrOO16hRAzdv3ix13qxsrKysEBkZCSsrK0MXpcxMpS5cD+NiKvWoSkzlO+N6GB9TqYup1KOqMJXvy1TqAZhOXbge5U/rCdL++ecfxMbGYuPGjTh37hyCg4MRERGBAQMGwMXFRaeT2tnZYcuWLejevTsKCwthaWmJM2fOoHnz5tixYwdGjRqFBw8elKpCjDHGGGOMMcaYoZlpm7BmzZqYNm0a/vrrL5w7dw4dOnTAsmXL4OXlhW7dumHfvn1an7RVq1ZYvXq1yn2xsbF49dVXtc6LMcYYY4wxxhgzNmVa+is3NxezZ8/G0qVL0atXL2zbtk2r4xITE9GhQwe0bNkS/fr1wwcffICPP/4YFy9exJ49e3Dy5Ek0b968tMVijDHGGGOMMcYMSufGdmFhIQ4cOIDY2Fjs3LkTFhYWCA8Px1tvvYVXXnlF63wSExMxY8YMJCQkoLCwEIIgIDg4GIsXL0ZwcLDOFWGMMcYYY4wxxoyF1t3Ijx8/jnfeeQfu7u4YMGAACgsLsWHDBty5cwfR0dFaN7Tz8vKwbds2uLu749ixY3j48CFu3ryJR48e4eTJk9zQ1qOVK1eiZ8+ecHV1hSAI2Lp1q9q0e/bsQUhICKRSKZycnNChQweliesSEhIQHBwMGxsb+Pj44LPPPitxtnp9uX//vrh8nFQqhb+/P1atWqWU7vbt2wgPD4e9vT1kMhneeustPHz40AAlLtmlS5fQuXNnSKVSeHh4YNq0acjLyzN0sUr0888/o1WrVrC3t4enpycGDBiAa9euKaWLiYmBr68vrK2tERgYiN27dxugtC/8/fffGDduHJo2bQoLCwv4+/urTJednY33338fXl5esLa2Rt26dfHFF18opMnLy8PUqVPh4eEBqVSKzp07IyUlpSKqUeVwTOOYVhE4pnFMq0gc1ziu6RvHtAqOaaQFb29vsra2pj59+tCWLVvo2bNn2hymlpWVFcXHx5cpD6a7Vq1aUatWrWjYsGEEgOLi4lSm++GHH0gikdDMmTPpyJEjtHPnTvrwww/pypUrYporV66QnZ0d9enThw4dOkRLly4liURCixcvrqjqKOjQoQN5enrSmjVr6PDhwzRlyhQCQN99952YJi8vj/z9/cnf359+/vlnio2NJW9vb+rRo4dByqzJgwcPyNPTk9q1a0e//PILxcTEkIODA40fP97QRdMoPj6ezMzMaMSIEXTw4EGKjY0lX19fqlu3Lj19+lRMt2nTJhIEgWbNmkVHjhyhsWPHkoWFBSUmJhqk3Dt27CBvb28KDw+nJk2aUOPGjZXSPH78mAIDAykoKIhiY2MpPj6eoqOjlf7Njx07lhwcHCgmJoZ++eUXatu2LVWvXp2ys7MrqjpVBsc0jmn6xjGNY1pF47jGcU2fOKZVfEzTqrEtCAJJJBKys7Mje3t7jT/VqlUrMb/AwEBat25dmQvPdFNYWEhERKmpqWoD+P3796latWq0cuVKjXmNGTOGfHx86Pnz5+K2mTNnkqOjI+Xm5pZvwUuQnp5OAGjNmjUK29u1a0cdO3YUP2/cuJEEQaBLly6J2/bv308A6Lfffquo4mplwYIFJJVK6f79++K26OhoMjc3p1u3bhmwZJqNHTuWateuTXK5XNx25MgRAkDHjx8Xt/n6+tKgQYMUjg0ODqZu3bpVWFmLK/rdICIaPny4yiA+a9YsqlOnDj1+/FhtPjdu3CBzc3OKjo4Wt92/f5+kUil99tln5VtoxjGNY5recUzjmFbROK5xXNMnjmkVH9O06kYeGRmJjz76CB9++CGmTJmi8Wfy5Mkl5rdw4ULMmzcPZ86c0fE9PCsLM7OSv+4tW7agsLAQo0eP1phu37596N27NyQSibht4MCByM7ORmJiYpnLqov8/HwAgIODg8J2BwcHha5S+/btQ0BAAPz8/MRtnTt3hkwmw969eyumsFrat28fwsLCIJPJxG0DBgyAXC7HgQMHDFgyzfLz82Fvbw9BEMRtRd9L0Xdx7do1XL58GQMGDFA4duDAgTh8+DCeP39ecQX+lza/G99//z1GjRoFqVSqNs2BAwcgl8vRv39/cZtMJkOXLl2M7t+YKeCYxjFN3zimcUyraBzXOK7pE8e0io9pWje2dfkpybRp03D//n20atUKbm5uaNKkCQICAsSfwMDAMleMlc6pU6fQoEEDrFu3Dj4+PrCwsEDTpk0VlnZ78uQJbty4gQYNGigc26BBAwiCgEuXLlVomWvUqIEuXbpgwYIFuHDhAh49eoQtW7bgwIEDGD9+vJju0qVLSmUWBAENGjSo8DKXRFVZHR0d4enpaXRlLW7EiBG4cOECVq5ciZycHFy7dg0fffQRmjVrJi7pV1T+l+vXsGFD5OXlITU1tcLLXZK0tDTcuXMHLi4u6NWrF6ysrCCTyfD222/j8ePHYrpLly7Bzc0NTk5OCsc3bNjQqL83U8YxzThwTDMuHNMqN45rxqEyxjWOaRUf0yz0kmsJgoKC0KJFC0OcmpXgzp07SElJwSeffILPP/8cnp6eWLFiBXr16oW//voLjRs3RnZ2NoAXAaU4iUQCW1tbPHjwoMLLvW3bNrz55pto3LgxAMDc3BzLly9HeHi4mCYrK0upzADg5ORkkDJrUpnKWlzbtm2xfft2REREiH88mzZtil9++QXm5uYAXtQNUP73UxT4jLF+d+7cAQB8+OGH6Nu3L/bu3YsrV65gxowZePz4MTZt2gSg8n5vpoxjmnGoTGUtjmNa5fzeTB3HNeNQmcpahGNaxX9nBmlsr1271hCnrTKICIWFheJnQRDEX6CSyOVyPH78GBs2bECvXr0AAO3bt4evry8+++wzrF+/Xi9l1paqupmZmWHkyJG4cuUKNm7cCE9PTxw8eBCTJk2Ck5MTBg4caMASVy0JCQkYOnQo3n77bfTs2RP379/H3Llz0aNHD5w4cQI2NjaGLmKpyOVyAICvry/WrVsHAOjUqRMsLCzw9ttvY/78+ahTp44hi2jSOKZxTDMUjmlMXziucVwzBI5pFc8gjW2mX8eOHUOHDh3Ez6GhoTh69KhWxxY9terYsaO4zdLSEu3atUNycjKA/5505eTkKBybl5eHp0+fKoxdKW+q6vbhhx8iLi4OSUlJaNKkCYAXf3Tu3buHKVOmiAHcyclJqczAi6dcNWrU0FuZS0NTWfV5fcvq/fffR8eOHRWWWWjdujVq1qyJH374AWPGjBH/jeXk5MDDw0NMV/Qk1RjrV1Tm4v/2gBeBHADOnz+POnXqVNrvzdhxTOOYZigc0yrn91YZcFzjuGYIHNMq/jvjxrYJCgoKwunTp8XP9vb2Wh9b1LVHldzcXACAVCpFjRo1lMY2pKSkgIiUxniUJ1V127lzJ8zNzZXW3GvWrBm+//57PH36FLa2tmjQoAHOnTunkIaIkJKSgs6dO+utzKWhamxSTk4O0tPT9Xp9y+rChQt44403FLZ5e3vDxcUFV69eBfDfGKBLly4pTIBy6dIlSCQSo3ybUrduXVhZWandX/S70aBBA9y9exdZWVkK44FUjeti2uOY9gLHtIrHMY1jmr5wXHuB41rF4phW8TFNqwnSWOVib2+PFi1aiD/Ff1FK0rNnTwDAoUOHxG15eXk4duwYgoKCxG3dunXDzp07xdklAWDz5s1wdHRESEhIOdRCNVV18/HxQWFhIZKSkhTSnj17Fm5ubrC1tRXL/L///Q9XrlwR0xw+fBj3799H9+7d9Vbm0ujWrRsOHTokjrkCgLi4OJiZmaFLly6GK1gJfHx88Mcffyhsu379OjIzM1GrVi0AQJ06deDr64u4uDiFdJs3b0anTp0UZk01FhKJBF26dMHhw4cVth88eBAA0Lx5cwBAly5dYGZmhp9++klMk5WVhQMHDhjdv7HKhGPaCxzTKh7HNI5p+sJx7QWOaxWLY5oBYppeFhRjRun06dMUFxdHK1euJAA0ZcoUiouLo6NHjyqkCw8PJ1dXV4qJiaG9e/dSjx49yNrampKSksQ0V65cIalUSuHh4XT48GFatmwZSSQSpYXjK8LDhw+pZs2aVK9ePfrhhx/o0KFDNG3aNDIzM6O5c+eK6fLy8sjf35+aNGlCu3btos2bN1ONGjWoR48eFV7mkjx48IA8PT0pNDSU9u/fT6tXryZHR0caP368oYum0bJlywgAvf/++3Tw4EGKjY0lf39/cnd3p8zMTDFd0Tqas2fPpvj4eBo3bhxZWFhQQkKCQcr95MkTiouLo7i4OGrfvj3VqFFD/Hzv3j0iIjpz5gxJJBKKiIig/fv30zfffEP29vY0ePBghbzGjh1Ljo6OtHr1atq/fz+FhoZS9erVKTs72xBVM2kc0zim6RvHNI5pFY3jGsc1feKYVvExjRvbVcjw4cMJgNJPaGioQrrHjx/ThAkTyNXVlaysrCgkJIROnjyplN+vv/5KrVq1IisrK/L29qaFCxeSXC6voNoounLlCg0YMIC8vLzI1taWGjduTMuWLaOCggKFdDdv3qS+ffuSnZ0dOTo60qhRoygnJ8cgZS7JhQsXqFOnTmRjY0Nubm704Ycf0vPnzw1dLI3kcjl9++23FBAQQFKplDw8PKhPnz508eJFpbTff/891atXjyQSifhH1VBSU1NV/m4AoPj4eDHdoUOHqEWLFmRlZUUeHh40ZcoUys3NVcgrNzeXpkyZQm5ubmRjY0NhYWEq68/KjmMaxzR945jGMa2icVzjuKZPHNMqPqYJRMVWkmeMMcYYY4wxxliZ8ZhtxhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7YZY4wxxhhjjLFyxo1txhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7aZVqKioiAIAqpXrw65XK60/9VXX4UgCBgxYoRO+WZnZyMqKgoXLlxQ2J6WlgZBELB169ayFLvMli1bBkEQxM9Hjx6FIAg4c+ZMhZUhKioKCQkJStsFQcCSJUsqrByq7NixA4IgIC0tDUDpvrdly5Zh7969eiohY6pxTHuBY5oijmmsMuO49gLHNUUc1wyLG9tMa5aWlsjMzMTx48cVtl+/fh2JiYmws7PTOc/s7GzMmTNHKYB7enoiMTERHTt2LFOZy1vz5s2RmJiIhg0bVtg558yZozKAJyYmYvDgwRVWDm2U5nvjAM4MhWMax7SScExjlQ3HNY5rJeG4VrEsDF0AVnlIJBKEhYVh06ZNaN++vbg9NjYWjRs3hrm5ebmdy8rKCq1bty63/MpLtWrVSizXs2fPYGNjo/eyGOP1MdbvjTFVOKZxTCuJsX5vjKnDcY3jWkmM9XszVfxmm+lk0KBB2Lp1K/Lz88VtGzduREREhMr0x48fR0hICGxsbODi4oJRo0bhwYMHAF50Y6lduzYAoH///hAEQezmoqqLi1wux7x581CrVi1YWVmhQYMGiI6OVjhfVFQU7OzscO7cObRp0wa2trbw9/fH/v37S6zbw4cPMWzYMNjb28PV1RXTpk1DQUGBQhpVXZMEQcCiRYswffp0eHh4wM3NDQBARFiyZAl8fX1hZWWFOnXq4Msvv1Q678WLF9G3b1/IZDLY2toiMDAQmzZtEvMGgKlTp4rX5+jRo+K+l7smRUdHw8/PD1ZWVqhVqxbmzZun0JVs7dq1EAQBf/75J7p16wapVIr69etj/fr1JV6f/Px8TJo0CTKZDA4ODhg9ejQeP36skEbV9/bzzz+jRYsWsLOzg6OjI1q0aCE+Ha1VqxauX7+OFStWiPVbu3YtAGD9+vVo06YNZDIZnJyc0L59e/z+++8K59Pl+16/fj2aNWsGa2truLi4oHv37rh+/bq4/+bNmxgyZAhcXFxgY2ODdu3a4ezZsyVeF1a5cUzjmMYxjZkajmsc1ziuGQ9ubDOdvP7663j+/DkOHDgAALhw4QKSkpIwcOBApbRnz55F586dYW9vj7i4OHz22WfYtWsXunXrhsLCQnh6emLbtm0AgAULFiAxMRGJiYnw9PRUee6pU6ciKioKI0aMwK5du9ClSxeMGzcO33zzjUK6/Px8DB48GCNGjMD27dvh5uaG8PBw3L9/X2PdRo0ahe3bt2PRokVYt24dLly4gGXLlml1Xb766itcvnwZMTEx+PHHHwEAEydOxOzZszF8+HDs2bMHI0aMwPTp07Fq1SrxuCtXriA4OBhXrlzB119/jZ9//hkjR47EP//8A+BF9yMAmDBhgnh9mjdvrrIMy5cvx7hx4/Daa69h165dGDFiBKKiojBt2jSltIMHD0aXLl2wY8cONGvWDCNGjMDFixc11nHmzJlYuXIlpk6dii1btqCwsBAzZszQeMzVq1fRr18/NG7cGNu3b8fmzZsxYMAAZGVlAQC2b98ODw8P9OvXT6xfjx49ALz4YzBs2DDExcVh48aNqFmzJtq1a4fLly8rnEOb73vx4sUYPnw4goKCsG3bNsTExKB+/frIyMgAAGRlZaFNmzb466+/sHz5cvz000+QSqXo2LEj7t27p7GOrHLjmKYaxzTVOKaxyoDjmmoc11TjuKZnxJgWIiMjSSqVEhFRREQEDRkyhIiIZs2aRcHBwUREFBgYSMOHDxeP6dOnD9WsWZPy8vLEbfv37ycA9PPPPxMRUWpqKgGguLg4hfO9vD0jI4MsLS1pxowZCukGDRpErq6uVFBQIJYTAO3Zs0cprx9++EFt/c6fP0+CIFBMTIy4raCggGrXrk3Ff03i4+MJAJ0+fVrcBoAaNWpEcrlc3Pb333+TIAgUHR2tcJ7p06eTh4cHFRYWitfS1dWVcnJy1JYNAC1evFjj9oKCAnJxcaGBAwcqpJk5cyZJJBLKzMwkIqI1a9YQAFqxYoWY5vHjx2Rra0tz585VW4b79++TjY0NffLJJwrb27VrRwAoNTWViJS/t7i4OAJADx8+VJu3j48PjR8/Xu1+IqLCwkLKz88nPz8/mjlzprhdm+87OzubbG1tacyYMWrznz17Njk4ONDdu3fFbbm5uVSzZk2aOnWqxrKxyolj2gsc0zimMdPBce0Fjmsc14wJv9lmOhs0aBB27tyJZ8+eITY2FoMGDVKZ7sSJE3jjjTdgaWkpbuvSpQscHR1x8uRJnc7522+/IT8/H/3791fY/uabbyIjI0PhCZqZmRnCwsLEz7Vq1YKNjQ1u3rypNv/Tp0+DiNCnTx9xm7m5OXr37q1V+bp166YwE+ahQ4cAAOHh4SgoKBB/wsLCcOfOHdy4cQMAcPjwYfTr1w/VqlXT6jzqXLp0CZmZmSqvT15enlKXni5duoj/L5VK4ePjo/H6nDt3Ds+ePVO4PkX10yQgIADm5uaIiIjArl27kJOTo22VcPHiRfTp0wfu7u4wNzeHpaUlUlJSlJ6WlvR9JyYm4unTpxg9erTacx04cAAdOnSATCYTvytzc3OEhobi9OnTWpeZVU4c05RxTFONYxqrLDiuKeO4phrHNf3iCdKYzl577TVYWlpi9uzZSE1NxYABA1Smy8rKgru7u9J2d3d3cSyQtoq6srycX9Hn4vnZ2NhAIpEopJNIJMjNzVWbf3p6OiwtLeHk5KQy/5K8nC4zMxNEBBcXF5Xpb9y4AR8fH9y/fx9eXl5anUMTXa4PADg6Oip81ub6ABDHOL2cvzq+vr7YvXs3FixYgD59+sDMzAxdu3bFN998g5o1a6o97tGjR+jSpQtcXV2xdOlS+Pj4wNraGm+99ZZSOUv6vou6KGm6zpmZmTh16pTCzUaRunXraqwjq/w4pinjmKYaxzRWWXBcU8ZxTTWOa/rFjW2mM0tLS4SHh2Pp0qXo1KmT2l9imUymcgzF3bt3IZPJdDpnUfp79+6hevXqCnkV319anp6eyM/PR1ZWlkIQL8q/JMWflBaVRxAEnDx5Uim4AICfnx8AwNnZGbdv3y5Dyf87HwCl612e16cof1XXX5OuXbuia9euePjwIX755Rd88MEHGDlyJA4fPqz2mMTERNy8eRO7d+9GYGCguD0nJwfe3t46ld3Z2RkAcPv2bbXHymQydO3aFXPnzlXaZ2VlpdP5WOXDMU0ZxzT1OKaxyoDjmjKOa+pxXNMf7kbOSuWtt97C66+/jokTJ6pN06ZNG+zYsUNhlsiDBw8iOzsbbdq0AQAxuGl6UgcALVu2hKWlJeLi4hS2b9myBW5ubvD19S1tVQAAr7zyCoAXk0AUKSwsxI4dO0qVX6dOnQC8eFLXokULpR97e3sAQFhYGLZu3YpHjx6pzcvS0rLE6+Pn5wdXV1eV10cikaBly5alqkeRJk2awMbGRuH6AMBPP/2kdR7VqlXDgAEDMHDgQIUJPlQ9qX327Jm4r0hCQgLS0tJ0LntwcDBsbW2xZs0atWnCwsJw4cIFNGzYUOm7atKkic7nZJUPxzTNOKYp45jGjB3HNc04rinjuFb++M02K5WWLVuWGNw+/vhjhISEoGfPnpgwYQLu3r2LGTNmoGXLlujevTsAwMPDA46Ojti0aRNq164NKysrBAQEKOXl4uKCCRMmYPHixbC2tkbr1q2xd+9ebNy4EcuXLy/zupGNGjVCnz59MGnSJOTm5qJWrVpYuXIl8vLySpWfr68vxo8fj6FDh2Lq1Klo1aoV8vPzcfnyZcTHx4vXLjIyErt370abNm0wbdo0eHp64sKFC3j69Kk4M2XDhg2xc+dOtG3bFlKpFH5+fuIfgCLm5ub45JNP8P7778PNzQ3du3fHqVOn8Nlnn2HSpEniE8PSkslkGDduHBYtWgQbGxs0b94cmzZtwtWrVzUeFx0djcTERHTt2hWenp5ITU3Fjz/+qDAOqWHDhjhy5AgOHjwIJycn1K5dG61bt4adnR3Gjx+PGTNm4NatW4iMjFR4UqstBwcHREZGYvr06ZDL5XjjjTcgl8sRHx+PQYMGoUWLFpg8eTI2bNiA0NBQTJw4ETVr1kRGRgZ+++03eHl54YMPPtD5vKxy4ZimGce0FzimscqE45pmHNde4LimZ4acnY1VHsVnuFTn5RkuiYiOHj1KwcHBZGVlRTKZjEaMGEH3799XSLN9+3Zq2LAhWVlZibMlqpr5srCwkD799FOqWbMmWVpaUv369WnVqlValdPBwYEiIyM1lj8rK4sGDx5MUqmUnJ2dafLkybR48WKtZrhUNQOlXC6n5cuXk7+/P0kkEpLJZBQcHExLly5VSHf+/Hnq1asXVatWjWxtbalp06YUGxsr7j9x4gQ1b96cbGxsCADFx8erPe+3335L9evXJ0tLS6pZsybNnTtXnE2T6L8ZLjMyMhSOU/Xdvez58+c0YcIEcnR0pGrVqtHw4cPphx9+0DjDZUJCAvXo0YM8PT1JIpFQzZo1aeLEiQozXiYnJ1Pbtm3J3t6eANCaNWuIiGjfvn3UuHFjsra2poCAANq7dy+FhoZSjx49xGN1+b5Xr15NTZo0IYlEQs7OztSzZ0+6fv26uD89PZ1Gjx4tltXb25v69etHv/76q8brwionjmkvcEzjmMZMB8e1FziucVwzJgIRkd5b9IwxxhhjjDHGWBXCY7YZY4wxxhhjjLFyxo1txhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fc2GaMMcYYY4wxxsoZN7YZY4wxxhhjjLFyxo1tpjdpaWkQBAFbt27V6bijR49iwYIFStujoqJgZ2dXXsUr0bJly7B3795yy2/Hjh1YuXKl0vYRI0bA39+/3M5T3ir6ujNmzDiuKeK4xljlxjFNEcc0Vt64sc2MjroA/tZbbyE+Pr7CylFRAdzYVfR1Z8wUcVwzLhzXGCsbjmnGhWOa8bIwdAFY5UJEyMvLg5WVVYWf29vbG97e3hV+3qrq+fPnsLS0LLfrXpSfmRk/42PGheNa1cFxjVUFHNOqDo5pxo+vJNOoqNvM3r17ERgYCCsrK+zatQsAkJiYiI4dO0IqlcLBwQERERG4d++exvzWr1+PNm3aQCaTwcnJCe3bt8fvv/8u7o+KisKcOXPw5MkTCIIAQRDQvn17cV9RF5knT55AKpViyZIlSufo168fgoODxc/Z2dl499134enpCSsrKwQFBeHAgQMay1mrVi1cv34dK1asEMuxdu1aAIBcLse8efNQq1YtWFlZoUGDBoiOji7xOq5btw7nz58X8xsxYoRCmqNHj6JZs2aQSqVo2bIlzp49q7CfiLBkyRL4+vrCysoKderUwZdffqnxvEXn9vf3x759++Dv7w9ra2sEBQXh1KlTSnV+77338Pnnn8PHxwc2NjZ48OCByq5J169fR79+/eDg4ACpVIrXXnsN586d0yo/TWU8dOgQAgICYGNjg9DQUKSlpeHBgwcYMGAAqlWrhrp162Lz5s1Kx+/ZswetWrWCjY0NXF1d8c477+DJkyfi/idPnuC9996Dn58fbG1tUatWLYwbNw45OTkqy7xixQr4+PjAwcEBvXv3RkZGRonXmVUeHNc4rnFc47hmSjimcUzjmGbEMY0Y02D48OHk5OREdevWpTVr1tDhw4fpypUrlJCQQBKJhHr37k27du2i2NhYqlevHrVu3Vo8NjU1lQBQXFycuG3OnDkUHR1Nhw4dor1799LQoUPJysqKUlJSiIjoxo0bNHr0aLKxsaHExERKTEyk8+fPExFRZGQkSaVSMa+BAwdSUFCQQnkfPnxI1tbW9PXXXxMR0fPnz6lFixZUo0YNiomJoV9++YWGDBlCFhYWlJSUpLbef/zxB3l4eFC/fv3Ecty7d4+IiCZPnkzm5uYUGRlJ+/fvpwkTJhAAWr58udr8/v77b+revTvVqVNHzO/vv/8Wr7GzszM1adKENmzYQLt376YmTZpQjRo1KC8vT8xjwoQJZGNjQ/PmzaODBw/SnDlzyNLSkr799tsSv0OZTEa1atWitWvX0s6dOyk4OJiqVatGd+/eFdP5+PiQh4cHtW3blrZv304///wzPX36VOm6P3z4kGrVqkV16tShjRs30rZt2ygoKIgcHR3pn3/+KTE/dWV0dnamgIAAio2NpZ9++omqV69OISEhFBYWRp9++ikdOHCA+vfvTxYWFpSWliYeGxcXR2ZmZjR69Gjat28frV69mtzc3OjNN98U09y7d4/GjRtHcXFxdPToUfrhhx+oQYMG1L59e4Vy+Pj4UI0aNahLly60a9cuWrNmDTk6OirkxSo/jmsc1ziucVwzJRzTOKZxTDPemMaNbabR8OHDCQCdOnVKYXu7du0oJCSE5HK5uO38+fMkCALt2bOHiFQH8OIKCwspPz+f/Pz8aObMmeL2lwOGuu07d+4kAHT58mVx27p168jc3Jzu3LlDRESrV68mCwsL8Y9AkVatWlH//v011t3Hx4fGjx+vsC0jI4MsLS1pxowZCtsHDRpErq6uVFBQoDa/4cOHU+PGjVVuFwSBkpOTxW3x8fEEgE6cOEFEL/4ACIJA0dHRCsdOnz6dPDw8qLCwUON5AdDhw4fFbdnZ2WRvb69QDx8fH3J2dqbHjx8rHP/ydf/qq69IEAS6cOGCuO3+/fsklUpp8uTJJeanrowvX4Ply5cTAJo+fbq4LSsri8zNzWnZsmVERCSXy8nHx4cGDRqkkN++ffuU8isuPz+fTp48SQDEm4eiMnt7e1Nubq5C/S0tLTVeY1a5cFzjuMZxjeOaKeGYxjGNY5rxxjTuRs5K5OzsjFatWomfnz59il9//RX9+/dHYWEhCgoKUFBQAF9fX9SoUQOnT59Wm9fFixfRp08fuLu7w9zcHJaWlkhJScHly5d1LlfXrl3h6OiI2NhYcVtsbCw6dOgAd3d3AMCBAwfQpEkT+Pr6iuUsKChA586dNZZTnd9++w35+fno37+/wvY333wTGRkZpaoHAHh5eaFx48bi50aNGgEAbt68CQA4dOgQACA8PFyhHmFhYbhz5w5u3LihMX8HBwd07NhR4XNYWBh+++03hXTt27eHVCrVmNeJEyfg7++Phg0bittkMhk6d+6MkydP6pxfkZevga+vLwAgLCxM3Obo6Ag3NzexvpcvX8b169cxYMAAhesSGhoKMzMznDlzRjz2hx9+QLNmzWBnZwdLS0u0adNGzKO40NBQhXFujRo1Qn5+fond7ljlwnHtPxzXOK6xyo9j2n84pnFMMybc2GYlKgqGRbKyslBYWIgPPvgAlpaWCj///POP2mDy6NEjdOnSBdevX8fSpUtx4sQJnD59GoGBgcjNzdW5XBKJBOHh4WIAv3//Pg4ePIiIiAgxTWZmJv7880+lcs6bN6/EoKdKVlYWAOVrUvRZ3TiXkjg6Oip8lkgkACBel8zMTBARXFxcFOrRuXNnACixLq6urkrb3N3dkZ6errIemmRlZalM5+7urlR/bfIrou4aqNpe/LoAQJ8+fRSui62tLQoLC8Xrsn37dgwbNgwtW7bEli1bcOrUKWzfvh0AlP7tlfRdMNPAcU2x7gDHNY5rrDLjmKZYd4BjGsc048CzkbMSCYKg8NnR0RGCIOCjjz5C7969ldK7uLiozCcxMRE3b97E7t27ERgYKG7Pyckp9QyKgwYNQkxMDJKSkpCYmAhzc3P07dtX3C+TyRAQEICYmJhS5f8ymUwGALh37x6qV68ubr97967C/vImk8kgCAJOnjwpBpTi/Pz8NB6vatKIu3fvwtPTU2Hby9+1urKkpKSozO/l+muTX1kUne+bb75ReKJfxMvLCwAQFxeHpk2bKkyOcuzYMb2WjRk3jmv/4bjGcY1VfhzT/sMxjWOaMeHGNtOZVCpFcHAwLl68iHnz5ml93LNnzwBAIQAlJCQgLS1NoUuKRCLB8+fPtcqzffv28PDwwKZNm5CYmIhu3brBwcFB3B8WFoa9e/fCy8tL/GXWVvGnckVatmwJS0tLxMXFoVmzZuL2LVu2wM3NTexOo21+2urUqROAF0+EX3/9dZ2Pz8nJwZEjR8TuSTk5OTh06BDGjx+vc15t2rTB1q1bkZKSIv7hyMrKwqFDhzBmzBid8yuLBg0awNvbG9euXdNYl2fPnin94duwYYO+i8cqEY5rHNc4rjFTwjGNYxrHNOPAjW1WKosXL0bHjh3x5ptvYuDAgXBycsLNmzdx8OBBjBw5UlwCorjWrVvDzs4O48ePx4wZM3Dr1i1ERkYqPHUEgIYNG6KgoABfffUVQkJCUK1aNbVPA83NzTFgwACsXbsW9+7dUxgTBADDhg1DdHQ02rdvjw8//BC+vr7Izs7Gn3/+iby8PCxcuFBtHRs2bIgjR47g4MGDcHJyQu3ateHi4oIJEyZg8eLFsLa2RuvWrbF3715s3LgRy5cvh7m5ucb8Vq9ejU2bNqF+/fpwcXFBrVq11F/kYnx9fTF+/HgMHToUU6dORatWrZCfn4/Lly8jPj4eO3bs0Hi8TCbD6NGjMWfOHDg6OmLRokUgIkyaNEmr8xc3cuRIfPnll+jRowfmzZsHa2trzJ8/HxYWFqXKrywEQcDSpUsRERGBJ0+eoEePHpBKpbh+/Tr27NmDBQsWwNfXF507d8b48eMxd+5cBAcHY+/evTh8+HCFlpUZP45rHNc4rjFTwjGNYxrHNCNgyNnZmPFTNysjEdHp06epe/fu5ODgQDY2NlS/fn0aN24c3bhxg4hUz3C5b98+aty4MVlbW1NAQADt3buXQkNDqUePHmKa/Px8evfdd8nd3Z0EQaDQ0FAiUj/zZWJiIgEgOzs7lcsV5OTk0AcffEA1a9YkS0tL8vT0pO7du9Pu3bs11j05OZnatm1L9vb2BIDWrFlDRC9m5vz000/F/OrXr0+rVq3SmFdROQYOHEjOzs4EgIYPH05Eqq9xVlaWwjmJXszmuHz5cvL39yeJREIymYyCg4Np6dKlGs9blP/u3bupYcOGJJFIqFmzZvTrr78qpFM1oyeR6uuelpZGffv2JXt7e7K1taXOnTsrLc+hLj9NZSyuaJbP06dPl5jvgQMHKDQ0lKRSKUmlUmrcuDFNmTKFsrOziYiooKCApkyZQq6urmRvb0/9+vWjU6dOKf37VJX39u3bCQClpqZqVRdm/DiucVzjuMZxzZRwTOOYxjHNeGOaQERUcU17xlhFGzFiBM6cOYPk5GRDF4UxxsoFxzXGmCnhmGa6eDZyxhhjjDHGGGOsnHFjmzHGGGOMMcYYK2fcjZwxxhhjjDHGGCtn/GabMcYYY4wxxhgrZ9zYZkzPWrZsiRUrVqjd/9dff0EQBBw9elQv5+/cuTPmz5+vl7wZY1UPxzTGmKnhuMb0hRvbjOnR9u3bkZaWhlGjRhmsDB999BGWLFmCrKwsg5WBMWYaOKYxxkwNxzWmT9zYZkyPli1bhkGDBsHGxsZgZejQoQOcnJywbt06g5WBMWYaOKYxxkwNxzWmT9zYZkxPUlNTceLECfTr109h+7x58+Dh4QE7Ozv07dsX9+7dUzqWiLBkyRL4+vrCysoKderUwZdffqmUbvv27fDz84O1tTVat26NP/74A46OjoiKilJI179/fw7gjLEy4ZjGGDM1HNeYvnFjmzE9OXz4MCwsLNCyZUtx2zfffINPPvkEQ4cOxU8//YQ6depg9OjRSsdOnDgRs2fPxvDhw7Fnzx6MGDEC06dPx6pVq8Q0f/75J/r3749GjRph27ZtGD58ON588008f/5cKb+QkBD89ddfyMjI0E9lGWMmj2MaY8zUcFxjekeMMb0YM2YMNW7cWPxcUFBAXl5eNHToUIV0Q4cOJQAUHx9PRER///03CYJA0dHRCummT59OHh4eVFhYSERE/fv3p3r16omfiYh++OEHAkCRkZEKx6amphIA2r17dznWkDFWlXBMY4yZGo5rTN/4zTZjepKeng5XV1fx882bN3H79m306dNHId3LXZcOHToEAAgPD0dBQYH4ExYWhjt37uDGjRsAgNOnT6Nnz54wM/vv1/iNN95QWRYXFxexTIwxVhoc0xhjpobjGtM3C0MXgDFTlZubCysrK/FzUfB0c3NTSOfu7q7wOTMzE0QkBt2X3bhxAz4+Pkp/IADA3t4e1tbWSscUlePZs2e6V4QxxsAxjTFmejiuMX3jxjZjeiKTyZCWliZ+9vT0BAClSTbu3r2rdJwgCDh58iQkEolSvn5+fmJ+L4/refToEXJzc5WOyc7OBgA4OzvrXA/GGAM4pjHGTA/HNaZv3I2cMT3x8/NDamqq+Nnb2xuenp7Yvn27QrqtW7cqfO7UqRMA4P79+2jRooXSj729PQDglVdewe7duyGXy8Vjd+zYobIsRX9IioI/Y4zpimMaY8zUcFxj+sZvthnTk1dffRWffvopbt68CW9vb5ibm2PGjBmYOHEi3N3d0blzZxw4cADx8fEKx/n6+mL8+PEYOnQopk6dilatWiE/Px+XL19GfHy8GKRnzpyJV155BeHh4RgzZgyuX7+OJUuWwNraWmFsEACcOXMGdnZ2aNq0aQXVnjFmajimMcZMDcc1pncGnqCNMZP1/PlzcnZ2pu+++07cJpfLac6cOeTm5ka2trbUq1cv+uWXXxRmuCxKt3z5cvL39yeJREIymYyCg4Np6dKlCuf46aefyNfXl6ysrCgoKIhOnjxJFhYWtGzZMoV0r7/+utLMmowxpguOaYwxU8NxjembQERk4PY+YyZrypQp+PPPP3HkyJEKOd/hw4cRFhaGo0ePIjQ0FACQlZUFDw8PHDx4EO3atauQcjDGTBPHNMaYqeG4xvSJG9uM6VF6ejrq1auHhIQEBAYGlnv+7777Ljp16gRnZ2ecP38ec+fOhZeXF86cOSN2T/r0009x9OjRCvsjwhgzXRzTGGOmhuMa0yces82YHnl6emLt2rVKM1GWl6ysLEyYMAGZmZlwcHBA165dsWTJEoVxQDKZDF9//bVezs8Yq1o4pjHGTA3HNaZP/GabMcYYY4wxxhgrZ7z0F2OMMcYYY4wxVs64sc0YY4wxxhhjjJUzbmwzxhhjjDHGGGPljBvbjDHGGGOMMcZYOePGNmOMMcYYY4wxVs64sc0YY4wxxhhjjJUzbmwzxhhjjDHGGGPljBvbjDHGGGOMMcZYOePGNmOMMcYYY4wxVs7+H+i8RKv+7h5uAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1600,13 +1600,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjrklEQVR4nOydeVyU1ffH38/MsIssggju4L5gSuovTXHPLXNLTU1LcSlNrbQ09902l+pbWmpqmppbu2WZprZoaYVm7juggoIi+8zc3x/DjAyzMIMgCPf9evEa5nnuc587C4d77j3ncxQhhEAikUgkEolEIpFIJBJJgaEq6gFIJBKJRCKRSCQSiURS0pDOtkQikUgkEolEIpFIJAWMdLYlEolEIpFIJBKJRCIpYKSzLZFIJBKJRCKRSCQSSQEjnW2JRCKRSCQSiUQikUgKGOlsSyQSiUQikUgkEolEUsBIZ1sikUgkEolEIpFIJJICRjrbEolEIpFIJBKJRCKRFDDS2ZZIJBKJRCKRSCQSiaSAkc62RFKM2bt3L4qisHXr1qIeikQikdwzFy5cQFEU3nrrraIeikQikThNtWrV6N69e1EPQ/IAIZ1tyQPDH3/8wdixY6lfvz5eXl5UqVKFfv36cerUKbvXZWVlUa9ePasTvKSkJAYNGoSfnx+hoaGsWrXK4vo///wTT09Pzp8/X6CvRyKRlG7u3LnDzJkz6dy5M/7+/iiKwpo1ayza6fV61qxZQ48ePahcuTJeXl40aNCAefPmkZ6ebtY2IyODF154gcDAQCpVqsS8efMs+rty5QplypThl19+KayXJpFIJBYcOXKEHj164O/vj6enJw0aNOCdd94xa7NixQqqV6+Ov78/Tz/9NLdv3zY7r9frady4MQsWLLifQ5dI8o2mqAcgkTjK66+/zi+//MKTTz5JeHg4V69e5b333qNJkyb8/vvvNGjQwOp17777LpcuXbJ6buLEiezdu5fZs2dz5swZRowYQd26dWnRogUAQgjGjRvHhAkTqF69eqG9NolEUvpISEhgzpw5VKlShUaNGrF3716r7VJTU3n22Wf5v//7P0aPHk358uX57bffmDlzJrt37+ann35CURQA3nzzTdatW8fUqVNJTk5mzpw5hIWF8dRTT5n6mzRpEj169KBly5b342VKJBIJu3bt4vHHH6dx48ZMnz6dMmXKcPbsWa5cuWJqc+DAAZ577jnGjRtHaGgoCxcuZNKkSaxYscLU5qOPPuLWrVu8/PLLRfEyJBLnERLJA8Ivv/wiMjIyzI6dOnVKuLm5iUGDBlm95tq1a8LHx0fMmTNHAOLNN980Ox8UFCTWrl1reh4ZGSkmT55sev7JJ5+IkJAQkZycXICvxHH27NkjALFly5ZCvc+dO3cKtX+JRGJJenq6iIuLE0II8ccffwhAfPzxxxbtMjIyxC+//GJxfPbs2QIQP/zwg+lY8+bNxezZs03Phw4dKgYMGGB6vn//fuHl5SUuX75cgK/Ecc6fP2/VFhc00qZJJMWHW7duiaCgINGrVy+h0+lstnv11VdF27ZtTc8//vhjUaFCBdPzxMREERAQILZt21ao47VH1apVRbdu3Qr1HllZWRbzXcmDiwwjlzwwtGjRAldXV7NjNWvWpH79+vz3339Wr5k8eTK1a9dm8ODBVs+npaXh5+dneu7v709qaioAKSkpTJ48mYULF1KmTBmnxhoTE8Pw4cMJCQnBzc2N6tWr89xzz5GZmWlqc+7cOZ588klTONX//d//8c0331jtT6/XM3/+fCpVqoS7uzvt27fnzJkzFu0OHjxI586d8fHxwdPTk8jISItQ0VmzZqEoCsePH2fgwIH4+fnx6KOPms6vX7+eiIgIPDw88Pf3Z8CAAVy+fNmsjzZt2tCgQQOOHz9O27Zt8fT0pGLFirzxxhsWY0pPT2fWrFnUqlULd3d3goOD6d27N2fPnjV7fUuXLqV+/fq4u7sTFBTEqFGjSExMdOwNl0geQNzc3KhQoUKe7VxdXU3RNjnp1asXgJn9s2fT9Ho948eP55VXXqFSpUpOjTUpKYkXX3yRatWq4ebmRqVKlRgyZAgJCQmmNtevX2f48OEEBQXh7u5Oo0aNWLt2rc0+P/zwQ8LCwnBzc6Np06b88ccfFm1OnDhB37598ff3x93dnYcffpgvv/zSrM2aNWtQFIWff/6Z559/nvLly5u9vp07d9KqVSu8vLzw9vamW7du/Pvvv2Z9PPPMM5QpU4aYmBh69uxJmTJlCAwMZOLEieh0OrO2er2eZcuW0bBhQ9zd3QkMDKRz5878+eefZu0csaUSSWng008/5dq1a8yfPx+VSkVKSgp6vd6inT37BYb5S8OGDendu7dT93fkb1ar1TJ37lyTTapWrRqvvfYaGRkZVvs8cOAAzZo1w93dndDQUNatW2fRJikpiQkTJlC5cmXc3NyoUaMGr7/+utlrz6ljsXTpUtP9jx8/DjhnA3/55RdeeuklAgMD8fLyolevXsTHx1uMa+fOnURGRuLt7U3ZsmVp2rQpn376qVkbR+aTEgcpam9fIrkX9Hq9qFixoujUqZPFuYMHDwqVSiV+/fVXm7sp7du3F23atBGnTp0S3333nfDw8BDr168XQgjx2muviWbNmgm9Xu/UmGJiYkRISIjw9PQUEyZMEMuXLxfTp08XdevWFYmJiUIIIa5evSqCgoKEt7e3mDp1qli8eLFo1KiRUKlUYvv27aa+jDvbjRs3FhEREWLJkiVi1qxZwtPTUzRr1szsvrt37xaurq7ikUceEW+//bZYsmSJCA8PF66uruLgwYOmdjNnzhSAqFevnnjiiSfE+++/L/73v/8JIYSYN2+eUBRF9O/fX7z//vti9uzZIiAgQFSrVs00diEMEQAhISGicuXKYvz48eL9998X7dq1E4D49ttvTe20Wq1o3769AMSAAQPEe++9JxYuXCjatWsnPv/8c1O7qKgoodFoxIgRI8Ty5cvFq6++Kry8vETTpk1FZmamU++/RPIgYm9n2xa7du0SgPj0009Nx4YPHy4aNGggoqOjxa+//ioqVKgg5s2bJ4QQ4sMPPxRVqlQRqampTo0tOTlZNGjQQKjVajFixAjxwQcfiLlz54qmTZuKv/76SwghRGpqqqhbt65wcXERL774onjnnXdEq1atBCCWLl1q6stoixs3bixq1KghXn/9dfHGG2+IgIAAUalSJbO/92PHjgkfHx9Rr1498frrr4v33ntPtG7dWiiKYmYnP/74Y5NNi4yMFO+++65YtGiREEKIdevWCUVRROfOncW7774rXn/9dVGtWjXh6+srzp8/b+pj6NChwt3dXdSvX18MGzZMfPDBB6JPnz4CEO+//77Z+/HMM88IQHTp0kUsXbpUvPXWW+KJJ54Q7777rqmNo7ZUIikN9OnTR5QtW1b88MMPolatWgIQXl5eYvTo0SItLc3U7pNPPhGenp7i+++/F6dOnRKtW7cWHTp0EEII8e+//wo3Nzfxzz//OH1/R/5mhw4dKgDRt29f8b///U8MGTJEAKJnz55mfVWtWlXUrl1bBAUFiddee0289957okmTJkJRFHHs2DFTu5SUFBEeHi7KlSsnXnvtNbF8+XIxZMgQoSiKGD9+vKmd0SbWq1dPhIaGikWLFoklS5aIixcvOm0DGzduLNq1ayfeffdd8fLLLwu1Wi369etnNv6PP/5YKIoiGjRoIObPny/+97//iaioKPH000+b2jg6n5Q4hnS2JQ80n3zyiQDEqlWrzI7r9XrRrFkz8dRTTwkhbIcuRkdHi0qVKglAAKJPnz5Cp9OJc+fOCQ8PD/Hbb785PaYhQ4YIlUol/vjjD4tzRsd9woQJAhD79+83nUtOThbVq1cX1apVM4VZGZ3tunXrmoUULVu2TADi6NGjpn5r1qwpHnvsMbPFgdTUVFG9enXRsWNH0zGjs218b4xcuHBBqNVqMX/+fLPjR48eFRqNxux4ZGSkAMS6detMxzIyMkSFChVEnz59TMdWr14tALF48WKb78X+/fsFIDZs2GB2/rvvvrN6XCIpieTH2e7QoYMoW7asmfN2+fJlUb9+fZNNa9WqlUhOThZJSUkiMDBQbNq0yemxzZgxQwBmkzsjxr/jpUuXCsC0WCmEEJmZmeKRRx4RZcqUEbdv3xZC3LXF5cqVEzdv3jS1/eKLLwQgvvrqK9Ox9u3bi4YNG4r09HSz+7Vo0ULUrFnTdMw40Xz00UeFVqs1HU9OTha+vr5ixIgRZmO+evWq8PHxMTtunGjPmTPHrK1xodPITz/9JAAxbtw4m++FM7ZUIikNhIeHC09PT+Hp6SleeOEFsW3bNvHCCy+YFuKNaLVa0bt3b5P9qly5soiOjhZCCNGpUycxevRop+/tyN/s33//LQARFRVldn7ixIkCED/99JPpWNWqVQUg9u3bZzp2/fp14ebmJl5++WXTsblz5wovLy9x6tQpsz4nT54s1Gq1uHTpkhDirk0sW7asuH79ullbZ21ghw4dzOaAL774olCr1SIpKUkIIURSUpLw9vYWzZs3N1vkyPleODOflDhGkTvb165dExcvXrT4kUjy4r///hNly5YVjzzyiNkESwiDk+fh4WFhzKzlCaalpYk//vhDnD592nSsV69eYvDgwUIIIbZt2ybCw8NFtWrVxOzZs+3udOt0OlG2bFnxxBNP2B17rVq1LHamhRBi4cKFZk600dl+4403zNodOXJEAOKLL74we7527VoRHx9v9hMVFSXc3NxMDrzR2f7555/N+ly8eLFQFEWcPn3aoo+6deuaVpeFMDjbZcqUsXgvevToIRo3bmx63q1bNxEQECCysrJsvhfjxo0TPj4+4vr16xb3LVOmjMU/P4mkJOKssz1//nyru65CGJzcv/76S/z777+mv/sXX3xRPProo0IIwwJXs2bNRKVKlcQLL7yQZ25g/fr1RaNGjey26dSpk6hQoYJFPubGjRvNnGijLX7++efN2t28eVMAYtmyZUIIIW7cuCEURRFz5861sAvGXPUrV64IIe5ONHPqbwghxPbt200T5dx9dOrUSdSoUcPU1uhs557sjhs3Tvj5+ZmejxkzRiiKIm7cuGHzvXDGlkokpYHQ0FABWDjLo0aNEoCFQ3r69Gnx559/mhzCL774Qvj6+or4+Hhx5coV0b17dxEcHCy6d+8uYmJi7N7bkb/ZBQsWCEAcP37c7HhcXJwAzJzoqlWrinr16ln0ER4eLnr16mX2vHPnzhY24McffzRbmDTaxGeffdasv/zYwM8++8ysD6MNNEYDbNmyRQBix44dNt8LZ+aTEscoEjXyGzdu8MILL7B9+3aysrLMzgkhUBTFIkdKIsnJ1atX6datGz4+PmzduhW1Wm06d/v2baZMmcKkSZOoXLlynn0Zc2CM/PTTT+zatYuTJ09y8uRJBgwYwIoVK6hWrRpPPfUUlStX5tlnn7XaV3x8PLdv37apjG7k4sWLNG/e3OJ43bp1Tedz9lGlShWzdsacJmNO8+nTpwEYOnSozXveunXLLBcqt7r66dOnEUJQs2ZNq9e7uLiYPa9UqZJJATnnuKKjo03Pz549S+3atdFobJua06dPc+vWLcqXL2/1/PXr121eK5GURjZv3sy0adMYPnw4zz33nMV5FxcXHnroIdPzEydO8P777/Prr79y8+ZNunXrxuTJk2nbti3PPvss8+fPZ/bs2Tbvd/bsWfr06WN3TBcvXqRmzZqoVOZSMDltWk7ysmlnzpxBCMH06dOZPn261Xtev36dihUrmp5bs2kA7dq1s3p92bJlzZ4bczlzjyundsTZs2cJCQnB39/fap/G+zpjSyWSko6HhweAWVUEgIEDB7JixQp+++03s7+XGjVqmH7PzMzk5ZdfZubMmQQEBNCqVSuCg4P56quvWLRoEQMHDrRZyQEc+5u9ePEiKpXK7L4AFSpUwNfXN0/7BZa24vTp00RHR1vYFCO55za57Vd+bGBedtWolWNvjpqf+aTEPkXibEdFRfHzzz8zZcoU6tWrZyF6JZHY49atW3Tp0oWkpCT2799PSEiI2fm33nqLzMxM+vfvz4ULFwBMpSUSExO5cOECISEhVr93Op2O8ePHM3nyZCpWrMjcuXNp0aKFybkeNWoUGzZssOlsFxY5FxNyIoQAMIltvPnmm2aT7JzkFnkz/vMzotfrURSFnTt3Wr1f7uvzGpOj6PV6ypcvz4YNG6yet/WPSiIpjfzwww8MGTKEbt26sXz5coeuefHFFxk8eDBNmjThk08+wd/fnylTpgDwyiuv5OlsFwaO2rSJEyfy2GOPWW2be2JszaYBfPLJJ1aF6HIvAtoak7M4a0slkpJOSEgI//77L0FBQWbHjYvs9sRQlyxZgkajYezYsVy+fJkDBw5w/vx5qlWrxhtvvEFoaChXrlxxWvTRGrk3EGzhyPxHr9fTsWNHXnnlFatta9WqZfbclv1yxgYWxLwsP/NJiX2KxNnes2cP77zzDkOGDCmK20seYNLT03n88cc5deoUP/74I/Xq1bNoc+nSJRITE6lfv77FuQULFrBgwQL++usvq0bkgw8+IDk5mYkTJwIQGxtr5syHhIQQExNjc3yBgYGULVuWY8eO2X0dVatW5eTJkxbHT5w4YTrvDGFhYYBhp6ZDhw5OXZuzDyEE1atXt/gnkF/CwsI4ePAgWVlZNndzwsLC+PHHH2nZsqXFPxuJRHKXgwcP0qtXLx5++GE+++wzuxEjRr7++mt+/fVX025FbGwswcHBpvN52TQw/I06YtOio6PR6/Vmu9v5tWmhoaGAYRf4XmwaGCb0+e3DWp/ff/89N2/etLlTVhi2VCJ5kImIiOCHH34gJiaG2rVrm47HxsYCthfV4+LimDdvHlu2bEGj0ZjaG+dlxseYmBibzrYjf7NVq1ZFr9dz+vRpUzQOwLVr10hKSnLafhnve+fOnXzbnoKwgdbGBHDs2DELRz13m3uZT0rMyVfpr3///ZcBAwaY5OmPHDkCwNSpU9m5c2ee1/v6+hIQEJCfW0tKMTqdjv79+/Pbb7+xZcsWHnnkEavtxo0bx44dO8x+VqxYARjKu+zYscMiXAfg5s2bzJw5kzfffBN3d3cAgoKCTJNFMJTYsVeqR6VS0bNnT7766iuLMjBwd3Wxa9euHDp0iN9++810LiUlhQ8//JBq1apZXUSwR0REBGFhYbz11lvcuXPH4ry10g+56d27N2q1mtmzZ1usggohuHHjhlNjAujTpw8JCQm89957FueM9+jXrx86nY65c+datNFqtSQlJTl9X4mkpPHff//RrVs3qlWrxtdff+3QwlRmZiYvvfQS06ZNM+0gBQUFcebMGbRaranfvMqP9enTh3/++YcdO3ZYnMtp065evcrmzZtN57RaLe+++y5lypQhMjLS4dcKBge5TZs2rFixgri4OIvzjti0xx57jLJly7JgwQKLlDVH+8hNnz59EEJYjQQwvheFYUslkgeZfv36AbBq1Sqz4ytXrkSj0dCmTRur102ePJnWrVvTuXNnANPOuHFeZix7aM+GOfI327VrVwCWLl1qdn7x4sUAdOvWzWb/tujXrx+//fYb33//vcW5pKQkkw22RUHYwNx06tQJb29vFi5cSHp6utk543tREPNJiTlO72z/8MMPdOvWjYiICAYNGsS8efNM51xcXHj//ffp0qWL3T5eeeUV3n33XTp16uTQyrxEAvDyyy/z5Zdf8vjjj3Pz5k3Wr19vdt5YS7tJkyY0adLE7JwxnLx+/fr07NnTav/Tp0+nYcOGPPnkk6Zjffr0Yc6cOTz33HNUrVqVFStWmIyvLRYsWMCuXbuIjIxk5MiR1K1bl7i4OLZs2cKBAwfw9fVl8uTJbNy4kS5dujBu3Dj8/f1Zu3Yt58+fZ9u2bRZ5j3mhUqlYuXIlXbp0oX79+jz77LNUrFiRmJgY9uzZQ9myZfnqq6/s9hEWFsa8efOYMmUKFy5coGfPnnh7e3P+/Hl27NjByJEjTTv+jjJkyBDWrVvHSy+9xKFDh2jVqhUpKSn8+OOPPP/88zzxxBNERkYyatQoFi5cyN9//02nTp1wcXHh9OnTbNmyhWXLltG3b1+n7iuRPCi89957JCUlmXZsvvrqK1PaywsvvICPjw/Jyck89thjJCYmMmnSJL755huzPsLCwqwuPi5btgyA8ePHm4517dqVMWPGMHDgQFq0aMHcuXOJioqyO8ZJkyaxdetWnnzySYYNG0ZERAQ3b97kyy+/ZPny5TRq1IiRI0eyYsUKnnnmGQ4fPky1atXYunUrv/zyC0uXLsXb29vp9+Z///sfjz76KA0bNmTEiBGEhoZy7do1fvvtN65cucI///xj9/qyZcvywQcf8PTTT9OkSRMGDBhAYGAgly5d4ptvvqFly5ZWFwLt0bZtW55++mneeecdTp8+TefOndHr9ezfv5+2bdsyduzYQrGlEsmDTOPGjRk2bBirV69Gq9USGRnJ3r172bJlC1OmTLFIBwQ4dOgQmzdvNtOBqVatGg8//DDPPPMMw4cPZ+XKlTRv3tzuzrMjf7ONGjVi6NChfPjhhyQlJREZGcmhQ4dYu3YtPXv2pG3btk6/5kmTJvHll1/SvXt3nnnmGSIiIkhJSeHo0aNs3bqVCxcu5LnxeK82MDdly5ZlyZIlREVF0bRpUwYOHIifnx///PMPqamprF27tkDmk5JcOKuoFhERYarFlpWVJRRFEYcPHxZCCPH555+LihUr5tnH2LFjRZUqVUSVKlXE008/LV544QWzH2vy/BKJsdyUrR972FMjF8JQAszV1dVUMzYna9asEdWqVRPlypUTL730koXyuTUuXrwohgwZIgIDA4Wbm5sIDQ0VY8aMMVP9PXv2rOjbt6/w9fUV7u7uolmzZuLrr78268eoRr5lyxarrye3cvFff/0levfuLcqVKyfc3NxE1apVRb9+/cTu3btNbYxq5PHx8VbHvm3bNvHoo48KLy8v4eXlJerUqSPGjBkjTp48aWoTGRkp6tevb3Ht0KFDRdWqVc2OpaamiqlTp4rq1asLFxcXUaFCBdG3b19x9uxZs3YffvihiIiIEB4eHsLb21s0bNhQvPLKKyI2NtbqOCWSkoCxjIy1H2MdaOPfu62foUOHWvR79epV4e3tLb788kuLczt37hR16tQRvr6+YsiQISIlJSXPcd64cUOMHTtWVKxYUbi6uopKlSqJoUOHioSEBFOba9euiWeffVYEBAQIV1dX0bBhQwsbZc8WA2LmzJlmx86ePSuGDBkiKlSoIFxcXETFihVF9+7dxdatW01tjEq81sotCmGwo4899pjw8fER7u7uIiwsTDzzzDPizz//NLUZOnSo8PLysrjWaC9zotVqxZtvvinq1KkjXF1dRWBgoOjSpYtpLmTEEVsqkZQWMjMzxaxZs0TVqlWFi4uLqFGjhliyZInVtnq9XjRv3ly89NJLFufOnDkjWrduLcqUKSNat25tMZewhiN/s1lZWWL27NmmuUrlypXFlClTzMpuCWGw2d26dbO4R2RkpIiMjDQ7lpycLKZMmSJq1KghXF1dRUBAgGjRooV46623RGZmphAi7/npvdhA4xxyz549Zse//PJL0aJFC+Hh4SHKli0rmjVrJjZu3GjWxpH5pMQxFCGcUzNyd3fnq6++omPHjuh0OlxcXPjzzz9p0qQJP//8M4899phFaEJurIXw5kRRFM6dO+fMsCQSiUQikUgkEolEIik2OB3D7e/vbwp3y82pU6fMhFdscf78eWdvK5FIJBKJRCKRSCQSyQOD0wJpPXv2ZObMmWZKyoqicPXqVd566608a3E+iJw5c4bRo0fz0EMPodFobNanS0pKYty4cYSEhODu7k5YWBhvv/22WZvMzEwmTZpEhQoV8PLyomPHjlZVqSUSiaSwkDZNIpGUJKRNk0gkxRWnd7YXLlzIH3/8QXh4OA0bNgRg2LBhnDt3jtq1azNr1iyH+zpz5gynTp2yGnbeu3dvZ4dWaPz777988803NG/eHL1eb6pBl5OUlBTatGmDRqNhyZIlBAUFcerUKW7fvm3Wbty4cWzatInFixdTsWJF5s+fT/v27fn333/x8fG5Xy9JIpGUYqRNk0gkJQlp0yQSSbElP4nemZmZYvXq1eKpp54SHTt2FP379xcfffSRmfiTPW7duiXatWsnVCqVUKlUQlEUoSiK6blKpcrPsAoNnU5n+n3o0KFWhaGmTZsmQkNDxZ07d2z2c/nyZaFWq8WKFStMx27cuCG8vLzE66+/XrCDlkgkEhtImyaRSEoS0qZJJJLiSr7qbLu4uPDss8/y6aefsmvXLjZt2kRUVBSurq4OXf/qq69y9epV9u/fjxCCHTt2sHfvXoYPH0716tX5/fff8zOsQsORMkwrV65k2LBheHl52Wyza9cu9Hq9WWkpf39/OnXqxLffflsgY5VIJJK8kDZNIpGUJKRNk0gkxRWnne1//vnHpsH59ttvzerh2eK7775j6tSpNG/eHICQkBBat27Nhx9+yBNPPGGRP1PcuXDhAlevXiUgIIAePXrg5uaGv78/I0aMMCsIf+LECcqXL4+fn5/Z9XXr1uXEiRP3e9gSiURiFWnTJBJJSULaNIlEUlQ47Wy/+OKL/Pbbb1bPHTp0iJdffjnPPq5fv07lypVRq9V4eXlx48YN07muXbvy3XffOTusIuXq1asATJw4ET8/P7799lsWLFjAli1bGDFihKldYmIivr6+Ftf7+flx8+ZNm/1nZGRw+/Zt08+tW7eIj49HOFe1TSKRSBxC2jSJRFKSkDZNIpEUFU4723///TctW7a0eu6RRx7hyJEjefZRuXJlEhISAKhZsyZffvml6dxvv/2Gu7u7s8MqUoxCHLVq1WLt2rW0b9+e0aNH89Zbb7Fp06Z7rhm+cOFCfHx8TD++vr6UL1+e5OTkghi+RFKkxB05wmxFIc4B25HXNfnpS2KJtGkSyb3hrI2yZ7ukXbt3pE2TSO4NOVfLP0472xkZGWRmZto8Z01ZPDcdO3bkxx9/BAw75cuXLyciIoJHHnmEmTNnMmTIEGeHVaQYw43atm1rdrx9+/aAQSXT2O7WrVsW1ycmJuLv72+z/ylTpnDr1i3Tz+XLlwtq6BKJRGKBtGkSiaQkIW2aRCIpKpwu/dW4cWPWrVtHjx49LM6tW7eORo0a5dnH66+/TmpqKgBPP/00ZcqUYevWraSlpfHee+8xatQoZ4dVpISFheHm5mbzvHEBok6dOly7do3ExESzfKATJ05Qp04dm9e7ubnZ7V8ikUgKEmnTJBJJSULaNImkcEiOi+PwihVEjBqFd3BwUQ+nWOL0zvaUKVPYsWMH3bp1Y+vWrfz6669s3bqVbt268fnnnzN16tQ8+/D09CQgIMD0vFevXmzYsIHt27fz3HPPOaQqWZxwdXWlU6dO7N692+z4Dz/8AECTJk0A6NSpEyqVim3btpnaJCYmsmvXLrp27Xr/BiyRSCR2kDZNIpGUJKRNk0gKhztxcfw8ezZ34uKKeijFFqd3trt168ann37KpEmT6NevH4qiIISgUqVKfPrpp3Tr1s3hvv777z/+/PNPLl++zLBhw6hQoQJnzpwhKCgIb29vZ4dWaKSmppoU2C9evMjt27fZunUrAJGRkQQGBjJz5kxatGjBoEGDGDp0KKdPn2bKlCkMGjSIsLAwACpVqkRUVBSTJk1CrVZTsWJFFixYgI+PzwO3my+RSB5cpE2TSCQlCWnTJBJJccVpZxugf//+9O/fn5MnT3Ljxg3KlStH7dq1Hb4+NTWVqKgoPvvsMxRFQa/X07lzZypUqMCUKVOoXr06b7zxRn6GVihcv37drOYiYHq+Z88e2rRpQ0REBN9++y2TJ0+mR48e+Pn5MXLkSObPn2923bJlyyhTpgyTJ08mOTmZli1b8uOPP+Lj43PfXo9EUhTIUKPig7RpEomkJCFtmkQiKa7ky9k24oyDnZOJEyfy008/8e2339KqVSu8vLxM57p27cqSJUuKlbNdrVo1h8o3tG/fnj/++MNuGzc3N9566y3eeuutghqeRPJAYAw1qt2jh3S2ixhp0ySSgkEuIhYPpE2TSCTFlXw52ydPnmTbtm1cuXLFQn1cURRWrVpl9/qtW7fy5ptv0qlTJ3Q6ndm5atWqceHChfwMSyKRSCQSieS+IRcRJRKJRGIPp53tTz75hGeffRZ3d3eqVq2Kq6ur2XlFUfLs486dOwTb+KeUkpLi7JAkEkkJJT+7Ri6enoU8KolEIpFIJBKJJG+cdrbnzp1L3759Wb16NZ75nNSGh4ezbds2OnXqZHHum2++4eGHH85XvxKJpGThzK6REIKg8HBeS0lBr9UihHBo8U8ikUgkEolEIikMnHa2Y2Nj+eCDD/LtaANMnz6dJ554gtTUVJ588kkUReHQoUNs3LiR1atXmxQlJRKJxBGEXk9ybCyHV6zg5tmz+IeFGXbDQ0JQHrBSghKJRCKRSCSSkoHTs9DWrVtz7Nixe7ppt27d2LRpEwcOHKBnz54IIXj++efZvHkzGzZsoH379vfUv0QiKR1oPDwQej3R69ezrHp19s2bx7GNG9k3bx7Lqlcnev16hF5f1MOUSCQSiUQiKRSS4+LYO2sWybLWdbHE6Z3tBQsWMHjwYNzd3enYsSO+vr4Wbfz9/fPsp2/fvvTt25dTp06RkJCAv78/derUcXY4EomkhGMvB9srMJDk2Fi+HD4cvVZrdk6v1fLl8OFUb9/esMMtQ8olEkkxRupNSCSS/PAgCjWWJnvntLPdpEkTAJ577jmbk9fcCuP2qFWrFrVq1XJ2GBKJpISTZw62ouDu68vPs2dbONpG9Foth5cvJ3LWLBS1+j6NXCKRSBxH6k1IJJLSQmm0d04726tXry6QN+Xy5ct8/vnnXL582Wr5sGXLlt3zPSQSyYOJIznYLh4eqDQabp49a7evxHPnUElHWyKRFEOk3oREIiks8lPRpTAprfbOaWf7mWeeueebfvbZZzz99NPo9XrKly9vtXyYdLYlktJDznAiYw527tDwA4sW0WPVKsIHD0bj4UFWWhp6rRb/sDC7ffuFhqLX6aTDLZFIig059Sbs2bqSPAGVSCSFS3EJLy/t9q5IXtVrr71Gz549SUhIICYmhvPnz5v9nDt3riiGJZFI7jM5w4mCwsMRQuSZg50cF4dXYCAIQXpSEhGjRqHSWF83VGk0RIweXWINuEQieTBxRG8iOS4OIQRQuvIbJRJJycJZe1fSyNcMdN++fQwePJhmzZoRHh5u8ZMX8fHxjBw5Eh8fn/zcXiKRlACEXk9yTAw/z57NtoED+XnOHIROx+EVK/LMwXbPFmZMiY/HOySEHqtWWTjcKo2GHqtX4x0cXOLzgSQSyb1z3xR9s/Um8rJ1Jz7/3OqCpEQikTwwOGjvDi9fXmKrxzgdRv7999/TrVs3OnTowJ9//kmXLl1IS0vjl19+oVKlSkRGRubZR+fOnfn9999liS+JpBRiK5zIxdOTtnPmOJaDrdGg8fBAm5aGolIRPngw1du35/Dy5SSeO4dfaCgRo0cbHG25qy2RSBzgfoVcOqI30WDAAB4eNYo7pTC/USKRlBykvk4+nO2ZM2cyYcIEXn/9dVxcXJg7dy5NmjTh4sWLPPbYY7Rr1y7PPpYvX07//v1JTU2lffv2VsuHGVXPJRLJg0Veghy2womy0tLISk11LAdbq0WblmY6pqhUeIeEEDlzJiqNBr1Wi6JWyx1tiURS7MhLbyIoPJye69YRvWEDX0VFlbr8RolEUnKQ+jr5CCP/77//6NKlCyqVCkVRSElJAaBq1arMmjWLefPm5dlHcnIyqampLFy4kI4dO9K0aVPTz8MPP0zTpk2dfyUSiaRYYNwdumMtFNNeOJEQHNu8mcbDh+eZg52elGSla4Vr0dEs8PLiWnS0dLQlEknxJA+9ieYTJpAcE2PhaEPpyG+USCQlCKmv47yz7e7ujl6vR1EUgoODOZsjLMDb25vLly/n2ceQIUO4dOkS7777Lt999x0//fST6WfPnj389NNPzg5LIpE8AOQVTnRw6VK8K1bk8ZUr7eZgp8TH27xHVmpqgY5ZIpFInEWVFE9ksOHRGjb1JhSFBv3789eqVaU2v1EikZQsSru+jtNh5I0aNeLkyZN07NiR9u3bM3/+fAICAnBxcWHatGk0bNgwzz4OHTrEp59+Ss+ePfMzZolE8qCiKHbDia5FR/P5kCH0+uQTQjt0sJmDrU1Lk+q8Eomk2KK6lUCbEIi/lWD1vC29iXK1a+Pi6Vmq8xslktJOcauPbSS/867Srq/jtLM9YcIEzp8/D8CCBQt4/PHH6dGjBwCVKlVix44defZRs2ZNtDZWbCUSScnDpKh75w56vZ6IUaM4sGiR1Z2b41u38tjSpTZzsHOq8+q1WoQQJXY1VCKRlGys6U3odbpSnd8okZR2bIk1FpUTfi/zrpwOemnV13F6GaFr166MGTMGgIoVK3L48GFOnjzJ33//zZkzZ4iIiMizj8WLFzN//nxOnDjh/IglEkmxJnf4ZO4SX39+8EGe4URegYFWc7AtyoXNnk1yTIwMp5RIJA8sFrZOpSrV+Y0SicQ6djVxCon8zrtslS0sjfo6Tu9sz5kzh6ioKEJCQgDDm1azZk0A4uLi+Oijj5gxY4bdPiZMmMDVq1dp0KABISEhFmrkiqLwzz//ODs0iURSDDCGT94UWqslvo5t3MiV336j59q1DoUTZaWm2iwXBubqvBoPj/v+eiUSiaQgMOpNKIpiWpDMbe9KQ36jRCIpHuR33iX0epLzKFtYmvR1nHa2Z8+eTefOnU3Odk5iY2OZPXt2ns52RESE/CchkZRwPGrUsVriC+Dohg0k/Pcfz+zb51A4ka1yYXBXnbd6+/Z4BQYW6muSSCQSh3HPv65Eac5vlEgkhU9eIelCiHzNu+TGiCVOO9v24vTj4uKs1szOzZo1a5y9rUQiKWbYNdSKgltIZX6fM9emom7ckSP8smgRkTNnssDLi2f37ye4SRPLhtnlwn6ePTtPdd7ImTPv9WVJJJISgD37VNh5j0IIynV/EnoNolxWZr51JUprfqOkBJIQB9tWQJ9REFB8BL9KM7bywo0Ivd56mdZsrM278uugl3QcWhrduHEjPXr0oEePHiiKwssvv2x6bvzp1KkTQ4YMoUWLFoU95mLLl19+SfPmzfH29iY4OJh+/fpx7tw5i3arVq2iVq1auLu706hRI77++usiGK1Ecm+k/hcNH842PObGzQOVi6tjiroajc16sWWCg2k7d67dcmG5+yptK6aFibRpkgcVe7mNhZn3aMpvnDPXkN84Z+496UqUxvzGwkTatCIiIQ4+mm14LEYkx8Wxd9YskgsxB/p+3KMwUKnVTs+7HHXQ3R3YmC1JOORsZ2ZmkpycTHJyMkIIUlJSTM+NP4qiMGTIEFasWFHYYy6W7N27l169elGvXj127NjB0qVL+eeff+jUqRNpaWmmdps2bWLEiBH079+fnTt38sgjj9CrVy9+//33Ihy9ROI8xtxslbXSNhlp6LMyHVPU1WrR5vgbyYl3cDCtp051XJ3XTl8S55A2rRiSEAcrZhW7CasEM12JZdWrs2/ePI5t3Mi+efNYVr060evXI/T6fC8Glqb8xsJC2jRJbu6H4FhRiJoVBM7OuxSVKl8OemnAoTDyoUOHMnToUADatm3LBx98QJ06dQp1YA8amzZtomrVqqxevdq08ly+fHnatWvHn3/+SatWrQCYOXMmAwYMYO7cuYDh/YyOjmbOnDl8++23RTZ+iaRAEYKM2Mt2S3wZFXXTk5Ly7M6ozlsQfUkcQ9q0YohxdyiyhwzFLGZIXYnij7RpEkexlWpSXOtfFwbOzruEXi83RmzgtMLGnj17rDramZmZBTKgB5WsrCy8vb3NQrx8fHwATCGy586d49SpU/Tr18/s2gEDBrB7924yMjLu34AlkkIm7cyJPEt8eQcHkxIfn2dfOdV577UviWNImyYpLB7UsEqbZOtKyPDJ4o20aRJHsbUb/aDuUueH/My7HC1bWNo2Rpx2tj/55BPeffdd0/Njx45Rs2ZNPD09adOmDdevX7d7vRCCmzdvljiD9cwzz3D8+HHef/99bt26xblz53jttddo3LgxLVu2BDDVFc+9WFG3bl0yMzM5f/78fR+3RFJY6G4nmRR1x1+4QOtp02g4cCCtp01j/IULhA8ahKJSOby6WZB9SfJG2jRJYVHSJqwuHh5SV+IBQNo0icQ5nJ13yY0R6zitRv7mm28yatQo0/MXXngBV1dXli5dyrvvvstrr73GypUrbV6flZVF+fLl+eKLL+jWrVv+Rl0MadWqFTt27GDgwIGMGTMGgIceeojvvvsOtVoNQGJiIoCFYrufnx8AN2/etNp3RkaG2eLE7du3C3r4EkmhUZCKulKd9/4hbZpE4hhZaWnotVqHwyelvSoapE2TSJzH2XmXI2ULS9vGiNM72xcuXKBevXoAJCQksH//ft5++23Gjh3LnDlz+P777+1e7+rqSqVKldDpdPkbcTHl119/5emnn2bEiBH89NNPbNmyBb1eT7du3cyEN/LDwoUL8fHxMf1Urly5gEYtkdwjDtaRLUhFXanOe3+QNk1SFNgKMS/I0HNVZjyR3Q2PDpGXMJ0QpCcl2Q2fDG7ShJaTJwPwWkoKQeHhNqswSAoHadMkpQ1VUjyRwYbHe8HZeVdOB733hg1EzpyJd0gIisppt7NE4PSrVqlUpvzsPXv24OLiQtu2bQEIDg7mxo0befYxZswYFi9eTHp6urO3L7aMGzeOdu3a8fbbb9O2bVv69u3LN998w5EjR/jkk0+Auyujt27dMrvWuJLq7+9vte8pU6Zw69Yt08/ly5cL8ZVIJHexOcEVgoDuT8KBFMOjg5PGglTUleq8hYu0aZKiwFaIud1Sg1awN8lUZSXQ5nHDo0PX2ClbpEqKp22oJ2nnTtkMn2w4aBBRhw6RnpjIz7NnG0qCzZ59TyXBJM4jbZqkMCmOWhR2q8bkA2fmXXJj5C5Oh5E3atSI999/n0qVKvHOO+/Qrl073NzcALh06RLly5fPs49Lly5x6tQpqlSpQps2bQgKCjL7EBRFYdmyZc4OrUg5fvw4TzzxhNmxSpUqERAQwNnsPC5jDtCJEyeoXbu2qd2JEydwdXUlNDTUat9ubm6m91giuZ8YJ761e/S4q7yp1yMSYlG2rYArZ1EqhSH6jEIJCAHjqqWDO96S4ou0aZLihHHSGJ9r0mhLHdhW+/zcwxZCCAJbtSXobAr6rExQFIvwyUotWtD0ueeIXr/eQqn8wKJF9Fi1ivDBg2Ue931A2jRJYWJ1vpRP8rMj7eJZPOddcmMkH872ggUL6N69O+Hh4Xh7e/Pjjz+azu3YsYNmzZrl2cfXX39tMkx//PGHxfkH0dmuWrUqR44cMTt28eJFEhISqFatGgChoaHUqlWLLVu2mBn8zZs30759e1xdXe/nkCUS59HrETvXo8wZDrq7k0ZlzSLEjFXQZTDluveDXoMol5WJEKJUr2Y+yEibJnkQKMgJri1S4uPxMj5m62YJvZ7k2FgOr1jBzbNn8Q8LMzj8ISGG8MkZ01G5uKLX6WRJsGKCtGmS4oS9MmLOLPwJIQgKD+e1lBT0Wq3D866CCjGH4uvoFxecdrZbtmxp2pkOCwszE5EYPnw4NWrUyLOPkqjmOHr0aCZMmMD48eN5/PHHuXHjBvPmzaN8+fJmJSRmzZrFoEGDCAsLo23btmzevJmDBw+yb9++Ihy9pNSQEAfbVkCfUWZ1eh2qHSmEYUc7l6MNgE6LMmc4oml7rl2+yq9vv202+SyteToPMtKmSSQGUhMS8MrxKPT6PHeqk/b9gP+s/vDTTYdKgkXOnHl/XkwpRto0SXGiIBYK7S365TXvyk/0j8X98+nolzacdrYBvL29iYiIsDjetWvXex7Qg8q4ceNwc3Pjgw8+YNWqVXh7e/PII4+wZcsWypUrZ2r31FNPkZqayqJFi1i0aBG1a9dmx44dPPLII0U4eklpIeW/aLw+mk1KvUfwanXXuDti9IXQG0LHczvaRnRalG3LCRw6hWMbNwIyTPJBRto0SanEVgpM9nEhhEM71R5htUEIVC6usiRYMUHatILDoQX6EkhB7gbfCxoPD4cW/dRlfQttDPfi6Jc2HHK2Fy9ezKBBgwgKCmLx4sV22yqKwosvvphnnzExMSxdupQDBw5w8+ZN/P39adWqFePHj6dixYqOjb4YoSgKo0ePZvTo0Xm2HT58OMOHD78Po5JIzMm9Q+MoikqFolLDFfuTRmLOofH0ROPhgTa7HI4Mk3wwkTZN8iBQUJNfIQTluj9pmQJjFIPsNYiArEwQghNffJH3TvWM6ZCRhj4r0+GSYKWtHM79Rtq0guN+pG8URwpiN7gg8AoMdHzRr4Bx1NGXDvddHHK2J06cyKOPPkpQUBATJ06029YRZ/vYsWO0bt2arKwsOnbsyEMPPcS1a9dYvnw5q1atYt++fdSvX9/xVyGRSAofvQ4q2Z80UjEUbWqq2aRRhklKJJLCokBCIa3s0DSfMAEPPz+UXGKQ9BnFw6NGcfnAAY5t2mS1v8Rz51C5uIKrOxmxl4kYNYoDixZZddBVGg0Ro0eTnpSU7/FLJJL8UVx2qp1CUXD39eXn2bMdW/RzkryiFhx19L1DQpy+d0nFoWUHvV5vEj7T6/V2fxypnz1x4kTCwsK4dOkS27dv54MPPmD79u1cvHiR0NDQPB16iURSsNirO+vi6YnQ6xEo6HuOALWNNTq1Bt0TURy1MgGVYZISiaS4ofbyNe3QLKtenX3z5nFs40ZOfvkl7mXLwrefwOPVYdU8+H6j4fHx6ijfbaDXunUEhYdb7dcvNNSgTp6RRtqZEzZLgqk0GnqsXo13cDAp8Q/QZF8iKSEUdGms+4GLhwcqjcax9BQXV3Bzbt5lq/wiYHL0HdGhkGUN71Ike/wHDhxg2rRppnqGRvz8/Jg6dSoHDhwoimFJJCWDhDhYMctqTVhbWKs7m1P4Iig8HBQFJagSYvpKS4dbrUFMX4USGMJBK5UEZJikRCIpLqiSDTWTPQOrW92haT5hAuJ6DMrcKOtikHOjEPGxNB8/3rLv7J3qjJhL4O6J7nYSikpF+ODBjL9wgdbTptFw4EBaT5vG+AsXCB80CEWlkrZRIpE4RFZ2ip5D6SnZJQkLCqccfbW6QO/9IONQGLmzCoytW7e2f1ONhoyMDKvnMjIyUKvVTt1PIpHkICEOPpoNkT3MFMftYZx8Gh+thVU2HTvWkHfdZTC6Jm1Qf7ESYs5BxVBEn9EIv/LsGDKEa9HR5n3LMEmJpETzoIklqe4kAQquFcL4bc488x0aRaFh//6o1y60Kwap/mIlDYdO4csceb0qjYZ+O3YY3gO9Dg6kmPK8FZXKUBJs5kxUGg16rRZFrTYp95YJDiZy5kzKPADvn0QiseS+haQLQXpSkt30lOAmTWg5eTIoKjiQUmClWJ1y9HU6EOKe7ldScMjZbtOmDYqiILLftJwflrUPL69Q8g4dOjB16lQeeughatWqZTp++vRppk+fTseOHR1+ARKJ5N4xTD7BRe1qV/hiyO7dVHn0UXQ+ASjDp6FydUOfmYmi0XD6m284vnWreb85wiQTTp60eu+CnGTKCatEcv95IMWSNB6oXNwsdmhcPDzQeHo6LAbZZvZsbpw8iV9oKM1ffBEPX1+UhFhDicUced4EGBR6r0ZH83GrVjy7fz/BTZqYuvMODqbNrFmF8EIlEsn9WBC0pR9RGE54Snw8AbVr02PVKou5WsNBg+i5di13sl9zgSqFO+DoGzdYpEDaXRxytv/66y/T79evX2f48OG0bduWvn37EhQUxLVr19iyZQt79+5l1apVefa3ePFiIiMjqVevHg0aNCAoKIjr169z9OhRqlSpkqfiuUQiKQQ0nrjVamZX+GJd+/a8eOUKXuXLI7RZhhMKoCjU6taN8RcucHj5chLPncMvNJSI0aPxDg62GyZZkJNMOWGVSIoPxXrHW5uGPivDYocmKy0NbWoqGgfEIIVeR6spk1G5uKLPyjLsVO9cD3OGm++Kr1kEM1ZBF0MJxKzU1EJ4QRKJxBZFuSBYGArm2rQ0U3pK9fbtTfOuSi1a0PS55wpVKdyeo59zg0XW276LQ852o0aNTL/37duXAQMG8MYbb5i1efzxx5k0aRIffPBBnjvTVapU4ejRo6xevZoDBw6QmJhIrVq1GDZsGM8++yxlypTJx0uRSCT5Qgh8e00Cl2m46nTc/OcfAuvVswgHB4PD/cd77xE5axY3vt5C4NsjufHyhwT2GgSKYgiTnDE9e/KZiaJxkQZXIimlFO8db0HWlf8sd2iE4OjmzYT3GI56zSLroeRqDfQZjaKoSPh6E4FvjyRzQzTuHm6WjjYYns8ZDk1lCUSJRFJwmNJTjPMuna7QlcJtOfq5N1gkd3H63fj+++9tOtOdOnXihx9+cKifMmXKMG7cOD777DN++OEHNm/ezAsvvCAdbYnkHjGq2jqkbqvXI+JjUFbOg6kDUT6cRVBwOUb++ScNBgyweolJ+EKthnTzHRol+yf37xKJRGKkuJTbyTh1yKpS+MGlS1HKV7QpBsnM1QY9DONCYkYabiGVDaHjdvK82bYcD1/fwnkxEklxx92zqEdQIlEUhRtfb4FWZUCvu29K4Tl1KHpv2EDkzJn3HqZeQnFoZzsnZcqUYffu3VYd7h9++EE6yxJJEZOakIBXjkdrqMv6GhztnetR5gw3iPm4eUBGGqo1ixDTV9Jr3Trijx+32OE2CV/k1mbQ68FKTVoCQkAaX4lEkk1hhFXmB92t6zZ3aNKTk/Ho+jQ06wDblpvEIOkz2uBo57Rpbh4oLq4O5XkrsgSipLQhBNQIhwMpoNUant/niLfissCXk/yOycXTctFCpUuEhwQqF1fHlcILQIxaURSbOhSSuzjtbI8ZM4YZM2Zw7do1evbsSfny5bl+/To7duzgk08+Yfbs2VavK1u2LHv27CEiIgJvb2+7oaWKonDr1i1nhyaRlCrykw+p0iVCBHjVqYNIiEXZuAymfgid+htWndNTYddmlE3voG/Shubjx7PzhRfISksDIawKXxgddxzIVZRIJA8m9yv/ukAnxfZ20jR3z1mEYuZMgQkMQURNR3FxRWQft3AUMtIM5xzJ85YlECWliexFeKNgIEW0CF9cFvhykueYctmvnOVY9VqtmUC1Sp8EDa3rUOTG5obJPSB1KOzjtLM9bdo0fH19WbRoEWvXrjWplAcHB7N06VJeeOEFq9e9/PLLBGf/g3755ZdlHqdEco8kxURz4cJswmIeMZv8Gh1qlS7R4hqVPglaBuJaoSrKT9thze+QEgNHF8Lts1A2DCKHQ7fBqK9e4aGhQ2k8bBja1FSObfkMj3IBFsIXnjXqGP6ZylxFiaTwKaJQzNT/ouHD2aS2fqRwne0CmBQLISjX/UnoNcii5I0QAp9sjQqfrAzTOUVRSMitQwGQ43hCzuM5cfMgI/Yy7n1GGRYY7eR5p8kSiJLSggOL8AXpcBdrQUYrZCmJnO8Ebor5XM2a/UIIi3KsFuriGg/rOhQ5kErhRYPTzjbA2LFjef7557ly5QpxcXEEBwdTqVIlVHY+vJkzZwKGL9G4cePw8vLCzc0tf6OWSCRoRQLVnjE85kSlTzI42/oks+NCCHz7TAH1NEMudbvecGYD7IsCkcMo/70IIldBzUEoW5bDP7+gqRRGo96jIDBXPo6iGHIVV87NO1dx5ExZlksiyS9FHIppzwm+byGaDiw0CL3e5qQUyHvCmm5jh8bacSEIyJ4Uu2VlGcIyZ6yydC5y5Hmn2CiBKJGUKIRwaBGewJACs2P3a0GwoNCqkrjYCUJvJ5mO5bZflVu2tKsu3m/7dmp164Zvr1cMIrdZmbiqNfTbvp3PeveWSuHFhHw52wAqlYoqVapQpUoVp67LysqifPnyfPHFF3Tr1i2/t5dISj1KciKosh/zQOj1EB+Lsn2FIfdw9lpIjbV0tMHw/OfhEBQJ7h7w/UbD/XKtRut9Ath304PWjuYqqjWyLJdEkh+KSSimLQo7RNPeTrUxkseljAqh11udlJ7+9luiDh3i6IYNdsvhqMv6Oj4oaxoVAycY7GPT9jbzvGUIuaRUIPQOCQYyahYo9547DPcxVLyQoous2a/Qjh25demSVXXxen37UrNz57tzuxxaObW6dePla9c4uGSJ00rh92PxtExwcKnafMm3s51fXF1dqVSpEroCzBWQSEo0CXGGf1p9RhkmbNmo7iRB2ezHHGSpkjlfDrxEMpDtaH/7CcrcKMM/OEWBWR/DiY8sHW0jQgunVkKnKYYVaLBYjdb7BrLnfBqttFqHchXR60BVMP9UJZJSw30OxSwW5JjM2tupVlQqQwRPc088atQ1L3mjKLh4eJCVlkbTsWO5fflynuVwPMJqOzQmu5/Jm9vh0W6IETNQNC6287wlkpKMSu3QIrzdOYGNuY/N44WMvUU/e+j0Fzg/FDz0F+z2bVGyS1Fo0L8/BxYutLBbQeHh9Fq3DuX7T+/O7YysWYQyYxUeXQYTOWMGKhcXp0qx3o9FC+/g4FK1+VIk/6HHjBnD4sWLSU9PL4rbSyQPFglx8NFsw6MDZKmSuVjO8CiEMKx65nS0fcqBxtWQo22P5HOGCaZbDmEz42q0yC4bIYQhB7HPKMsSOUaycxVRSphDIJEUNo6EYibEGdoVFAlxsGKWw/YmPxhzFbNs5SoeSKFc936mnZ5l1auzb948jm3cyL5581hWvTqnvvkGodcbwieHpeBapSEp169Tp2dPeqxezdQ7d3gtJYWpd+7QaPBgTn3zTZ7lcNwqWkbqGcbU7+6Y8vpMJvWGhDjSr1yER71I+HqLdLQlpQ+9zhCBYw/jIrwtbM19nJwT5Yfcu7tCryc5Joaf58xl28CB/DxnLskxMWYltGzZNZ0Sw8WGhkdbCL3eomSXi4cHLp6eVtXFm0+YgLgeY+log+l/g5IQR0aMwQ7d+HqLDB0vQu77zjbApUuXOHXqFFWqVKFNmzYEBQWZfQkURWHZsmVFMTSJpASgoFJ5AmrQ6w3hRaH14KkJd1XH9TqDGJo9vEMNeYoZucIes1ejjWFAQghDOGseuYpywimROEkRhGKaJrKRPe5510iVGU9kd8NjTrSqJC539qRaDrGw3DvYLSZOxKt8eafCJ4MGjKPv5s2Ia5dRrV0E1y6jCaoMfUby8KhRXD5wgGObNpntehsXKhLPnUPl4mq2uGixq16jBm1mznDoM3GPmm47/1siKekoKsMifB6CgcV1EV53+zRVnwGFmzbTU3KmoCgqldUcbHuodIboQzXpqNRqC6c6Ky2NrNRUS3VxRaFh//6o1y6UdugBoUic7a+//ho3Nzfc3Nz4448/LM5LZ1siySdCEPL4Yiq6/A+RlYGiVoN/efjkT3PV8fCJUHeUQQzNWii5ooFaUbBrk+W57NVoizCgPHIVJRKJkxREKGYRorl5mjaPw42bp4HHAMNOccUuk6jiMg1dtho4QphPZhWFHitXOhc+WTMc1YgZiP1fo0q+Cc9OvlvO8MfPULz96bVuHfUH9KdGp05oPDzRpqVydNNmDi5daiiHk5WJSlFQl/W1OsF28fSk7Zw5jmlU5HLcJZJShaI8OIvwVnKwjY7zw6F1LcO7s8mZgmIUYHQGJTvVD20iep3O0qkWgmObN9N4+HAzdXEXDw80np6O2yGfck6PTVKwFIiznZqaSmxsLGFhYQ6FKZw/f74gbiuRlAoydPHEdoIQXTx29ftNgj0fwrXLKEFVECOno/R9zlJ1PPFf6P0nRK6En3OJpCkaaL0KvEJgY65FL3ur0SqVYzVpC4DSJq4hKaU4E4pZDB1uo56E8dFa/nXLyZNJT0w0d2rzCJ8kIdYyfPKpCZCchNKyi2U5w1bDUcpUApWK2u2aoBwznNOUDSO813AaPT0YvVZnEA46kIKfTktWWhoHly0zm2BnpaWhTU1F40g97axMlNxRQRJJMaTQSmapVHkuwhdlua68crBVKi88guuyb868PFNQIu3mHxujDW3NhQSKSmVesis7+ubgsmWEDx7M4ytX8lVUFHqt1jE7VDMcBr2M0OlQdicQkJVpvYKFE2Jv963qRAnEaWf7rbfeIiUlxVTKa//+/fTo0YPbt29TvXp1vv/+e8LyKKgukUgcJ1OfwMVOEKBPMHO2VboUNJoA3Ly8DY72gW/g9g2zHR0lLQVBMkpu1fGb0bBnCLRdh6jYAeX4ckOOtnco1BsNHhVg5lA4HX33GkdWox2pSVsAlDZxDUkppRBDMe/nJFftU956KKai8OiUKRa5ilbDJxUFF09PGg4YgGrNAvP3Q1HgsQGgcbFezvDSt9DrEMrp9YZKCznOqf9ehIhchbrmYJQtH8A/v6BUCkPTcwRRv//OjiFDDKHnAEJwdPNmwnsMR53HZ5Iecwm5ry15ELgTF8fPs2dTu0ePgrcF2YvwjJgJGo2hbKFabZpDFOq97WC3RKCimKJvAKuLfjlJPHcOlVqNYkW3RghBhexoQ2Mkj7VNSUVR8A4Jod/27aTdvEGDJ/uh8fREm5rKlV9/JXzwYEI7dODw8uUknjtH/IkTVOg9ylAlJrcdemwAzF4HN66hfDjLTKXcWMEiP2Jv903tvQTitLO9cuVKJk2aZHr+0ksvUb9+fSZPnsy8efN47bXX2Lx5c579JCQksGTJEg4ePGiq1f1///d/jB8/nsDAQGeHJZE8ENib4Doz+RVCULHnPCopCxFCh8jMRGnROXtHZxHcuQxlqkDEdJTDb1kPFT+7CRKPo0SuRkTMQlGpEdoMFLWrYQX0hdchpHr+QsJljpBEkn+Marv9xhRaKOb9mOQaKyNUqNXYaiim1R1slQpPf39T+OTpb7+l6dixNOzf3xA6CZbhk24e4OoOyZeslzNsMBZSLls42gAILYqVUoeqNYsQ01fSa9064o8f51q0YeHx4NKlNBo8GDF9peXueo7PJG3PTulsSyRgsE9noiGqFazcD3Wa3PchOFIiMPH8eXquXcsdoxN+7hxPrF5tueiXS+/BLzQUvU6HyOX05lVJITeKSkWtbt0MWhRrF8KVs2gqhVGl9yjIdsYjZ0xH5eKKPivLsGhh/N+g1xnsYJWaBkf7u0/Biko5M1YhugwmJT6eP957z6FxSe4dp53ty5cvU6NGDQBiYmI4fPgwP//8M61atUKr1fLcc8/l2cfBgwfp3Lkzer2eDh06UKtWLa5du8a7777Lu+++y65du2jevLnzr0YiKeakXoyGw7NJvfiIxQTX1uQ3Pf4CqAyP3oAQejIyYomLW0Fa2lk8PMIICRmFqzoYUi9C48koGk+ENhUUNYo+y/aAbkbD0cUo7TbA2gBuBs6iXNexhn+O9ykkXCKR5CKnSJlfYN56CEVUCicvslTJXPRXqFIpnN9zhmIaJ6zp6aYd7Hp9+9JuwXz8a4ShKGrDIqJQGHHoEPqrlw1iQDHnYMZqy9D6zHSDmNzJlVYWFhUI6w9/LXS61KEyNwp9kzY0Hz+eL4cbjl+LjmbHkCH0/uQTRLMOKDY+E52DIkkSSamhCBfhVfokiMCyRGD24p53pUo88fHHRK9fbwrXBgjt0MHqop82NZWjmzfzx3vvETF6tMlJVak8cSlrI5IHc1E1jU9F8/ByvR7FSklBJUeZx8R9P+A/sx83jJGDXQZDuz6GqAEXN8N1GRmw6R3bFSwebseZnT+wb/5808JBznGpy/oW4idROnHa2fbw8OD27dsA7N69mzJlytCiRQsAfH19uXXrVp59jBkzhvr16/Ptt99StmxZ0/Fbt27RpUsXxo4da1U4rSRw4sQJXnjhBX799Ve8vb0ZMmQI8+bNw9XVtaiHJilIbNXGzkqgzeMQn2UZhmNLuTczKRZVgCcqj/IIoefatfWcPDkckWPimJZ2nrp115LpH0bs5YXmTnjTeSh3Lhp2sq3hHYrQZaJk3EDv7Xf3uKKQ+vsevKb0JnXhdrxaPXZv74mkxCLtWiGTRyhmQSqIFzQqlQdqFzdunj1LUHg4zSdMMJuw3rpyhRavvoqrlyeZGbFcuDDL3H65BKNePs2wU+PmAc06wBPDzUPrXd0NOevWyhlqPEDj6VypQ2OutU6L+ouVNBw6xeRsAxzfupXHli7Fq7xckCypSJtWElFwqVSXX+fMo07PnrSbn724p1Ij9Dr0Wh1ndu40c44PLl1Ko6efNl/0y95xDu8xnIeGDAFFQQEqZ4eei9yaDzl2w/VaLQeXLaNunz6Ub/MKQeqpiKwMyzKPinLXFhmd5Kbt8QirnfslgT4R/l5xV6OizghY8zvMHALf55r36bQoP39B+KCRNOhnvnBwcNkyqre3cg/JPeO0s92sWTMWLVqESqXizTffpEuXLqjVBmGWs2fPUrFixTz7+Pfff9myZYuZow3g4+PD5MmT6d+/v7PDeiBITEykXbt21KxZk+3btxMTE8NLL71Eamoq7733XlEPT1KQ5GPyK27+SdVnDI85lXuDeyymouZ/CL2OzMxYC0fbyyucOnU+znbCo8zOXbq0iNq1VxHUdh1K4nHDTnZOFA3UG016vPX8Qq/AQEhPNTxKJFaQdu0+UcChmDbFbjLiISL70dG+skM0VbrEXGcUQEGXlUGdnj3ptXYtZKajuBrmDGpXNX5VKqO4uVldRLx0aRG1a60kaPZalGkfGSafmWmgcYU3tsErfQzhk4piOG6tnKE2DbSp91TqUOPpicbDA21aGiqNhh6rV+MVGIiiKMTfB40Kyf1F2rQHE9t2KBuNByoXNyq3bEmbObMhJRbl8Cy4fRalbBiquqPos/FTKrdsyXfjxplf+90G1DnDtTPSUK9ZhFi+G6XRo4j0VHDJdqmEDo0iiPr9dy798gsVmzfDxcOTrLRUYg4eokrLlpAQh7JupUnMlpHTDRs0ucu0pqfCrs3wy7dw4xrutRrBgRQCsrIM0TxWdCj4exG0XmkIJz933Fx757EB0HsUqptXUW1bYbZw0GjwYP7bsYO6vXoW4KcigXwKpHXv3p3HH3+cqlWrMn/+fNO5zZs3m3a57VGjRg2SctTXzMmtW7cIDQ11dlgPBMuXL+f27dvs2LEDf39/ALRaLc8//zyvvfYaIfkoHSApWgpSZEiXHsvlQE/CEmIBQ7h4ZmYssbErSEs7R506q4mNXWE2GQWoVGkCmZkxFo62oQ8tJ08Ox8+3Ha4NJ6D8POzuSUUDbVaDZzBpJ23kFwYEG3bTnNgt8wwIMHuUlGykXbvPFFAoprWyXABp107jEZH9mOO4vYmsSp8EzT0Nj9mYLxRqqde3LyDI5Aaxl1eZdq8rV34VnZVFREMfWk6eisLPvwOut6+iRL9tcJprR0Hr7rAvGVSKKXxS1B2FYlHOUMDZzVBneL5LHeozM6jbqxd+oaFEjB6Nd3CweW6jlc+kIO2grL5wf5E27cHEGCqe0w6ZoU1Dn5VF2GOd4PQnKLkqsSh/L0JErqTZ2DFc2r+f0998Q/MJExDXrqDauAwx9UN4rD+KmyciIxV+24US3gKBIFMfb2bXKgWPQ6PxJPiRGlyJzRFt+MgoFLUK4s4jhk2+25dKjRJaD0bMsKym0CYKHh8KSTfuCp49PREqlbepQ8G+KKjQBp4afzc1pmZ4dj73Bot8bnW2RkXd3oNQaTSybGEB47SzXa9ePc6dO8eNGzcoV868dtvbb79NhQoV8uzjzTffZMyYMVSuXJnIyEjT8b179zJr1qwSu3K4c+dOOnToYDLeAP369WP06NHs2rWLZ555pugGJ8kXtvKsU+Lj8TI+1rnbXpd8gfPlwCP5gnlHQhBinJhqMy3CxVUqT1SqDaSl5Q6FVChfvj+XLi20mKje7VpLbNwKqtWaCbfPmauOewaDokKXkmT9BQYEw6hZTr0nxl1wuRteOpB2rZhjK6XFxsQ0PSkJjxyPZu1zOdRgcKp9ek0Cl2n4GOtmI3IsFJ7Fx6clISHPce3ahlxOtUKVKlOsLiLe7V9LbOxyqlWeAmcN4mUkn4c2a0GbAMezwyeDWkL95xCRqwyCZzn7O/Ye1BwCkassJ6d5lDoUfUajaFzovWEDeq0WRa12qMRpQdpBWX3h/iJtWvHA1jwq/wgQOki5ZuFoG05rUY6+g6jelz6bPkWl0iCEDmIvIdb+TmZ6DLE5HOeK//c8LioV165+wslTdzc7vLzCqVp1BteufWKxCWJK+asfZtZXSMgoXDv1R4k7AN+0t9ypjlwJoQNh35dw5ihMX2lwyJ3RoXhqAlyPsRROA5NGhXi4HSIwxCEbJ3GcfNfZLleuHEII4uLiKF++PBqNhoYNGzp07aRJk7h16xbt2rXDx8eHwMBA4uPjuXXrFn5+frz66qu8+uqrgEEO/59//rHb340bNzh06BBxcXGkpaVRrlw5ateuzUMPPVSsvjAnTpxg2LBhZsd8fX0JDg7mxIkTRTQqSWGQmpCAV45HI7r0GC6Wg5o3Y+4eFHpIjUUxThrDJ5LpXd5sUqrXp6HTpeLhYR4KqVJ5oFZ7WnHCzUlLO4eiaBCNp6Fo3O6qjhejvw/Jg4m0a8UceyktGgdrrAqBb+9JoJmGrzbDVK81t9pu5ZYtafr8cxYh4X5+HcnIuGSxe+2U/dJ4gtoDfGpCm4/hzHrIOWE+uxHl+m+INmuhYnvIXc5QUSBsoEF1/NRKh0sdKgHBxJ88yUcPP8yz+/cT3OT+KylL7i/SphUPbM2j7GLXpqlQNC4o/6yw7qSGDUC0XUdmZhyxVz7KsVA42spCIbi7h+Hn187M0Qbb0YYOpfxVeArFr555yp/QGmxdUBvDTvU7rxpCzJ3RochMN4Smf7zQeslCgNB6qBLjEYEh2aHqNmpzS5wmX872999/z8yZM/nrr7/Q6XQcOnSIJk2aMHLkSCIjIxk0yH7eUkRExD07wbdu3WLt2rWsXbuWv//+O3s1/S6KolCmTBl69erFiBEjaNmy5T3dryBITEzE19fX4rifnx83b960eV1GRgYZGRmm50aBOkc5ddXQPjTAE43G8JFfv5VOUlom3u4uBPt6WLSt4uuJu7uhbcKddG7eycTDVUVl/zL5anv2+h10ej0hvp6UyW6blJLO9eRMXDUqqgXkr+2FhDtkavWU93bF18sdgDvpWmKTUp1qq1apCCt/t+3lm3dIy9TjX8aVgDL22yaXCeBcUhYud9JNbTN0cNk1kLgUQc59jcRMDVq9H7cy1VQEEHrE6fXZOzE6wz+KyFXEXl6Qa6dHcP36ZoKDh3Pp0qI8nfDceHiEIoSOpO1v4nJ7CWddJ1G+x3izzz5BW5aLd/R4p2tNn2d+vieeyZlUynFva59nQXxPjJ/nvX5Pcn+e9/o9SU/XcinJEFZaq4K5LkVJJD92Tdo0+9/VrMQMgtWuGI8av39utzKpmuN9MH1X07LwzdU293f1SnImqVdvE1jWDT8PV5Pz7KPN5HZaFmU9XExtb2k9uZSuQZ2eSVk3jdlioFI2DOqNQniGcOnAAda1b28SFKrfv58VXQnb0TdO2S9tKoouDRpOMIRZWtuZOrMBJfE/6LEPETETRaVBr81EoEEtgF92wq0E6Djlbj7kv4fgoQqIF15HyVXqUAQEc/V2OrHxyWSl3g0Vz/l5mt6zTEi8etvie3IuMRPt1dtmn326xp1zSVlkJNyRNq0YUhQ2DYrOruV0BJyxVUm+wZxLysI7XZtn24u3MlG5BuKdy1adS8riVtnyZu+D8fuq0mKaP5l9X3O0vXzzDjo9VPBxN1sQvJWaye10LZX9c/yNairhY0tI0T8c0XYd1659auY8GxYKL1tJc1EoX76fFbtm2945lPLnE4lrw/GGOWFO/OpB5g3oPhR6DDPkjjuiQ5GVAW17QdXaBpuXu2yiEWNt7vhYs9rcovcoCAzhZmqmWXNrNvB2upbkq7ctPvtbZcs7/D0pqXbNaWd748aNDB48mH79+jFixAhGjBhhOhcWFsbHH3+cp7O9Zs0apweakwULFvDWW2/h5+fHk08+ycyZM2nUqBEBAQG4ubmRlJTEhQsX+PPPP9m5cyft27fn0Ucf5Z133qFevXr3dO+iYOHChcyePTvf13dauh+AVUMiaF+vQvaxn0lK0+KiUji9oKtF29k96jK0hSF3vsvS/cTfyUStUjhrpe3zbUJ5pXNdAHr971cuJ6ahKHB+YTdT2/aLfwag/8OVeL1vIwCeXHGQ09fvoADnF1m27Vi3PB8NbQrAs2sO89flJAAu5Gjb5i1D2+bV/dg8yqAX8PyGw+w7nWCzbYOQsnw9rhUAU7ZH81V0nEXb1m/8jACql/Nkz6S2ALy56z/W/nrJou3W51axdVcCFQ4e4PcpHQDYEqdmWeuP4ajggrGhENTs8xYNXN4h07himBqLcnQZovWHENYfReOJAlZ3eq5cWUpQ0GBq116Zw1hbd8JzoigagiuMBFSg1jD88iQOZjTE9eReTs3vAoDeJYDmlzbAJYXF5ePoHVEZgM7v7ONmShYalcIZK5/9K4/V5vm2hlKA3d89wNVbGagR5By98fMc2qIKs3sYol+e/OA3zt9ItfnZPx4ezLsDDTtIg1f9wbHY2xbvu/HzbF0zgHXDDaUCR60/wsHziTbbNq7sy44xhoW3Fzf/xQ//Xbdo2/Ytw2dfs3wZfnjJkOYy9+t/2fznFYu2rd/8GSGgsp8H+19tB8A7e0/z/t5zFm0ld5E2LW+b1qPOC7yTfeyuTcthT3K0fcgPPs8+ZtOmbUuge6OzLOkXDqkxJudZVTYMz9ojwb0iKIY85Ceuf4hnVmW+clHbFuCJXEXlFk8RWK8e144dw7NcOWp268qly3Od2L12zH6FVIgyVFPQeOVdxuvGEcP4Gk+j7swfSMvSs/jJcINNe7Qb2uuxaD5eBNevQPmKhnJdisLBZDcaD5+Bm6uLSVn86dUHOXD6BgrwTI5b5LRpY7OPjfzXg3N/7bf47Nt9kQDsN7Np3w9cyMZdCbDrZ2nTSgj3atOg6Ozar0/ejXhxxq7tGPkhO3Yl0PHyX3natcgdCdD6Y1r+dIMNjQ3HTHZt9Com5XgfjN/thh7ufOVucObM7Nozd8f75venWdIvHJESi3LyQ9OCoFftkZTxMc+t73V5Abv1OsOCYS5EwwlkZsTm2qW27Tjbsmu27Z2DKX9XV1ItbIrB5hoJGwBt10FKLGQLuhE+EeqOsq9DUW80OpUG9bwNaDOz0Oh1lmUTIUcut2VtbmXNIvTTV+HbeRC3cpQEyzlXey07xP+FfYmc+tLwXcv52W8fvYrtuxJoff5wqbVrTjvbc+fOZcKECbz99tvodDozZ7t+/fosWbKkQAdojb1797J9+3batGlj9XxAQAABAQE8/PDDjB49msTERN577z327t1bpM62n5+f1dJoiYmJZrlBuZkyZQovvfSS6fnt27epXLlyoYxRUjBoxB3A21Q+0Rgq7pY9wXUtWwMiZsDVXxG9ficzIya7ZJdBCM3aTk9KSjQnTgyhTp11+Pq2Iy7uQ9LSzqHXp+LmVpnatVdZrL4qiobatVbh6hqM0Ouzjajln71n1XDgcKG8F5KSTX7smrRp9586wd4s6ReOcmYD7DN3njV/L4KO26FqN3x7v8Lefq7odDqUtDibAjzKz8PRh3TmmX37cCtbBkUxKIznnmTmtXttfRHRgKJoqF9/O65ulSDsKag9zJBDWbE9ysUvLasrGEk+Z0iXwTziDZWKb+Kg8/Dp2U51BorGkE4z4KODKAq8feoDWg1+isBegzhz/Y6D766kJCFtWtFSN9ibYS2r80R4BZhpCGcedOk2Z+Lv8F9c8t2Gbh4s6VcL5cwG1FZsmr71Kqg1GFDw7TWJn/q5odfrwUJIUYGwARYRhfYWCm3ZtQJJ+TOmzOjSwD/c4Gif+dQ8mifxX+j9pyGXO3eUTw7x28ff2c/5hDRGlk/ixbH9DdodOcsmQp653Kq5w9E+3A7v+obFF4Poo43FTolVFJE7/joP3N3d+eabb2jfvj06nQ4XFxf+/PNPmjRpwp49e+jatStpaWl5d1QKad26NeXKlWPHjh2mY8Y89dWrVzssunH79m18fHy4deuWRfk0a5T0kMuiDCOPO3KEtyMfo9cXX1O7WSNT26ub5qG5+SY3Ki+hdvdnLHeHNJ4wLAWh1xpygXKsptauvRo/v7YcPFjT6gpomTJNeOihvahVbigqV4Q2Fa4fguBWZGZeJTZ2OWlp5/DwCKVCYBSu7iFk3E7Gw8+PpC3zcbk5n7OeMy3CyK19nvkKI798nErPPQLrD0OdJjKMvIRTEHZN2rRcYeSnjxI8oQ1l1v4GdZrcDSO/eJyqY+7+bZm+q3H/4Tvi/2D9Ye5UCzf7rqbs/x6vFztz6/NLlPVVUDZWt3SejTsnqdfgvxUGIcU2q+HIPPhrnvUPocU7iPpjyMyIJTbubsWEixfncfGi+TV52bTy5QcZRIMyYonNXkT08AilUqUX0Wh8yUy/TOzVlXfFhIJH4OoajLJniGHHOzeNpyEaT+fq2ArEtphH/X4jzWxa3BdLCc18E23ZF/HrN8302Sf9+CUPLX2GW1PXEthrkOmzTz51gq8jmzPy8GGCm5jbtLSdmwmcP5gzk9ajj3z87vfkxBEYHMG5d39DW72e6bOPO3KEd5q3pPv3e6kYXl/atGJIUdg0KMIw8gun+DAigpGHD5NaqZZDtiruyBGWPv4kPT75lEYtIvIOIz/4O6oXe+D9v6/wbWzY3byTruWfXw+zrVcPJu3ZadJDEHq9IZx5u6E0FTnCma8nZxIUdxwGR8CP8QhNunWbBganc+AFUPnAmjfg2mV45DFEp34opz+566Rmz8eOHx/I9esbc3ZAq1Z3uHRpoYVNA9t2zfpx+30ZqVp1GtUqT0FZnZ2lHrkaQtrCppq27XbadUuNimzx20Pr1xP8/ksoLy2hUt9BoNcjdq5HyVnPe/8dQy73KtvjYvg0Q2Wa/3OB9Yc563/3e5J8PJoPIyIY8MtBlNA6Zp99clwc3/xvFbX7P0XNmlVLrV1zeme7QoUKnDhxgvbt21uci46OpmrVqlaukgB06dKFBQsWkJSUZMoH2rJlCyqVik6dOhXafa19icr7uFPex92htgFl3E1fzvy2zfmlN+Lr5W76A8lv25x/pEbKuGusjs2Ztjn/UQGQEEeZbSuolVvRNzOe7m0SqOGZZPa63VTg566lbOOWkBpruTukTUPos8jMjLMQ18hrp6dSpQmo1V4o/34ACYdRvCoi6o0GFG6du0WlalNMNR3/3bwZj4BAanXtatJJKKNKp4q7Fr8c/7ihAL8nSa5mx619ngXxPbH2eRb59wRwt9G2pFIUdq3E27QEN9DdzZEzff9y/W2ZvqtJLpZts0lNSMBLUShbIQjlr7mWEzZrOycaT1BvsC3AU70vov4YC7VdP78OVkPC87Jp/v6GEmOuV48YJpoaT4Q2HdSu9utvt12HknjcfIc7O3wy/colgv9MRPOYj8nBAMP3xMVdi3f6TXIWMatVoSzxXgqu6EzHjJ99XKz5VCnn52ncWvBxhUAr359QP1fIddxdm06orwvBuWyNtGnFg9I2V4u7cPe4I7ZKCEFQeDivx5w1KfTbamukqo8rZMaDh7mtCvV1wef29bsN9XqUnesNCtq5wpmZsYqgLoNJO5uOh6IgvH1Qjiyzr8h9/nOoMxKenWzSaVAunICaT0PFDtlO6gWE0FmJvrGf5nLXrplHFd5Lyl9I8ChDqULDEftpM2c3QeJxiFyNiJiFolIjtJkoaheTqFl1L4XAzHjijR+RSoXSZTA0bQ/blht2tO3lchuJOQc5SoKZ6RZlP5Z11xCc67vmHRzMgHnTLLorbXbNaWd74MCBzJo1izp16pjCuBVF4dixY7zxxhs899xzBT1Gu8yZM8fmOZVKhY+PDw899BCtWrW6j6OyzujRo3n33Xfp2bMnr732GjExMUyaNInRo0fLuo3FnJT/ovH6aDYp9R7Bq1UOZzsrgTaPQ3xWwt3GOZR7XfQ6Q45NznAljQdo0wFBbNxHFkbXVri4h0coIRWicHULQdFlIuqNNhhXvQ5FUSGEwL2sDwcWLuL2lSuUrVjRek1YiaQAkXbtAcDNwxAubc15tiY4pk0DbapNAR7RdL4hv/GkYwuFBpv2LHXrrsXPr4NZ9I3BplVEEUDgw/DXIki5AvXHWlRlMN3fWH/bt425mFCO8Mm0szsxX06USBxD2jTb5K5A4B8WRsSoUXiHhNz7PEMISIi1cLQBw/M5ww1Oon95g01Tu9hX5A4bAPVGQdrVuyUCy4ZBreEGgTH3IJOTihCEVIhyaqEwNfU4t2//RlDQYPz82pvZNZ0umaCgp/HzbUts3Ec5Uv6q2E75q73KML+r0hUaTzPYZU0equM3o+HoYpR2G2BtAAmhywhsZV83C5UKAkMQUdNRXFwROh2KtVzunFQMBa0WMmTkcn5w2tmeNWsW//77Lx07djTV2e7SpQvx8fF0796dyZMnF/gg7bFkyRIyMzNNoevu7u6kp6cD4OHhQVZWFjqdjiZNmvDtt98SWIS1f/38/Ni9ezcvvPACPXv2xNvbm6ioKObPn19kY5I4hsMlKHKW8bpzBaXtxwZD6R+OaDjBJIImtKkoKleb+TvXr28iJeU4NWoso1q1WSiK2hAufnYzilsAomo3MuJP8eepVlS//iQVe7+Poih4h4TQevpU1C5u6LPzEXMq/+tVvnAY9B19C+7NkZRqpF17AMhIM+x4WDjPtnZOhGF3pc5wKwI8KvAJI/bCLOcWCoNHgtDjeuNUjt3rVDi7CeXoMsPuU/3nEI2nomjcQOis3sM0QqOYUI1pELPbInxSdzupIN45SSlE2jTrCL2e6PXr+XL4cFMFAoADixbRY9UqwgcPvjeHW+hh2wrbpal0Wti2HPeo6ZCZbthosKXIbYrY2WCZ0/z3Imi9EmoMAp0eOofAd7G4ulWkdq2VZtGGeS8UhiDSk0i+nEKlyoaoQm1GGiq1GwiBq+JHtSrTUNRuCL0hWikoaBB+PpHZqTE5+nKvBEIg3ALBWKbV3ms04h2K0GWhZNzIzqd2AEUh4estBL49kowN0bhby+U2otYYhCTvJDnWt8QCp51tV1dXvvjiC/bs2cMPP/xAQkIC/v7+dOjQgQ4dOjg9gMuXL3P58mUaNWqEl5fDlfRM/PTTT/Tv35+ZM2fyxBNPUKZMGe7cucOOHTuYM2cO69atIzU1lcGDBzNp0qR7VkK/V+rWrcuPP/5YpGOQFDxqL1/DPwqz3GwFWv0PqvVEtF2bQwTtLB4eNahWbYbdkjcpKdEkJe3Gt+wjsH8EildFqBWF8K6EIuDW0W1o1Qlm1yiKwtWvXuJswBrCEoZSsff7Zuf1aj+Ds93ZrxDeBUlpRdq1YoC7nfqyQpARcxn3ernUazUetndOji6FmoMtBXjc/VEUtXMLhXot6NJRdvyfQS08O8JH0WaX01I0UL0noBD75UucL/8Zjz4a75iYkNoN2m1AaDNQ1K73VBPWOFF1eMIqKbFIm2aOEILk2FgLRxtAr9Xy5fDhVG/f3rDDbeVvMCU+Hi/jYx3L/hWVClRqh8KZFRdX8PZDUVRQO8q6Ire9EoFCC/uiIKQtSpnKoDNEB5KWQFDQQPx825g7wiGjAXC9cTrXQuFmcAuESo+x9cm2XDt6FBcPD7JSU2kwYAC91q1D0atQ9IAaFJ1AiExwccVFXe6uE67LQGgzETo96UZ9ne1v4ndnIZltf8Ett902e+MMaTNKpkHQz8vZDcX0VFLPnMC9bRfEjFV3c7mNqDWImatRAoLh4knn+paYcNrZvnTpEsHBwbRt25a2bduandNqtcTGxlKlSpU8+/nwww+ZPXs2V69eBeCPP/6gSZMm9OrVizZt2jB+/HiHxjNmzBhefvlls3JjZcqU4emnnyYlJYUJEyZw8OBBpk2bZjfkXCLJD6rkRNB44hlY3UputoAruxChfbh2db1Fbra7eyjBwSPs5++EjAbUhtDIrAyEVouCAioV2lsxYFUYVaDXp1o7gd4ngL2xUNdHTiYlkhKBEIgaDVEOpCC0WShCWHU4U8+cwL1KF4hcdddO2QsXvxkNe4YYdodC2sF/H2YL8NSwkd94F9NCoa8hfUvJygIXD4Qx5FtoDfcFs9Bvw7gFWu0N9NoMh+pv67UZqNb5k1RmiknsLL8YJ6pOT1glkhKO0Os5vGKFhaNtRK/Vcnj5ciJnzTLL4TaSV3Sg0OsNod0OhDOLrEyU2zcN8yGvioZd6n05neo8cp3BcPzER4YwcmNfbn4ol77FNeMG1cJyONXXD6FUqAA+NU1pLopXRag3GuEZzOX9B4g/fhyEICvVYNeOb91Kg0GDqNW1K0KfhQIIBVC7cnHffpLOn6NB//5oPECXqePY5q0W+jpoU8k4dQi3alHmdttITtuZdG+OsADoPAhd40jUX6w05GhXDEX3RBSqoEoI7hbXkTiP08529erV+e2332jWrJnFuX/++YdmzZqh0+msXHmXpUuX8uqrr/LSSy/Rvn17M8GJNm3asGXLFoed7b/++osZM2ZYPVetWjWOHj0KQIMGDayWcpBI8o0Q+HcaAZqxuFnkZmc3AasiaABXriwhKGhQniW70OtMfSnunqaJtFC8zR5N97RxHMCzbjiMnGl4lEgkxRd7O9VG9HpIiEXZZlDtVSqFGUq7BIQY8vJyoLudZKijXXMwVGx/V7028YTteq1nN0HSKei+FxpPB40rZKSCUAgJHpX3QmFSIrzzCpSviH7AOJSagxEV26PYUM69iyAt5jAhIXnfI+vyf7hprS8uSiSSuyTHxXF4xQpDjnVwcN4X5EClVnPzrP1d58Rz51BZcbQdRlFZL01lJDucOT3mEh5CkBF7CXdfXwgbCBXawKmVBrviUzvvXGcwlAhUqcHV/W5flbqgpMSaO9W1ogy2VlMOETEdReViiqRRFIUqjz7K+AsXOLx8OYnnzuEXGmqmlxPzuXm0YdVWrfCvUYP9dvR1jCl/Wf6Z1u12btupy38utUeNOiTHxrLpiSdoOmYMDYdOQePpiTY1laObNvHH//7HgC+/xNsvUDrc+cRpZ9tepbCMjAzc3Nzy7OPdd99l+vTpTJs2zcIxr127NidPOr5CU7VqVVauXEnnzp0tzn344YcmdfQbN24QIEPDJAWFrdxsMxSo1InYywutThaN+Y11635iIa4RUj4KVw9DuPi1vW9w0mWBRVi4Xu1t9pjXcTAoQ7aZNeveXrtEIik8hIAa4XAgxSBIY22n2s3DMPmzotpLtmovXQZbONyAYWLmGYIw5QRqDSGUFrtDGHZOGowHtTsMaQqXThvUfD/YjevDbWyqi9eunb1QqNbDzNXoMzPQZmlxEaDkvLeV0G8XvTdVb0BG1iE8q/yfHTGh1bi6BpN86hvynnUUHjZDzwOCDaVyApxzaiSSwuJOXBw/z55N7R49nHa29Tod/mH2d539QkPR63T5d7gVxbBQOGOVpV1Ta2DmaggIJm3PTjzcPU3hzxz4Bm4lQMcpJsVxdFk2BR5NmHKd06z0dVe9nB82g28gtOzK9T0LLeZjikpl0MuZMQ21ixu6rAxUZno55tGGpvb29HVyp/zlttsFkDZjfM/dQirz+5y5xB05wpfDh/NlVJQpHN7I4eXLiZw5Uzrb+cQhZ/vEiRMcP37c9Hzv3r1cuXLFrE16ejobN24kNDQ0z/5iYmJo0aKF1XMuLi7cuXPHkWEBsHDhQvr160ft2rXp3r07gYGBxMfH8/XXX3Pu3Dm2bNkCwO7du2ndurXD/UpKH46s+qrL+trOzc5t2DUeKBpPu3mH169vws2tGqGhC6hW+a4RJetuuHjW7dvo/VKt7lRbQ6P3peou0DTzdeyFSySS4kH2TjXb7taXtbpT7RfomGpvoB3lZOO6uVBg91Zom2t3yDsU6owAj2CYOQRO/XP32sUvomw4YlDbzS0aFDLa4GgLEEJvmJwp4OLpaZpMxn5pW1fCRe9N9SRI1N1BUVRWlX6N91AUFbpb1ylKbIaeBwTDqFkW7csEBxM5cyZlnHR2JJKiRFGpiBg1igOLFlkNJVdpNESMHo02I4Nf33gjX7vnho5UhoVCY2mq7HBm+ow2/E0pCn6tO8KBFPyyMg3O5qPdICEOPl4E169A+YrwzGREvVEodnKdRb3RZF6Lw43syB+Vynpfxntnp+/p/S0jaRRFIWbnm1zwXUi1pClU6WE/pSUvfR0bF5lyuQsibQYANw9ULq7mUQs5wuGNJJ47hypH6S+JczjkbG/evJnZs2cDhi+ILcVxX19fhwTIqlatyqFDh2jXrp3FuYMHD1KrVi1HhgVAr169OHToEAsXLmTHjh3ExcURHBxM06ZN2bx5Mw899BAA//vf/xzuU1LCSYgzTGZz1cx2ZNXXs0Yd67nZ1pR7tWkIbWqeeYcqlQbQ55j8moeLe5VrRNXvwKtzI7PrvH1DqfodeHc2X+ByEX6E7IL4plIETSLJD/cSbplvHNmpdvMw2IUyvvDR7DxVe605e2ah59euoMz6GPZ+Dqvnw1PjoVP27pBeByf/hjmPw+lo8z5OR8P0wShzPsFVXf6uEJrQgU5vKOOlUpG09Q387izklsXE0LauRG4URYWrawhVq0xDpXZDr8tAUZnvAhUpTu5gy+giyYOIsdpJj1WrLETSVBoNPVavxjs4mISTJ/O9e363w1ylqbIyUTQuhiif+BjraTOBIYioqSguboisDEPKCx6I1itRrETsiNarwDMYkXTFxr3v9qVoHN9BdtSuGXDcDppRkGkzGWnoszIdi1rQalHJ0l/5wiGN/gkTJnD+/HnOnTuHEILt27dz/vx5s5+YmBhu3LhBjx498uxvxIgRzJs3j1WrVnH79m0AsrKy+Oabb3jzzTcZNWqUUy+icePGfPbZZ5w7d460tDTOnTtn5mhLJGYkxBkmqglxzl3n4YVbpSqGeo25V0qPLgWvigblXsW4hmVwwkMqDEdRrK9rKYqG4AojEULh8s432bfPi8s73zQz7H7l61B9l+ExJ7aOG0XQ9FIETSLJF8aFtztxTtoIJ0iOi2PvrFkkx8U5Vl82Ic6wo+3mARqNQ6q9qNSQHdKpLut716F/vDqsmgffrDWESVYKMzjQc4ZDqzLwqBd8vQ58ysG549b7/3Er+pvxKGqNIdwdQKs1PM+5C18AE0NFUbjyjcE+XvnmTfNwyzK+Zo/3HeMOtgwXl5RwFJWK8MGDGX/hAq2nTaPhwIG0njaN8RcuED5oEIpKhTatgJyx7NJUPOpF4r4fDDYyp+36fqPh8fHqhuNCkPzTWljtRdKONxF6Pce3bEWEDkT35BlD3eoaA6HxNHRPnkGEPsXxLVtxLV/B6r1jv3qJffu8iP3qxXsP1S7OCEFG7GUiRo0y7FxbwRi1oMjSX/nGIWfbx8eHqlWrUq1aNc6fP0/Xrl2pWrWq2U9wcLDDK80TJ05k2LBhjBw50lT3umXLljzxxBM8/fTTPP/88/l6MZcvX+bXX38lJSUlX9dLJFYRgoDuT8L+OyhqF+uiG0bl3hoD4amzJsOuZKXi6l6Z2rVXWTjcRhE0N/eKpr+dfK1y5kLvG8jPcYZHiURSPDFz6B2sLyvK+GTXzM5ySLUXvQ6ydVE8a9SxdOiFgF2b4YnhhpxI47H0VNi41BBCOX3l3XNG1BrE9FUofoHo9XqnJ6bGvGwXvWOpMUas2Ue9t5/Zo0QiKTyM+caRM2fSe8MGImfONJT7yqO+dr43AdJTrdsuIzkWI11rPQoHU9G7BKBSqznx+ed8+PDDRG/fjbbBFGi3AW2DKURv382HDz/MyS++QOXiaiM02vqusz3bZUrh0/s69xqdwCicplcV3D3SzpwwRS3kdrhzRi0oifEFds/ShtMCaUbBMYDU1FTS09Mt2vj7W61HZMY777zDhAkT+OGHH7hx4wb+/v60b9+emjVrOjskUxmxuLg4FEXJdxkxicSCnCGXMecMAh22RDfOboLE4xC5GiJmGXaV0lNRjuwn6KGn8PNtT2zc3bzDCuWjcPOoZAgbV+Vj5bS4CvAU13FJJMUQp+rLalwMyrkxl3B3QLXXpPCdLYLDyrmW7Tcuha6DDU713Ki7509Hw+xnEbPWQrMOKDnyJ3VPRKEEhpB++zYefn44Gw5pysv2tZywan1DufA5eD2Tt/6LRCK5/yiKwtXoaD5u1Ypn9+8nuEmTPK8xbgLUdnYTwJ7tMpK9GOkWNT1bVMzbJOh2bONGm6JftXv0QJ+V6VRotD3bZSuFz+SgC+cWF62h9a/J3q+gbn/nfSVb6G4nmaIWqrdvb1NVHRlCnm/ypUY+b948VqxYQZyNELu8Sn8ZCQ0NdTpkPDcFWUZMIjHDWg5lhyfhYRtlcsDgbLsGwNdr4Y0XDDtEgFIzHNcZq6lWx5DbqMvKQJdpEEEzrgg7LWxmQ4CnyCmu45JIiiFO15fNqZybh2qvaZfZzQPFxdW6Q3862iCANnsdPNwWdnxkcqpFn9EAXDx+mko5ysEc+2yzZU3YAkIbUIe1G2HkRPP0GHdfX9BnP95npKiZRGJJbhGtQsGe7cpJzDlDu+xdagtBt1yiX8bQ6IyYS1jd17ZTQtVZbDno+bmHzUULz2BoMtPwmE9MUQszpqNycUWfnSufl42X9jFvnHa2lyxZwuLFi3nllVeYOnUq06ZNQ61Ws2nTJjIzM5k6dapD/eh0Og4ePMiVK1es7o4PGTLEoX4KsoyYRGLCXg6lV7DtMjmtV4FXCGxcZnK0ATgdjbJhMczbYDqUU50XwKdcTbx2QUqXgluxlEgkDwDO1Jclh3KuPdXenGGdGWkGR92WQ//9JkNu9ozViJGzUNRqkzCQEAL/mjXZv8h2TVi1qEjVo6AOqWjWrSnksaPvPb9FHn5+cCP70ZH2tepzoWYkAbXqW5zTl/GFJMfzvKWomURSRORlu4wYFyOz51SOCrol7tlp1dlWKZWpugtUzSrf80uwZQftlWl1Gs9geHiW5WFbpQltoGTnyge+PZIbL39IYK9BeV4j7WPeOO1sr1q1itmzZzNmzBimTp1Kz549adKkCdOnT6dHjx6cOXMmzz6OHDlC7969uXz5stW63YqiOOxsF2QZMYnEhLUcSkWB/+sEP26zUSZnJHhUMOwS5VbvBcM/A20m+3/1o4rmdaq1GGt22qtuOIyYaXiUSCSlBwfry6b++TsHY6GuMe/RlmqvlbrcGbGX7YeenzsO5SqQcekk7oubcjPydcr1HWuatEZOn2Zzt0Otqkb1tRA/tZpZlxa1Yo3H8+GEu6oCqLoLXAeZTxr1LgGGsMpw8+Nl6j9EmY17rfYl87wlDwpFUhnhPuPi6Wn7ZLaAV15pM6LPaEM6zoEUymVlIoRwKDRadzvJ+pgKsKqLLTt4P7BZmjAv0m1ELbjb+awkNnFIIC0nFy5c4KGHHkKtVuPi4kJSUpKhI5WK559/3qHSX8899xw+Pj789NNPXLt2jcTERLOfmzdvOjweYxkxazhbRkwiATs5lG4eBkOz93N4+mH4eTc0NIhu0Hg6qHzhmf8z7BLlJntn6k7iJfT6VISLFaMrVW0lktKLcaf6qwswfBp0Hmh4/OoCdB4EKhWZGndL8cMcqr0JX28xd7SN4o4HUnALqXLXobcieGZy6M+dh7+yJ4imWyjcyL7Hja+33HPouGnyqXZ88ummDqT6LsOjWV+ugfz8teHRUZzd7ZFIior7URkB8nB4CwkhBEHh4byWkkJQeLjVzTeA1DMn7NoukW27/li+nG0DB/LznLkkx8Qg9PocodHTDIJuM6Y5JOhmi4IUKCvySgrOIATUCIcDKYZHG5+VxDpO72yXK1fOtFtcpUoVjhw5YqqXnZCQQKoDORz//vsvW7ZsITIy0tnbWzBixAhmzZpFYGAgvXv3BszLiM2fP/+e7yEpXdjMocxIu1sm5/uNhh2ouVEGJ7xyDfjkTxgwzlxkCMwmsreP7yz08cv8GYnkAcXRnWpr5N6JyCnuaKxJO3CC3dBzoSj4tu5ovjuU8962djucxKhMXNeKMvH9sF/53u2RSEoYOR1evVZr+TdfWPfV60mOjeXwihXcPHsW/7Aww+59bkfY3dNu2ozoMxrKVWDHkCEc3XA3Te/AokX0WLWK8MGDUVQqkna8id+dhdwqMwW/ftPyPe6C3KVWl63JhfcgbGwxTx3M/l9C9v8SctY3z+eiRWnDaWe7ZcuW/PHHH3Tt2pWBAwcya9Ysrl69iouLCx999BHt27fPs49atWqZ6mvfKxMnTuTSpUuMHDnSJLbWsmVLAJ5//vl8lxGTFC7FPjTKWg5lzjI5xuPGMjk5RYaadbCZQ5mZllToQ5f5MxLJA0yOnLkEB3PmLLAm7ggGu/XmdsSj3cCYm63TGSZMQpAcE5P35NeZYdhwqu0pEztrv+TiokSSPxx2eAsQjYcHQq8nev16i1zqnA4yikK57k9Cr0FmYeFmi5E6LVlp6axp1oy4I0fM7qPXavly+HCqt2+Pd0iI4aD2Pgi6OYFGFcjFtaAZ5/ii3/20d+qyvvb/l8xYZVgAkQ53njjtbM+aNYuYmBgAXnvtNZKSkti4cSNpaWl07NiRd999N88+lixZwvjx42nUqBF16tTJs31eFGQZMcn9wRgaVbtHj2LqbNvIobRVJgfgx62GcM+WXREjZqBoXJzbmbKFLKUlkZQ+8ruLbE/cUaeFSb3hqwtcvXyVg++9R8jDD9P0uefynPyqy/o6PZR8l/txgnwtLhaAcq9E8qDiqMNbGA63V2AgybGxFvcFg4N8dtcuwgcPtrvwl/D1FgIXj0L8dJNfXn/dwtHO2d/h5cuJLMDNh6JOQbkfmynGRdLmdRvlXd+8aXsIDLm3OW4Oiv1GXD5x2tmuXbs2tWvXBsDNzY1ly5axbNmyPK9r2LChWWhKXFwcDRo0ICQkBN9cpTwUReGff/5xalwFUUZMIjHLW1KpENlhSzlrzIqUZOj6NIqdHeyELzbe285UTmQpLYlE4ijWxB1zotOibFtO4NAp/LNmDVVbt+bWpUs2J7/G3SGPsNr3YfD3CRvKvRJJaSAvhzfnjnCBhpQrCu6+vvw8e7bFfQGCwsN54uOP+eeTT/gqKsr+wp8QqFxcuXnWfkmwxHPnUKnVlrne+aQ0pKDofQP5+apCZPkK8NHsPOubM2oWKOoCuXdRb8QVlrNfMN8+B4iIiCiwP9p9+/Y51b5169YFcl9JCSKXoqK1vCWE4NQ335B2I4EGuWrM+lYPpWqrVmBvB9vKzpRGCeDCGggbK4V5JBJJAaNWWxd3zE3MOTSenmg8PWnQvz8HFi60OvmFHLtDM6YXwoCLGTKKSFLSycPhBfMdYUVdME4UgIuHByqNxqaD3HzCBJJjYiwcbeOYzBb+MtLQZ2XiH2a/JJhfaCh6nc62w1iA2NOicJai3kF38fBA0Wgc+l+CquC+I0VNYTn7+XK2N23axJYtW7h8+bJFjWxbu9KOqJQ7Sps2bVAUxaRcmNOJtybukLv+tqQUk1NRUWvIuRZCWOQttZw8mfTERD7r3Ru9VssXw4bj4uFBVrYAoEqjYfyFC7hkpeExuJHDO9j5ydGRSCSSPHH3BJ3OurhjbiqGok1NRcEQzePQ7pCLq0EMsiQjo4gkJZy8HF4jph3hAiQrLQ29VmvdQVYU5xb+skuCRYwaxYFFi6xeo9JoiBg9GkWlyle5QWcpyLSZAttBz+cCYlZaGkKrdai+OXpdiXK4CwOnEzJee+01Bg4cyKVLl6hZsyYRERFmP02aNMmzj2HDhnH+/Hmr5y5evMiwYcPsXv/XX39x5MgR/vrrL77//nsqVqzI4MGD+fzzz/n999/5/PPPGTRoEBUrVuS7775z9iVKSip6PcTHGMJipg6Ej2Yj4mNACH6cPJl98+ZxbONG9s2fj6IoHF6x4q4BF8LkaMNdo+9WsUqBKfRKJBKJswghDEJCB1Io1/1JhFHc0VbYpFqD7okojm7aRFZaGlmpqY7tDmVlGioySCSSBxa7Dm8OTDvCBYkQpCclETFqFCqNuX1y8fBweuEv7cwJvENC6LFqlUV/Ko2GHqtXG+ppK4rNcoPG3Wh9bhFHG8fvW/RLQd0nvyVlhSAtKSnP/yX0GW0QFJbYxemd7dWrVzNnzhymTcu/dP6aNWsYPXo01atXtziXkJDA2rVrWb16tc3rGzVqZPq9b9++DBgwgDfeeMOszeOPP86kSZP44IMP6NixY77HKnlwMeZeNB0zBq9y5awqKiprFiGmr6Tnxx9z/ehRrkVH58voSyQSyf3Gmppw07Fj8QoMQckt7giGmrTTV6EEhnBw2TIQgmObN9N4+PA8d4cyYi5RUJZOKohLJEVEDofXkR3hgiYlPp6A2rXpsWqVWc64swt/qow0dLeTUFQqwgcPpnr79hxevpzEc+fwCw0lYvRog6Odx2uwtRttc5c6H9Ev+QovLwZRNinx8XjWrm0pFAxmJW0LShytJJOvMPLmzZvf841t5W+fPn2acuXKOdzP999/z/bt262e69Spk6n2tqT0Ycy9aDZ2rF1FRWVuFPombWg+fjxfDh+eL6MvkUgk1igMwZW81IRHR0cTYE3csc9ohF95dgwZwrXoaAAOLl1K+ODBPL5ypUWuZM7docQ9OwvM2ZblCSWSosOWwwuWO8IFjTYtzaaDLIRwaBEg98KfolLhHRJC5IwZqFxc0GdloWg096VeuCPcj6oMhYE2Lc1mffOcgsCSvHH6XYqKiuLTTz91+kYffPAB4eHhhIeHoygKAwcOND03/tSqVYshQ4Y4tRNdpkwZdu/ebfXcDz/8QJkyZZwea364ceMGo0ePpkqVKnh5edGgQQOWL19u0S42NpY+ffrg7e2Nv78/UVFRBVZzXGIFRcHD1zdPdV71FytpOGCA4XmO3Z7coUlGchp9iaQkIm1awWBc9LsTF1dgfdpTEw6sVw//GjU49c03/PPtLrRDp8C8DWifeQ1RrgKndu7k+NatpvbXoqP54tlnCR88mPEXLtB62jQaDhxI62nTGH/hAuGDBqGoVOhuJ9kcz30R85HiZZICQNo1c4fX3t98YWJykGfOpPeGDUTOnImLp6dDYeFpZ09a9qcoXDt6lAVeXlw7erTYONolguz65oyYCfM2GB4DQx5YRzs5Lo69s2aRXID/k/PC6Z3tuXPnMn78eFq2bEn79u2tlu168cUXLa4LCQkhIiICgGPHjlG7dm0CcyX+u7q6UrduXYYPH+7weMaMGcOMGTO4du0aPXv2pHz58ly/fp0dO3bwySefMHv2bGdfYr548sknOXHiBAsWLKBKlSp8++23PPfcc6jVakaMGAFAVlYWjz32GACffvopqampTJw4kYEDB/L111/fl3GWNpxRVNR4eqLx8ECblubwbs/NP3/nYAGpT0okxQlp04opeagJGxV9rYk7NhgwgJ7r1jH+wgWLkEtFUbJ3h6ajcnFFn11hwZFJ630ph1MMwiolDz7Srt0lp8Or0mjQa7UoavV9c1QVReFqdDQft2rFs/v3E9ykCShKnmHhuttJFhVljOTU1pHYx6nwdkWBM9EQ1QpW7oc6eetzFVeKoryY0872Tz/9xNq1a0lOTua3336zOG/L2X7iiSd44oknTM9nzJhhNWfbWaZNm4avry+LFi1i7dq1JpXy4OBgli5dygsvvHDP98iLq1evsmfPHj7++GOeeeYZANq1a8cff/zBpk2bTAZ869at/Pvvv/z333+mWuV+fn489thjHDp0iGbNmhX6WEsaeYVoOqOoqE1NNfyTURTTbk+vdesI7dDBptHP1LhbDQ+ytdMjcxUlDwLSphVf7KoJW1P0zSHueGzTJuKPH6fH6tVEzpqFSq22cKoTvt5C4NsjueFghQVA7jpLHgikXbPEqsN7n8ntINtbBDAJQvYaRLmsTKsViJyhNM/J8hXeLgWB84XTMQBjxozh4Ycf5ujRo2RkZKDX681+HCmz9fHHHxeIo21k7NixXLp0iQsXLvDrr79y4cIFLl++fF8cbTCsggL4+PiYHffx8TGVJwPYuXMn4eHhJuMN0LFjR/z9/fn222/vy1hLGnmGaDqiqFinCfohr6By0fBaSgpT79zhiTUfUz87rNy429N7wwYiZ0zHOyQkzxArWzs9xlzF+7WaJpHkB2nTii/21IQdEXe8Fh3N74sXG8r6tA/gxtdbLCerzk6o8qt4K5HcR6Rds01x2xFWsjc9Fnh5cS062uBo6/Ukx8Tw85y5bBs4kJ/nzCU5Jgah1+f7PrbmZAXphJdmh15iwGln+/Lly0yePJn69evj4uJSGGPKkw8++ICMjAyzYyqViipVqtC8eXOqVKmCKpczdPToUX766adCGU/lypXp1KkTCxYs4Pjx4yQnJ/PZZ5+xa9cuxowZY2p34sQJ6tSpY3atoijUqVOHEydOFMrYJAYxEAJCDIqKuR3uLoMQaw+hpNxCtXIuTB2IZu1CGnXuQK2uXVFUKhRF4cbXW+BRL+sTU4mkhFHSbFpB5mgVRb6XGXbK5zhdyuvWjcIcqZxkSooVJc2ulQayUlPNBCGXVa9+t0zrvHksq16d6PXrEXo9Gg/bEo42S3nZoCA3RuQmi8RpZ/vRRx/l5ElLcYL7yZo1a6hatSovvvgiv/76q2m1MjexsbGsWrWKDh060KJFCxITEwttTNu3bycoKIj69etTtmxZBg4cyJIlS+jTp4+pTWJiokWOOxjCk27evGmz74yMDG7fvm32I3EMF09Pk6Ki6DIY8dUFGD4NOg+EV95DzF4H321Aebw6rJoH32+EVfNQelRH2bneUJubbEN9LtVhQy2RPOiUJJtWkCJlhSF45iwp8fHWhYSE4N/PPqPJiBHFQtxRTjIlxY3CsmtynlZ42BOE1Gu1fDl8OMlxcXY1I4wh0/oHTBFcUjJwOmd7wYIFDB06FFdXVzp06GDVIPn7+xfE2Gxy8OBBduzYwbJly3jnnXdwcXGhVq1aBAYG4ubmRlJSEufPn+f69ev4+/szdOhQ1q9fT4UKFe753kIIs1B5RVFQqVQ8++yznD59mk8//ZTg4GB++OEHJkyYgJ+fHwOMKtf5ZOHChfdN6O1BxMXTUihDCEFQeDivpaSg12oRej2nvvmGtBsJNBg6BY2np6E8xPUrKDZKgjFnuKHcQWCIzdwWuXMjedApzTatMMpy3Q/slc+p0aULXoGBeZb1KchSXhJJceN+27XiYtNKHHkIQoLB4T68fDmRM2fe58FJJI7htLPdtGlTAEZnq5daw5G87XulV69e9OrViwsXLvDjjz/y559/EhcXR3p6OlWrVqVTp060bNmSNm3aFGi4+88//0zbtm1NzyMjI5k4cSJbtmwhOjqahg0bAtCmTRuuX7/Oyy+/bDLgfn5+3Lp1y6LPxMREKleubPOeU6ZM4aWXXjI9v337tt32pQULhzpbKEPo9STHxnJ4xQpunj1Li4kT8Spf3lyd19OTV65fR7PjI7slwdi23K4CrqwXK3nQKc02rShUSXNibaEQHFeJtScklJeib5aisXoPpxRqJZJiyv22a8XFppU07ApC5iDx3DlUGo3dUHKJOXKz6P7htLO9evXqAstZFUJw6tQpbt68ib+/P7Vq1XK672rVqhEVFUVUVFSBjCkvIiIi+OOPP0zPvb29+eKLL1Cr1TRo0MCsbePGjVm5ciWpqal4enpSp04djh49atZGCMHJkyft1hZ3c3PDzc2tYF/IA05uh9o/LIymY8fiFRhI9Pr1d3d0FIUeK1daqPMiBBpPT4dKgqFSG8oeSCQlkJJk0x6UnWpbC4VG7KnE5nbQbakJmxxxG6W8bN0jXwq1Ekkx437bNTlPKxzsCULmxC80FL1Wa0gblDiE3Cy6fzjtbBvLJdwr77//PnPmzCE+Pt50rHz58syYMYPnnnuuQO5RGHh7e/Pwww+bHatatSo6nY7o6GgaNWpkOn748GHKly+PZ/bkqEuXLqxfv57Tp09Ts2ZNAHbv3s2NGzfo2rXr/XsRDzhGoYzcIZJ+YWFUb9fO7Lgtdd6stDS0qaloHCgJhl5ncNAlkhJISbJpRb1T7QjWFgojRo2yqHKQ26nOy0G3piasKEr+SnlZQe54Sx4kSpJdK9XkEIQ8sGiR1VByow5FelLS/R+fROIATgukFQQffvghY8eOpX379uzYsYNff/2VHTt20K5dO8aOHcvKlSuLYlj5pmvXrlSpUoW+ffuyfv16du/ezauvvsqaNWvMyo/17duX+vXr06dPH77++ms+++wzhg0bRrdu3UpU3cZ7IS+lXyGEdaEMRaF+v34c+egjs+M21XmF4Ojmzeh6DLddEkytgT6jQcnHn4msOyt5gJE2reBxVFE3p1MdFB6OEOJuyZvZsw0lb2bPdq7kTQHURpUCQ5IHHWnX7g+20mOsoUqKJzLY8GgLm4KQmOtQpMTb7qM4IsO4C5cirxySA4d2tsPDw/n0009p0KABDRs2tBvqrSgK//zzj93+lixZwrhx41i6dKnZ8R49ehAYGMhbb71138LCCwJvb292797N1KlTefXVV0lKSqJ69eosXryYsWPHmtq5uLjw3XffMW7cOJ566ik0Gg29e/dmyZIlRTj6wiOvkE5rBjmvnSmh13N4xQqL1U2b9WWF4NjmzTQePtxiVfTg0qU0GjwYMX0lytwo89xttQZmrjY4y/kJITfWnZVIHkCkTSt48lLUPbtrF+GDB5McE2Pa9a7csiVNn3vOaiTPgUWL6LFqFeGDB8s8RYnEAaRdK1zyir6xhupWAm1CIP5Wgs029gQhc+pQPGgh5DKMu3ApTpFuDjnbEREReHl5mX6/15zt8+fP0717d6vnunXrxvLly++p/6KgRo0abN68Oc92FStWZNu2bfdhREWPrS96fgyyEZVabVUow1592YNLlxI+eDCPr1zJV1FRpgnrtehoPn/2WXqtXYto1gFl23JDjnbFUMOOdkAwqIok+EMiKXKkTStA8lDUDQoP54mPP+afTz4xs1GhHTty69IluyVvqrdvb7fkjUQiuYu0a4WDI+kxzux4WyMvHQqJpLjikLP98ccfm35fs2bNPd80ODiY3377jQ4dOlic+/333wmWIRUlFkfzFXOTHBfHX6tX8+irr1oXyrCzg30tOprPhwyh57p1hHboYLEqiqKgBIYgoqajuLgisg24FEWTSCQFQV6Kus0nTCA5JsbM0UZRaNC/v7m4Yy5kyRuJROIM9+rw5iZneoy16Jt+27dTq1u3fG+w5KYgdSgKGhkWXjQ8CMKoTm/bDRs2jPPnz1s9d/HiRYYNG5ZnH8OHD2fu3LlMmzaNv//+m7i4OP755x+mTZvGvHnzHqgQconjOJKvaC0cUgiBV2AgradOBZWKiFGjLPJ2wLCD7V2xotW8nuNbt3Lm++/xDg4mcsYMem/YQOSM6XedfEXh+v497Avz4vr+PdLRlkgkTmEvP8yuom62U/3XqlVmE1WbqTG5uF8lb+REUiJ5cLGmBVEQ2EuPqde3LzU6dyY5Njb/ehO2KAAdioLGGBZeXB2+kooxivZOMcjNtoXTzvaaNWvMFMRzkpCQwNq1a/PsY+rUqbzwwgu8+eabREREUKnS/7d353FRVe8fwD8XmGEZEBhAQFFcwQVBxVRIxQXNpUxFTTG3LLX8mpa5lQmmaX01s0zLfu6morjmvuIWWNryxV1LMBdUQEBREBie3x82N8ZZmIGZYRie9+vlq+bOveeeOwMP95x7znP80LJlS8yfPx/jx4/Hhx9+aGi1mIXTmtgM/w6HfJSWpjYc8vnEQGe//VZrooz0ixdx6/RpBL/+OiakpqLDjBloFh2NDjNmYEJqKgJ69oRgY4PM3ZuBdjJk7o5XW24n4foTTgDEAFhWcg1m+XT+wS+RUff5uKVrxQRtU2NKMteSN3wjyVjlVNYEi6X+DfxneoymPDrewcHos3Ytzm3YoPMBi201N4OvR7kyQjGvjMAqCYOX/gKgdfjHtWvX4OHhodfxX3zxBT788EP8/PPPyMrKglwuR+vWrfU6nlU+2hKbKT0/HFLb0KTzGzfiVlIS+qxZozNRhkuNGoiIiYGNnR2Ki4og2Nqq/txaYK8osyyWlFyDVW4SJyc8Tk+HZ2Ageq9YoRLTdK2YoG1qjBIvecNY1aTv0FldQ7xLS7BY2t9AXdNjNE6N+UfJfBOO9QP1veR/j/9nZYRAfjDCKgm9Gtvffvstvv32WwDPGsrR0dFwfO6XMz8/H6mpqRgwYECp5a1duxa9evWCh4eH2pqFDx48wO7duzFs2DB9r4FZOMHGRmtis5JKDofUNTTp3Pr1yLh0CSNOnNDaoBYEAXeTk7GqfXuMPHkSvi1bmuz6GGPWxxhzG59PBglB0JhRl4g0riOrLbkjoLrkTcaVK+WuK2Os8tCnM1ifEYVlTbDo7OuL8ClTNE+PMSTfxMyPDT43Y5WNXo3tGjVqIDQ0FABw/vx5BAYGwuu5X06pVIrGjRtj1KhRpZY3cuRIJCUlaXyKnZKSgpEjR3Jj20pInJxAxcUoVij0Hg4p2NjozNwLAGm//YafPvsMETExmCuTaW1QFz5Rf4LtGNAUqQ0j4BnQtGwXxRizWuVZLUGlHB3JIDWNvJE4Oqo99b6XnIydI0eiz5o1GpM7VtYlbxhjpmfoiEJDuPj6omNMjMaOQoPyTUikgD0vXWhJOD+H8enV2H711Vfx6quviq8//vhj1KtXr8wn1ZWYISsrCy4uLmUum1mG529YhX8Sm2kbDunbsiVenDYNAPBhbi4A6P0k3NBEH85Nm8N54zH17RxgGKvSyrpaQkmlZedVDt3MvHYN/9eq1b8dhVqeeoeOHQtBEEqfGsMYs0plHWVj6IjCslDGppIdhQblmygsgM1T7iy0JLz+t/EZPGe75DJgSk+ePMGdO3dQv359rX/89+3bh3379omvv/jiC3h7e6vsk5+fj6NHj6J58+aGVotZEE03rC/85z9qAVmp2ZAh6LNmDXL/mYP04Pp1vLpypdkTA3GAYaxq0reBrE+DW9cUmOeHbj4/8qa0fBM8NYaxqqO8o2wMGVFYnvsowcZGraMw4/JlnQ9YlPkmnt7+G+Z4rs0PU1hFMrixvWDBAjx+/Bgx/ww7OXnyJHr37o2HDx+ibt26OHDgAOpr+OW+evUqdu3aBeBZT9jJkydhb2+vso9UKkVQUBDmzp1blmthFkDXDeuwI0fUArJfeDheePtttWPqRUZaVGIgDtSMWS99G8guNWroLuif7Ly6psCUNnSztHwTmqbGMGZulWFt28rMGKNsShtRaMz7KI0dhTY2Gh+wlMw3kZWwzyyNbX6YwiqSwUt/LV++HH5+fuLr999/H02bNsXOnTvh6empddmuCRMmICUlBSkpKahduzb27dsnvlb+u3LlCnbs2IEmTZqU/YpYhSktGcfaLl3wOD1dDMj91q9Hq7ff1niMcs3sV5YvV1sqp2SgJiKzNIJ52RvGrJSO5WuUlA3k0pbK0ZWdtyR9hm4aq1HNy+QwU6gMa9tWVsqHFrqWzNJn2HfJId667qMea1nO11CCIOBecjLmymS4l5wsPvHWtBRr8JAhEGxsoHiYbZRzM2bJDH6yffPmTTRo0AAAcPv2bfz66684fvw42rdvj6KiIrz99tullpGSkmJ4TZnF0ycZx5lvvkFEbCzuJSdjVYcOmJadrfGYe8nJ2DFsGPqsXYu6nTvjt++/15gYSOblxb2VjLEyM6iBbGsL6BjGWZiXpzk773PMtTY2wMvkMFaZGDuDuKYh3qZOsFiyo1CvpVgZs3IGN7YdHR3x8OFDAMCRI0fg7OyM8PBwAICbmxtycnKMW0Nm8R6lpeH3lSvR4aOPDLthJdJ5k3s+Lg7pFy+i+1dfISI2Fja2thyoGWNGZVADWaEAdCVkJEJ+drbZhm4yxqyLKTKIV3SDl5diZVWdwcPIW7dujc8++wx79uzB/Pnz0aNHD9ja2gIA/vrrL9SsWdPolWSW4VFaGo7FxuLRc8PGctPSkPDxxwbfsOpzk3svORkpR44ARDjx6ad4nJ6u9x8InmfNGCtViQby80MtlZQN5NLmSkqcnMSpMuYaugkYN9Zx3GSs4pgqg7jaEO8KeGBh6NQYjkXMWhjc2F6wYAHS0tLwyiuvIDc3F59++qn43qZNm8Sn3Mz66JqjJXF0NPyG1ZCbXFtbdPjoI4PmTPM8a8aYPvRtIGu7QS2ZNdijYUNxGS9dcxWNOXTTmLGO4yZjFcfUGcQrU4JFjkXMVMq6nF5ZGTyMvEmTJrh+/ToyMzPh4eGh8t4XX3wBHx8fo1WOWT5N62mXln2y5A3r4/R0eAYGGnQMY4wZU1Fenl5zGzXRlTWY5yoyxgxhzgzijFU15V1Or6wMbmwreXh4gIiQlpaG6tWrw87ODs2aNTNm3ZiF03ST2WbiRINuWMtzk8uYMfASNkxJ37mNEicnvdfmzrx2Df/XqhXPVWSMlapkBnFdDyAyrlypwFoaj5Onp8p/mQXz9AXeinn230rIGMvplVWZGtsHDhxATEwMfv/9dygUCvzyyy9o2bIlRo8ejYiICAwZMqTUMi5cuIDZs2fjzJkzuHXrFpKSktCyZUt89NFHaNeuHXr06FGWqjEzKO0mc+C2bQjo1cugJzoVncCDVV3K6RGBvXtzY5vpTOaj0iv+zx9ufbIGV6ahm6xq4k5Hy1ERGcQrijKrur7Z1VkF8vQFxsSa/DTGHuKtb8e4KRvcBpe8ceNG9OzZE3Xr1sXSpUtRXGLd0fr162PVqlWllnHo0CG0aNECN27cwJAhQ1BYWCi+J5FIsHTpUkOrxcxI5uWl8yZzc79+eJSWhvzsbIOScVhCAg/GGAPU5zZScTEe3b6N47NmYeuQISguLNQra7CDm5sZams4Tj7ESuJ1sy1LyQcQ/davR0RMjMmewHEsYJagZGe2d3Aw6LmVP7QlaS5NaW2WH0eNwqO0NPF8ppjPbfBv7ezZszFx4kRs3LgRI0aMUHmvadOmOH/+fKllTJ8+HYMGDUJSUhJmzpyp8l6LFi3w+++/G1otZiYSmQwObm5632SW5YkOPwVijFkSZa/4V3Xr4sScObiyYwfs7O1NkjXYXDj5EGOWzVwPIDgWsIqm0pkdHY3js2bh0e3boBIPdMvUISgIerVZLu/YUWpjvzwMHkZ+/fp19OzZU+N7MplMr3W2z58/j3nz5gGAWvBwc3NDRkaGodViJib+EObmAkClvslkjDF9EZFar3hhXh4KnzwxadZgY+GnVoxVboY8gKjK0wE41lVOphziLXF0hI2dnc42S9CgQWg1ZgxyTTif2+ASfHx8cPnyZY3vJScnw9/fv9Qy5HI57ty5o/G9q1evwpd/USzK88Mni54+rRQ3mYwxVl5UXKzeK06E85s2ocWoUaUuW1jRWYP5qVXVU9bhlqzyq8rTATjWVT6aOrOVNA3xNlRhXh6Ki4q0tlm8g4PRZ+1aJK9fL45cO79xI07MmYOv6tZF8g8/qDxdLyuDG9vR0dGIjY3FkSNHxG2CIOD8+fP473//i9dff73UMvr06YOYmBhcKZFNURAE3L17FwsWLEBUVJSh1TKZpUuX4uWXX4aXlxcEQcCWLVu07rtnzx6Eh4dDJpPB3d0dnTp1wq1bt1T2SUxMRFhYGBwdHeHv74/PP//cqEMVjO354ZPnN2zAuQ0bKsVNJmNMXVWNadrmYemanyXY2MDG1lZjr/jPixbBpWZNvLJ8uc61uR+np5ev4owZqCo2uKpqXGOsMtPYmV2CclpqmRu8RMjPzkbomDEa2yxtJk7Eo9u3sevNN03S2FcyuLEdGxuL8PBwdO3aVVxTu0ePHggJCUGrVq0wbdq0UsuYN28evLy8EBwcjDZt2gAA3njjDQQGBsLV1RWxsbGGVstk1q5di4yMDK1D55V++OEH9OvXDx07dsTu3buxZs0atGrVCvn5+eI+f/75J1566SX4+vpi9+7dmDhxImbOnIkvvvjC1JdRJtp6nPgmk1UVpkiUUdGqWkzTNg9Ln/lZVFyMYoVCY6/4veRk7Bg2DM2io/Hu9evoMGMGmkVHo8OMGZiQmorgIUOsKmswY5asqsU1xqyBts7skrKuX4eNrS1QxpwFj9PTxeX0VNosgoCg117D7ytWmK6x/w+D52xLpVLs3LkTCQkJOHToEDIyMiCXyxEZGYnIyEi9ynB1dUViYiJ++OEHHDp0CHK5HHK5HOPGjcOwYcMglUoNvhBTSUxMhI2NDVJTU7F27VqN+zx48ADjxo3DokWL8Pbbb4vbe/furbLf/Pnz4eHhgbi4OEilUnTp0gXp6en49NNPMX78eNjb25v0WgylrcdJeZPZZ+1a1O3cGb99/73GpSkc3Nx4/gyrlFSWeCoqAhFZTXZ8a49pJTtINK2r2WbiRDi6u+u93qZgY4PQMWNw6rPP1GLh+bg4ZF69ihEnTvCyhYxVIGuPa4xZI22d2SW516uHYoUCKOPT5aK8PI3L6XkEBkLi5KR/Y78cyrTONgB06tQJnTp1KvOJJRIJRo4ciZEjR5a5DHOw0WNi/ObNm6FQKDBq1Cid++3btw/9+vVT6UwYNGgQ5s2bh6SkJHTs2LG81TUqXT1O5+PikH7xIrp/9RUiYmNhY2urdpOpnD9jCE5wwSqapgaaMRNlVDRrjWlqHSQakq54Bwejw8yZ+N+6dWrDxkomYymZ2FEQBLFX/PlRPjZ2dmgzcSIkjo7IuHIF/9eqldra3Iwx07PWuMaYNdPVmQ38Oy21tHsvfaaJlVxOT9kxbkhjvzwN7gq5c3zxxRexdOlSpFvJMOPTp0+jUaNGWLNmDfz9/WFnZ4fmzZtj37594j6PHz/GzZs30ahRI5VjGzVqBEEQtCadq0il/RDeS05GypEjAJHRlqbgBBesotg5OqrnKDBBoozKoLLFtOeXDbmXnKxxCoy+87NkXl4q7yl7xSekpuocLs7LFjJmuSpbXGOa8UMZ61GyM1vXtFRtbQtDp4mpLaf3T2O/tBxU5X3QUiGNbV9fX3zwwQeoWbMmXnrpJaxduxaPHj2qiKoYxd27d3HlyhV8/PHHmD17Nvbt24c6deqgd+/euHDhAgAg+59kYW5ubirHSqVSODk54cGDB1rLf/r0KR4+fKjyzxz0/SHMz87mm0xW6cm8vEyaFbMyqUwxTa2DJC4Ono0aqU+BMWB+lsNz1wSo9or3W78eETExVjPagbGqwJRxraLu06oifihjXfTpzNZE09rceQ8e6LVmt7LNUt7Gvr4q5C5hy5YtuH//PpYvXw47Ozu8+eab8Pb2RlRUFLZu3YqnT5+avU5EhKKiIvGfQqHQ+9ji4mLk5ubi+++/x7Bhw9C1a1fEx8fDz88Pn3/+ebnrNm/ePLi6uor/atWqVe4y9aHvDyERcS8jq9wEAQ5ubqbNimlmVSGmaUriKHF01DgPS9v252Vdvw4bOzuVoeRKar3iPC+bMbOy1LhWUfdpjFkDQzqztY1CvPLjj7CvVg3/W7dO5+jE5/+2l7Wxb4gK65J3dnbGsGHDsGfPHqSlpeHLL7/EgwcPMGjQIHh7e5u9PsePH4dEIhH/denSRe9j3d3dAQCdO3cWt0kkEnTo0EHsLVX2kubk5KgcW1BQgCdPnkAul2stf/r06cjJyRH/3bx5U++6lZc+P4QyLy+Dexl5GBCzJBJHR9jY2ZklUYa5VIWYpimJY+E/w7mfnwKjbfvz3OvVQ3FRkc4s4jySh1kCc6ynrescFbFag6XGtYq8T2PMGujbma1tFGJZp4kBph+5VuYEacbk4eGBF198ETdu3MCVK1dw7949s9chNDQUZ86cEV+7uLjofWzTpk21vqdcTkImk6FWrVpq832uXLkCIlKbH1SSvb19hWa/1JRUoLzZdsuSPI0xUynMy0NxUZFZEmWYS1WIaRqTOBLh/KZNaDFqlGrSFW3bS5ZXYmqMqenqcOTOSKYP5Xragb17m2xIraZzVORqDZYa1yr6Po0xa6GzM/ufUYjHZ83SOE3s1Lx5pY5OjIiJ0VK0gLvJyVjVvr3RE52WqcmuUCiQmJiIzZs3Y+3atWr/9PXXX3/h008/RbNmzRASEoLVq1dj4MCBSExMLEu1ysXFxQWtWrUS/wUGBup97MsvvwwAOHz4sLitoKAAx48fR2hoqLitR48e2LlzJwoLC8VtmzZtgpubG8LDw41wFabDwyeZVSNCfna2WRJlmEtViGnakjj+vGgRXGrWxCvLl6t8n9q2A6pTYx6bIXmnrnmH2t7jRjiraPrMhzSlqhDXGGOaaRuFaIxpYkqmGLlm8JPt3377Df369cPNmzc1JgoSBAHDhg3TWcbChQsRFxeHX3/9Fa6uroiKisJXX32Fjh076rV8gzmdPXsWqampYub006dPAwC8vLwQEREBAGjZsiWioqIwevRoPHjwAL6+vliyZAnu3buHyZMni2VNnjwZ69evx+DBg/HOO+/g3LlzmD9/Pj799FOLWltcFx4+yazV4/R0eAYGal3iyViJMiqaNcU0bcuG3EtOxo5hw9Bn7VrUi4wU19V0r1cPTx89QsjQoWrbQ8eOffb9/pNZ3FiM2UDmEUGsopScJ/l8fCy5bF5FdUZaU1xjjGmmbRSiMaeJmYLBje23334brq6uWLNmDZo0aVKmwDNz5kz07t0bH3/8Mbp37w6JRGJwGebyzTffYM2aNeLrL774AgAQERGBY8eOidvXrFmD6dOnY9q0aXj48CFCQ0Nx+PBhNGvWTNynQYMGOHjwIN5//3307NkTXl5emDVrFiZNmmS262GMaVaUlyfmKKjbpYvWhlhlZ00xTdca2Be3bEHQkCEI6NlT4xQYY0+N0YYbyMwa6LNaQ90uXZ7Nc6yADklrimtVjoP55/6zSqrEKERLnib2PIMb2xcuXEB8fLzYU1gW9+/fh1MFJNYoi9WrV2P16tWl7ieTyfD111/j66+/1rlfeHi42OPKGLM8pshRYEmsLabp00Fy948/1OZhmXJ+FmNWRds8yRLE+ZCxsRAqIKeFtcU1S2HSJHhEQINg4NRjoKjo2Wsr+TvLTEfbKMSfFy1C8Ouv45Xly9WSpJUcnZhx5YrZ62xwYzsgIKDc6wdWloY2Y6xq4oZY5aJPB4m2KTDGmhrD86mZpXuUloZfly1D6JgxBiVUs8bVGphuJk+CV1wMZNwBti4Dbv0F+NUHosYAnjUAKxhBxkxH1yhEc08T05fBje0vv/wSEyZMQEhIiM5ss8+rVq0aEhISEBoaChcXF52/tIIgqC27wCoe30yyqoZzFFQeFd1BwsPFmaUra/Zya1ytgWlHxcV4dOcOfl22DA/++gvy+vWfddAYYSkkO0fHZw3tfT8An4wCFCVGSqz+DJi5AujxOje4Wal0dbJb2uhEgxvb//nPf3D37l0EBQWhRo0a4pqESoIg4H//+5/acZMmTYLvP8F90qRJVjMksyrhm0nGmKXjDhLGjEzbPMkSKttqDUyz8ibBK+2hjMzL69kT7ecb2sCz15+MAl7oAnjV4CHlrFTaOtkruvP9eQY3tkNDQ8vUUI4psa5ZLDfYGGOMMcYqhaqyWkNVRkTlToKn86GMIMDRzQ34v1nqDW0lRRGw9TtgTCwg8AgJph9TTxMrL4Mb2/okoChN586dsXTpUo3D0K9evYqxY8fi6NGj5T4PY4wxxhgrn6qyWkNlYuzkZVRcjF+XLTNZEjyJoyMEO7tnc7R1uX0dsOGGNrMeBje2jeHYsWNak6w9fPgQJ06cMHONGGOMMcaYLta+WkNlYKrkZTa2tiZNgleYlwcqKoLgp3vuP2rWA4oV3OBmVqNMje3s7Gxs2bIFV69eRX5+vtr7pS2pAEBrYEhMTET16tXLUi3GGGOMMVYG+j4ptbT5kFWJKZOXFSsUpk2CR4S87Gw4RY15lgxN01ByWzsgaiwg8CgJZj0Mbmxfu3YN4eHhePr0KR4/fgwvLy88ePAARUVFcHd3h6urq8bG9rx58zBv3jwAzwJ1p06dYPNcYHj69CmKiorwzjvvlPFyGGOMMcaYvsr6pNRS5kNWBXaOjnolL7NzdCzzOQQbG5MnwXucng6nwMBnWcefT5JmawfErAQ8fTk5GrMqBje233//fbRp0wbx8fGQyWTYu3cvQkJCsGnTJnz44YeIj4/XeFx4eDgmTZoEIsInn3yCwYMHw8/PT2UfqVSKxo0b45VXXinb1TDGGGOMVXH6PqU25ZNSZjwyLy+9kpfJvLzKfA7lkkmmTIJXlJf3bFmvHq8/yzq+9btnc7Rr1nv2RNvTl5f9YlbH4Mb2L7/8ghUrVsDe3h4AUFBQAFtbW0RHRyMjIwPvvvsufvrpJ7XjIiIiEBERAeDZL/Rbb72FGjVqlLP6jDGmn0dpafh12bJnN5LPLUti7EQzjDFWEQx5Sm3qJ6XMSAQBDm5uOD5rVunJy0qs/FOmU5krCZ6NzbPlvd6KAezsgKIiwNaWn2gzq2RwY/vp06eoVq0abGxsIJfLcefOHfG9oKAgTJ8+vdQyYsoZDBhjzFC5aWk4PmsWAnv3Fhvbpko0wxhj5qbPU2plx6K+yzyV50kpMw6JoyNs7Oz0S15mZwdHD49ync9sSfAEAfgzGXizPbD8JNCI5/4z62RwYzsgIAA3btwAALRo0QJLly5F165dYWdnh2XLlun9tPrPP//E6tWrtSZZ+/HHHw2tGmOM6Y2HTzLGrEFp83kHbtuGgF69VDsW9V3miR+OVLjCvDwUFxXpTF7mHRyMsEmTUKxQYEpGhsbOY2dfX0TExMD5uZFdmhg7CZ7Oc+fz3H9m3QxubA8aNAh//PEHhg4ditmzZ+Oll16Cu7s7BEEAEWHNmjWllnHmzBlERETA398fV69eRXBwMHJycpCamgo/Pz80aNCgTBfDGGOlMUeiGcYYMweJk5PO+bxN+vdHg+7dVToWPRs1QsTMmXo/KeVYWMGIkJ+drTV5WdCgQeizdi0e37uH47GxWjuPXXx90TE21qBTGysJXlnOzZi1KFOCNKW2bdvi/Pnz2LdvH/Lz89G5c2cEBQWVWsaUKVMwcOBArFixAhKJBCtWrEDLli2RmJiIwYMHY+rUqYZWizHG9GKORDOMMWZKKlNgFAocj41Vi2fewcHos3Ytzm3YgF1vvvnv+4KA8A8+0G+Zp6KiZ0mtWIV6nJ4Oz8BAteRlWr9jqHYe82gtZg0qa36dcv/21apVC6NHj8a7776rV0MbAP73v/9h8ODB4tJfymHk4eHhiI2NxbRp08pbLcYYUyORyeDg5qbX8EkHNzfzVo4xxvRAxcV4dPs2js+ahR0jR8LG1lbjU+o2Eyfi0e3bao0wEOH8pk1oMWoUbOw0P3NRLvOUn51daW9wrYFy+LWDm5uYvGxCaio6zJiBZtHReHXVKjy+d0/9O8a/nceP0tJARBV0BYyVX8nORe/g4Er381ymxnZhYSG+++47jBo1Ct26dcO1a9cAAJs2bcKlS5dKPV4QBEilUgiCgOrVq4tzwAHAz88PV69eLUu1GGNMIzFQ5+YalGiGh08yxiyJcgrMV3Xr4sScOfjfmjUofPJE/Sm1ICDotdfw+4oVGjsWf160CC41a+KV5cvVGtw2dnYYuH07XHx94eDmVmlvcK2Bcvi1MqlnyeRl/davh3dIiF6dx1RcbM5qM2Y0JTsXt0ZH4/isWXh0+3al+pk2eBj59evXERkZiYyMDLRo0QKnTp3Co0ePAAAnTpzA/v37sWrVKp1lNGnSBH/99Rc6deqEsLAwfPHFF2jWrBkkEgk+++wz1C9laBNjjOlLJRHa9et4deVKHj7JdDIkkRBj5qIxg3iJp9Ql5/NKHB0hcXLS2rF4LzkZO4YNQ99161AvMlJlmac2770HRzc3TiBpoZTJy3546SVMTk/Xr/PY1tZMtWPMeKwlv47Bje13330XXl5e+OWXX+Dm5gapVCq+FxERodfSX6NHjxafZs+dOxfdunVDSEgIAEAmk2HLli2GVosxxtRoCtT1IiPVbkxLKjl8klVNupL5cEOcVRRtGcR/XrQIwa+/jleWLxeHExfm5Wl+4l3C+bg41GrXDq3eflt1mScbG6u4wbV2TzIzS81SDvzTeaxQcIObVSqmWp6wIv6GG9w9eezYMcyYMQOenp5qa+75+PggLS2t1DKGDh2KGTNmAAAaN26MS5cuYf/+/di+fTv+/PNPdOvWzdBqMcaYCm2BurThk71XroSLry8ep6ebu8qsEnh+WCdj5qJtbrbyKXWz6Gi8+9dfz+bzDh6MjMuXETpmjM552Y369IEgCLiXnIy5Mhnys7NLvcF9lJbGCSQtQYks5aXNvefRCKyy0Xd5QkPz61TE33CDn2zb2dlpnbdz7949ODs7G1wJZ2dndO3a1eDjGGNMG22BWnlj2mftWtTt3Bm/ff+9OHwydOxYuPj6QrCx4SHkjDGLUqxQaH2KeT4uDukXL6L3ypWIiI2Fja2t+JT6+QzWgGrHovLBSWFeHhzc3HB81ixef7uS0JalHND8HTNWGQg2Nlo7F0uqLPl1DG5sR0RE4IsvvkCPHj3EbOLKNba///57dOnSReNx27ZtM+g8/fr1M7RqjDEm0hWolTem3b/6SvXG1NaWb0oYYxZJsLHRutYyAKRfvAhnHx/kZ2Vhkb8/Rp48Cd+WLRH8+uuo26WLyrzskh2LShJHR04gWckU5eWJWcr1+Y4ZqwyouFhn56JSZcmvY3Bj+/PPP0d4eDiaNGmC3r17QxAELFmyBOfPn8e1a9fwyy+/aDyuf//+ep9DEAQoFApDq1ZlKEcWPHz4sIJrwpjlKlYoYO/nh3wt799ITsb5vXvhFhyMhX5+eH3/fvg0b/7v8c7OaDVtGoqdnSvkd83FxaXKNPyNFdMe5eYi/5//ykqUZeh2xiwVOTuj8zffYO+4cSgucZ9kY2uLnkuWgGQy3L12DY+ePFH5uSZnZ7R47z1xXjbZ2uJRbq54/KPcXDx68gTZDx7ojJsAIK1ZE9kPHiA3L8/g352qEtdMfZ+mKXaV9h0b4xxGl5sLKP75L8fgKq/kz5xTbi4aRkfj8Lx5KrFOycbWFg2HDMH9mzeN9ve9LMfoE9MEKsNaDikpKYiNjcWhQ4eQkZEBuVyOyMhIzJo1S2sm8ZLLe+nD39/f0GpVGbdu3UKtWrUquhqMMRPKyclBtWrVKroaZsExjbGqoarENY5pjFUN+sS0MjW2WcUqLi7GnTt3TNJD/PDhQ9SqVQs3b96s9H8QreVa+Dosi7muo6o8AQJMG9MA/tmzNNZyHYD1XAvHNePimKYfa7kOwHquha/DMPr8jhs8jNyY9u/fjzNnzuDmzZuYMWMGateujRMnTqBBgwaoUaNGRVbNotnY2MDPz8+k56hWrVql/iUryVquha/DsljLdVgCc8Q0wHq+M74Oy2Mt12It11HROKYZxlquA7Cea+HrMB69GttvvPGG3gUKgoAVK1bo3Cc9PR19+vTB6dOnxV6HsWPHonbt2li5ciVkMhmWLFmi9zkZY4wxxhhjjDFLoldje/Xq1XBxcUH9+vW1LvulpM9wmYkTJyI9PR3nz59Hw4YNIZVKxfciIyMxZ84cfarFGGOMMcYYY4xZJL0a22FhYTh9+jQUCgWio6MxaNCgciUw27NnD/7v//4PjRs3Vss6XqtWLdy6davMZbPysbe3R0xMDOzt7Su6KuVmLdfC12FZrOU6qhJr+c74OiyPtVyLtVxHVWEt35e1XAdgPdfC12F8eidI+/vvvxEXF4cNGzbg3LlzCAsLQ3R0NAYOHAhPT0+DTurs7IzNmzejZ8+eUCgUkEgkOHv2LFq2bIkdO3bgjTfewIMHD8p0QYwxxhhjjDHGWEXTe6X72rVrY8qUKfjjjz9w7tw5dOrUCYsWLUKNGjXQo0cP7Nu3T++TtmnTBitXrtT4XlxcHF588UW9y2KMMcYYY4wxxixNuZb+ys/Px8yZM7Fw4UL07t0b27Zt0+u4pKQkdOrUCa1bt0b//v3x3nvv4aOPPsKlS5ewZ88enDp1Ci1btixrtRhjjDHGGGOMsQplcGNboVDg4MGDiIuLw86dO2FnZ4eoqCi8+eabeOGFF/QuJykpCdOmTUNiYiIUCgUEQUBYWBjmz5+PsLAwgy+EMcYYY4wxxhizFHoPIz9x4gTefvtteHt7Y+DAgVAoFFi/fj3u3r2LZcuW6d3QLigowLZt2+Dt7Y3jx4/j4cOHuHXrFh49eoRTp05xQ9uEli5dipdffhleXl4QBAFbtmzRuu+ePXsQHh4OmUwGd3d3dOrUSS1xXWJiIsLCwuDo6Ah/f398/vnnpWarN5XMzExx+TiZTIagoCB89913avvduXMHUVFRcHFxgVwux5tvvomHDx9WQI1Ld/nyZXTt2hUymQw+Pj6YMmUKCgoKKrpapfrxxx/Rpk0buLi4wNfXFwMHDsT169fV9luxYgUCAgLg4OCAkJAQ7N69uwJq+8yff/6JsWPHonnz5rCzs0NQUJDG/bKzs/Huu++iRo0acHBwQP369fHFF1+o7FNQUIDJkyfDx8cHMpkMXbt2xZUrV8xxGVUOxzSOaebAMY1jmjlxXOO4Zmoc08wc00gPfn5+5ODgQH379qXNmzdTXl6ePodpZW9vTwkJCeUqgxmuTZs21KZNGxo2bBgBoPj4eI37rVu3jqRSKU2fPp2OHj1KO3fupA8++ICuXbsm7nPt2jVydnamvn370uHDh2nhwoUklUpp/vz55rocFZ06dSJfX19atWoVHTlyhCZNmkQA6Pvvvxf3KSgooKCgIAoKCqIff/yR4uLiyM/Pj3r16lUhddblwYMH5OvrSx06dKD9+/fTihUryNXVlcaNG1fRVdMpISGBbGxsaMSIEXTo0CGKi4ujgIAAql+/Pj158kTcb+PGjSQIAs2YMYOOHj1KY8aMITs7O0pKSqqQeu/YsYP8/PwoKiqKmjVrRk2bNlXbJzc3l0JCQig0NJTi4uIoISGBli1bpvYzP2bMGHJ1daUVK1bQ/v37qX379lSzZk3Kzs421+VUGRzTOKaZGsc0jmnmxnGN45opcUwzf0zTq7EtCAJJpVJydnYmFxcXnf+qVatWankhISG0Zs2acleeGUahUBARUUpKitYAnpmZSdWqVaOlS5fqLGv06NHk7+9PT58+FbdNnz6d3NzcKD8/37gVL0VaWhoBoFWrVqls79ChA3Xu3Fl8vWHDBhIEgS5fvixuO3DgAAGgn3/+2VzV1cvcuXNJJpNRZmamuG3ZsmVka2tLt2/frsCa6TZmzBiqW7cuFRcXi9uOHj1KAOjEiRPitoCAABo8eLDKsWFhYdSjRw+z1bUk5e8GEdHw4cM1BvEZM2ZQvXr1KDc3V2s5N2/eJFtbW1q2bJm4LTMzk2QyGX3++efGrTTjmMYxzeQ4pnFMMzeOaxzXTIljmvljml7DyGNiYvDhhx/igw8+wKRJk3T+e//990stb968eZgzZw7Onj1r4HN4Vh42NqV/3Zs3b4ZCocCoUaN07rdv3z706dMHUqlU3DZo0CBkZ2cjKSmp3HU1RGFhIQDA1dVVZburq6vKUKl9+/YhODgYgYGB4rauXbtCLpdj79695qmsnvbt24fIyEjI5XJx28CBA1FcXIyDBw9WYM10KywshIuLCwRBELcpvxfld3H9+nVcvXoVAwcOVDl20KBBOHLkCJ4+fWq+Cv9Dn9+N5cuX44033oBMJtO6z8GDB1FcXIwBAwaI2+RyObp162ZxP2PWgGMaxzRT45jGMc3cOK5xXDMljmnmj2l6N7YN+VeaKVOmIDMzE23atEH16tXRrFkzBAcHi/9CQkLKfWGsbE6fPo1GjRphzZo18Pf3h52dHZo3b66ytNvjx49x8+ZNNGrUSOXYRo0aQRAEXL582ax1rlWrFrp164a5c+fi4sWLePToETZv3oyDBw9i3Lhx4n6XL19Wq7MgCGjUqJHZ61waTXV1c3ODr6+vxdW1pBEjRuDixYtYunQpcnJycP36dXz44Ydo0aKFuKSfsv7PX1/jxo1RUFCAlJQUs9e7NKmpqbh79y48PT3Ru3dv2NvbQy6X46233kJubq643+XLl1G9enW4u7urHN+4cWOL/t6sGcc0y8AxzbJwTKvcOK5ZhsoY1zimmT+m2Zmk1FKEhoaiVatWFXFqVoq7d+/iypUr+Pjjj/Hf//4Xvr6+WLJkCXr37o0//vgDTZs2RXZ2NoBnAaUkqVQKJycnPHjwwOz13rZtG1577TU0bdoUAGBra4vFixcjKipK3CcrK0utzgDg7u5eIXXWpTLVtaT27dtj+/btiI6OFv94Nm/eHPv374etrS2AZ9cGqP/8KAOfJV7f3bt3AQAffPAB+vXrh7179+LatWuYNm0acnNzsXHjRgCV93uzZhzTLENlqmtJHNMq5/dm7TiuWYbKVFcljmnm/84qpLG9evXqijhtlUFEUCgU4mtBEMRfoNIUFxcjNzcX69evR+/evQEAHTt2REBAAD7//HOsXbvWJHXWl6Zrs7GxwciRI3Ht2jVs2LABvr6+OHToECZOnAh3d3cMGjSoAmtctSQmJmLo0KF466238PLLLyMzMxOzZ89Gr169cPLkSTg6OlZ0FcukuLgYABAQEIA1a9YAALp06QI7Ozu89dZb+PTTT1GvXr2KrKJV45jGMa2icExjpsJxjeNaReCYZn4V0thmpnX8+HF06tRJfB0REYFjx47pdayy16pz587iNolEgg4dOuD8+fMA/u3pysnJUTm2oKAAT548UZm7Ymyaru2DDz5AfHw8kpOT0axZMwDP/ujcv38fkyZNEgO4u7u7Wp2BZ71ctWrVMlmdy0JXXU35+ZbXu+++i86dO6sss9C2bVvUrl0b69atw+jRo8WfsZycHPj4+Ij7KXtSLfH6lHUu+bMHPAvkAHDhwgXUq1ev0n5vlo5jGse0isIxrXJ+b5UBxzWOaxWBY5r5vzNubFuh0NBQnDlzRnzt4uKi97HKoT2a5OfnAwBkMhlq1aqlNrfhypUrICK1OR7GpOnadu7cCVtbW7U191q0aIHly5fjyZMncHJyQqNGjXDu3DmVfYgIV65cQdeuXU1W57LQNDcpJycHaWlpJv18y+vixYt49dVXVbb5+fnB09MTf/31F4B/5wBdvnxZJQHK5cuXIZVKLfJpSv369WFvb6/1feXvRqNGjXDv3j1kZWWpzAfSNK+L6Y9j2jMc08yPYxrHNFPhuPYMxzXz4phm/pimV4I0Vrm4uLigVatW4r+SvyilefnllwEAhw8fFrcVFBTg+PHjCA0NFbf16NEDO3fuFLNLAsCmTZvg5uaG8PBwI1yFZpquzd/fHwqFAsnJySr7/vrrr6hevTqcnJzEOv/vf//DtWvXxH2OHDmCzMxM9OzZ02R1LosePXrg8OHD4pwrAIiPj4eNjQ26detWcRUrhb+/P3777TeVbTdu3EBGRgbq1KkDAKhXrx4CAgIQHx+vst+mTZvQpUsXlayplkIqlaJbt244cuSIyvZDhw4BAFq2bAkA6NatG2xsbLB161Zxn6ysLBw8eNDifsYqE45pz3BMMz+OaRzTTIXj2jMc18yLY1oFxDSTLCjGLNKZM2coPj6eli5dSgBo0qRJFB8fT8eOHVPZLyoqiry8vGjFihW0d+9e6tWrFzk4OFBycrK4z7Vr10gmk1FUVBQdOXKEFi1aRFKpVG3heHN4+PAh1a5dmxo0aEDr1q2jw4cP05QpU8jGxoZmz54t7ldQUEBBQUHUrFkz2rVrF23atIlq1apFvXr1MnudS/PgwQPy9fWliIgIOnDgAK1cuZLc3Nxo3LhxFV01nRYtWkQA6N1336VDhw5RXFwcBQUFkbe3N2VkZIj7KdfRnDlzJiUkJNDYsWPJzs6OEhMTK6Tejx8/pvj4eIqPj6eOHTtSrVq1xNf3798nIqKzZ8+SVCql6OhoOnDgAH3zzTfk4uJCQ4YMUSlrzJgx5ObmRitXrqQDBw5QREQE1axZk7Kzsyvi0qwaxzSOaabGMY1jmrlxXOO4Zkoc08wf07ixXYUMHz6cAKj9i4iIUNkvNzeXxo8fT15eXmRvb0/h4eF06tQptfJ++uknatOmDdnb25Ofnx/NmzePiouLzXQ1qq5du0YDBw6kGjVqkJOTEzVt2pQWLVpERUVFKvvdunWL+vXrR87OzuTm5kZvvPEG5eTkVEidS3Px4kXq0qULOTo6UvXq1emDDz6gp0+fVnS1dCouLqZvv/2WgoODSSaTkY+PD/Xt25cuXbqktu/y5cupQYMGJJVKxT+qFSUlJUXj7wYASkhIEPc7fPgwtWrViuzt7cnHx4cmTZpE+fn5KmXl5+fTpEmTqHr16uTo6EiRkZEar5+VH8c0jmmmxjGNY5q5cVzjuGZKHNPMH9MEohIryTPGGGOMMcYYY6zceM42Y4wxxhhjjDFmZNzYZowxxhhjjDHGjIwb24wxxhhjjDHGmJFxY5sxxhhjjDHGGDMybmwzxhhjjDHGGGNGxo1txhhjjDHGGGPMyLixzRhjjDHGGGOMGRk3tpleYmNjIQgCatasieLiYrX3X3zxRQiCgBEjRhhUbnZ2NmJjY3Hx4kWV7ampqRAEAVu2bClPtctt0aJFEARBfH3s2DEIgoCzZ8+arQ6xsbFITExU2y4IAhYsWGC2emiyY8cOCIKA1NRUAGX73hYtWoS9e/eaqIaMacYx7RmOaao4prHKjOPaMxzXVHFcq1jc2GZ6k0gkyMjIwIkTJ1S237hxA0lJSXB2dja4zOzsbMyaNUstgPv6+iIpKQmdO3cuV52NrWXLlkhKSkLjxo3Nds5Zs2ZpDOBJSUkYMmSI2eqhj7J8bxzAWUXhmMYxrTQc01hlw3GN41ppOK6Zl11FV4BVHlKpFJGRkdi4cSM6duwobo+Li0PTpk1ha2trtHPZ29ujbdu2RivPWKpVq1ZqvfLy8uDo6Gjyulji52Op3xtjmnBM45hWGkv93hjThuMax7XSWOr3Zq34yTYzyODBg7FlyxYUFhaK2zZs2IDo6GiN+584cQLh4eFwdHSEp6cn3njjDTx48ADAs2EsdevWBQAMGDAAgiCIw1w0DXEpLi7GnDlzUKdOHdjb26NRo0ZYtmyZyvliY2Ph7OyMc+fOoV27dnByckJQUBAOHDhQ6rU9fPgQw4YNg4uLC7y8vDBlyhQUFRWp7KNpaJIgCPjss88wdepU+Pj4oHr16gAAIsKCBQsQEBAAe3t71KtXD19++aXaeS9duoR+/fpBLpfDyckJISEh2Lhxo1g2AEyePFn8fI4dOya+9/zQpGXLliEwMBD29vaoU6cO5syZozKUbPXq1RAEAb///jt69OgBmUyGhg0bYu3ataV+PoWFhZg4cSLkcjlcXV0xatQo5Obmquyj6Xv78ccf0apVKzg7O8PNzQ2tWrUSe0fr1KmDGzduYMmSJeL1rV69GgCwdu1atGvXDnK5HO7u7ujYsSN++eUXlfMZ8n2vXbsWLVq0gIODAzw9PdGzZ0/cuHFDfP/WrVt4/fXX4enpCUdHR3To0AG//vprqZ8Lq9w4pnFM45jGrA3HNY5rHNcsBze2mUFeeeUVPH36FAcPHgQAXLx4EcnJyRg0aJDavr/++iu6du0KFxcXxMfH4/PPP8euXbvQo0cPKBQK+Pr6Ytu2bQCAuXPnIikpCUlJSfD19dV47smTJyM2NhYjRozArl270K1bN4wdOxbffPONyn6FhYUYMmQIRowYge3bt6N69eqIiopCZmamzmt74403sH37dnz22WdYs2YNLl68iEWLFun1uXz11Ve4evUqVqxYgR9++AEAMGHCBMycORPDhw/Hnj17MGLECEydOhXfffedeNy1a9cQFhaGa9eu4euvv8aPP/6IkSNH4u+//wbwbPgRAIwfP178fFq2bKmxDosXL8bYsWPx0ksvYdeuXRgxYgRiY2MxZcoUtX2HDBmCbt26YceOHWjRogVGjBiBS5cu6bzG6dOnY+nSpZg8eTI2b94MhUKBadOm6Tzmr7/+Qv/+/dG0aVNs374dmzZtwsCBA5GVlQUA2L59O3x8fNC/f3/x+nr16gXg2R+DYcOGIT4+Hhs2bEDt2rXRoUMHXL16VeUc+nzf8+fPx/DhwxEaGopt27ZhxYoVaNiwIdLT0wEAWVlZaNeuHf744w8sXrwYW7duhUwmQ+fOnXH//n2d18gqN45pmnFM04xjGqsMOK5pxnFNM45rJkaM6SEmJoZkMhkREUVHR9Prr79OREQzZsygsLAwIiIKCQmh4cOHi8f07duXateuTQUFBeK2AwcOEAD68ccfiYgoJSWFAFB8fLzK+Z7fnp6eThKJhKZNm6ay3+DBg8nLy4uKiorEegKgPXv2qJW1bt06rdd34cIFEgSBVqxYIW4rKiqiunXrUslfk4SEBAJAZ86cEbcBoCZNmlBxcbG47c8//yRBEGjZsmUq55k6dSr5+PiQQqEQP0svLy/KycnRWjcANH/+fJ3bi4qKyNPTkwYNGqSyz/Tp00kqlVJGRgYREa1atYoA0JIlS8R9cnNzycnJiWbPnq21DpmZmeTo6Egff/yxyvYOHToQAEpJSSEi9e8tPj6eANDDhw+1lu3v70/jxo3T+j4RkUKhoMLCQgoMDKTp06eL2/X5vrOzs8nJyYlGjx6ttfyZM2eSq6sr3bt3T9yWn59PtWvXpsmTJ+usG6ucOKY9wzGNYxqzHhzXnuG4xnHNkvCTbWawwYMHY+fOncjLy0NcXBwGDx6scb+TJ0/i1VdfhUQiEbd169YNbm5uOHXqlEHn/Pnnn1FYWIgBAwaobH/ttdeQnp6u0oNmY2ODyMhI8XWdOnXg6OiIW7duaS3/zJkzICL07dtX3GZra4s+ffroVb8ePXqoZMI8fPgwACAqKgpFRUXiv8jISNy9exc3b94EABw5cgT9+/dHtWrV9DqPNpcvX0ZGRobGz6egoEBtSE+3bt3E/5fJZPD399f5+Zw7dw55eXkqn4/y+nQJDg6Gra0toqOjsWvXLuTk5Oh7Sbh06RL69u0Lb29v2NraQiKR4MqVK2q9paV930lJSXjy5AlGjRql9VwHDx5Ep06dIJfLxe/K1tYWEREROHPmjN51ZpUTxzR1HNM045jGKguOa+o4rmnGcc20OEEaM9hLL70EiUSCmTNnIiUlBQMHDtS4X1ZWFry9vdW2e3t7i3OB9KUcyvJ8ecrXJctzdHSEVCpV2U8qlSI/P19r+WlpaZBIJHB3d9dYfmme3y8jIwNEBE9PT43737x5E/7+/sjMzESNGjX0Oocuhnw+AODm5qbyWp/PB4A4x+n58rUJCAjA7t27MXfuXPTt2xc2Njbo3r07vvnmG9SuXVvrcY8ePUK3bt3g5eWFhQsXwt/fHw4ODnjzzTfV6lna960coqTrc87IyMDp06dVbjaU6tevr/MaWeXHMU0dxzTNOKaxyoLjmjqOa5pxXDMtbmwzg0kkEkRFRWHhwoXo0qWL1l9iuVyucQ7FvXv3IJfLDTqncv/79++jZs2aKmWVfL+sfH19UVhYiKysLJUgriy/NCV7SpX1EQQBp06dUgsuABAYGAgA8PDwwJ07d8pR83/PB0Dt8zbm56MsX9Pnr0v37t3RvXt3PHz4EPv378d7772HkSNH4siRI1qPSUpKwq1bt7B7926EhISI23NycuDn52dQ3T08PAAAd+7c0XqsXC5H9+7dMXv2bLX37O3tDTofq3w4pqnjmKYdxzRWGXBcU8dxTTuOa6bDw8hZmbz55pt45ZVXMGHCBK37tGvXDjt27FDJEnno0CFkZ2ejXbt2ACAGN109dQDQunVrSCQSxMfHq2zfvHkzqlevjoCAgLJeCgDghRdeAPAsCYSSQqHAjh07ylRely5dADzrqWvVqpXaPxcXFwBAZGQktmzZgkePHmktSyKRlPr5BAYGwsvLS+PnI5VK0bp16zJdh1KzZs3g6Oio8vkAwNatW/Uuo1q1ahg4cCAGDRqkkuBDU09tXl6e+J5SYmIiUlNTDa57WFgYnJycsGrVKq37REZG4uLFi2jcuLHad9WsWTODz8kqH45punFMU8cxjVk6jmu6cVxTx3HN+PjJNiuT1q1blxrcPvroI4SHh+Pll1/G+PHjce/ePUybNg2tW7dGz549AQA+Pj5wc3PDxo0bUbduXdjb2yM4OFitLE9PT4wfPx7z58+Hg4MD2rZti71792LDhg1YvHhxudeNbNKkCfr27YuJEyciPz8fderUwdKlS1FQUFCm8gICAjBu3DgMHToUkydPRps2bVBYWIirV68iISFB/OxiYmKwe/dutGvXDlOmTIGvry8uXryIJ0+eiJkpGzdujJ07d6J9+/aQyWQIDAwU/wAo2dra4uOPP8a7776L6tWro2fPnjh9+jQ+//xzTJw4UewxLCu5XI6xY8fis88+g6OjI1q2bImNGzfir7/+0nncsmXLkJSUhO7du8PX1xcpKSn44YcfVOYhNW7cGEePHsWhQ4fg7u6OunXrom3btnB2dsa4ceMwbdo03L59GzExMSo9tfpydXVFTEwMpk6diuLiYrz66qsoLi5GQkICBg8ejFatWuH999/H+vXrERERgQkTJqB27dpIT0/Hzz//jBo1auC9994z+LyscuGYphvHtGc4prHKhOOabhzXnuG4ZmIVmZ2NVR4lM1xq83yGSyKiY8eOUVhYGNnb25NcLqcRI0ZQZmamyj7bt2+nxo0bk729vZgtUVPmS4VCQZ988gnVrl2bJBIJNWzYkL777ju96unq6koxMTE665+VlUVDhgwhmUxGHh4e9P7779P8+fP1ynCpKQNlcXExLV68mIKCgkgqlZJcLqewsDBauHChyn4XLlyg3r17U7Vq1cjJyYmaN29OcXFx4vsnT56kli1bkqOjIwGghIQEref99ttvqWHDhiSRSKh27do0e/ZsMZsm0b8ZLtPT01WO0/TdPe/p06c0fvx4cnNzo2rVqtHw4cNp3bp1OjNcJiYmUq9evcjX15ekUinVrl2bJkyYoJLx8vz589S+fXtycXEhALRq1SoiItq3bx81bdqUHBwcKDg4mPbu3UsRERHUq1cv8VhDvu+VK1dSs2bNSCqVkoeHB7388st048YN8f20tDQaNWqUWFc/Pz/q378//fTTTzo/F1Y5cUx7hmMaxzRmPTiuPcNxjeOaJRGIiEzeomeMMcYYY4wxxqoQnrPNGGOMMcYYY4wZGTe2GWOMMcYYY4wxI+PGNmOMMcYYY4wxZmTc2GaMMcYYY4wxxoyMG9uMMcYYY4wxxpiRcWObmUxqaioEQcCWLVsMOu7YsWOYO3eu2vbY2Fg4Ozsbq3qlWrRoEfbu3Wu08nbs2IGlS5eqbR8xYgSCgoKMdh5jM/fnzpgl47imiuMaY5UbxzRVHNOYsXFjm1kcbQH8zTffREJCgtnqYa4AbunM/bkzZo04rlkWjmuMlQ/HNMvCMc1y2VV0BVjlQkQoKCiAvb292c/t5+cHPz8/s5+3qnr69CkkEonRPndleTY23MfHLAvHtaqD4xqrCjimVR0c0ywff5JMJ+Wwmb179yIkJAT29vbYtWsXACApKQmdO3eGTCaDq6sroqOjcf/+fZ3lrV27Fu3atYNcLoe7uzs6duyIX375RXw/NjYWs2bNwuPHjyEIAgRBQMeOHcX3lENkHj9+DJlMhgULFqido3///ggLCxNfZ2dn45133oGvry/s7e0RGhqKgwcP6qxnnTp1cOPGDSxZskSsx+rVqwEAxcXFmDNnDurUqQN7e3s0atQIy5YtK/VzXLNmDS5cuCCWN2LECJV9jh07hhYtWkAmk6F169b49ddfVd4nIixYsAABAQGwt7dHvXr18OWXX+o8r/LcQUFB2LdvH4KCguDg4IDQ0FCcPn1a7Zr/85//4L///S/8/f3h6OiIBw8eaByadOPGDfTv3x+urq6QyWR46aWXcO7cOb3K01XHw4cPIzg4GI6OjoiIiEBqaioePHiAgQMHolq1aqhfvz42bdqkdvyePXvQpk0bODo6wsvLC2+//TYeP34svv/48WP85z//QWBgIJycnFCnTh2MHTsWOTk5Guu8ZMkS+Pv7w9XVFX369EF6enqpnzOrPDiucVzjuMZxzZpwTOOYxjHNgmMaMabD8OHDyd3dnerXr0+rVq2iI0eO0LVr1ygxMZGkUin16dOHdu3aRXFxcdSgQQNq27ateGxKSgoBoPj4eHHbrFmzaNmyZXT48GHau3cvDR06lOzt7enKlStERHTz5k0aNWoUOTo6UlJSEiUlJdGFCxeIiCgmJoZkMplY1qBBgyg0NFSlvg8fPiQHBwf6+uuviYjo6dOn1KpVK6pVqxatWLGC9u/fT6+//jrZ2dlRcnKy1uv+7bffyMfHh/r37y/W4/79+0RE9P7775OtrS3FxMTQgQMHaPz48QSAFi9erLW8P//8k3r27En16tUTy/vzzz/Fz9jDw4OaNWtG69evp927d1OzZs2oVq1aVFBQIJYxfvx4cnR0pDlz5tChQ4do1qxZJJFI6Ntvvy31O5TL5VSnTh1avXo17dy5k8LCwqhatWp07949cT9/f3/y8fGh9u3b0/bt2+nHH3+kJ0+eqH3uDx8+pDp16lC9evVow4YNtG3bNgoNDSU3Nzf6+++/Sy1PWx09PDwoODiY4uLiaOvWrVSzZk0KDw+nyMhI+uSTT+jgwYM0YMAAsrOzo9TUVPHY+Ph4srGxoVGjRtG+ffto5cqVVL16dXrttdfEfe7fv09jx46l+Ph4OnbsGK1bt44aNWpEHTt2VKmHv78/1apVi7p160a7du2iVatWkZubm0pZrPLjuMZxjeMaxzVrwjGNYxrHNMuNadzYZjoNHz6cANDp06dVtnfo0IHCw8OpuLhY3HbhwgUSBIH27NlDRJoDeEkKhYIKCwspMDCQpk+fLm5/PmBo275z504CQFevXhW3rVmzhmxtbenu3btERLRy5Uqys7MT/wgotWnThgYMGKDz2v39/WncuHEq29LT00kikdC0adNUtg8ePJi8vLyoqKhIa3nDhw+npk2batwuCAKdP39e3JaQkEAA6OTJk0T07A+AIAi0bNkylWOnTp1KPj4+pFAodJ4XAB05ckTclp2dTS4uLirX4e/vTx4eHpSbm6ty/POf+1dffUWCINDFixfFbZmZmSSTyej9998vtTxtdXz+M1i8eDEBoKlTp4rbsrKyyNbWlhYtWkRERMXFxeTv70+DBw9WKW/fvn1q5ZVUWFhIp06dIgDizYOyzn5+fpSfn69y/RKJROdnzCoXjmsc1ziucVyzJhzTOKZxTLPcmMbDyFmpPDw80KZNG/H1kydP8NNPP2HAgAFQKBQoKipCUVERAgICUKtWLZw5c0ZrWZcuXULfvn3h7e0NW1tbSCQSXLlyBVevXjW4Xt27d4ebmxvi4uLEbXFxcejUqRO8vb0BAAcPHkSzZs0QEBAg1rOoqAhdu3bVWU9tfv75ZxQWFmLAgAEq21977TWkp6eX6ToAoEaNGmjatKn4ukmTJgCAW7duAQAOHz4MAIiKilK5jsjISNy9exc3b97UWb6rqys6d+6s8joyMhI///yzyn4dO3aETCbTWdbJkycRFBSExo0bi9vkcjm6du2KU6dOGVye0vOfQUBAAAAgMjJS3Obm5obq1auL13v16lXcuHEDAwcOVPlcIiIiYGNjg7Nnz4rHrlu3Di1atICzszMkEgnatWsnllFSRESEyjy3Jk2aoLCwsNRhd6xy4bj2L45rHNdY5ccx7V8c0zimWRJubLNSKYOhUlZWFhQKBd577z1IJBKVf3///bfWYPLo0SN069YNN27cwMKFC3Hy5EmcOXMGISEhyM/PN7heUqkUUVFRYgDPzMzEoUOHEB0dLe6TkZGB33//Xa2ec+bMKTXoaZKVlQVA/TNRvtY2z6U0bm5uKq+lUikAiJ9LRkYGiAienp4q19G1a1cAKPVavLy81LZ5e3sjLS1N43XokpWVpXE/b29vtevXpzwlbZ+Bpu0lPxcA6Nu3r8rn4uTkBIVCIX4u27dvx7Bhw9C6dWts3rwZp0+fxvbt2wFA7WevtO+CWQeOa6rXDnBc47jGKjOOaarXDnBM45hmGTgbOSuVIAgqr93c3CAIAj788EP06dNHbX9PT0+N5SQlJeHWrVvYvXs3QkJCxO05OTllzqA4ePBgrFixAsnJyUhKSoKtrS369esnvi+XyxEcHIwVK1aUqfznyeVyAMD9+/dRs2ZNcfu9e/dU3jc2uVwOQRBw6tQpMaCUFBgYqPN4TUkj7t27B19fX5Vtz3/X2upy5coVjeU9f/36lFceyvN98803Kj36SjVq1AAAxMfHo3nz5irJUY4fP27SujHLxnHtXxzXOK6xyo9j2r84pnFMsyTc2GYGk8lkCAsLw6VLlzBnzhy9j8vLywMAlQCUmJiI1NRUlSEpUqkUT58+1avMjh07wsfHBxs3bkRSUhJ69OgBV1dX8f3IyEjs3bsXNWrUEH+Z9VWyV06pdevWkEgkiI+PR4sWLcTtmzdvRvXq1cXhNPqWp68uXboAeNYj/Morrxh8fE5ODo4ePSoOT8rJycHhw4cxbtw4g8tq164dtmzZgitXroh/OLKysnD48GGMHj3a4PLKo1GjRvDz88P169d1XkteXp7aH77169ebunqsEuG4xnGN4xqzJhzTOKZxTLMM3NhmZTJ//nx07twZr732GgYNGgR3d3fcunULhw4dwsiRI8UlIEpq27YtnJ2dMW7cOEybNg23b99GTEyMSq8jADRu3BhFRUX46quvEB4ejmrVqmntDbS1tcXAgQOxevVq3L9/X2VOEAAMGzYMy5YtQ8eOHfHBBx8gICAA2dnZ+P3331FQUIB58+ZpvcbGjRvj6NGjOHToENzd3VG3bl14enpi/PjxmD9/PhwcHNC2bVvs3bsXGzZswOLFi2Fra6uzvJUrV2Ljxo1o2LAhPD09UadOHe0fcgkBAQEYN24chg4dismTJ6NNmzYoLCzE1atXkZCQgB07dug8Xi6XY9SoUZg1axbc3Nzw2WefgYgwceJEvc5f0siRI/Hll1+iV69emDNnDhwcHPDpp5/Czs6uTOWVhyAIWLhwIaKjo/H48WP06tULMpkMN27cwJ49ezB37lwEBASga9euGDduHGbPno2wsDDs3bsXR44cMWtdmeXjuMZxjeMasyYc0zimcUyzABWZnY1ZPm1ZGYmIzpw5Qz179iRXV1dydHSkhg0b0tixY+nmzZtEpDnD5b59+6hp06bk4OBAwcHBtHfvXoqIiKBevXqJ+xQWFtI777xD3t7eJAgCRUREEJH2zJdJSUkEgJydnTUuV5CTk0Pvvfce1a5dmyQSCfn6+lLPnj1p9+7dOq/9/Pnz1L59e3JxcSEAtGrVKiJ6lpnzk08+Ectr2LAhfffddzrLUtZj0KBB5OHhQQBo+PDhRKT5M87KylI5J9GzbI6LFy+moKAgkkqlJJfLKSwsjBYuXKjzvMryd+/eTY0bNyapVEotWrSgn376SWU/TRk9iTR/7qmpqdSvXz9ycXEhJycn6tq1q9ryHNrK01XHkpRZPs+cOVNquQcPHqSIiAiSyWQkk8moadOmNGnSJMrOziYioqKiIpo0aRJ5eXmRi4sL9e/fn06fPq3286mp7O3btxMASklJ0etamOXjuMZxjeMaxzVrwjGNYxrHNMuNaQIRkfma9owxcxsxYgTOnj2L8+fPV3RVGGPMKDiuMcasCcc068XZyBljjDHGGGOMMSPjxjZjjDHGGGOMMWZkPIycMcYYY4wxxhgzMn6yzRhjjDHGGGOMGRk3thkzsdatW2PJkiVa3//jjz8gCAKOHTtmkvN37doVn376qUnKZoxVPRzTGGPWhuMaMxVubDNmQtu3b0dqaireeOONCqvDhx9+iAULFiArK6vC6sAYsw4c0xhj1objGjMlbmwzZkKLFi3C4MGD4ejoWGF16NSpE9zd3bFmzZoKqwNjzDpwTGOMWRuOa8yUuLHNmImkpKTg5MmT6N+/v8r2OXPmwMfHB87OzujXrx/u37+vdiwRYcGCBQgICIC9vT3q1auHL7/8Um2/7du3IzAwEA4ODmjbti1+++03uLm5ITY2VmW/AQMGcABnjJULxzTGmLXhuMZMjRvbjJnIkSNHYGdnh9atW4vbvvnmG3z88ccYOnQotm7dinr16mHUqFFqx06YMAEzZ87E8OHDsWfPHowYMQJTp07Fd999J+7z+++/Y8CAAWjSpAm2bduG4cOH47XXXsPTp0/VygsPD8cff/yB9PR001wsY8zqcUxjjFkbjmvM5IgxZhKjR4+mpk2biq+LioqoRo0aNHToUJX9hg4dSgAoISGBiIj+/PNPEgSBli1bprLf1KlTycfHhxQKBRERDRgwgBo0aCC+JiJat24dAaCYmBiVY1NSUggA7d6924hXyBirSjimMcasDcc1Zmr8ZJsxE0lLS4OXl5f4+tatW7hz5w769u2rst/zQ5cOHz4MAIiKikJRUZH4LzIyEnfv3sXNmzcBAGfOnMHLL78MG5t/f41fffVVjXXx9PQU68QYY2XBMY0xZm04rjFTs6voCjBmrfLz82Fvby++VgbP6tWrq+zn7e2t8jojIwNEJAbd5928eRP+/v5qfyAAwMXFBQ4ODmrHKOuRl5dn+IUwxhg4pjHGrA/HNWZq3NhmzETkcjlSU1PF176+vgCglmTj3r17ascJgoBTp05BKpWqlRsYGCiW9/y8nkePHiE/P1/tmOzsbACAh4eHwdfBGGMAxzTGmPXhuMZMjYeRM2YigYGBSElJEV/7+fnB19cX27dvV9lvy5YtKq+7dOkCAMjMzESrVq3U/rm4uAAAXnjhBezevRvFxcXisTt27NBYF+UfEmXwZ4wxQ3FMY4xZG45rzNT4yTZjJvLiiy/ik08+wa1bt+Dn5wdbW1tMmzYNEyZMgLe3N7p27YqDBw8iISFB5biAgACMGzcOQ4cOxeTJk9GmTRsUFhbi6tWrSEhIEIP09OnT8cILLyAqKgqjR4/GjRs3sGDBAjg4OKjMDQKAs2fPwtnZGc2bNzfT1TPGrA3HNMaYteG4xkyughO0MWa1nj59Sh4eHvT999+L24qLi2nWrFlUvXp1cnJyot69e9P+/ftVMlwq91u8eDEFBQWRVColuVxOYWFhtHDhQpVzbN26lQICAsje3p5CQ0Pp1KlTZGdnR4sWLVLZ75VXXlHLrMkYY4bgmMYYszYc15ipCUREFdzeZ8xqTZo0Cb///juOHj1qlvMdOXIEkZGROHbsGCIiIgAAWVlZ8PHxwaFDh9ChQwez1IMxZp04pjHGrA3HNWZK3NhmzITS0tLQoEEDJCYmIiQkxOjlv/POO+jSpQs8PDxw4cIFzJ49GzVq1MDZs2fF4UmffPIJjh07ZrY/Iowx68UxjTFmbTiuMVPiOduMmZCvry9Wr16tlonSWLKysjB+/HhkZGTA1dUV3bt3x4IFC1TmAcnlcnz99dcmOT9jrGrhmMYYszYc15gp8ZNtxhhjjDHGGGPMyHjpL8YYY4wxxhhjzMi4sc0YY4wxxhhjjBkZN7YZY4wxxhhjjDEj48Y2Y4wxxhhjjDFmZNzYZowxxhhjjDHGjIwb24wxxhhjjDHGmJFxY5sxxhhjjDHGGDMybmwzxhhjjDHGGGNGxo1txhhjjDHGGGPMyP4fgQmBgqtR+NUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjrklEQVR4nOydeVyU1ffH38/MsIssggju4L5gSuovTXHPLXNLTU1LcSlNrbQ09902l+pbWmpqmppbu2WZprZoaYVm7juggoIi+8zc3x/DjAyzMIMgCPf9evEa5nnuc587C4d77j3ncxQhhEAikUgkEolEIpFIJBJJgaEq6gFIJBKJRCKRSCQSiURS0pDOtkQikUgkEolEIpFIJAWMdLYlEolEIpFIJBKJRCIpYKSzLZFIJBKJRCKRSCQSSQEjnW2JRCKRSCQSiUQikUgKGOlsSyQSiUQikUgkEolEUsBIZ1sikUgkEolEIpFIJJICRjrbEolEIpFIJBKJRCKRFDDS2ZZIJBKJRCKRSCQSiaSAkc62RFKM2bt3L4qisHXr1qIeikQikdwzFy5cQFEU3nrrraIeikQikThNtWrV6N69e1EPQ/IAIZ1tyQPDH3/8wdixY6lfvz5eXl5UqVKFfv36cerUKbvXZWVlUa9ePasTvKSkJAYNGoSfnx+hoaGsWrXK4vo///wTT09Pzp8/X6CvRyKRlG7u3LnDzJkz6dy5M/7+/iiKwpo1ayza6fV61qxZQ48ePahcuTJeXl40aNCAefPmkZ6ebtY2IyODF154gcDAQCpVqsS8efMs+rty5QplypThl19+KayXJpFIJBYcOXKEHj164O/vj6enJw0aNOCdd94xa7NixQqqV6+Ov78/Tz/9NLdv3zY7r9frady4MQsWLLifQ5dI8o2mqAcgkTjK66+/zi+//MKTTz5JeHg4V69e5b333qNJkyb8/vvvNGjQwOp17777LpcuXbJ6buLEiezdu5fZs2dz5swZRowYQd26dWnRogUAQgjGjRvHhAkTqF69eqG9NolEUvpISEhgzpw5VKlShUaNGrF3716r7VJTU3n22Wf5v//7P0aPHk358uX57bffmDlzJrt37+ann35CURQA3nzzTdatW8fUqVNJTk5mzpw5hIWF8dRTT5n6mzRpEj169KBly5b342VKJBIJu3bt4vHHH6dx48ZMnz6dMmXKcPbsWa5cuWJqc+DAAZ577jnGjRtHaGgoCxcuZNKkSaxYscLU5qOPPuLWrVu8/PLLRfEyJBLnERLJA8Ivv/wiMjIyzI6dOnVKuLm5iUGDBlm95tq1a8LHx0fMmTNHAOLNN980Ox8UFCTWrl1reh4ZGSkmT55sev7JJ5+IkJAQkZycXICvxHH27NkjALFly5ZCvc+dO3cKtX+JRGJJenq6iIuLE0II8ccffwhAfPzxxxbtMjIyxC+//GJxfPbs2QIQP/zwg+lY8+bNxezZs03Phw4dKgYMGGB6vn//fuHl5SUuX75cgK/Ecc6fP2/VFhc00qZJJMWHW7duiaCgINGrVy+h0+lstnv11VdF27ZtTc8//vhjUaFCBdPzxMREERAQILZt21ao47VH1apVRbdu3Qr1HllZWRbzXcmDiwwjlzwwtGjRAldXV7NjNWvWpH79+vz3339Wr5k8eTK1a9dm8ODBVs+npaXh5+dneu7v709qaioAKSkpTJ48mYULF1KmTBmnxhoTE8Pw4cMJCQnBzc2N6tWr89xzz5GZmWlqc+7cOZ588klTONX//d//8c0331jtT6/XM3/+fCpVqoS7uzvt27fnzJkzFu0OHjxI586d8fHxwdPTk8jISItQ0VmzZqEoCsePH2fgwIH4+fnx6KOPms6vX7+eiIgIPDw88Pf3Z8CAAVy+fNmsjzZt2tCgQQOOHz9O27Zt8fT0pGLFirzxxhsWY0pPT2fWrFnUqlULd3d3goOD6d27N2fPnjV7fUuXLqV+/fq4u7sTFBTEqFGjSExMdOwNl0geQNzc3KhQoUKe7VxdXU3RNjnp1asXgJn9s2fT9Ho948eP55VXXqFSpUpOjTUpKYkXX3yRatWq4ebmRqVKlRgyZAgJCQmmNtevX2f48OEEBQXh7u5Oo0aNWLt2rc0+P/zwQ8LCwnBzc6Np06b88ccfFm1OnDhB37598ff3x93dnYcffpgvv/zSrM2aNWtQFIWff/6Z559/nvLly5u9vp07d9KqVSu8vLzw9vamW7du/Pvvv2Z9PPPMM5QpU4aYmBh69uxJmTJlCAwMZOLEieh0OrO2er2eZcuW0bBhQ9zd3QkMDKRz5878+eefZu0csaUSSWng008/5dq1a8yfPx+VSkVKSgp6vd6inT37BYb5S8OGDendu7dT93fkb1ar1TJ37lyTTapWrRqvvfYaGRkZVvs8cOAAzZo1w93dndDQUNatW2fRJikpiQkTJlC5cmXc3NyoUaMGr7/+utlrz6ljsXTpUtP9jx8/DjhnA3/55RdeeuklAgMD8fLyolevXsTHx1uMa+fOnURGRuLt7U3ZsmVp2rQpn376qVkbR+aTEgcpam9fIrkX9Hq9qFixoujUqZPFuYMHDwqVSiV+/fVXm7sp7du3F23atBGnTp0S3333nfDw8BDr168XQgjx2muviWbNmgm9Xu/UmGJiYkRISIjw9PQUEyZMEMuXLxfTp08XdevWFYmJiUIIIa5evSqCgoKEt7e3mDp1qli8eLFo1KiRUKlUYvv27aa+jDvbjRs3FhEREWLJkiVi1qxZwtPTUzRr1szsvrt37xaurq7ikUceEW+//bZYsmSJCA8PF66uruLgwYOmdjNnzhSAqFevnnjiiSfE+++/L/73v/8JIYSYN2+eUBRF9O/fX7z//vti9uzZIiAgQFSrVs00diEMEQAhISGicuXKYvz48eL9998X7dq1E4D49ttvTe20Wq1o3769AMSAAQPEe++9JxYuXCjatWsnPv/8c1O7qKgoodFoxIgRI8Ty5cvFq6++Kry8vETTpk1FZmamU++/RPIgYm9n2xa7du0SgPj0009Nx4YPHy4aNGggoqOjxa+//ioqVKgg5s2bJ4QQ4sMPPxRVqlQRqampTo0tOTlZNGjQQKjVajFixAjxwQcfiLlz54qmTZuKv/76SwghRGpqqqhbt65wcXERL774onjnnXdEq1atBCCWLl1q6stoixs3bixq1KghXn/9dfHGG2+IgIAAUalSJbO/92PHjgkfHx9Rr1498frrr4v33ntPtG7dWiiKYmYnP/74Y5NNi4yMFO+++65YtGiREEKIdevWCUVRROfOncW7774rXn/9dVGtWjXh6+srzp8/b+pj6NChwt3dXdSvX18MGzZMfPDBB6JPnz4CEO+//77Z+/HMM88IQHTp0kUsXbpUvPXWW+KJJ54Q7777rqmNo7ZUIikN9OnTR5QtW1b88MMPolatWgIQXl5eYvTo0SItLc3U7pNPPhGenp7i+++/F6dOnRKtW7cWHTp0EEII8e+//wo3Nzfxzz//OH1/R/5mhw4dKgDRt29f8b///U8MGTJEAKJnz55mfVWtWlXUrl1bBAUFiddee0289957okmTJkJRFHHs2DFTu5SUFBEeHi7KlSsnXnvtNbF8+XIxZMgQoSiKGD9+vKmd0SbWq1dPhIaGikWLFoklS5aIixcvOm0DGzduLNq1ayfeffdd8fLLLwu1Wi369etnNv6PP/5YKIoiGjRoIObPny/+97//iaioKPH000+b2jg6n5Q4hnS2JQ80n3zyiQDEqlWrzI7r9XrRrFkz8dRTTwkhbIcuRkdHi0qVKglAAKJPnz5Cp9OJc+fOCQ8PD/Hbb785PaYhQ4YIlUol/vjjD4tzRsd9woQJAhD79+83nUtOThbVq1cX1apVM4VZGZ3tunXrmoUULVu2TADi6NGjpn5r1qwpHnvsMbPFgdTUVFG9enXRsWNH0zGjs218b4xcuHBBqNVqMX/+fLPjR48eFRqNxux4ZGSkAMS6detMxzIyMkSFChVEnz59TMdWr14tALF48WKb78X+/fsFIDZs2GB2/rvvvrN6XCIpieTH2e7QoYMoW7asmfN2+fJlUb9+fZNNa9WqlUhOThZJSUkiMDBQbNq0yemxzZgxQwBmkzsjxr/jpUuXCsC0WCmEEJmZmeKRRx4RZcqUEbdv3xZC3LXF5cqVEzdv3jS1/eKLLwQgvvrqK9Ox9u3bi4YNG4r09HSz+7Vo0ULUrFnTdMw40Xz00UeFVqs1HU9OTha+vr5ixIgRZmO+evWq8PHxMTtunGjPmTPHrK1xodPITz/9JAAxbtw4m++FM7ZUIikNhIeHC09PT+Hp6SleeOEFsW3bNvHCCy+YFuKNaLVa0bt3b5P9qly5soiOjhZCCNGpUycxevRop+/tyN/s33//LQARFRVldn7ixIkCED/99JPpWNWqVQUg9u3bZzp2/fp14ebmJl5++WXTsblz5wovLy9x6tQpsz4nT54s1Gq1uHTpkhDirk0sW7asuH79ullbZ21ghw4dzOaAL774olCr1SIpKUkIIURSUpLw9vYWzZs3N1vkyPleODOflDhGkTvb165dExcvXrT4kUjy4r///hNly5YVjzzyiNkESwiDk+fh4WFhzKzlCaalpYk//vhDnD592nSsV69eYvDgwUIIIbZt2ybCw8NFtWrVxOzZs+3udOt0OlG2bFnxxBNP2B17rVq1LHamhRBi4cKFZk600dl+4403zNodOXJEAOKLL74we7527VoRHx9v9hMVFSXc3NxMDrzR2f7555/N+ly8eLFQFEWcPn3aoo+6deuaVpeFMDjbZcqUsXgvevToIRo3bmx63q1bNxEQECCysrJsvhfjxo0TPj4+4vr16xb3LVOmjMU/P4mkJOKssz1//nyru65CGJzcv/76S/z777+mv/sXX3xRPProo0IIwwJXs2bNRKVKlcQLL7yQZ25g/fr1RaNGjey26dSpk6hQoYJFPubGjRvNnGijLX7++efN2t28eVMAYtmyZUIIIW7cuCEURRFz5861sAvGXPUrV64IIe5ONHPqbwghxPbt200T5dx9dOrUSdSoUcPU1uhs557sjhs3Tvj5+ZmejxkzRiiKIm7cuGHzvXDGlkokpYHQ0FABWDjLo0aNEoCFQ3r69Gnx559/mhzCL774Qvj6+or4+Hhx5coV0b17dxEcHCy6d+8uYmJi7N7bkb/ZBQsWCEAcP37c7HhcXJwAzJzoqlWrinr16ln0ER4eLnr16mX2vHPnzhY24McffzRbmDTaxGeffdasv/zYwM8++8ysD6MNNEYDbNmyRQBix44dNt8LZ+aTEscoEjXyGzdu8MILL7B9+3aysrLMzgkhUBTFIkdKIsnJ1atX6datGz4+PmzduhW1Wm06d/v2baZMmcKkSZOoXLlynn0Zc2CM/PTTT+zatYuTJ09y8uRJBgwYwIoVK6hWrRpPPfUUlStX5tlnn7XaV3x8PLdv37apjG7k4sWLNG/e3OJ43bp1Tedz9lGlShWzdsacJmNO8+nTpwEYOnSozXveunXLLBcqt7r66dOnEUJQs2ZNq9e7uLiYPa9UqZJJATnnuKKjo03Pz549S+3atdFobJua06dPc+vWLcqXL2/1/PXr121eK5GURjZv3sy0adMYPnw4zz33nMV5FxcXHnroIdPzEydO8P777/Prr79y8+ZNunXrxuTJk2nbti3PPvss8+fPZ/bs2Tbvd/bsWfr06WN3TBcvXqRmzZqoVOZSMDltWk7ysmlnzpxBCMH06dOZPn261Xtev36dihUrmp5bs2kA7dq1s3p92bJlzZ4bczlzjyundsTZs2cJCQnB39/fap/G+zpjSyWSko6HhweAWVUEgIEDB7JixQp+++03s7+XGjVqmH7PzMzk5ZdfZubMmQQEBNCqVSuCg4P56quvWLRoEQMHDrRZyQEc+5u9ePEiKpXK7L4AFSpUwNfXN0/7BZa24vTp00RHR1vYFCO55za57Vd+bGBedtWolWNvjpqf+aTEPkXibEdFRfHzzz8zZcoU6tWrZyF6JZHY49atW3Tp0oWkpCT2799PSEiI2fm33nqLzMxM+vfvz4ULFwBMpSUSExO5cOECISEhVr93Op2O8ePHM3nyZCpWrMjcuXNp0aKFybkeNWoUGzZssOlsFxY5FxNyIoQAMIltvPnmm2aT7JzkFnkz/vMzotfrURSFnTt3Wr1f7uvzGpOj6PV6ypcvz4YNG6yet/WPSiIpjfzwww8MGTKEbt26sXz5coeuefHFFxk8eDBNmjThk08+wd/fnylTpgDwyiuv5OlsFwaO2rSJEyfy2GOPWW2be2JszaYBfPLJJ1aF6HIvAtoak7M4a0slkpJOSEgI//77L0FBQWbHjYvs9sRQlyxZgkajYezYsVy+fJkDBw5w/vx5qlWrxhtvvEFoaChXrlxxWvTRGrk3EGzhyPxHr9fTsWNHXnnlFatta9WqZfbclv1yxgYWxLwsP/NJiX2KxNnes2cP77zzDkOGDCmK20seYNLT03n88cc5deoUP/74I/Xq1bNoc+nSJRITE6lfv77FuQULFrBgwQL++usvq0bkgw8+IDk5mYkTJwIQGxtr5syHhIQQExNjc3yBgYGULVuWY8eO2X0dVatW5eTJkxbHT5w4YTrvDGFhYYBhp6ZDhw5OXZuzDyEE1atXt/gnkF/CwsI4ePAgWVlZNndzwsLC+PHHH2nZsqXFPxuJRHKXgwcP0qtXLx5++GE+++wzuxEjRr7++mt+/fVX025FbGwswcHBpvN52TQw/I06YtOio6PR6/Vmu9v5tWmhoaGAYRf4XmwaGCb0+e3DWp/ff/89N2/etLlTVhi2VCJ5kImIiOCHH34gJiaG2rVrm47HxsYCthfV4+LimDdvHlu2bEGj0ZjaG+dlxseYmBibzrYjf7NVq1ZFr9dz+vRpUzQOwLVr10hKSnLafhnve+fOnXzbnoKwgdbGBHDs2DELRz13m3uZT0rMyVfpr3///ZcBAwaY5OmPHDkCwNSpU9m5c2ee1/v6+hIQEJCfW0tKMTqdjv79+/Pbb7+xZcsWHnnkEavtxo0bx44dO8x+VqxYARjKu+zYscMiXAfg5s2bzJw5kzfffBN3d3cAgoKCTJNFMJTYsVeqR6VS0bNnT7766iuLMjBwd3Wxa9euHDp0iN9++810LiUlhQ8//JBq1apZXUSwR0REBGFhYbz11lvcuXPH4ry10g+56d27N2q1mtmzZ1usggohuHHjhlNjAujTpw8JCQm89957FueM9+jXrx86nY65c+datNFqtSQlJTl9X4mkpPHff//RrVs3qlWrxtdff+3QwlRmZiYvvfQS06ZNM+0gBQUFcebMGbRaranfvMqP9enTh3/++YcdO3ZYnMtp065evcrmzZtN57RaLe+++y5lypQhMjLS4dcKBge5TZs2rFixgri4OIvzjti0xx57jLJly7JgwQKLlDVH+8hNnz59EEJYjQQwvheFYUslkgeZfv36AbBq1Sqz4ytXrkSj0dCmTRur102ePJnWrVvTuXNnANPOuHFeZix7aM+GOfI327VrVwCWLl1qdn7x4sUAdOvWzWb/tujXrx+//fYb33//vcW5pKQkkw22RUHYwNx06tQJb29vFi5cSHp6utk543tREPNJiTlO72z/8MMPdOvWjYiICAYNGsS8efNM51xcXHj//ffp0qWL3T5eeeUV3n33XTp16uTQyrxEAvDyyy/z5Zdf8vjjj3Pz5k3Wr19vdt5YS7tJkyY0adLE7JwxnLx+/fr07NnTav/Tp0+nYcOGPPnkk6Zjffr0Yc6cOTz33HNUrVqVFStWmIyvLRYsWMCuXbuIjIxk5MiR1K1bl7i4OLZs2cKBAwfw9fVl8uTJbNy4kS5dujBu3Dj8/f1Zu3Yt58+fZ9u2bRZ5j3mhUqlYuXIlXbp0oX79+jz77LNUrFiRmJgY9uzZQ9myZfnqq6/s9hEWFsa8efOYMmUKFy5coGfPnnh7e3P+/Hl27NjByJEjTTv+jjJkyBDWrVvHSy+9xKFDh2jVqhUpKSn8+OOPPP/88zzxxBNERkYyatQoFi5cyN9//02nTp1wcXHh9OnTbNmyhWXLltG3b1+n7iuRPCi89957JCUlmXZsvvrqK1PaywsvvICPjw/Jyck89thjJCYmMmnSJL755huzPsLCwqwuPi5btgyA8ePHm4517dqVMWPGMHDgQFq0aMHcuXOJioqyO8ZJkyaxdetWnnzySYYNG0ZERAQ3b97kyy+/ZPny5TRq1IiRI0eyYsUKnnnmGQ4fPky1atXYunUrv/zyC0uXLsXb29vp9+Z///sfjz76KA0bNmTEiBGEhoZy7do1fvvtN65cucI///xj9/qyZcvywQcf8PTTT9OkSRMGDBhAYGAgly5d4ptvvqFly5ZWFwLt0bZtW55++mneeecdTp8+TefOndHr9ezfv5+2bdsyduzYQrGlEsmDTOPGjRk2bBirV69Gq9USGRnJ3r172bJlC1OmTLFIBwQ4dOgQmzdvNtOBqVatGg8//DDPPPMMw4cPZ+XKlTRv3tzuzrMjf7ONGjVi6NChfPjhhyQlJREZGcmhQ4dYu3YtPXv2pG3btk6/5kmTJvHll1/SvXt3nnnmGSIiIkhJSeHo0aNs3bqVCxcu5LnxeK82MDdly5ZlyZIlREVF0bRpUwYOHIifnx///PMPqamprF27tkDmk5JcOKuoFhERYarFlpWVJRRFEYcPHxZCCPH555+LihUr5tnH2LFjRZUqVUSVKlXE008/LV544QWzH2vy/BKJsdyUrR972FMjF8JQAszV1dVUMzYna9asEdWqVRPlypUTL730koXyuTUuXrwohgwZIgIDA4Wbm5sIDQ0VY8aMMVP9PXv2rOjbt6/w9fUV7u7uolmzZuLrr78268eoRr5lyxarrye3cvFff/0levfuLcqVKyfc3NxE1apVRb9+/cTu3btNbYxq5PHx8VbHvm3bNvHoo48KLy8v4eXlJerUqSPGjBkjTp48aWoTGRkp6tevb3Ht0KFDRdWqVc2OpaamiqlTp4rq1asLFxcXUaFCBdG3b19x9uxZs3YffvihiIiIEB4eHsLb21s0bNhQvPLKKyI2NtbqOCWSkoCxjIy1H2MdaOPfu62foUOHWvR79epV4e3tLb788kuLczt37hR16tQRvr6+YsiQISIlJSXPcd64cUOMHTtWVKxYUbi6uopKlSqJoUOHioSEBFOba9euiWeffVYEBAQIV1dX0bBhQwsbZc8WA2LmzJlmx86ePSuGDBkiKlSoIFxcXETFihVF9+7dxdatW01tjEq81sotCmGwo4899pjw8fER7u7uIiwsTDzzzDPizz//NLUZOnSo8PLysrjWaC9zotVqxZtvvinq1KkjXF1dRWBgoOjSpYtpLmTEEVsqkZQWMjMzxaxZs0TVqlWFi4uLqFGjhliyZInVtnq9XjRv3ly89NJLFufOnDkjWrduLcqUKSNat25tMZewhiN/s1lZWWL27NmmuUrlypXFlClTzMpuCWGw2d26dbO4R2RkpIiMjDQ7lpycLKZMmSJq1KghXF1dRUBAgGjRooV46623RGZmphAi7/npvdhA4xxyz549Zse//PJL0aJFC+Hh4SHKli0rmjVrJjZu3GjWxpH5pMQxFCGcUzNyd3fnq6++omPHjuh0OlxcXPjzzz9p0qQJP//8M4899phFaEJurIXw5kRRFM6dO+fMsCQSiUQikUgkEolEIik2OB3D7e/vbwp3y82pU6fMhFdscf78eWdvK5FIJBKJRCKRSCQSyQOD0wJpPXv2ZObMmWZKyoqicPXqVd566608a3E+iJw5c4bRo0fz0EMPodFobNanS0pKYty4cYSEhODu7k5YWBhvv/22WZvMzEwmTZpEhQoV8PLyomPHjlZVqSUSiaSwkDZNIpGUJKRNk0gkxRWnd7YXLlzIH3/8QXh4OA0bNgRg2LBhnDt3jtq1azNr1iyH+zpz5gynTp2yGnbeu3dvZ4dWaPz777988803NG/eHL1eb6pBl5OUlBTatGmDRqNhyZIlBAUFcerUKW7fvm3Wbty4cWzatInFixdTsWJF5s+fT/v27fn333/x8fG5Xy9JIpGUYqRNk0gkJQlp0yQSSbElP4nemZmZYvXq1eKpp54SHTt2FP379xcfffSRmfiTPW7duiXatWsnVCqVUKlUQlEUoSiK6blKpcrPsAoNnU5n+n3o0KFWhaGmTZsmQkNDxZ07d2z2c/nyZaFWq8WKFStMx27cuCG8vLzE66+/XrCDlkgkEhtImyaRSEoS0qZJJJLiSr7qbLu4uPDss8/y6aefsmvXLjZt2kRUVBSurq4OXf/qq69y9epV9u/fjxCCHTt2sHfvXoYPH0716tX5/fff8zOsQsORMkwrV65k2LBheHl52Wyza9cu9Hq9WWkpf39/OnXqxLffflsgY5VIJJK8kDZNIpGUJKRNk0gkxRWnne1//vnHpsH59ttvzerh2eK7775j6tSpNG/eHICQkBBat27Nhx9+yBNPPGGRP1PcuXDhAlevXiUgIIAePXrg5uaGv78/I0aMMCsIf+LECcqXL4+fn5/Z9XXr1uXEiRP3e9gSiURiFWnTJBJJSULaNIlEUlQ47Wy/+OKL/Pbbb1bPHTp0iJdffjnPPq5fv07lypVRq9V4eXlx48YN07muXbvy3XffOTusIuXq1asATJw4ET8/P7799lsWLFjAli1bGDFihKldYmIivr6+Ftf7+flx8+ZNm/1nZGRw+/Zt08+tW7eIj49HOFe1TSKRSBxC2jSJRFKSkDZNIpEUFU4723///TctW7a0eu6RRx7hyJEjefZRuXJlEhISAKhZsyZffvml6dxvv/2Gu7u7s8MqUoxCHLVq1WLt2rW0b9+e0aNH89Zbb7Fp06Z7rhm+cOFCfHx8TD++vr6UL1+e5OTkghi+RFKkxB05wmxFIc4B25HXNfnpS2KJtGkSyb3hrI2yZ7ukXbt3pE2TSO4NOVfLP0472xkZGWRmZto8Z01ZPDcdO3bkxx9/BAw75cuXLyciIoJHHnmEmTNnMmTIEGeHVaQYw43atm1rdrx9+/aAQSXT2O7WrVsW1ycmJuLv72+z/ylTpnDr1i3Tz+XLlwtq6BKJRGKBtGkSiaQkIW2aRCIpKpwu/dW4cWPWrVtHjx49LM6tW7eORo0a5dnH66+/TmpqKgBPP/00ZcqUYevWraSlpfHee+8xatQoZ4dVpISFheHm5mbzvHEBok6dOly7do3ExESzfKATJ05Qp04dm9e7ubnZ7V8ikUgKEmnTJBJJSULaNImkcEiOi+PwihVEjBqFd3BwUQ+nWOL0zvaUKVPYsWMH3bp1Y+vWrfz6669s3bqVbt268fnnnzN16tQ8+/D09CQgIMD0vFevXmzYsIHt27fz3HPPOaQqWZxwdXWlU6dO7N692+z4Dz/8AECTJk0A6NSpEyqVim3btpnaJCYmsmvXLrp27Xr/BiyRSCR2kDZNIpGUJKRNk0gKhztxcfw8ezZ34uKKeijFFqd3trt168ann37KpEmT6NevH4qiIISgUqVKfPrpp3Tr1s3hvv777z/+/PNPLl++zLBhw6hQoQJnzpwhKCgIb29vZ4dWaKSmppoU2C9evMjt27fZunUrAJGRkQQGBjJz5kxatGjBoEGDGDp0KKdPn2bKlCkMGjSIsLAwACpVqkRUVBSTJk1CrVZTsWJFFixYgI+PzwO3my+RSB5cpE2TSCQlCWnTJBJJccVpZxugf//+9O/fn5MnT3Ljxg3KlStH7dq1Hb4+NTWVqKgoPvvsMxRFQa/X07lzZypUqMCUKVOoXr06b7zxRn6GVihcv37drOYiYHq+Z88e2rRpQ0REBN9++y2TJ0+mR48e+Pn5MXLkSObPn2923bJlyyhTpgyTJ08mOTmZli1b8uOPP+Lj43PfXo9EUhTIUKPig7RpEomkJCFtmkQiKa7ky9k24oyDnZOJEyfy008/8e2339KqVSu8vLxM57p27cqSJUuKlbNdrVo1h8o3tG/fnj/++MNuGzc3N9566y3eeuutghqeRPJAYAw1qt2jh3S2ixhp0ySSgkEuIhYPpE2TSCTFlXw52ydPnmTbtm1cuXLFQn1cURRWrVpl9/qtW7fy5ptv0qlTJ3Q6ndm5atWqceHChfwMSyKRSCQSieS+IRcRJRKJRGIPp53tTz75hGeffRZ3d3eqVq2Kq6ur2XlFUfLs486dOwTb+KeUkpLi7JAkEkkJJT+7Ri6enoU8KolEIpFIJBKJJG+cdrbnzp1L3759Wb16NZ75nNSGh4ezbds2OnXqZHHum2++4eGHH85XvxKJpGThzK6REIKg8HBeS0lBr9UihHBo8U8ikUgkEolEIikMnHa2Y2Nj+eCDD/LtaANMnz6dJ554gtTUVJ588kkUReHQoUNs3LiR1atXmxQlJRKJxBGEXk9ybCyHV6zg5tmz+IeFGXbDQ0JQHrBSghKJRCKRSCSSkoHTs9DWrVtz7Nixe7ppt27d2LRpEwcOHKBnz54IIXj++efZvHkzGzZsoH379vfUv0QiKR1oPDwQej3R69ezrHp19s2bx7GNG9k3bx7Lqlcnev16hF5f1MOUSCQSiUQiKRSS4+LYO2sWybLWdbHE6Z3tBQsWMHjwYNzd3enYsSO+vr4Wbfz9/fPsp2/fvvTt25dTp06RkJCAv78/derUcXY4EomkhGMvB9srMJDk2Fi+HD4cvVZrdk6v1fLl8OFUb9/esMMtQ8olEkkxRupNSCSS/PAgCjWWJnvntLPdpEkTAJ577jmbk9fcCuP2qFWrFrVq1XJ2GBKJpISTZw62ouDu68vPs2dbONpG9Foth5cvJ3LWLBS1+j6NXCKRSBxH6k1IJJLSQmm0d04726tXry6QN+Xy5ct8/vnnXL582Wr5sGXLlt3zPSQSyYOJIznYLh4eqDQabp49a7evxHPnUElHWyKRFEOk3oREIiks8lPRpTAprfbOaWf7mWeeueebfvbZZzz99NPo9XrKly9vtXyYdLYlktJDznAiYw527tDwA4sW0WPVKsIHD0bj4UFWWhp6rRb/sDC7ffuFhqLX6aTDLZFIig059Sbs2bqSPAGVSCSFS3EJLy/t9q5IXtVrr71Gz549SUhIICYmhvPnz5v9nDt3riiGJZFI7jM5w4mCwsMRQuSZg50cF4dXYCAIQXpSEhGjRqHSWF83VGk0RIweXWINuEQieTBxRG8iOS4OIQRQuvIbJRJJycJZe1fSyNcMdN++fQwePJhmzZoRHh5u8ZMX8fHxjBw5Eh8fn/zcXiKRlACEXk9yTAw/z57NtoED+XnOHIROx+EVK/LMwXbPFmZMiY/HOySEHqtWWTjcKo2GHqtX4x0cXOLzgSQSyb1z3xR9s/Um8rJ1Jz7/3OqCpEQikTwwOGjvDi9fXmKrxzgdRv7999/TrVs3OnTowJ9//kmXLl1IS0vjl19+oVKlSkRGRubZR+fOnfn9999liS+JpBRiK5zIxdOTtnPmOJaDrdGg8fBAm5aGolIRPngw1du35/Dy5SSeO4dfaCgRo0cbHG25qy2RSBzgfoVcOqI30WDAAB4eNYo7pTC/USKRlBykvk4+nO2ZM2cyYcIEXn/9dVxcXJg7dy5NmjTh4sWLPPbYY7Rr1y7PPpYvX07//v1JTU2lffv2VsuHGVXPJRLJg0Veghy2womy0tLISk11LAdbq0WblmY6pqhUeIeEEDlzJiqNBr1Wi6JWyx1tiURS7MhLbyIoPJye69YRvWEDX0VFlbr8RolEUnKQ+jr5CCP/77//6NKlCyqVCkVRSElJAaBq1arMmjWLefPm5dlHcnIyqampLFy4kI4dO9K0aVPTz8MPP0zTpk2dfyUSiaRYYNwdumMtFNNeOJEQHNu8mcbDh+eZg52elGSla4Vr0dEs8PLiWnS0dLQlEknxJA+9ieYTJpAcE2PhaEPpyG+USCQlCKmv47yz7e7ujl6vR1EUgoODOZsjLMDb25vLly/n2ceQIUO4dOkS7777Lt999x0//fST6WfPnj389NNPzg5LIpE8AOQVTnRw6VK8K1bk8ZUr7eZgp8TH27xHVmpqgY5ZIpFInEWVFE9ksOHRGjb1JhSFBv3789eqVaU2v1EikZQsSru+jtNh5I0aNeLkyZN07NiR9u3bM3/+fAICAnBxcWHatGk0bNgwzz4OHTrEp59+Ss+ePfMzZolE8qCiKHbDia5FR/P5kCH0+uQTQjt0sJmDrU1Lk+q8Eomk2KK6lUCbEIi/lWD1vC29iXK1a+Pi6Vmq8xslktJOcauPbSS/867Srq/jtLM9YcIEzp8/D8CCBQt4/PHH6dGjBwCVKlVix44defZRs2ZNtDZWbCUSScnDpKh75w56vZ6IUaM4sGiR1Z2b41u38tjSpTZzsHOq8+q1WoQQJXY1VCKRlGys6U3odbpSnd8okZR2bIk1FpUTfi/zrpwOemnV13F6GaFr166MGTMGgIoVK3L48GFOnjzJ33//zZkzZ4iIiMizj8WLFzN//nxOnDjh/IglEkmxJnf4ZO4SX39+8EGe4URegYFWc7AtyoXNnk1yTIwMp5RIJA8sFrZOpSrV+Y0SicQ6djVxCon8zrtslS0sjfo6Tu9sz5kzh6ioKEJCQgDDm1azZk0A4uLi+Oijj5gxY4bdPiZMmMDVq1dp0KABISEhFmrkiqLwzz//ODs0iURSDDCGT94UWqslvo5t3MiV336j59q1DoUTZaWm2iwXBubqvBoPj/v+eiUSiaQgMOpNKIpiWpDMbe9KQ36jRCIpHuR33iX0epLzKFtYmvR1nHa2Z8+eTefOnU3Odk5iY2OZPXt2ns52RESE/CchkZRwPGrUsVriC+Dohg0k/Pcfz+zb51A4ka1yYXBXnbd6+/Z4BQYW6muSSCQSh3HPv65Eac5vlEgkhU9eIelCiHzNu+TGiCVOO9v24vTj4uKs1szOzZo1a5y9rUQiKWbYNdSKgltIZX6fM9emom7ckSP8smgRkTNnssDLi2f37ye4SRPLhtnlwn6ePTtPdd7ImTPv9WVJJJISgD37VNh5j0IIynV/EnoNolxWZr51JUprfqOkBJIQB9tWQJ9REFB8BL9KM7bywo0Ivd56mdZsrM278uugl3QcWhrduHEjPXr0oEePHiiKwssvv2x6bvzp1KkTQ4YMoUWLFoU95mLLl19+SfPmzfH29iY4OJh+/fpx7tw5i3arVq2iVq1auLu706hRI77++usiGK1Ecm+k/hcNH842PObGzQOVi6tjiroajc16sWWCg2k7d67dcmG5+yptK6aFibRpkgcVe7mNhZn3aMpvnDPXkN84Z+496UqUxvzGwkTatCIiIQ4+mm14LEYkx8Wxd9YskgsxB/p+3KMwUKnVTs+7HHXQ3R3YmC1JOORsZ2ZmkpycTHJyMkIIUlJSTM+NP4qiMGTIEFasWFHYYy6W7N27l169elGvXj127NjB0qVL+eeff+jUqRNpaWmmdps2bWLEiBH079+fnTt38sgjj9CrVy9+//33Ihy9ROI8xtxslbXSNhlp6LMyHVPU1WrR5vgbyYl3cDCtp051XJ3XTl8S55A2rRiSEAcrZhW7CasEM12JZdWrs2/ePI5t3Mi+efNYVr060evXI/T6fC8Glqb8xsJC2jRJbu6H4FhRiJoVBM7OuxSVKl8OemnAoTDyoUOHMnToUADatm3LBx98QJ06dQp1YA8amzZtomrVqqxevdq08ly+fHnatWvHn3/+SatWrQCYOXMmAwYMYO7cuYDh/YyOjmbOnDl8++23RTZ+iaRAEYKM2Mt2S3wZFXXTk5Ly7M6ozlsQfUkcQ9q0YohxdyiyhwzFLGZIXYnij7RpEkexlWpSXOtfFwbOzruEXi83RmzgtMLGnj17rDramZmZBTKgB5WsrCy8vb3NQrx8fHwATCGy586d49SpU/Tr18/s2gEDBrB7924yMjLu34AlkkIm7cyJPEt8eQcHkxIfn2dfOdV577UviWNImyYpLB7UsEqbZOtKyPDJ4o20aRJHsbUb/aDuUueH/My7HC1bWNo2Rpx2tj/55BPeffdd0/Njx45Rs2ZNPD09adOmDdevX7d7vRCCmzdvljiD9cwzz3D8+HHef/99bt26xblz53jttddo3LgxLVu2BDDVFc+9WFG3bl0yMzM5f/78fR+3RFJY6G4nmRR1x1+4QOtp02g4cCCtp01j/IULhA8ahKJSOby6WZB9SfJG2jRJYVHSJqwuHh5SV+IBQNo0icQ5nJ13yY0R6zitRv7mm28yatQo0/MXXngBV1dXli5dyrvvvstrr73GypUrbV6flZVF+fLl+eKLL+jWrVv+Rl0MadWqFTt27GDgwIGMGTMGgIceeojvvvsOtVoNQGJiIoCFYrufnx8AN2/etNp3RkaG2eLE7du3C3r4EkmhUZCKulKd9/4hbZpE4hhZaWnotVqHwyelvSoapE2TSJzH2XmXI2ULS9vGiNM72xcuXKBevXoAJCQksH//ft5++23Gjh3LnDlz+P777+1e7+rqSqVKldDpdPkbcTHl119/5emnn2bEiBH89NNPbNmyBb1eT7du3cyEN/LDwoUL8fHxMf1Urly5gEYtkdwjDtaRLUhFXanOe3+QNk1SFNgKMS/I0HNVZjyR3Q2PDpGXMJ0QpCcl2Q2fDG7ShJaTJwPwWkoKQeHhNqswSAoHadMkpQ1VUjyRwYbHe8HZeVdOB733hg1EzpyJd0gIisppt7NE4PSrVqlUpvzsPXv24OLiQtu2bQEIDg7mxo0befYxZswYFi9eTHp6urO3L7aMGzeOdu3a8fbbb9O2bVv69u3LN998w5EjR/jkk0+Auyujt27dMrvWuJLq7+9vte8pU6Zw69Yt08/ly5cL8ZVIJHexOcEVgoDuT8KBFMOjg5PGglTUleq8hYu0aZKiwFaIud1Sg1awN8lUZSXQ5nHDo0PX2ClbpEqKp22oJ2nnTtkMn2w4aBBRhw6RnpjIz7NnG0qCzZ59TyXBJM4jbZqkMCmOWhR2q8bkA2fmXXJj5C5Oh5E3atSI999/n0qVKvHOO+/Qrl073NzcALh06RLly5fPs49Lly5x6tQpqlSpQps2bQgKCjL7EBRFYdmyZc4OrUg5fvw4TzzxhNmxSpUqERAQwNnsPC5jDtCJEyeoXbu2qd2JEydwdXUlNDTUat9ubm6m91giuZ8YJ761e/S4q7yp1yMSYlG2rYArZ1EqhSH6jEIJCAHjqqWDO96S4ou0aZLihHHSGJ9r0mhLHdhW+/zcwxZCCAJbtSXobAr6rExQFIvwyUotWtD0ueeIXr/eQqn8wKJF9Fi1ivDBg2Ue931A2jRJYWJ1vpRP8rMj7eJZPOddcmMkH872ggUL6N69O+Hh4Xh7e/Pjjz+azu3YsYNmzZrl2cfXX39tMkx//PGHxfkH0dmuWrUqR44cMTt28eJFEhISqFatGgChoaHUqlWLLVu2mBn8zZs30759e1xdXe/nkCUS59HrETvXo8wZDrq7k0ZlzSLEjFXQZTDluveDXoMol5WJEKJUr2Y+yEibJnkQKMgJri1S4uPxMj5m62YJvZ7k2FgOr1jBzbNn8Q8LMzj8ISGG8MkZ01G5uKLX6WRJsGKCtGmS4oS9MmLOLPwJIQgKD+e1lBT0Wq3D866CCjGH4uvoFxecdrZbtmxp2pkOCwszE5EYPnw4NWrUyLOPkqjmOHr0aCZMmMD48eN5/PHHuXHjBvPmzaN8+fJmJSRmzZrFoEGDCAsLo23btmzevJmDBw+yb9++Ihy9pNSQEAfbVkCfUWZ1eh2qHSmEYUc7l6MNgE6LMmc4oml7rl2+yq9vv202+SyteToPMtKmSSQGUhMS8MrxKPT6PHeqk/b9gP+s/vDTTYdKgkXOnHl/XkwpRto0SXGiIBYK7S365TXvyk/0j8X98+nolzacdrYBvL29iYiIsDjetWvXex7Qg8q4ceNwc3Pjgw8+YNWqVXh7e/PII4+wZcsWypUrZ2r31FNPkZqayqJFi1i0aBG1a9dmx44dPPLII0U4eklpIeW/aLw+mk1KvUfwanXXuDti9IXQG0LHczvaRnRalG3LCRw6hWMbNwIyTPJBRto0SanEVgpM9nEhhEM71R5htUEIVC6usiRYMUHatILDoQX6EkhB7gbfCxoPD4cW/dRlfQttDPfi6Jc2HHK2Fy9ezKBBgwgKCmLx4sV22yqKwosvvphnnzExMSxdupQDBw5w8+ZN/P39adWqFePHj6dixYqOjb4YoSgKo0ePZvTo0Xm2HT58OMOHD78Po5JIzMm9Q+MoikqFolLDFfuTRmLOofH0ROPhgTa7HI4Mk3wwkTZN8iBQUJNfIQTluj9pmQJjFIPsNYiArEwQghNffJH3TvWM6ZCRhj4r0+GSYKWtHM79Rtq0guN+pG8URwpiN7gg8AoMdHzRr4Bx1NGXDvddHHK2J06cyKOPPkpQUBATJ06029YRZ/vYsWO0bt2arKwsOnbsyEMPPcS1a9dYvnw5q1atYt++fdSvX9/xVyGRSAofvQ4q2Z80UjEUbWqq2aRRhklKJJLCokBCIa3s0DSfMAEPPz+UXGKQ9BnFw6NGcfnAAY5t2mS1v8Rz51C5uIKrOxmxl4kYNYoDixZZddBVGg0Ro0eTnpSU7/FLJJL8UVx2qp1CUXD39eXn2bMdW/RzkryiFhx19L1DQpy+d0nFoWUHvV5vEj7T6/V2fxypnz1x4kTCwsK4dOkS27dv54MPPmD79u1cvHiR0NDQPB16iURSsNirO+vi6YnQ6xEo6HuOALWNNTq1Bt0TURy1MgGVYZISiaS4ofbyNe3QLKtenX3z5nFs40ZOfvkl7mXLwrefwOPVYdU8+H6j4fHx6ijfbaDXunUEhYdb7dcvNNSgTp6RRtqZEzZLgqk0GnqsXo13cDAp8Q/QZF8iKSEUdGms+4GLhwcqjcax9BQXV3Bzbt5lq/wiYHL0HdGhkGUN71Ike/wHDhxg2rRppnqGRvz8/Jg6dSoHDhwoimFJJCWDhDhYMctqTVhbWKs7m1P4Iig8HBQFJagSYvpKS4dbrUFMX4USGMJBK5UEZJikRCIpLqiSDTWTPQOrW92haT5hAuJ6DMrcKOtikHOjEPGxNB8/3rLv7J3qjJhL4O6J7nYSikpF+ODBjL9wgdbTptFw4EBaT5vG+AsXCB80CEWlkrZRIpE4RFZ2ip5D6SnZJQkLCqccfbW6QO/9IONQGLmzCoytW7e2f1ONhoyMDKvnMjIyUKvVTt1PIpHkICEOPpoNkT3MFMftYZx8Gh+thVU2HTvWkHfdZTC6Jm1Qf7ESYs5BxVBEn9EIv/LsGDKEa9HR5n3LMEmJpETzoIklqe4kAQquFcL4bc488x0aRaFh//6o1y60Kwap/mIlDYdO4csceb0qjYZ+O3YY3gO9Dg6kmPK8FZXKUBJs5kxUGg16rRZFrTYp95YJDiZy5kzKPADvn0QiseS+haQLQXpSkt30lOAmTWg5eTIoKjiQUmClWJ1y9HU6EOKe7ldScMjZbtOmDYqiILLftJwflrUPL69Q8g4dOjB16lQeeughatWqZTp++vRppk+fTseOHR1+ARKJ5N4xTD7BRe1qV/hiyO7dVHn0UXQ+ASjDp6FydUOfmYmi0XD6m284vnWreb85wiQTTp60eu+CnGTKCatEcv95IMWSNB6oXNwsdmhcPDzQeHo6LAbZZvZsbpw8iV9oKM1ffBEPX1+UhFhDicUced4EGBR6r0ZH83GrVjy7fz/BTZqYuvMODqbNrFmF8EIlEsn9WBC0pR9RGE54Snw8AbVr02PVKou5WsNBg+i5di13sl9zgSqFO+DoGzdYpEDaXRxytv/66y/T79evX2f48OG0bduWvn37EhQUxLVr19iyZQt79+5l1apVefa3ePFiIiMjqVevHg0aNCAoKIjr169z9OhRqlSpkqfiuUQiKQQ0nrjVamZX+GJd+/a8eOUKXuXLI7RZhhMKoCjU6taN8RcucHj5chLPncMvNJSI0aPxDg62GyZZkJNMOWGVSIoPxXrHW5uGPivDYocmKy0NbWoqGgfEIIVeR6spk1G5uKLPyjLsVO9cD3OGm++Kr1kEM1ZBF0MJxKzU1EJ4QRKJxBZFuSBYGArm2rQ0U3pK9fbtTfOuSi1a0PS55wpVKdyeo59zg0XW276LQ852o0aNTL/37duXAQMG8MYbb5i1efzxx5k0aRIffPBBnjvTVapU4ejRo6xevZoDBw6QmJhIrVq1GDZsGM8++yxlypTJx0uRSCT5Qgh8e00Cl2m46nTc/OcfAuvVswgHB4PD/cd77xE5axY3vt5C4NsjufHyhwT2GgSKYgiTnDE9e/KZiaJxkQZXIimlFO8db0HWlf8sd2iE4OjmzYT3GI56zSLroeRqDfQZjaKoSPh6E4FvjyRzQzTuHm6WjjYYns8ZDk1lCUSJRFJwmNJTjPMuna7QlcJtOfq5N1gkd3H63fj+++9tOtOdOnXihx9+cKifMmXKMG7cOD777DN++OEHNm/ezAsvvCAdbYnkHjGq2jqkbqvXI+JjUFbOg6kDUT6cRVBwOUb++ScNBgyweolJ+EKthnTzHRol+yf37xKJRGKkuJTbyTh1yKpS+MGlS1HKV7QpBsnM1QY9DONCYkYabiGVDaHjdvK82bYcD1/fwnkxEklxx92zqEdQIlEUhRtfb4FWZUCvu29K4Tl1KHpv2EDkzJn3HqZeQnFoZzsnZcqUYffu3VYd7h9++EE6yxJJEZOakIBXjkdrqMv6GhztnetR5gw3iPm4eUBGGqo1ixDTV9Jr3Trijx+32OE2CV/k1mbQ68FKTVoCQkAaX4lEkk1hhFXmB92t6zZ3aNKTk/Ho+jQ06wDblpvEIOkz2uBo57Rpbh4oLq4O5XkrsgSipLQhBNQIhwMpoNUant/niLfissCXk/yOycXTctFCpUuEhwQqF1fHlcILQIxaURSbOhSSuzjtbI8ZM4YZM2Zw7do1evbsSfny5bl+/To7duzgk08+Yfbs2VavK1u2LHv27CEiIgJvb2+7oaWKonDr1i1nhyaRlCrykw+p0iVCBHjVqYNIiEXZuAymfgid+htWndNTYddmlE3voG/Shubjx7PzhRfISksDIawKXxgddxzIVZRIJA8m9yv/ukAnxfZ20jR3z1mEYuZMgQkMQURNR3FxRWQft3AUMtIM5xzJ85YlECWliexFeKNgIEW0CF9cFvhykueYctmvnOVY9VqtmUC1Sp8EDa3rUOTG5obJPSB1KOzjtLM9bdo0fH19WbRoEWvXrjWplAcHB7N06VJeeOEFq9e9/PLLBGf/g3755ZdlHqdEco8kxURz4cJswmIeMZv8Gh1qlS7R4hqVPglaBuJaoSrKT9thze+QEgNHF8Lts1A2DCKHQ7fBqK9e4aGhQ2k8bBja1FSObfkMj3IBFsIXnjXqGP6ZylxFiaTwKaJQzNT/ouHD2aS2fqRwne0CmBQLISjX/UnoNcii5I0QAp9sjQqfrAzTOUVRSMitQwGQ43hCzuM5cfMgI/Yy7n1GGRYY7eR5p8kSiJLSggOL8AXpcBdrQUYrZCmJnO8Ebor5XM2a/UIIi3KsFuriGg/rOhQ5kErhRYPTzjbA2LFjef7557ly5QpxcXEEBwdTqVIlVHY+vJkzZwKGL9G4cePw8vLCzc0tf6OWSCRoRQLVnjE85kSlTzI42/oks+NCCHz7TAH1NEMudbvecGYD7IsCkcMo/70IIldBzUEoW5bDP7+gqRRGo96jIDBXPo6iGHIVV87NO1dx5ExZlksiyS9FHIppzwm+byGaDiw0CL3e5qQUyHvCmm5jh8bacSEIyJ4Uu2VlGcIyZ6yydC5y5Hmn2CiBKJGUKIRwaBGewJACs2P3a0GwoNCqkrjYCUJvJ5mO5bZflVu2tKsu3m/7dmp164Zvr1cMIrdZmbiqNfTbvp3PeveWSuHFhHw52wAqlYoqVapQpUoVp67LysqifPnyfPHFF3Tr1i2/t5dISj1KciKosh/zQOj1EB+Lsn2FIfdw9lpIjbV0tMHw/OfhEBQJ7h7w/UbD/XKtRut9Ath304PWjuYqqjWyLJdEkh+KSSimLQo7RNPeTrUxkseljAqh11udlJ7+9luiDh3i6IYNdsvhqMv6Oj4oaxoVAycY7GPT9jbzvGUIuaRUIPQOCQYyahYo9547DPcxVLyQoous2a/Qjh25demSVXXxen37UrNz57tzuxxaObW6dePla9c4uGSJ00rh92PxtExwcKnafMm3s51fXF1dqVSpEroCzBWQSEo0CXGGf1p9RhkmbNmo7iRB2ezHHGSpkjlfDrxEMpDtaH/7CcrcKMM/OEWBWR/DiY8sHW0jQgunVkKnKYYVaLBYjdb7BrLnfBqttFqHchXR60BVMP9UJZJSw30OxSwW5JjM2tupVlQqQwRPc088atQ1L3mjKLh4eJCVlkbTsWO5fflynuVwPMJqOzQmu5/Jm9vh0W6IETNQNC6287wlkpKMSu3QIrzdOYGNuY/N44WMvUU/e+j0Fzg/FDz0F+z2bVGyS1Fo0L8/BxYutLBbQeHh9Fq3DuX7T+/O7YysWYQyYxUeXQYTOWMGKhcXp0qx3o9FC+/g4FK1+VIk/6HHjBnD4sWLSU9PL4rbSyQPFglx8NFsw6MDZKmSuVjO8CiEMKx65nS0fcqBxtWQo22P5HOGCaZbDmEz42q0yC4bIYQhB7HPKMsSOUaycxVRSphDIJEUNo6EYibEGdoVFAlxsGKWw/YmPxhzFbNs5SoeSKFc936mnZ5l1auzb948jm3cyL5581hWvTqnvvkGodcbwieHpeBapSEp169Tp2dPeqxezdQ7d3gtJYWpd+7QaPBgTn3zTZ7lcNwqWkbqGcbU7+6Y8vpMJvWGhDjSr1yER71I+HqLdLQlpQ+9zhCBYw/jIrwtbM19nJwT5Yfcu7tCryc5Joaf58xl28CB/DxnLskxMWYltGzZNZ0Sw8WGhkdbCL3eomSXi4cHLp6eVtXFm0+YgLgeY+log+l/g5IQR0aMwQ7d+HqLDB0vQu77zjbApUuXOHXqFFWqVKFNmzYEBQWZfQkURWHZsmVFMTSJpASgoFJ5AmrQ6w3hRaH14KkJd1XH9TqDGJo9vEMNeYoZucIes1ejjWFAQghDOGseuYpywimROEkRhGKaJrKRPe5510iVGU9kd8NjTrSqJC539qRaDrGw3DvYLSZOxKt8eafCJ4MGjKPv5s2Ia5dRrV0E1y6jCaoMfUby8KhRXD5wgGObNpntehsXKhLPnUPl4mq2uGixq16jBm1mznDoM3GPmm47/1siKekoKsMifB6CgcV1EV53+zRVnwGFmzbTU3KmoCgqldUcbHuodIboQzXpqNRqC6c6Ky2NrNRUS3VxRaFh//6o1y6UdugBoUic7a+//ho3Nzfc3Nz4448/LM5LZ1siySdCEPL4Yiq6/A+RlYGiVoN/efjkT3PV8fCJUHeUQQzNWii5ooFaUbBrk+W57NVoizCgPHIVJRKJkxREKGYRorl5mjaPw42bp4HHAMNOccUuk6jiMg1dtho4QphPZhWFHitXOhc+WTMc1YgZiP1fo0q+Cc9OvlvO8MfPULz96bVuHfUH9KdGp05oPDzRpqVydNNmDi5daiiHk5WJSlFQl/W1OsF28fSk7Zw5jmlU5HLcJZJShaI8OIvwVnKwjY7zw6F1LcO7s8mZgmIUYHQGJTvVD20iep3O0qkWgmObN9N4+HAzdXEXDw80np6O2yGfck6PTVKwFIiznZqaSmxsLGFhYQ6FKZw/f74gbiuRlAoydPHEdoIQXTx29ftNgj0fwrXLKEFVECOno/R9zlJ1PPFf6P0nRK6En3OJpCkaaL0KvEJgY65FL3ur0SqVYzVpC4DSJq4hKaU4E4pZDB1uo56E8dFa/nXLyZNJT0w0d2rzCJ8kIdYyfPKpCZCchNKyi2U5w1bDUcpUApWK2u2aoBwznNOUDSO813AaPT0YvVZnEA46kIKfTktWWhoHly0zm2BnpaWhTU1F40g97axMlNxRQRJJMaTQSmapVHkuwhdlua68crBVKi88guuyb868PFNQIu3mHxujDW3NhQSKSmVesis7+ubgsmWEDx7M4ytX8lVUFHqt1jE7VDMcBr2M0OlQdicQkJVpvYKFE2Jv963qRAnEaWf7rbfeIiUlxVTKa//+/fTo0YPbt29TvXp1vv/+e8LyKKgukUgcJ1OfwMVOEKBPMHO2VboUNJoA3Ly8DY72gW/g9g2zHR0lLQVBMkpu1fGb0bBnCLRdh6jYAeX4ckOOtnco1BsNHhVg5lA4HX33GkdWox2pSVsAlDZxDUkppRBDMe/nJFftU956KKai8OiUKRa5ilbDJxUFF09PGg4YgGrNAvP3Q1HgsQGgcbFezvDSt9DrEMrp9YZKCznOqf9ehIhchbrmYJQtH8A/v6BUCkPTcwRRv//OjiFDDKHnAEJwdPNmwnsMR53HZ5Iecwm5ry15ELgTF8fPs2dTu0ePgrcF2YvwjJgJGo2hbKFabZpDFOq97WC3RKCimKJvAKuLfjlJPHcOlVqNYkW3RghBhexoQ2Mkj7VNSUVR8A4Jod/27aTdvEGDJ/uh8fREm5rKlV9/JXzwYEI7dODw8uUknjtH/IkTVOg9ylAlJrcdemwAzF4HN66hfDjLTKXcWMEiP2Jv903tvQTitLO9cuVKJk2aZHr+0ksvUb9+fSZPnsy8efN47bXX2Lx5c579JCQksGTJEg4ePGiq1f1///d/jB8/nsDAQGeHJZE8ENib4Doz+RVCULHnPCopCxFCh8jMRGnROXtHZxHcuQxlqkDEdJTDb1kPFT+7CRKPo0SuRkTMQlGpEdoMFLWrYQX0hdchpHr+QsJljpBEkn+Marv9xhRaKOb9mOQaKyNUqNXYaiim1R1slQpPf39T+OTpb7+l6dixNOzf3xA6CZbhk24e4OoOyZeslzNsMBZSLls42gAILYqVUoeqNYsQ01fSa9064o8f51q0YeHx4NKlNBo8GDF9peXueo7PJG3PTulsSyRgsE9noiGqFazcD3Wa3PchOFIiMPH8eXquXcsdoxN+7hxPrF5tueiXS+/BLzQUvU6HyOX05lVJITeKSkWtbt0MWhRrF8KVs2gqhVGl9yjIdsYjZ0xH5eKKPivLsGhh/N+g1xnsYJWaBkf7u0/Biko5M1YhugwmJT6eP957z6FxSe4dp53ty5cvU6NGDQBiYmI4fPgwP//8M61atUKr1fLcc8/l2cfBgwfp3Lkzer2eDh06UKtWLa5du8a7777Lu+++y65du2jevLnzr0YiKeakXoyGw7NJvfiIxQTX1uQ3Pf4CqAyP3oAQejIyYomLW0Fa2lk8PMIICRmFqzoYUi9C48koGk+ENhUUNYo+y/aAbkbD0cUo7TbA2gBuBs6iXNexhn+O9ykkXCKR5CKnSJlfYN56CEVUCicvslTJXPRXqFIpnN9zhmIaJ6zp6aYd7Hp9+9JuwXz8a4ShKGrDIqJQGHHoEPqrlw1iQDHnYMZqy9D6zHSDmNzJlVYWFhUI6w9/LXS61KEyNwp9kzY0Hz+eL4cbjl+LjmbHkCH0/uQTRLMOKDY+E52DIkkSSamhCBfhVfokiMCyRGD24p53pUo88fHHRK9fbwrXBgjt0MHqop82NZWjmzfzx3vvETF6tMlJVak8cSlrI5IHc1E1jU9F8/ByvR7FSklBJUeZx8R9P+A/sx83jJGDXQZDuz6GqAEXN8N1GRmw6R3bFSwebseZnT+wb/5808JBznGpy/oW4idROnHa2fbw8OD27dsA7N69mzJlytCiRQsAfH19uXXrVp59jBkzhvr16/Ptt99StmxZ0/Fbt27RpUsXxo4da1U4rSRw4sQJXnjhBX799Ve8vb0ZMmQI8+bNw9XVtaiHJilIbNXGzkqgzeMQn2UZhmNLuTczKRZVgCcqj/IIoefatfWcPDkckWPimJZ2nrp115LpH0bs5YXmTnjTeSh3Lhp2sq3hHYrQZaJk3EDv7Xf3uKKQ+vsevKb0JnXhdrxaPXZv74mkxCLtWiGTRyhmQSqIFzQqlQdqFzdunj1LUHg4zSdMMJuw3rpyhRavvoqrlyeZGbFcuDDL3H65BKNePs2wU+PmAc06wBPDzUPrXd0NOevWyhlqPEDj6VypQ2OutU6L+ouVNBw6xeRsAxzfupXHli7Fq7xckCypSJtWElFwqVSXX+fMo07PnrSbn724p1Ij9Dr0Wh1ndu40c44PLl1Ko6efNl/0y95xDu8xnIeGDAFFQQEqZ4eei9yaDzl2w/VaLQeXLaNunz6Ub/MKQeqpiKwMyzKPinLXFhmd5Kbt8QirnfslgT4R/l5xV6OizghY8zvMHALf55r36bQoP39B+KCRNOhnvnBwcNkyqre3cg/JPeO0s92sWTMWLVqESqXizTffpEuXLqjVBmGWs2fPUrFixTz7+Pfff9myZYuZow3g4+PD5MmT6d+/v7PDeiBITEykXbt21KxZk+3btxMTE8NLL71Eamoq7733XlEPT1KQ5GPyK27+SdVnDI85lXuDeyymouZ/CL2OzMxYC0fbyyucOnU+znbCo8zOXbq0iNq1VxHUdh1K4nHDTnZOFA3UG016vPX8Qq/AQEhPNTxKJFaQdu0+UcChmDbFbjLiISL70dG+skM0VbrEXGcUQEGXlUGdnj3ptXYtZKajuBrmDGpXNX5VKqO4uVldRLx0aRG1a60kaPZalGkfGSafmWmgcYU3tsErfQzhk4piOG6tnKE2DbSp91TqUOPpicbDA21aGiqNhh6rV+MVGIiiKMTfB40Kyf1F2rQHE9t2KBuNByoXNyq3bEmbObMhJRbl8Cy4fRalbBiquqPos/FTKrdsyXfjxplf+90G1DnDtTPSUK9ZhFi+G6XRo4j0VHDJdqmEDo0iiPr9dy798gsVmzfDxcOTrLRUYg4eokrLlpAQh7JupUnMlpHTDRs0ucu0pqfCrs3wy7dw4xrutRrBgRQCsrIM0TxWdCj4exG0XmkIJz933Fx757EB0HsUqptXUW1bYbZw0GjwYP7bsYO6vXoW4KcigXwKpHXv3p3HH3+cqlWrMn/+fNO5zZs3m3a57VGjRg2SctTXzMmtW7cIDQ11dlgPBMuXL+f27dvs2LEDf39/ALRaLc8//zyvvfYaIfkoHSApWgpSZEiXHsvlQE/CEmIBQ7h4ZmYssbErSEs7R506q4mNXWE2GQWoVGkCmZkxFo62oQ8tJ08Ox8+3Ha4NJ6D8POzuSUUDbVaDZzBpJ23kFwYEG3bTnNgt8wwIMHuUlGykXbvPFFAoprWyXABp107jEZH9mOO4vYmsSp8EzT0Nj9mYLxRqqde3LyDI5Aaxl1eZdq8rV34VnZVFREMfWk6eisLPvwOut6+iRL9tcJprR0Hr7rAvGVSKKXxS1B2FYlHOUMDZzVBneL5LHeozM6jbqxd+oaFEjB6Nd3CweW6jlc+kIO2grL5wf5E27cHEGCqe0w6ZoU1Dn5VF2GOd4PQnKLkqsSh/L0JErqTZ2DFc2r+f0998Q/MJExDXrqDauAwx9UN4rD+KmyciIxV+24US3gKBIFMfb2bXKgWPQ6PxJPiRGlyJzRFt+MgoFLUK4s4jhk2+25dKjRJaD0bMsKym0CYKHh8KSTfuCp49PREqlbepQ8G+KKjQBp4afzc1pmZ4dj73Bot8bnW2RkXd3oNQaTSybGEB47SzXa9ePc6dO8eNGzcoV868dtvbb79NhQoV8uzjzTffZMyYMVSuXJnIyEjT8b179zJr1qwSu3K4c+dOOnToYDLeAP369WP06NHs2rWLZ555pugGJ8kXtvKsU+Lj8TI+1rnbXpd8gfPlwCP5gnlHQhBinJhqMy3CxVUqT1SqDaSl5Q6FVChfvj+XLi20mKje7VpLbNwKqtWaCbfPmauOewaDokKXkmT9BQYEw6hZTr0nxl1wuRteOpB2rZhjK6XFxsQ0PSkJjxyPZu1zOdRgcKp9ek0Cl2n4GOtmI3IsFJ7Fx6clISHPce3ahlxOtUKVKlOsLiLe7V9LbOxyqlWeAmcN4mUkn4c2a0GbAMezwyeDWkL95xCRqwyCZzn7O/Ye1BwCkassJ6d5lDoUfUajaFzovWEDeq0WRa12qMRpQdpBWX3h/iJtWvHA1jwq/wgQOki5ZuFoG05rUY6+g6jelz6bPkWl0iCEDmIvIdb+TmZ6DLE5HOeK//c8LioV165+wslTdzc7vLzCqVp1BteufWKxCWJK+asfZtZXSMgoXDv1R4k7AN+0t9ypjlwJoQNh35dw5ihMX2lwyJ3RoXhqAlyPsRROA5NGhXi4HSIwxCEbJ3GcfNfZLleuHEII4uLiKF++PBqNhoYNGzp07aRJk7h16xbt2rXDx8eHwMBA4uPjuXXrFn5+frz66qu8+uqrgEEO/59//rHb340bNzh06BBxcXGkpaVRrlw5ateuzUMPPVSsvjAnTpxg2LBhZsd8fX0JDg7mxIkTRTQqSWGQmpCAV45HI7r0GC6Wg5o3Y+4eFHpIjUUxThrDJ5LpXd5sUqrXp6HTpeLhYR4KqVJ5oFZ7WnHCzUlLO4eiaBCNp6Fo3O6qjhejvw/Jg4m0a8UceyktGgdrrAqBb+9JoJmGrzbDVK81t9pu5ZYtafr8cxYh4X5+HcnIuGSxe+2U/dJ4gtoDfGpCm4/hzHrIOWE+uxHl+m+INmuhYnvIXc5QUSBsoEF1/NRKh0sdKgHBxJ88yUcPP8yz+/cT3OT+KylL7i/SphUPbM2j7GLXpqlQNC4o/6yw7qSGDUC0XUdmZhyxVz7KsVA42spCIbi7h+Hn187M0Qbb0YYOpfxVeArFr555yp/QGmxdUBvDTvU7rxpCzJ3RochMN4Smf7zQeslCgNB6qBLjEYEh2aHqNmpzS5wmX872999/z8yZM/nrr7/Q6XQcOnSIJk2aMHLkSCIjIxk0yH7eUkRExD07wbdu3WLt2rWsXbuWv//+O3s1/S6KolCmTBl69erFiBEjaNmy5T3dryBITEzE19fX4rifnx83b960eV1GRgYZGRmm50aBOkc5ddXQPjTAE43G8JFfv5VOUlom3u4uBPt6WLSt4uuJu7uhbcKddG7eycTDVUVl/zL5anv2+h10ej0hvp6UyW6blJLO9eRMXDUqqgXkr+2FhDtkavWU93bF18sdgDvpWmKTUp1qq1apCCt/t+3lm3dIy9TjX8aVgDL22yaXCeBcUhYud9JNbTN0cNk1kLgUQc59jcRMDVq9H7cy1VQEEHrE6fXZOzE6wz+KyFXEXl6Qa6dHcP36ZoKDh3Pp0qI8nfDceHiEIoSOpO1v4nJ7CWddJ1G+x3izzz5BW5aLd/R4p2tNn2d+vieeyZlUynFva59nQXxPjJ/nvX5Pcn+e9/o9SU/XcinJEFZaq4K5LkVJJD92Tdo0+9/VrMQMgtWuGI8av39utzKpmuN9MH1X07LwzdU293f1SnImqVdvE1jWDT8PV5Pz7KPN5HZaFmU9XExtb2k9uZSuQZ2eSVk3jdlioFI2DOqNQniGcOnAAda1b28SFKrfv58VXQnb0TdO2S9tKoouDRpOMIRZWtuZOrMBJfE/6LEPETETRaVBr81EoEEtgF92wq0E6Djlbj7kv4fgoQqIF15HyVXqUAQEc/V2OrHxyWSl3g0Vz/l5mt6zTEi8etvie3IuMRPt1dtmn326xp1zSVlkJNyRNq0YUhQ2DYrOruV0BJyxVUm+wZxLysI7XZtn24u3MlG5BuKdy1adS8riVtnyZu+D8fuq0mKaP5l9X3O0vXzzDjo9VPBxN1sQvJWaye10LZX9c/yNairhY0tI0T8c0XYd1659auY8GxYKL1tJc1EoX76fFbtm2945lPLnE4lrw/GGOWFO/OpB5g3oPhR6DDPkjjuiQ5GVAW17QdXaBpuXu2yiEWNt7vhYs9rcovcoCAzhZmqmWXNrNvB2upbkq7ctPvtbZcs7/D0pqXbNaWd748aNDB48mH79+jFixAhGjBhhOhcWFsbHH3+cp7O9Zs0apweakwULFvDWW2/h5+fHk08+ycyZM2nUqBEBAQG4ubmRlJTEhQsX+PPPP9m5cyft27fn0Ucf5Z133qFevXr3dO+iYOHChcyePTvf13dauh+AVUMiaF+vQvaxn0lK0+KiUji9oKtF29k96jK0hSF3vsvS/cTfyUStUjhrpe3zbUJ5pXNdAHr971cuJ6ahKHB+YTdT2/aLfwag/8OVeL1vIwCeXHGQ09fvoADnF1m27Vi3PB8NbQrAs2sO89flJAAu5Gjb5i1D2+bV/dg8yqAX8PyGw+w7nWCzbYOQsnw9rhUAU7ZH81V0nEXb1m/8jACql/Nkz6S2ALy56z/W/nrJou3W51axdVcCFQ4e4PcpHQDYEqdmWeuP4ajggrGhENTs8xYNXN4h07himBqLcnQZovWHENYfReOJAlZ3eq5cWUpQ0GBq116Zw1hbd8JzoigagiuMBFSg1jD88iQOZjTE9eReTs3vAoDeJYDmlzbAJYXF5ePoHVEZgM7v7ONmShYalcIZK5/9K4/V5vm2hlKA3d89wNVbGagR5By98fMc2qIKs3sYol+e/OA3zt9ItfnZPx4ezLsDDTtIg1f9wbHY2xbvu/HzbF0zgHXDDaUCR60/wsHziTbbNq7sy44xhoW3Fzf/xQ//Xbdo2/Ytw2dfs3wZfnjJkOYy9+t/2fznFYu2rd/8GSGgsp8H+19tB8A7e0/z/t5zFm0ld5E2LW+b1qPOC7yTfeyuTcthT3K0fcgPPs8+ZtOmbUuge6OzLOkXDqkxJudZVTYMz9ojwb0iKIY85Ceuf4hnVmW+clHbFuCJXEXlFk8RWK8e144dw7NcOWp268qly3Od2L12zH6FVIgyVFPQeOVdxuvGEcP4Gk+j7swfSMvSs/jJcINNe7Qb2uuxaD5eBNevQPmKhnJdisLBZDcaD5+Bm6uLSVn86dUHOXD6BgrwTI5b5LRpY7OPjfzXg3N/7bf47Nt9kQDsN7Np3w9cyMZdCbDrZ2nTSgj3atOg6Ozar0/ejXhxxq7tGPkhO3Yl0PHyX3natcgdCdD6Y1r+dIMNjQ3HTHZt9Com5XgfjN/thh7ufOVucObM7Nozd8f75venWdIvHJESi3LyQ9OCoFftkZTxMc+t73V5Abv1OsOCYS5EwwlkZsTm2qW27Tjbsmu27Z2DKX9XV1ItbIrB5hoJGwBt10FKLGQLuhE+EeqOsq9DUW80OpUG9bwNaDOz0Oh1lmUTIUcut2VtbmXNIvTTV+HbeRC3cpQEyzlXey07xP+FfYmc+tLwXcv52W8fvYrtuxJoff5wqbVrTjvbc+fOZcKECbz99tvodDozZ7t+/fosWbKkQAdojb1797J9+3batGlj9XxAQAABAQE8/PDDjB49msTERN577z327t1bpM62n5+f1dJoiYmJZrlBuZkyZQovvfSS6fnt27epXLlyoYxRUjBoxB3A21Q+0Rgq7pY9wXUtWwMiZsDVXxG9ficzIya7ZJdBCM3aTk9KSjQnTgyhTp11+Pq2Iy7uQ9LSzqHXp+LmVpnatVdZrL4qiobatVbh6hqM0Ouzjajln71n1XDgcKG8F5KSTX7smrRp9586wd4s6ReOcmYD7DN3njV/L4KO26FqN3x7v8Lefq7odDqUtDibAjzKz8PRh3TmmX37cCtbBkUxKIznnmTmtXttfRHRgKJoqF9/O65ulSDsKag9zJBDWbE9ysUvLasrGEk+Z0iXwTziDZWKb+Kg8/Dp2U51BorGkE4z4KODKAq8feoDWg1+isBegzhz/Y6D766kJCFtWtFSN9ibYS2r80R4BZhpCGcedOk2Z+Lv8F9c8t2Gbh4s6VcL5cwG1FZsmr71Kqg1GFDw7TWJn/q5odfrwUJIUYGwARYRhfYWCm3ZtQJJ+TOmzOjSwD/c4Gif+dQ8mifxX+j9pyGXO3eUTw7x28ff2c/5hDRGlk/ixbH9DdodOcsmQp653Kq5w9E+3A7v+obFF4Poo43FTolVFJE7/joP3N3d+eabb2jfvj06nQ4XFxf+/PNPmjRpwp49e+jatStpaWl5d1QKad26NeXKlWPHjh2mY8Y89dWrVzssunH79m18fHy4deuWRfk0a5T0kMuiDCOPO3KEtyMfo9cXX1O7WSNT26ub5qG5+SY3Ki+hdvdnLHeHNJ4wLAWh1xpygXKsptauvRo/v7YcPFjT6gpomTJNeOihvahVbigqV4Q2Fa4fguBWZGZeJTZ2OWlp5/DwCKVCYBSu7iFk3E7Gw8+PpC3zcbk5n7OeMy3CyK19nvkKI798nErPPQLrD0OdJjKMvIRTEHZN2rRcYeSnjxI8oQ1l1v4GdZrcDSO/eJyqY+7+bZm+q3H/4Tvi/2D9Ye5UCzf7rqbs/x6vFztz6/NLlPVVUDZWt3SejTsnqdfgvxUGIcU2q+HIPPhrnvUPocU7iPpjyMyIJTbubsWEixfncfGi+TV52bTy5QcZRIMyYonNXkT08AilUqUX0Wh8yUy/TOzVlXfFhIJH4OoajLJniGHHOzeNpyEaT+fq2ArEtphH/X4jzWxa3BdLCc18E23ZF/HrN8302Sf9+CUPLX2GW1PXEthrkOmzTz51gq8jmzPy8GGCm5jbtLSdmwmcP5gzk9ajj3z87vfkxBEYHMG5d39DW72e6bOPO3KEd5q3pPv3e6kYXl/atGJIUdg0KMIw8gun+DAigpGHD5NaqZZDtiruyBGWPv4kPT75lEYtIvIOIz/4O6oXe+D9v6/wbWzY3byTruWfXw+zrVcPJu3ZadJDEHq9IZx5u6E0FTnCma8nZxIUdxwGR8CP8QhNunWbBganc+AFUPnAmjfg2mV45DFEp34opz+566Rmz8eOHx/I9esbc3ZAq1Z3uHRpoYVNA9t2zfpx+30ZqVp1GtUqT0FZnZ2lHrkaQtrCppq27XbadUuNimzx20Pr1xP8/ksoLy2hUt9BoNcjdq5HyVnPe/8dQy73KtvjYvg0Q2Wa/3OB9Yc563/3e5J8PJoPIyIY8MtBlNA6Zp99clwc3/xvFbX7P0XNmlVLrV1zeme7QoUKnDhxgvbt21uci46OpmrVqlaukgB06dKFBQsWkJSUZMoH2rJlCyqVik6dOhXafa19icr7uFPex92htgFl3E1fzvy2zfmlN+Lr5W76A8lv25x/pEbKuGusjs2Ztjn/UQGQEEeZbSuolVvRNzOe7m0SqOGZZPa63VTg566lbOOWkBpruTukTUPos8jMjLMQ18hrp6dSpQmo1V4o/34ACYdRvCoi6o0GFG6du0WlalNMNR3/3bwZj4BAanXtatJJKKNKp4q7Fr8c/7ihAL8nSa5mx619ngXxPbH2eRb59wRwt9G2pFIUdq3E27QEN9DdzZEzff9y/W2ZvqtJLpZts0lNSMBLUShbIQjlr7mWEzZrOycaT1BvsC3AU70vov4YC7VdP78OVkPC87Jp/v6GEmOuV48YJpoaT4Q2HdSu9utvt12HknjcfIc7O3wy/colgv9MRPOYj8nBAMP3xMVdi3f6TXIWMatVoSzxXgqu6EzHjJ99XKz5VCnn52ncWvBxhUAr359QP1fIddxdm06orwvBuWyNtGnFg9I2V4u7cPe4I7ZKCEFQeDivx5w1KfTbamukqo8rZMaDh7mtCvV1wef29bsN9XqUnesNCtq5wpmZsYqgLoNJO5uOh6IgvH1Qjiyzr8h9/nOoMxKenWzSaVAunICaT0PFDtlO6gWE0FmJvrGf5nLXrplHFd5Lyl9I8ChDqULDEftpM2c3QeJxiFyNiJiFolIjtJkoaheTqFl1L4XAzHjijR+RSoXSZTA0bQ/blht2tO3lchuJOQc5SoKZ6RZlP5Z11xCc67vmHRzMgHnTLLorbXbNaWd74MCBzJo1izp16pjCuBVF4dixY7zxxhs899xzBT1Gu8yZM8fmOZVKhY+PDw899BCtWrW6j6OyzujRo3n33Xfp2bMnr732GjExMUyaNInRo0fLuo3FnJT/ovH6aDYp9R7Bq1UOZzsrgTaPQ3xWwt3GOZR7XfQ6Q45NznAljQdo0wFBbNxHFkbXVri4h0coIRWicHULQdFlIuqNNhhXvQ5FUSGEwL2sDwcWLuL2lSuUrVjRek1YiaQAkXbtAcDNwxAubc15tiY4pk0DbapNAR7RdL4hv/GkYwuFBpv2LHXrrsXPr4NZ9I3BplVEEUDgw/DXIki5AvXHWlRlMN3fWH/bt425mFCO8Mm0szsxX06USBxD2jTb5K5A4B8WRsSoUXiHhNz7PEMISIi1cLQBw/M5ww1Oon95g01Tu9hX5A4bAPVGQdrVuyUCy4ZBreEGgTH3IJOTihCEVIhyaqEwNfU4t2//RlDQYPz82pvZNZ0umaCgp/HzbUts3Ec5Uv6q2E75q73KML+r0hUaTzPYZU0equM3o+HoYpR2G2BtAAmhywhsZV83C5UKAkMQUdNRXFwROh2KtVzunFQMBa0WMmTkcn5w2tmeNWsW//77Lx07djTV2e7SpQvx8fF0796dyZMnF/gg7bFkyRIyMzNNoevu7u6kp6cD4OHhQVZWFjqdjiZNmvDtt98SWIS1f/38/Ni9ezcvvPACPXv2xNvbm6ioKObPn19kY5I4hsMlKHKW8bpzBaXtxwZD6R+OaDjBJIImtKkoKleb+TvXr28iJeU4NWoso1q1WSiK2hAufnYzilsAomo3MuJP8eepVlS//iQVe7+Poih4h4TQevpU1C5u6LPzEXMq/+tVvnAY9B19C+7NkZRqpF17AMhIM+x4WDjPtnZOhGF3pc5wKwI8KvAJI/bCLOcWCoNHgtDjeuNUjt3rVDi7CeXoMsPuU/3nEI2nomjcQOis3sM0QqOYUI1pELPbInxSdzupIN45SSlE2jTrCL2e6PXr+XL4cFMFAoADixbRY9UqwgcPvjeHW+hh2wrbpal0Wti2HPeo6ZCZbthosKXIbYrY2WCZ0/z3Imi9EmoMAp0eOofAd7G4ulWkdq2VZtGGeS8UhiDSk0i+nEKlyoaoQm1GGiq1GwiBq+JHtSrTUNRuCL0hWikoaBB+PpHZqTE5+nKvBEIg3ALBWKbV3ms04h2K0GWhZNzIzqd2AEUh4estBL49kowN0bhby+U2otYYhCTvJDnWt8QCp51tV1dXvvjiC/bs2cMPP/xAQkIC/v7+dOjQgQ4dOjg9gMuXL3P58mUaNWqEl5fDlfRM/PTTT/Tv35+ZM2fyxBNPUKZMGe7cucOOHTuYM2cO69atIzU1lcGDBzNp0qR7VkK/V+rWrcuPP/5YpGOQFDxqL1/DPwqz3GwFWv0PqvVEtF2bQwTtLB4eNahWbYbdkjcpKdEkJe3Gt+wjsH8EildFqBWF8K6EIuDW0W1o1Qlm1yiKwtWvXuJswBrCEoZSsff7Zuf1aj+Ds93ZrxDeBUlpRdq1YoC7nfqyQpARcxn3ernUazUetndOji6FmoMtBXjc/VEUtXMLhXot6NJRdvyfQS08O8JH0WaX01I0UL0noBD75UucL/8Zjz4a75iYkNoN2m1AaDNQ1K73VBPWOFF1eMIqKbFIm2aOEILk2FgLRxtAr9Xy5fDhVG/f3rDDbeVvMCU+Hi/jYx3L/hWVClRqh8KZFRdX8PZDUVRQO8q6Ire9EoFCC/uiIKQtSpnKoDNEB5KWQFDQQPx825g7wiGjAXC9cTrXQuFmcAuESo+x9cm2XDt6FBcPD7JSU2kwYAC91q1D0atQ9IAaFJ1AiExwccVFXe6uE67LQGgzETo96UZ9ne1v4ndnIZltf8Ett902e+MMaTNKpkHQz8vZDcX0VFLPnMC9bRfEjFV3c7mNqDWImatRAoLh4knn+paYcNrZvnTpEsHBwbRt25a2bduandNqtcTGxlKlSpU8+/nwww+ZPXs2V69eBeCPP/6gSZMm9OrVizZt2jB+/HiHxjNmzBhefvlls3JjZcqU4emnnyYlJYUJEyZw8OBBpk2bZjfkXCLJD6rkRNB44hlY3UputoAruxChfbh2db1Fbra7eyjBwSPs5++EjAbUhtDIrAyEVouCAioV2lsxYFUYVaDXp1o7gd4ngL2xUNdHTiYlkhKBEIgaDVEOpCC0WShCWHU4U8+cwL1KF4hcdddO2QsXvxkNe4YYdodC2sF/H2YL8NSwkd94F9NCoa8hfUvJygIXD4Qx5FtoDfcFs9Bvw7gFWu0N9NoMh+pv67UZqNb5k1RmiknsLL8YJ6pOT1glkhKO0Os5vGKFhaNtRK/Vcnj5ciJnzTLL4TaSV3Sg0OsNod0OhDOLrEyU2zcN8yGvioZd6n05neo8cp3BcPzER4YwcmNfbn4ol77FNeMG1cJyONXXD6FUqAA+NU1pLopXRag3GuEZzOX9B4g/fhyEICvVYNeOb91Kg0GDqNW1K0KfhQIIBVC7cnHffpLOn6NB//5oPECXqePY5q0W+jpoU8k4dQi3alHmdttITtuZdG+OsADoPAhd40jUX6w05GhXDEX3RBSqoEoI7hbXkTiP08529erV+e2332jWrJnFuX/++YdmzZqh0+msXHmXpUuX8uqrr/LSSy/Rvn17M8GJNm3asGXLFoed7b/++osZM2ZYPVetWjWOHj0KQIMGDayWcpBI8o0Q+HcaAZqxuFnkZmc3AasiaABXriwhKGhQniW70OtMfSnunqaJtFC8zR5N97RxHMCzbjiMnGl4lEgkxRd7O9VG9HpIiEXZZlDtVSqFGUq7BIQY8vJyoLudZKijXXMwVGx/V7028YTteq1nN0HSKei+FxpPB40rZKSCUAgJHpX3QmFSIrzzCpSviH7AOJSagxEV26PYUM69iyAt5jAhIXnfI+vyf7hprS8uSiSSuyTHxXF4xQpDjnVwcN4X5EClVnPzrP1d58Rz51BZcbQdRlFZL01lJDucOT3mEh5CkBF7CXdfXwgbCBXawKmVBrviUzvvXGcwlAhUqcHV/W5flbqgpMSaO9W1ogy2VlMOETEdReViiqRRFIUqjz7K+AsXOLx8OYnnzuEXGmqmlxPzuXm0YdVWrfCvUYP9dvR1jCl/Wf6Z1u12btupy38utUeNOiTHxrLpiSdoOmYMDYdOQePpiTY1laObNvHH//7HgC+/xNsvUDrc+cRpZ9tepbCMjAzc3Nzy7OPdd99l+vTpTJs2zcIxr127NidPOr5CU7VqVVauXEnnzp0tzn344YcmdfQbN24QIEPDJAWFrdxsMxSo1InYywutThaN+Y11635iIa4RUj4KVw9DuPi1vW9w0mWBRVi4Xu1t9pjXcTAoQ7aZNeveXrtEIik8hIAa4XAgxSBIY22n2s3DMPmzotpLtmovXQZbONyAYWLmGYIw5QRqDSGUFrtDGHZOGowHtTsMaQqXThvUfD/YjevDbWyqi9eunb1QqNbDzNXoMzPQZmlxEaDkvLeV0G8XvTdVb0BG1iE8q/yfHTGh1bi6BpN86hvynnUUHjZDzwOCDaVyApxzaiSSwuJOXBw/z55N7R49nHa29Tod/mH2d539QkPR63T5d7gVxbBQOGOVpV1Ta2DmaggIJm3PTjzcPU3hzxz4Bm4lQMcpJsVxdFk2BR5NmHKd06z0dVe9nB82g28gtOzK9T0LLeZjikpl0MuZMQ21ixu6rAxUZno55tGGpvb29HVyp/zlttsFkDZjfM/dQirz+5y5xB05wpfDh/NlVJQpHN7I4eXLiZw5Uzrb+cQhZ/vEiRMcP37c9Hzv3r1cuXLFrE16ejobN24kNDQ0z/5iYmJo0aKF1XMuLi7cuXPHkWEBsHDhQvr160ft2rXp3r07gYGBxMfH8/XXX3Pu3Dm2bNkCwO7du2ndurXD/UpKH46s+qrL+trOzc5t2DUeKBpPu3mH169vws2tGqGhC6hW+a4RJetuuHjW7dvo/VKt7lRbQ6P3peou0DTzdeyFSySS4kH2TjXb7taXtbpT7RfomGpvoB3lZOO6uVBg91Zom2t3yDsU6owAj2CYOQRO/XP32sUvomw4YlDbzS0aFDLa4GgLEEJvmJwp4OLpaZpMxn5pW1fCRe9N9SRI1N1BUVRWlX6N91AUFbpb1ylKbIaeBwTDqFkW7csEBxM5cyZlnHR2JJKiRFGpiBg1igOLFlkNJVdpNESMHo02I4Nf33gjX7vnho5UhoVCY2mq7HBm+ow2/E0pCn6tO8KBFPyyMg3O5qPdICEOPl4E169A+YrwzGREvVEodnKdRb3RZF6Lw43syB+Vynpfxntnp+/p/S0jaRRFIWbnm1zwXUi1pClU6WE/pSUvfR0bF5lyuQsibQYANw9ULq7mUQs5wuGNJJ47hypH6S+JczjkbG/evJnZs2cDhi+ILcVxX19fhwTIqlatyqFDh2jXrp3FuYMHD1KrVi1HhgVAr169OHToEAsXLmTHjh3ExcURHBxM06ZN2bx5Mw899BAA//vf/xzuU1LCSYgzTGZz1cx2ZNXXs0Yd67nZ1pR7tWkIbWqeeYcqlQbQ55j8moeLe5VrRNXvwKtzI7PrvH1DqfodeHc2X+ByEX6E7IL4plIETSLJD/cSbplvHNmpdvMw2IUyvvDR7DxVe605e2ah59euoMz6GPZ+Dqvnw1PjoVP27pBeByf/hjmPw+lo8z5OR8P0wShzPsFVXf6uEJrQgU5vKOOlUpG09Q387izklsXE0LauRG4URYWrawhVq0xDpXZDr8tAUZnvAhUpTu5gy+giyYOIsdpJj1WrLETSVBoNPVavxjs4mISTJ/O9e363w1ylqbIyUTQuhiif+BjraTOBIYioqSguboisDEPKCx6I1itRrETsiNarwDMYkXTFxr3v9qVoHN9BdtSuGXDcDppRkGkzGWnoszIdi1rQalHJ0l/5wiGN/gkTJnD+/HnOnTuHEILt27dz/vx5s5+YmBhu3LhBjx498uxvxIgRzJs3j1WrVnH79m0AsrKy+Oabb3jzzTcZNWqUUy+icePGfPbZZ5w7d460tDTOnTtn5mhLJGYkxBkmqglxzl3n4YVbpSqGeo25V0qPLgWvigblXsW4hmVwwkMqDEdRrK9rKYqG4AojEULh8s432bfPi8s73zQz7H7l61B9l+ExJ7aOG0XQ9FIETSLJF8aFtztxTtoIJ0iOi2PvrFkkx8U5Vl82Ic6wo+3mARqNQ6q9qNSQHdKpLut716F/vDqsmgffrDWESVYKMzjQc4ZDqzLwqBd8vQ58ysG549b7/3Er+pvxKGqNIdwdQKs1PM+5C18AE0NFUbjyjcE+XvnmTfNwyzK+Zo/3HeMOtgwXl5RwFJWK8MGDGX/hAq2nTaPhwIG0njaN8RcuED5oEIpKhTatgJyx7NJUPOpF4r4fDDYyp+36fqPh8fHqhuNCkPzTWljtRdKONxF6Pce3bEWEDkT35BlD3eoaA6HxNHRPnkGEPsXxLVtxLV/B6r1jv3qJffu8iP3qxXsP1S7OCEFG7GUiRo0y7FxbwRi1oMjSX/nGIWfbx8eHqlWrUq1aNc6fP0/Xrl2pWrWq2U9wcLDDK80TJ05k2LBhjBw50lT3umXLljzxxBM8/fTTPP/88/l6MZcvX+bXX38lJSUlX9dLJFYRgoDuT8L+OyhqF+uiG0bl3hoD4amzJsOuZKXi6l6Z2rVXWTjcRhE0N/eKpr+dfK1y5kLvG8jPcYZHiURSPDFz6B2sLyvK+GTXzM5ySLUXvQ6ydVE8a9SxdOiFgF2b4YnhhpxI47H0VNi41BBCOX3l3XNG1BrE9FUofoHo9XqnJ6bGvGwXvWOpMUas2Ue9t5/Zo0QiKTyM+caRM2fSe8MGImfONJT7yqO+dr43AdJTrdsuIzkWI11rPQoHU9G7BKBSqznx+ed8+PDDRG/fjbbBFGi3AW2DKURv382HDz/MyS++QOXiaiM02vqusz3bZUrh0/s69xqdwCicplcV3D3SzpwwRS3kdrhzRi0oifEFds/ShtMCaUbBMYDU1FTS09Mt2vj7W61HZMY777zDhAkT+OGHH7hx4wb+/v60b9+emjVrOjskUxmxuLg4FEXJdxkxicSCnCGXMecMAh22RDfOboLE4xC5GiJmGXaV0lNRjuwn6KGn8PNtT2zc3bzDCuWjcPOoZAgbV+Vj5bS4CvAU13FJJMUQp+rLalwMyrkxl3B3QLXXpPCdLYLDyrmW7Tcuha6DDU713Ki7509Hw+xnEbPWQrMOKDnyJ3VPRKEEhpB++zYefn44Gw5pysv2tZywan1DufA5eD2Tt/6LRCK5/yiKwtXoaD5u1Ypn9+8nuEmTPK8xbgLUdnYTwJ7tMpK9GOkWNT1bVMzbJOh2bONGm6JftXv0QJ+V6VRotD3bZSuFz+SgC+cWF62h9a/J3q+gbn/nfSVb6G4nmaIWqrdvb1NVHRlCnm/ypUY+b948VqxYQZyNELu8Sn8ZCQ0NdTpkPDcFWUZMIjHDWg5lhyfhYRtlcsDgbLsGwNdr4Y0XDDtEgFIzHNcZq6lWx5DbqMvKQJdpEEEzrgg7LWxmQ4CnyCmu45JIiiFO15fNqZybh2qvaZfZzQPFxdW6Q3862iCANnsdPNwWdnxkcqpFn9EAXDx+mko5ysEc+2yzZU3YAkIbUIe1G2HkRPP0GHdfX9BnP95npKiZRGJJbhGtQsGe7cpJzDlDu+xdagtBt1yiX8bQ6IyYS1jd17ZTQtVZbDno+bmHzUULz2BoMtPwmE9MUQszpqNycUWfnSufl42X9jFvnHa2lyxZwuLFi3nllVeYOnUq06ZNQ61Ws2nTJjIzM5k6dapD/eh0Og4ePMiVK1es7o4PGTLEoX4KsoyYRGLCXg6lV7DtMjmtV4FXCGxcZnK0ATgdjbJhMczbYDqUU50XwKdcTbx2QUqXgluxlEgkDwDO1Jclh3KuPdXenGGdGWkGR92WQ//9JkNu9ozViJGzUNRqkzCQEAL/mjXZv8h2TVi1qEjVo6AOqWjWrSnksaPvPb9FHn5+cCP70ZH2tepzoWYkAbXqW5zTl/GFJMfzvKWomURSRORlu4wYFyOz51SOCrol7tlp1dlWKZWpugtUzSrf80uwZQftlWl1Gs9geHiW5WFbpQltoGTnyge+PZIbL39IYK9BeV4j7WPeOO1sr1q1itmzZzNmzBimTp1Kz549adKkCdOnT6dHjx6cOXMmzz6OHDlC7969uXz5stW63YqiOOxsF2QZMYnEhLUcSkWB/+sEP26zUSZnJHhUMOwS5VbvBcM/A20m+3/1o4rmdaq1GGt22qtuOIyYaXiUSCSlBwfry6b++TsHY6GuMe/RlmqvlbrcGbGX7YeenzsO5SqQcekk7oubcjPydcr1HWuatEZOn2Zzt0Otqkb1tRA/tZpZlxa1Yo3H8+GEu6oCqLoLXAeZTxr1LgGGsMpw8+Nl6j9EmY17rfYl87wlDwpFUhnhPuPi6Wn7ZLaAV15pM6LPaEM6zoEUymVlIoRwKDRadzvJ+pgKsKqLLTt4P7BZmjAv0m1ELbjb+awkNnFIIC0nFy5c4KGHHkKtVuPi4kJSUpKhI5WK559/3qHSX8899xw+Pj789NNPXLt2jcTERLOfmzdvOjweYxkxazhbRkwiATs5lG4eBkOz93N4+mH4eTc0NIhu0Hg6qHzhmf8z7BLlJntn6k7iJfT6VISLFaMrVW0lktKLcaf6qwswfBp0Hmh4/OoCdB4EKhWZGndL8cMcqr0JX28xd7SN4o4HUnALqXLXobcieGZy6M+dh7+yJ4imWyjcyL7Hja+33HPouGnyqXZ88ummDqT6LsOjWV+ugfz8teHRUZzd7ZFIior7URkB8nB4CwkhBEHh4byWkkJQeLjVzTeA1DMn7NoukW27/li+nG0DB/LznLkkx8Qg9PocodHTDIJuM6Y5JOhmi4IUKCvySgrOIATUCIcDKYZHG5+VxDpO72yXK1fOtFtcpUoVjhw5YqqXnZCQQKoDORz//vsvW7ZsITIy0tnbWzBixAhmzZpFYGAgvXv3BszLiM2fP/+e7yEpXdjMocxIu1sm5/uNhh2ouVEGJ7xyDfjkTxgwzlxkCMwmsreP7yz08cv8GYnkAcXRnWpr5N6JyCnuaKxJO3CC3dBzoSj4tu5ovjuU8962djucxKhMXNeKMvH9sF/53u2RSEoYOR1evVZr+TdfWPfV60mOjeXwihXcPHsW/7Aww+59bkfY3dNu2ozoMxrKVWDHkCEc3XA3Te/AokX0WLWK8MGDUVQqkna8id+dhdwqMwW/ftPyPe6C3KVWl63JhfcgbGwxTx3M/l9C9v8SctY3z+eiRWnDaWe7ZcuW/PHHH3Tt2pWBAwcya9Ysrl69iouLCx999BHt27fPs49atWqZ6mvfKxMnTuTSpUuMHDnSJLbWsmVLAJ5//vl8lxGTFC7FPjTKWg5lzjI5xuPGMjk5RYaadbCZQ5mZllToQ5f5MxLJA0yOnLkEB3PmLLAm7ggGu/XmdsSj3cCYm63TGSZMQpAcE5P35NeZYdhwqu0pEztrv+TiokSSPxx2eAsQjYcHQq8nev16i1zqnA4yikK57k9Cr0FmYeFmi5E6LVlp6axp1oy4I0fM7qPXavly+HCqt2+Pd0iI4aD2Pgi6OYFGFcjFtaAZ5/ii3/20d+qyvvb/l8xYZVgAkQ53njjtbM+aNYuYmBgAXnvtNZKSkti4cSNpaWl07NiRd999N88+lixZwvjx42nUqBF16tTJs31eFGQZMcn9wRgaVbtHj2LqbNvIobRVJgfgx62GcM+WXREjZqBoXJzbmbKFLKUlkZQ+8ruLbE/cUaeFSb3hqwtcvXyVg++9R8jDD9P0uefynPyqy/o6PZR8l/txgnwtLhaAcq9E8qDiqMNbGA63V2AgybGxFvcFg4N8dtcuwgcPtrvwl/D1FgIXj0L8dJNfXn/dwtHO2d/h5cuJLMDNh6JOQbkfmynGRdLmdRvlXd+8aXsIDLm3OW4Oiv1GXD5x2tmuXbs2tWvXBsDNzY1ly5axbNmyPK9r2LChWWhKXFwcDRo0ICQkBN9cpTwUReGff/5xalwFUUZMIjHLW1KpENlhSzlrzIqUZOj6NIqdHeyELzbe285UTmQpLYlE4ijWxB1zotOibFtO4NAp/LNmDVVbt+bWpUs2J7/G3SGPsNr3YfD3CRvKvRJJaSAvhzfnjnCBhpQrCu6+vvw8e7bFfQGCwsN54uOP+eeTT/gqKsr+wp8QqFxcuXnWfkmwxHPnUKnVlrne+aQ0pKDofQP5+apCZPkK8NHsPOubM2oWKOoCuXdRb8QVlrNfMN8+B4iIiCiwP9p9+/Y51b5169YFcl9JCSKXoqK1vCWE4NQ335B2I4EGuWrM+lYPpWqrVmBvB9vKzpRGCeDCGggbK4V5JBJJAaNWWxd3zE3MOTSenmg8PWnQvz8HFi60OvmFHLtDM6YXwoCLGTKKSFLSycPhBfMdYUVdME4UgIuHByqNxqaD3HzCBJJjYiwcbeOYzBb+MtLQZ2XiH2a/JJhfaCh6nc62w1iA2NOicJai3kF38fBA0Wgc+l+CquC+I0VNYTn7+XK2N23axJYtW7h8+bJFjWxbu9KOqJQ7Sps2bVAUxaRcmNOJtybukLv+tqQUk1NRUWvIuRZCWOQttZw8mfTERD7r3Ru9VssXw4bj4uFBVrYAoEqjYfyFC7hkpeExuJHDO9j5ydGRSCSSPHH3BJ3OurhjbiqGok1NRcEQzePQ7pCLq0EMsiQjo4gkJZy8HF4jph3hAiQrLQ29VmvdQVYU5xb+skuCRYwaxYFFi6xeo9JoiBg9GkWlyle5QWcpyLSZAttBz+cCYlZaGkKrdai+OXpdiXK4CwOnEzJee+01Bg4cyKVLl6hZsyYRERFmP02aNMmzj2HDhnH+/Hmr5y5evMiwYcPsXv/XX39x5MgR/vrrL77//nsqVqzI4MGD+fzzz/n999/5/PPPGTRoEBUrVuS7775z9iVKSip6PcTHGMJipg6Ej2Yj4mNACH6cPJl98+ZxbONG9s2fj6IoHF6x4q4BF8LkaMNdo+9WsUqBKfRKJBKJswghDEJCB1Io1/1JhFHc0VbYpFqD7okojm7aRFZaGlmpqY7tDmVlGioySCSSBxa7Dm8OTDvCBYkQpCclETFqFCqNuX1y8fBweuEv7cwJvENC6LFqlUV/Ko2GHqtXG+ppK4rNcoPG3Wh9bhFHG8fvW/RLQd0nvyVlhSAtKSnP/yX0GW0QFJbYxemd7dWrVzNnzhymTcu/dP6aNWsYPXo01atXtziXkJDA2rVrWb16tc3rGzVqZPq9b9++DBgwgDfeeMOszeOPP86kSZP44IMP6NixY77HKnlwMeZeNB0zBq9y5awqKiprFiGmr6Tnxx9z/ehRrkVH58voSyQSyf3Gmppw07Fj8QoMQckt7giGmrTTV6EEhnBw2TIQgmObN9N4+PA8d4cyYi5RUJZOKohLJEVEDofXkR3hgiYlPp6A2rXpsWqVWc64swt/qow0dLeTUFQqwgcPpnr79hxevpzEc+fwCw0lYvRog6Odx2uwtRttc5c6H9Ev+QovLwZRNinx8XjWrm0pFAxmJW0LShytJJOvMPLmzZvf841t5W+fPn2acuXKOdzP999/z/bt262e69Spk6n2tqT0Ycy9aDZ2rF1FRWVuFPombWg+fjxfDh+eL6MvkUgk1igMwZW81IRHR0cTYE3csc9ohF95dgwZwrXoaAAOLl1K+ODBPL5ypUWuZM7docQ9OwvM2ZblCSWSosOWwwuWO8IFjTYtzaaDLIRwaBEg98KfolLhHRJC5IwZqFxc0GdloWg096VeuCPcj6oMhYE2Lc1mffOcgsCSvHH6XYqKiuLTTz91+kYffPAB4eHhhIeHoygKAwcOND03/tSqVYshQ4Y4tRNdpkwZdu/ebfXcDz/8QJkyZZwea364ceMGo0ePpkqVKnh5edGgQQOWL19u0S42NpY+ffrg7e2Nv78/UVFRBVZzXGIFRcHD1zdPdV71FytpOGCA4XmO3Z7coUlGchp9iaQkIm1awWBc9LsTF1dgfdpTEw6sVw//GjU49c03/PPtLrRDp8C8DWifeQ1RrgKndu7k+NatpvbXoqP54tlnCR88mPEXLtB62jQaDhxI62nTGH/hAuGDBqGoVOhuJ9kcz30R85HiZZICQNo1c4fX3t98YWJykGfOpPeGDUTOnImLp6dDYeFpZ09a9qcoXDt6lAVeXlw7erTYONolguz65oyYCfM2GB4DQx5YRzs5Lo69s2aRXID/k/PC6Z3tuXPnMn78eFq2bEn79u2tlu168cUXLa4LCQkhIiICgGPHjlG7dm0CcyX+u7q6UrduXYYPH+7weMaMGcOMGTO4du0aPXv2pHz58ly/fp0dO3bwySefMHv2bGdfYr548sknOXHiBAsWLKBKlSp8++23PPfcc6jVakaMGAFAVlYWjz32GACffvopqampTJw4kYEDB/L111/fl3GWNpxRVNR4eqLx8ECblubwbs/NP3/nYAGpT0okxQlp04opeagJGxV9rYk7NhgwgJ7r1jH+wgWLkEtFUbJ3h6ajcnFFn11hwZFJ630ph1MMwiolDz7Srt0lp8Or0mjQa7UoavV9c1QVReFqdDQft2rFs/v3E9ykCShKnmHhuttJFhVljOTU1pHYx6nwdkWBM9EQ1QpW7oc6eetzFVeKoryY0872Tz/9xNq1a0lOTua3336zOG/L2X7iiSd44oknTM9nzJhhNWfbWaZNm4avry+LFi1i7dq1JpXy4OBgli5dygsvvHDP98iLq1evsmfPHj7++GOeeeYZANq1a8cff/zBpk2bTAZ869at/Pvvv/z333+mWuV+fn489thjHDp0iGbNmhX6WEsaeYVoOqOoqE1NNfyTURTTbk+vdesI7dDBptHP1LhbDQ+ytdMjcxUlDwLSphVf7KoJW1P0zSHueGzTJuKPH6fH6tVEzpqFSq22cKoTvt5C4NsjueFghQVA7jpLHgikXbPEqsN7n8ntINtbBDAJQvYaRLmsTKsViJyhNM/J8hXeLgWB84XTMQBjxozh4Ycf5ujRo2RkZKDX681+HCmz9fHHHxeIo21k7NixXLp0iQsXLvDrr79y4cIFLl++fF8cbTCsggL4+PiYHffx8TGVJwPYuXMn4eHhJuMN0LFjR/z9/fn222/vy1hLGnmGaDqiqFinCfohr6By0fBaSgpT79zhiTUfUz87rNy429N7wwYiZ0zHOyQkzxArWzs9xlzF+7WaJpHkB2nTii/21IQdEXe8Fh3N74sXG8r6tA/gxtdbLCerzk6o8qt4K5HcR6Rds01x2xFWsjc9Fnh5cS062uBo6/Ukx8Tw85y5bBs4kJ/nzCU5Jgah1+f7PrbmZAXphJdmh15iwGln+/Lly0yePJn69evj4uJSGGPKkw8++ICMjAyzYyqViipVqtC8eXOqVKmCKpczdPToUX766adCGU/lypXp1KkTCxYs4Pjx4yQnJ/PZZ5+xa9cuxowZY2p34sQJ6tSpY3atoijUqVOHEydOFMrYJAYxEAJCDIqKuR3uLoMQaw+hpNxCtXIuTB2IZu1CGnXuQK2uXVFUKhRF4cbXW+BRL+sTU4mkhFHSbFpB5mgVRb6XGXbK5zhdyuvWjcIcqZxkSooVJc2ulQayUlPNBCGXVa9+t0zrvHksq16d6PXrEXo9Gg/bEo42S3nZoCA3RuQmi8RpZ/vRRx/l5ElLcYL7yZo1a6hatSovvvgiv/76q2m1MjexsbGsWrWKDh060KJFCxITEwttTNu3bycoKIj69etTtmxZBg4cyJIlS+jTp4+pTWJiokWOOxjCk27evGmz74yMDG7fvm32I3EMF09Pk6Ki6DIY8dUFGD4NOg+EV95DzF4H321Aebw6rJoH32+EVfNQelRH2bneUJubbEN9LtVhQy2RPOiUJJtWkCJlhSF45iwp8fHWhYSE4N/PPqPJiBHFQtxRTjIlxY3CsmtynlZ42BOE1Gu1fDl8OMlxcXY1I4wh0/oHTBFcUjJwOmd7wYIFDB06FFdXVzp06GDVIPn7+xfE2Gxy8OBBduzYwbJly3jnnXdwcXGhVq1aBAYG4ubmRlJSEufPn+f69ev4+/szdOhQ1q9fT4UKFe753kIIs1B5RVFQqVQ8++yznD59mk8//ZTg4GB++OEHJkyYgJ+fHwOMKtf5ZOHChfdN6O1BxMXTUihDCEFQeDivpaSg12oRej2nvvmGtBsJNBg6BY2np6E8xPUrKDZKgjFnuKHcQWCIzdwWuXMjedApzTatMMpy3Q/slc+p0aULXoGBeZb1KchSXhJJceN+27XiYtNKHHkIQoLB4T68fDmRM2fe58FJJI7htLPdtGlTAEZnq5daw5G87XulV69e9OrViwsXLvDjjz/y559/EhcXR3p6OlWrVqVTp060bNmSNm3aFGi4+88//0zbtm1NzyMjI5k4cSJbtmwhOjqahg0bAtCmTRuuX7/Oyy+/bDLgfn5+3Lp1y6LPxMREKleubPOeU6ZM4aWXXjI9v337tt32pQULhzpbKEPo9STHxnJ4xQpunj1Li4kT8Spf3lyd19OTV65fR7PjI7slwdi23K4CrqwXK3nQKc02rShUSXNibaEQHFeJtScklJeib5aisXoPpxRqJZJiyv22a8XFppU07ApC5iDx3DlUGo3dUHKJOXKz6P7htLO9evXqAstZFUJw6tQpbt68ib+/P7Vq1XK672rVqhEVFUVUVFSBjCkvIiIi+OOPP0zPvb29+eKLL1Cr1TRo0MCsbePGjVm5ciWpqal4enpSp04djh49atZGCMHJkyft1hZ3c3PDzc2tYF/IA05uh9o/LIymY8fiFRhI9Pr1d3d0FIUeK1daqPMiBBpPT4dKgqFSG8oeSCQlkJJk0x6UnWpbC4VG7KnE5nbQbakJmxxxG6W8bN0jXwq1Ekkx437bNTlPKxzsCULmxC80FL1Wa0gblDiE3Cy6fzjtbBvLJdwr77//PnPmzCE+Pt50rHz58syYMYPnnnuuQO5RGHh7e/Pwww+bHatatSo6nY7o6GgaNWpkOn748GHKly+PZ/bkqEuXLqxfv57Tp09Ts2ZNAHbv3s2NGzfo2rXr/XsRDzhGoYzcIZJ+YWFUb9fO7Lgtdd6stDS0qaloHCgJhl5ncNAlkhJISbJpRb1T7QjWFgojRo2yqHKQ26nOy0G3piasKEr+SnlZQe54Sx4kSpJdK9XkEIQ8sGiR1VByow5FelLS/R+fROIATgukFQQffvghY8eOpX379uzYsYNff/2VHTt20K5dO8aOHcvKlSuLYlj5pmvXrlSpUoW+ffuyfv16du/ezauvvsqaNWvMyo/17duX+vXr06dPH77++ms+++wzhg0bRrdu3UpU3cZ7IS+lXyGEdaEMRaF+v34c+egjs+M21XmF4Ojmzeh6DLddEkytgT6jQcnHn4msOyt5gJE2reBxVFE3p1MdFB6OEOJuyZvZsw0lb2bPdq7kTQHURpUCQ5IHHWnX7g+20mOsoUqKJzLY8GgLm4KQmOtQpMTb7qM4IsO4C5cirxySA4d2tsPDw/n0009p0KABDRs2tBvqrSgK//zzj93+lixZwrhx41i6dKnZ8R49ehAYGMhbb71138LCCwJvb292797N1KlTefXVV0lKSqJ69eosXryYsWPHmtq5uLjw3XffMW7cOJ566ik0Gg29e/dmyZIlRTj6wiOvkE5rBjmvnSmh13N4xQqL1U2b9WWF4NjmzTQePtxiVfTg0qU0GjwYMX0lytwo89xttQZmrjY4y/kJITfWnZVIHkCkTSt48lLUPbtrF+GDB5McE2Pa9a7csiVNn3vOaiTPgUWL6LFqFeGDB8s8RYnEAaRdK1zyir6xhupWAm1CIP5Wgs029gQhc+pQPGgh5DKMu3ApTpFuDjnbEREReHl5mX6/15zt8+fP0717d6vnunXrxvLly++p/6KgRo0abN68Oc92FStWZNu2bfdhREWPrS96fgyyEZVabVUow1592YNLlxI+eDCPr1zJV1FRpgnrtehoPn/2WXqtXYto1gFl23JDjnbFUMOOdkAwqIok+EMiKXKkTStA8lDUDQoP54mPP+afTz4xs1GhHTty69IluyVvqrdvb7fkjUQiuYu0a4WDI+kxzux4WyMvHQqJpLjikLP98ccfm35fs2bNPd80ODiY3377jQ4dOlic+/333wmWIRUlFkfzFXOTHBfHX6tX8+irr1oXyrCzg30tOprPhwyh57p1hHboYLEqiqKgBIYgoqajuLgisg24FEWTSCQFQV6Kus0nTCA5JsbM0UZRaNC/v7m4Yy5kyRuJROIM9+rw5iZneoy16Jt+27dTq1u3fG+w5KYgdSgKGhkWXjQ8CMKoTm/bDRs2jPPnz1s9d/HiRYYNG5ZnH8OHD2fu3LlMmzaNv//+m7i4OP755x+mTZvGvHnzHqgQconjOJKvaC0cUgiBV2AgradOBZWKiFGjLPJ2wLCD7V2xotW8nuNbt3Lm++/xDg4mcsYMem/YQOSM6XedfEXh+v497Avz4vr+PdLRlkgkTmEvP8yuom62U/3XqlVmE1WbqTG5uF8lb+REUiJ5cLGmBVEQ2EuPqde3LzU6dyY5Njb/ehO2KAAdioLGGBZeXB2+kooxivZOMcjNtoXTzvaaNWvMFMRzkpCQwNq1a/PsY+rUqbzwwgu8+eabREREUKnS/7d353FRVe8fwD8XmGEZEBhAQFFcwQVBxVRIxQXNpUxFTTG3LLX8mpa5lQmmaX01s0zLfu6morjmvuIWWNryxV1LMBdUQEBREBie3x82N8ZZmIGZYRie9+vlq+bOveeeOwMP95x7znP80LJlS8yfPx/jx4/Hhx9+aGi1mIXTmtgM/w6HfJSWpjYc8vnEQGe//VZrooz0ixdx6/RpBL/+OiakpqLDjBloFh2NDjNmYEJqKgJ69oRgY4PM3ZuBdjJk7o5XW24n4foTTgDEAFhWcg1m+XT+wS+RUff5uKVrxQRtU2NKMteSN3wjyVjlVNYEi6X+DfxneoymPDrewcHos3Ytzm3YoPMBi201N4OvR7kyQjGvjMAqCYOX/gKgdfjHtWvX4OHhodfxX3zxBT788EP8/PPPyMrKglwuR+vWrfU6nlU+2hKbKT0/HFLb0KTzGzfiVlIS+qxZozNRhkuNGoiIiYGNnR2Ki4og2Nqq/txaYK8osyyWlFyDVW4SJyc8Tk+HZ2Ageq9YoRLTdK2YoG1qjBIvecNY1aTv0FldQ7xLS7BY2t9AXdNjNE6N+UfJfBOO9QP1veR/j/9nZYRAfjDCKgm9Gtvffvstvv32WwDPGsrR0dFwfO6XMz8/H6mpqRgwYECp5a1duxa9evWCh4eH2pqFDx48wO7duzFs2DB9r4FZOMHGRmtis5JKDofUNTTp3Pr1yLh0CSNOnNDaoBYEAXeTk7GqfXuMPHkSvi1bmuz6GGPWxxhzG59PBglB0JhRl4g0riOrLbkjoLrkTcaVK+WuK2Os8tCnM1ifEYVlTbDo7OuL8ClTNE+PMSTfxMyPDT43Y5WNXo3tGjVqIDQ0FABw/vx5BAYGwuu5X06pVIrGjRtj1KhRpZY3cuRIJCUlaXyKnZKSgpEjR3Jj20pInJxAxcUoVij0Hg4p2NjozNwLAGm//YafPvsMETExmCuTaW1QFz5Rf4LtGNAUqQ0j4BnQtGwXxRizWuVZLUGlHB3JIDWNvJE4Oqo99b6XnIydI0eiz5o1GpM7VtYlbxhjpmfoiEJDuPj6omNMjMaOQoPyTUikgD0vXWhJOD+H8enV2H711Vfx6quviq8//vhj1KtXr8wn1ZWYISsrCy4uLmUum1mG529YhX8Sm2kbDunbsiVenDYNAPBhbi4A6P0k3NBEH85Nm8N54zH17RxgGKvSyrpaQkmlZedVDt3MvHYN/9eq1b8dhVqeeoeOHQtBEEqfGsMYs0plHWVj6IjCslDGppIdhQblmygsgM1T7iy0JLz+t/EZPGe75DJgSk+ePMGdO3dQv359rX/89+3bh3379omvv/jiC3h7e6vsk5+fj6NHj6J58+aGVotZEE03rC/85z9qAVmp2ZAh6LNmDXL/mYP04Pp1vLpypdkTA3GAYaxq0reBrE+DW9cUmOeHbj4/8qa0fBM8NYaxqqO8o2wMGVFYnvsowcZGraMw4/JlnQ9YlPkmnt7+G+Z4rs0PU1hFMrixvWDBAjx+/Bgx/ww7OXnyJHr37o2HDx+ibt26OHDgAOpr+OW+evUqdu3aBeBZT9jJkydhb2+vso9UKkVQUBDmzp1blmthFkDXDeuwI0fUArJfeDheePtttWPqRUZaVGIgDtSMWS99G8guNWroLuif7Ly6psCUNnSztHwTmqbGMGZulWFt28rMGKNsShtRaMz7KI0dhTY2Gh+wlMw3kZWwzyyNbX6YwiqSwUt/LV++HH5+fuLr999/H02bNsXOnTvh6empddmuCRMmICUlBSkpKahduzb27dsnvlb+u3LlCnbs2IEmTZqU/YpYhSktGcfaLl3wOD1dDMj91q9Hq7ff1niMcs3sV5YvV1sqp2SgJiKzNIJ52RvGrJSO5WuUlA3k0pbK0ZWdtyR9hm4aq1HNy+QwU6gMa9tWVsqHFrqWzNJn2HfJId667qMea1nO11CCIOBecjLmymS4l5wsPvHWtBRr8JAhEGxsoHiYbZRzM2bJDH6yffPmTTRo0AAAcPv2bfz66684fvw42rdvj6KiIrz99tullpGSkmJ4TZnF0ycZx5lvvkFEbCzuJSdjVYcOmJadrfGYe8nJ2DFsGPqsXYu6nTvjt++/15gYSOblxb2VjLEyM6iBbGsL6BjGWZiXpzk773PMtTY2wMvkMFaZGDuDuKYh3qZOsFiyo1CvpVgZs3IGN7YdHR3x8OFDAMCRI0fg7OyM8PBwAICbmxtycnKMW0Nm8R6lpeH3lSvR4aOPDLthJdJ5k3s+Lg7pFy+i+1dfISI2Fja2thyoGWNGZVADWaEAdCVkJEJ+drbZhm4yxqyLKTKIV3SDl5diZVWdwcPIW7dujc8++wx79uzB/Pnz0aNHD9ja2gIA/vrrL9SsWdPolWSW4VFaGo7FxuLRc8PGctPSkPDxxwbfsOpzk3svORkpR44ARDjx6ad4nJ6u9x8InmfNGCtViQby80MtlZQN5NLmSkqcnMSpMuYaugkYN9Zx3GSs4pgqg7jaEO8KeGBh6NQYjkXMWhjc2F6wYAHS0tLwyiuvIDc3F59++qn43qZNm8Sn3Mz66JqjJXF0NPyG1ZCbXFtbdPjoI4PmTPM8a8aYPvRtIGu7QS2ZNdijYUNxGS9dcxWNOXTTmLGO4yZjFcfUGcQrU4JFjkXMVMq6nF5ZGTyMvEmTJrh+/ToyMzPh4eGh8t4XX3wBHx8fo1WOWT5N62mXln2y5A3r4/R0eAYGGnQMY4wZU1Fenl5zGzXRlTWY5yoyxgxhzgzijFU15V1Or6wMbmwreXh4gIiQlpaG6tWrw87ODs2aNTNm3ZiF03ST2WbiRINuWMtzk8uYMfASNkxJ37mNEicnvdfmzrx2Df/XqhXPVWSMlapkBnFdDyAyrlypwFoaj5Onp8p/mQXz9AXeinn230rIGMvplVWZGtsHDhxATEwMfv/9dygUCvzyyy9o2bIlRo8ejYiICAwZMqTUMi5cuIDZs2fjzJkzuHXrFpKSktCyZUt89NFHaNeuHXr06FGWqjEzKO0mc+C2bQjo1cugJzoVncCDVV3K6RGBvXtzY5vpTOaj0iv+zx9ufbIGV6ahm6xq4k5Hy1ERGcQrijKrur7Z1VkF8vQFxsSa/DTGHuKtb8e4KRvcBpe8ceNG9OzZE3Xr1sXSpUtRXGLd0fr162PVqlWllnHo0CG0aNECN27cwJAhQ1BYWCi+J5FIsHTpUkOrxcxI5uWl8yZzc79+eJSWhvzsbIOScVhCAg/GGAPU5zZScTEe3b6N47NmYeuQISguLNQra7CDm5sZams4Tj7ESuJ1sy1LyQcQ/davR0RMjMmewHEsYJagZGe2d3Aw6LmVP7QlaS5NaW2WH0eNwqO0NPF8ppjPbfBv7ezZszFx4kRs3LgRI0aMUHmvadOmOH/+fKllTJ8+HYMGDUJSUhJmzpyp8l6LFi3w+++/G1otZiYSmQwObm5632SW5YkOPwVijFkSZa/4V3Xr4sScObiyYwfs7O1NkjXYXDj5EGOWzVwPIDgWsIqm0pkdHY3js2bh0e3boBIPdMvUISgIerVZLu/YUWpjvzwMHkZ+/fp19OzZU+N7MplMr3W2z58/j3nz5gGAWvBwc3NDRkaGodViJib+EObmAkClvslkjDF9EZFar3hhXh4KnzwxadZgY+GnVoxVboY8gKjK0wE41lVOphziLXF0hI2dnc42S9CgQWg1ZgxyTTif2+ASfHx8cPnyZY3vJScnw9/fv9Qy5HI57ty5o/G9q1evwpd/USzK88Mni54+rRQ3mYwxVl5UXKzeK06E85s2ocWoUaUuW1jRWYP5qVXVU9bhlqzyq8rTATjWVT6aOrOVNA3xNlRhXh6Ki4q0tlm8g4PRZ+1aJK9fL45cO79xI07MmYOv6tZF8g8/qDxdLyuDG9vR0dGIjY3FkSNHxG2CIOD8+fP473//i9dff73UMvr06YOYmBhcKZFNURAE3L17FwsWLEBUVJSh1TKZpUuX4uWXX4aXlxcEQcCWLVu07rtnzx6Eh4dDJpPB3d0dnTp1wq1bt1T2SUxMRFhYGBwdHeHv74/PP//cqEMVjO354ZPnN2zAuQ0bKsVNJmNMXVWNadrmYemanyXY2MDG1lZjr/jPixbBpWZNvLJ8uc61uR+np5ev4owZqCo2uKpqXGOsMtPYmV2CclpqmRu8RMjPzkbomDEa2yxtJk7Eo9u3sevNN03S2FcyuLEdGxuL8PBwdO3aVVxTu0ePHggJCUGrVq0wbdq0UsuYN28evLy8EBwcjDZt2gAA3njjDQQGBsLV1RWxsbGGVstk1q5di4yMDK1D55V++OEH9OvXDx07dsTu3buxZs0atGrVCvn5+eI+f/75J1566SX4+vpi9+7dmDhxImbOnIkvvvjC1JdRJtp6nPgmk1UVpkiUUdGqWkzTNg9Ln/lZVFyMYoVCY6/4veRk7Bg2DM2io/Hu9evoMGMGmkVHo8OMGZiQmorgIUOsKmswY5asqsU1xqyBts7skrKuX4eNrS1QxpwFj9PTxeX0VNosgoCg117D7ytWmK6x/w+D52xLpVLs3LkTCQkJOHToEDIyMiCXyxEZGYnIyEi9ynB1dUViYiJ++OEHHDp0CHK5HHK5HOPGjcOwYcMglUoNvhBTSUxMhI2NDVJTU7F27VqN+zx48ADjxo3DokWL8Pbbb4vbe/furbLf/Pnz4eHhgbi4OEilUnTp0gXp6en49NNPMX78eNjb25v0WgylrcdJeZPZZ+1a1O3cGb99/73GpSkc3Nx4/gyrlFSWeCoqAhFZTXZ8a49pJTtINK2r2WbiRDi6u+u93qZgY4PQMWNw6rPP1GLh+bg4ZF69ihEnTvCyhYxVIGuPa4xZI22d2SW516uHYoUCKOPT5aK8PI3L6XkEBkLi5KR/Y78cyrTONgB06tQJnTp1KvOJJRIJRo4ciZEjR5a5DHOw0WNi/ObNm6FQKDBq1Cid++3btw/9+vVT6UwYNGgQ5s2bh6SkJHTs2LG81TUqXT1O5+PikH7xIrp/9RUiYmNhY2urdpOpnD9jCE5wwSqapgaaMRNlVDRrjWlqHSQakq54Bwejw8yZ+N+6dWrDxkomYymZ2FEQBLFX/PlRPjZ2dmgzcSIkjo7IuHIF/9eqldra3Iwx07PWuMaYNdPVmQ38Oy21tHsvfaaJlVxOT9kxbkhjvzwN7gq5c3zxxRexdOlSpFvJMOPTp0+jUaNGWLNmDfz9/WFnZ4fmzZtj37594j6PHz/GzZs30ahRI5VjGzVqBEEQtCadq0il/RDeS05GypEjAJHRlqbgBBesotg5OqrnKDBBoozKoLLFtOeXDbmXnKxxCoy+87NkXl4q7yl7xSekpuocLs7LFjJmuSpbXGOa8UMZ61GyM1vXtFRtbQtDp4mpLaf3T2O/tBxU5X3QUiGNbV9fX3zwwQeoWbMmXnrpJaxduxaPHj2qiKoYxd27d3HlyhV8/PHHmD17Nvbt24c6deqgd+/euHDhAgAg+59kYW5ubirHSqVSODk54cGDB1rLf/r0KR4+fKjyzxz0/SHMz87mm0xW6cm8vEyaFbMyqUwxTa2DJC4Ono0aqU+BMWB+lsNz1wSo9or3W78eETExVjPagbGqwJRxraLu06oifihjXfTpzNZE09rceQ8e6LVmt7LNUt7Gvr4q5C5hy5YtuH//PpYvXw47Ozu8+eab8Pb2RlRUFLZu3YqnT5+avU5EhKKiIvGfQqHQ+9ji4mLk5ubi+++/x7Bhw9C1a1fEx8fDz88Pn3/+ebnrNm/ePLi6uor/atWqVe4y9aHvDyERcS8jq9wEAQ5ubqbNimlmVSGmaUriKHF01DgPS9v252Vdvw4bOzuVoeRKar3iPC+bMbOy1LhWUfdpjFkDQzqztY1CvPLjj7CvVg3/W7dO5+jE5/+2l7Wxb4gK65J3dnbGsGHDsGfPHqSlpeHLL7/EgwcPMGjQIHh7e5u9PsePH4dEIhH/denSRe9j3d3dAQCdO3cWt0kkEnTo0EHsLVX2kubk5KgcW1BQgCdPnkAul2stf/r06cjJyRH/3bx5U++6lZc+P4QyLy+Dexl5GBCzJBJHR9jY2ZklUYa5VIWYpimJY+E/w7mfnwKjbfvz3OvVQ3FRkc4s4jySh1kCc6ynrescFbFag6XGtYq8T2PMGujbma1tFGJZp4kBph+5VuYEacbk4eGBF198ETdu3MCVK1dw7949s9chNDQUZ86cEV+7uLjofWzTpk21vqdcTkImk6FWrVpq832uXLkCIlKbH1SSvb19hWa/1JRUoLzZdsuSPI0xUynMy0NxUZFZEmWYS1WIaRqTOBLh/KZNaDFqlGrSFW3bS5ZXYmqMqenqcOTOSKYP5Xragb17m2xIraZzVORqDZYa1yr6Po0xa6GzM/ufUYjHZ83SOE3s1Lx5pY5OjIiJ0VK0gLvJyVjVvr3RE52WqcmuUCiQmJiIzZs3Y+3atWr/9PXXX3/h008/RbNmzRASEoLVq1dj4MCBSExMLEu1ysXFxQWtWrUS/wUGBup97MsvvwwAOHz4sLitoKAAx48fR2hoqLitR48e2LlzJwoLC8VtmzZtgpubG8LDw41wFabDwyeZVSNCfna2WRJlmEtViGnakjj+vGgRXGrWxCvLl6t8n9q2A6pTYx6bIXmnrnmH2t7jRjiraPrMhzSlqhDXGGOaaRuFaIxpYkqmGLlm8JPt3377Df369cPNmzc1JgoSBAHDhg3TWcbChQsRFxeHX3/9Fa6uroiKisJXX32Fjh076rV8gzmdPXsWqampYub006dPAwC8vLwQEREBAGjZsiWioqIwevRoPHjwAL6+vliyZAnu3buHyZMni2VNnjwZ69evx+DBg/HOO+/g3LlzmD9/Pj799FOLWltcFx4+yazV4/R0eAYGal3iyViJMiqaNcU0bcuG3EtOxo5hw9Bn7VrUi4wU19V0r1cPTx89QsjQoWrbQ8eOffb9/pNZ3FiM2UDmEUGsopScJ/l8fCy5bF5FdUZaU1xjjGmmbRSiMaeJmYLBje23334brq6uWLNmDZo0aVKmwDNz5kz07t0bH3/8Mbp37w6JRGJwGebyzTffYM2aNeLrL774AgAQERGBY8eOidvXrFmD6dOnY9q0aXj48CFCQ0Nx+PBhNGvWTNynQYMGOHjwIN5//3307NkTXl5emDVrFiZNmmS262GMaVaUlyfmKKjbpYvWhlhlZ00xTdca2Be3bEHQkCEI6NlT4xQYY0+N0YYbyMwa6LNaQ90uXZ7Nc6yADklrimtVjoP55/6zSqrEKERLnib2PIMb2xcuXEB8fLzYU1gW9+/fh1MFJNYoi9WrV2P16tWl7ieTyfD111/j66+/1rlfeHi42OPKGLM8pshRYEmsLabp00Fy948/1OZhmXJ+FmNWRds8yRLE+ZCxsRAqIKeFtcU1S2HSJHhEQINg4NRjoKjo2Wsr+TvLTEfbKMSfFy1C8Ouv45Xly9WSpJUcnZhx5YrZ62xwYzsgIKDc6wdWloY2Y6xq4oZY5aJPB4m2KTDGmhrD86mZpXuUloZfly1D6JgxBiVUs8bVGphuJk+CV1wMZNwBti4Dbv0F+NUHosYAnjUAKxhBxkxH1yhEc08T05fBje0vv/wSEyZMQEhIiM5ss8+rVq0aEhISEBoaChcXF52/tIIgqC27wCoe30yyqoZzFFQeFd1BwsPFmaUra/Zya1ytgWlHxcV4dOcOfl22DA/++gvy+vWfddAYYSkkO0fHZw3tfT8An4wCFCVGSqz+DJi5AujxOje4Wal0dbJb2uhEgxvb//nPf3D37l0EBQWhRo0a4pqESoIg4H//+5/acZMmTYLvP8F90qRJVjMksyrhm0nGmKXjDhLGjEzbPMkSKttqDUyz8ibBK+2hjMzL69kT7ecb2sCz15+MAl7oAnjV4CHlrFTaOtkruvP9eQY3tkNDQ8vUUI4psa5ZLDfYGGOMMcYqhaqyWkNVRkTlToKn86GMIMDRzQ34v1nqDW0lRRGw9TtgTCwg8AgJph9TTxMrL4Mb2/okoChN586dsXTpUo3D0K9evYqxY8fi6NGj5T4PY4wxxhgrn6qyWkNlYuzkZVRcjF+XLTNZEjyJoyMEO7tnc7R1uX0dsOGGNrMeBje2jeHYsWNak6w9fPgQJ06cMHONGGOMMcaYLta+WkNlYKrkZTa2tiZNgleYlwcqKoLgp3vuP2rWA4oV3OBmVqNMje3s7Gxs2bIFV69eRX5+vtr7pS2pAEBrYEhMTET16tXLUi3GGGOMMVYG+j4ptbT5kFWJKZOXFSsUpk2CR4S87Gw4RY15lgxN01ByWzsgaiwg8CgJZj0Mbmxfu3YN4eHhePr0KR4/fgwvLy88ePAARUVFcHd3h6urq8bG9rx58zBv3jwAzwJ1p06dYPNcYHj69CmKiorwzjvvlPFyGGOMMcaYvsr6pNRS5kNWBXaOjnolL7NzdCzzOQQbG5MnwXucng6nwMBnWcefT5JmawfErAQ8fTk5GrMqBje233//fbRp0wbx8fGQyWTYu3cvQkJCsGnTJnz44YeIj4/XeFx4eDgmTZoEIsInn3yCwYMHw8/PT2UfqVSKxo0b45VXXinb1TDGGGOMVXH6PqU25ZNSZjwyLy+9kpfJvLzKfA7lkkmmTIJXlJf3bFmvHq8/yzq+9btnc7Rr1nv2RNvTl5f9YlbH4Mb2L7/8ghUrVsDe3h4AUFBQAFtbW0RHRyMjIwPvvvsufvrpJ7XjIiIiEBERAeDZL/Rbb72FGjVqlLP6jDGmn0dpafh12bJnN5LPLUti7EQzjDFWEQx5Sm3qJ6XMSAQBDm5uOD5rVunJy0qs/FOmU5krCZ6NzbPlvd6KAezsgKIiwNaWn2gzq2RwY/vp06eoVq0abGxsIJfLcefOHfG9oKAgTJ8+vdQyYsoZDBhjzFC5aWk4PmsWAnv3Fhvbpko0wxhj5qbPU2plx6K+yzyV50kpMw6JoyNs7Oz0S15mZwdHD49ync9sSfAEAfgzGXizPbD8JNCI5/4z62RwYzsgIAA3btwAALRo0QJLly5F165dYWdnh2XLlun9tPrPP//E6tWrtSZZ+/HHHw2tGmOM6Y2HTzLGrEFp83kHbtuGgF69VDsW9V3miR+OVLjCvDwUFxXpTF7mHRyMsEmTUKxQYEpGhsbOY2dfX0TExMD5uZFdmhg7CZ7Oc+fz3H9m3QxubA8aNAh//PEHhg4ditmzZ+Oll16Cu7s7BEEAEWHNmjWllnHmzBlERETA398fV69eRXBwMHJycpCamgo/Pz80aNCgTBfDGGOlMUeiGcYYMweJk5PO+bxN+vdHg+7dVToWPRs1QsTMmXo/KeVYWMGIkJ+drTV5WdCgQeizdi0e37uH47GxWjuPXXx90TE21qBTGysJXlnOzZi1KFOCNKW2bdvi/Pnz2LdvH/Lz89G5c2cEBQWVWsaUKVMwcOBArFixAhKJBCtWrEDLli2RmJiIwYMHY+rUqYZWizHG9GKORDOMMWZKKlNgFAocj41Vi2fewcHos3Ytzm3YgF1vvvnv+4KA8A8+0G+Zp6KiZ0mtWIV6nJ4Oz8BAteRlWr9jqHYe82gtZg0qa36dcv/21apVC6NHj8a7776rV0MbAP73v/9h8ODB4tJfymHk4eHhiI2NxbRp08pbLcYYUyORyeDg5qbX8EkHNzfzVo4xxvRAxcV4dPs2js+ahR0jR8LG1lbjU+o2Eyfi0e3bao0wEOH8pk1oMWoUbOw0P3NRLvOUn51daW9wrYFy+LWDm5uYvGxCaio6zJiBZtHReHXVKjy+d0/9O8a/nceP0tJARBV0BYyVX8nORe/g4Er381ymxnZhYSG+++47jBo1Ct26dcO1a9cAAJs2bcKlS5dKPV4QBEilUgiCgOrVq4tzwAHAz88PV69eLUu1GGNMIzFQ5+YalGiGh08yxiyJcgrMV3Xr4sScOfjfmjUofPJE/Sm1ICDotdfw+4oVGjsWf160CC41a+KV5cvVGtw2dnYYuH07XHx94eDmVmlvcK2Bcvi1MqlnyeRl/davh3dIiF6dx1RcbM5qM2Y0JTsXt0ZH4/isWXh0+3al+pk2eBj59evXERkZiYyMDLRo0QKnTp3Co0ePAAAnTpzA/v37sWrVKp1lNGnSBH/99Rc6deqEsLAwfPHFF2jWrBkkEgk+++wz1C9laBNjjOlLJRHa9et4deVKHj7JdDIkkRBj5qIxg3iJp9Ql5/NKHB0hcXLS2rF4LzkZO4YNQ99161AvMlJlmac2770HRzc3TiBpoZTJy3546SVMTk/Xr/PY1tZMtWPMeKwlv47Bje13330XXl5e+OWXX+Dm5gapVCq+FxERodfSX6NHjxafZs+dOxfdunVDSEgIAEAmk2HLli2GVosxxtRoCtT1IiPVbkxLKjl8klVNupL5cEOcVRRtGcR/XrQIwa+/jleWLxeHExfm5Wl+4l3C+bg41GrXDq3eflt1mScbG6u4wbV2TzIzS81SDvzTeaxQcIObVSqmWp6wIv6GG9w9eezYMcyYMQOenp5qa+75+PggLS2t1DKGDh2KGTNmAAAaN26MS5cuYf/+/di+fTv+/PNPdOvWzdBqMcaYCm2BurThk71XroSLry8ep6ebu8qsEnh+WCdj5qJtbrbyKXWz6Gi8+9dfz+bzDh6MjMuXETpmjM552Y369IEgCLiXnIy5Mhnys7NLvcF9lJbGCSQtQYks5aXNvefRCKyy0Xd5QkPz61TE33CDn2zb2dlpnbdz7949ODs7G1wJZ2dndO3a1eDjGGNMG22BWnlj2mftWtTt3Bm/ff+9OHwydOxYuPj6QrCx4SHkjDGLUqxQaH2KeT4uDukXL6L3ypWIiI2Fja2t+JT6+QzWgGrHovLBSWFeHhzc3HB81ixef7uS0JalHND8HTNWGQg2Nlo7F0uqLPl1DG5sR0RE4IsvvkCPHj3EbOLKNba///57dOnSReNx27ZtM+g8/fr1M7RqjDEm0hWolTem3b/6SvXG1NaWb0oYYxZJsLHRutYyAKRfvAhnHx/kZ2Vhkb8/Rp48Cd+WLRH8+uuo26WLyrzskh2LShJHR04gWckU5eWJWcr1+Y4ZqwyouFhn56JSZcmvY3Bj+/PPP0d4eDiaNGmC3r17QxAELFmyBOfPn8e1a9fwyy+/aDyuf//+ep9DEAQoFApDq1ZlKEcWPHz4sIJrwpjlKlYoYO/nh3wt799ITsb5vXvhFhyMhX5+eH3/fvg0b/7v8c7OaDVtGoqdnSvkd83FxaXKNPyNFdMe5eYi/5//ykqUZeh2xiwVOTuj8zffYO+4cSgucZ9kY2uLnkuWgGQy3L12DY+ePFH5uSZnZ7R47z1xXjbZ2uJRbq54/KPcXDx68gTZDx7ojJsAIK1ZE9kPHiA3L8/g352qEtdMfZ+mKXaV9h0b4xxGl5sLKP75L8fgKq/kz5xTbi4aRkfj8Lx5KrFOycbWFg2HDMH9mzeN9ve9LMfoE9MEKsNaDikpKYiNjcWhQ4eQkZEBuVyOyMhIzJo1S2sm8ZLLe+nD39/f0GpVGbdu3UKtWrUquhqMMRPKyclBtWrVKroaZsExjbGqoarENY5pjFUN+sS0MjW2WcUqLi7GnTt3TNJD/PDhQ9SqVQs3b96s9H8QreVa+Dosi7muo6o8AQJMG9MA/tmzNNZyHYD1XAvHNePimKYfa7kOwHquha/DMPr8jhs8jNyY9u/fjzNnzuDmzZuYMWMGateujRMnTqBBgwaoUaNGRVbNotnY2MDPz8+k56hWrVql/iUryVquha/DsljLdVgCc8Q0wHq+M74Oy2Mt12It11HROKYZxlquA7Cea+HrMB69GttvvPGG3gUKgoAVK1bo3Cc9PR19+vTB6dOnxV6HsWPHonbt2li5ciVkMhmWLFmi9zkZY4wxxhhjjDFLoldje/Xq1XBxcUH9+vW1LvulpM9wmYkTJyI9PR3nz59Hw4YNIZVKxfciIyMxZ84cfarFGGOMMcYYY4xZJL0a22FhYTh9+jQUCgWio6MxaNCgciUw27NnD/7v//4PjRs3Vss6XqtWLdy6davMZbPysbe3R0xMDOzt7Su6KuVmLdfC12FZrOU6qhJr+c74OiyPtVyLtVxHVWEt35e1XAdgPdfC12F8eidI+/vvvxEXF4cNGzbg3LlzCAsLQ3R0NAYOHAhPT0+DTurs7IzNmzejZ8+eUCgUkEgkOHv2LFq2bIkdO3bgjTfewIMHD8p0QYwxxhhjjDHGWEXTe6X72rVrY8qUKfjjjz9w7tw5dOrUCYsWLUKNGjXQo0cP7Nu3T++TtmnTBitXrtT4XlxcHF588UW9y2KMMcYYY4wxxixNuZb+ys/Px8yZM7Fw4UL07t0b27Zt0+u4pKQkdOrUCa1bt0b//v3x3nvv4aOPPsKlS5ewZ88enDp1Ci1btixrtRhjjDHGGGOMsQplcGNboVDg4MGDiIuLw86dO2FnZ4eoqCi8+eabeOGFF/QuJykpCdOmTUNiYiIUCgUEQUBYWBjmz5+PsLAwgy+EMcYYY4wxxhizFHoPIz9x4gTefvtteHt7Y+DAgVAoFFi/fj3u3r2LZcuW6d3QLigowLZt2+Dt7Y3jx4/j4cOHuHXrFh49eoRTp05xQ9uEli5dipdffhleXl4QBAFbtmzRuu+ePXsQHh4OmUwGd3d3dOrUSS1xXWJiIsLCwuDo6Ah/f398/vnnpWarN5XMzExx+TiZTIagoCB89913avvduXMHUVFRcHFxgVwux5tvvomHDx9WQI1Ld/nyZXTt2hUymQw+Pj6YMmUKCgoKKrpapfrxxx/Rpk0buLi4wNfXFwMHDsT169fV9luxYgUCAgLg4OCAkJAQ7N69uwJq+8yff/6JsWPHonnz5rCzs0NQUJDG/bKzs/Huu++iRo0acHBwQP369fHFF1+o7FNQUIDJkyfDx8cHMpkMXbt2xZUrV8xxGVUOxzSOaebAMY1jmjlxXOO4Zmoc08wc00gPfn5+5ODgQH379qXNmzdTXl6ePodpZW9vTwkJCeUqgxmuTZs21KZNGxo2bBgBoPj4eI37rVu3jqRSKU2fPp2OHj1KO3fupA8++ICuXbsm7nPt2jVydnamvn370uHDh2nhwoUklUpp/vz55rocFZ06dSJfX19atWoVHTlyhCZNmkQA6Pvvvxf3KSgooKCgIAoKCqIff/yR4uLiyM/Pj3r16lUhddblwYMH5OvrSx06dKD9+/fTihUryNXVlcaNG1fRVdMpISGBbGxsaMSIEXTo0CGKi4ujgIAAql+/Pj158kTcb+PGjSQIAs2YMYOOHj1KY8aMITs7O0pKSqqQeu/YsYP8/PwoKiqKmjVrRk2bNlXbJzc3l0JCQig0NJTi4uIoISGBli1bpvYzP2bMGHJ1daUVK1bQ/v37qX379lSzZk3Kzs421+VUGRzTOKaZGsc0jmnmxnGN45opcUwzf0zTq7EtCAJJpVJydnYmFxcXnf+qVatWankhISG0Zs2acleeGUahUBARUUpKitYAnpmZSdWqVaOlS5fqLGv06NHk7+9PT58+FbdNnz6d3NzcKD8/37gVL0VaWhoBoFWrVqls79ChA3Xu3Fl8vWHDBhIEgS5fvixuO3DgAAGgn3/+2VzV1cvcuXNJJpNRZmamuG3ZsmVka2tLt2/frsCa6TZmzBiqW7cuFRcXi9uOHj1KAOjEiRPitoCAABo8eLDKsWFhYdSjRw+z1bUk5e8GEdHw4cM1BvEZM2ZQvXr1KDc3V2s5N2/eJFtbW1q2bJm4LTMzk2QyGX3++efGrTTjmMYxzeQ4pnFMMzeOaxzXTIljmvljml7DyGNiYvDhhx/igw8+wKRJk3T+e//990stb968eZgzZw7Onj1r4HN4Vh42NqV/3Zs3b4ZCocCoUaN07rdv3z706dMHUqlU3DZo0CBkZ2cjKSmp3HU1RGFhIQDA1dVVZburq6vKUKl9+/YhODgYgYGB4rauXbtCLpdj79695qmsnvbt24fIyEjI5XJx28CBA1FcXIyDBw9WYM10KywshIuLCwRBELcpvxfld3H9+nVcvXoVAwcOVDl20KBBOHLkCJ4+fWq+Cv9Dn9+N5cuX44033oBMJtO6z8GDB1FcXIwBAwaI2+RyObp162ZxP2PWgGMaxzRT45jGMc3cOK5xXDMljmnmj2l6N7YN+VeaKVOmIDMzE23atEH16tXRrFkzBAcHi/9CQkLKfWGsbE6fPo1GjRphzZo18Pf3h52dHZo3b66ytNvjx49x8+ZNNGrUSOXYRo0aQRAEXL582ax1rlWrFrp164a5c+fi4sWLePToETZv3oyDBw9i3Lhx4n6XL19Wq7MgCGjUqJHZ61waTXV1c3ODr6+vxdW1pBEjRuDixYtYunQpcnJycP36dXz44Ydo0aKFuKSfsv7PX1/jxo1RUFCAlJQUs9e7NKmpqbh79y48PT3Ru3dv2NvbQy6X46233kJubq643+XLl1G9enW4u7urHN+4cWOL/t6sGcc0y8AxzbJwTKvcOK5ZhsoY1zimmT+m2Zmk1FKEhoaiVatWFXFqVoq7d+/iypUr+Pjjj/Hf//4Xvr6+WLJkCXr37o0//vgDTZs2RXZ2NoBnAaUkqVQKJycnPHjwwOz13rZtG1577TU0bdoUAGBra4vFixcjKipK3CcrK0utzgDg7u5eIXXWpTLVtaT27dtj+/btiI6OFv94Nm/eHPv374etrS2AZ9cGqP/8KAOfJV7f3bt3AQAffPAB+vXrh7179+LatWuYNm0acnNzsXHjRgCV93uzZhzTLENlqmtJHNMq5/dm7TiuWYbKVFcljmnm/84qpLG9evXqijhtlUFEUCgU4mtBEMRfoNIUFxcjNzcX69evR+/evQEAHTt2REBAAD7//HOsXbvWJHXWl6Zrs7GxwciRI3Ht2jVs2LABvr6+OHToECZOnAh3d3cMGjSoAmtctSQmJmLo0KF466238PLLLyMzMxOzZ89Gr169cPLkSTg6OlZ0FcukuLgYABAQEIA1a9YAALp06QI7Ozu89dZb+PTTT1GvXr2KrKJV45jGMa2icExjpsJxjeNaReCYZn4V0thmpnX8+HF06tRJfB0REYFjx47pdayy16pz587iNolEgg4dOuD8+fMA/u3pysnJUTm2oKAAT548UZm7Ymyaru2DDz5AfHw8kpOT0axZMwDP/ujcv38fkyZNEgO4u7u7Wp2BZ71ctWrVMlmdy0JXXU35+ZbXu+++i86dO6sss9C2bVvUrl0b69atw+jRo8WfsZycHPj4+Ij7KXtSLfH6lHUu+bMHPAvkAHDhwgXUq1ev0n5vlo5jGse0isIxrXJ+b5UBxzWOaxWBY5r5vzNubFuh0NBQnDlzRnzt4uKi97HKoT2a5OfnAwBkMhlq1aqlNrfhypUrICK1OR7GpOnadu7cCVtbW7U191q0aIHly5fjyZMncHJyQqNGjXDu3DmVfYgIV65cQdeuXU1W57LQNDcpJycHaWlpJv18y+vixYt49dVXVbb5+fnB09MTf/31F4B/5wBdvnxZJQHK5cuXIZVKLfJpSv369WFvb6/1feXvRqNGjXDv3j1kZWWpzAfSNK+L6Y9j2jMc08yPYxrHNFPhuPYMxzXz4phm/pimV4I0Vrm4uLigVatW4r+SvyilefnllwEAhw8fFrcVFBTg+PHjCA0NFbf16NEDO3fuFLNLAsCmTZvg5uaG8PBwI1yFZpquzd/fHwqFAsnJySr7/vrrr6hevTqcnJzEOv/vf//DtWvXxH2OHDmCzMxM9OzZ02R1LosePXrg8OHD4pwrAIiPj4eNjQ26detWcRUrhb+/P3777TeVbTdu3EBGRgbq1KkDAKhXrx4CAgIQHx+vst+mTZvQpUsXlayplkIqlaJbt244cuSIyvZDhw4BAFq2bAkA6NatG2xsbLB161Zxn6ysLBw8eNDifsYqE45pz3BMMz+OaRzTTIXj2jMc18yLY1oFxDSTLCjGLNKZM2coPj6eli5dSgBo0qRJFB8fT8eOHVPZLyoqiry8vGjFihW0d+9e6tWrFzk4OFBycrK4z7Vr10gmk1FUVBQdOXKEFi1aRFKpVG3heHN4+PAh1a5dmxo0aEDr1q2jw4cP05QpU8jGxoZmz54t7ldQUEBBQUHUrFkz2rVrF23atIlq1apFvXr1MnudS/PgwQPy9fWliIgIOnDgAK1cuZLc3Nxo3LhxFV01nRYtWkQA6N1336VDhw5RXFwcBQUFkbe3N2VkZIj7KdfRnDlzJiUkJNDYsWPJzs6OEhMTK6Tejx8/pvj4eIqPj6eOHTtSrVq1xNf3798nIqKzZ8+SVCql6OhoOnDgAH3zzTfk4uJCQ4YMUSlrzJgx5ObmRitXrqQDBw5QREQE1axZk7Kzsyvi0qwaxzSOaabGMY1jmrlxXOO4Zkoc08wf07ixXYUMHz6cAKj9i4iIUNkvNzeXxo8fT15eXmRvb0/h4eF06tQptfJ++uknatOmDdnb25Ofnx/NmzePiouLzXQ1qq5du0YDBw6kGjVqkJOTEzVt2pQWLVpERUVFKvvdunWL+vXrR87OzuTm5kZvvPEG5eTkVEidS3Px4kXq0qULOTo6UvXq1emDDz6gp0+fVnS1dCouLqZvv/2WgoODSSaTkY+PD/Xt25cuXbqktu/y5cupQYMGJJVKxT+qFSUlJUXj7wYASkhIEPc7fPgwtWrViuzt7cnHx4cmTZpE+fn5KmXl5+fTpEmTqHr16uTo6EiRkZEar5+VH8c0jmmmxjGNY5q5cVzjuGZKHNPMH9MEohIryTPGGGOMMcYYY6zceM42Y4wxxhhjjDFmZNzYZowxxhhjjDHGjIwb24wxxhhjjDHGmJFxY5sxxhhjjDHGGDMybmwzxhhjjDHGGGNGxo1txhhjjDHGGGPMyLixzRhjjDHGGGOMGRk3tpleYmNjIQgCatasieLiYrX3X3zxRQiCgBEjRhhUbnZ2NmJjY3Hx4kWV7ampqRAEAVu2bClPtctt0aJFEARBfH3s2DEIgoCzZ8+arQ6xsbFITExU2y4IAhYsWGC2emiyY8cOCIKA1NRUAGX73hYtWoS9e/eaqIaMacYx7RmOaao4prHKjOPaMxzXVHFcq1jc2GZ6k0gkyMjIwIkTJ1S237hxA0lJSXB2dja4zOzsbMyaNUstgPv6+iIpKQmdO3cuV52NrWXLlkhKSkLjxo3Nds5Zs2ZpDOBJSUkYMmSI2eqhj7J8bxzAWUXhmMYxrTQc01hlw3GN41ppOK6Zl11FV4BVHlKpFJGRkdi4cSM6duwobo+Li0PTpk1ha2trtHPZ29ujbdu2RivPWKpVq1ZqvfLy8uDo6Gjyulji52Op3xtjmnBM45hWGkv93hjThuMax7XSWOr3Zq34yTYzyODBg7FlyxYUFhaK2zZs2IDo6GiN+584cQLh4eFwdHSEp6cn3njjDTx48ADAs2EsdevWBQAMGDAAgiCIw1w0DXEpLi7GnDlzUKdOHdjb26NRo0ZYtmyZyvliY2Ph7OyMc+fOoV27dnByckJQUBAOHDhQ6rU9fPgQw4YNg4uLC7y8vDBlyhQUFRWp7KNpaJIgCPjss88wdepU+Pj4oHr16gAAIsKCBQsQEBAAe3t71KtXD19++aXaeS9duoR+/fpBLpfDyckJISEh2Lhxo1g2AEyePFn8fI4dOya+9/zQpGXLliEwMBD29vaoU6cO5syZozKUbPXq1RAEAb///jt69OgBmUyGhg0bYu3ataV+PoWFhZg4cSLkcjlcXV0xatQo5Obmquyj6Xv78ccf0apVKzg7O8PNzQ2tWrUSe0fr1KmDGzduYMmSJeL1rV69GgCwdu1atGvXDnK5HO7u7ujYsSN++eUXlfMZ8n2vXbsWLVq0gIODAzw9PdGzZ0/cuHFDfP/WrVt4/fXX4enpCUdHR3To0AG//vprqZ8Lq9w4pnFM45jGrA3HNY5rHNcsBze2mUFeeeUVPH36FAcPHgQAXLx4EcnJyRg0aJDavr/++iu6du0KFxcXxMfH4/PPP8euXbvQo0cPKBQK+Pr6Ytu2bQCAuXPnIikpCUlJSfD19dV47smTJyM2NhYjRozArl270K1bN4wdOxbffPONyn6FhYUYMmQIRowYge3bt6N69eqIiopCZmamzmt74403sH37dnz22WdYs2YNLl68iEWLFun1uXz11Ve4evUqVqxYgR9++AEAMGHCBMycORPDhw/Hnj17MGLECEydOhXfffedeNy1a9cQFhaGa9eu4euvv8aPP/6IkSNH4u+//wbwbPgRAIwfP178fFq2bKmxDosXL8bYsWPx0ksvYdeuXRgxYgRiY2MxZcoUtX2HDBmCbt26YceOHWjRogVGjBiBS5cu6bzG6dOnY+nSpZg8eTI2b94MhUKBadOm6Tzmr7/+Qv/+/dG0aVNs374dmzZtwsCBA5GVlQUA2L59O3x8fNC/f3/x+nr16gXg2R+DYcOGIT4+Hhs2bEDt2rXRoUMHXL16VeUc+nzf8+fPx/DhwxEaGopt27ZhxYoVaNiwIdLT0wEAWVlZaNeuHf744w8sXrwYW7duhUwmQ+fOnXH//n2d18gqN45pmnFM04xjGqsMOK5pxnFNM45rJkaM6SEmJoZkMhkREUVHR9Prr79OREQzZsygsLAwIiIKCQmh4cOHi8f07duXateuTQUFBeK2AwcOEAD68ccfiYgoJSWFAFB8fLzK+Z7fnp6eThKJhKZNm6ay3+DBg8nLy4uKiorEegKgPXv2qJW1bt06rdd34cIFEgSBVqxYIW4rKiqiunXrUslfk4SEBAJAZ86cEbcBoCZNmlBxcbG47c8//yRBEGjZsmUq55k6dSr5+PiQQqEQP0svLy/KycnRWjcANH/+fJ3bi4qKyNPTkwYNGqSyz/Tp00kqlVJGRgYREa1atYoA0JIlS8R9cnNzycnJiWbPnq21DpmZmeTo6Egff/yxyvYOHToQAEpJSSEi9e8tPj6eANDDhw+1lu3v70/jxo3T+j4RkUKhoMLCQgoMDKTp06eL2/X5vrOzs8nJyYlGjx6ttfyZM2eSq6sr3bt3T9yWn59PtWvXpsmTJ+usG6ucOKY9wzGNYxqzHhzXnuG4xnHNkvCTbWawwYMHY+fOncjLy0NcXBwGDx6scb+TJ0/i1VdfhUQiEbd169YNbm5uOHXqlEHn/Pnnn1FYWIgBAwaobH/ttdeQnp6u0oNmY2ODyMhI8XWdOnXg6OiIW7duaS3/zJkzICL07dtX3GZra4s+ffroVb8ePXqoZMI8fPgwACAqKgpFRUXiv8jISNy9exc3b94EABw5cgT9+/dHtWrV9DqPNpcvX0ZGRobGz6egoEBtSE+3bt3E/5fJZPD399f5+Zw7dw55eXkqn4/y+nQJDg6Gra0toqOjsWvXLuTk5Oh7Sbh06RL69u0Lb29v2NraQiKR4MqVK2q9paV930lJSXjy5AlGjRql9VwHDx5Ep06dIJfLxe/K1tYWEREROHPmjN51ZpUTxzR1HNM045jGKguOa+o4rmnGcc20OEEaM9hLL70EiUSCmTNnIiUlBQMHDtS4X1ZWFry9vdW2e3t7i3OB9KUcyvJ8ecrXJctzdHSEVCpV2U8qlSI/P19r+WlpaZBIJHB3d9dYfmme3y8jIwNEBE9PT43737x5E/7+/sjMzESNGjX0Oocuhnw+AODm5qbyWp/PB4A4x+n58rUJCAjA7t27MXfuXPTt2xc2Njbo3r07vvnmG9SuXVvrcY8ePUK3bt3g5eWFhQsXwt/fHw4ODnjzzTfV6lna960coqTrc87IyMDp06dVbjaU6tevr/MaWeXHMU0dxzTNOKaxyoLjmjqOa5pxXDMtbmwzg0kkEkRFRWHhwoXo0qWL1l9iuVyucQ7FvXv3IJfLDTqncv/79++jZs2aKmWVfL+sfH19UVhYiKysLJUgriy/NCV7SpX1EQQBp06dUgsuABAYGAgA8PDwwJ07d8pR83/PB0Dt8zbm56MsX9Pnr0v37t3RvXt3PHz4EPv378d7772HkSNH4siRI1qPSUpKwq1bt7B7926EhISI23NycuDn52dQ3T08PAAAd+7c0XqsXC5H9+7dMXv2bLX37O3tDTofq3w4pqnjmKYdxzRWGXBcU8dxTTuOa6bDw8hZmbz55pt45ZVXMGHCBK37tGvXDjt27FDJEnno0CFkZ2ejXbt2ACAGN109dQDQunVrSCQSxMfHq2zfvHkzqlevjoCAgLJeCgDghRdeAPAsCYSSQqHAjh07ylRely5dADzrqWvVqpXaPxcXFwBAZGQktmzZgkePHmktSyKRlPr5BAYGwsvLS+PnI5VK0bp16zJdh1KzZs3g6Oio8vkAwNatW/Uuo1q1ahg4cCAGDRqkkuBDU09tXl6e+J5SYmIiUlNTDa57WFgYnJycsGrVKq37REZG4uLFi2jcuLHad9WsWTODz8kqH45punFMU8cxjVk6jmu6cVxTx3HN+PjJNiuT1q1blxrcPvroI4SHh+Pll1/G+PHjce/ePUybNg2tW7dGz549AQA+Pj5wc3PDxo0bUbduXdjb2yM4OFitLE9PT4wfPx7z58+Hg4MD2rZti71792LDhg1YvHhxudeNbNKkCfr27YuJEyciPz8fderUwdKlS1FQUFCm8gICAjBu3DgMHToUkydPRps2bVBYWIirV68iISFB/OxiYmKwe/dutGvXDlOmTIGvry8uXryIJ0+eiJkpGzdujJ07d6J9+/aQyWQIDAwU/wAo2dra4uOPP8a7776L6tWro2fPnjh9+jQ+//xzTJw4UewxLCu5XI6xY8fis88+g6OjI1q2bImNGzfir7/+0nncsmXLkJSUhO7du8PX1xcpKSn44YcfVOYhNW7cGEePHsWhQ4fg7u6OunXrom3btnB2dsa4ceMwbdo03L59GzExMSo9tfpydXVFTEwMpk6diuLiYrz66qsoLi5GQkICBg8ejFatWuH999/H+vXrERERgQkTJqB27dpIT0/Hzz//jBo1auC9994z+LyscuGYphvHtGc4prHKhOOabhzXnuG4ZmIVmZ2NVR4lM1xq83yGSyKiY8eOUVhYGNnb25NcLqcRI0ZQZmamyj7bt2+nxo0bk729vZgtUVPmS4VCQZ988gnVrl2bJBIJNWzYkL777ju96unq6koxMTE665+VlUVDhgwhmUxGHh4e9P7779P8+fP1ynCpKQNlcXExLV68mIKCgkgqlZJcLqewsDBauHChyn4XLlyg3r17U7Vq1cjJyYmaN29OcXFx4vsnT56kli1bkqOjIwGghIQEref99ttvqWHDhiSRSKh27do0e/ZsMZsm0b8ZLtPT01WO0/TdPe/p06c0fvx4cnNzo2rVqtHw4cNp3bp1OjNcJiYmUq9evcjX15ekUinVrl2bJkyYoJLx8vz589S+fXtycXEhALRq1SoiItq3bx81bdqUHBwcKDg4mPbu3UsRERHUq1cv8VhDvu+VK1dSs2bNSCqVkoeHB7388st048YN8f20tDQaNWqUWFc/Pz/q378//fTTTzo/F1Y5cUx7hmMaxzRmPTiuPcNxjeOaJRGIiEzeomeMMcYYY4wxxqoQnrPNGGOMMcYYY4wZGTe2GWOMMcYYY4wxI+PGNmOMMcYYY4wxZmTc2GaMMcYYY4wxxoyMG9uMMcYYY4wxxpiRcWObmUxqaioEQcCWLVsMOu7YsWOYO3eu2vbY2Fg4Ozsbq3qlWrRoEfbu3Wu08nbs2IGlS5eqbR8xYgSCgoKMdh5jM/fnzpgl47imiuMaY5UbxzRVHNOYsXFjm1kcbQH8zTffREJCgtnqYa4AbunM/bkzZo04rlkWjmuMlQ/HNMvCMc1y2VV0BVjlQkQoKCiAvb292c/t5+cHPz8/s5+3qnr69CkkEonRPndleTY23MfHLAvHtaqD4xqrCjimVR0c0ywff5JMJ+Wwmb179yIkJAT29vbYtWsXACApKQmdO3eGTCaDq6sroqOjcf/+fZ3lrV27Fu3atYNcLoe7uzs6duyIX375RXw/NjYWs2bNwuPHjyEIAgRBQMeOHcX3lENkHj9+DJlMhgULFqido3///ggLCxNfZ2dn45133oGvry/s7e0RGhqKgwcP6qxnnTp1cOPGDSxZskSsx+rVqwEAxcXFmDNnDurUqQN7e3s0atQIy5YtK/VzXLNmDS5cuCCWN2LECJV9jh07hhYtWkAmk6F169b49ddfVd4nIixYsAABAQGwt7dHvXr18OWXX+o8r/LcQUFB2LdvH4KCguDg4IDQ0FCcPn1a7Zr/85//4L///S/8/f3h6OiIBw8eaByadOPGDfTv3x+urq6QyWR46aWXcO7cOb3K01XHw4cPIzg4GI6OjoiIiEBqaioePHiAgQMHolq1aqhfvz42bdqkdvyePXvQpk0bODo6wsvLC2+//TYeP34svv/48WP85z//QWBgIJycnFCnTh2MHTsWOTk5Guu8ZMkS+Pv7w9XVFX369EF6enqpnzOrPDiucVzjuMZxzZpwTOOYxjHNgmMaMabD8OHDyd3dnerXr0+rVq2iI0eO0LVr1ygxMZGkUin16dOHdu3aRXFxcdSgQQNq27ateGxKSgoBoPj4eHHbrFmzaNmyZXT48GHau3cvDR06lOzt7enKlStERHTz5k0aNWoUOTo6UlJSEiUlJdGFCxeIiCgmJoZkMplY1qBBgyg0NFSlvg8fPiQHBwf6+uuviYjo6dOn1KpVK6pVqxatWLGC9u/fT6+//jrZ2dlRcnKy1uv+7bffyMfHh/r37y/W4/79+0RE9P7775OtrS3FxMTQgQMHaPz48QSAFi9erLW8P//8k3r27En16tUTy/vzzz/Fz9jDw4OaNWtG69evp927d1OzZs2oVq1aVFBQIJYxfvx4cnR0pDlz5tChQ4do1qxZJJFI6Ntvvy31O5TL5VSnTh1avXo17dy5k8LCwqhatWp07949cT9/f3/y8fGh9u3b0/bt2+nHH3+kJ0+eqH3uDx8+pDp16lC9evVow4YNtG3bNgoNDSU3Nzf6+++/Sy1PWx09PDwoODiY4uLiaOvWrVSzZk0KDw+nyMhI+uSTT+jgwYM0YMAAsrOzo9TUVPHY+Ph4srGxoVGjRtG+ffto5cqVVL16dXrttdfEfe7fv09jx46l+Ph4OnbsGK1bt44aNWpEHTt2VKmHv78/1apVi7p160a7du2iVatWkZubm0pZrPLjuMZxjeMaxzVrwjGNYxrHNMuNadzYZjoNHz6cANDp06dVtnfo0IHCw8OpuLhY3HbhwgUSBIH27NlDRJoDeEkKhYIKCwspMDCQpk+fLm5/PmBo275z504CQFevXhW3rVmzhmxtbenu3btERLRy5Uqys7MT/wgotWnThgYMGKDz2v39/WncuHEq29LT00kikdC0adNUtg8ePJi8vLyoqKhIa3nDhw+npk2batwuCAKdP39e3JaQkEAA6OTJk0T07A+AIAi0bNkylWOnTp1KPj4+pFAodJ4XAB05ckTclp2dTS4uLirX4e/vTx4eHpSbm6ty/POf+1dffUWCINDFixfFbZmZmSSTyej9998vtTxtdXz+M1i8eDEBoKlTp4rbsrKyyNbWlhYtWkRERMXFxeTv70+DBw9WKW/fvn1q5ZVUWFhIp06dIgDizYOyzn5+fpSfn69y/RKJROdnzCoXjmsc1ziucVyzJhzTOKZxTLPcmMbDyFmpPDw80KZNG/H1kydP8NNPP2HAgAFQKBQoKipCUVERAgICUKtWLZw5c0ZrWZcuXULfvn3h7e0NW1tbSCQSXLlyBVevXjW4Xt27d4ebmxvi4uLEbXFxcejUqRO8vb0BAAcPHkSzZs0QEBAg1rOoqAhdu3bVWU9tfv75ZxQWFmLAgAEq21977TWkp6eX6ToAoEaNGmjatKn4ukmTJgCAW7duAQAOHz4MAIiKilK5jsjISNy9exc3b97UWb6rqys6d+6s8joyMhI///yzyn4dO3aETCbTWdbJkycRFBSExo0bi9vkcjm6du2KU6dOGVye0vOfQUBAAAAgMjJS3Obm5obq1auL13v16lXcuHEDAwcOVPlcIiIiYGNjg7Nnz4rHrlu3Di1atICzszMkEgnatWsnllFSRESEyjy3Jk2aoLCwsNRhd6xy4bj2L45rHNdY5ccx7V8c0zimWRJubLNSKYOhUlZWFhQKBd577z1IJBKVf3///bfWYPLo0SN069YNN27cwMKFC3Hy5EmcOXMGISEhyM/PN7heUqkUUVFRYgDPzMzEoUOHEB0dLe6TkZGB33//Xa2ec+bMKTXoaZKVlQVA/TNRvtY2z6U0bm5uKq+lUikAiJ9LRkYGiAienp4q19G1a1cAKPVavLy81LZ5e3sjLS1N43XokpWVpXE/b29vtevXpzwlbZ+Bpu0lPxcA6Nu3r8rn4uTkBIVCIX4u27dvx7Bhw9C6dWts3rwZp0+fxvbt2wFA7WevtO+CWQeOa6rXDnBc47jGKjOOaarXDnBM45hmGTgbOSuVIAgqr93c3CAIAj788EP06dNHbX9PT0+N5SQlJeHWrVvYvXs3QkJCxO05OTllzqA4ePBgrFixAsnJyUhKSoKtrS369esnvi+XyxEcHIwVK1aUqfznyeVyAMD9+/dRs2ZNcfu9e/dU3jc2uVwOQRBw6tQpMaCUFBgYqPN4TUkj7t27B19fX5Vtz3/X2upy5coVjeU9f/36lFceyvN98803Kj36SjVq1AAAxMfHo3nz5irJUY4fP27SujHLxnHtXxzXOK6xyo9j2r84pnFMsyTc2GYGk8lkCAsLw6VLlzBnzhy9j8vLywMAlQCUmJiI1NRUlSEpUqkUT58+1avMjh07wsfHBxs3bkRSUhJ69OgBV1dX8f3IyEjs3bsXNWrUEH+Z9VWyV06pdevWkEgkiI+PR4sWLcTtmzdvRvXq1cXhNPqWp68uXboAeNYj/Morrxh8fE5ODo4ePSoOT8rJycHhw4cxbtw4g8tq164dtmzZgitXroh/OLKysnD48GGMHj3a4PLKo1GjRvDz88P169d1XkteXp7aH77169ebunqsEuG4xnGN4xqzJhzTOKZxTLMM3NhmZTJ//nx07twZr732GgYNGgR3d3fcunULhw4dwsiRI8UlIEpq27YtnJ2dMW7cOEybNg23b99GTEyMSq8jADRu3BhFRUX46quvEB4ejmrVqmntDbS1tcXAgQOxevVq3L9/X2VOEAAMGzYMy5YtQ8eOHfHBBx8gICAA2dnZ+P3331FQUIB58+ZpvcbGjRvj6NGjOHToENzd3VG3bl14enpi/PjxmD9/PhwcHNC2bVvs3bsXGzZswOLFi2Fra6uzvJUrV2Ljxo1o2LAhPD09UadOHe0fcgkBAQEYN24chg4dismTJ6NNmzYoLCzE1atXkZCQgB07dug8Xi6XY9SoUZg1axbc3Nzw2WefgYgwceJEvc5f0siRI/Hll1+iV69emDNnDhwcHPDpp5/Czs6uTOWVhyAIWLhwIaKjo/H48WP06tULMpkMN27cwJ49ezB37lwEBASga9euGDduHGbPno2wsDDs3bsXR44cMWtdmeXjuMZxjeMasyYc0zimcUyzABWZnY1ZPm1ZGYmIzpw5Qz179iRXV1dydHSkhg0b0tixY+nmzZtEpDnD5b59+6hp06bk4OBAwcHBtHfvXoqIiKBevXqJ+xQWFtI777xD3t7eJAgCRUREEJH2zJdJSUkEgJydnTUuV5CTk0Pvvfce1a5dmyQSCfn6+lLPnj1p9+7dOq/9/Pnz1L59e3JxcSEAtGrVKiJ6lpnzk08+Ectr2LAhfffddzrLUtZj0KBB5OHhQQBo+PDhRKT5M87KylI5J9GzbI6LFy+moKAgkkqlJJfLKSwsjBYuXKjzvMryd+/eTY0bNyapVEotWrSgn376SWU/TRk9iTR/7qmpqdSvXz9ycXEhJycn6tq1q9ryHNrK01XHkpRZPs+cOVNquQcPHqSIiAiSyWQkk8moadOmNGnSJMrOziYioqKiIpo0aRJ5eXmRi4sL9e/fn06fPq3286mp7O3btxMASklJ0etamOXjuMZxjeMaxzVrwjGNYxrHNMuNaQIRkfma9owxcxsxYgTOnj2L8+fPV3RVGGPMKDiuMcasCcc068XZyBljjDHGGGOMMSPjxjZjjDHGGGOMMWZkPIycMcYYY4wxxhgzMn6yzRhjjDHGGGOMGRk3thkzsdatW2PJkiVa3//jjz8gCAKOHTtmkvN37doVn376qUnKZoxVPRzTGGPWhuMaMxVubDNmQtu3b0dqaireeOONCqvDhx9+iAULFiArK6vC6sAYsw4c0xhj1objGjMlbmwzZkKLFi3C4MGD4ejoWGF16NSpE9zd3bFmzZoKqwNjzDpwTGOMWRuOa8yUuLHNmImkpKTg5MmT6N+/v8r2OXPmwMfHB87OzujXrx/u37+vdiwRYcGCBQgICIC9vT3q1auHL7/8Um2/7du3IzAwEA4ODmjbti1+++03uLm5ITY2VmW/AQMGcABnjJULxzTGmLXhuMZMjRvbjJnIkSNHYGdnh9atW4vbvvnmG3z88ccYOnQotm7dinr16mHUqFFqx06YMAEzZ87E8OHDsWfPHowYMQJTp07Fd999J+7z+++/Y8CAAWjSpAm2bduG4cOH47XXXsPTp0/VygsPD8cff/yB9PR001wsY8zqcUxjjFkbjmvM5IgxZhKjR4+mpk2biq+LioqoRo0aNHToUJX9hg4dSgAoISGBiIj+/PNPEgSBli1bprLf1KlTycfHhxQKBRERDRgwgBo0aCC+JiJat24dAaCYmBiVY1NSUggA7d6924hXyBirSjimMcasDcc1Zmr8ZJsxE0lLS4OXl5f4+tatW7hz5w769u2rst/zQ5cOHz4MAIiKikJRUZH4LzIyEnfv3sXNmzcBAGfOnMHLL78MG5t/f41fffVVjXXx9PQU68QYY2XBMY0xZm04rjFTs6voCjBmrfLz82Fvby++VgbP6tWrq+zn7e2t8jojIwNEJAbd5928eRP+/v5qfyAAwMXFBQ4ODmrHKOuRl5dn+IUwxhg4pjHGrA/HNWZq3NhmzETkcjlSU1PF176+vgCglmTj3r17ascJgoBTp05BKpWqlRsYGCiW9/y8nkePHiE/P1/tmOzsbACAh4eHwdfBGGMAxzTGmPXhuMZMjYeRM2YigYGBSElJEV/7+fnB19cX27dvV9lvy5YtKq+7dOkCAMjMzESrVq3U/rm4uAAAXnjhBezevRvFxcXisTt27NBYF+UfEmXwZ4wxQ3FMY4xZG45rzNT4yTZjJvLiiy/ik08+wa1bt+Dn5wdbW1tMmzYNEyZMgLe3N7p27YqDBw8iISFB5biAgACMGzcOQ4cOxeTJk9GmTRsUFhbi6tWrSEhIEIP09OnT8cILLyAqKgqjR4/GjRs3sGDBAjg4OKjMDQKAs2fPwtnZGc2bNzfT1TPGrA3HNMaYteG4xkyughO0MWa1nj59Sh4eHvT999+L24qLi2nWrFlUvXp1cnJyot69e9P+/ftVMlwq91u8eDEFBQWRVColuVxOYWFhtHDhQpVzbN26lQICAsje3p5CQ0Pp1KlTZGdnR4sWLVLZ75VXXlHLrMkYY4bgmMYYszYc15ipCUREFdzeZ8xqTZo0Cb///juOHj1qlvMdOXIEkZGROHbsGCIiIgAAWVlZ8PHxwaFDh9ChQwez1IMxZp04pjHGrA3HNWZK3NhmzITS0tLQoEEDJCYmIiQkxOjlv/POO+jSpQs8PDxw4cIFzJ49GzVq1MDZs2fF4UmffPIJjh07ZrY/Iowx68UxjTFmbTiuMVPiOduMmZCvry9Wr16tlonSWLKysjB+/HhkZGTA1dUV3bt3x4IFC1TmAcnlcnz99dcmOT9jrGrhmMYYszYc15gp8ZNtxhhjjDHGGGPMyHjpL8YYY4wxxhhjzMi4sc0YY4wxxhhjjBkZN7YZY4wxxhhjjDEj48Y2Y4wxxhhjjDFmZNzYZowxxhhjjDHGjIwb24wxxhhjjDHGmJFxY5sxxhhjjDHGGDMybmwzxhhjjDHGGGNGxo1txhhjjDHGGGPMyP4fgQmBgqtR+NUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1618,13 +1618,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdXElEQVR4nOydeVhUVRvAf3dm2EFAQQR3cF+wxKU0xT2Xci9NTStwKddSS3MB09SWLzVbxMR9za1sMS1LyxZNW9yX3AVUUFBkZ+Z8f1wYGWYGZhBcz+955rnMueeee+4MvJz3vJsihBBIJBKJRCKRSCQSiUQiKTY0d3sCEolEIpFIJBKJRCKRPGhIZVsikUgkEolEIpFIJJJiRirbEolEIpFIJBKJRCKRFDNS2ZZIJBKJRCKRSCQSiaSYkcq2RCKRSCQSiUQikUgkxYxUtiUSiUQikUgkEolEIilmpLItkUgkEolEIpFIJBJJMSOVbYlEIpFIJBKJRCKRSIoZqWxLJBKJRCKRSCQSiURSzEhlWyK5h9m5cyeKorBhw4a7PRWJRCK5bc6ePYuiKLz//vt3eyoSiURiN1WqVOGpp56629OQ3EdIZVty3/Dnn38yYsQI6tati5ubG5UqVeLZZ5/lxIkTBV6XlZVFnTp1LC7wkpKS6N+/P97e3gQGBhIdHW12/b59+3B1deXMmTPF+jwSieTh5ubNm0RERNCxY0dKly6NoigsXbrUrJ/BYGDp0qV07dqVihUr4ubmRr169ZgxYwbp6ekmfTMyMhg5ciS+vr5UqFCBGTNmmI138eJF3N3d+fXXX0vq0SQSicSMv/76i65du1K6dGlcXV2pV68eH374oUmfqKgoqlatSunSpXn++ee5ceOGyXmDwcCjjz7KzJkz7+TUJZIio7vbE5BIbOWdd97h119/5ZlnniE4OJhLly7x0Ucf0bBhQ/744w/q1atn8br58+dz/vx5i+fGjRvHzp07mTZtGv/99x+DBw+mdu3aNGvWDAAhBKNGjWLMmDFUrVq1xJ5NIpE8fCQkJPDWW29RqVIlGjRowM6dOy32S01N5cUXX+Sxxx5j2LBhlC1blt9//52IiAh27NjBjz/+iKIoALz33nssX76cSZMmkZyczFtvvUVQUBDPPfeccbzx48fTtWtXmjdvficeUyKRSNi+fTtPP/00jz76KFOmTMHd3Z1Tp05x8eJFY5/du3fz8ssvM2rUKAIDA5k1axbjx48nKirK2Oezzz7j+vXrjB079m48hkRiP0IiuU/49ddfRUZGhknbiRMnhJOTk+jfv7/Fay5fviw8PT3FW2+9JQDx3nvvmZz38/MTy5YtM74PDQ0VEyZMML5fsWKFCAgIEMnJycX4JLbz008/CUCsX7++RO9z8+bNEh1fIpGYk56eLuLi4oQQQvz5558CEEuWLDHrl5GRIX799Vez9mnTpglAfP/998a2pk2bimnTphnfDxo0SPTt29f4/pdffhFubm7iwoULxfgktnPmzBmLsri4kTJNIrl3uH79uvDz8xM9evQQer3ear833nhDtG7d2vh+yZIloly5csb3iYmJwsfHR2zcuLFE51sQlStXFl26dCnRe2RlZZmtdyX3L9KNXHLf0KxZMxwdHU3aqlevTt26dTl69KjFayZMmEDNmjUZMGCAxfNpaWl4e3sb35cuXZrU1FQAUlJSmDBhArNmzcLd3d2uucbExBAWFkZAQABOTk5UrVqVl19+mczMTGOf06dP88wzzxjdqR577DG++eYbi+MZDAbefvttKlSogLOzM23btuW///4z67dnzx46duyIp6cnrq6uhIaGmrmKRkZGoigKR44coV+/fnh7e/PEE08Yz69cuZKQkBBcXFwoXbo0ffv25cKFCyZjtGrVinr16nHkyBFat26Nq6sr5cuX59133zWbU3p6OpGRkdSoUQNnZ2f8/f3p2bMnp06dMnm+uXPnUrduXZydnfHz82Po0KEkJiba9oFLJPchTk5OlCtXrtB+jo6ORm+bvPTo0QPARP4VJNMMBgOjR4/m9ddfp0KFCnbNNSkpiVdffZUqVarg5OREhQoVGDhwIAkJCcY+V65cISwsDD8/P5ydnWnQoAHLli2zOubChQsJCgrCycmJxo0b8+eff5r1OXbsGL1796Z06dI4OzvTqFEjtmzZYtJn6dKlKIrCrl27eOWVVyhbtqzJ823dupUWLVrg5uaGh4cHXbp04fDhwyZjvPDCC7i7uxMTE0P37t1xd3fH19eXcePGodfrTfoaDAbmzZtH/fr1cXZ2xtfXl44dO7Jv3z6TfrbIUonkYWD16tVcvnyZt99+G41GQ0pKCgaDwaxfQfIL1PVL/fr16dmzp133t+VvNjs7m+nTpxtlUpUqVXjzzTfJyMiwOObu3btp0qQJzs7OBAYGsnz5crM+SUlJjBkzhooVK+Lk5ES1atV45513TJ49bx6LuXPnGu9/5MgRwD4Z+Ouvv/Laa6/h6+uLm5sbPXr0ID4+3mxeW7duJTQ0FA8PD0qVKkXjxo1ZvXq1SR9b1pMSG7nb2r5EcjsYDAZRvnx50aFDB7Nze/bsERqNRvz2229WrSlt27YVrVq1EidOnBDfffedcHFxEStXrhRCCPHmm2+KJk2aCIPBYNecYmJiREBAgHB1dRVjxowRCxYsEFOmTBG1a9cWiYmJQgghLl26JPz8/ISHh4eYNGmS+OCDD0SDBg2ERqMRmzZtMo6Va9l+9NFHRUhIiJgzZ46IjIwUrq6uokmTJib33bFjh3B0dBSPP/64+N///ifmzJkjgoODhaOjo9izZ4+xX0REhABEnTp1RLdu3cQnn3wiPv74YyGEEDNmzBCKoog+ffqITz75REybNk34+PiIKlWqGOcuhOoBEBAQICpWrChGjx4tPvnkE9GmTRsBiG+//dbYLzs7W7Rt21YAom/fvuKjjz4Ss2bNEm3atBFffPGFsV94eLjQ6XRi8ODBYsGCBeKNN94Qbm5uonHjxiIzM9Ouz18iuR8pyLJtje3btwtArF692tgWFhYm6tWrJw4cOCB+++03Ua5cOTFjxgwhhBALFy4UlSpVEqmpqXbNLTk5WdSrV09otVoxePBg8emnn4rp06eLxo0bi7///lsIIURqaqqoXbu2cHBwEK+++qr48MMPRYsWLQQg5s6daxwrVxY/+uijolq1auKdd94R7777rvDx8REVKlQw+Xs/dOiQ8PT0FHXq1BHvvPOO+Oijj0TLli2FoigmcnLJkiVGmRYaGirmz58vZs+eLYQQYvny5UJRFNGxY0cxf/588c4774gqVaoILy8vcebMGeMYgwYNEs7OzqJu3bripZdeEp9++qno1auXAMQnn3xi8nm88MILAhCdOnUSc+fOFe+//77o1q2bmD9/vrGPrbJUInkY6NWrlyhVqpT4/vvvRY0aNQQg3NzcxLBhw0RaWpqx34oVK4Srq6vYtm2bOHHihGjZsqVo166dEEKIw4cPCycnJ/Hvv//afX9b/mYHDRokANG7d2/x8ccfi4EDBwpAdO/e3WSsypUri5o1awo/Pz/x5ptvio8++kg0bNhQKIoiDh06ZOyXkpIigoODRZkyZcSbb74pFixYIAYOHCgURRGjR4829suViXXq1BGBgYFi9uzZYs6cOeLcuXN2y8BHH31UtGnTRsyfP1+MHTtWaLVa8eyzz5rMf8mSJUJRFFGvXj3x9ttvi48//liEh4eL559/3tjH1vWkxDaksi25r1mxYoUARHR0tEm7wWAQTZo0Ec8995wQwrrr4oEDB0SFChUEIADRq1cvodfrxenTp4WLi4v4/fff7Z7TwIEDhUajEX/++afZuVzFfcyYMQIQv/zyi/FccnKyqFq1qqhSpYrRzSpX2a5du7aJS9G8efMEIA4ePGgct3r16uLJJ5802RxITU0VVatWFe3btze25SrbuZ9NLmfPnhVarVa8/fbbJu0HDx4UOp3OpD00NFQAYvny5ca2jIwMUa5cOdGrVy9j2+LFiwUgPvjgA6ufxS+//CIAsWrVKpPz3333ncV2ieRBpCjKdrt27USpUqVMlLcLFy6IunXrGmVaixYtRHJyskhKShK+vr5i7dq1ds9t6tSpAjBZ3OWS+3c8d+5cARg3K4UQIjMzUzz++OPC3d1d3LhxQwhxSxaXKVNGXLt2zdj3yy+/FID46quvjG1t27YV9evXF+np6Sb3a9asmahevbqxLXeh+cQTT4js7Gxje3JysvDy8hKDBw82mfOlS5eEp6enSXvuQvutt94y6Zu70ZnLjz/+KAAxatQoq5+FPbJUInkYCA4OFq6ursLV1VWMHDlSbNy4UYwcOdK4EZ9Ldna26Nmzp1F+VaxYURw4cEAIIUSHDh3EsGHD7L63LX+z//zzjwBEeHi4yflx48YJQPz444/GtsqVKwtA/Pzzz8a2K1euCCcnJzF27Fhj2/Tp04Wbm5s4ceKEyZgTJkwQWq1WnD9/XghxSyaWKlVKXLlyxaSvvTKwXbt2JmvAV199VWi1WpGUlCSEECIpKUl4eHiIpk2bmmxy5P0s7FlPSmzjrivbly9fFufOnTN7SSSFcfToUVGqVCnx+OOPmyywhFCVPBcXFzNhZilOMC0tTfz555/i5MmTxrYePXqIAQMGCCGE2LhxowgODhZVqlQR06ZNK9DSrdfrRalSpUS3bt0KnHuNGjXMLNNCCDFr1iwTJTpX2X733XdN+v31118CEF9++aXJ+2XLlon4+HiTV3h4uHBycjIq8LnK9q5du0zG/OCDD4SiKOLkyZNmY9SuXdu4uyyEqmy7u7ubfRZdu3YVjz76qPF9ly5dhI+Pj8jKyrL6WYwaNUp4enqKK1eumN3X3d3d7J+fRPIgYq+y/fbbb1u0ugqhKrl///23OHz4sPHv/tVXXxVPPPGEEELd4GrSpImoUKGCGDlyZKGxgXXr1hUNGjQosE+HDh1EuXLlzOIx16xZY6JE58riV155xaTftWvXBCDmzZsnhBDi6tWrQlEUMX36dDO5kBurfvHiRSHErYVm3vwbQgixadMm40I5/xgdOnQQ1apVM/bNVbbzL3ZHjRolvL29je+HDx8uFEURV69etfpZ2CNLJZKHgcDAQAGYKctDhw4VgJlCevLkSbFv3z6jQvjll18KLy8vER8fLy5evCieeuop4e/vL5566ikRExNT4L1t+ZudOXOmAMSRI0dM2uPi4gRgokRXrlxZ1KlTx2yM4OBg0aNHD5P3HTt2NJMBP/zwg8nGZK5MfPHFF03GK4oM/Pzzz03GyJWBud4A69evF4DYvHmz1c/CnvWkxDbuSjbyq1evMnLkSDZt2kRWVpbJOSEEiqKYxUhJJHm5dOkSXbp0wdPTkw0bNqDVao3nbty4wcSJExk/fjwVK1YsdKzcGJhcfvzxR7Zv387x48c5fvw4ffv2JSoqiipVqvDcc89RsWJFXnzxRYtjxcfHc+PGDauZ0XM5d+4cTZs2NWuvXbu28XzeMSpVqmTSLzemKTem+eTJkwAMGjTI6j2vX79uEguVP7v6yZMnEUJQvXp1i9c7ODiYvK9QoYIxA3LeeR04cMD4/tSpU9SsWROdzrqoOXnyJNevX6ds2bIWz1+5csXqtRLJw8i6deuYPHkyYWFhvPzyy2bnHRwceOSRR4zvjx07xieffMJvv/3GtWvX6NKlCxMmTKB169a8+OKLvP3220ybNs3q/U6dOkWvXr0KnNO5c+eoXr06Go1pKpi8Mi0vhcm0//77DyEEU6ZMYcqUKRbveeXKFcqXL298b0mmAbRp08bi9aVKlTJ5nxvLmX9eeXNHnDp1ioCAAEqXLm1xzNz72iNLJZIHHRcXFwCTqggA/fr1Iyoqit9//93k76VatWrGnzMzMxk7diwRERH4+PjQokUL/P39+eqrr5g9ezb9+vWzWskBbPubPXfuHBqNxuS+AOXKlcPLy6tQ+QXmsuLkyZMcOHDATKbkkn9tk19+FUUGFiZXc3PlFLRGLcp6UlIwd0XZDg8PZ9euXUycOJE6deqYJb2SSAri+vXrdOrUiaSkJH755RcCAgJMzr///vtkZmbSp08fzp49C2AsLZGYmMjZs2cJCAiw+Hun1+sZPXo0EyZMoHz58kyfPp1mzZoZleuhQ4eyatUqq8p2SZF3MyEvQggAY7KN9957z2SRnZf8Sd5y//nlYjAYUBSFrVu3Wrxf/usLm5OtGAwGypYty6pVqyyet/aPSiJ5GPn+++8ZOHAgXbp0YcGCBTZd8+qrrzJgwAAaNmzIihUrKF26NBMnTgTg9ddfL1TZLglslWnjxo3jySeftNg3/8LYkkwDWLFihcVEdPk3Aa3NyV7slaUSyYNOQEAAhw8fxs/Pz6Q9d5O9oGSoc+bMQafTMWLECC5cuMDu3bs5c+YMVapU4d133yUwMJCLFy/anfTREvkNCNawZf1jMBho3749r7/+usW+NWrUMHlvTX7ZIwOLY11WlPWkpGDuirL9008/8eGHHzJw4MC7cXvJfUx6ejpPP/00J06c4IcffqBOnTpmfc6fP09iYiJ169Y1Ozdz5kxmzpzJ33//bVGIfPrppyQnJzNu3DgAYmNjTZT5gIAAYmJirM7P19eXUqVKcejQoQKfo3Llyhw/ftys/dixY8bz9hAUFASolpp27drZdW3eMYQQVK1a1eyfQFEJCgpiz549ZGVlWbXmBAUF8cMPP9C8eXOzfzYSieQWe/bsoUePHjRq1IjPP/+8QI+RXL7++mt+++03o7UiNjYWf39/4/nCZBqof6O2yLQDBw5gMBhMrNtFlWmBgYGAagW+HZkG6oK+qGNYGnPbtm1cu3bNqqWsJGSpRHI/ExISwvfff09MTAw1a9Y0tsfGxgLWN9Xj4uKYMWMG69evR6fTGfvnrstyjzExMVaVbVv+ZitXrozBYODkyZNGbxyAy5cvk5SUZLf8yr3vzZs3iyx7ikMGWpoTwKFDh8wU9fx9bmc9KTGlSKW/Dh8+TN++fY3p6f/66y8AJk2axNatWwu93svLCx8fn6LcWvIQo9fr6dOnD7///jvr16/n8ccft9hv1KhRbN682eQVFRUFqOVdNm/ebOauA3Dt2jUiIiJ47733cHZ2BsDPz8+4WAS1xE5BpXo0Gg3du3fnq6++MisDA7d2Fzt37szevXv5/fffjedSUlJYuHAhVapUsbiJUBAhISEEBQXx/vvvc/PmTbPzlko/5Kdnz55otVqmTZtmtgsqhODq1at2zQmgV69eJCQk8NFHH5mdy73Hs88+i16vZ/r06WZ9srOzSUpKsvu+EsmDxtGjR+nSpQtVqlTh66+/tmljKjMzk9dee43JkycbLUh+fn78999/ZGdnG8ctrPxYr169+Pfff9m8ebPZubwy7dKlS6xbt854Ljs7m/nz5+Pu7k5oaKjNzwqqgtyqVSuioqKIi4szO2+LTHvyyScpVaoUM2fONAtZs3WM/PTq1QshhEVPgNzPoiRkqURyP/Pss88CEB0dbdK+aNEidDodrVq1snjdhAkTaNmyJR07dgQwWsZz12W5ZQ8LkmG2/M127twZgLlz55qc/+CDDwDo0qWL1fGt8eyzz/L777+zbds2s3NJSUlGGWyN4pCB+enQoQMeHh7MmjWL9PR0k3O5n0VxrCclptht2f7+++/p0qULISEh9O/fnxkzZhjPOTg48Mknn9CpU6cCx3j99deZP38+HTp0sGlnXiIBGDt2LFu2bOHpp5/m2rVrrFy50uR8bi3thg0b0rBhQ5Nzue7kdevWpXv37hbHnzJlCvXr1+eZZ54xtvXq1Yu33nqLl19+mcqVKxMVFWUUvtaYOXMm27dvJzQ0lCFDhlC7dm3i4uJYv349u3fvxsvLiwkTJrBmzRo6derEqFGjKF26NMuWLePMmTNs3LjRLO6xMDQaDYsWLaJTp07UrVuXF198kfLlyxMTE8NPP/1EqVKl+OqrrwocIygoiBkzZjBx4kTOnj1L9+7d8fDw4MyZM2zevJkhQ4YYLf62MnDgQJYvX85rr73G3r17adGiBSkpKfzwww+88sordOvWjdDQUIYOHcqsWbP4559/6NChAw4ODpw8eZL169czb948evfubdd9JZL7hY8++oikpCSjxearr74yhr2MHDkST09PkpOTefLJJ0lMTGT8+PF88803JmMEBQVZ3HycN28eAKNHjza2de7cmeHDh9OvXz+aNWvG9OnTCQ8PL3CO48ePZ8OGDTzzzDO89NJLhISEcO3aNbZs2cKCBQto0KABQ4YMISoqihdeeIH9+/dTpUoVNmzYwK+//srcuXPx8PCw+7P5+OOPeeKJJ6hfvz6DBw8mMDCQy5cv8/vvv3Px4kX+/fffAq8vVaoUn376Kc8//zwNGzakb9+++Pr6cv78eb755huaN29ucSOwIFq3bs3zzz/Phx9+yMmTJ+nYsSMGg4FffvmF1q1bM2LEiBKRpRLJ/cyjjz7KSy+9xOLFi8nOziY0NJSdO3eyfv16Jk6caBYOCLB3717WrVtnkgemSpUqNGrUiBdeeIGwsDAWLVpE06ZNC7Q82/I326BBAwYNGsTChQtJSkoiNDSUvXv3smzZMrp3707r1q3tfubx48ezZcsWnnrqKV544QVCQkJISUnh4MGDbNiwgbNnzxZqeLxdGZifUqVKMWfOHMLDw2ncuDH9+vXD29ubf//9l9TUVJYtW1Ys60lJPuzNqBYSEmKsxZaVlSUURRH79+8XQgjxxRdfiPLlyxc6xogRI0SlSpVEpUqVxPPPPy9Gjhxp8rKUnl8iyS03Ze1VEAVlIxdCLQHm6OhorBmbl6VLl4oqVaqIMmXKiNdee80s87klzp07JwYOHCh8fX2Fk5OTCAwMFMOHDzfJ+nvq1CnRu3dv4eXlJZydnUWTJk3E119/bTJObjby9evXW3ye/JmL//77b9GzZ09RpkwZ4eTkJCpXriyeffZZsWPHDmOf3Gzk8fHxFue+ceNG8cQTTwg3Nzfh5uYmatWqJYYPHy6OHz9u7BMaGirq1q1rdu2gQYNE5cqVTdpSU1PFpEmTRNWqVYWDg4MoV66c6N27tzh16pRJv4ULF4qQkBDh4uIiPDw8RP369cXrr78uYmNjLc5TInkQyC0jY+mVWwc69+/d2mvQoEFm4166dEl4eHiILVu2mJ3bunWrqFWrlvDy8hIDBw4UKSkphc7z6tWrYsSIEaJ8+fLC0dFRVKhQQQwaNEgkJCQY+1y+fFm8+OKLwsfHRzg6Oor69eubyaiCZDEgIiIiTNpOnTolBg4cKMqVKyccHBxE+fLlxVNPPSU2bNhg7JObiddSuUUhVDn65JNPCk9PT+Hs7CyCgoLECy+8IPbt22fsM2jQIOHm5mZ2ba68zEt2drZ47733RK1atYSjo6Pw9fUVnTp1Mq6FcrFFlkokDwuZmZkiMjJSVK5cWTg4OIhq1aqJOXPmWOxrMBhE06ZNxWuvvWZ27r///hMtW7YU7u7uomXLlmZrCUvY8jeblZUlpk2bZlyrVKxYUUycONGk7JYQqszu0qWL2T1CQ0NFaGioSVtycrKYOHGiqFatmnB0dBQ+Pj6iWbNm4v333xeZmZlCiMLXp7cjA3PXkD/99JNJ+5YtW0SzZs2Ei4uLKFWqlGjSpIlYs2aNSR9b1pMS21CEsC+bkbOzM1999RXt27dHr9fj4ODAvn37aNiwIbt27eLJJ580c03IjyUX3rwoisLp06ftmZZEIpFIJBKJRCKRSCT3DHb7cJcuXdro7pafEydOmCRescaZM2fsva1EIpFIJBKJRCKRSCT3DXYnSOvevTsREREmmZQVReHSpUu8//77hdbivB/577//GDZsGI888gg6nc5qfbqkpCRGjRpFQEAAzs7OBAUF8b///c+kT2ZmJuPHj6dcuXK4ubnRvn17i1mpJRKJpKSQMk0ikTxISJkmkUjuVey2bM+aNYs///yT4OBg6tevD8BLL73E6dOnqVmzJpGRkTaP9d9//3HixAmLbuc9e/a0d2olxuHDh/nmm29o2rQpBoPBWIMuLykpKbRq1QqdTsecOXPw8/PjxIkT3Lhxw6TfqFGjWLt2LR988AHly5fn7bffpm3bthw+fBhPT8879UgSieQhRso0iUTyICFlmkQiuWcpSqB3ZmamWLx4sXjuuedE+/btRZ8+fcRnn31mkvypIK5fvy7atGkjNBqN0Gg0QlEUoSiK8b1GoynKtEoMvV5v/HnQoEEWE0NNnjxZBAYGips3b1od58KFC0Kr1YqoqChj29WrV4Wbm5t45513infSEolEYgUp0yQSyYOElGkSieRepUh1th0cHHjxxRdZvXo127dvZ+3atYSHh+Po6GjT9W+88QaXLl3il19+QQjB5s2b2blzJ2FhYVStWpU//vijKNMqMWwpw7Ro0SJeeukl3NzcrPbZvn07BoPBpLRU6dKl6dChA99++22xzFUikUgKQ8o0iUTyICFlmkQiuVexW9n+999/rQqcb7/91qQenjW+++47Jk2aRNOmTQEICAigZcuWLFy4kG7dupnFz9zrnD17lkuXLuHj40PXrl1xcnKidOnSDB482KQg/LFjxyhbtize3t4m19euXZtjx47d6WlLJBKJRaRMk0gkDxJSpkkkkruF3cr2q6++yu+//27x3N69exk7dmyhY1y5coWKFSui1Wpxc3Pj6tWrxnOdO3fmu+++s3dad5VLly4BMG7cOLy9vfn222+ZOXMm69evZ/DgwcZ+iYmJeHl5mV3v7e3NtWvXrI6fkZHBjRs3jK/r168THx+PsK9qm0QikdiElGkSieRBQso0iURyt7Bb2f7nn39o3ry5xXOPP/44f/31V6FjVKxYkYSEBACqV6/Oli1bjOd+//13nJ2d7Z3WXSU3EUeNGjVYtmwZbdu2ZdiwYbz//vusXbv2tmuGz5o1C09PT+PLy8uLsmXLkpycXBzTl0gkEhOkTJNI7l+S4+LYGRlJclzc3Z7KPYOUaRLJnSfur7+YpijE5dMNrbU/qNitbGdkZJCZmWn1nKXM4vlp3749P/zwA6BayhcsWEBISAiPP/44ERERDBw40N5p3VVy3Y1at25t0t62bVtAzZKZ2+/69etm1ycmJlK6dGmr40+cOJHr168bXxcuXCiuqUskEokZUqZJJPcvN+Pi2DVtGjelsm1EyjSJRHK3sLv016OPPsry5cvp2rWr2bnly5fToEGDQsd45513SE1NBeD555/H3d2dDRs2kJaWxkcffcTQoUPtndZdJSgoCCcnJ6vnczcgatWqxeXLl0lMTDSJBzp27Bi1atWyer2Tk1OB40skEklxImWaRCJ5kJAyTSKR3C3stmxPnDiRzZs306VLFzZs2MBvv/3Ghg0b6NKlC1988QWTJk0qdAxXV1d8fHyM73v06MGqVavYtGkTL7/8sk1ZJe8lHB0d6dChAzt27DBp//777wFo2LAhAB06dECj0bBx40Zjn8TERLZv307nzp3v3IQlEomkAKRMk0gkDxJSpkkkkruF3ZbtLl26sHr1asaPH8+zzz6LoigIIahQoQKrV6+mS5cuNo919OhR9u3bx4ULF3jppZcoV64c//33H35+fnh4eNg7tRIjNTXVmIH93Llz3Lhxgw0bNgAQGhqKr68vERERNGvWjP79+zNo0CBOnjzJxIkT6d+/P0FBQQBUqFCB8PBwxo8fj1arpXz58sycORNPT8/7zpovkUjuX6RMk0gkDxJSpkkkknuW2ynSfezYMfHrr7+KY8eO2XVdSkqKeO6554RWqxU6nU5oNBqxf/9+IYQQvXv3FuPHj7+daRU7Z86cEYDF108//WTs98MPP4hGjRoJJycnUa5cOTF27FiRnp5uMlZ6eroYO3asKFu2rHBxcRHt2rUTR48etWs+169fF4C4fv16cTyeRCJ5yJAyTSJ5cIndv19EgojNWVc9DEiZJpHce1iTRQ+bjFKEuPN1CV555RU2bdrE8uXLadGiBW5ubuzbt4+GDRuyZMkS5syZY1O97oeVGzdu4OnpyfXr1ylVqtTdno5EIpHcFlKmSSTFR9xff7EwJIQh+/fjn+MeLbmzSJkmkViXRQ+bjLLbjRzg+PHjbNy4kYsXL5plH1cUhejo6AKv37BhA++99x4dOnRAr9ebnKtSpQpnz54tyrQkEolEIpFIHiiS4+LYHxVFyNChePj723SNg6trCc9KIpE8TBRFDhXEwySj7Fa2V6xYwYsvvoizszOVK1fG0dHR5LyiKIWOcfPmTfytfFEpKSn2TkkikUgkEonkgSS3lFfNrl0LXeQKIfALDubNlBQM2dkIIWxal0kkEklB2COHCuJhlFF2K9vTp0+nd+/eLF68GNci7koEBwezceNGOnToYHbum2++oVGjRkUaVyKRSCQSieRhRBgMJMfGsj8qimunTlE6KEi1QgUEoNxnVV4kEsndobgt2Hl5WGWU3cp2bGwsn376aZEVbYApU6bQrVs3UlNTeeaZZ1AUhb1797JmzRoWL15szCgpkUgkEolEIikYYTBwYOVKtoSFYcjONrbvnj2brtHRBA8Y8EAvZiUSiTlFUZzttWDbcg+di8tDLaPsfqqWLVty6NCh27pply5dWLt2Lbt376Z79+4IIXjllVdYt24dq1atom3btrc1vkQieThJjotjZ2QkyXFxd3sqEolEYkZJyCghBMmxsWaLWABDdjZbwsJIjovjLuTDlUgkd5FcxflmCa6JCruHg6srbr6+D7WMslvZnjlzJp999hlRUVGcPn2aa9eumb1soXfv3pw5c4Zjx46xe/dujhw5wvnz5+ndu7fdDyGRSCRwZ/6xSCQSSVEpCRklDAb2R0WZLWJzMWRns3/BAoTBUGz3lEgkDyaapHhC/dXj7ZA3NtvZ2/uhllF2u5E3zEnR/vLLL1sNaM+fYbwgatSoQY0aNeydhkQikUgkEskDwe3ESWq0Wq6dOlVgn8TTp9FotbczRYlE8hCguZ5AqwCIv55Q5DHyxmZfv3iR7kuWPNQyym5le/HixcWSNe7ChQt88cUXXLhwwWL5sHnz5t32PSQSycPHw1ROQiKRPBgUFidZkFwz6PWUDgoqcHzvwEAMev0Du5iVSCT2UVKJ0MxisxWFLh9//FDLKLuV7RdeeOG2b/r555/z/PPPYzAYKFu2rMXyYVLZlkgklhBCIAwGNFotBr0eRaNBUZSHspyERCJ5sLFFrikaDSFDh7J79myLbpoanY6QYcMe2ORDEonEfoqrlFdeLOaPEIJD69bxaFjYQyuj7Fa2i4M333yT7t27s3DhQjw9Pe/GFCQSyX2IpbIRTceMwcXb+6EsJyGRSB5cbC2ToygKHgEBdI2ONktApNHp6Lp4MR7+/nLzUSKRlCjW8kfsmTuX4AEDeHrRIr4KD3/oZFSRlO2ff/6ZhQsXcuLECTMXcIADBw4UeH18fDxDhgyRirZEIrGKEAKh16PR6TBkZ6NoNGZlI/yCg2k5dSr/rlhhJsAfhnISEomk+CjJ+rL2Ym+ZHEWjIXjAAKq2bcv+BQtIPH0a78BAQoYNUxexUgZKJJISRNForOaPuHzgAF8MHEj35cup2ro1f3322UMlo+x+sm3bttGmTRsSEhLYt28fFStWxMfHh+PHj5OSkkKjRo0KHaNjx4788ccfRZqwRCJ58BEGA8kxMeyaNo2N/fpx+cABi2Ujmo4ZQ3JMjJmiDQ9HOQmJRFJ8WM0UnhAHUZHqMT8FnSsiRS3lpWg0eAQEEBoRQc9VqwiNiJDePRKJxH6c7c99IwyGAvNHHFq7ls8aNSIlPp7QyMiHSkbZ/XQRERGMGTOGb775BoDp06fz448/cuLECRwcHGjTpk2hYyxYsIBdu3YxadIkfvzxR/766y+zl0QieTjJtejMq1qVn2fM4NDatfjUqmXumqQo1OvTh7+jox/achISieQOkBAHn02zrmxbO2eFwpI43k4pL0VRuHzgADPd3Lh84MAD65YpkUhukRwXx87ISJJvt6SgEPg89QzsTlGPdhoqcvNHaHSWHafjjxzBvVw50hMTHyoZZbeyffToUTp16oQmJylRSkoKAJUrVyYyMpIZM2YUOkZycjKpqanMmjWL9u3b07hxY+OrUaNGNG7c2P4nkUgk9z2WLDoOLi44uLqauSZZa8/Pg1xOQiKRlDwp8fEmR1uwtPjNm+zMLzjYosdNQa6YeSlMrmWlpto8V4lEcn9j1SunAMzqaRsMEB+Dsmg6TOqnHuNj1HYbyZs/Ir/CnTc2OyU+/qGSUXbHbDs7O2MwGFAUBX9/f06dOkWLFi0A8PDw4MKFC4WOMXDgQM6fP8/8+fOpUaOGWTZyiUTycGLJopOVlkZWaqqZa5K19vw8yOUkJBJJyZOakIBbnqMt5M/0a2uys8JcMXORck0ikdwOufW0r4lsVaHeuhLeCgN9Ho+apbNhajR0GoDOxcWmcW3JH5GdllZCT3VvYrey3aBBA44fP0779u1p27Ytb7/9Nj4+Pjg4ODB58mTq169f6Bh79+5l9erVdO/evShzlkgkDxDGpETDhuFRrpy5Rcda2QhZTkIikdxlUuLjccs91jI/r3NxsSnZWd6FrCzlJZFI7MHMSm0HrtVqQUKsuaIN6vu3wqBxW9x8fW0eM2/+CGOSW632oXAZt4TdknrMmDHGD2vmzJl4eHjQtWtXOnXqxNWrV/n4448LHaN69epkW4lFkkgkDxc34+L47b33uBkba9Wis2fuXDzKl+fpRYtMXJOstcPDUU5CIpHcXVITEkyO+XHz9bUp2VnehaytrphSrkkkDyb2xmDnWqk11y3LIasoCk4BFWFjlLminYs+GzYuwMXLy86hZf6IXOy2bHfu3Nn4c/ny5dm/fz///fcfaWlp1KpVyyaX8A8++IBx48ZRr149atWysBUskUgeCvLGMOaW97Jk0clbNiKwXTsT16SM5GQaPP+8WfvDUE5CIpHcA1jJ3Ovg5oazlxe7pk0rNNlZaESESbss5SWRPLzkD0PJpdjLEzq5oDg4wsWCc0QQcxpFp7PZlTwvD1NstjXsVrbfeustwsPDCQgIANSdi+rVqwMQFxfHZ599xtSpUwscY8yYMVy6dIl69eoREBCAV77dEkVR+Pfff+2dmkQiuY+wFMPYeMQIo0UnvyXoyIYN1OvfnxqdOxMaGYlGq8Wg16PkJGuULksSieR2sNcVUwhBmaeegR79KZOViRACRVHUTcT69Xnz5k0A25KdWVjISldMieT+odgVYQukHj0AC6eR2vLx4rlHRhoiKxOlQsE5IigfiMjOfuhirYsLu5XtadOm0bFjR6OynZfY2FimTZtWqLIdEhIi/1lIJA8xBcUwDtyxo1CLTq70yJscSFEULh04wJIWLXjxl1/wb9jwDj+VRCK5n8l1xYy3wRXT0mZh0zFjcPH2JistDZ2DurwSej3Nxo0j/vBhLh84YHEs78BAVZG2sC4qilxz9/cnNCIC9xJa8EskEnOsWaOLE3tklE0IQUbsBZx7DVWToVlyJdfqoNcw0pKSiueeDyF2K9u5O7eWiIuLM7NSW2Lp0qX23lYikdzHCCEQBoNqjTYYuFlADOPytm159eLFIlt0pMuSRCIpdrx8jD9a2iz0Cw5WXcGFQJsUj2ZLNFw8hVIhiHI9hzJk3z42DxzIobVrTYb1b9iQ5hMmABjDaSyts+yRax7+/rSKjCzig0okkoeJ1P+O4dy6k5p1PH+SNK0OIhaDjz8px4/j4Go5ZEZSMDYF/axZs4auXbvStWtXFEVh7Nixxve5rw4dOjBw4ECaNWtW0nO+Z9myZQtNmzbFw8MDf39/nn32WU6fPm3WLzo6mho1auDs7EyDBg34+uuv78JsJZI7gzAYSI6JYVdkJBv798eQlWVW3isvhuxs/vzoI1U5z0kOpNHppDfMXUDKNMmDiD3Jh4QQ+HTtCz/E49O1L0IIUuLjzTYLW02bhqJRYOtKtD2rQ/QM2LYGomegdK2Ksm01PZYvxy842HhN/f79Cd+7l/TERHZNm8bGfv3YNW0ayTExCDtq20psR8o0icQU/Y0k0Gig0wD46iyETYaO/dTjV2ehY3+EolCmenXeTEnBLzgYIYTJGFIJLxiblO3MzEySk5NJTk5W/9GkpBjf574URWHgwIFERUWV9JzvSXbu3EmPHj2oU6cOmzdvZu7cufz777906NCBtDwxDmvXrmXw4MH06dOHrVu38vjjj9OjRw/++OOPuzh7iaRkyLUAzatalZ9nzOD4F1+gc3KyLYaxCPVjpftk8SFlmuS+ICEOoiLVo43kunveLETZFgYDXIlBWRgJk/qpx/gY3MqUoU7v3rc6Kgo1unRBXI5BmR5usXyOMj0cJfEK3RYvpn6/fnT66CN6LF/OwVWrjPLx0Jo1/DxjBvOqVuXAypVS4S5mpEyTPIzYrAhrNOAbgAifAjNWqUffAASoBhMLG4J5k9xaUsKt8bCt1WxyIx80aBCDBg0CoHXr1nz66acyi3g+1q5dS+XKlVm8eLHRAle2bFnatGnDvn37aNGiBQARERH07duX6dOnA+rneeDAAd566y2+/fbbuzZ/icQuhABhAI0WDHpQNJDP8iyEMCt5k5WWRlZqqsXyXnnxDgzEoNfbrXBL98niQ8o0yX1BQhx8Ng1Cu4JP8SzcHAMqqorutyvMlGdl6WzElEX0WL6c+CNHuHzgAA6urmi0GvjiswLL5ygbF1BuSCQ9V63CkBPzXVBJsKpt2+JhIT+OpGhImSZ5mMhf7aWgMGDjNTkvBRAoIITF/DqJZ87QfdkybubLWxEydCgeAQGFVkt42NZqdteO+Omnnywq2pmZmcUyofuVrKwsPDw8TH6RPT09AYw7PadPn+bEiRM8++yzJtf27duXHTt2kJGRcecmLJEUFYMB4mNUa9KkfuoxPkZtz4MwGMzdxYXg0Lp1PBoWZlY/NheNTkfIsGGytM1dRso0yX1NARbvwrKOu9V5BOJjC7RSi/hYmo4enWdQrW3lc7Ra3vX1BUvyMQ+5JcGkdbv4kDJNcjewt2Y22F8ZIT/G8D07wlOM17w1nY39+nH54EGLG4J+wcF0W7LExGtReuUUjN2r2RUrVjB//nzj+0OHDlG9enVcXV1p1aoVV65cKfB6IQTXrl174ATWCy+8wJEjR/jkk0+4fv06p0+f5s033+TRRx+lefPmABw7dgzAbLOidu3aZGZmcubMmTs+b4nELgwG2LoSnq5qEpPI01Vh9zeqW5FeD4BGgapt25rEKALsmTsXj/LleXrRIjOFW6PT0XXxYjXruIzRvqtImSa5H0iJjzc5Gsm1eFtStnMy+mosZfR1dUfr6oayKapAK7X2y0XU79vX6NFjyMoEW8rn6PVkp6ai0elsDqd52FwuSwop0yR3A1vDVvJSoIwqAG0pL7PwvcIUYYvXrF2LT61aFjcEm44ZQ3JMDF+Fh1v1ykmOi7PZpfxhwG5l+7333kOTx+I0cuRIHB0dmTt3LnFxcbz55psFXp+VlUXZsmX54Ycf7J/tPUyLFi3YvHkzEyZMwMvLi6CgIC5fvszWrVvR5rjCJiYmAphlbPf29gbg2rVrFsfOyMjgxo0bJi+J5I4jBCTEmmerBGjXG5p1VK1BOfGNREVSqWYgQ/bto17fvsaulw8c4IuBA6nfrx+jTp+m5eTJ1O/Xj5aTJzP67FmC+/eXVu17ACnTJPcDqQkJJsdcrCrhVjDWzP45GUVrg5Van43OxYVJN2+q9bQVDaLXUDV7ryW0OkSvYaTfuEFWWhqG7Gybw2lyXS5LqpzQw4KUaZIHHZdqtQoNTzFRhJ1dLV7j4OKCg6ur+YagolCvTx/+jo6WXjl2YPeK9uzZs9SpUweAhIQEfvnlF/73v/8xYsQI3nrrLbZt21bg9Y6OjlSoUAF9jvXrQeG3337j+eefZ/Dgwfz444+sX78eg8FAly5dTBJvFIVZs2bh6elpfFWsWLGYZi2R2IEwwEYL1p7qwTBtOXy3GqWrqcVb0z3IYhbeQ2vXEv3YY7iULk1oRAQ9V60iNCLCplgfyZ1ByjTJ/Yw1JdwSRvfJ6TP4IixM9c4pyEr9ZF94eToiPgbdslkwqR+aTVHgE4CYGm2ucGt1iIjFKD7+3Lx0CYQgPSmJkKFDZTjNHUTKNMkDjaLgFFCx0PCUY198AULg89QzsDsF5wpVSLlyBd8c3Q6s59exqoTnw5jkVnooAkVQtjUajTE++6effsLBwYHWrVsD4O/vz9WrVwsdY/jw4XzwwQekp6fbe/t7llGjRtGmTRv+97//0bp1a3r37s0333zDX3/9xYoVK4BbO6PXr183uTZ3J7V06dIWx544cSLXr183vi5cuFCCTyKR3MIYa3TpkvWYxOfGwJUYsCO+UaPT0XTMGBxcXLh68iQz3dy4fOCAdB2/h5AyTXI3KEp8Y1HJdZ888c03nN7xAy0mTKB7dDQAoqcVK3XO5qL4bjVK3nCad0egRAxE6dgfka98jvjqLErH/qDRkJ2j1KXEx+MREEDX6GgZTnOHkDJN8kDjWQaNg2OBinC9vn1pNHQoSkIsyqLpxioLfv5lTL0QreTXsTfJLdKVHLAxG3leGjRowCeffEKFChX48MMPadOmDU5OTgCcP3+esmXLFjrG+fPnOXHiBJUqVaJVq1b4+fmZ/ENRFIV58+bZO7W7ypEjR+jWrZtJW4UKFfDx8eFUzi9+bgzQsWPHqFmzprHfsWPHcHR0JDAw0OLYTk5Oxs9YIrmT3IyL48+PP6Zm1654lPU1t/YoCnToA0tmFRrf2CBsMmd27MA7MJCQYcPUhWTO4jMrNbXkH0ZiF1KmSe4GufGNNbt2LVm36Rz3ybTERKp37Ii4EoN22Sy4eAqlQXNE75cRU6NR8ofN9HsVkRBn3g6wdRWcOYry2c+IIREoWh0iKxNF52Bm4clOS0PRaAgeMICqbduyf8ECEk+fNpOPkuJDyjTJ7ZIcF8f+qCg16/ZtyqfiGssYAtOjPwa93qoi7BccTI/ly1G+W2VmHNFYqLKwZ+5cggcM4OlFi27FZ+dRwnfPnm3Rgi69csyxW9meOXMmTz31FMHBwXh4eJjEXm/evJkmTZoUOsbXX39tFEx//vmn2fn7UdmuXLkyf/31l0nbuXPnSEhIoEqVKgAEBgZSo0YN1q9fbyLw161bR9u2bXF0dLyTU5ZICkQIQbkGDRgfH4/Q6xGKBnoORVk6+5aQdnIBZ1ebsvBqHJ3Ukjd6PYpGY9xgk8l/7k2kTJM8kOS6T/boj7Ner9a4+XYlmryLz21rUA7+johchmjcFmXjAog5DeWDEJ0HoCycZn1z8dhfsHQ2hE+BUDcSxi7Et0d/q9NRNBo8AgIIjYhAo9NhyM5G0WqlRbsEkDJNcrsU52ZgcYwlckoI5pbfajZuHCFDh1pUhJuOGYO4EmMq63LJ8UI0NGxF09Gj2RIWZsyv0335cgLbtTNuCGalpuJZqRJdo6PNYsOlV45l7Fa2mzdvbrRMBwUFmSSRCAsLo1q1aoWO8SBmcxw2bBhjxoxh9OjRPP3001y9epUZM2ZQtmxZkxISkZGR9O/fn6CgIFq3bs26devYs2cPP//8812cvURiijAY1GRnm6JUS0+FIESfEeAbgJiy6FZJnIw0SE+1OQuvotWa1c5+2Oot3i9ImSa573F2NX1vMCASYlE25si1AeMQpctaLvG1dRXKmaOIhbsQQyJRtFqjDLOpxJeDIz/HCWp6+picsrS5qCgKlw4cYEmLFrz4yy/4N2x4O08tsYKUaZIHhbwZxPMqvPGHDzN43z5TazSAolC/Tx/Ve6ewKguDJrIlLAyAIxs2UK9/f2p07myyIYiiSK8cO7Bb2Qbw8PAgJCTErL1z5863PaH7lVGjRuHk5MSnn35KdHQ0Hh4ePP7446xfv54yZcoY+z333HOkpqYye/ZsZs+eTc2aNdm8eTOPP/74XZy9RHILYTDAtyvMFqDK0tmIT3dA5+cxhLRC88Ui1dpz5hgiv8U7LzlZeJHC975CyjTJvYQ9Lpd53SrLZGUihEARArF15S33b0WBKYtQCgqBOfYXyrJ3EEMioZ0vCcPn4tutr42bi9kYnn8d19qmpQ8L2lyU4TQli5RpEptJiFMTwvYaCj73ntedWQZxRcHBxYXLBw9atEaXqVkTnattXog6V1ceeeEFSlWoYKI8X/rnH9MNQUWRXjk2YpOy/cEHH9C/f3/8/Pz44IMPCuyrKAqvvvpqoWPGxMQwd+5cdu/ezbVr1yhdujQtWrRg9OjRlC9f3rbZ30MoisKwYcMYNmxYoX3DwsIIy9k1kkjuJYQQqkXbmpvRy23Rf3WOpOQMPAdNROfqSnZ6OlpHR8SUaJTp+eIYtTo1O6+PdCm635AyTXIvkXr0ACycRmrLxwtUto1ulQsXcv3CBTwrVuSJCRPQ3bxmGmdtRwiMotVCWor6XtGoC/ACNhfpNQxFo5UeO/cYUqZJbCYhDj6bBqFd7z1lOyfr+B9vTce3Th2ajhlD/T591PVYaioH161jU79+NJ8wgdDISDRaLYasTIRBj2KjF2K3JUssKs/5NwSlV45t2KRsjxs3jieeeAI/Pz/GjRtXYF9blO1Dhw7RsmVLsrKyaN++PY888giXL19mwYIFREdH8/PPP1O3bl3bn0IikRQdIdSyXhotGAyq63hBbkYbP8Vz0ETednfHwcWFrNRUOn74IU2GD0c0yRvfGKhatH2kS5FEIrk9NNcTaBUA8dctl/LKm1k87dpVWkyYYFx8ah0dVdfxvHLNnhCY7CyUjJzSUIoCPgEwNRryJ0nT6iBisbo4l5uLEomkJHByQePgiGvZsgzZt88kuaOuQhDBXcNoMGAA+6KiCAgJgbY+XB0xD59uz2HoPhhNARuFhh5DUBSFmW5udinP0iunYGxStg15CpMbiqFI+bhx4wgKCmL79u3GMgugllbo0KED48aNY+vWrbd9H4lEUggGAyTEqu5Sly+iRC6x2c1I5+xsFLDbX3sNv+BgKrdoYRLfSJ5EaBKJRFJSWMssrqtSCwZPNZdrQsD2ddAtrFArdfrFc7jkbddooNMAaNwW8mwukrO5KENmJBJJiZGRhiEriyYvvwzfrTJLeKbNySzeeNgwDFlZaK5fBa0WRaNB5M+7Y7xIh5gSbTSOiGIq2SUT4KoUKWb7dtm9ezerVq0yUbRBrW84adIknn/++bsxLYnk4cJggK0rb1lnFAUmfGxzPGKzsWMLTIqh5EuEJpFIJCWCixtOAZXUjb38i09FgefHWZZra+ZC5wEwZZFZKZy8Vuq0n7aaKtugKtS+ATA4AnQ6yM4GrVZatCWSBxhNUjyh/urxro3l5IIhPQ1t6g3rIX/TwxFN2mFwcUcDoNdj0Os5umkTtXv0w9CwFdovFxk3CvXdwlF8A9TzPXuSnZZ2288HMgFuLjYp2/ZmYGzZsmXBN9XpyMjIsHguIyMDrVykSyQlixCqRTuvG6SNlh412ZlWJsWQSCRF4ubhf0iYMQafyXNxr/tI0QfKU8ZLYzAgrsSYLz4LkmsnD0DEQJi2HNGknUkITF4rtf5GkuX7Kwr8dwDCW8CiX6CWjFeUSB5kCgtnsXiNFaXa7rHyyDutXo+y8r0CQ/6UjQvQDp5qbFI0Gio2a8aixx6j8fDh1M/Nu5OaysG1a/nz44/pu2UL6UlJNj+bxDZsUrZbtWqFoihGt4K8i2ohhNkiW6/XFzheu3btmDRpEo888gg1atQwtp88eZIpU6bQvn17mx9AIpEUAWFQXcfzC+pCLD15k50pOlV8aHR3xUFGIpHcp6SdOEyVk7uIP3G46Mp2TgiMsjFKVZCnLkbZvNDy4rMgufbDBkSHftCiC2JIBIpWh8jKRNE52G6lTpfxihLJw06xKdW55C1dmFfe2RHyp+gc1GSQqLqbR0CAsY72lvBwY96dvPWxE44ft2+ekkKxaZX8999/G3++cuUKYWFhtG7dmt69e+Pn58fly5dZv349O3fuJDo6utDxPvjgA0JDQ6lTpw716tXDz8+PK1eucPDgQSpVqlRoxnOJRHKbaKzUis1j6aFRa9j8mUx2JpFI7g2cXdGW8jIPgXF2hRmrrC8+jXJtBTRpZxJnre8WjsavAgCJO7dROuJZEsYuxLdH/zv3XBKJ5O5QjCW+iqxU58O0dGEWwmBAKWrIX1bmreSOqNbtwupjW3MhL04X+ocNm5TtBg0aGH/u3bs3ffv25d133zXp8/TTTzN+/Hg+/fTTQi3TlSpV4uDBgyxevJjdu3eTmJhIjRo1eOmll3jxxRdxd3cvwqNIJJKCEEIg9Ho0Oh1Cn68EhKKou58ZabBtLZw+AlMXy2RnEonkjmJxQZfHfdJbrzcPgbEls/i2tdDgCUTvlxFhk9E4OmHIzECflY1GUVBy3cUtWKldfXxMjhKJ5AHBSomvlPh43HKPte7cdIylC6OiuHbqFM3GjaNc+bJFCvmj1zDSY87jktdCjqpwewQEEDp1ChoHRww5njyFre+KazPhYcRuE9W2bdusKtMdOnTg+++/t2kcd3d3Ro0axeeff87333/PunXrGDlypFS0JZISQBgMJMfEsGvaNDb260daYiKi51A1xnDqYvjlJuxOUY9TF6su42XKoc/M5D1fXy79+69UtCUSSYmTu6DT5C7oDAaIj0FZNB0m90fRZ5uHwORdfGpzbAiKolq8c+WWVgetuqvvc9sUBQdX10K9ddx8fU2OEonkwSY1IcHkeCcQBgMHVq5kXtWq/Pz22xzfsgXfWrUsl2NdMxfKlldDY7T57KZaHby/GXz8ca5QGXanqJuVeTKMK4rC1a/XwxNuXP16vVzflTB2B1u6u7uzY8cOiwr3999/L5VlieQeI1eAbwkLw6DX4+DqStfoaHD0Rizfi5J8AQ7OghunoFQQhIYhnhoIAjRC0Hj48Ie+bINEIrmz2O0unhuX/e5GSL4G7Z5V+6enwg+fg6ePMd9Ewtfr8f3fEK7a6i7u469mHb9NN1OJRCKxhBCC5NhY9sybx1MLF1K/Tx90rjkWaTtD/uj3Knh43YrxvnhK9WTsNRR8AkxLE8p8E3cEu5Xt4cOHM3XqVC5fvkz37t0pW7YsV65cYfPmzaxYsYJp06ZZvK5UqVL89NNPhISE4OHhUeAuiqIoXL9+3d6pSSSSfFgV4AY9AuC/VbArDESeXdN/ZkNoNAT1Q6PTybINEonkjuNarZZ97uInD6ix2M8Oh5RY0w3EVkPBLQCUIi4yffxhaORtPY9EIpFYQxgMXPjtN8L/+ANxJQbtslnGxI9Ww2MshfxlZallV/NuUuaydDZMjYZOA0wVbkmJY7eyPXnyZLy8vJg9ezbLli0zZin39/dn7ty5jBw50uJ1Y8eOxT/HOjZ27FjpsiCR3AHyCnAy09E45JTVEwLSLqHkV7QBRDbKrjAM/q3BrbxMiCaRSO4YGn0iNFJwCqgIi6bbXsarerBaruvECvg53PIGYvUBpgr3PYS7vz+hERHSi0giKQGS4+LYHxVFyNCheNxrf2NaLRqtlto9e6J8twpN3ooJTdoVHJt9+ggG77IoCFjsRmbrX3Fy8zFXtEF9/1YYNG4LvgEl/1wSI0Wq2TNixAheeeUVLl68SFxcHP7+/lSoUAFNAYvyiIgIQLW0jRo1Cjc3N5ycnIo2a4lEYhE1CVo2Gp0DhuwsNDoHavfqpYYpZl+FI9Fw4zS0WoxyNMpc0TYOlI3m2EJESOQdnb9EInmAKEKmX40hCZq4oDg4Fuwunr+M13NjICXGXNEG9f2uMCjfFlwDwE3hbA1wc7t3Nv09/P2lF5FEUkLcjItj17Rp1Oza1UTZvluJ0EzQ6xEGA8THouQvTVhYOdYpOeVYtToQ4FihNiyaUWD9bTYukJ46d5gib/FqNBoqVapE06ZNqVSpUoGKdl6ysrIoW7YsP/zwQ1FvLZFILCAMBrJSU9U4RwCDQS0ZoVFQTq6Ez6vD3zPg3BegdVJdLAsi+TSKRlvi85ZIJA8ouZl+E+JMmjX6RAjJOVoiOw2RlWHdXTxiIHTsB1tOQ9hk6NQfOvWDE9EFbiByZAFgABdBlVaAi7DcVyKRPBTciURo1uSdabtA88Vn5kqyJXnXsR+ETUa/+T/Ek89xdNMmDFkZoIDi4GRT/W00WtDK9d2d4o77Uzk6OlKhQgX0ev2dvrVE8sAiDAYQAh0GNDnGmtyjcvOiqbUnOw2yU9VYxoLwCAQh/04lEknxojEkqYtMQ5LlDjoXsi6fRfQaap5pF9RYxRcew+DuhSF8CkxfCQ62bSCiaNWFpkQiuT9JiIOoSLNNvHsVa/LO2K6kqIYNa0rytrXwfCP1/NBImLGK7EETOfDdDhY99hgVmzcn68LRgjcp81I+EAx6kHrYHeOuBC8NHz6cDz74gPT09Ltxe4nkwSDnH47ISFPfK6DJvgr/zIAd/eCft1EwwLHP8ll7BJxaB7XCQLESSaLooM4w7pKIkEgk9xPFtPgVQuDZYzy8lILOPwh8AhBWStuIodNQXNxuXWvQ276BaJCLTInkvsWKx8w9jc7V+jl9liqTClKSTx6AvTvITs9gppsbb7u58fXQoTQdMwYPf38yTu4FBJkXj6phO5Y2KcFYf/tezV3xoFKkmO3b5fz585w4cYJKlSrRqlUr/Pz8TBKmKYrCvHnz7sbUJJL7h4Q4WPk+DJ6qug+dWGlqwda5QuO3LFt7Ds5VkwWFLoJd+WIcFR20Wgyu/rfq0UokEok1che/oV2LXB5LGAwkx8ayPyqKa6dP023xYo5/uYnaPfphaNgK7ZeLjKVtDH1HoXiVgZQYNEcXwo1TKMHjELWHovwz27IruQ0biAZPH3bGQm1PnyI9g0QieTCwzfXbwjWPu5qcM24gOkzGMysDIYTlBNGKRlWSrSVC0+oQvYYRf/Qotbp3xzswkJBhw/Dw90fRaNBfvwJAxom9OLUPV7OO50+SptVBxGJVRsu13R3lrijbX3/9NU5OTjg5OfHnn3+anZfKtkRSCEIgqtVH+eUmisEA+V3FoWB38WsH4KeB0Ho5BLSBowtVF0uPQHVB6uovdz4lkoeR1Dg4EgV1hqpyoKTIY+kRBgMHVq5kS1gYBr0e1zJl0Dk5ceyLL/jl7bdpOno09QdNROfqSnZaGlonRzixAiWvzEs8jNJzn00biK4+PqBzVY95MHj5sisOanr5ltxzSySSEuHmmX9I2DQGn55zca/6iMk5TVI8of7q0RYKdf3O1y6EwLvbYOg9Au8cpZqc0qv7o6K4duoUpYOC1GzoAQG3qrzkykFFUWtgF6Ik+3n70nPVKgxZGSg6RzPFXX/9ilrWq9MANev4xgW36m/3GqYq2sVcYUZWUiicYlG2U1NTiY2NJSgoyKaSXmfOnCmO20okDycGAyTEomyMgisxMPWzfK7iCuhcVGU7113ckrXn1FpIOgFdf4aQSDWO0ZCtxjTKXU+J5OEkNQ7+mgZVupaIsm3J0pMcG8ueefN4auFC6vfpg87VFaHX02zcOL588UW2hIWxJTwcBxcXOn30EcE9WqPNv7mYdwOxfDs1GZqlDUQhcKvZFmqn4GbIVsuJ3Y688/GHwRFFtuhLJJLiIe3iYap47CL+4mFzZft6Aq0CIP56MSRCy+cSbuKVc+oUFZs3p/HLL5tsIDq4uJCVlsbu2bN5dtMmanTpgmeP100t3oUoyYpGQ9KGd/FOn8d159F4PzvZ+rw0GvANQIRPQXFwRGRlougcTGSdvZ48uZuT+TcpZSWFwrFb2X7//fdJSUkxlvL65Zdf6Nq1Kzdu3KBq1aps27aNoKBC4qYkEonN3Dz8DwkzxlB2+gJcA2vA1pXqzqdBD14+qnJ84xSUDkbUHwNBfVB0rojsVLi4HcWtvHVrT/AYVTFPOg6bG0HXX8Cn4d16VIlEch9itXxORjyE5BzJqZiQlobOIWfpIQAhuHLkCOF//IG4EoN22Wy4fAHFryLleg5hyL59bB44kENr15KVlkb9vn3QHppl2VX81FpIPAKhi29tIOozQZOzyBQGSI1VLfc3TqleP3WGquXAFE3RLDQ+/rKMjkRyj1NoBQQbsLRRiBC3lOpsVSYFtm/P9fPnzTYQs1NTubh3LxWbNy/Y4u0bgAifjOLghMixYKvyS+DVczzoJuOVnXFro9Bau6KQ8PV6fP83hISxC/Ht0d/keez15HHz9QVnV/UosQu7le1FixYxfvx44/vXXnuNunXrMmHCBGbMmMGbb77JunXrCh0nISGBOXPmsGfPHmOt7scee4zRo0fjK79IicRI2onDVLnwJ+kODpAQC2vmISYthCf7oDi5IoQeGr8N7hXIzIgh9sIs0tJO4eISREC5MBxRUKoNKNjao89xOZdIJBI7SU1IwC3P0Uhmgqpsa7ONFRO0SfFotkTDxVNoKgRBnxEEtWsHv3yNJvkavDgBnF0hPRXlh8/BozQ9li8n/uhRkmNi0Lm4Fpx1/NoBOPgBtFkFy3yg2Sqo/qSqaJ9cqdbbzquo/zMbQqOh+gBpoZFI7jQJcbAxSo1XLkHvkEIrIBRCfut16aAgmk+YQHpioomijaJQr08fTnz9dZ4NxFlw8RS6CkFU7jkUNBp+mDCBg6tWGcffPXs2XaOjCR4wQPUQzjVAK8YJQGosSs5GoVIqCOqPASdv8/Y8G4iuPj6Qnmpmjbb/AxBQLRh2p0B2MXgEPWTYrWxfuHCBatWqARATE8P+/fvZtWsXLVq0IDs7m5dffrnQMfbs2UPHjh0xGAy0a9eOGjVqcPnyZebPn8/8+fPZvn07TZs2tf9pJJIHDSHweeoZ6NEfJ70eftyIWPYHmZlxxMaqSrWnZ3MCAl7m8uWVHD8ehsizkDx/fjY1ayzCr9zzKK4BEBIBGp10F5dIJCVOWmIiLkC2by20AFtXop0ernrlOLlARpqagbfFUyjNO0FKDBycdcvq3CJM9czR6xm6fx+KVocw6NUFZUF4BKoyLuMqePuqC8PUWHNFG9T3u8KgfNucBaqUiRJJsWNNqS6G5IolidazrGlOiTxK9RMTJ7I/KupWG+Dg4oKDqyu1e/ZE+W4VmnzyTlk6GzFlEd2XLOHKoUNcO3mSrLQ0DNnZnNq+neDnByBSY24pz37Noe7L5huFpYMhZCqcXGHutZhnA9GtQiUAu6zRZh4+OaGLbIxSy49VCMr5HgOKPf77QcXuT8nFxYUbN24AsGPHDtzd3WnWrBkAXl5eXL9+vdAxhg8fTt26dblw4QIbN27kk08+YePGjZw/f566desyYsQIe6d133Ds2DHat2+Pm5sb5cqV4/XXXyczM/NuT0tyL5C/fI7BgIiPQVk0HSJfRNFqEW17cjl+DX/sDeLcuRlcubIGjcaVjIzzZoo2gBDZHD8RTmZmHAJURTv3mHdR6eoPDSNKNiGS5IFFyrX7kNQ42BepHvOQEh9vcrwd0pOSQOeG1qcy4vJFlLUfwqSF8MtN1UKy+yZ06o9SyhtOrYbPq8PfM+DUGvW4fzJoNChZCSh/TYMd/VCu/ouoPbTwsoUZSXkaDarruCXXc1DbjyxQ+0kkSJlW7NyBcl2a5ESTY3HgVKMJybGxtxRtRcHB1dX4unbK1MsmKy0NQ1YWxMeay7tfbsKkhSi/bYXMdIbs28ubKSlMSrlJn82b6b50iZr4cXXVW3LQwRVunjffKKw/Rt2czK9ow60NxNQ4dbPRTnI9fDz8/VVFe+tKeLoqRM+AbWvU49NV1XaDlJm2YLdlu0mTJsyePRuNRsN7771Hp06d0Gq1AJw6dYry5csXOsbhw4dZv349pUqVMmn39PRkwoQJ9OnTx95p3RckJibSpk0bqlevzqZNm4iJieG1114jNTWVjz766G5PT3K3yf1n1KEPlPZDbF2J8laY6j7kWQaRnU2m/lI+pVqhbNk+nD8/y0zRzkWIbGJjF1ClSiSo9iVzXP2hUWQJPJTkQUfKtfsUK4nQrLqE25ulXAi8cuIbFb0e5dAfsPQPc+v1IxMgNTFPNYWcBI+lqkOrJfDfypwFpV5tTzyC0vPPwrOOJx3PadTcymtREMmn1X6Shx4p0+5PNDeTTI4242ytBraCQ4Xa/PbWDHzr1KHpmDEm8deGrCwqNm/OoTVrciagwbVMGUCgMZF3s+HmBXCvCO1GwtOD0NyMgb8/g5sX0LlXpEan8Sjpl00rLKBAUB/4O3+OCmvtecjdQGwYYd9nYTKGUC3a+bOjg/r+rTA1mZuv9AgqjCIlSHvqqad4+umnqVy5Mm+//bbx3Lp164xW7oKoVq0aSUlJFs9dv36dwMBAe6d1X7BgwQJu3LjB5s2bKV26NADZ2dm88sorvPnmmwQEBNzlGUruCXz8EQmxKL9+i1h/GCoGoShaEHpiL0SZKNUajQtarStpaQUvJNPSTqtjSCTFjJRrDwkFZCk3Sz5krJiwEK5dhklR0KYn/LcqR6nOUZyz0+HRiXA0CrzrmCZ4NGRCdjrK+a2IlgtNEz9e+hWlWr/C81Cok1HvZ4vrudBLhVsiZdo9jtWEjPaSJ0zPJyvTPA7ZvSIaBydcy5ZlyL59kJmOxkGVDzoHLSIrg8YvD0Po9VTr2JHS1YJQNOpajba94Pw3iIxr8OiEHNmVBhpHlNifETfP5mlPRdE4oJxcbqo861zUDOP5Nwqttecn+bRaNszJpYifj0F1HbdU9xvU9o0L1ASRUm4WiN3Kdp06dTh9+jRXr16lTJkyJuf+97//Ua5cuULHeO+99xg+fDgVK1YkNDTU2L5z504iIyMf2J3DrVu30q5dO6PwBnj22WcZNmwY27dv54UXXrh7k5PcGygKwtUd5exRxNurycyIJfZsJOnpF6lde4mZUm0wpKHXp+LiUvBC0sUlECH0UuGWFDtSrklykw85eDiqivbub+DG1VvJzgwGSIuDQx+aK85aFxTvOoiQqWYJHiuUH42u7Woy0y9YSPwIij4DERKJotEisjNQtI5WLCwa1SJvqQQi3HI9tz+yTvIAImXavY1V7xswK8tllbwlVC+eQskbh6woePWeCJrJCIOeJsOHAwIl+yocWWy0Uis1XkI4V6LJyBFqqVWRDWjVLOWGbKjUyYJMG4MuoCWZ6VVNZVrAUBzrDEW5vFutqgDqmNmp5huF1trz4xGoKsQZaQX3s4ZGq8ZoF0TMabWfpECKXGe7TJkyCCGIi4ujbNmy6HQ66tevb9O148eP5/r167Rp0wZPT098fX2Jj4/n+vXreHt788Ybb/DGG28AoCgK//77b4HjXb16lb179xIXF0daWhplypShZs2aPPLIIzbV/b5THDt2jJdeesmkzcvLC39/f44dO3aXZiW5Z8iIh8411SRA9Zpy+fIKjh8Pz7FkK9So8bEFpVpw5co6/P3DOH9+tkVXckXRERAgF5KSkkHKNUmW5iZny7riV+NRSE6EZh3zuE9ehJafwuXfET3+MFt8li8/AoegPly+tILjJ8KNMszNLZjKlafmk4MqxsSPfv1VS9IyH5JcxpjWnc2bh0JR1ORnodHmsY95Xc/vofWC5O4hZdp9iLXyV3nRuaL1LHsrDjm3hGpussYy5eCZlyElBuXoQrh5AcW3EaLuyyjnvkVkXDWxRnPxBxSPSggEmdnxxF6KLjBpbaEyreYi/FovR0k8olZVQMCpdVArLN9GobX2PORuICYnFf0zNejVZGgFUT5Q7ScV7gIpkrK9bds2IiIi+Pvvv9Hr9ezdu5eGDRsyZMgQQkND6d+/f4HXh4SE3LYSfP36dZYtW8ayZcv4559/1J2kPCiKgru7Oz169GDw4ME0b978tu5XHCQmJuLl5WXW7u3tzbVr16xel5GRQUZGhvF9boI6WzlxSe0f6OOKTqd+5Veup5OUlomHswP+Xi5mfSt5ueLsrPZNuJnOtZuZuDhqqFjavUh9T125id5gIMDLFfecvkkp6VxJzsRRp6GKT9H6nk24SWa2gbIejni5OQNwMz2b2KRUu/pqNRqCyt7qe+HaTdIyDZR2d8TH3f6+6enZnE9SS2nVKHcrN0FcUhrJ6Vl4uThS1lPtm5WVjUajQRPcDqXBUYQwkJkZm08YW1eqL16ci5/fAGrWXGQmwBVFR82ai3F09Df+zdnz3RfH74ml77M4fk9yv8/b/T3J/33e7u+Jte/+QaUock3KtHtDpmUadFxISAPDTWNfTXIi17NduXA5CeVmurFv4vGj6LNLcfmvw9Tt0NA4bmpGNj7dp6HRzUYY9GpjfvdJoYfAXly+tNJEoQZwdg7C27uNWXuFCmPIzIwxk2lwK/Gjt3cbHB39SUlL4byiIz0p7dZ37+rPiQqvwQ2opMlWv8/qAxDl26JYcD2Pu55Ocnq2lGlSpt0VmQYPtlw7dz0TjaMvHmlZeOW03UzPJi4xAw9Hb/L6xBb2+5r3N/DqzXRKuzlCSizK0Vvlr0TtoeAWgKJoTBRxD302Ij0N5ddv1eRlHfqo3jdZ6aBzhHPfmCrVhkzQZyAqdTTfKAx4BQcFM7nm7d3eYtLaQmXa8XC8PVvhWH80yq4w9cTBuVB9gHmOCmvtYLKBeO7AQTSOvvhmZeOcczr3u0++aToHs+9T0SB6DkVZOtuyK7lWh+g1TP2MC/jupVwrgrK9Zs0aBgwYwLPPPsvgwYMZPHiw8VxQUBBLliwpVNleunSp3RPNy8yZM3n//ffx9vbmmWeeISIiggYNGuDj44OTkxNJSUmcPXuWffv2sXXrVtq2bcsTTzzBhx9+SJ06dW7r3neDWbNmMW3atCJf32HuLwBEDwyhbZ1yOW27SErLxkGjcHJmZ7O+07rWZlAzNXa+09xfiL+ZiVajcMpC31daBfJ6x9oA9Pj4Ny4kpqEocGZWF2Pfth/sAqBPowq807sBAM9E7eHklZsowJnZ5n3b1y7LZ4MaA/Di0v38fSEJgLN5+rZ6X+3btKo364aq+QJeWbWfn08mWO1bL6AUX49qAcDETQf46kCcWd+W7+5CAFXLuPLT+NYAvLf9KMt+O2/WN/S9XRgElPN04o+J7QBY/PtZ3t123Hzc935Cp9Hg6qhh/5QOAOh0GtVdPC6KtLTT1Kq1mNjYKDNhbE2pTkk5wLFjL1K79jK8vdsRG7uAtLTTuLgEUtZvKE5O/pxKSKGar0fO57uT5Aw9jloNJ97uZBw/9/v84JlgeoZUBKDjhz9zLSULnUbhPwvf/etP1uSV1mopwKfm7+bS9Qw0Cpy28N0PalaJaV1V75dnPv2dM1dTrX73Twf7M7+fuqAfEP0nh2JvWP0+W1b3YXmYWipw6Mq/2HMm0WrfRyt6sXm4uvH26rq/+f7oFbO+rd9Xv/vqZd35/jU1zGX614dZt++iWd+W7+1CCKjo7cIvb7QB4MOdJ/lk52mzvpJbSJl2b8i071IeY9TSJGCXsa/mZhLdrizk3AUv/E7uNsq0dfsTmB27Gs4LznbIGVQYcMyIQ3NcTfSj1BsJHpUR+dwnK1Ych4NDWTOFWk3w+KyFBI82Jn6MW0iVyhGExUWwJ6M+jsd3FizTFA1bTgo6PjIVJwcHkxKIj8/+CZAyTcq0onG7Mg0ebLkWujkBWi6h+Y9XWfWo2qbKtWsoLZZxJs/nUJhc+zOnMrC2lBeeLg6IEyvR/GzqsaL8MxtDlx0o/k+Y16GuNxreXg3JF24lawwelyO7TJXqgkqrWt4otCa7bJRplxZRJWii6oEDqoV754vQaplZjgpDZjKa6s8XmLsidPUFaLmENw/fZEiO83GuXFOAF/Lc30yuKQoGH3+UKdFopudLkqbVYZi6GMqUMxpypFyzjt3K9vTp0xkzZgz/+9//0Ov1Jsp23bp1mTNnTrFO0BI7d+5k06ZNtGrVyuJ5Hx8ffHx8aNSoEcOGDSMxMZGPPvqInTt33lVl29vb22JptMTERJPYoPxMnDiR1157zfj+xo0bVKxYsUTmKCk5hBAcimyPk4MDGVlZOd4YwsSlSKNxRaNZZTHhmapUD6RWreV4ebUmLu4zo1IdUC4cAAcHf6pUiUBRdBgM2Wz4K5Ylv/7KtG51wf4KEBJJoRRFrkmZdo+SYwHa+awTGVlZxgVOLi4OWtJza8oKA5z7Bm3GVUReCzb5LT0KNWsusrjItJbg0a7Ejxodjg46yCiwq5FpXx1hzLp/qeF8hW3DG4BPw8IvkjxUSJl25ylKsjPXarUQKbFo8ynaAHjXQVPucRvrUysQGo3QOHD58iqbrNTWNgqLRabpXCFkGlw/Dh6BZNcaii4nFEY8OhlFp8rnuOsZVHHWgGsAmY9MxTFnbemk0xVbSMzMb4/xZqf+ZDdqg25zlBqjXT6Q7B5DUXz8WfHHeV5oXrVY7vUgo4j8/teF4OzszDfffEPbtm3R6/U4ODiwb98+GjZsyE8//UTnzp1JSytiMP4DTsuWLSlTpgybN282tuXGqS9evNjmpBs3btzA09OT69evm5VPs8SD7Jp0v7iR57qGx8ZGGV2QKlacgF6fyB9/VDXZFW3R4ibnz8/i3LkZFr9PN7dgatVajLv7IyiKFqHPUC00OhdupGXj6eoIqNlTTyek3tZ3L93I723XpHuB4pBrUqbdBZmW8BeZG5pyodVO3P1D8CvlCKmxanmvnLJcovZQFLcAQEHoM1F0ThiyM9FoHSDjGsKxlGoFyolVzLVg79lzS6ZpNK60bJnCkSP9uHJlTb5v0pq8K1wOAlSuPJkqlaeSsrAUZxtsoEztNjbJtOS4/ZTd2Q6P3r8alW0p06z8niBlGpS8TIMHW66d2/MHmle74vHxV3g9qlo3b6Znc2TDWip9Mgrt+Pn49lC9Ygt1I//1S3xnPo/4PR3l7+lqTer8hC6GgNawtrqpIm6pXeeKePEmmenn+WNvNZvWY9blWjHItCqRoNej6BwxZGeSrtfg6qR+vomfz0Cf9DExzqOp+ew44/cZf+YPlO97oG+/Gb+qjxnHO/n77ziP7YZv1Nc4128C3PruDYlXubRuGSFDh+Lh729Vrt1Mz8bH3Ql3nQI6HWRncyNLcC0lAx93ZynXbMBuy3a5cuU4duwYbdu2NTt34MABKleuXCwTexDp1KkTM2fOJCkpyRgPtH79ejQaDR06dCj44tvA0i9RWU9nY8xwYX193J2Nv5xF7Zv3lz4XLzdn4x9IUfvm/SPNxd1ZZ3Fu9vTN+8+nKH2d8/QVwmDBBUmhUqWJFtzFC094lpp6BEfHciAUUABFi6JTs/DmKtoAOp3l+drz3RfH74ml77M4fk8sfZ/3wu+Js5W+Dyp3Q65JmWZ/X0u/q46abIL8SkMpR3MLEKAkn1HdF9NuuWFqSlWDkKkIR898ViDLFuyCKyZYk3d2JH7MuI67Jp161f0hjzICBfyeZLmAJr3QvlKmqUiZJtdqtso17Y1EYqOiCBk6FLh1vrKnI2TGg4uDsc3dWUdVNwXfzETi84xR2O9rPICTi7rusVj+ys761NnpgIHYS4tsLq1qXa7dpkzzHwpCIWnTu3jfnMV194mmiR8BHy6hdc42KtoAvh6OwCXwcDTpW93bSf3cHW71NX735UpRKzLS2G5druW8OfYXhLeARb9QqlZDSuX5LkHKtYKwOz1xv379iIyMZMeOHcY2RVE4dOgQ7777LgMGDCjWCRbGW2+9ZfU1Y8YM5s+fzy+//HJH52SNYcOG4eHhQffu3dm+fTtLlixh/PjxDBs2TNZtfEARQuQkOwuzWYhfvDgXR8fy1Ky5CEUx3Q9TE55FqwnPNOqfr6IpPpchicRepFy7z3HxVS3a+bN0lw6GVkvgv5WwuqpqPTq1Bg7+D6FoycyIMXG3tC7Tbi0y88szyCvvok3OFy4HcxI/Im5lHZdIigEp04rOzbg4dk2bxs24uNseKzkujp2RkSRbGisjDZGdabn8lb31qXXOKIrWztKq1uWaNdlVqEyrEY2jU8CtBNLZqRbue5dJvwfndB9gt2U7MjKSw4cP0759e2Od7U6dOhEfH89TTz3FhAkTin2SBTFnzhwyMzONruvOzs6kp6s71i4uLmRlZaHX62nYsCHffvstvr53L3DV29ubHTt2MHLkSLp3746Hhwfh4eG8/fbbd21OkhIiNQ5OrIAGYy0mOytIiJvGZrchLm7hrdjsgGE5mcVlGS/JvYGUa/cxOjdw9IL908xjHuuPUct35c90a8UKVJBMK6hiQmrqEW7c+AM/vwF4e7c1SfCo1yfj5/e8WeJHEzno4guNIov1Y5E83EiZdm+Qq7jX7NoVD/98m2lCkBFzAec6Q83LX9lbnzo7DZGdZndp1VtyLdrEoFJQ0lqjTPNsTeylPHl3yobj6FIBRQAa68YTg7sXJOUcbcHHHwZHqEfJXcNuZdvR0ZEvv/ySn376ie+//56EhARKly5Nu3btaNeund0TuHDhAhcuXKBBgwa4uZmVpy+UH3/8kT59+hAREUG3bt1wd3fn5s2bbN68mbfeeovly5eTmprKgAEDGD9+/G1nQr9dateuzQ8//HBX5yApYYQA57LwyOsoYCUhRsFC/MqVtaSmnuCRR36mSpVINTZb6AHNPVU7XiIBKdfuO4RQLdcv3VTfm7liWnPDxKoVqCCZlncDsSDF2dExgMoVJ6PROWHIzkDROqIoitpeeQoajSMGQyaK4iDloKREkTLt3if1v2M4V+oEodH5PHMEnPocag+2sT61gFNrCagUbldp1YI2CgMChgGKZZkmBI6UoUpFNdmZyM6ArGwUFNAUbEgxeHibHAvFxx+GRtrWV1Ji2G0eO3/+PFlZWbRu3ZqZM2eycOFCZs+eTbt27cjOzub8+fM2jbNw4ULKly9PlSpVaNGiBcePq2WSevTowbx582yez/Dhwxk7diz9+/fH3V31yXd3d+f5559n7NixjBkzhrZt2zJ58mS2bt1q7+NKJPYhDKo1aH8k7OiPMGRbcUEq3KWoQoXRaLUuZKfGs3u3L/EHP5ULTIlEcnsIA6TGqNbsHf1Bn2Fu6bHmbgkFWIEKlmnx8Ru4dm0bjo7+VK40hTp1VlG54mQcHQOMnjqKohC35TV+/tmNuC2vGuWdoiikxKzn55/dSIlZf/ty0NVfup5LJHeQlPh4k+Nt4+yK/kYSKBq13nS/s/DoZKjWTz1W6gRuFVRFPK8sOjgX3Mqr9anztCsH5+LoFGAWzpJrpfbzG8Bjj52lcuXJlC3bj8qVJ/PYY2fx9GxuslGYX65ZlGkaDYqzK+Smpxao7wtRtAEMDj7s/Eo9Su4f7LZsV61ald9//50mTZqYnfv3339p0qQJer2+wDHmzp3LG2+8wWuvvUbbtm1NEk60atWK9evXM3r0aJvm8/fffzN16lSL56pUqcLBgwcBqFevnsVSDhJJsSEM5uUkWi8lwH+wRev1LVejAqw9AoQ+ifJKXTwrPXF3nksikTwYCIN5IrQK7cwtPdbcLdVBrFqBCrRg+w/D0Um1YMd++SqnfJYSlDCI8j0/MRvfYDCPC3TU+VAxPhXH6sWwyHT1l67nEskdJDUhAbc8xyIjBD5PPQM9+uOTlal66Sgak7JYIseCjKKoinj5tqZ1qDOTofrziPLtUPK1+/kNwLNUKy5dvuXiXa5sOEKAo4M/lStNRqM19bwBdUMwdstrVuSaBZmmKMR+Za2/dQyOvuz6GmpOk7Vc7yfsVrYLqhSWkZGBk5NToWPMnz+fKVOmMHnyZDPFvGbNmkYrty1UrlyZRYsW0bFjR7NzCxcuNGZHv3r1Kj4+cidIUkIIASmxpvGNOhcUjQOOjgHUrLHIJJkQqNbr0qU7gDDg6Bhg6i6uN+TE7mhwLFWLqs133pXHkkgkDwhCWE6EdnCuuiANXZRHfllzt1RRDs7Fsbp5rCKoFuyyvv0o49OlgBAYywp1QTh5BlO1cgR4Bhfp8SUSyf2FJimeUH/1CIDBAAmxKBuj4OIplApB0Gso+ASARkPSpvfwvjmLpLwZvBUNwjUAQiJRNFqEQa8q50KQJTzRPTIZjYMThqwMDHqBVoBWlKFShcloHZzQZ2Wgz1RdvBWNhthNBSnIluWag8GDylfBQXjY1B+KEJstuaexSdk+duwYR44cMb7fuXMnFy9eNOmTnp7OmjVrCAwMLHS8mJgYmjVrZvGcg4MDN2/etGVaAMyaNYtnn32WmjVr8tRTT+Hr60t8fDxff/01p0+fZv369QDs2LGDli1b2jyuRGIXwgBHoywm6VDOfY1f1X54e7Ui9tKiW5aecuFq5skzmxBVe4FBDzqtWl9R6yAzjEskkmLEoNbQzh+Dfe0A/DQQWi+HgDZwdKFq6clKRbhXgtBolPwKeuIRuPwHfuUG4F2qFbGXzRP9YBAIg55f95Sj6pVnbLbc6D3KmxyNSGu0RPJQobmeQKsAuCayVUV760p4Kwz0eWTR0tkwNRo6DUDrWRaSTJVXYTCQlZaGzkGH4qhFZOtRdAonvvmGz3v2xKDX4+DiQlZqKhqdjmc3baJGly6InHsogIOrq3Gj0MHgTsX4VAuKs3UcDB5UTYJELw+zdstKeBFisyX3NDYp2+vWrWPatGmA6iphLeO4l5eXTQnIKleuzN69e2nTpo3ZuT179lCjRg1bpgWoMd579+5l1qxZbN68mbi4OPz9/WncuDHr1q3jkUceAeDjjz+2eUyJxG40WgvxjTnWoYDWKJsfw7HecKoETUTRuSKyU+HUWpRDHyM6blFjFv/7F8JboCz6BWo1vCuPIZFIHlAUSzIqh1NrVQW62TxVoVVyLECZmShBz4FfKJxYdMvdskY4int51bWS0iaJfkRGJkJvID05GeX6KcpfTrBrYap4N+LsRxA0olHxPLdEIrmvca1WCxJizRVtUN+/FQaN2+JUvQmcu3VKGAwgBNqkeDRbouHiKTQVghA9h1K9Y0fq9O7NobVryUpVFXRDdjaf9+zJ6LNnccqIx2lnc7M619YU56JQ0FiuOZ64rrZ65Mo8FPc0NinbY8aM4YUXXkAIQWBgIJs2beLRRx816ePo6Ei5cuVsSlwyePBgIiMj8fX1pWfPngBkZWXxzTff8N5779ldXuHRRx/l888/t+saieR2EUIg9Ho0Oh3CoEexFN+Y66JZfxTKrnDVTVPngpKdCooO0Woxiqv/LSu2rGEokUjsJSEONkbluFRaWWwJvZUY7ByuHYCYHeD7OMwcjDLxU1j8Nvy8BZ4bDR0mgrOrKqO2r4U181B6DMHQYwiGzCx0OtBn6jm0fgMuPr7U6NyZ5D//pupV+yw6Oo0v55aBbpSMSZRIipPkuDj2R0URMnSoeSmtexVFwSmgIiyabq5o56LPho0LcAy/pRQbQ163rkQ7PdzkWmXpbJiyiB7LlxN/5AiXDxwwnjNkZ7N/wQJCp04u8TrXBo0X7AdDey+zc26VgyElQj3agvT8uaexSdn29PTE09MTgDNnzuDv74+jo2ORbzpu3DjOnz/PkCFDGDp0KADNmzcH4JVXXuGVV14p0ri3W0ZMIrEVYTCQHBvL/qgorp06RbfFi9HWHoqSP74xj4tm/mQcos6wHEVb1syWSCS3QUIcfDYNQrsWUE9VA5Zq0uai6KBGOGxdBd+vg4jFcPEUnDygWo6mh4OTi+mG4IHf0Dw7nF9mzSLp7FlKlS9PyLBhePj7o2g0ZCVnWlxMaqlI1e1wtX3FYvsIJBJJwRRYt/pexckFxcFRlUUFEXMaxcEJnMqo74VAXL6IJp+iDYA+G2V6OIaGrWg6ejRbwsJMTieePo3GwQm0LnZNtaBNREsYtN6qfOxowVXcivLs7u9PaEQE7vfL9ycBipAgLTfhGEBqairp6elmfUqXLl3oOB9++CFjxozh+++/5+rVq5QuXZq2bdtSvXp1e6fEwoULmTZtGnFxcSiKwp9//knDhg3p0aMHrVq1sjmzuURiC8Jg4MDKlWwJC8OQnQ2KQtfFi8EtABG6SLVg513Mnt6ACOoHlbsgcpJ0oM9WjzIuWyKRlCS5Vu9nh4NXgIWatKiKdstocAuANfMgI01VqivksYQLYe55Uz4QYdDTYuIENA6OGLIyUXS3amBbW0w6+1WH/eA8wP7/9xKJ5CEiIw2RlakmQ7NG9WDoPxah16MMSsArKxMFgfLFZwVaw7VfLqL+oIlmyrZ3YCCGrAw0+jS7pmrNLbwgC7a9ePj70yoy8rbHkdxZ7DapCSGYPn06FSpUwMPDA19fX7OXrQQGBjJ06FDefPNNhg0bViRFe+7cuYwcOZKBAweyfft2k2zpuWXEJJLiQghBcmysiaLtWqYMDs7OnNq2XS0n8dxZk3qP4rmzULkLp7Z/ryrYy96FxHhzRdvHHwZHFGCZkkgkEvtIOXoAPptGyqG/rNek7Xsagp6DiIGqJVsI2L4OuoWB1sqevFaH6DUMFA1Xv14PT7hx9WvTGtjW4g7dctYJbnasFyQSyUOIEGTEXlBDZCzJoif7wop9ULosysJImNRPdRPXaG2yhutcXdG53LJga3Q6QoYNI+vCUYuXGBVnjZfN57JLV2fnV+rxvkauUYuM3ZbtOXPm8MEHH/D6668zadIkJk+ejFarZe3atWRmZjJp0iSbxtHr9ezZs4eLFy9atI4PHDjQpnGKs4yYRFIYwmBgf1QUvnXq0HTMGOr36YPO1RWh1+NWtizfj3+dkCFDKJ2nzMS1/07x46Q++NSqRWC7dmgGvW55cB9/GBp5R59HIpHcP9w8/A8JM8bgM3ku7nUfsekas/q2+WrSIvTw1y/w/lOqop3LmrnQeQBMWaS6kOe1EGl1iKnR4ON/S7m2kG/CqlItF20SicRGUv87hnPrTmrW8bxJ0qoHw7Tl8N1qUxmlKPD8OFPPHEuUDyQ7NZXsNNWCrdHp6Lp4MR7+/iR//w2WChkX5Ppt7ZzBy5ddcVDT6z7fXJRr1CJjt7IdHR3NtGnTGD58OJMmTaJ79+40bNiQKVOm0LVrV/77779Cx/jrr7/o2bMnFy5csFi3W1EUm5Xt4iwjJpFYRAi1tJdGi0aBes89R+jUqZCZjsZBC4BiyKZcrZr4zZrF5oEDOfT557iWLk1qQgKgCvHRZ8+iaGR8tkQiKRppJw5T5eQu4k8ctlnZtoii5NSkfQcxKAll7w5TRRvU9xED1cVs4zawaSHEnFZdx3sNUxXtwuSZNaW6gEWbjEmUSCR50d9IAo0GOg2Axm1h4wJVFvUfC1cvm28G5vXMWTrbsit5jmdO/NGj1O/XD+/AQJvyTUgkRcFuZfvs2bM88sgjaLVaHBwcSEpKAkCj0fDKK68QHh7OzJkzCxzj5ZdfxtPTk2XLllGnTp3bSrZWnGXEJBIzDAa15MTGKNUlqUFzfHq/DAiU7KtwJFotp1MqCKVGGDhXpMeKFSYZLvPultqSrV8ikUjuCM6lUTQaDN3D0VhalG5bC+dOIBbugiGRKFotQq8HjcY2WVYES4iMSZRIJBbRaMA3ABE+BcXBUY3RXhhpWZkuzDMnYjH4+OPnXZaeq1bZnG9CIikKdpvZypQpY7QWV6pUib/++st4LiEhgdTUwlPlHz58mNmzZxMaGoqvr68x23nel60MHjyYGTNmEB0dzY0bNwDTMmK52c4lErsxGGDrSni6KkTPgG1roGx5FEWgnFwJn1eHv2fAqTXq8fPqKCdXomg19Fqzhvr9+tFy8mRGnz1LcP/+0qotkUhKhJT4eJNjYQgh8Oo1EfqdQxgMKH4VEFMWmcdEanWIvqPB0VmtWTvWl2ubP5WbhhKJpPhwdrW9r6KQ8PV6eKoyiraAuOxcz5yO/eGrsxA2GTr2g7DJiK/OonRU12RXv/7cYr4JiaQ4sduy3bx5c/788086d+5Mv379iIyM5NKlSzg4OPDZZ5/Rtm3bQseoUaOGUTG+XUqqjJjkIUcI1aKdNz5IUeCJLnAzBn4ONy+fI7Lh53CUgDb41Kql7pZmZ6NotVKISySSEsMsLrsAhMEA8bEom1RvHaVCEKLfGOj8PIaQ1mi++MzoLq7vFo7iG0D6jRsoN67hsisBwxPS0iOR3KvcqVraxXIfIfB56hno0R+frEx13VXIWkkIQZmca4ReX3CW8m1rocET0PvlW9bwHAu2yX0s5JuQSIoTu5XtyMhIYmJiAHjzzTdJSkpizZo1pKWl0b59e+bPn1/oGHPmzGH06NE0aNCAWrVq2T/rfBRnGTGJBFBjtDdGmboeObuCVgPHPrNcpxbU9mMLURpF8q6PD89v345/w4Z3Zs4SiURiBceAiqqi/e0KlHxulcrS2Yh3N6I80YXsF95E5+JCdmoqhz5fh4uPLzU6dybx79+xr+qsRCK509ypWtq3fZ+cED1l461NP3oNBZ8A1V3cAsJgIDk2lv1RUVw7dYpOH36IS8+havZxa3HZrbobreG+/xtCwtiF+Pbob/98JZLbwG5lu2bNmtSsWRMAJycn5s2bx7x58wq9rn79+ibWvbi4OOrVq0dAQABeXl4mfRVF4d9//7VrXrllxCSSYsFa2QhFq8ZoF0TyaVC0PPbqqzLJj0QiuSdwq/OIatHOH78IoM9Geb0X4quzxF+4xN6PP6ZU+fImCYP0N5LuxrQlEkkJc6es4QDaUl63QvTyeg6CmsxsarSaCC2Pwq0t5YUwGDiwcqVJ2dWu0dHg4IWYsshcrml1iCnRUNpP3WSEe86Cba00ouTBw25lu6iEhIQUmyvtzz//bFf/li1bFst9JQ8PwmDBPSk9FbIzoVQh5SQ8AsGgp6WNZfAkEomkRNFo0Lq6oax8z7IFCFSFe+MCyg2JpNvixRiyMlB0jjIERiJ5wLlT1nAA12q1zEP0ctFnq+2N24JvgLHZpVotkmNjbynagIOLCw4uLuyZP5/Gw4ZhaNgK7ZeLzEJg9i1YQJMRI0CrLdHnKghrFRaslkaUPHAUSdleu3Yt69ev58KFC2Y1sq1ZpZcuXVqkCVqiVatWKIpiLBuWdzEghDBbHOSvvy2RFI6Coftg0wy9QsDub6HRUPhntmVXckUHdYaptWwlEonkXqBU6YKTCeUSc1rt90ZFEhu/QZneI+7M/CQSyYOPouAUUBEWTS9w04+NC25VMci55o+3phsVbYCstDSyUlNJvXKFhY0a0XT0aOoPmojO1ZXs1FQOrl3LnnnzqNm1Kwa9HopJDyiKNVpWWJDYrRG8+eab9OvXj/Pnz1O9enVCQkJMXg1tiE996aWXOHPmjMVz586d46WXXirw+r///pu//vqLv//+m23btlG+fHkGDBjAF198wR9//MEXX3xB//79KV++PN999529jyh5CBFCqAIZMOj1auZw3wDzDL1REeBSDhEarSrWeVF00GoxuPoXmuRDIpFIrJEcF8fOyEiS4+KKZ8Ab19SSXQUlEwK1hrZeDzsuqqVvJBLJQ0uxyyEnFxQHR5s2/dBoVWu0Zxk0Do5cO5XvGiE4tG4dj4aFEX/kCFvCwnjb3Z2Zbm687ebGlpz2kGHDCqwEY/D0YWeserQFt9rBMDhCPUokNmK3ZXvx4sW89dZbTJ48ucg3Xbp0KcOGDaNq1apm5xISEli2bBmLFy+2en2DBg2MP/fu3Zu+ffvy7rvvmvR5+umnGT9+PJ9++int27cv8lwlDz75k26UrlaN0KlTObppE7V79DNzTzLcSESpPgAR0AblaJQao+0RqFq0Xf2lVVsikdwWRXLrLKh8jsGAPjUFbWHJhHoNQ596887Fl0kkknuWYncvz0hTs4EXtukX3AwMBnw69YSufRF6Pc3GjSP+8GEuHzhg7LZn7lyCBwzg6UWL+Co8HEN2Nlk55Yc1Oh1dFy9Wc04UYPwwePmyKw5qetnoyu3jf8vqnn+sHMW9to2Ku+ThoUj/U5s2bXrbN7b2y3/y5EnKlClj8zjbtm1j06ZNFs916NCBnj17Fml+kocDs6QbOXgHBlK1TRsWPfYYjYcPN3NPOrV9O12jo3EIiUDR6ECfCRoHadGWSCR3FlvK53j5kHLkH0o1fsJ6MqGp0eDjT8qfu/G0cBuZzEcikdwWQpARewHnXkPVZGiWNv069YfeL5tlKi/XcyhD9u1j88CBHFq7FoDLBw7wxcCBdF++nMB27di/YAGJp0/jHRhoktzxTmG34i55aLD7tzA8PJzVq1fbfaNPP/2U4OBggoODURSFfv36Gd/nvmrUqMHAgQPtskS7u7uzY8cOi+e+//573N3d7Z5rUbh69SrDhg2jUqVKuLm5Ua9ePRYsWGDWLzY2ll69euHh4UHp0qUJDw8vtprjksIRQhiVakOORTu/og3wx5w5uPv703T0aL4eOtTEPenroUOp3qULDi4uKEe2wWI3+Gu9VLQlDxRSpt0HGAwQH4OyaDpM6qce42PUdlR559O1L/wQT6lGzVUZ1fl5xFdnIWwydOwHYZPV950GoGg0ZMZesHirgtwnXWrU5Wz1UFxq1C3Bh5VIbh8p1+4uqf8dU8t7TY02DdEDqNUQIpepmcqfrgrRM2DbGoiegdK1Ksq21fRYvhy/4Fsy6MiGDfy3bRse/v6ETp1Kz1WrCJ06BY+AgDuqaBcJH38YHKEeJXeMYg+PsAG7LdvTp09n9OjRNG/enLZt21os2/Xqq6+aXRcQEEBISAgAhw4dombNmvjmy8Dn6OhI7dq1CQsLs3k+w4cPZ+rUqVy+fJnu3btTtmxZrly5wubNm1mxYgXTpk2z9xGLxDPPPMOxY8eYOXMmlSpV4ttvv+Xll19Gq9UyePBgALKysnjyyScBWL16NampqYwbN45+/frx9ddf35F5PsyYuIufPk23xYvZHxVlpmjDrR3THitWULVtW+s7pk46yE4FL2ntkTxYSJl2j+LsWnj5nAU7EA2eUEt9bbplHRI9h6pZfn0DEEMiUbRaNUZboyk863gB7pPudR/Bfc3O4npCiaTEkHKt5HFwtRLS4uyqlhDUaBCdBkDjtigbFxhD9MQLE+BqHIqVTOXK9HBo0o5uixfz+wcfmK3HEr5cg+//hnD1fqmlXYBMlZQcdzL7fi52K9s//vgjy5YtIzk5md9//93svDVlu1u3bnTr1s34furUqRZjtu1l8uTJeHl5MXv2bJYtW2bMUu7v78/cuXMZOXLkbd+jMC5dusRPP/3EkiVLeOGFFwBo06YNf/75J2vXrjUK8A0bNnD48GGOHj1qrFXu7e3Nk08+yd69e2nSpEmJz/VhxcRdXK/HtUwZdE5Opkk3FAUHFxey0tLU5Btr1+JVpQptZs4kNCICjU6HITsbRau9tTAtHwwNI9SjRPKAIGXaPUged3Fvvd56+ZzAOlD/cdi60mzRqiydrSZ97Pw8N/b9iuekXiQMn3t/LEwlkttEyrWSRQiBX3Awb6akYMjOvlUdKG+oS3YWwmDg3C+/kHTmNPXyhOhpdDo0G6NsKk/Yc9UqDFmZKDoH043Ce6yWtuT+oqRqztvtYzF8+HAaNWrEwYMHycjIwGAwmLxsKbO1ZMmSYlG0cxkxYgTnz5/n7Nmz/Pbbb5w9e5YLFy7cEUUb1F1QAE9P00g3T09PY3kygK1btxIcHGwU3gDt27endOnSfPvtt3dkrg8jQgiSY2PZM28eTy1cyKSbNxkfH29MulGnd2+6Ll7MpJs3eTMlhUk3b9J18WL8goPR6HQIg4GU+Hh+fvttUuLjTQW7qz80ilSPEskDgpRpJY9drmx53cUn90fRZ4O1RelzY+BKTMHWoYQ43Oo0gKSEYnkWieR+4EGSa3fDFbYghMFAckwMu6ZNY2O/fuyaNo20a9cQ+UNdPnsL4mOp1KwZp7ZtN4bovevri8bGTOWKVgttfbj69frCPXKKSFFyVFirpy25f8i1et8s5r8ruy3bFy5cYP78+dSte/disz799FNeeuklnJycjG0ajYZKlSpRqVIli9ccPHiQ+Ph42rRpU+zzqVixIh06dGDmzJnUrFmTihUrsnXrVrZv386qVauM/Y4dO0atWrVMrlUUhVq1anHs2LFin5dERRgMXPjtN8L/+ANxJQbtslm3km70G0PvdesQly+gyWnXVQgiuGsYDQYMID05GUWjwcPfn5aTJt3tR5FI7ghSppU8triy6VxczN3FnV1hxirLi1JFgQ59YMmsQq1D2iGRxfcwEsl9wIMk1+6GK6wldC4uFhPN+gUHEzp1Kny7AvIlZFSWzoYpi+ixfDnxR46oGcYVBUNWJhqbyhNmo1y/WpKPVaQSX7KetsQadlu2n3jiCY4fP14Sc7GZpUuXUrlyZV599VV+++03425lfmJjY4mOjqZdu3Y0a9aMxMTEEpvTpk2b8PPzo27dupQqVYp+/foxZ84cevXqZeyTmJhoFuMOqnvStWvXrI6dkZHBjRs3TF4S29FotdTu2RNl22q0PavfSrrx8xYUt1Lw7Qo03auZJOPQ9qyOsm01Ll5eJbZzKpHcy0iZdndxcHXFzdfX3F08I011lbS0KHVyUZVxW61DpUoX/8QlknuYkpJrD6tMc/P1tZhotumYMYgrMeaVD8DoYSPiY2k6enSeEwqG7oPNE6flotVh6DEEuANrstx4apm8TFIM2K1sz5w5kwULFrBw4UJOnz7NtWvXzF4lzZ49e/j000/5+++/adGiBR4eHgQHB9O2bVs6d+5Ms2bN8Pf3p2LFikyYMIFHHnmEkydPmgjToiKEIDs72/jS6/UIIXjxxRc5efIkq1ev5qeffuKNN95gzJgxrM0pUXA7zJo1C09PT+OrYsWKtz3mg0JyXBw/v/12ga5UqhtTrLnQz3W3LOCfgZIQp5bSkUgeUKRMu7fIG/fo4u1t7i4uBGxfB93CzBelBSnieSkfqCZGu2H+/zq3VqxB1oqV3MfcablWUjLtXnMXN0FRcPbyMk80qyjU79MH7ZboAj1stF8uon7fvgA4uLigcXBQkzdOWWQu27Q6xBS1PKGi1aobixLJfYLdbuSNGzcGYNiwYVYtfrbEbd8uPXr0oEePHpw9e5YffviBffv2ERcXR3p6OpUrV6ZDhw40b96cVq1a4eDgUGz33bVrF61btza+Dw0NZdy4caxfv54DBw5Qv359AFq1asWVK1cYO3YsfXOEibe3N9evXzcbMzExsUDBPHHiRF577TXj+xs3bsjFKeo/UzdfX1pOmmSajCPnnDAY0Gi1IASaLz4zFfo2uluycYG6u6loS/6BJJK7gJRp9w55KyZcv3iR7kuWWLZSr5kLnQfAlEWmLppCwPefI3oMVl01Lck2rQ7Raxj61JsWFwCyVqzkQeBOy7WSkmn3iru4JRxcXNDodKaJZnPada62edjoXF3R5SSmzUpN5cTXX1O7Rz8MDVuh/XKRMVO5vls4im8ARzdtonaP7mgy0krwySSS4sVuZXvx4sXF5lYrhODEiRNcu3aN0qVLU6NGDbvHrlKlCuHh4YSHhxfLnAojJCSEP//80/jew8ODL7/8Eq1WS7169Uz6PvrooyxatIjU1FRcXV2pVasWBw8eNOkjhOD48eMF1hZ3cnIyiU+X5CvjdeoUpYOC1OyBAQEAhS9Y7XC3RCMVbcmDi5Rp9wZmcY+KQteFUZZjGE8egIiBMG05NG4DmxYaF6WGxzqglCmHmBKNMj1fkjStDjFVtQ6l/LkbT/ORJZIHgjst1x5GmZaVloYhO5vSQUFm7dlpaehs8LDJTk0lO01VnA9//jlV27Rh0WOP0Xj4cOrnyVR+cO1a/vz4Y/pu2UJGzHmkXVtyP2G3sp1bLuF2+eSTT3jrrbeIj483tpUtW5apU6fy8ssvF8s9SgIPDw8aNWpk0la5cmX0ej0HDhygQYMGxvb9+/dTtmxZXHNqDnbq1ImVK1dy8uRJqlevDsCOHTu4evUqnTt3vnMPcZ9jKRkHwMlvvyV8714OrlplsmB96uOPzYW+He6WGPRS4ZY8sEiZVjzcTsmQ3IoJeeWWWqtWjWHUWLJSb1sL505giNoJ4VPQODgaF6U6Z2fq9R2AaJKvjm2vYaobpkZDZuyFYnt2ieReQ8q1O4AQpCclETJ0KLtnz761HhOC6xcuULrn0EI9bOKPHqV+v354BwZSrVMn3Hx9aTp6NFvCwtgSHq6WY80pC9Z18WI8/P1J/GmrVLYl9xV2K9vFwcKFCxkxYgTPPfccffr0wc/Pj8uXL7Nu3TpGjBiBg4PDHbNUFwedO3emUqVK9O7dm4iICPz9/dm+fTtLly5l2rRpxn69e/dm5syZ9OrVi5kzZ5Kamsq4cePo0qWLrNtoI2aL0jw0HjGCGxcumJ4TgoPr1hHcNQxtXqGfN+6xgH8G9BoGit2pDSSS+xop0+zndtw9hcHA/qgofOvUoemYMdTv00d1wzToEWXLI6YsMs8todUh+o4GR2cWNm7MtZMnyUrNU2NWo6Hes88ihkSiaLVqjLZGIxM+Sh5apFwjZxOv+EiJj8enZk26RkebbBaWqlgRHBysy64p0eBTDr8y5cxqZgcPGEDVtm3Zv2ABiadP4x0YSMiwYXj4qxuF+htJxfoMEklJY5OyHRwczOrVq6lXrx7169cv8J+1oij8+++/BY43Z84cRo0axdy5c03au3btiq+vL++///59pWx7eHiwY8cOJk2axBtvvEFSUhJVq1blgw8+YMSIEcZ+Dg4OfPfdd4waNYrnnnsOnU5Hz549mTNnzl2c/f1Bclwcfy9ezBNvvGGejANAUajXpw+7Z80yO7dn7lwaDBhgLvStxT2CqmhHLFYzUcrFqeQhQ8q0O4ei0aDRanEtW5Yh+/aZlCekQhCi72iUzs9jCGmt5p7IY6UW3mXZPHAgl/P9z9XodFRu0QIUhYQv1+D78RgShs/Ft0d/Y5/cRGi1ZSI0yUPCwyzX8iZezJ/j5nbITktD0WhMFOQbMTE4uLiwZ/58Gg8bZjX+et8nn9JkxAi1ZvaIeUb5pGg0eAQEEDpV9djJq4hLJPcjNinbISEhuLm5GX++3V/4M2fO8NRTT1k816VLFxYsWHBb498NqlWrxrp16wrtV758eTZu3HgHZvTgkDcRGmCWjAPUhBwOrq4Wz10+cIDNAwfSY/lyRL4FKynJ0Pl5aNJOTYaW257jbolGWrUlDydSpt0ZhMGAQa+nycsvw3er0OTb+NMsnY14dyPKE13IfuFNdC4uZKeloXF05MQ333BkwwaT8fK6Wxr/VyclmN3XtXYwDIlQjxLJQ8LDKNcKynGjFNMax6ggR0Sg0ekw6PWkXrnCwkaNaDp6tFn89Z5586jZtataW9tCzWxFUUj4ej2+/xvC1bEL5Uah5L7GJmV7yZIlxp+XLl162zf19/fn999/p127dmbn/vjjD/zvsYyLkruHyT+J06fptnixWTIOwJjJ0tI5gENr1xJ/5AjdFi+mXI5bJfpsNRZbUcA3AIZEqBbtvO0SiURSwigaTcFlCF/vhX7zfxz8bgdbR44kKzWV+v37033ZMkafPWvV3bIgPPz9aRUZWXIPJZFI7jrWctzsnj2brtHRBA8YgM6leCKgFUXh0oEDLGnRgjHnzhljufPHX4O6Kdjv228LT3aWnmrWVJSKCVJBl9xN7N7Seumllzhz5ozFc+fOneOll14qdIywsDCmT5/O5MmT+eeff4iLi+Pff/9l8uTJzJgx475yIZeUHLn/JOZVrcrPM2ZwaPVqDq5ezaNhYWh0+faJhODQunWWz+UQf+QIbuXK3bJWa3W3FGpFuVXXMW+7RCKRlBC58ZOKMKBsiiq0Jm2DAf2p1b07LSdPpt0776AoitHdsueqVYROnXLb1ip3f39CIyJwl5veEsl9TUE5bgzZ2WwJCyM5Lg433+It85eVmkpKfDweAQF0jY5W12RCmCjaud43aaeOF+u9rZGroBvyKehS3knuBHb/R166dKlJBvG8JCQksGzZskLHmDRpEiNHjuS9994jJCSEChUq0LBhQ9577z1GjhzJm2++ae+0JA8Y1v5J7Jk7F4/y5Xl60SIzpfrPjz6iVMWKt4R7Hiy6VkokEsldIG/8pF9wsOpJY0MZQo2jk5lSrSgKV79eD0+4cfX/7d15XFTV+wfwzwVmBhgQGHZEcAUXxAVTIRUXtFwi9xT3JbPMtNxbBHPtq5llWvQL11QUc8mFXHELLLXFHS3BMFFBAUVBYOb5/UHcGGdhhnXA5/168dK5c++558wwD3PuPec5e2PKHN+K7nib2pq+jDHjFCVe1Mhx8y9VQQHOff01LO3tdZahL6GavueKz+WekpyMTh9+iOZhYej04YeYkpwM/2HDTCLZGcc7VhlKlY1c1x/z69evw9HR0aDjP/30U7z//vv4+eefkZGRAYVCgbZt2xp0PKuZiAikUsHM3FznH4m7589j18iR6LthA+p17Ypfv/lGbfikIZksGWOsqmjMn2zYEJ3D50IwYBlCys+D0MVBYw4jAK3DLRljz6eixIva8tgUl3HjBswsLDSGkutLqGZMsrXKTHbGQ8WZqTKos/3VV1/hq6++AlDYUQ4LC4PVMx/M3NxcJCcnY9CgQSWWt2HDBvTu3RuOjo4aaxY+ePAAe/fuxciRIw1tA6sBin8Bzbp1C33XrtX5R6Jo/vXLn3+O4IgImJmbQ1VQAMHcXAzgth4e/z2nVIp3gBhjrKromj/p0KA+WvR7Xe+atBgwEbn//A0r7lQzxkpQlHhRVx6bIg7160NVUICCnBy1Y3UlVANgdLI1fcnOypO+udw8XJxVJYM62x4eHggICAAAXLx4Eb6+vnB+Zo6HVCpFkyZNMG7cuBLLGzNmDBISErTexU5KSsKYMWO4s/0c0fgCKgjovWqV3j8Sd8+fR9KRI/Dq0AEnFi5Eq7Fj1YYBCYJQmAQNgNm//zLGWGUiIpBSWZidV6VCto75k6eXfwb/sGHA3CgIH4/TuQxhTlys/mRCjDH2L8HMTExSpm0ouZmFBQImTkRuZiYAwMLKSucFwev792P8L7/gwqZNpU+2VoUXCjkhJKtKBnW2X331Vbz66qvi448++gj169cv9UmJSOdzGRkZsLW1LXXZrHrROje7WLKzkv5ICObm4pJgjDFmKrStpKBr/mTR8oT9N24EvdANgo5lCKt6fiNjrPooSqAYGhWl0UEunscmPbEwSZnc2VlnQrUX3n4bD1NS9CZbq9etW7knW2OstB6lpuJcZGThyIsqHtFg9Jzt4suAFXny5Alu376NBg0a6ByqGxsbi9jYWPHxp59+CldXV7V9cnNzcfToUbRs2dLYarFqStfc7J9XrID/8OF45dtvsWf8eJ1/JHhoOGPMVEisrbXeHZJYW8Ni0ya98ycvRkfDvm5ddFu0CPR6OAQLC9C/02N4dQTGWGkUJSnTl8emICcHErkclvb2OD5vnuYFQUGA32uv4dTixSUmWwsOD6+EVjFWsuzUVByfNw++oaHVr7O9bNkyPH78GOH/fqBOnjyJ0NBQPHz4EPXq1cOBAwfQQMvw32vXrmHPnj0ACq+2nTx5EjKZTG0fqVQKPz8/LFq0qDRtYdVE8aGVuhJ4qCVC69IFv/7f/3GyM8aYSVJLGPTvHe3id4Dyc3KQ/+RJifMni4ab3/13rdoxJ0/CvXXrymgCY6yGEpOUhYcXxphiOW7E2JWdDQBav49JrKwgsbYudbI1xp53RvdWvv32W3h6eoqP33vvPTRr1gy7d++Gk5OTzmW7pkyZgqSkJCQlJcHLywuxsbHi46KfxMRE7Nq1C02bNi19i5hJI5UKj/75B8fnzcP3w4ah4OlTnV9AL0ZH4//atMHjtDQER0QULnkTHl7mdWQZY6y8PBvTVPn5mqN1ik2NeXZZwiLi1Jh/Y1vRmrSMMVZWgiDg7vnzWCSX4+7584UdbQO/jxl6sVBbsjXGWCnubKekpKBhw4YAgH/++Qfnzp3D8ePH0bFjRxQUFODNN98ssYykpCTja8qqPW2JN+qHhOidm512+TJs3NzEL6C6vqgyxlhlM2a4eFVNjbHyaYbkRsFw8mlWruUyxqqf/CdPdCZC0/l9zIg8OkXJ1hhj/zH69qCVlRUePnwIADhy5AhsbGwQFBQEALC3t0dWVlb51pBVW49SU3Fi4UI8Sk3VnggNhV9AbWvXxivffqvRkea52YwxU6Utpum7A1Q0NaZ5WBjeuXEDnT78EM3DwtDpww8xJTkZ/sOGVciIHZtmLVF3yzHYNGtZ7mUzxqofXYnQ9H0fO/Pll6hVpw5Co6L0fld7nJZWKW1grDox+jZh27ZtsWTJEpiZmWHp0qXo2bMnzP9dWumvv/5C7dq1y72SrPohIsidndHpgw+gKijQmQhNbW5216749ZtveG42Y8xkPUpNxblvvkGnDz7QO1xc2x2gi9HRuH/tGkafOKF1/mQRY9eEVdk54dhtoImdU7m0kTFWQwmCzkRoJX0fEwTBoGRr5YXjGqspSpUgrU+fPnjllVfg7e2NhQsXis9t3bpVvMvNnl9qS9789RecGjdG8Ny5OpNrXIyORtrly3j5888RHBEBM3NzqJRKCGZmfEebMVZhSrM0SHZqKs58+SU6h4eXarh4u6lTIbGyQnpiIv6vTRutSdB0rQmr68unyt4Zx1MBX3tedocxppvEygpmFhbGfR975oKgrmRr5U1XXDP2YiRjVc3oznbTpk1x48YN3L9/H46OjmrPffrpp3Bzcyu3yrHq4VFqKn5bswYBEybA2tFRYx4QBAFB06frTa5x9/x5JB05Aq+OHQEAZv+OlmCMsYpi7NIgRZl7Z6SlQaVU6h0uXtJonYJ/h5wbg798MsZKIrG21vlcfk4OVAUFhn0f69ABi+RyjQuCgiDgThWumKDrYiRjpqrU43MdHR1BRLh9+zYK/u1UNW/eHM68oP1zpfhwcStHR63zgEqTiZcxxkyJWubesDDc/eMPBLzxhtaYdjE6GlHt28NKoUBweHiFr6RQ9OWzqtcSZYxVneJLELr6+4OItO2E3MxMnbELUE92pu+CIK+YwJhhSvVX/8CBA2jfvj0sLS3h5eWF8+fPAwAmTJiATZs2GVTGpUuXMGTIEDRo0AAymQy//vorAOCDDz5AbGxsaarFKplBS978ixOhMcaqAyISY5iqoABEJGbu/bxePZxYsAAXt2zB7jFjIHd11RnTioaL52Rk4MTChXiclsbxjTFWborfwX72YuDxefPw6J9/QCqVxnGP09Jg6+FhEsnOiqbGqMphXjaP8GGmyuhh5Fu2bMHw4cMxePBgvP7663j99dfF5xo0aIC1a9di2LBhess4dOgQevfujYCAAAwbNgwLFiwQn5NIJFi9ejV69uxpbNVYJTJmyRvgv6GV/TZuRP2QEJ3JNRhjrKo8m29C0aABXpw9G7kZGRojdooPF9cX04pG/jDGWHkofge7KAGtxvQ9AKeWLEFoVBT8hw9X+35VkJMDwcysUpOd6VKe+SZ4eDkzlL6pFvqeKy2jO9vz58/H1KlT8emnn0KpVKp1tps1a4bPPvusxDLmzJmDIUOGYMOGDSgoKFDrbLdq1QrffvutsdVilcjYJW+KXIyORp0OHdDmzTcrJbkGY4yVRGJtrXPdWQgCOsyZo3PETlEyodA1a3QmE2KMsfLy7AXBoOnTIXdx0Zy+h8KROT+MG4d63brB1sNDoyzBzKzSkp0xZgo0LlQRib/v+p4rK6NvJd64cQO9evXS+pxcLjdone2LFy9ixIgRAKDREHt7e6SnpxtbLVbBiAgqpbLw/9qW8TJwXnbjvn0hCAIep6Xx0ErGWJUp/ofV0ddXa74JiZUVJNbWOkfsAIV3uE8vXw4zc3P8z8kJd8+fr7CYxsMkGXs+Fb8gKE5niY6GU+PGOi8GAoUd7nNff611ODlQ+B387vnzWCSXV2jsYqysHqWm4lhEBB6lppbqeH1TLYyZhlEaRt/ZdnNzw9WrV9GtWzeN586fPw9vb+8Sy1AoFLh9+7bW565duwZ3/iJhUopfSc26dQt9164t1ZI3xedl27q789BKxliVULs7dOMGXl2zRusXVkNG7ACAQ/36UBUUIOf+/YqsNg+TZOw5JXd21rggaMjFQADIuHGjcIUXPR1pTnbGTJ2xq4cU0TlyDcD1/fsx/pdfcGHTJoOnYZSG0UeHhYUhIiICR44cEbcJgoCLFy/if//7H4YPH15iGX379kV4eDgSExPVyrhz5w6WLVuGAQMGGFutCrN69Wr06dMHzs7OEAQB27dv17nvvn37EBQUBLlcDgcHB3Tp0gW3bt1S2yc+Ph6BgYGwsrKCt7c3PvnkE+0ZI03Es1dS/1i/XueXz6I5jM3DwvDOjRvo9OGHaB4Whk4ffogpycnwHzaM52UzVsU4pqnHtMRdu2Ahk2n/wmrESgq5mZkVW3HGmE41Oa5J5HJY2ttrXBA06mKgUgmYcFxmrLRKuuOt7UJVkRfefhsPU1L0TsN4lJpa5s++0T2fiIgIBAUFoXv37uKa2j179kSLFi3Qpk0bzJ49u8QyFi9eDGdnZ/j7+6Ndu3YAgLFjx8LX1xd2dnaIMKEr9xs2bEB6errOofNFvvvuO/Tv3x+dO3fG3r17sX79erRp0wa5ubniPn/++SdeeukluLu7Y+/evZg6dSrmzp2LTz/9tKKbUSra5maX9OVTbcmbiIgKX/KGMWYcjmnG5ZswdCWFysjcyxjTribGNXGqS3Y2zCwsNC8I8rKqjIl3vLO1dbYFQeuFqqLn/F57Db9FRZV6GoahjB5GLpVKsXv3bsTFxeHQoUNIT0+HQqFASEgIQkJCDCrDzs4O8fHx+O6773Do0CEoFAooFApMmjQJI0eOhFQqNbohFSU+Ph5mZmZITk7Ghg0btO7z4MEDTJo0CStWrMCbb74pbg8NDVXbb+nSpXB0dER0dDSkUim6deuGtLQ0LFy4EJMnT4ZMJqvQthhL69xslDxcvGjJm6LgruuPAGOs8nFM051v4tSSJRrx7u7589g9Zgz6lZB13NjMvTz/mlW2R6mpOBcZiYA33qhxa7LXtLimbaqLtguCxkzfq244RrKyklhZab9QhVJMwyiDUveCunTpgi5dupT6xBKJBGPGjMGYMWNKXUZlMDPgauC2bdugVCoxbtw4vfvFxsaif//+ahcThgwZgsWLFyMhIQGdO3cua3XLlZm5udZfwuJL3tTr0gW//t//8TJejFUTz2NMe5Saij82bkSHmTNLlW+iwUsvAUC5Zu7l+desspV2zmN1UJPimrb5pfVDQrReEDR0CUJTpa9DzTGSlVV+Tg5UBQVaL1QZOw2jLB3uKvkEvvjii1i9ejXSasiwu9OnT6Nx48ZYv349vL29YWFhgZYtWyI2Nlbc5/Hjx0hJSUHjxo3Vjm3cuDEEQcDVq1cru9olUimVOn8JL0ZH4//atMHjtDQeLs5YDVOTYhoRQe7sjA4zZ+qMaYbmm+DMvYxVX9Uhrmmdvgf901kub9+OPw8cgO2/Hdfq9H2sqENd0y7+MBNBhNzMTAS88YbmKNtKnIZRJZ9Cd3d3TJ8+HbVr18ZLL72EDRs24NGjR1VRlXJx584dJCYm4qOPPsL8+fMRGxuLunXrIjQ0FJcuXQIAZP6bPMfe3l7tWKlUCmtrazx48EBn+U+fPsXDhw/VfiqDYGam/Rf0X2mXL8PGzU1tuDh/+WSs+qspMe3Z5Tzu/vGHzphmTL4JztzLWPVTkXGtvGKarul7JV0Q9OnVC4KZWZVfDOSh38zUPE5Lg62HB0KjojT+9p/58kvUqlNH63PlOQ2jSibTbt++HdnZ2dixYwe2bt2K8ePHY+LEiejZsyfCwsLQp0+fSp/rR0RQ/ruONFCYHd3cwCEDKpUK2dnZ2LRpkzj3p3PnzvDx8cEnn3yic/6QoRYvXox58+aVqYzSEARB/AV99iprdZ8LxFhN97zHNG1DMdMuXcLrZ8+WKd8Ef5lkzxNTm+dtqnGtvGKarul7QOEFwbTLl/Hy558jOCICZubmWqezVOXFQB76zUxNQU4OBDMz+A8fjnrdumlMtRAEQedz5TUNo8rGl9jY2GDkyJHYt28fUlNT8dlnn+HBgwcYMmQIXF1dK70+x48fh0QiEX+0rSOui4ODAwCga9eu4jaJRIJOnTqJV0uLrpJmZWWpHZuXl4cnT55AoVDoLH/OnDnIysoSf1JSUgyuW1kV/YJOSU7mpbwYq0ae55imayhm8btDpY1pPOyRPU+yU1MRv3Sp9ky/VcBU41p5xTR90/eAwhiWdOQIQMTTWRgzgmBmJuZdeXbkmr7nyoNJpIl2dHTEiy++iJs3byIxMRF3796t9DoEBATgzJkz4mNbW1uDj23WrJnO54qWk5DL5ahTp47GfJ/ExEQQkcb8oOJkMlmVZvUt/ktYHomBGGMV73mOabqGYgL/3R0KXbNG790hY/Edb1bTiEtPPX4MVUEBiKjK/+6balwrr5hWNH1P28oIwH9zSHMzM3k6C2NGEgQBd86fx9qOHTHm5Em4t25t0HNlVaouu1KpRHx8PLZt24YNGzZo/Bjqr7/+wsKFC9G8eXO0aNEC69atw+DBgxEfH1+aapWJra0t2rRpI/74+voafGyfPn0AAIcPHxa35eXl4fjx4wgICBC39ezZE7t370Z+fr64bevWrbC3t0dQUFA5tKLiCIIgDqnkudmMmb7nOabpG4oJFN4dOr18OczMzfE/J6dyuTvEd7xZTfJsvoPj8+bh0T//lHm92bKq6XGt+PQ9fXNIH1ezBMPWTk5q/zJWlfRdqKqIi1hG39n+9ddf0b9/f6SkpICINJ4XBAEjR47UW8by5csRHR2Nc+fOwc7ODgMGDMDnn3+Ozp07G7R8Q2U6e/YskpOTxczpp0+fBgA4OzsjODgYANC6dWsMGDAAEyZMwIMHD+Du7o5Vq1bh7t27mDFjhljWjBkzsGnTJgwdOhRvvfUWLly4gKVLl2LhwoUmtbY4Y6zmqskx7VFqKn5bswYdZs0ybDmPggLk3L9fSbVjrHrQlu8AAE4tWYLQqCj4Dx9uclPIalJc0ze/tGgOaUFOToXXozzJnZ3V/mWsMkisrau6CoXISG3btiV/f386duwY3bt3jzIzMzV+SiKXy2no0KH0ww8/UF5enrFVqFSjRo0iABo/wcHBavtlZ2fT5MmTydnZmWQyGQUFBdGpU6c0yvvpp5+oXbt2JJPJyNPTkxYvXkwqlcqoOmVlZREAysrKKkvTGGPPoZoa01QqFSnz84mISKlUUlZKCn1sYUERgMbPxxYWlHXrFj1OS6MIgG6fO1fq8zJWXdw+d67E33eVSmXQZ8fYz3hFM7W4Vu4xLT9f7fy63kt977Gxx5SmLJ2unCMKQOG/jJWCMb+npfnslPRcWRh9Z/vSpUuIiYkRrxSWxr1792BtKlcbSrBu3TqsW7euxP3kcjm++OILfPHFF3r3CwoKEq+4MsZYZauJMY1UKjy6fRvnIiPx4K+/UOfFF/HCm2+WuJJCemJiFdaaMdOjL98BAKgKCnDu668RHBEBwcAs4JWhJsa1ipxDagjOQ8Gqo2e/DygaNChcTaEK1503urPt4+NT5jVRq0tHmzHGmGnTNuT14pYtuJWQgL7r19eooZiMVZSiKRidPvhAb74DV39/1AsJER9zwtSKV1WJ0HgZL1adWFhZGTQFxsLKqvLrZuwBn332GaZMmYIWLVrozTb7rFq1aiEuLg4BAQGwtbXVG5gFQdBYdoExxhgrjnQs8QUAFzZtQvqVKxh94gSvpMBYCbJTU3Fq8WK9+Q78hgxB3w0bkJ2aiuMRESZz14gZhu9UM1P3KDUV5yIjC2OKkb+ncmdnnd8HVAUF+GHcONTr1q1K8gYY3dl+++23cefOHfj5+cHDw0Nck7CIIAj4448/NI6bNm0a3P994aZNm8ZfdhhjjJVJSUNeU3/9FT8tWYLg8HCcWLgQrcaOVfsDzl8+GSu2xFd2NlQqldalp1z9/dF3wwZc2LwZe8aPrzaJ09h/+E41M3XZqak4Pm8efENDjetsCwIs7e1xfN68kqfAhIeXU20NZ3RnOyAgoFQd5fBijYvgDztjjLEyKmmJLwDIuHEDZhYW6PTBBxrP8ZdP9rwzNN9Bu6lT8eiffzQ62oD6XSNbDw++mfIcMPpCpZM78Hp44b+MlTOJlRXMLCwM/j5Q2UPJje5sG5KAoiRdu3bF6tWrtQ5Dv3btGiZOnIijR4+W+TyMMcZqLpVSadgSX0olzEwomRNjpsDgfAdJSWgeFoaTCxZUu8RprGIYfaHSyR14w4j9GTNCfk4OVAUFBi/5Wdn5WqpkvM+xY8d0Jll7+PAhTpw4Uck1YowxVt0IZmYIeOMNmFlov25sZmGBgIkTeWgrY88oKd/Bt23bwtLeHsHh4ej/3XewkMkMu2vEHW3GWGUjQm5mpkHfB3IzMyu3bijFnW0AyMzMxPbt23Ht2jXk5uZqPF/SkgoAdA4zio+Ph4uLS2mqxRhj5YKIQCoVzMzNoVIqIZiZ8dBIEyQIAmw9PEpc4ovfO8YKSf5dDcaYfAeLbGwwOzOTR5EwxkzW47Q0OPn6muSSn0Z3tq9fv46goCA8ffoUjx8/hrOzMx48eICCggI4ODjAzs5Oa2d78eLFWLx4MYDCL0hdunSB2TN3G54+fYqCggK89dZbpWwOY4yVjSmu0ch0E8zM4D98uN4lvhh73olJ0B4/hqqgwKh8Bx3mzEFBXp7WxGlFeBQJY6wqFeTkGPR9oCqW/DS6s/3ee++hXbt2iImJgVwux/79+9GiRQts3boV77//PmJiYrQeFxQUhGnTpoGI8PHHH2Po0KHw9PRU20cqlaJJkyZ45ZVXStcaxhgrA0PWaOQvk6ZHMDODrYcHL/HFmBYaFxAbNkTw3LkG36kuSi4osbTkUSSMMZNmit8HjO5s//LLL4iKioJMJgMA5OXlwdzcHGFhYUhPT8c777yDn376SeO44OBgBAcHAyi8s/3666/Dw8OjjNVnjLHyoW8OI2fbNX2CICA7LQ2/rVmjscQXY88rXRcQHerXR+vXXzfqTjWPImGMVQeCIODO+fNY27Ejxpw8CffWrau0PkZHxqdPn6JWrVowMzODQqHA7du3xef8/Pzw+++/l1hGeHg4d7QZYyalpDmMRdl2SaWq5JoxQ9m6u6PTBx9wR5sx6L+AePqzz2Dj7o7QqCiNhEL67lQXv2vUf9MmBIeH8xSbas7oZbwYqyJFOScMlf/kSQXVxDhG39n28fHBzZs3AQCtWrXC6tWr0b17d1hYWCAyMtLgTvSff/6JdevW6Uyy9sMPPxhbNcYYKzWD5zBy8h/GmAl4lJqKc5GRhTkltHSU9F1AvHv+PHaNHIl+GzcafaeaR5HULEYv48VYJXs25wQRqV0INLYTXtmM7mwPGTIEv//+O0aMGIH58+fjpZdegoODAwRBABFh/fr1JZZx5swZBAcHw9vbG9euXYO/vz+ysrKQnJwMT09PNGzYsFSNYYyx0uI1mxlj1Ul2aiqOz5sH39BQrR3eki4gXoyOhn3duui6aJHR8xuLRpEwxlhF0pe0FoKgtxNuKkqVIK1I+/btcfHiRcTGxiI3Nxddu3aFn59fiWXMnDkTgwcPRlRUFCQSCaKiotC6dWvEx8dj6NChmDVrlrHVYoyxUnmUmorf1qxB+3ff5Wy7jLEaw5ALiGYWFiCVCndNaH4jY4wBunNOZCQloe/69ciuJivHlLk2derUwYQJE/DOO+8Y1NEGgD/++ANDhw4Vl/4qGkYeFBSEiIgIzJ49u6zVYoyxEhER5M7O6PTBB7CQSsU1m42Zw8gYY6ZIMDNDwBtvaMSzIs9eQDSV+Y2MsedX0ZBwXTknXP398eratTj/3Xf4vF49nFiwABe3bMGJBQvweb16OP/ddyCVChZWVlXVBA1G39kGgPz8fERFReHMmTNISUnBqlWr0KhRI2zduhX+/v5o0qSJ3uMFQYBUKoUgCHBxccHNmzcRFBQEAPD09MS1a9dKUy3GGDOYtqFJ7aZO5Wy7jLFqQ99cRUEQxAuIJS3XxUmyGGNVSWNeto6cE+2mTsWjf/7BnvHj9a4cI3d2rszq62V0Z/vGjRsICQlBeno6WrVqhVOnTuHRo0cAgBMnTuDHH3/E2rVr9ZbRtGlT/PXXX+jSpQsCAwPx6aefonnz5pBIJFiyZAkalDDsiTHGjEFEIJUKZubmUCmVEARB53rag3fsgE/v3giOiPhvfzMzvqPNGDMZJSUMKmLocl2cJIsxVlWevfnh1LgxgufO1cw5IQjwe+01nFq8uMSVY4LDwyuh5oYxurP9zjvvwNnZGb/88gvs7e0hlUrF54KDgzFnzpwSy5gwYYKY0XzRokXo0aMHWrRoAQCQy+XYvn27sdVijDGtng3iQdOnQ+7ionM97W39+2NKcnJh8g2Ak6ExxkyKvoRB2kbfFF+uy5gkaIwxVtG0zssWBARNn66Rc0JiZQWJtbVhK8dYWJjMUHKjO9vHjh3Dli1b4OTkBKVSqfacm5sbUlNTSyxjxIgR4v+bNGmCK1euICEhATk5OWjfvj1cXFyMrRZjjGnQCOKCgNBvvzXsqmhEBATuaDPGTIiuhEGnlixBaFQU/IcP197hFgTc4SRojDETomteNohwcetWtBo3Ti1pbX5ODvKfPDFs5ZiCAhTk5FRk9Q1m9ARECwsLEJHW5+7evQsbGxujK2FjY4Pu3bsjNDSUO9qMsXKhLYgbdVWUO9qMMROi84sp/pur+Cg1Ved3NICToDHGTIeuedkA8POKFbCtXRuvfPvtf0kei3XCS0r8mJuZWYE1N47Rd7aDg4Px6aefomfPnmI28aI1tr/55ht069ZN63E7duww6jz9+/c3tmqMMSbSFsSNuirK62kzxkyIvi+mAI/KeZ5wQjtWE5iZm+u8+XH3/HnsGjkS/TZuRP2QEDHnRP6TJ7Dz8iox8WN6YmJlNaNERne2P/nkEwQFBaFp06YIDQ2FIAhYtWoVLl68iOvXr+OXX37RetzAgQMNPocgCBpD1Nl/iq5aP3z4sIprwphpu3X1KnKLbyDC6XXr0GDwYBxevBgqLXHGzNwcjYYNw6Ps7Cqd02hra/vczKnkmMaYYTRi2jP+SUxE9uPHWp97lJ2N3H//lVfRZ+15iWvlFdN0vmdyOVq/9x7omXOYwnvMmKFUSiVknp46Y9rZ6Gg4BASg9fjxaPXuu2LOiYePHqFuaCjGXLiA39esQWZyMuzr1kXLsWNh6+aGR9nZyEhL0/pZ0PcZKc3nx5CYJpC+8UY6JCUlISIiAocOHUJ6ejoUCgVCQkIwb948nZnEixKiGcrb29vYaj03bt26hTp16lR1NRhjFSgrKwu1atWq6mpUCo5pjD0fnpe4xjGNseeDITGtVJ1tVrVUKhVu375dIVeIHz58iDp16iAlJaXa/0GsKW3hdpiWymrH83IHCKjYmAbw756pqSntAGpOWziulS+OaYapKe0Aak5buB3GMeQzbvQw8vL0448/4syZM0hJScGHH34ILy8vnDhxAg0bNoTHv8vuME1mZmbw9PSs0HPUqlWrWn/IiqspbeF2mJaa0g5TUBkxDag57xm3w/TUlLbUlHZUNY5pxqkp7QBqTlu4HeXHoM722LFjDS5QEARERUXp3SctLQ19+/bF6dOnxasOEydOhJeXF9asWQO5XI5Vq1YZfE7GGGOMMcYYY8yUGNTZXrduHWxtbdGgQQO9S0oAMGi4zNSpU5GWloaLFy+iUaNGkEql4nMhISFYsGCBIdVijDHGGGOMMcZMkkGd7cDAQJw+fRpKpRJhYWEYMmRImRKY7du3D//3f/+HJk2aaGQdr1OnDm7dulXqslnZyGQyhIeHQyaTVXVVyqymtIXbYVpqSjueJzXlPeN2mJ6a0paa0o7nRU15v2pKO4Ca0xZuR/kzOEHa33//jejoaGzevBkXLlxAYGAgwsLCMHjwYDg5ORl1UhsbG2zbtg29evWCUqmERCLB2bNn0bp1a+zatQtjx47FgwcPStUgxhhjjDHGGGOsqpkZuqOXlxdmzpyJ33//HRcuXECXLl2wYsUKeHh4oGfPnoiNjTX4pO3atcOaNWu0PhcdHY0XX3zR4LIYY4wxxhhjjDFTU6alv3JzczF37lwsX74coaGh2LFjh0HHJSQkoEuXLmjbti0GDhyId999Fx988AGuXLmCffv24dSpU2jdunVpq8UYY4wxxhhjjFUpozvbSqUSBw8eRHR0NHbv3g0LCwsMGDAA48ePxwsvvGBwOQkJCZg9ezbi4+OhVCohCAICAwOxdOlSBAYGGt0QxhhjjDHGGGPMVBg8jPzEiRN488034erqisGDB0OpVGLTpk24c+cOIiMjDe5o5+XlYceOHXB1dcXx48fx8OFD3Lp1C48ePcKpU6e4o12BVq9ejT59+sDZ2RmCIGD79u069923bx+CgoIgl8vh4OCALl26aCSui4+PR2BgIKysrODt7Y1PPvmkxGz1FeX+/fvi8nFyuRx+fn74+uuvNfa7ffs2BgwYAFtbWygUCowfPx4PHz6sghqX7OrVq+jevTvkcjnc3Nwwc+ZM5OXlVXW1SvTDDz+gXbt2sLW1hbu7OwYPHowbN25o7BcVFQUfHx9YWlqiRYsW2Lt3bxXUttCff/6JiRMnomXLlrCwsICfn5/W/TIzM/HOO+/Aw8MDlpaWaNCgAT799FO1ffLy8jBjxgy4ublBLpeje/fuSExMrIxmPHc4pnFMqwwc0zimVSaOaxzXKhrHtEqOaWQAT09PsrS0pH79+tG2bdsoJyfHkMN0kslkFBcXV6YymPHatWtH7dq1o5EjRxIAiomJ0brfxo0bSSqV0pw5c+jo0aO0e/dumj59Ol2/fl3c5/r162RjY0P9+vWjw4cP0/Lly0kqldLSpUsrqzlqunTpQu7u7rR27Vo6cuQITZs2jQDQN998I+6Tl5dHfn5+5OfnRz/88ANFR0eTp6cn9e7du0rqrM+DBw/I3d2dOnXqRD/++CNFRUWRnZ0dTZo0qaqrpldcXByZmZnR6NGj6dChQxQdHU0+Pj7UoEEDevLkibjfli1bSBAE+vDDD+no0aP0xhtvkIWFBSUkJFRJvXft2kWenp40YMAAat68OTVr1kxjn+zsbGrRogUFBARQdHQ0xcXFUWRkpMbv/BtvvEF2dnYUFRVFP/74I3Xs2JFq165NmZmZldWc5wbHNI5pFY1jGse0ysZxjeNaReKYVvkxzaDOtiAIJJVKycbGhmxtbfX+1KpVq8TyWrRoQevXry9z5ZlxlEolERElJSXpDOD379+nWrVq0erVq/WWNWHCBPL29qanT5+K2+bMmUP29vaUm5tbvhUvQWpqKgGgtWvXqm3v1KkTde3aVXy8efNmEgSBrl69Km47cOAAAaCff/65sqprkEWLFpFcLqf79++L2yIjI8nc3Jz++eefKqyZfm+88QbVq1ePVCqVuO3o0aMEgE6cOCFu8/HxoaFDh6odGxgYSD179qy0uhZX9NkgIho1apTWIP7hhx9S/fr1KTs7W2c5KSkpZG5uTpGRkeK2+/fvk1wup08++aR8K804pnFMq3Ac0zimVTaOaxzXKhLHtMqPaQYNIw8PD8f777+P6dOnY9q0aXp/3nvvvRLLW7x4MRYsWICzZ88aeR+elYWZWclv97Zt26BUKjFu3Di9+8XGxqJv376QSqXitiFDhiAzMxMJCQllrqsx8vPzAQB2dnZq2+3s7NSGSsXGxsLf3x++vr7itu7du0OhUGD//v2VU1kDxcbGIiQkBAqFQtw2ePBgqFQqHDx4sAprpl9+fj5sbW0hCIK4reh9KXovbty4gWvXrmHw4MFqxw4ZMgRHjhzB06dPK6/C/zLks/Htt99i7NixkMvlOvc5ePAgVCoVBg0aJG5TKBTo0aOHyf2O1QQc0zimVTSOaRzTKhvHNY5rFYljWuXHNIM728b8lGTmzJm4f/8+2rVrBxcXFzRv3hz+/v7iT4sWLcrcMFY6p0+fRuPGjbF+/Xp4e3vDwsICLVu2VFva7fHjx0hJSUHjxo3Vjm3cuDEEQcDVq1crtc516tRBjx49sGjRIly+fBmPHj3Ctm3bcPDgQUyaNEnc7+rVqxp1FgQBjRs3rvQ6l0RbXe3t7eHu7m5ydS1u9OjRuHz5MlavXo2srCzcuHED77//Plq1aiUu6VdU/2fb16RJE+Tl5SEpKanS612S5ORk3LlzB05OTggNDYVMJoNCocDrr7+O7Oxscb+rV6/CxcUFDg4Oasc3adLEpN+3moxjmmngmGZaOKZVbxzXTEN1jGsc0yo/pllUSKklCAgIQJs2bari1KwEd+7cQWJiIj766CP873//g7u7O1atWoXQ0FD8/vvvaNasGTIzMwEUBpTipFIprK2t8eDBg0qv944dO/Daa6+hWbNmAABzc3OsXLkSAwYMEPfJyMjQqDMAODg4VEmd9alOdS2uY8eO2LlzJ8LCwsQ/ni1btsSPP/4Ic3NzAIVtAzR/f4oCnym2786dOwCA6dOno3///ti/fz+uX7+O2bNnIzs7G1u2bAFQfd+3moxjmmmoTnUtjmNa9XzfajqOa6ahOtW1CMe0yn/PqqSzvW7duqo47XODiKBUKsXHgiCIH6CSqFQqZGdnY9OmTQgNDQUAdO7cGT4+Pvjkk0+wYcOGCqmzobS1zczMDGPGjMH169exefNmuLu749ChQ5g6dSocHBwwZMiQKqzx8yU+Ph4jRozA66+/jj59+uD+/fuYP38+evfujZMnT8LKyqqqq1gqKpUKAODj44P169cDALp16wYLCwu8/vrrWLhwIerXr1+VVazROKZxTKsqHNNYReG4xnGtKnBMq3xV0tlmFev48ePo0qWL+Dg4OBjHjh0z6Niiq1Zdu3YVt0kkEnTq1AkXL14E8N+VrqysLLVj8/Ly8OTJE7W5K+VNW9umT5+OmJgYnD9/Hs2bNwdQ+Efn3r17mDZtmhjAHRwcNOoMFF7lqlOnToXVuTT01bUiX9+yeuedd9C1a1e1ZRbat28PLy8vbNy4ERMmTBB/x7KysuDm5ibuV3Ql1RTbV1Tn4r97QGEgB4BLly6hfv361fZ9M3Uc0zimVRWOadXzfasOOK5xXKsKHNMq/z3jznYNFBAQgDNnzoiPbW1tDT62aGiPNrm5uQAAuVyOOnXqaMxtSExMBBFpzPEoT9ratnv3bpibm2usudeqVSt8++23ePLkCaytrdG4cWNcuHBBbR8iQmJiIrp3715hdS4NbXOTsrKykJqaWqGvb1ldvnwZr776qto2T09PODk54a+//gLw3xygq1evqiVAuXr1KqRSqUneTWnQoAFkMpnO54s+G40bN8bdu3eRkZGhNh9I27wuZjiOaYU4plU+jmkc0yoKx7VCHNcqF8e0yo9pBiVIY9WLra0t2rRpI/4U/6CUpE+fPgCAw4cPi9vy8vJw/PhxBAQEiNt69uyJ3bt3i9klAWDr1q2wt7dHUFBQObRCO21t8/b2hlKpxPnz59X2PXfuHFxcXGBtbS3W+Y8//sD169fFfY4cOYL79++jV69eFVbn0ujZsycOHz4szrkCgJiYGJiZmaFHjx5VV7ESeHt749dff1XbdvPmTaSnp6Nu3boAgPr168PHxwcxMTFq+23duhXdunVTy5pqKqRSKXr06IEjR46obT906BAAoHXr1gCAHj16wMzMDN9//724T0ZGBg4ePGhyv2PVCce0QhzTKh/HNI5pFYXjWiGOa5WLY1oVxLQKWVCMmaQzZ85QTEwMrV69mgDQtGnTKCYmho4dO6a234ABA8jZ2ZmioqJo//791Lt3b7K0tKTz58+L+1y/fp3kcjkNGDCAjhw5QitWrCCpVKqxcHxlePjwIXl5eVHDhg1p48aNdPjwYZo5cyaZmZnR/Pnzxf3y8vLIz8+PmjdvTnv27KGtW7dSnTp1qHfv3pVe55I8ePCA3N3dKTg4mA4cOEBr1qwhe3t7mjRpUlVXTa8VK1YQAHrnnXfo0KFDFB0dTX5+fuTq6krp6enifkXraM6dO5fi4uJo4sSJZGFhQfHx8VVS78ePH1NMTAzFxMRQ586dqU6dOuLje/fuERHR2bNnSSqVUlhYGB04cIC+/PJLsrW1pWHDhqmV9cYbb5C9vT2tWbOGDhw4QMHBwVS7dm3KzMysiqbVaBzTOKZVNI5pHNMqG8c1jmsViWNa5cc07mw/R0aNGkUANH6Cg4PV9svOzqbJkyeTs7MzyWQyCgoKolOnTmmU99NPP1G7du1IJpORp6cnLV68mFQqVSW1Rt3169dp8ODB5OHhQdbW1tSsWTNasWIFFRQUqO1369Yt6t+/P9nY2JC9vT2NHTuWsrKyqqTOJbl8+TJ169aNrKysyMXFhaZPn05Pnz6t6mrppVKp6KuvviJ/f3+Sy+Xk5uZG/fr1oytXrmjs++2331LDhg1JKpWKf1SrSlJSktbPBgCKi4sT9zt8+DC1adOGZDIZubm50bRp0yg3N1etrNzcXJo2bRq5uLiQlZUVhYSEaG0/KzuOaRzTKhrHNI5plY3jGse1isQxrfJjmkBUbCV5xhhjjDHGGGOMlRnP2WaMMcYYY4wxxsoZd7YZY4wxxhhjjLFyxp1txhhjjDHGGGOsnHFnmzHGGGOMMcYYK2fc2WaMMcYYY4wxxsoZd7YZY4wxxhhjjLFyxp1txhhjjDHGGGOsnHFnmxkkIiICgiCgdu3aUKlUGs+/+OKLEAQBo0ePNqrczMxMRERE4PLly2rbk5OTIQgCtm/fXpZql9mKFSsgCIL4+NixYxAEAWfPnq20OkRERCA+Pl5juyAIWLZsWaXVQ5tdu3ZBEAQkJycDKN37tmLFCuzfv7+CasiYdhzTCnFMU8cxjVVnHNcKcVxTx3GtanFnmxlMIpEgPT0dJ06cUNt+8+ZNJCQkwMbGxugyMzMzMW/ePI0A7u7ujoSEBHTt2rVMdS5vrVu3RkJCApo0aVJp55w3b57WAJ6QkIBhw4ZVWj0MUZr3jQM4qyoc0zimlYRjGqtuOK5xXCsJx7XKZVHVFWDVh1QqRUhICLZs2YLOnTuL26Ojo9GsWTOYm5uX27lkMhnat29fbuWVl1q1apVYr5ycHFhZWVV4XUzx9THV940xbTimcUwriam+b4zpwnGN41pJTPV9q6n4zjYzytChQ7F9+3bk5+eL2zZv3oywsDCt+584cQJBQUGwsrKCk5MTxo4diwcPHgAoHMZSr149AMCgQYMgCII4zEXbEBeVSoUFCxagbt26kMlkaNy4MSIjI9XOFxERARsbG1y4cAEdOnSAtbU1/Pz8cODAgRLb9vDhQ4wcORK2trZwdnbGzJkzUVBQoLaPtqFJgiBgyZIlmDVrFtzc3ODi4gIAICIsW7YMPj4+kMlkqF+/Pj777DON8165cgX9+/eHQqGAtbU1WrRogS1btohlA8CMGTPE1+fYsWPic88OTYqMjISvry9kMhnq1q2LBQsWqA0lW7duHQRBwG+//YaePXtCLpejUaNG2LBhQ4mvT35+PqZOnQqFQgE7OzuMGzcO2dnZavtoe99++OEHtGnTBjY2NrC3t0ebNm3Eq6N169bFzZs3sWrVKrF969atAwBs2LABHTp0gEKhgIODAzp37oxffvlF7XzGvN8bNmxAq1atYGlpCScnJ/Tq1Qs3b94Un7916xaGDx8OJycnWFlZoVOnTjh37lyJrwur3jimcUzjmMZqGo5rHNc4rpkO7mwzo7zyyit4+vQpDh48CAC4fPkyzp8/jyFDhmjse+7cOXTv3h22traIiYnBJ598gj179qBnz55QKpVwd3fHjh07AACLFi1CQkICEhIS4O7urvXcM2bMQEREBEaPHo09e/agR48emDhxIr788ku1/fLz8zFs2DCMHj0aO3fuhIuLCwYMGID79+/rbdvYsWOxc+dOLFmyBOvXr8fly5exYsUKg16Xzz//HNeuXUNUVBS+++47AMCUKVMwd+5cjBo1Cvv27cPo0aMxa9YsfP311+Jx169fR2BgIK5fv44vvvgCP/zwA8aMGYO///4bQOHwIwCYPHmy+Pq0bt1aax1WrlyJiRMn4qWXXsKePXswevRoREREYObMmRr7Dhs2DD169MCuXbvQqlUrjB49GleuXNHbxjlz5mD16tWYMWMGtm3bBqVSidmzZ+s95q+//sLAgQPRrFkz7Ny5E1u3bsXgwYORkZEBANi5cyfc3NwwcOBAsX29e/cGUPjHYOTIkYiJicHmzZvh5eWFTp064dq1a2rnMOT9Xrp0KUaNGoWAgADs2LEDUVFRaNSoEdLS0gAAGRkZ6NChA37//XesXLkS33//PeRyObp27Yp79+7pbSOr3jimaccxTTuOaaw64LimHcc17TiuVTBizADh4eEkl8uJiCgsLIyGDx9OREQffvghBQYGEhFRixYtaNSoUeIx/fr1Iy8vL8rLyxO3HThwgADQDz/8QERESUlJBIBiYmLUzvfs9rS0NJJIJDR79my1/YYOHUrOzs5UUFAg1hMA7du3T6OsjRs36mzfpUuXSBAEioqKErcVFBRQvXr1qPjHJC4ujgDQmTNnxG0AqGnTpqRSqcRtf/75JwmCQJGRkWrnmTVrFrm5uZFSqRRfS2dnZ8rKytJZNwC0dOlSvdsLCgrIycmJhgwZorbPnDlzSCqVUnp6OhERrV27lgDQqlWrxH2ys7PJ2tqa5s+fr7MO9+/fJysrK/roo4/Utnfq1IkAUFJSEhFpvm8xMTEEgB4+fKizbG9vb5o0aZLO54mIlEol5efnk6+vL82ZM0fcbsj7nZmZSdbW1jRhwgSd5c+dO5fs7Ozo7t274rbc3Fzy8vKiGTNm6K0bq544phXimMYxjdUcHNcKcVzjuGZK+M42M9rQoUOxe/du5OTkIDo6GkOHDtW638mTJ/Hqq69CIpGI23r06AF7e3ucOnXKqHP+/PPPyM/Px6BBg9S2v/baa0hLS1O7gmZmZoaQkBDxcd26dWFlZYVbt27pLP/MmTMgIvTr10/cZm5ujr59+xpUv549e6plwjx8+DAAYMCAASgoKBB/QkJCcOfOHaSkpAAAjhw5goEDB6JWrVoGnUeXq1evIj09Xevrk5eXpzGkp0ePHuL/5XI5vL299b4+Fy5cQE5OjtrrU9Q+ffz9/WFubo6wsDDs2bMHWVlZhjYJV65cQb9+/eDq6gpzc3NIJBIkJiZqXC0t6f1OSEjAkydPMG7cOJ3nOnjwILp06QKFQiG+V+bm5ggODsaZM2cMrjOrnjimaeKYph3HNFZdcFzTxHFNO45rFYsTpDGjvfTSS5BIJJg7dy6SkpIwePBgrftlZGTA1dVVY7urq6s4F8hQRUNZni2v6HHx8qysrCCVStX2k0qlyM3N1Vl+amoqJBIJHBwctJZfkmf3S09PBxHByclJ6/4pKSnw9vbG/fv34eHhYdA59DHm9QEAe3t7tceGvD4AxDlOz5avi4+PD/bu3YtFixahX79+MDMzw8svv4wvv/wSXl5eOo979OgRevToAWdnZyxfvhze3t6wtLTE+PHjNepZ0vtdNERJ3+ucnp6O06dPq33ZKNKgQQO9bWTVH8c0TRzTtOOYxqoLjmuaOK5px3GtYnFnmxlNIpFgwIABWL58Obp166bzQ6xQKLTOobh79y4UCoVR5yza/969e6hdu7ZaWcWfLy13d3fk5+cjIyNDLYgXlV+S4ldKi+ojCAJOnTqlEVwAwNfXFwDg6OiI27dvl6Hm/50PgMbrXZ6vT1H52l5/fV5++WW8/PLLePjwIX788Ue8++67GDNmDI4cOaLzmISEBNy6dQt79+5FixYtxO1ZWVnw9PQ0qu6Ojo4AgNu3b+s8VqFQ4OWXX8b8+fM1npPJZEadj1U/HNM0cUzTjWMaqw44rmniuKYbx7WKw8PIWamMHz8er7zyCqZMmaJznw4dOmDXrl1qWSIPHTqEzMxMdOjQAQDE4KbvSh0AtG3bFhKJBDExMWrbt23bBhcXF/j4+JS2KQCAF154AUBhEogiSqUSu3btKlV53bp1A1B4pa5NmzYaP7a2tgCAkJAQbN++HY8ePdJZlkQiKfH18fX1hbOzs9bXRyqVom3btqVqR5HmzZvDyspK7fUBgO+//97gMmrVqoXBgwdjyJAhagk+tF2pzcnJEZ8rEh8fj+TkZKPrHhgYCGtra6xdu1bnPiEhIbh8+TKaNGmi8V41b97c6HOy6odjmn4c0zRxTGOmjuOafhzXNHFcK398Z5uVStu2bUsMbh988AGCgoLQp08fTJ48GXfv3sXs2bPRtm1b9OrVCwDg5uYGe3t7bNmyBfXq1YNMJoO/v79GWU5OTpg8eTKWLl0KS0tLtG/fHvv378fmzZuxcuXKMq8b2bRpU/Tr1w9Tp05Fbm4u6tati9WrVyMvL69U5fn4+GDSpEkYMWIEZsyYgXbt2iE/Px/Xrl1DXFyc+NqFh4dj79696NChA2bOnAl3d3dcvnwZT548ETNTNmnSBLt370bHjh0hl8vh6+sr/gEoYm5ujo8++gjvvPMOXFxc0KtXL5w+fRqffPIJpk6dKl4xLC2FQoGJEydiyZIlsLKyQuvWrbFlyxb89ddfeo+LjIxEQkICXn75Zbi7uyMpKQnfffed2jykJk2a4OjRozh06BAcHBxQr149tG/fHjY2Npg0aRJmz56Nf/75B+Hh4WpXag1lZ2eH8PBwzJo1CyqVCq+++ipUKhXi4uIwdOhQtGnTBu+99x42bdqE4OBgTJkyBV5eXkhLS8PPP/8MDw8PvPvuu0afl1UvHNP045hWiGMaq044runHca0Qx7UKVpXZ2Vj1UTzDpS7PZrgkIjp27BgFBgaSTCYjhUJBo0ePpvv376vts3PnTmrSpAnJZDIxW6K2zJdKpZI+/vhj8vLyIolEQo0aNaKvv/7aoHra2dlReHi43vpnZGTQsGHDSC6Xk6OjI7333nu0dOlSgzJcastAqVKpaOXKleTn50dSqZQUCgUFBgbS8uXL1fa7dOkShYaGUq1atcja2ppatmxJ0dHR4vMnT56k1q1bk5WVFQGguLg4nef96quvqFGjRiSRSMjLy4vmz58vZtMk+i/DZVpamtpx2t67Zz19+pQmT55M9vb2VKtWLRo1ahRt3LhRb4bL+Ph46t27N7m7u5NUKiUvLy+aMmWKWsbLixcvUseOHcnW1pYA0Nq1a4mIKDY2lpo1a0aWlpbk7+9P+/fvp+DgYOrdu7d4rDHv95o1a6h58+YklUrJ0dGR+vTpQzdv3hSfT01NpXHjxol19fT0pIEDB9JPP/2k93Vh1RPHtEIc0zimsZqD41ohjmsc10yJQERU4T16xhhjjDHGGGPsOcJzthljjDHGGGOMsXLGnW3GGGOMMcYYY6yccWebMcYYY4wxxhgrZ9zZZowxxhhjjDHGyhl3thljjDHGGGOMsXLGnW1WYZKTkyEIArZv327UcceOHcOiRYs0tkdERMDGxqa8qleiFStWYP/+/eVW3q5du7B69WqN7aNHj4afn1+5nae8Vfbrzpgp47imjuMaY9UbxzR1HNNYeePONjM5ugL4+PHjERcXV2n1qKwAbuoq+3VnrCbiuGZaOK4xVjYc00wLxzTTZVHVFWDVCxEhLy8PMpms0s/t6ekJT0/PSj/v8+rp06eQSCTl9roXlWdmxtf4mGnhuPb84LjGngcc054fHNNMH7+STK+iYTP79+9HixYtIJPJsGfPHgBAQkICunbtCrlcDjs7O4SFheHevXt6y9uwYQM6dOgAhUIBBwcHdO7cGb/88ov4fEREBObNm4fHjx9DEAQIgoDOnTuLzxUNkXn8+DHkcjmWLVumcY6BAwciMDBQfJyZmYm33noL7u7ukMlkCAgIwMGDB/XWs27durh58yZWrVol1mPdunUAAJVKhQULFqBu3bqQyWRo3LgxIiMjS3wd169fj0uXLonljR49Wm2fY8eOoVWrVpDL5Wjbti3OnTun9jwRYdmyZfDx8YFMJkP9+vXx2Wef6T1v0bn9/PwQGxsLPz8/WFpaIiAgAKdPn9Zo89tvv43//e9/8Pb2hpWVFR48eKB1aNLNmzcxcOBA2NnZQS6X46WXXsKFCxcMKk9fHQ8fPgx/f39YWVkhODgYycnJePDgAQYPHoxatWqhQYMG2Lp1q8bx+/btQ7t27WBlZQVnZ2e8+eabePz4sfj848eP8fbbb8PX1xfW1taoW7cuJk6ciKysLK11XrVqFby9vWFnZ4e+ffsiLS2txNeZVR8c1ziucVzjuFaTcEzjmMYxzYRjGjGmx6hRo8jBwYEaNGhAa9eupSNHjtD169cpPj6epFIp9e3bl/bs2UPR0dHUsGFDat++vXhsUlISAaCYmBhx27x58ygyMpIOHz5M+/fvpxEjRpBMJqPExEQiIkpJSaFx48aRlZUVJSQkUEJCAl26dImIiMLDw0kul4tlDRkyhAICAtTq+/DhQ7K0tKQvvviCiIiePn1Kbdq0oTp16lBUVBT9+OOPNHz4cLKwsKDz58/rbPevv/5Kbm5uNHDgQLEe9+7dIyKi9957j8zNzSk8PJwOHDhAkydPJgC0cuVKneX9+eef1KtXL6pfv75Y3p9//im+xo6OjtS8eXPatGkT7d27l5o3b0516tShvLw8sYzJkyeTlZUVLViwgA4dOkTz5s0jiURCX331VYnvoUKhoLp169K6deto9+7dFBgYSLVq1aK7d++K+3l7e5Obmxt17NiRdu7cST/88AM9efJE43V/+PAh1a1bl+rXr0+bN2+mHTt2UEBAANnb29Pff/9dYnm66ujo6Ej+/v4UHR1N33//PdWuXZuCgoIoJCSEPv74Yzp48CANGjSILCwsKDk5WTw2JiaGzMzMaNy4cRQbG0tr1qwhFxcXeu2118R97t27RxMnTqSYmBg6duwYbdy4kRo3bkydO3dWq4e3tzfVqVOHevToQXv27KG1a9eSvb29Wlms+uO4xnGN4xrHtZqEYxrHNI5pphvTuLPN9Bo1ahQBoNOnT6tt79SpEwUFBZFKpRK3Xbp0iQRBoH379hGR9gBenFKppPz8fPL19aU5c+aI258NGLq27969mwDQtWvXxG3r168nc3NzunPnDhERrVmzhiwsLMQ/AkXatWtHgwYN0tt2b29vmjRpktq2tLQ0kkgkNHv2bLXtQ4cOJWdnZyooKNBZ3qhRo6hZs2ZatwuCQBcvXhS3xcXFEQA6efIkERX+ARAEgSIjI9WOnTVrFrm5uZFSqdR7XgB05MgRcVtmZibZ2tqqtcPb25scHR0pOztb7fhnX/fPP/+cBEGgy5cvi9vu379Pcrmc3nvvvRLL01XHZ1+DlStXEgCaNWuWuC0jI4PMzc1pxYoVRESkUqnI29ubhg4dqlZebGysRnnF5efn06lTpwiA+OWhqM6enp6Um5ur1n6JRKL3NWbVC8c1jmsc1ziu1SQc0zimcUwz3ZjGw8hZiRwdHdGuXTvx8ZMnT/DTTz9h0KBBUCqVKCgoQEFBAXx8fFCnTh2cOXNGZ1lXrlxBv3794OrqCnNzc0gkEiQmJuLatWtG1+vll1+Gvb09oqOjxW3R0dHo0qULXF1dAQAHDx5E8+bN4ePjI9azoKAA3bt311tPXX7++Wfk5+dj0KBBattfe+01pKWllaodAODh4YFmzZqJj5s2bQoAuHXrFgDg8OHDAIABAwaotSMkJAR37txBSkqK3vLt7OzQtWtXtcchISH4+eef1fbr3Lkz5HK53rJOnjwJPz8/NGnSRNymUCjQvXt3nDp1yujyijz7Gvj4+AAAQkJCxG329vZwcXER23vt2jXcvHkTgwcPVntdgoODYWZmhrNnz4rHbty4Ea1atYKNjQ0kEgk6dOggllFccHCw2jy3pk2bIj8/v8Rhd6x64bj2H45rHNdY9ccx7T8c0zimmRLubLMSFQXDIhkZGVAqlXj33XchkUjUfv7++2+dweTRo0fo0aMHbt68ieXLl+PkyZM4c+YMWrRogdzcXKPrJZVKMWDAADGA379/H4cOHUJYWJi4T3p6On777TeNei5YsKDEoKdNRkYGAM3XpOixrnkuJbG3t1d7LJVKAUB8XdLT00FEcHJyUmtH9+7dAaDEtjg7O2tsc3V1RWpqqtZ26JORkaF1P1dXV432G1JeEV2vgbbtxV8XAOjXr5/a62JtbQ2lUim+Ljt37sTIkSPRtm1bbNu2DadPn8bOnTsBQON3r6T3gtUMHNfU2w5wXOO4xqozjmnqbQc4pnFMMw2cjZyVSBAEtcf29vYQBAHvv/8++vbtq7G/k5OT1nISEhJw69Yt7N27Fy1atBC3Z2VllTqD4tChQxEVFYXz588jISEB5ubm6N+/v/i8QqGAv78/oqKiSlX+sxQKBQDg3r17qF27trj97t27as+XN4VCAUEQcOrUKTGgFOfr66v3eG1JI+7evQt3d3e1bc++17rqkpiYqLW8Z9tvSHllUXS+L7/8Uu2KfhEPDw8AQExMDFq2bKmWHOX48eMVWjdm2jiu/YfjGsc1Vv1xTPsPxzSOaaaEO9vMaHK5HIGBgbhy5QoWLFhg8HE5OTkAoBaA4uPjkZycrDYkRSqV4unTpwaV2blzZ7i5uWHLli1ISEhAz549YWdnJz4fEhKC/fv3w8PDQ/wwG6r4Vbkibdu2hUQiQUxMDFq1aiVu37ZtG1xcXMThNIaWZ6hu3boBKLwi/Morrxh9fFZWFo4ePSoOT8rKysLhw4cxadIko8vq0KEDtm/fjsTERPEPR0ZGBg4fPowJEyYYXV5ZNG7cGJ6enrhx44betuTk5Gj84du0aVNFV49VIxzXOK5xXGM1Ccc0jmkc00wDd7ZZqSxduhRdu3bFa6+9hiFDhsDBwQG3bt3CoUOHMGbMGHEJiOLat28PGxsbTJo0CbNnz8Y///yD8PBwtauOANCkSRMUFBTg888/R1BQEGrVqqXzaqC5uTkGDx6MdevW4d69e2pzggBg5MiRiIyMROfOnTF9+nT4+PggMzMTv/32G/Ly8rB48WKdbWzSpAmOHj2KQ4cOwcHBAfXq1YOTkxMmT56MpUuXwtLSEu3bt8f+/fuxefNmrFy5Eubm5nrLW7NmDbZs2YJGjRrByckJdevW1f0iF+Pj44NJkyZhxIgRmDFjBtq1a4f8/Hxcu3YNcXFx2LVrl97jFQoFxo0bh3nz5sHe3h5LliwBEWHq1KkGnb+4MWPG4LPPPkPv3r2xYMECWFpaYuHChbCwsChVeWUhCAKWL1+OsLAwPH78GL1794ZcLsfNmzexb98+LFq0CD4+PujevTsmTZqE+fPnIzAwEPv378eRI0cqta7M9HFc47jGcY3VJBzTOKZxTDMBVZmdjZk+XVkZiYjOnDlDvXr1Ijs7O7KysqJGjRrRxIkTKSUlhYi0Z7iMjY2lZs2akaWlJfn7+9P+/fspODiYevfuLe6Tn59Pb731Frm6upIgCBQcHExEujNfJiQkEACysbHRulxBVlYWvfvuu+Tl5UUSiYTc3d2pV69etHfvXr1tv3jxInXs2JFsbW0JAK1du5aICjNzfvzxx2J5jRo1oq+//lpvWUX1GDJkCDk6OhIAGjVqFBFpf40zMjLUzklUmM1x5cqV5OfnR1KplBQKBQUGBtLy5cv1nreo/L1791KTJk1IKpVSq1at6KefflLbT1tGTyLtr3tycjL179+fbG1tydramrp3766xPIeu8vTVsbiiLJ9nzpwpsdyDBw9ScHAwyeVyksvl1KxZM5o2bRplZmYSEVFBQQFNmzaNnJ2dydbWlgYOHEinT5/W+P3UVvbOnTsJACUlJRnUFmb6OK5xXOO4xnGtJuGYxjGNY5rpxjSBiKjyuvaMsco2evRonD17FhcvXqzqqjDGWLnguMYYq0k4ptVcnI2cMcYYY4wxxhgrZ9zZZowxxhhjjDHGyhkPI2eMMcYYY4wxxsoZ39lmjDHGGGOMMcbKGXe2Gatgbdu2xapVq3Q+//vvv0MQBBw7dqxCzt+9e3csXLiwQspmjD1/OKYxxmoajmusonBnm7EKtHPnTiQnJ2Ps2LFVVof3338fy5YtQ0ZGRpXVgTFWM3BMY4zVNBzXWEXizjZjFWjFihUYOnQorKysqqwOXbp0gYODA9avX19ldWCM1Qwc0xhjNQ3HNVaRuLPNWAVJSkrCyZMnMXDgQLXtCxYsgJubG2xsbNC/f3/cu3dP41giwrJly+Dj4wOZTIb69evjs88+09hv586d8PX1haWlJdq3b49ff/0V9vb2iIiIUNtv0KBBHMAZY2XCMY0xVtNwXGMVjTvbjFWQI0eOwMLCAm3bthW3ffnll/joo48wYsQIfP/996hfvz7GjRunceyUKVMwd+5cjBo1Cvv27cPo0aMxa9YsfP311+I+v/32GwYNGoSmTZtix44dGDVqFF577TU8ffpUo7ygoCD8/vvvSEtLq5jGMsZqPI5pjLGahuMaq3DEGKsQEyZMoGbNmomPCwoKyMPDg0aMGKG234gRIwgAxcXFERHRn3/+SYIgUGRkpNp+s2bNIjc3N1IqlURENGjQIGrYsKH4mIho48aNBIDCw8PVjk1KSiIAtHfv3nJsIWPsecIxjTFW03BcYxWN72wzVkFSU1Ph7OwsPr516xZu376Nfv36qe337NClw4cPAwAGDBiAgoIC8SckJAR37txBSkoKAODMmTPo06cPzMz++xi/+uqrWuvi5OQk1okxxkqDYxpjrKbhuMYqmkVVV4Cxmio3NxcymUx8XBQ8XVxc1PZzdXVVe5yeng4iEoPus1JSUuDt7a3xBwIAbG1tYWlpqXFMUT1ycnKMbwhjjIFjGmOs5uG4xioad7YZqyAKhQLJycniY3d3dwDQSLJx9+5djeMEQcCpU6cglUo1yvX19RXLe3Zez6NHj5Cbm6txTGZmJgDA0dHR6HYwxhjAMY0xVvNwXGMVjYeRM1ZBfH19kZSUJD729PSEu7s7du7cqbbf9u3b1R5369YNAHD//n20adNG48fW1hYA8MILL2Dv3r1QqVTisbt27dJal6I/JEXBnzHGjMUxjTFW03BcYxWN72wzVkFefPFFfPzxx7h16xY8PT1hbm6O2bNnY8qUKXB1dUX37t1x8OBBxMXFqR3n4+ODSZMmYcSIEZgxYwbatWuH/Px8XLt2DXFxcWKQnjNnDl544QUMGDAAEyZMwM2bN7Fs2TJYWlqqzQ0CgLNnz8LGxgYtW7aspNYzxmoajmmMsZqG4xqrcFWcoI2xGuvp06fk6OhI33zzjbhNpVLRvHnzyMXFhaytrSk0NJR+/PFHtQyXRfutXLmS/Pz8SCqVkkKhoMDAQFq+fLnaOb7//nvy8fEhmUxGAQEBdOrUKbKwsKAVK1ao7ffKK69oZNZkjDFjcExjjNU0HNdYRROIiKq4v89YjTVt2jT89ttvOHr0aKWc78iRIwgJCcGxY8cQHBwMAMjIyICbmxsOHTqETp06VUo9GGM1E8c0xlhNw3GNVSTubDNWgVJTU9GwYUPEx8ejRYsW5V7+W2+9hW7dusHR0RGXLl3C/Pnz4eHhgbNnz4rDkz7++GMcO3as0v6IMMZqLo5pjLGahuMaq0g8Z5uxCuTu7o5169ZpZKIsLxkZGZg8eTLS09NhZ2eHl19+GcuWLVObB6RQKPDFF19UyPkZY88XjmmMsZqG4xqrSHxnmzHGGGOMMcYYK2e89BdjjDHGGGOMMVbOuLPNGGOMMcYYY4yVM+5sM8YYY4wxxhhj5Yw724wxxhhjjDHGWDnjzjZjjDHGGGOMMVbOuLPNGGOMMcYYY4yVM+5sM8YYY4wxxhhj5Yw724wxxhhjjDHGWDnjzjZjjDHGGGOMMVbO/h+hE1hwVDagbAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdXElEQVR4nOydeVhUVRvAf3dm2EFAQQR3cF+wxKU0xT2Xci9NTStwKddSS3MB09SWLzVbxMR9za1sMS1LyxZNW9yX3AVUUFBkZ+Z8f1wYGWYGZhBcz+955rnMueeee+4MvJz3vJsihBBIJBKJRCKRSCQSiUQiKTY0d3sCEolEIpFIJBKJRCKRPGhIZVsikUgkEolEIpFIJJJiRirbEolEIpFIJBKJRCKRFDNS2ZZIJBKJRCKRSCQSiaSYkcq2RCKRSCQSiUQikUgkxYxUtiUSiUQikUgkEolEIilmpLItkUgkEolEIpFIJBJJMSOVbYlEIpFIJBKJRCKRSIoZqWxLJBKJRCKRSCQSiURSzEhlWyK5h9m5cyeKorBhw4a7PRWJRCK5bc6ePYuiKLz//vt3eyoSiURiN1WqVOGpp56629OQ3EdIZVty3/Dnn38yYsQI6tati5ubG5UqVeLZZ5/lxIkTBV6XlZVFnTp1LC7wkpKS6N+/P97e3gQGBhIdHW12/b59+3B1deXMmTPF+jwSieTh5ubNm0RERNCxY0dKly6NoigsXbrUrJ/BYGDp0qV07dqVihUr4ubmRr169ZgxYwbp6ekmfTMyMhg5ciS+vr5UqFCBGTNmmI138eJF3N3d+fXXX0vq0SQSicSMv/76i65du1K6dGlcXV2pV68eH374oUmfqKgoqlatSunSpXn++ee5ceOGyXmDwcCjjz7KzJkz7+TUJZIio7vbE5BIbOWdd97h119/5ZlnniE4OJhLly7x0Ucf0bBhQ/744w/q1atn8br58+dz/vx5i+fGjRvHzp07mTZtGv/99x+DBw+mdu3aNGvWDAAhBKNGjWLMmDFUrVq1xJ5NIpE8fCQkJPDWW29RqVIlGjRowM6dOy32S01N5cUXX+Sxxx5j2LBhlC1blt9//52IiAh27NjBjz/+iKIoALz33nssX76cSZMmkZyczFtvvUVQUBDPPfeccbzx48fTtWtXmjdvficeUyKRSNi+fTtPP/00jz76KFOmTMHd3Z1Tp05x8eJFY5/du3fz8ssvM2rUKAIDA5k1axbjx48nKirK2Oezzz7j+vXrjB079m48hkRiP0IiuU/49ddfRUZGhknbiRMnhJOTk+jfv7/Fay5fviw8PT3FW2+9JQDx3nvvmZz38/MTy5YtM74PDQ0VEyZMML5fsWKFCAgIEMnJycX4JLbz008/CUCsX7++RO9z8+bNEh1fIpGYk56eLuLi4oQQQvz5558CEEuWLDHrl5GRIX799Vez9mnTpglAfP/998a2pk2bimnTphnfDxo0SPTt29f4/pdffhFubm7iwoULxfgktnPmzBmLsri4kTJNIrl3uH79uvDz8xM9evQQer3ear833nhDtG7d2vh+yZIloly5csb3iYmJwsfHR2zcuLFE51sQlStXFl26dCnRe2RlZZmtdyX3L9KNXHLf0KxZMxwdHU3aqlevTt26dTl69KjFayZMmEDNmjUZMGCAxfNpaWl4e3sb35cuXZrU1FQAUlJSmDBhArNmzcLd3d2uucbExBAWFkZAQABOTk5UrVqVl19+mczMTGOf06dP88wzzxjdqR577DG++eYbi+MZDAbefvttKlSogLOzM23btuW///4z67dnzx46duyIp6cnrq6uhIaGmrmKRkZGoigKR44coV+/fnh7e/PEE08Yz69cuZKQkBBcXFwoXbo0ffv25cKFCyZjtGrVinr16nHkyBFat26Nq6sr5cuX59133zWbU3p6OpGRkdSoUQNnZ2f8/f3p2bMnp06dMnm+uXPnUrduXZydnfHz82Po0KEkJiba9oFLJPchTk5OlCtXrtB+jo6ORm+bvPTo0QPARP4VJNMMBgOjR4/m9ddfp0KFCnbNNSkpiVdffZUqVarg5OREhQoVGDhwIAkJCcY+V65cISwsDD8/P5ydnWnQoAHLli2zOubChQsJCgrCycmJxo0b8+eff5r1OXbsGL1796Z06dI4OzvTqFEjtmzZYtJn6dKlKIrCrl27eOWVVyhbtqzJ823dupUWLVrg5uaGh4cHXbp04fDhwyZjvPDCC7i7uxMTE0P37t1xd3fH19eXcePGodfrTfoaDAbmzZtH/fr1cXZ2xtfXl44dO7Jv3z6TfrbIUonkYWD16tVcvnyZt99+G41GQ0pKCgaDwaxfQfIL1PVL/fr16dmzp133t+VvNjs7m+nTpxtlUpUqVXjzzTfJyMiwOObu3btp0qQJzs7OBAYGsnz5crM+SUlJjBkzhooVK+Lk5ES1atV45513TJ49bx6LuXPnGu9/5MgRwD4Z+Ouvv/Laa6/h6+uLm5sbPXr0ID4+3mxeW7duJTQ0FA8PD0qVKkXjxo1ZvXq1SR9b1pMSG7nb2r5EcjsYDAZRvnx50aFDB7Nze/bsERqNRvz2229WrSlt27YVrVq1EidOnBDfffedcHFxEStXrhRCCPHmm2+KJk2aCIPBYNecYmJiREBAgHB1dRVjxowRCxYsEFOmTBG1a9cWiYmJQgghLl26JPz8/ISHh4eYNGmS+OCDD0SDBg2ERqMRmzZtMo6Va9l+9NFHRUhIiJgzZ46IjIwUrq6uokmTJib33bFjh3B0dBSPP/64+N///ifmzJkjgoODhaOjo9izZ4+xX0REhABEnTp1RLdu3cQnn3wiPv74YyGEEDNmzBCKoog+ffqITz75REybNk34+PiIKlWqGOcuhOoBEBAQICpWrChGjx4tPvnkE9GmTRsBiG+//dbYLzs7W7Rt21YAom/fvuKjjz4Ss2bNEm3atBFffPGFsV94eLjQ6XRi8ODBYsGCBeKNN94Qbm5uonHjxiIzM9Ouz18iuR8pyLJtje3btwtArF692tgWFhYm6tWrJw4cOCB+++03Ua5cOTFjxgwhhBALFy4UlSpVEqmpqXbNLTk5WdSrV09otVoxePBg8emnn4rp06eLxo0bi7///lsIIURqaqqoXbu2cHBwEK+++qr48MMPRYsWLQQg5s6daxwrVxY/+uijolq1auKdd94R7777rvDx8REVKlQw+Xs/dOiQ8PT0FHXq1BHvvPOO+Oijj0TLli2FoigmcnLJkiVGmRYaGirmz58vZs+eLYQQYvny5UJRFNGxY0cxf/588c4774gqVaoILy8vcebMGeMYgwYNEs7OzqJu3bripZdeEp9++qno1auXAMQnn3xi8nm88MILAhCdOnUSc+fOFe+//77o1q2bmD9/vrGPrbJUInkY6NWrlyhVqpT4/vvvRY0aNQQg3NzcxLBhw0RaWpqx34oVK4Srq6vYtm2bOHHihGjZsqVo166dEEKIw4cPCycnJ/Hvv//afX9b/mYHDRokANG7d2/x8ccfi4EDBwpAdO/e3WSsypUri5o1awo/Pz/x5ptvio8++kg0bNhQKIoiDh06ZOyXkpIigoODRZkyZcSbb74pFixYIAYOHCgURRGjR4829suViXXq1BGBgYFi9uzZYs6cOeLcuXN2y8BHH31UtGnTRsyfP1+MHTtWaLVa8eyzz5rMf8mSJUJRFFGvXj3x9ttvi48//liEh4eL559/3tjH1vWkxDaksi25r1mxYoUARHR0tEm7wWAQTZo0Ec8995wQwrrr4oEDB0SFChUEIADRq1cvodfrxenTp4WLi4v4/fff7Z7TwIEDhUajEX/++afZuVzFfcyYMQIQv/zyi/FccnKyqFq1qqhSpYrRzSpX2a5du7aJS9G8efMEIA4ePGgct3r16uLJJ5802RxITU0VVatWFe3btze25SrbuZ9NLmfPnhVarVa8/fbbJu0HDx4UOp3OpD00NFQAYvny5ca2jIwMUa5cOdGrVy9j2+LFiwUgPvjgA6ufxS+//CIAsWrVKpPz3333ncV2ieRBpCjKdrt27USpUqVMlLcLFy6IunXrGmVaixYtRHJyskhKShK+vr5i7dq1ds9t6tSpAjBZ3OWS+3c8d+5cARg3K4UQIjMzUzz++OPC3d1d3LhxQwhxSxaXKVNGXLt2zdj3yy+/FID46quvjG1t27YV9evXF+np6Sb3a9asmahevbqxLXeh+cQTT4js7Gxje3JysvDy8hKDBw82mfOlS5eEp6enSXvuQvutt94y6Zu70ZnLjz/+KAAxatQoq5+FPbJUInkYCA4OFq6ursLV1VWMHDlSbNy4UYwcOdK4EZ9Ldna26Nmzp1F+VaxYURw4cEAIIUSHDh3EsGHD7L63LX+z//zzjwBEeHi4yflx48YJQPz444/GtsqVKwtA/Pzzz8a2K1euCCcnJzF27Fhj2/Tp04Wbm5s4ceKEyZgTJkwQWq1WnD9/XghxSyaWKlVKXLlyxaSvvTKwXbt2JmvAV199VWi1WpGUlCSEECIpKUl4eHiIpk2bmmxy5P0s7FlPSmzjrivbly9fFufOnTN7SSSFcfToUVGqVCnx+OOPmyywhFCVPBcXFzNhZilOMC0tTfz555/i5MmTxrYePXqIAQMGCCGE2LhxowgODhZVqlQR06ZNK9DSrdfrRalSpUS3bt0KnHuNGjXMLNNCCDFr1iwTJTpX2X733XdN+v31118CEF9++aXJ+2XLlon4+HiTV3h4uHBycjIq8LnK9q5du0zG/OCDD4SiKOLkyZNmY9SuXdu4uyyEqmy7u7ubfRZdu3YVjz76qPF9ly5dhI+Pj8jKyrL6WYwaNUp4enqKK1eumN3X3d3d7J+fRPIgYq+y/fbbb1u0ugqhKrl///23OHz4sPHv/tVXXxVPPPGEEELd4GrSpImoUKGCGDlyZKGxgXXr1hUNGjQosE+HDh1EuXLlzOIx16xZY6JE58riV155xaTftWvXBCDmzZsnhBDi6tWrQlEUMX36dDO5kBurfvHiRSHErYVm3vwbQgixadMm40I5/xgdOnQQ1apVM/bNVbbzL3ZHjRolvL29je+HDx8uFEURV69etfpZ2CNLJZKHgcDAQAGYKctDhw4VgJlCevLkSbFv3z6jQvjll18KLy8vER8fLy5evCieeuop4e/vL5566ikRExNT4L1t+ZudOXOmAMSRI0dM2uPi4gRgokRXrlxZ1KlTx2yM4OBg0aNHD5P3HTt2NJMBP/zwg8nGZK5MfPHFF03GK4oM/Pzzz03GyJWBud4A69evF4DYvHmz1c/CnvWkxDbuSjbyq1evMnLkSDZt2kRWVpbJOSEEiqKYxUhJJHm5dOkSXbp0wdPTkw0bNqDVao3nbty4wcSJExk/fjwVK1YsdKzcGJhcfvzxR7Zv387x48c5fvw4ffv2JSoqiipVqvDcc89RsWJFXnzxRYtjxcfHc+PGDauZ0XM5d+4cTZs2NWuvXbu28XzeMSpVqmTSLzemKTem+eTJkwAMGjTI6j2vX79uEguVP7v6yZMnEUJQvXp1i9c7ODiYvK9QoYIxA3LeeR04cMD4/tSpU9SsWROdzrqoOXnyJNevX6ds2bIWz1+5csXqtRLJw8i6deuYPHkyYWFhvPzyy2bnHRwceOSRR4zvjx07xieffMJvv/3GtWvX6NKlCxMmTKB169a8+OKLvP3220ybNs3q/U6dOkWvXr0KnNO5c+eoXr06Go1pKpi8Mi0vhcm0//77DyEEU6ZMYcqUKRbveeXKFcqXL298b0mmAbRp08bi9aVKlTJ5nxvLmX9eeXNHnDp1ioCAAEqXLm1xzNz72iNLJZIHHRcXFwCTqggA/fr1Iyoqit9//93k76VatWrGnzMzMxk7diwRERH4+PjQokUL/P39+eqrr5g9ezb9+vWzWskBbPubPXfuHBqNxuS+AOXKlcPLy6tQ+QXmsuLkyZMcOHDATKbkkn9tk19+FUUGFiZXc3PlFLRGLcp6UlIwd0XZDg8PZ9euXUycOJE6deqYJb2SSAri+vXrdOrUiaSkJH755RcCAgJMzr///vtkZmbSp08fzp49C2AsLZGYmMjZs2cJCAiw+Hun1+sZPXo0EyZMoHz58kyfPp1mzZoZleuhQ4eyatUqq8p2SZF3MyEvQggAY7KN9957z2SRnZf8Sd5y//nlYjAYUBSFrVu3Wrxf/usLm5OtGAwGypYty6pVqyyet/aPSiJ5GPn+++8ZOHAgXbp0YcGCBTZd8+qrrzJgwAAaNmzIihUrKF26NBMnTgTg9ddfL1TZLglslWnjxo3jySeftNg3/8LYkkwDWLFihcVEdPk3Aa3NyV7slaUSyYNOQEAAhw8fxs/Pz6Q9d5O9oGSoc+bMQafTMWLECC5cuMDu3bs5c+YMVapU4d133yUwMJCLFy/anfTREvkNCNawZf1jMBho3749r7/+usW+NWrUMHlvTX7ZIwOLY11WlPWkpGDuirL9008/8eGHHzJw4MC7cXvJfUx6ejpPP/00J06c4IcffqBOnTpmfc6fP09iYiJ169Y1Ozdz5kxmzpzJ33//bVGIfPrppyQnJzNu3DgAYmNjTZT5gIAAYmJirM7P19eXUqVKcejQoQKfo3Llyhw/ftys/dixY8bz9hAUFASolpp27drZdW3eMYQQVK1a1eyfQFEJCgpiz549ZGVlWbXmBAUF8cMPP9C8eXOzfzYSieQWe/bsoUePHjRq1IjPP/+8QI+RXL7++mt+++03o7UiNjYWf39/4/nCZBqof6O2yLQDBw5gMBhMrNtFlWmBgYGAagW+HZkG6oK+qGNYGnPbtm1cu3bNqqWsJGSpRHI/ExISwvfff09MTAw1a9Y0tsfGxgLWN9Xj4uKYMWMG69evR6fTGfvnrstyjzExMVaVbVv+ZitXrozBYODkyZNGbxyAy5cvk5SUZLf8yr3vzZs3iyx7ikMGWpoTwKFDh8wU9fx9bmc9KTGlSKW/Dh8+TN++fY3p6f/66y8AJk2axNatWwu93svLCx8fn6LcWvIQo9fr6dOnD7///jvr16/n8ccft9hv1KhRbN682eQVFRUFqOVdNm/ebOauA3Dt2jUiIiJ47733cHZ2BsDPz8+4WAS1xE5BpXo0Gg3du3fnq6++MisDA7d2Fzt37szevXv5/fffjedSUlJYuHAhVapUsbiJUBAhISEEBQXx/vvvc/PmTbPzlko/5Kdnz55otVqmTZtmtgsqhODq1at2zQmgV69eJCQk8NFHH5mdy73Hs88+i16vZ/r06WZ9srOzSUpKsvu+EsmDxtGjR+nSpQtVqlTh66+/tmljKjMzk9dee43JkycbLUh+fn78999/ZGdnG8ctrPxYr169+Pfff9m8ebPZubwy7dKlS6xbt854Ljs7m/nz5+Pu7k5oaKjNzwqqgtyqVSuioqKIi4szO2+LTHvyyScpVaoUM2fONAtZs3WM/PTq1QshhEVPgNzPoiRkqURyP/Pss88CEB0dbdK+aNEidDodrVq1snjdhAkTaNmyJR07dgQwWsZz12W5ZQ8LkmG2/M127twZgLlz55qc/+CDDwDo0qWL1fGt8eyzz/L777+zbds2s3NJSUlGGWyN4pCB+enQoQMeHh7MmjWL9PR0k3O5n0VxrCclptht2f7+++/p0qULISEh9O/fnxkzZhjPOTg48Mknn9CpU6cCx3j99deZP38+HTp0sGlnXiIBGDt2LFu2bOHpp5/m2rVrrFy50uR8bi3thg0b0rBhQ5Nzue7kdevWpXv37hbHnzJlCvXr1+eZZ54xtvXq1Yu33nqLl19+mcqVKxMVFWUUvtaYOXMm27dvJzQ0lCFDhlC7dm3i4uJYv349u3fvxsvLiwkTJrBmzRo6derEqFGjKF26NMuWLePMmTNs3LjRLO6xMDQaDYsWLaJTp07UrVuXF198kfLlyxMTE8NPP/1EqVKl+OqrrwocIygoiBkzZjBx4kTOnj1L9+7d8fDw4MyZM2zevJkhQ4YYLf62MnDgQJYvX85rr73G3r17adGiBSkpKfzwww+88sordOvWjdDQUIYOHcqsWbP4559/6NChAw4ODpw8eZL169czb948evfubdd9JZL7hY8++oikpCSjxearr74yhr2MHDkST09PkpOTefLJJ0lMTGT8+PF88803JmMEBQVZ3HycN28eAKNHjza2de7cmeHDh9OvXz+aNWvG9OnTCQ8PL3CO48ePZ8OGDTzzzDO89NJLhISEcO3aNbZs2cKCBQto0KABQ4YMISoqihdeeIH9+/dTpUoVNmzYwK+//srcuXPx8PCw+7P5+OOPeeKJJ6hfvz6DBw8mMDCQy5cv8/vvv3Px4kX+/fffAq8vVaoUn376Kc8//zwNGzakb9+++Pr6cv78eb755huaN29ucSOwIFq3bs3zzz/Phx9+yMmTJ+nYsSMGg4FffvmF1q1bM2LEiBKRpRLJ/cyjjz7KSy+9xOLFi8nOziY0NJSdO3eyfv16Jk6caBYOCLB3717WrVtnkgemSpUqNGrUiBdeeIGwsDAWLVpE06ZNC7Q82/I326BBAwYNGsTChQtJSkoiNDSUvXv3smzZMrp3707r1q3tfubx48ezZcsWnnrqKV544QVCQkJISUnh4MGDbNiwgbNnzxZqeLxdGZifUqVKMWfOHMLDw2ncuDH9+vXD29ubf//9l9TUVJYtW1Ys60lJPuzNqBYSEmKsxZaVlSUURRH79+8XQgjxxRdfiPLlyxc6xogRI0SlSpVEpUqVxPPPPy9Gjhxp8rKUnl8iyS03Ze1VEAVlIxdCLQHm6OhorBmbl6VLl4oqVaqIMmXKiNdee80s87klzp07JwYOHCh8fX2Fk5OTCAwMFMOHDzfJ+nvq1CnRu3dv4eXlJZydnUWTJk3E119/bTJObjby9evXW3ye/JmL//77b9GzZ09RpkwZ4eTkJCpXriyeffZZsWPHDmOf3Gzk8fHxFue+ceNG8cQTTwg3Nzfh5uYmatWqJYYPHy6OHz9u7BMaGirq1q1rdu2gQYNE5cqVTdpSU1PFpEmTRNWqVYWDg4MoV66c6N27tzh16pRJv4ULF4qQkBDh4uIiPDw8RP369cXrr78uYmNjLc5TInkQyC0jY+mVWwc69+/d2mvQoEFm4166dEl4eHiILVu2mJ3bunWrqFWrlvDy8hIDBw4UKSkphc7z6tWrYsSIEaJ8+fLC0dFRVKhQQQwaNEgkJCQY+1y+fFm8+OKLwsfHRzg6Oor69eubyaiCZDEgIiIiTNpOnTolBg4cKMqVKyccHBxE+fLlxVNPPSU2bNhg7JObiddSuUUhVDn65JNPCk9PT+Hs7CyCgoLECy+8IPbt22fsM2jQIOHm5mZ2ba68zEt2drZ47733RK1atYSjo6Pw9fUVnTp1Mq6FcrFFlkokDwuZmZkiMjJSVK5cWTg4OIhq1aqJOXPmWOxrMBhE06ZNxWuvvWZ27r///hMtW7YU7u7uomXLlmZrCUvY8jeblZUlpk2bZlyrVKxYUUycONGk7JYQqszu0qWL2T1CQ0NFaGioSVtycrKYOHGiqFatmnB0dBQ+Pj6iWbNm4v333xeZmZlCiMLXp7cjA3PXkD/99JNJ+5YtW0SzZs2Ei4uLKFWqlGjSpIlYs2aNSR9b1pMS21CEsC+bkbOzM1999RXt27dHr9fj4ODAvn37aNiwIbt27eLJJ580c03IjyUX3rwoisLp06ftmZZEIpFIJBKJRCKRSCT3DHb7cJcuXdro7pafEydOmCRescaZM2fsva1EIpFIJBKJRCKRSCT3DXYnSOvevTsREREmmZQVReHSpUu8//77hdbivB/577//GDZsGI888gg6nc5qfbqkpCRGjRpFQEAAzs7OBAUF8b///c+kT2ZmJuPHj6dcuXK4ubnRvn17i1mpJRKJpKSQMk0ikTxISJkmkUjuVey2bM+aNYs///yT4OBg6tevD8BLL73E6dOnqVmzJpGRkTaP9d9//3HixAmLbuc9e/a0d2olxuHDh/nmm29o2rQpBoPBWIMuLykpKbRq1QqdTsecOXPw8/PjxIkT3Lhxw6TfqFGjWLt2LR988AHly5fn7bffpm3bthw+fBhPT8879UgSieQhRso0iUTyICFlmkQiuWcpSqB3ZmamWLx4sXjuuedE+/btRZ8+fcRnn31mkvypIK5fvy7atGkjNBqN0Gg0QlEUoSiK8b1GoynKtEoMvV5v/HnQoEEWE0NNnjxZBAYGips3b1od58KFC0Kr1YqoqChj29WrV4Wbm5t45513infSEolEYgUp0yQSyYOElGkSieRepUh1th0cHHjxxRdZvXo127dvZ+3atYSHh+Po6GjT9W+88QaXLl3il19+QQjB5s2b2blzJ2FhYVStWpU//vijKNMqMWwpw7Ro0SJeeukl3NzcrPbZvn07BoPBpLRU6dKl6dChA99++22xzFUikUgKQ8o0iUTyICFlmkQiuVexW9n+999/rQqcb7/91qQenjW+++47Jk2aRNOmTQEICAigZcuWLFy4kG7dupnFz9zrnD17lkuXLuHj40PXrl1xcnKidOnSDB482KQg/LFjxyhbtize3t4m19euXZtjx47d6WlLJBKJRaRMk0gkDxJSpkkkkruF3cr2q6++yu+//27x3N69exk7dmyhY1y5coWKFSui1Wpxc3Pj6tWrxnOdO3fmu+++s3dad5VLly4BMG7cOLy9vfn222+ZOXMm69evZ/DgwcZ+iYmJeHl5mV3v7e3NtWvXrI6fkZHBjRs3jK/r168THx+PsK9qm0QikdiElGkSieRBQso0iURyt7Bb2f7nn39o3ry5xXOPP/44f/31V6FjVKxYkYSEBACqV6/Oli1bjOd+//13nJ2d7Z3WXSU3EUeNGjVYtmwZbdu2ZdiwYbz//vusXbv2tmuGz5o1C09PT+PLy8uLsmXLkpycXBzTl0gkEhOkTJNI7l+S4+LYGRlJclzc3Z7KPYOUaRLJnSfur7+YpijE5dMNrbU/qNitbGdkZJCZmWn1nKXM4vlp3749P/zwA6BayhcsWEBISAiPP/44ERERDBw40N5p3VVy3Y1at25t0t62bVtAzZKZ2+/69etm1ycmJlK6dGmr40+cOJHr168bXxcuXCiuqUskEokZUqZJJPcvN+Pi2DVtGjelsm1EyjSJRHK3sLv016OPPsry5cvp2rWr2bnly5fToEGDQsd45513SE1NBeD555/H3d2dDRs2kJaWxkcffcTQoUPtndZdJSgoCCcnJ6vnczcgatWqxeXLl0lMTDSJBzp27Bi1atWyer2Tk1OB40skEklxImWaRCJ5kJAyTSKR3C3stmxPnDiRzZs306VLFzZs2MBvv/3Ghg0b6NKlC1988QWTJk0qdAxXV1d8fHyM73v06MGqVavYtGkTL7/8sk1ZJe8lHB0d6dChAzt27DBp//777wFo2LAhAB06dECj0bBx40Zjn8TERLZv307nzp3v3IQlEomkAKRMk0gkDxJSpkkkkruF3ZbtLl26sHr1asaPH8+zzz6LoigIIahQoQKrV6+mS5cuNo919OhR9u3bx4ULF3jppZcoV64c//33H35+fnh4eNg7tRIjNTXVmIH93Llz3Lhxgw0bNgAQGhqKr68vERERNGvWjP79+zNo0CBOnjzJxIkT6d+/P0FBQQBUqFCB8PBwxo8fj1arpXz58sycORNPT8/7zpovkUjuX6RMk0gkDxJSpkkkknuW2ynSfezYMfHrr7+KY8eO2XVdSkqKeO6554RWqxU6nU5oNBqxf/9+IYQQvXv3FuPHj7+daRU7Z86cEYDF108//WTs98MPP4hGjRoJJycnUa5cOTF27FiRnp5uMlZ6eroYO3asKFu2rHBxcRHt2rUTR48etWs+169fF4C4fv16cTyeRCJ5yJAyTSJ5cIndv19EgojNWVc9DEiZJpHce1iTRQ+bjFKEuPN1CV555RU2bdrE8uXLadGiBW5ubuzbt4+GDRuyZMkS5syZY1O97oeVGzdu4OnpyfXr1ylVqtTdno5EIpHcFlKmSSTFR9xff7EwJIQh+/fjn+MeLbmzSJkmkViXRQ+bjLLbjRzg+PHjbNy4kYsXL5plH1cUhejo6AKv37BhA++99x4dOnRAr9ebnKtSpQpnz54tyrQkEolEIpFIHiiS4+LYHxVFyNChePj723SNg6trCc9KIpE8TBRFDhXEwySj7Fa2V6xYwYsvvoizszOVK1fG0dHR5LyiKIWOcfPmTfytfFEpKSn2TkkikUgkEonkgSS3lFfNrl0LXeQKIfALDubNlBQM2dkIIWxal0kkEklB2COHCuJhlFF2K9vTp0+nd+/eLF68GNci7koEBwezceNGOnToYHbum2++oVGjRkUaVyKRSCQSieRhRBgMJMfGsj8qimunTlE6KEi1QgUEoNxnVV4kEsndobgt2Hl5WGWU3cp2bGwsn376aZEVbYApU6bQrVs3UlNTeeaZZ1AUhb1797JmzRoWL15szCgpkUgkEolEIikYYTBwYOVKtoSFYcjONrbvnj2brtHRBA8Y8EAvZiUSiTlFUZzttWDbcg+di8tDLaPsfqqWLVty6NCh27pply5dWLt2Lbt376Z79+4IIXjllVdYt24dq1atom3btrc1vkQieThJjotjZ2QkyXFxd3sqEolEYkZJyCghBMmxsWaLWABDdjZbwsJIjovjLuTDlUgkd5FcxflmCa6JCruHg6srbr6+D7WMslvZnjlzJp999hlRUVGcPn2aa9eumb1soXfv3pw5c4Zjx46xe/dujhw5wvnz5+ndu7fdDyGRSCRwZ/6xSCQSSVEpCRklDAb2R0WZLWJzMWRns3/BAoTBUGz3lEgkDyaapHhC/dXj7ZA3NtvZ2/uhllF2u5E3zEnR/vLLL1sNaM+fYbwgatSoQY0aNeydhkQikUgkEskDwe3ESWq0Wq6dOlVgn8TTp9FotbczRYlE8hCguZ5AqwCIv55Q5DHyxmZfv3iR7kuWPNQyym5le/HixcWSNe7ChQt88cUXXLhwwWL5sHnz5t32PSQSycPHw1ROQiKRPBgUFidZkFwz6PWUDgoqcHzvwEAMev0Du5iVSCT2UVKJ0MxisxWFLh9//FDLKLuV7RdeeOG2b/r555/z/PPPYzAYKFu2rMXyYVLZlkgklhBCIAwGNFotBr0eRaNBUZSHspyERCJ5sLFFrikaDSFDh7J79myLbpoanY6QYcMe2ORDEonEfoqrlFdeLOaPEIJD69bxaFjYQyuj7Fa2i4M333yT7t27s3DhQjw9Pe/GFCQSyX2IpbIRTceMwcXb+6EsJyGRSB5cbC2ToygKHgEBdI2ONktApNHp6Lp4MR7+/nLzUSKRlCjW8kfsmTuX4AEDeHrRIr4KD3/oZFSRlO2ff/6ZhQsXcuLECTMXcIADBw4UeH18fDxDhgyRirZEIrGKEAKh16PR6TBkZ6NoNGZlI/yCg2k5dSr/rlhhJsAfhnISEomk+CjJ+rL2Ym+ZHEWjIXjAAKq2bcv+BQtIPH0a78BAQoYNUxexUgZKJJISRNForOaPuHzgAF8MHEj35cup2ro1f3322UMlo+x+sm3bttGmTRsSEhLYt28fFStWxMfHh+PHj5OSkkKjRo0KHaNjx4788ccfRZqwRCJ58BEGA8kxMeyaNo2N/fpx+cABi2Ujmo4ZQ3JMjJmiDQ9HOQmJRFJ8WM0UnhAHUZHqMT8FnSsiRS3lpWg0eAQEEBoRQc9VqwiNiJDePRKJxH6c7c99IwyGAvNHHFq7ls8aNSIlPp7QyMiHSkbZ/XQRERGMGTOGb775BoDp06fz448/cuLECRwcHGjTpk2hYyxYsIBdu3YxadIkfvzxR/766y+zl0QieTjJtejMq1qVn2fM4NDatfjUqmXumqQo1OvTh7+jox/achISieQOkBAHn02zrmxbO2eFwpI43k4pL0VRuHzgADPd3Lh84MAD65YpkUhukRwXx87ISJJvt6SgEPg89QzsTlGPdhoqcvNHaHSWHafjjxzBvVw50hMTHyoZZbeyffToUTp16oQmJylRSkoKAJUrVyYyMpIZM2YUOkZycjKpqanMmjWL9u3b07hxY+OrUaNGNG7c2P4nkUgk9z2WLDoOLi44uLqauSZZa8/Pg1xOQiKRlDwp8fEmR1uwtPjNm+zMLzjYosdNQa6YeSlMrmWlpto8V4lEcn9j1SunAMzqaRsMEB+Dsmg6TOqnHuNj1HYbyZs/Ir/CnTc2OyU+/qGSUXbHbDs7O2MwGFAUBX9/f06dOkWLFi0A8PDw4MKFC4WOMXDgQM6fP8/8+fOpUaOGWTZyiUTycGLJopOVlkZWaqqZa5K19vw8yOUkJBJJyZOakIBbnqMt5M/0a2uys8JcMXORck0ikdwOufW0r4lsVaHeuhLeCgN9Ho+apbNhajR0GoDOxcWmcW3JH5GdllZCT3VvYrey3aBBA44fP0779u1p27Ytb7/9Nj4+Pjg4ODB58mTq169f6Bh79+5l9erVdO/evShzlkgkDxDGpETDhuFRrpy5Rcda2QhZTkIikdxlUuLjccs91jI/r3NxsSnZWd6FrCzlJZFI7MHMSm0HrtVqQUKsuaIN6vu3wqBxW9x8fW0eM2/+CGOSW632oXAZt4TdknrMmDHGD2vmzJl4eHjQtWtXOnXqxNWrV/n4448LHaN69epkW4lFkkgkDxc34+L47b33uBkba9Wis2fuXDzKl+fpRYtMXJOstcPDUU5CIpHcXVITEkyO+XHz9bUp2VnehaytrphSrkkkDyb2xmDnWqk11y3LIasoCk4BFWFjlLminYs+GzYuwMXLy86hZf6IXOy2bHfu3Nn4c/ny5dm/fz///fcfaWlp1KpVyyaX8A8++IBx48ZRr149atWysBUskUgeCvLGMOaW97Jk0clbNiKwXTsT16SM5GQaPP+8WfvDUE5CIpHcA1jJ3Ovg5oazlxe7pk0rNNlZaESESbss5SWRPLzkD0PJpdjLEzq5oDg4wsWCc0QQcxpFp7PZlTwvD1NstjXsVrbfeustwsPDCQgIANSdi+rVqwMQFxfHZ599xtSpUwscY8yYMVy6dIl69eoREBCAV77dEkVR+Pfff+2dmkQiuY+wFMPYeMQIo0UnvyXoyIYN1OvfnxqdOxMaGYlGq8Wg16PkJGuULksSieR2sNcVUwhBmaeegR79KZOViRACRVHUTcT69Xnz5k0A25KdWVjISldMieT+odgVYQukHj0AC6eR2vLx4rlHRhoiKxOlQsE5IigfiMjOfuhirYsLu5XtadOm0bFjR6OynZfY2FimTZtWqLIdEhIi/1lIJA8xBcUwDtyxo1CLTq70yJscSFEULh04wJIWLXjxl1/wb9jwDj+VRCK5n8l1xYy3wRXT0mZh0zFjcPH2JistDZ2DurwSej3Nxo0j/vBhLh84YHEs78BAVZG2sC4qilxz9/cnNCIC9xJa8EskEnOsWaOLE3tklE0IQUbsBZx7DVWToVlyJdfqoNcw0pKSiueeDyF2K9u5O7eWiIuLM7NSW2Lp0qX23lYikdzHCCEQBoNqjTYYuFlADOPytm159eLFIlt0pMuSRCIpdrx8jD9a2iz0Cw5WXcGFQJsUj2ZLNFw8hVIhiHI9hzJk3z42DxzIobVrTYb1b9iQ5hMmABjDaSyts+yRax7+/rSKjCzig0okkoeJ1P+O4dy6k5p1PH+SNK0OIhaDjz8px4/j4Go5ZEZSMDYF/axZs4auXbvStWtXFEVh7Nixxve5rw4dOjBw4ECaNWtW0nO+Z9myZQtNmzbFw8MDf39/nn32WU6fPm3WLzo6mho1auDs7EyDBg34+uuv78JsJZI7gzAYSI6JYVdkJBv798eQlWVW3isvhuxs/vzoI1U5z0kOpNHppDfMXUDKNMmDiD3Jh4QQ+HTtCz/E49O1L0IIUuLjzTYLW02bhqJRYOtKtD2rQ/QM2LYGomegdK2Ksm01PZYvxy842HhN/f79Cd+7l/TERHZNm8bGfv3YNW0ayTExCDtq20psR8o0icQU/Y0k0Gig0wD46iyETYaO/dTjV2ehY3+EolCmenXeTEnBLzgYIYTJGFIJLxiblO3MzEySk5NJTk5W/9GkpBjf574URWHgwIFERUWV9JzvSXbu3EmPHj2oU6cOmzdvZu7cufz777906NCBtDwxDmvXrmXw4MH06dOHrVu38vjjj9OjRw/++OOPuzh7iaRkyLUAzatalZ9nzOD4F1+gc3KyLYaxCPVjpftk8SFlmuS+ICEOoiLVo43kunveLETZFgYDXIlBWRgJk/qpx/gY3MqUoU7v3rc6Kgo1unRBXI5BmR5usXyOMj0cJfEK3RYvpn6/fnT66CN6LF/OwVWrjPLx0Jo1/DxjBvOqVuXAypVS4S5mpEyTPIzYrAhrNOAbgAifAjNWqUffAASoBhMLG4J5k9xaUsKt8bCt1WxyIx80aBCDBg0CoHXr1nz66acyi3g+1q5dS+XKlVm8eLHRAle2bFnatGnDvn37aNGiBQARERH07duX6dOnA+rneeDAAd566y2+/fbbuzZ/icQuhABhAI0WDHpQNJDP8iyEMCt5k5WWRlZqqsXyXnnxDgzEoNfbrXBL98niQ8o0yX1BQhx8Ng1Cu4JP8SzcHAMqqorutyvMlGdl6WzElEX0WL6c+CNHuHzgAA6urmi0GvjiswLL5ygbF1BuSCQ9V63CkBPzXVBJsKpt2+JhIT+OpGhImSZ5mMhf7aWgMGDjNTkvBRAoIITF/DqJZ87QfdkybubLWxEydCgeAQGFVkt42NZqdteO+Omnnywq2pmZmcUyofuVrKwsPDw8TH6RPT09AYw7PadPn+bEiRM8++yzJtf27duXHTt2kJGRcecmLJEUFYMB4mNUa9KkfuoxPkZtz4MwGMzdxYXg0Lp1PBoWZlY/NheNTkfIsGGytM1dRso0yX1NARbvwrKOu9V5BOJjC7RSi/hYmo4enWdQrW3lc7Ra3vX1BUvyMQ+5JcGkdbv4kDJNcjewt2Y22F8ZIT/G8D07wlOM17w1nY39+nH54EGLG4J+wcF0W7LExGtReuUUjN2r2RUrVjB//nzj+0OHDlG9enVcXV1p1aoVV65cKfB6IQTXrl174ATWCy+8wJEjR/jkk0+4fv06p0+f5s033+TRRx+lefPmABw7dgzAbLOidu3aZGZmcubMmTs+b4nELgwG2LoSnq5qEpPI01Vh9zeqW5FeD4BGgapt25rEKALsmTsXj/LleXrRIjOFW6PT0XXxYjXruIzRvqtImSa5H0iJjzc5Gsm1eFtStnMy+mosZfR1dUfr6oayKapAK7X2y0XU79vX6NFjyMoEW8rn6PVkp6ai0elsDqd52FwuSwop0yR3A1vDVvJSoIwqAG0pL7PwvcIUYYvXrF2LT61aFjcEm44ZQ3JMDF+Fh1v1ykmOi7PZpfxhwG5l+7333kOTx+I0cuRIHB0dmTt3LnFxcbz55psFXp+VlUXZsmX54Ycf7J/tPUyLFi3YvHkzEyZMwMvLi6CgIC5fvszWrVvR5rjCJiYmAphlbPf29gbg2rVrFsfOyMjgxo0bJi+J5I4jBCTEmmerBGjXG5p1VK1BOfGNREVSqWYgQ/bto17fvsaulw8c4IuBA6nfrx+jTp+m5eTJ1O/Xj5aTJzP67FmC+/eXVu17ACnTJPcDqQkJJsdcrCrhVjDWzP45GUVrg5Van43OxYVJN2+q9bQVDaLXUDV7ryW0OkSvYaTfuEFWWhqG7Gybw2lyXS5LqpzQw4KUaZIHHZdqtQoNTzFRhJ1dLV7j4OKCg6ur+YagolCvTx/+jo6WXjl2YPeK9uzZs9SpUweAhIQEfvnlF/73v/8xYsQI3nrrLbZt21bg9Y6OjlSoUAF9jvXrQeG3337j+eefZ/Dgwfz444+sX78eg8FAly5dTBJvFIVZs2bh6elpfFWsWLGYZi2R2IEwwEYL1p7qwTBtOXy3GqWrqcVb0z3IYhbeQ2vXEv3YY7iULk1oRAQ9V60iNCLCplgfyZ1ByjTJ/Yw1JdwSRvfJ6TP4IixM9c4pyEr9ZF94eToiPgbdslkwqR+aTVHgE4CYGm2ucGt1iIjFKD7+3Lx0CYQgPSmJkKFDZTjNHUTKNMkDjaLgFFCx0PCUY198AULg89QzsDsF5wpVSLlyBd8c3Q6s59exqoTnw5jkVnooAkVQtjUajTE++6effsLBwYHWrVsD4O/vz9WrVwsdY/jw4XzwwQekp6fbe/t7llGjRtGmTRv+97//0bp1a3r37s0333zDX3/9xYoVK4BbO6PXr183uTZ3J7V06dIWx544cSLXr183vi5cuFCCTyKR3MIYa3TpkvWYxOfGwJUYsCO+UaPT0XTMGBxcXLh68iQz3dy4fOCAdB2/h5AyTXI3KEp8Y1HJdZ888c03nN7xAy0mTKB7dDQAoqcVK3XO5qL4bjVK3nCad0egRAxE6dgfka98jvjqLErH/qDRkJ2j1KXEx+MREEDX6GgZTnOHkDJN8kDjWQaNg2OBinC9vn1pNHQoSkIsyqLpxioLfv5lTL0QreTXsTfJLdKVHLAxG3leGjRowCeffEKFChX48MMPadOmDU5OTgCcP3+esmXLFjrG+fPnOXHiBJUqVaJVq1b4+fmZ/ENRFIV58+bZO7W7ypEjR+jWrZtJW4UKFfDx8eFUzi9+bgzQsWPHqFmzprHfsWPHcHR0JDAw0OLYTk5Oxs9YIrmT3IyL48+PP6Zm1654lPU1t/YoCnToA0tmFRrf2CBsMmd27MA7MJCQYcPUhWTO4jMrNbXkH0ZiF1KmSe4GufGNNbt2LVm36Rz3ybTERKp37Ii4EoN22Sy4eAqlQXNE75cRU6NR8ofN9HsVkRBn3g6wdRWcOYry2c+IIREoWh0iKxNF52Bm4clOS0PRaAgeMICqbduyf8ECEk+fNpOPkuJDyjTJ7ZIcF8f+qCg16/ZtyqfiGssYAtOjPwa93qoi7BccTI/ly1G+W2VmHNFYqLKwZ+5cggcM4OlFi27FZ+dRwnfPnm3Rgi69csyxW9meOXMmTz31FMHBwXh4eJjEXm/evJkmTZoUOsbXX39tFEx//vmn2fn7UdmuXLkyf/31l0nbuXPnSEhIoEqVKgAEBgZSo0YN1q9fbyLw161bR9u2bXF0dLyTU5ZICkQIQbkGDRgfH4/Q6xGKBnoORVk6+5aQdnIBZ1ebsvBqHJ3Ukjd6PYpGY9xgk8l/7k2kTJM8kOS6T/boj7Ner9a4+XYlmryLz21rUA7+johchmjcFmXjAog5DeWDEJ0HoCycZn1z8dhfsHQ2hE+BUDcSxi7Et0d/q9NRNBo8AgIIjYhAo9NhyM5G0WqlRbsEkDJNcrsU52ZgcYwlckoI5pbfajZuHCFDh1pUhJuOGYO4EmMq63LJ8UI0NGxF09Gj2RIWZsyv0335cgLbtTNuCGalpuJZqRJdo6PNYsOlV45l7Fa2mzdvbrRMBwUFmSSRCAsLo1q1aoWO8SBmcxw2bBhjxoxh9OjRPP3001y9epUZM2ZQtmxZkxISkZGR9O/fn6CgIFq3bs26devYs2cPP//8812cvURiijAY1GRnm6JUS0+FIESfEeAbgJiy6FZJnIw0SE+1OQuvotWa1c5+2Oot3i9ImSa573F2NX1vMCASYlE25si1AeMQpctaLvG1dRXKmaOIhbsQQyJRtFqjDLOpxJeDIz/HCWp6+picsrS5qCgKlw4cYEmLFrz4yy/4N2x4O08tsYKUaZIHhbwZxPMqvPGHDzN43z5TazSAolC/Tx/Ve6ewKguDJrIlLAyAIxs2UK9/f2p07myyIYiiSK8cO7Bb2Qbw8PAgJCTErL1z5863PaH7lVGjRuHk5MSnn35KdHQ0Hh4ePP7446xfv54yZcoY+z333HOkpqYye/ZsZs+eTc2aNdm8eTOPP/74XZy9RHILYTDAtyvMFqDK0tmIT3dA5+cxhLRC88Ui1dpz5hgiv8U7LzlZeJHC975CyjTJvYQ9Lpd53SrLZGUihEARArF15S33b0WBKYtQCgqBOfYXyrJ3EEMioZ0vCcPn4tutr42bi9kYnn8d19qmpQ8L2lyU4TQli5RpEptJiFMTwvYaCj73ntedWQZxRcHBxYXLBw9atEaXqVkTnattXog6V1ceeeEFSlWoYKI8X/rnH9MNQUWRXjk2YpOy/cEHH9C/f3/8/Pz44IMPCuyrKAqvvvpqoWPGxMQwd+5cdu/ezbVr1yhdujQtWrRg9OjRlC9f3rbZ30MoisKwYcMYNmxYoX3DwsIIy9k1kkjuJYQQqkXbmpvRy23Rf3WOpOQMPAdNROfqSnZ6OlpHR8SUaJTp+eIYtTo1O6+PdCm635AyTXIvkXr0ACycRmrLxwtUto1ulQsXcv3CBTwrVuSJCRPQ3bxmGmdtRwiMotVCWor6XtGoC/ACNhfpNQxFo5UeO/cYUqZJbCYhDj6bBqFd7z1lOyfr+B9vTce3Th2ajhlD/T591PVYaioH161jU79+NJ8wgdDISDRaLYasTIRBj2KjF2K3JUssKs/5NwSlV45t2KRsjxs3jieeeAI/Pz/GjRtXYF9blO1Dhw7RsmVLsrKyaN++PY888giXL19mwYIFREdH8/PPP1O3bl3bn0IikRQdIdSyXhotGAyq63hBbkYbP8Vz0ETednfHwcWFrNRUOn74IU2GD0c0yRvfGKhatH2kS5FEIrk9NNcTaBUA8dctl/LKm1k87dpVWkyYYFx8ah0dVdfxvHLNnhCY7CyUjJzSUIoCPgEwNRryJ0nT6iBisbo4l5uLEomkJHByQePgiGvZsgzZt88kuaOuQhDBXcNoMGAA+6KiCAgJgbY+XB0xD59uz2HoPhhNARuFhh5DUBSFmW5udinP0iunYGxStg15CpMbiqFI+bhx4wgKCmL79u3GMgugllbo0KED48aNY+vWrbd9H4lEUggGAyTEqu5Sly+iRC6x2c1I5+xsFLDbX3sNv+BgKrdoYRLfSJ5EaBKJRFJSWMssrqtSCwZPNZdrQsD2ddAtrFArdfrFc7jkbddooNMAaNwW8mwukrO5KENmJBJJiZGRhiEriyYvvwzfrTJLeKbNySzeeNgwDFlZaK5fBa0WRaNB5M+7Y7xIh5gSbTSOiGIq2SUT4KoUKWb7dtm9ezerVq0yUbRBrW84adIknn/++bsxLYnk4cJggK0rb1lnFAUmfGxzPGKzsWMLTIqh5EuEJpFIJCWCixtOAZXUjb38i09FgefHWZZra+ZC5wEwZZFZKZy8Vuq0n7aaKtugKtS+ATA4AnQ6yM4GrVZatCWSBxhNUjyh/urxro3l5IIhPQ1t6g3rIX/TwxFN2mFwcUcDoNdj0Os5umkTtXv0w9CwFdovFxk3CvXdwlF8A9TzPXuSnZZ2288HMgFuLjYp2/ZmYGzZsmXBN9XpyMjIsHguIyMDrVykSyQlixCqRTuvG6SNlh412ZlWJsWQSCRF4ubhf0iYMQafyXNxr/tI0QfKU8ZLYzAgrsSYLz4LkmsnD0DEQJi2HNGknUkITF4rtf5GkuX7Kwr8dwDCW8CiX6CWjFeUSB5kCgtnsXiNFaXa7rHyyDutXo+y8r0CQ/6UjQvQDp5qbFI0Gio2a8aixx6j8fDh1M/Nu5OaysG1a/nz44/pu2UL6UlJNj+bxDZsUrZbtWqFoihGt4K8i2ohhNkiW6/XFzheu3btmDRpEo888gg1atQwtp88eZIpU6bQvn17mx9AIpEUAWFQXcfzC+pCLD15k50pOlV8aHR3xUFGIpHcp6SdOEyVk7uIP3G46Mp2TgiMsjFKVZCnLkbZvNDy4rMgufbDBkSHftCiC2JIBIpWh8jKRNE52G6lTpfxihLJw06xKdW55C1dmFfe2RHyp+gc1GSQqLqbR0CAsY72lvBwY96dvPWxE44ft2+ekkKxaZX8999/G3++cuUKYWFhtG7dmt69e+Pn58fly5dZv349O3fuJDo6utDxPvjgA0JDQ6lTpw716tXDz8+PK1eucPDgQSpVqlRoxnOJRHKbaKzUis1j6aFRa9j8mUx2JpFI7g2cXdGW8jIPgXF2hRmrrC8+jXJtBTRpZxJnre8WjsavAgCJO7dROuJZEsYuxLdH/zv3XBKJ5O5QjCW+iqxU58O0dGEWwmBAKWrIX1bmreSOqNbtwupjW3MhL04X+ocNm5TtBg0aGH/u3bs3ffv25d133zXp8/TTTzN+/Hg+/fTTQi3TlSpV4uDBgyxevJjdu3eTmJhIjRo1eOmll3jxxRdxd3cvwqNIJJKCEEIg9Ho0Oh1Cn68EhKKou58ZabBtLZw+AlMXy2RnEonkjmJxQZfHfdJbrzcPgbEls/i2tdDgCUTvlxFhk9E4OmHIzECflY1GUVBy3cUtWKldfXxMjhKJ5AHBSomvlPh43HKPte7cdIylC6OiuHbqFM3GjaNc+bJFCvmj1zDSY87jktdCjqpwewQEEDp1ChoHRww5njyFre+KazPhYcRuE9W2bdusKtMdOnTg+++/t2kcd3d3Ro0axeeff87333/PunXrGDlypFS0JZISQBgMJMfEsGvaNDb260daYiKi51A1xnDqYvjlJuxOUY9TF6su42XKoc/M5D1fXy79+69UtCUSSYmTu6DT5C7oDAaIj0FZNB0m90fRZ5uHwORdfGpzbAiKolq8c+WWVgetuqvvc9sUBQdX10K9ddx8fU2OEonkwSY1IcHkeCcQBgMHVq5kXtWq/Pz22xzfsgXfWrUsl2NdMxfKlldDY7T57KZaHby/GXz8ca5QGXanqJuVeTKMK4rC1a/XwxNuXP16vVzflTB2B1u6u7uzY8cOiwr3999/L5VlieQeI1eAbwkLw6DX4+DqStfoaHD0Rizfi5J8AQ7OghunoFQQhIYhnhoIAjRC0Hj48Ie+bINEIrmz2O0unhuX/e5GSL4G7Z5V+6enwg+fg6ePMd9Ewtfr8f3fEK7a6i7u469mHb9NN1OJRCKxhBCC5NhY9sybx1MLF1K/Tx90rjkWaTtD/uj3Knh43YrxvnhK9WTsNRR8AkxLE8p8E3cEu5Xt4cOHM3XqVC5fvkz37t0pW7YsV65cYfPmzaxYsYJp06ZZvK5UqVL89NNPhISE4OHhUeAuiqIoXL9+3d6pSSSSfFgV4AY9AuC/VbArDESeXdN/ZkNoNAT1Q6PTybINEonkjuNarZZ97uInD6ix2M8Oh5RY0w3EVkPBLQCUIi4yffxhaORtPY9EIpFYQxgMXPjtN8L/+ANxJQbtslnGxI9Ww2MshfxlZallV/NuUuaydDZMjYZOA0wVbkmJY7eyPXnyZLy8vJg9ezbLli0zZin39/dn7ty5jBw50uJ1Y8eOxT/HOjZ27FjpsiCR3AHyCnAy09E45JTVEwLSLqHkV7QBRDbKrjAM/q3BrbxMiCaRSO4YGn0iNFJwCqgIi6bbXsarerBaruvECvg53PIGYvUBpgr3PYS7vz+hERHSi0giKQGS4+LYHxVFyNCheNxrf2NaLRqtlto9e6J8twpN3ooJTdoVHJt9+ggG77IoCFjsRmbrX3Fy8zFXtEF9/1YYNG4LvgEl/1wSI0Wq2TNixAheeeUVLl68SFxcHP7+/lSoUAFNAYvyiIgIQLW0jRo1Cjc3N5ycnIo2a4lEYhE1CVo2Gp0DhuwsNDoHavfqpYYpZl+FI9Fw4zS0WoxyNMpc0TYOlI3m2EJESOQdnb9EInmAKEKmX40hCZq4oDg4Fuwunr+M13NjICXGXNEG9f2uMCjfFlwDwE3hbA1wc7t3Nv09/P2lF5FEUkLcjItj17Rp1Oza1UTZvluJ0EzQ6xEGA8THouQvTVhYOdYpOeVYtToQ4FihNiyaUWD9bTYukJ46d5gib/FqNBoqVapE06ZNqVSpUoGKdl6ysrIoW7YsP/zwQ1FvLZFILCAMBrJSU9U4RwCDQS0ZoVFQTq6Ez6vD3zPg3BegdVJdLAsi+TSKRlvi85ZIJA8ouZl+E+JMmjX6RAjJOVoiOw2RlWHdXTxiIHTsB1tOQ9hk6NQfOvWDE9EFbiByZAFgABdBlVaAi7DcVyKRPBTciURo1uSdabtA88Vn5kqyJXnXsR+ETUa/+T/Ek89xdNMmDFkZoIDi4GRT/W00WtDK9d2d4o77Uzk6OlKhQgX0ev2dvrVE8sAiDAYQAh0GNDnGmtyjcvOiqbUnOw2yU9VYxoLwCAQh/04lEknxojEkqYtMQ5LlDjoXsi6fRfQaap5pF9RYxRcew+DuhSF8CkxfCQ62bSCiaNWFpkQiuT9JiIOoSLNNvHsVa/LO2K6kqIYNa0rytrXwfCP1/NBImLGK7EETOfDdDhY99hgVmzcn68LRgjcp81I+EAx6kHrYHeOuBC8NHz6cDz74gPT09Ltxe4nkwSDnH47ISFPfK6DJvgr/zIAd/eCft1EwwLHP8ll7BJxaB7XCQLESSaLooM4w7pKIkEgk9xPFtPgVQuDZYzy8lILOPwh8AhBWStuIodNQXNxuXWvQ276BaJCLTInkvsWKx8w9jc7V+jl9liqTClKSTx6AvTvITs9gppsbb7u58fXQoTQdMwYPf38yTu4FBJkXj6phO5Y2KcFYf/tezV3xoFKkmO3b5fz585w4cYJKlSrRqlUr/Pz8TBKmKYrCvHnz7sbUJJL7h4Q4WPk+DJ6qug+dWGlqwda5QuO3LFt7Ds5VkwWFLoJd+WIcFR20Wgyu/rfq0UokEok1che/oV2LXB5LGAwkx8ayPyqKa6dP023xYo5/uYnaPfphaNgK7ZeLjKVtDH1HoXiVgZQYNEcXwo1TKMHjELWHovwz27IruQ0biAZPH3bGQm1PnyI9g0QieTCwzfXbwjWPu5qcM24gOkzGMysDIYTlBNGKRlWSrSVC0+oQvYYRf/Qotbp3xzswkJBhw/Dw90fRaNBfvwJAxom9OLUPV7OO50+SptVBxGJVRsu13R3lrijbX3/9NU5OTjg5OfHnn3+anZfKtkRSCEIgqtVH+eUmisEA+V3FoWB38WsH4KeB0Ho5BLSBowtVF0uPQHVB6uovdz4lkoeR1Dg4EgV1hqpyoKTIY+kRBgMHVq5kS1gYBr0e1zJl0Dk5ceyLL/jl7bdpOno09QdNROfqSnZaGlonRzixAiWvzEs8jNJzn00biK4+PqBzVY95MHj5sisOanr5ltxzSySSEuHmmX9I2DQGn55zca/6iMk5TVI8of7q0RYKdf3O1y6EwLvbYOg9Au8cpZqc0qv7o6K4duoUpYOC1GzoAQG3qrzkykFFUWtgF6Ik+3n70nPVKgxZGSg6RzPFXX/9ilrWq9MANev4xgW36m/3GqYq2sVcYUZWUiicYlG2U1NTiY2NJSgoyKaSXmfOnCmO20okDycGAyTEomyMgisxMPWzfK7iCuhcVGU7113ckrXn1FpIOgFdf4aQSDWO0ZCtxjTKXU+J5OEkNQ7+mgZVupaIsm3J0pMcG8ueefN4auFC6vfpg87VFaHX02zcOL588UW2hIWxJTwcBxcXOn30EcE9WqPNv7mYdwOxfDs1GZqlDUQhcKvZFmqn4GbIVsuJ3Y688/GHwRFFtuhLJJLiIe3iYap47CL+4mFzZft6Aq0CIP56MSRCy+cSbuKVc+oUFZs3p/HLL5tsIDq4uJCVlsbu2bN5dtMmanTpgmeP100t3oUoyYpGQ9KGd/FOn8d159F4PzvZ+rw0GvANQIRPQXFwRGRlougcTGSdvZ48uZuT+TcpZSWFwrFb2X7//fdJSUkxlvL65Zdf6Nq1Kzdu3KBq1aps27aNoKBC4qYkEonN3Dz8DwkzxlB2+gJcA2vA1pXqzqdBD14+qnJ84xSUDkbUHwNBfVB0rojsVLi4HcWtvHVrT/AYVTFPOg6bG0HXX8Cn4d16VIlEch9itXxORjyE5BzJqZiQlobOIWfpIQAhuHLkCOF//IG4EoN22Wy4fAHFryLleg5hyL59bB44kENr15KVlkb9vn3QHppl2VX81FpIPAKhi29tIOozQZOzyBQGSI1VLfc3TqleP3WGquXAFE3RLDQ+/rKMjkRyj1NoBQQbsLRRiBC3lOpsVSYFtm/P9fPnzTYQs1NTubh3LxWbNy/Y4u0bgAifjOLghMixYKvyS+DVczzoJuOVnXFro9Bau6KQ8PV6fP83hISxC/Ht0d/keez15HHz9QVnV/UosQu7le1FixYxfvx44/vXXnuNunXrMmHCBGbMmMGbb77JunXrCh0nISGBOXPmsGfPHmOt7scee4zRo0fjK79IicRI2onDVLnwJ+kODpAQC2vmISYthCf7oDi5IoQeGr8N7hXIzIgh9sIs0tJO4eISREC5MBxRUKoNKNjao89xOZdIJBI7SU1IwC3P0Uhmgqpsa7ONFRO0SfFotkTDxVNoKgRBnxEEtWsHv3yNJvkavDgBnF0hPRXlh8/BozQ9li8n/uhRkmNi0Lm4Fpx1/NoBOPgBtFkFy3yg2Sqo/qSqaJ9cqdbbzquo/zMbQqOh+gBpoZFI7jQJcbAxSo1XLkHvkEIrIBRCfut16aAgmk+YQHpioomijaJQr08fTnz9dZ4NxFlw8RS6CkFU7jkUNBp+mDCBg6tWGcffPXs2XaOjCR4wQPUQzjVAK8YJQGosSs5GoVIqCOqPASdv8/Y8G4iuPj6Qnmpmjbb/AxBQLRh2p0B2MXgEPWTYrWxfuHCBatWqARATE8P+/fvZtWsXLVq0IDs7m5dffrnQMfbs2UPHjh0xGAy0a9eOGjVqcPnyZebPn8/8+fPZvn07TZs2tf9pJJIHDSHweeoZ6NEfJ70eftyIWPYHmZlxxMaqSrWnZ3MCAl7m8uWVHD8ehsizkDx/fjY1ayzCr9zzKK4BEBIBGp10F5dIJCVOWmIiLkC2by20AFtXop0ernrlOLlARpqagbfFUyjNO0FKDBycdcvq3CJM9czR6xm6fx+KVocw6NUFZUF4BKoyLuMqePuqC8PUWHNFG9T3u8KgfNucBaqUiRJJsWNNqS6G5IolidazrGlOiTxK9RMTJ7I/KupWG+Dg4oKDqyu1e/ZE+W4VmnzyTlk6GzFlEd2XLOHKoUNcO3mSrLQ0DNnZnNq+neDnByBSY24pz37Noe7L5huFpYMhZCqcXGHutZhnA9GtQiUAu6zRZh4+OaGLbIxSy49VCMr5HgOKPf77QcXuT8nFxYUbN24AsGPHDtzd3WnWrBkAXl5eXL9+vdAxhg8fTt26dblw4QIbN27kk08+YePGjZw/f566desyYsQIe6d133Ds2DHat2+Pm5sb5cqV4/XXXyczM/NuT0tyL5C/fI7BgIiPQVk0HSJfRNFqEW17cjl+DX/sDeLcuRlcubIGjcaVjIzzZoo2gBDZHD8RTmZmHAJURTv3mHdR6eoPDSNKNiGS5IFFyrX7kNQ42BepHvOQEh9vcrwd0pOSQOeG1qcy4vJFlLUfwqSF8MtN1UKy+yZ06o9SyhtOrYbPq8PfM+DUGvW4fzJoNChZCSh/TYMd/VCu/ouoPbTwsoUZSXkaDarruCXXc1DbjyxQ+0kkSJlW7NyBcl2a5ESTY3HgVKMJybGxtxRtRcHB1dX4unbK1MsmKy0NQ1YWxMeay7tfbsKkhSi/bYXMdIbs28ubKSlMSrlJn82b6b50iZr4cXXVW3LQwRVunjffKKw/Rt2czK9ow60NxNQ4dbPRTnI9fDz8/VVFe+tKeLoqRM+AbWvU49NV1XaDlJm2YLdlu0mTJsyePRuNRsN7771Hp06d0Gq1AJw6dYry5csXOsbhw4dZv349pUqVMmn39PRkwoQJ9OnTx95p3RckJibSpk0bqlevzqZNm4iJieG1114jNTWVjz766G5PT3K3yf1n1KEPlPZDbF2J8laY6j7kWQaRnU2m/lI+pVqhbNk+nD8/y0zRzkWIbGJjF1ClSiSo9iVzXP2hUWQJPJTkQUfKtfsUK4nQrLqE25ulXAi8cuIbFb0e5dAfsPQPc+v1IxMgNTFPNYWcBI+lqkOrJfDfypwFpV5tTzyC0vPPwrOOJx3PadTcymtREMmn1X6Shx4p0+5PNDeTTI4242ytBraCQ4Xa/PbWDHzr1KHpmDEm8deGrCwqNm/OoTVrciagwbVMGUCgMZF3s+HmBXCvCO1GwtOD0NyMgb8/g5sX0LlXpEan8Sjpl00rLKBAUB/4O3+OCmvtecjdQGwYYd9nYTKGUC3a+bOjg/r+rTA1mZuv9AgqjCIlSHvqqad4+umnqVy5Mm+//bbx3Lp164xW7oKoVq0aSUlJFs9dv36dwMBAe6d1X7BgwQJu3LjB5s2bKV26NADZ2dm88sorvPnmmwQEBNzlGUruCXz8EQmxKL9+i1h/GCoGoShaEHpiL0SZKNUajQtarStpaQUvJNPSTqtjSCTFjJRrDwkFZCk3Sz5krJiwEK5dhklR0KYn/LcqR6nOUZyz0+HRiXA0CrzrmCZ4NGRCdjrK+a2IlgtNEz9e+hWlWr/C81Cok1HvZ4vrudBLhVsiZdo9jtWEjPaSJ0zPJyvTPA7ZvSIaBydcy5ZlyL59kJmOxkGVDzoHLSIrg8YvD0Po9VTr2JHS1YJQNOpajba94Pw3iIxr8OiEHNmVBhpHlNifETfP5mlPRdE4oJxcbqo861zUDOP5Nwqttecn+bRaNszJpYifj0F1HbdU9xvU9o0L1ASRUm4WiN3Kdp06dTh9+jRXr16lTJkyJuf+97//Ua5cuULHeO+99xg+fDgVK1YkNDTU2L5z504iIyMf2J3DrVu30q5dO6PwBnj22WcZNmwY27dv54UXXrh7k5PcGygKwtUd5exRxNurycyIJfZsJOnpF6lde4mZUm0wpKHXp+LiUvBC0sUlECH0UuGWFDtSrklykw85eDiqivbub+DG1VvJzgwGSIuDQx+aK85aFxTvOoiQqWYJHiuUH42u7Woy0y9YSPwIij4DERKJotEisjNQtI5WLCwa1SJvqQQi3HI9tz+yTvIAImXavY1V7xswK8tllbwlVC+eQskbh6woePWeCJrJCIOeJsOHAwIl+yocWWy0Uis1XkI4V6LJyBFqqVWRDWjVLOWGbKjUyYJMG4MuoCWZ6VVNZVrAUBzrDEW5vFutqgDqmNmp5huF1trz4xGoKsQZaQX3s4ZGq8ZoF0TMabWfpECKXGe7TJkyCCGIi4ujbNmy6HQ66tevb9O148eP5/r167Rp0wZPT098fX2Jj4/n+vXreHt788Ybb/DGG28AoCgK//77b4HjXb16lb179xIXF0daWhplypShZs2aPPLIIzbV/b5THDt2jJdeesmkzcvLC39/f44dO3aXZiW5Z8iIh8411SRA9Zpy+fIKjh8Pz7FkK9So8bEFpVpw5co6/P3DOH9+tkVXckXRERAgF5KSkkHKNUmW5iZny7riV+NRSE6EZh3zuE9ehJafwuXfET3+MFt8li8/AoegPly+tILjJ8KNMszNLZjKlafmk4MqxsSPfv1VS9IyH5JcxpjWnc2bh0JR1ORnodHmsY95Xc/vofWC5O4hZdp9iLXyV3nRuaL1LHsrDjm3hGpussYy5eCZlyElBuXoQrh5AcW3EaLuyyjnvkVkXDWxRnPxBxSPSggEmdnxxF6KLjBpbaEyreYi/FovR0k8olZVQMCpdVArLN9GobX2PORuICYnFf0zNejVZGgFUT5Q7ScV7gIpkrK9bds2IiIi+Pvvv9Hr9ezdu5eGDRsyZMgQQkND6d+/f4HXh4SE3LYSfP36dZYtW8ayZcv4559/1J2kPCiKgru7Oz169GDw4ME0b978tu5XHCQmJuLl5WXW7u3tzbVr16xel5GRQUZGhvF9boI6WzlxSe0f6OOKTqd+5Veup5OUlomHswP+Xi5mfSt5ueLsrPZNuJnOtZuZuDhqqFjavUh9T125id5gIMDLFfecvkkp6VxJzsRRp6GKT9H6nk24SWa2gbIejni5OQNwMz2b2KRUu/pqNRqCyt7qe+HaTdIyDZR2d8TH3f6+6enZnE9SS2nVKHcrN0FcUhrJ6Vl4uThS1lPtm5WVjUajQRPcDqXBUYQwkJkZm08YW1eqL16ci5/fAGrWXGQmwBVFR82ai3F09Df+zdnz3RfH74ml77M4fk9yv8/b/T3J/33e7u+Jte/+QaUock3KtHtDpmUadFxISAPDTWNfTXIi17NduXA5CeVmurFv4vGj6LNLcfmvw9Tt0NA4bmpGNj7dp6HRzUYY9GpjfvdJoYfAXly+tNJEoQZwdg7C27uNWXuFCmPIzIwxk2lwK/Gjt3cbHB39SUlL4byiIz0p7dZ37+rPiQqvwQ2opMlWv8/qAxDl26JYcD2Pu55Ocnq2lGlSpt0VmQYPtlw7dz0TjaMvHmlZeOW03UzPJi4xAw9Hb/L6xBb2+5r3N/DqzXRKuzlCSizK0Vvlr0TtoeAWgKJoTBRxD302Ij0N5ddv1eRlHfqo3jdZ6aBzhHPfmCrVhkzQZyAqdTTfKAx4BQcFM7nm7d3eYtLaQmXa8XC8PVvhWH80yq4w9cTBuVB9gHmOCmvtYLKBeO7AQTSOvvhmZeOcczr3u0++aToHs+9T0SB6DkVZOtuyK7lWh+g1TP2MC/jupVwrgrK9Zs0aBgwYwLPPPsvgwYMZPHiw8VxQUBBLliwpVNleunSp3RPNy8yZM3n//ffx9vbmmWeeISIiggYNGuDj44OTkxNJSUmcPXuWffv2sXXrVtq2bcsTTzzBhx9+SJ06dW7r3neDWbNmMW3atCJf32HuLwBEDwyhbZ1yOW27SErLxkGjcHJmZ7O+07rWZlAzNXa+09xfiL+ZiVajcMpC31daBfJ6x9oA9Pj4Ny4kpqEocGZWF2Pfth/sAqBPowq807sBAM9E7eHklZsowJnZ5n3b1y7LZ4MaA/Di0v38fSEJgLN5+rZ6X+3btKo364aq+QJeWbWfn08mWO1bL6AUX49qAcDETQf46kCcWd+W7+5CAFXLuPLT+NYAvLf9KMt+O2/WN/S9XRgElPN04o+J7QBY/PtZ3t123Hzc935Cp9Hg6qhh/5QOAOh0GtVdPC6KtLTT1Kq1mNjYKDNhbE2pTkk5wLFjL1K79jK8vdsRG7uAtLTTuLgEUtZvKE5O/pxKSKGar0fO57uT5Aw9jloNJ97uZBw/9/v84JlgeoZUBKDjhz9zLSULnUbhPwvf/etP1uSV1mopwKfm7+bS9Qw0Cpy28N0PalaJaV1V75dnPv2dM1dTrX73Twf7M7+fuqAfEP0nh2JvWP0+W1b3YXmYWipw6Mq/2HMm0WrfRyt6sXm4uvH26rq/+f7oFbO+rd9Xv/vqZd35/jU1zGX614dZt++iWd+W7+1CCKjo7cIvb7QB4MOdJ/lk52mzvpJbSJl2b8i071IeY9TSJGCXsa/mZhLdrizk3AUv/E7uNsq0dfsTmB27Gs4LznbIGVQYcMyIQ3NcTfSj1BsJHpUR+dwnK1Ych4NDWTOFWk3w+KyFBI82Jn6MW0iVyhGExUWwJ6M+jsd3FizTFA1bTgo6PjIVJwcHkxKIj8/+CZAyTcq0onG7Mg0ebLkWujkBWi6h+Y9XWfWo2qbKtWsoLZZxJs/nUJhc+zOnMrC2lBeeLg6IEyvR/GzqsaL8MxtDlx0o/k+Y16GuNxreXg3JF24lawwelyO7TJXqgkqrWt4otCa7bJRplxZRJWii6oEDqoV754vQaplZjgpDZjKa6s8XmLsidPUFaLmENw/fZEiO83GuXFOAF/Lc30yuKQoGH3+UKdFopudLkqbVYZi6GMqUMxpypFyzjt3K9vTp0xkzZgz/+9//0Ov1Jsp23bp1mTNnTrFO0BI7d+5k06ZNtGrVyuJ5Hx8ffHx8aNSoEcOGDSMxMZGPPvqInTt33lVl29vb22JptMTERJPYoPxMnDiR1157zfj+xo0bVKxYsUTmKCk5hBAcimyPk4MDGVlZOd4YwsSlSKNxRaNZZTHhmapUD6RWreV4ebUmLu4zo1IdUC4cAAcHf6pUiUBRdBgM2Wz4K5Ylv/7KtG51wf4KEBJJoRRFrkmZdo+SYwHa+awTGVlZxgVOLi4OWtJza8oKA5z7Bm3GVUReCzb5LT0KNWsusrjItJbg0a7Ejxodjg46yCiwq5FpXx1hzLp/qeF8hW3DG4BPw8IvkjxUSJl25ylKsjPXarUQKbFo8ynaAHjXQVPucRvrUysQGo3QOHD58iqbrNTWNgqLRabpXCFkGlw/Dh6BZNcaii4nFEY8OhlFp8rnuOsZVHHWgGsAmY9MxTFnbemk0xVbSMzMb4/xZqf+ZDdqg25zlBqjXT6Q7B5DUXz8WfHHeV5oXrVY7vUgo4j8/teF4OzszDfffEPbtm3R6/U4ODiwb98+GjZsyE8//UTnzp1JSytiMP4DTsuWLSlTpgybN282tuXGqS9evNjmpBs3btzA09OT69evm5VPs8SD7Jp0v7iR57qGx8ZGGV2QKlacgF6fyB9/VDXZFW3R4ibnz8/i3LkZFr9PN7dgatVajLv7IyiKFqHPUC00OhdupGXj6eoIqNlTTyek3tZ3L93I723XpHuB4pBrUqbdBZmW8BeZG5pyodVO3P1D8CvlCKmxanmvnLJcovZQFLcAQEHoM1F0ThiyM9FoHSDjGsKxlGoFyolVzLVg79lzS6ZpNK60bJnCkSP9uHJlTb5v0pq8K1wOAlSuPJkqlaeSsrAUZxtsoEztNjbJtOS4/ZTd2Q6P3r8alW0p06z8niBlGpS8TIMHW66d2/MHmle74vHxV3g9qlo3b6Znc2TDWip9Mgrt+Pn49lC9Ygt1I//1S3xnPo/4PR3l7+lqTer8hC6GgNawtrqpIm6pXeeKePEmmenn+WNvNZvWY9blWjHItCqRoNej6BwxZGeSrtfg6qR+vomfz0Cf9DExzqOp+ew44/cZf+YPlO97oG+/Gb+qjxnHO/n77ziP7YZv1Nc4128C3PruDYlXubRuGSFDh+Lh729Vrt1Mz8bH3Ql3nQI6HWRncyNLcC0lAx93ZynXbMBuy3a5cuU4duwYbdu2NTt34MABKleuXCwTexDp1KkTM2fOJCkpyRgPtH79ejQaDR06dCj44tvA0i9RWU9nY8xwYX193J2Nv5xF7Zv3lz4XLzdn4x9IUfvm/SPNxd1ZZ3Fu9vTN+8+nKH2d8/QVwmDBBUmhUqWJFtzFC094lpp6BEfHciAUUABFi6JTs/DmKtoAOp3l+drz3RfH74ml77M4fk8sfZ/3wu+Js5W+Dyp3Q65JmWZ/X0u/q46abIL8SkMpR3MLEKAkn1HdF9NuuWFqSlWDkKkIR898ViDLFuyCKyZYk3d2JH7MuI67Jp161f0hjzICBfyeZLmAJr3QvlKmqUiZJtdqtso17Y1EYqOiCBk6FLh1vrKnI2TGg4uDsc3dWUdVNwXfzETi84xR2O9rPICTi7rusVj+ys761NnpgIHYS4tsLq1qXa7dpkzzHwpCIWnTu3jfnMV194mmiR8BHy6hdc42KtoAvh6OwCXwcDTpW93bSf3cHW71NX735UpRKzLS2G5druW8OfYXhLeARb9QqlZDSuX5LkHKtYKwOz1xv379iIyMZMeOHcY2RVE4dOgQ7777LgMGDCjWCRbGW2+9ZfU1Y8YM5s+fzy+//HJH52SNYcOG4eHhQffu3dm+fTtLlixh/PjxDBs2TNZtfEARQuQkOwuzWYhfvDgXR8fy1Ky5CEUx3Q9TE55FqwnPNOqfr6IpPpchicRepFy7z3HxVS3a+bN0lw6GVkvgv5WwuqpqPTq1Bg7+D6FoycyIMXG3tC7Tbi0y88szyCvvok3OFy4HcxI/Im5lHZdIigEp04rOzbg4dk2bxs24uNseKzkujp2RkSRbGisjDZGdabn8lb31qXXOKIrWztKq1uWaNdlVqEyrEY2jU8CtBNLZqRbue5dJvwfndB9gt2U7MjKSw4cP0759e2Od7U6dOhEfH89TTz3FhAkTin2SBTFnzhwyMzONruvOzs6kp6s71i4uLmRlZaHX62nYsCHffvstvr53L3DV29ubHTt2MHLkSLp3746Hhwfh4eG8/fbbd21OkhIiNQ5OrIAGYy0mOytIiJvGZrchLm7hrdjsgGE5mcVlGS/JvYGUa/cxOjdw9IL908xjHuuPUct35c90a8UKVJBMK6hiQmrqEW7c+AM/vwF4e7c1SfCo1yfj5/e8WeJHEzno4guNIov1Y5E83EiZdm+Qq7jX7NoVD/98m2lCkBFzAec6Q83LX9lbnzo7DZGdZndp1VtyLdrEoFJQ0lqjTPNsTeylPHl3yobj6FIBRQAa68YTg7sXJOUcbcHHHwZHqEfJXcNuZdvR0ZEvv/ySn376ie+//56EhARKly5Nu3btaNeund0TuHDhAhcuXKBBgwa4uZmVpy+UH3/8kT59+hAREUG3bt1wd3fn5s2bbN68mbfeeovly5eTmprKgAEDGD9+/G1nQr9dateuzQ8//HBX5yApYYQA57LwyOsoYCUhRsFC/MqVtaSmnuCRR36mSpVINTZb6AHNPVU7XiIBKdfuO4RQLdcv3VTfm7liWnPDxKoVqCCZlncDsSDF2dExgMoVJ6PROWHIzkDROqIoitpeeQoajSMGQyaK4iDloKREkTLt3if1v2M4V+oEodH5PHMEnPocag+2sT61gFNrCagUbldp1YI2CgMChgGKZZkmBI6UoUpFNdmZyM6ArGwUFNAUbEgxeHibHAvFxx+GRtrWV1Ji2G0eO3/+PFlZWbRu3ZqZM2eycOFCZs+eTbt27cjOzub8+fM2jbNw4ULKly9PlSpVaNGiBcePq2WSevTowbx582yez/Dhwxk7diz9+/fH3V31yXd3d+f5559n7NixjBkzhrZt2zJ58mS2bt1q7+NKJPYhDKo1aH8k7OiPMGRbcUEq3KWoQoXRaLUuZKfGs3u3L/EHP5ULTIlEcnsIA6TGqNbsHf1Bn2Fu6bHmbgkFWIEKlmnx8Ru4dm0bjo7+VK40hTp1VlG54mQcHQOMnjqKohC35TV+/tmNuC2vGuWdoiikxKzn55/dSIlZf/ty0NVfup5LJHeQlPh4k+Nt4+yK/kYSKBq13nS/s/DoZKjWTz1W6gRuFVRFPK8sOjgX3Mqr9anztCsH5+LoFGAWzpJrpfbzG8Bjj52lcuXJlC3bj8qVJ/PYY2fx9GxuslGYX65ZlGkaDYqzK+Smpxao7wtRtAEMDj7s/Eo9Su4f7LZsV61ald9//50mTZqYnfv3339p0qQJer2+wDHmzp3LG2+8wWuvvUbbtm1NEk60atWK9evXM3r0aJvm8/fffzN16lSL56pUqcLBgwcBqFevnsVSDhJJsSEM5uUkWi8lwH+wRev1LVejAqw9AoQ+ifJKXTwrPXF3nksikTwYCIN5IrQK7cwtPdbcLdVBrFqBCrRg+w/D0Um1YMd++SqnfJYSlDCI8j0/MRvfYDCPC3TU+VAxPhXH6sWwyHT1l67nEskdJDUhAbc8xyIjBD5PPQM9+uOTlal66Sgak7JYIseCjKKoinj5tqZ1qDOTofrziPLtUPK1+/kNwLNUKy5dvuXiXa5sOEKAo4M/lStNRqM19bwBdUMwdstrVuSaBZmmKMR+Za2/dQyOvuz6GmpOk7Vc7yfsVrYLqhSWkZGBk5NToWPMnz+fKVOmMHnyZDPFvGbNmkYrty1UrlyZRYsW0bFjR7NzCxcuNGZHv3r1Kj4+cidIUkIIASmxpvGNOhcUjQOOjgHUrLHIJJkQqNbr0qU7gDDg6Bhg6i6uN+TE7mhwLFWLqs133pXHkkgkDwhCWE6EdnCuuiANXZRHfllzt1RRDs7Fsbp5rCKoFuyyvv0o49OlgBAYywp1QTh5BlO1cgR4Bhfp8SUSyf2FJimeUH/1CIDBAAmxKBuj4OIplApB0Gso+ASARkPSpvfwvjmLpLwZvBUNwjUAQiJRNFqEQa8q50KQJTzRPTIZjYMThqwMDHqBVoBWlKFShcloHZzQZ2Wgz1RdvBWNhthNBSnIluWag8GDylfBQXjY1B+KEJstuaexSdk+duwYR44cMb7fuXMnFy9eNOmTnp7OmjVrCAwMLHS8mJgYmjVrZvGcg4MDN2/etGVaAMyaNYtnn32WmjVr8tRTT+Hr60t8fDxff/01p0+fZv369QDs2LGDli1b2jyuRGIXwgBHoywm6VDOfY1f1X54e7Ui9tKiW5aecuFq5skzmxBVe4FBDzqtWl9R6yAzjEskkmLEoNbQzh+Dfe0A/DQQWi+HgDZwdKFq6clKRbhXgtBolPwKeuIRuPwHfuUG4F2qFbGXzRP9YBAIg55f95Sj6pVnbLbc6D3KmxyNSGu0RPJQobmeQKsAuCayVUV760p4Kwz0eWTR0tkwNRo6DUDrWRaSTJVXYTCQlZaGzkGH4qhFZOtRdAonvvmGz3v2xKDX4+DiQlZqKhqdjmc3baJGly6InHsogIOrq3Gj0MHgTsX4VAuKs3UcDB5UTYJELw+zdstKeBFisyX3NDYp2+vWrWPatGmA6iphLeO4l5eXTQnIKleuzN69e2nTpo3ZuT179lCjRg1bpgWoMd579+5l1qxZbN68mbi4OPz9/WncuDHr1q3jkUceAeDjjz+2eUyJxG40WgvxjTnWoYDWKJsfw7HecKoETUTRuSKyU+HUWpRDHyM6blFjFv/7F8JboCz6BWo1vCuPIZFIHlAUSzIqh1NrVQW62TxVoVVyLECZmShBz4FfKJxYdMvdskY4int51bWS0iaJfkRGJkJvID05GeX6KcpfTrBrYap4N+LsRxA0olHxPLdEIrmvca1WCxJizRVtUN+/FQaN2+JUvQmcu3VKGAwgBNqkeDRbouHiKTQVghA9h1K9Y0fq9O7NobVryUpVFXRDdjaf9+zJ6LNnccqIx2lnc7M619YU56JQ0FiuOZ64rrZ65Mo8FPc0NinbY8aM4YUXXkAIQWBgIJs2beLRRx816ePo6Ei5cuVsSlwyePBgIiMj8fX1pWfPngBkZWXxzTff8N5779ldXuHRRx/l888/t+saieR2EUIg9Ho0Oh3CoEexFN+Y66JZfxTKrnDVTVPngpKdCooO0Woxiqv/LSu2rGEokUjsJSEONkbluFRaWWwJvZUY7ByuHYCYHeD7OMwcjDLxU1j8Nvy8BZ4bDR0mgrOrKqO2r4U181B6DMHQYwiGzCx0OtBn6jm0fgMuPr7U6NyZ5D//pupV+yw6Oo0v55aBbpSMSZRIipPkuDj2R0URMnSoeSmtexVFwSmgIiyabq5o56LPho0LcAy/pRQbQ163rkQ7PdzkWmXpbJiyiB7LlxN/5AiXDxwwnjNkZ7N/wQJCp04u8TrXBo0X7AdDey+zc26VgyElQj3agvT8uaexSdn29PTE09MTgDNnzuDv74+jo2ORbzpu3DjOnz/PkCFDGDp0KADNmzcH4JVXXuGVV14p0ri3W0ZMIrEVYTCQHBvL/qgorp06RbfFi9HWHoqSP74xj4tm/mQcos6wHEVb1syWSCS3QUIcfDYNQrsWUE9VA5Zq0uai6KBGOGxdBd+vg4jFcPEUnDygWo6mh4OTi+mG4IHf0Dw7nF9mzSLp7FlKlS9PyLBhePj7o2g0ZCVnWlxMaqlI1e1wtX3FYvsIJBJJwRRYt/pexckFxcFRlUUFEXMaxcEJnMqo74VAXL6IJp+iDYA+G2V6OIaGrWg6ejRbwsJMTieePo3GwQm0LnZNtaBNREsYtN6qfOxowVXcivLs7u9PaEQE7vfL9ycBipAgLTfhGEBqairp6elmfUqXLl3oOB9++CFjxozh+++/5+rVq5QuXZq2bdtSvXp1e6fEwoULmTZtGnFxcSiKwp9//knDhg3p0aMHrVq1sjmzuURiC8Jg4MDKlWwJC8OQnQ2KQtfFi8EtABG6SLVg513Mnt6ACOoHlbsgcpJ0oM9WjzIuWyKRlCS5Vu9nh4NXgIWatKiKdstocAuANfMgI01VqivksYQLYe55Uz4QYdDTYuIENA6OGLIyUXS3amBbW0w6+1WH/eA8wP7/9xKJ5CEiIw2RlakmQ7NG9WDoPxah16MMSsArKxMFgfLFZwVaw7VfLqL+oIlmyrZ3YCCGrAw0+jS7pmrNLbwgC7a9ePj70yoy8rbHkdxZ7DapCSGYPn06FSpUwMPDA19fX7OXrQQGBjJ06FDefPNNhg0bViRFe+7cuYwcOZKBAweyfft2k2zpuWXEJJLiQghBcmysiaLtWqYMDs7OnNq2XS0n8dxZk3qP4rmzULkLp7Z/ryrYy96FxHhzRdvHHwZHFGCZkkgkEvtIOXoAPptGyqG/rNek7Xsagp6DiIGqJVsI2L4OuoWB1sqevFaH6DUMFA1Xv14PT7hx9WvTGtjW4g7dctYJbnasFyQSyUOIEGTEXlBDZCzJoif7wop9ULosysJImNRPdRPXaG2yhutcXdG53LJga3Q6QoYNI+vCUYuXGBVnjZfN57JLV2fnV+rxvkauUYuM3ZbtOXPm8MEHH/D6668zadIkJk+ejFarZe3atWRmZjJp0iSbxtHr9ezZs4eLFy9atI4PHDjQpnGKs4yYRFIYwmBgf1QUvnXq0HTMGOr36YPO1RWh1+NWtizfj3+dkCFDKJ2nzMS1/07x46Q++NSqRWC7dmgGvW55cB9/GBp5R59HIpHcP9w8/A8JM8bgM3ku7nUfsekas/q2+WrSIvTw1y/w/lOqop3LmrnQeQBMWaS6kOe1EGl1iKnR4ON/S7m2kG/CqlItF20SicRGUv87hnPrTmrW8bxJ0qoHw7Tl8N1qUxmlKPD8OFPPHEuUDyQ7NZXsNNWCrdHp6Lp4MR7+/iR//w2WChkX5Ppt7ZzBy5ddcVDT6z7fXJRr1CJjt7IdHR3NtGnTGD58OJMmTaJ79+40bNiQKVOm0LVrV/77779Cx/jrr7/o2bMnFy5csFi3W1EUm5Xt4iwjJpFYRAi1tJdGi0aBes89R+jUqZCZjsZBC4BiyKZcrZr4zZrF5oEDOfT557iWLk1qQgKgCvHRZ8+iaGR8tkQiKRppJw5T5eQu4k8ctlnZtoii5NSkfQcxKAll7w5TRRvU9xED1cVs4zawaSHEnFZdx3sNUxXtwuSZNaW6gEWbjEmUSCR50d9IAo0GOg2Axm1h4wJVFvUfC1cvm28G5vXMWTrbsit5jmdO/NGj1O/XD+/AQJvyTUgkRcFuZfvs2bM88sgjaLVaHBwcSEpKAkCj0fDKK68QHh7OzJkzCxzj5ZdfxtPTk2XLllGnTp3bSrZWnGXEJBIzDAa15MTGKNUlqUFzfHq/DAiU7KtwJFotp1MqCKVGGDhXpMeKFSYZLvPultqSrV8ikUjuCM6lUTQaDN3D0VhalG5bC+dOIBbugiGRKFotQq8HjcY2WVYES4iMSZRIJBbRaMA3ABE+BcXBUY3RXhhpWZkuzDMnYjH4+OPnXZaeq1bZnG9CIikKdpvZypQpY7QWV6pUib/++st4LiEhgdTUwlPlHz58mNmzZxMaGoqvr68x23nel60MHjyYGTNmEB0dzY0bNwDTMmK52c4lErsxGGDrSni6KkTPgG1roGx5FEWgnFwJn1eHv2fAqTXq8fPqKCdXomg19Fqzhvr9+tFy8mRGnz1LcP/+0qotkUhKhJT4eJNjYQgh8Oo1EfqdQxgMKH4VEFMWmcdEanWIvqPB0VmtWTvWl2ubP5WbhhKJpPhwdrW9r6KQ8PV6eKoyiraAuOxcz5yO/eGrsxA2GTr2g7DJiK/OonRU12RXv/7cYr4JiaQ4sduy3bx5c/788086d+5Mv379iIyM5NKlSzg4OPDZZ5/Rtm3bQseoUaOGUTG+XUqqjJjkIUcI1aKdNz5IUeCJLnAzBn4ONy+fI7Lh53CUgDb41Kql7pZmZ6NotVKISySSEsMsLrsAhMEA8bEom1RvHaVCEKLfGOj8PIaQ1mi++MzoLq7vFo7iG0D6jRsoN67hsisBwxPS0iOR3KvcqVraxXIfIfB56hno0R+frEx13VXIWkkIQZmca4ReX3CW8m1rocET0PvlW9bwHAu2yX0s5JuQSIoTu5XtyMhIYmJiAHjzzTdJSkpizZo1pKWl0b59e+bPn1/oGHPmzGH06NE0aNCAWrVq2T/rfBRnGTGJBFBjtDdGmboeObuCVgPHPrNcpxbU9mMLURpF8q6PD89v345/w4Z3Zs4SiURiBceAiqqi/e0KlHxulcrS2Yh3N6I80YXsF95E5+JCdmoqhz5fh4uPLzU6dybx79+xr+qsRCK509ypWtq3fZ+cED1l461NP3oNBZ8A1V3cAsJgIDk2lv1RUVw7dYpOH36IS8+havZxa3HZrbobreG+/xtCwtiF+Pbob/98JZLbwG5lu2bNmtSsWRMAJycn5s2bx7x58wq9rn79+ibWvbi4OOrVq0dAQABeXl4mfRVF4d9//7VrXrllxCSSYsFa2QhFq8ZoF0TyaVC0PPbqqzLJj0QiuSdwq/OIatHOH78IoM9Geb0X4quzxF+4xN6PP6ZU+fImCYP0N5LuxrQlEkkJc6es4QDaUl63QvTyeg6CmsxsarSaCC2Pwq0t5YUwGDiwcqVJ2dWu0dHg4IWYsshcrml1iCnRUNpP3WSEe86Cba00ouTBw25lu6iEhIQUmyvtzz//bFf/li1bFst9JQ8PwmDBPSk9FbIzoVQh5SQ8AsGgp6WNZfAkEomkRNFo0Lq6oax8z7IFCFSFe+MCyg2JpNvixRiyMlB0jjIERiJ5wLlT1nAA12q1zEP0ctFnq+2N24JvgLHZpVotkmNjbynagIOLCw4uLuyZP5/Gw4ZhaNgK7ZeLzEJg9i1YQJMRI0CrLdHnKghrFRaslkaUPHAUSdleu3Yt69ev58KFC2Y1sq1ZpZcuXVqkCVqiVatWKIpiLBuWdzEghDBbHOSvvy2RFI6Coftg0wy9QsDub6HRUPhntmVXckUHdYaptWwlEonkXqBU6YKTCeUSc1rt90ZFEhu/QZneI+7M/CQSyYOPouAUUBEWTS9w04+NC25VMci55o+3phsVbYCstDSyUlNJvXKFhY0a0XT0aOoPmojO1ZXs1FQOrl3LnnnzqNm1Kwa9HopJDyiKNVpWWJDYrRG8+eab9OvXj/Pnz1O9enVCQkJMXg1tiE996aWXOHPmjMVz586d46WXXirw+r///pu//vqLv//+m23btlG+fHkGDBjAF198wR9//MEXX3xB//79KV++PN999529jyh5CBFCqAIZMOj1auZw3wDzDL1REeBSDhEarSrWeVF00GoxuPoXmuRDIpFIrJEcF8fOyEiS4+KKZ8Ab19SSXQUlEwK1hrZeDzsuqqVvJBLJQ0uxyyEnFxQHR5s2/dBoVWu0Zxk0Do5cO5XvGiE4tG4dj4aFEX/kCFvCwnjb3Z2Zbm687ebGlpz2kGHDCqwEY/D0YWeserQFt9rBMDhCPUokNmK3ZXvx4sW89dZbTJ48ucg3Xbp0KcOGDaNq1apm5xISEli2bBmLFy+2en2DBg2MP/fu3Zu+ffvy7rvvmvR5+umnGT9+PJ9++int27cv8lwlDz75k26UrlaN0KlTObppE7V79DNzTzLcSESpPgAR0AblaJQao+0RqFq0Xf2lVVsikdwWRXLrLKh8jsGAPjUFbWHJhHoNQ596887Fl0kkknuWYncvz0hTs4EXtukX3AwMBnw69YSufRF6Pc3GjSP+8GEuHzhg7LZn7lyCBwzg6UWL+Co8HEN2Nlk55Yc1Oh1dFy9Wc04UYPwwePmyKw5qetnoyu3jf8vqnn+sHMW9to2Ku+ThoUj/U5s2bXrbN7b2y3/y5EnKlClj8zjbtm1j06ZNFs916NCBnj17Fml+kocDs6QbOXgHBlK1TRsWPfYYjYcPN3NPOrV9O12jo3EIiUDR6ECfCRoHadGWSCR3FlvK53j5kHLkH0o1fsJ6MqGp0eDjT8qfu/G0cBuZzEcikdwWQpARewHnXkPVZGiWNv069YfeL5tlKi/XcyhD9u1j88CBHFq7FoDLBw7wxcCBdF++nMB27di/YAGJp0/jHRhoktzxTmG34i55aLD7tzA8PJzVq1fbfaNPP/2U4OBggoODURSFfv36Gd/nvmrUqMHAgQPtskS7u7uzY8cOi+e+//573N3d7Z5rUbh69SrDhg2jUqVKuLm5Ua9ePRYsWGDWLzY2ll69euHh4UHp0qUJDw8vtprjksIRQhiVakOORTu/og3wx5w5uPv703T0aL4eOtTEPenroUOp3qULDi4uKEe2wWI3+Gu9VLQlDxRSpt0HGAwQH4OyaDpM6qce42PUdlR559O1L/wQT6lGzVUZ1fl5xFdnIWwydOwHYZPV950GoGg0ZMZesHirgtwnXWrU5Wz1UFxq1C3Bh5VIbh8p1+4uqf8dU8t7TY02DdEDqNUQIpepmcqfrgrRM2DbGoiegdK1Ksq21fRYvhy/4Fsy6MiGDfy3bRse/v6ETp1Kz1WrCJ06BY+AgDuqaBcJH38YHKEeJXeMYg+PsAG7LdvTp09n9OjRNG/enLZt21os2/Xqq6+aXRcQEEBISAgAhw4dombNmvjmy8Dn6OhI7dq1CQsLs3k+w4cPZ+rUqVy+fJnu3btTtmxZrly5wubNm1mxYgXTpk2z9xGLxDPPPMOxY8eYOXMmlSpV4ttvv+Xll19Gq9UyePBgALKysnjyyScBWL16NampqYwbN45+/frx9ddf35F5PsyYuIufPk23xYvZHxVlpmjDrR3THitWULVtW+s7pk46yE4FL2ntkTxYSJl2j+LsWnj5nAU7EA2eUEt9bbplHRI9h6pZfn0DEEMiUbRaNUZboyk863gB7pPudR/Bfc3O4npCiaTEkHKt5HFwtRLS4uyqlhDUaBCdBkDjtigbFxhD9MQLE+BqHIqVTOXK9HBo0o5uixfz+wcfmK3HEr5cg+//hnD1fqmlXYBMlZQcdzL7fi52K9s//vgjy5YtIzk5md9//93svDVlu1u3bnTr1s34furUqRZjtu1l8uTJeHl5MXv2bJYtW2bMUu7v78/cuXMZOXLkbd+jMC5dusRPP/3EkiVLeOGFFwBo06YNf/75J2vXrjUK8A0bNnD48GGOHj1qrFXu7e3Nk08+yd69e2nSpEmJz/VhxcRdXK/HtUwZdE5Opkk3FAUHFxey0tLU5Btr1+JVpQptZs4kNCICjU6HITsbRau9tTAtHwwNI9SjRPKAIGXaPUged3Fvvd56+ZzAOlD/cdi60mzRqiydrSZ97Pw8N/b9iuekXiQMn3t/LEwlkttEyrWSRQiBX3Awb6akYMjOvlUdKG+oS3YWwmDg3C+/kHTmNPXyhOhpdDo0G6NsKk/Yc9UqDFmZKDoH043Ce6yWtuT+oqRqztvtYzF8+HAaNWrEwYMHycjIwGAwmLxsKbO1ZMmSYlG0cxkxYgTnz5/n7Nmz/Pbbb5w9e5YLFy7cEUUb1F1QAE9P00g3T09PY3kygK1btxIcHGwU3gDt27endOnSfPvtt3dkrg8jQgiSY2PZM28eTy1cyKSbNxkfH29MulGnd2+6Ll7MpJs3eTMlhUk3b9J18WL8goPR6HQIg4GU+Hh+fvttUuLjTQW7qz80ilSPEskDgpRpJY9drmx53cUn90fRZ4O1RelzY+BKTMHWoYQ43Oo0gKSEYnkWieR+4EGSa3fDFbYghMFAckwMu6ZNY2O/fuyaNo20a9cQ+UNdPnsL4mOp1KwZp7ZtN4bovevri8bGTOWKVgttfbj69frCPXKKSFFyVFirpy25f8i1et8s5r8ruy3bFy5cYP78+dSte/disz799FNeeuklnJycjG0ajYZKlSpRqVIli9ccPHiQ+Ph42rRpU+zzqVixIh06dGDmzJnUrFmTihUrsnXrVrZv386qVauM/Y4dO0atWrVMrlUUhVq1anHs2LFin5dERRgMXPjtN8L/+ANxJQbtslm3km70G0PvdesQly+gyWnXVQgiuGsYDQYMID05GUWjwcPfn5aTJt3tR5FI7ghSppU8triy6VxczN3FnV1hxirLi1JFgQ59YMmsQq1D2iGRxfcwEsl9wIMk1+6GK6wldC4uFhPN+gUHEzp1Kny7AvIlZFSWzoYpi+ixfDnxR46oGcYVBUNWJhqbyhNmo1y/WpKPVaQSX7KetsQadlu2n3jiCY4fP14Sc7GZpUuXUrlyZV599VV+++03425lfmJjY4mOjqZdu3Y0a9aMxMTEEpvTpk2b8PPzo27dupQqVYp+/foxZ84cevXqZeyTmJhoFuMOqnvStWvXrI6dkZHBjRs3TF4S29FotdTu2RNl22q0PavfSrrx8xYUt1Lw7Qo03auZJOPQ9qyOsm01Ll5eJbZzKpHcy0iZdndxcHXFzdfX3F08I011lbS0KHVyUZVxW61DpUoX/8QlknuYkpJrD6tMc/P1tZhotumYMYgrMeaVD8DoYSPiY2k6enSeEwqG7oPNE6flotVh6DEEuANrstx4apm8TFIM2K1sz5w5kwULFrBw4UJOnz7NtWvXzF4lzZ49e/j000/5+++/adGiBR4eHgQHB9O2bVs6d+5Ms2bN8Pf3p2LFikyYMIFHHnmEkydPmgjToiKEIDs72/jS6/UIIXjxxRc5efIkq1ev5qeffuKNN95gzJgxrM0pUXA7zJo1C09PT+OrYsWKtz3mg0JyXBw/v/12ga5UqhtTrLnQz3W3LOCfgZIQp5bSkUgeUKRMu7fIG/fo4u1t7i4uBGxfB93CzBelBSnieSkfqCZGu2H+/zq3VqxB1oqV3MfcablWUjLtXnMXN0FRcPbyMk80qyjU79MH7ZboAj1stF8uon7fvgA4uLigcXBQkzdOWWQu27Q6xBS1PKGi1aobixLJfYLdbuSNGzcGYNiwYVYtfrbEbd8uPXr0oEePHpw9e5YffviBffv2ERcXR3p6OpUrV6ZDhw40b96cVq1a4eDgUGz33bVrF61btza+Dw0NZdy4caxfv54DBw5Qv359AFq1asWVK1cYO3YsfXOEibe3N9evXzcbMzExsUDBPHHiRF577TXj+xs3bsjFKeo/UzdfX1pOmmSajCPnnDAY0Gi1IASaLz4zFfo2uluycYG6u6loS/6BJJK7gJRp9w55KyZcv3iR7kuWWLZSr5kLnQfAlEWmLppCwPefI3oMVl01Lck2rQ7Raxj61JsWFwCyVqzkQeBOy7WSkmn3iru4JRxcXNDodKaJZnPada62edjoXF3R5SSmzUpN5cTXX1O7Rz8MDVuh/XKRMVO5vls4im8ARzdtonaP7mgy0krwySSS4sVuZXvx4sXF5lYrhODEiRNcu3aN0qVLU6NGDbvHrlKlCuHh4YSHhxfLnAojJCSEP//80/jew8ODL7/8Eq1WS7169Uz6PvrooyxatIjU1FRcXV2pVasWBw8eNOkjhOD48eMF1hZ3cnIyiU+X5CvjdeoUpYOC1OyBAQEAhS9Y7XC3RCMVbcmDi5Rp9wZmcY+KQteFUZZjGE8egIiBMG05NG4DmxYaF6WGxzqglCmHmBKNMj1fkjStDjFVtQ6l/LkbT/ORJZIHgjst1x5GmZaVloYhO5vSQUFm7dlpaehs8LDJTk0lO01VnA9//jlV27Rh0WOP0Xj4cOrnyVR+cO1a/vz4Y/pu2UJGzHmkXVtyP2G3sp1bLuF2+eSTT3jrrbeIj483tpUtW5apU6fy8ssvF8s9SgIPDw8aNWpk0la5cmX0ej0HDhygQYMGxvb9+/dTtmxZXHNqDnbq1ImVK1dy8uRJqlevDsCOHTu4evUqnTt3vnMPcZ9jKRkHwMlvvyV8714OrlplsmB96uOPzYW+He6WGPRS4ZY8sEiZVjzcTsmQ3IoJeeWWWqtWjWHUWLJSb1sL505giNoJ4VPQODgaF6U6Z2fq9R2AaJKvjm2vYaobpkZDZuyFYnt2ieReQ8q1O4AQpCclETJ0KLtnz761HhOC6xcuULrn0EI9bOKPHqV+v354BwZSrVMn3Hx9aTp6NFvCwtgSHq6WY80pC9Z18WI8/P1J/GmrVLYl9xV2K9vFwcKFCxkxYgTPPfccffr0wc/Pj8uXL7Nu3TpGjBiBg4PDHbNUFwedO3emUqVK9O7dm4iICPz9/dm+fTtLly5l2rRpxn69e/dm5syZ9OrVi5kzZ5Kamsq4cePo0qWLrNtoI2aL0jw0HjGCGxcumJ4TgoPr1hHcNQxtXqGfN+6xgH8G9BoGit2pDSSS+xop0+zndtw9hcHA/qgofOvUoemYMdTv00d1wzToEWXLI6YsMs8todUh+o4GR2cWNm7MtZMnyUrNU2NWo6Hes88ihkSiaLVqjLZGIxM+Sh5apFwjZxOv+EiJj8enZk26RkebbBaWqlgRHBysy64p0eBTDr8y5cxqZgcPGEDVtm3Zv2ABiadP4x0YSMiwYXj4qxuF+htJxfoMEklJY5OyHRwczOrVq6lXrx7169cv8J+1oij8+++/BY43Z84cRo0axdy5c03au3btiq+vL++///59pWx7eHiwY8cOJk2axBtvvEFSUhJVq1blgw8+YMSIEcZ+Dg4OfPfdd4waNYrnnnsOnU5Hz549mTNnzl2c/f1Bclwcfy9ezBNvvGGejANAUajXpw+7Z80yO7dn7lwaDBhgLvStxT2CqmhHLFYzUcrFqeQhQ8q0O4ei0aDRanEtW5Yh+/aZlCekQhCi72iUzs9jCGmt5p7IY6UW3mXZPHAgl/P9z9XodFRu0QIUhYQv1+D78RgShs/Ft0d/Y5/cRGi1ZSI0yUPCwyzX8iZezJ/j5nbITktD0WhMFOQbMTE4uLiwZ/58Gg8bZjX+et8nn9JkxAi1ZvaIeUb5pGg0eAQEEDpV9djJq4hLJPcjNinbISEhuLm5GX++3V/4M2fO8NRTT1k816VLFxYsWHBb498NqlWrxrp16wrtV758eTZu3HgHZvTgkDcRGmCWjAPUhBwOrq4Wz10+cIDNAwfSY/lyRL4FKynJ0Pl5aNJOTYaW257jbolGWrUlDydSpt0ZhMGAQa+nycsvw3er0OTb+NMsnY14dyPKE13IfuFNdC4uZKeloXF05MQ333BkwwaT8fK6Wxr/VyclmN3XtXYwDIlQjxLJQ8LDKNcKynGjFNMax6ggR0Sg0ekw6PWkXrnCwkaNaDp6tFn89Z5586jZtataW9tCzWxFUUj4ej2+/xvC1bEL5Uah5L7GJmV7yZIlxp+XLl162zf19/fn999/p127dmbn/vjjD/zvsYyLkruHyT+J06fptnixWTIOwJjJ0tI5gENr1xJ/5AjdFi+mXI5bJfpsNRZbUcA3AIZEqBbtvO0SiURSwigaTcFlCF/vhX7zfxz8bgdbR44kKzWV+v37033ZMkafPWvV3bIgPPz9aRUZWXIPJZFI7jrWctzsnj2brtHRBA8YgM6leCKgFUXh0oEDLGnRgjHnzhljufPHX4O6Kdjv228LT3aWnmrWVJSKCVJBl9xN7N7Seumllzhz5ozFc+fOneOll14qdIywsDCmT5/O5MmT+eeff4iLi+Pff/9l8uTJzJgx475yIZeUHLn/JOZVrcrPM2ZwaPVqDq5ezaNhYWh0+faJhODQunWWz+UQf+QIbuXK3bJWa3W3FGpFuVXXMW+7RCKRlBC58ZOKMKBsiiq0Jm2DAf2p1b07LSdPpt0776AoitHdsueqVYROnXLb1ip3f39CIyJwl5veEsl9TUE5bgzZ2WwJCyM5Lg433+It85eVmkpKfDweAQF0jY5W12RCmCjaud43aaeOF+u9rZGroBvyKehS3knuBHb/R166dKlJBvG8JCQksGzZskLHmDRpEiNHjuS9994jJCSEChUq0LBhQ9577z1GjhzJm2++ae+0JA8Y1v5J7Jk7F4/y5Xl60SIzpfrPjz6iVMWKt4R7Hiy6VkokEsldIG/8pF9wsOpJY0MZQo2jk5lSrSgKV79eD0+4cfX/7d15XFTV+wfwzwVmBhgQGHZEcAUXxAVTIRUXtFwi9xT3JbPMtNxbBHPtq5llWvQL11QUc8mFXHELLLXFHS3BMFFBAUVBYOb5/UHcGGdhhnXA5/168dK5c++558wwD3PuPec5e2PKHN+K7nib2pq+jDHjFCVe1Mhx8y9VQQHOff01LO3tdZahL6GavueKz+WekpyMTh9+iOZhYej04YeYkpwM/2HDTCLZGcc7VhlKlY1c1x/z69evw9HR0aDjP/30U7z//vv4+eefkZGRAYVCgbZt2xp0PKuZiAikUsHM3FznH4m7589j18iR6LthA+p17Ypfv/lGbfikIZksGWOsqmjMn2zYEJ3D50IwYBlCys+D0MVBYw4jAK3DLRljz6eixIva8tgUl3HjBswsLDSGkutLqGZMsrXKTHbGQ8WZqTKos/3VV1/hq6++AlDYUQ4LC4PVMx/M3NxcJCcnY9CgQSWWt2HDBvTu3RuOjo4aaxY+ePAAe/fuxciRIw1tA6sBin8Bzbp1C33XrtX5R6Jo/vXLn3+O4IgImJmbQ1VQAMHcXAzgth4e/z2nVIp3gBhjrKromj/p0KA+WvR7Xe+atBgwEbn//A0r7lQzxkpQlHhRVx6bIg7160NVUICCnBy1Y3UlVANgdLI1fcnOypO+udw8XJxVJYM62x4eHggICAAAXLx4Eb6+vnB+Zo6HVCpFkyZNMG7cuBLLGzNmDBISErTexU5KSsKYMWO4s/0c0fgCKgjovWqV3j8Sd8+fR9KRI/Dq0AEnFi5Eq7Fj1YYBCYJQmAQNgNm//zLGWGUiIpBSWZidV6VCto75k6eXfwb/sGHA3CgIH4/TuQxhTlys/mRCjDH2L8HMTExSpm0ouZmFBQImTkRuZiYAwMLKSucFwev792P8L7/gwqZNpU+2VoUXCjkhJKtKBnW2X331Vbz66qvi448++gj169cv9UmJSOdzGRkZsLW1LXXZrHrROje7WLKzkv5ICObm4pJgjDFmKrStpKBr/mTR8oT9N24EvdANgo5lCKt6fiNjrPooSqAYGhWl0UEunscmPbEwSZnc2VlnQrUX3n4bD1NS9CZbq9etW7knW2OstB6lpuJcZGThyIsqHtFg9Jzt4suAFXny5Alu376NBg0a6ByqGxsbi9jYWPHxp59+CldXV7V9cnNzcfToUbRs2dLYarFqStfc7J9XrID/8OF45dtvsWf8eJ1/JHhoOGPMVEisrbXeHZJYW8Ni0ya98ycvRkfDvm5ddFu0CPR6OAQLC9C/02N4dQTGWGkUJSnTl8emICcHErkclvb2OD5vnuYFQUGA32uv4dTixSUmWwsOD6+EVjFWsuzUVByfNw++oaHVr7O9bNkyPH78GOH/fqBOnjyJ0NBQPHz4EPXq1cOBAwfQQMvw32vXrmHPnj0ACq+2nTx5EjKZTG0fqVQKPz8/LFq0qDRtYdVE8aGVuhJ4qCVC69IFv/7f/3GyM8aYSVJLGPTvHe3id4Dyc3KQ/+RJifMni4ab3/13rdoxJ0/CvXXrymgCY6yGEpOUhYcXxphiOW7E2JWdDQBav49JrKwgsbYudbI1xp53RvdWvv32W3h6eoqP33vvPTRr1gy7d++Gk5OTzmW7pkyZgqSkJCQlJcHLywuxsbHi46KfxMRE7Nq1C02bNi19i5hJI5UKj/75B8fnzcP3w4ah4OlTnV9AL0ZH4//atMHjtDQER0QULnkTHl7mdWQZY6y8PBvTVPn5mqN1ik2NeXZZwiLi1Jh/Y1vRmrSMMVZWgiDg7vnzWCSX4+7584UdbQO/jxl6sVBbsjXGWCnubKekpKBhw4YAgH/++Qfnzp3D8ePH0bFjRxQUFODNN98ssYykpCTja8qqPW2JN+qHhOidm512+TJs3NzEL6C6vqgyxlhlM2a4eFVNjbHyaYbkRsFw8mlWruUyxqqf/CdPdCZC0/l9zIg8OkXJ1hhj/zH69qCVlRUePnwIADhy5AhsbGwQFBQEALC3t0dWVlb51pBVW49SU3Fi4UI8Sk3VnggNhV9AbWvXxivffqvRkea52YwxU6Utpum7A1Q0NaZ5WBjeuXEDnT78EM3DwtDpww8xJTkZ/sOGVciIHZtmLVF3yzHYNGtZ7mUzxqofXYnQ9H0fO/Pll6hVpw5Co6L0fld7nJZWKW1grDox+jZh27ZtsWTJEpiZmWHp0qXo2bMnzP9dWumvv/5C7dq1y72SrPohIsidndHpgw+gKijQmQhNbW5216749ZtveG42Y8xkPUpNxblvvkGnDz7QO1xc2x2gi9HRuH/tGkafOKF1/mQRY9eEVdk54dhtoImdU7m0kTFWQwmCzkRoJX0fEwTBoGRr5YXjGqspSpUgrU+fPnjllVfg7e2NhQsXis9t3bpVvMvNnl9qS9789RecGjdG8Ny5OpNrXIyORtrly3j5888RHBEBM3NzqJRKCGZmfEebMVZhSrM0SHZqKs58+SU6h4eXarh4u6lTIbGyQnpiIv6vTRutSdB0rQmr68unyt4Zx1MBX3tedocxppvEygpmFhbGfR975oKgrmRr5U1XXDP2YiRjVc3oznbTpk1x48YN3L9/H46OjmrPffrpp3Bzcyu3yrHq4VFqKn5bswYBEybA2tFRYx4QBAFB06frTa5x9/x5JB05Aq+OHQEAZv+OlmCMsYpi7NIgRZl7Z6SlQaVU6h0uXtJonYJ/h5wbg798MsZKIrG21vlcfk4OVAUFhn0f69ABi+RyjQuCgiDgThWumKDrYiRjpqrU43MdHR1BRLh9+zYK/u1UNW/eHM68oP1zpfhwcStHR63zgEqTiZcxxkyJWubesDDc/eMPBLzxhtaYdjE6GlHt28NKoUBweHiFr6RQ9OWzqtcSZYxVneJLELr6+4OItO2E3MxMnbELUE92pu+CIK+YwJhhSvVX/8CBA2jfvj0sLS3h5eWF8+fPAwAmTJiATZs2GVTGpUuXMGTIEDRo0AAymQy//vorAOCDDz5AbGxsaarFKplBS978ixOhMcaqAyISY5iqoABEJGbu/bxePZxYsAAXt2zB7jFjIHd11RnTioaL52Rk4MTChXiclsbxjTFWborfwX72YuDxefPw6J9/QCqVxnGP09Jg6+FhEsnOiqbGqMphXjaP8GGmyuhh5Fu2bMHw4cMxePBgvP7663j99dfF5xo0aIC1a9di2LBhess4dOgQevfujYCAAAwbNgwLFiwQn5NIJFi9ejV69uxpbNVYJTJmyRvgv6GV/TZuRP2QEJ3JNRhjrKo8m29C0aABXpw9G7kZGRojdooPF9cX04pG/jDGWHkofge7KAGtxvQ9AKeWLEFoVBT8hw9X+35VkJMDwcysUpOd6VKe+SZ4eDkzlL6pFvqeKy2jO9vz58/H1KlT8emnn0KpVKp1tps1a4bPPvusxDLmzJmDIUOGYMOGDSgoKFDrbLdq1QrffvutsdVilcjYJW+KXIyORp0OHdDmzTcrJbkGY4yVRGJtrXPdWQgCOsyZo3PETlEyodA1a3QmE2KMsfLy7AXBoOnTIXdx0Zy+h8KROT+MG4d63brB1sNDoyzBzKzSkp0xZgo0LlQRib/v+p4rK6NvJd64cQO9evXS+pxcLjdone2LFy9ixIgRAKDREHt7e6SnpxtbLVbBiAgqpbLw/9qW8TJwXnbjvn0hCAIep6Xx0ErGWJUp/ofV0ddXa74JiZUVJNbWOkfsAIV3uE8vXw4zc3P8z8kJd8+fr7CYxsMkGXs+Fb8gKE5niY6GU+PGOi8GAoUd7nNff611ODlQ+B387vnzWCSXV2jsYqysHqWm4lhEBB6lppbqeH1TLYyZhlEaRt/ZdnNzw9WrV9GtWzeN586fPw9vb+8Sy1AoFLh9+7bW565duwZ3/iJhUopfSc26dQt9164t1ZI3xedl27q789BKxliVULs7dOMGXl2zRusXVkNG7ACAQ/36UBUUIOf+/YqsNg+TZOw5JXd21rggaMjFQADIuHGjcIUXPR1pTnbGTJ2xq4cU0TlyDcD1/fsx/pdfcGHTJoOnYZSG0UeHhYUhIiICR44cEbcJgoCLFy/if//7H4YPH15iGX379kV4eDgSExPVyrhz5w6WLVuGAQMGGFutCrN69Wr06dMHzs7OEAQB27dv17nvvn37EBQUBLlcDgcHB3Tp0gW3bt1S2yc+Ph6BgYGwsrKCt7c3PvnkE+0ZI03Es1dS/1i/XueXz6I5jM3DwvDOjRvo9OGHaB4Whk4ffogpycnwHzaM52UzVsU4pqnHtMRdu2Ahk2n/wmrESgq5mZkVW3HGmE41Oa5J5HJY2ttrXBA06mKgUgmYcFxmrLRKuuOt7UJVkRfefhsPU1L0TsN4lJpa5s++0T2fiIgIBAUFoXv37uKa2j179kSLFi3Qpk0bzJ49u8QyFi9eDGdnZ/j7+6Ndu3YAgLFjx8LX1xd2dnaIMKEr9xs2bEB6errOofNFvvvuO/Tv3x+dO3fG3r17sX79erRp0wa5ubniPn/++SdeeukluLu7Y+/evZg6dSrmzp2LTz/9tKKbUSra5maX9OVTbcmbiIgKX/KGMWYcjmnG5ZswdCWFysjcyxjTribGNXGqS3Y2zCwsNC8I8rKqjIl3vLO1dbYFQeuFqqLn/F57Db9FRZV6GoahjB5GLpVKsXv3bsTFxeHQoUNIT0+HQqFASEgIQkJCDCrDzs4O8fHx+O6773Do0CEoFAooFApMmjQJI0eOhFQqNbohFSU+Ph5mZmZITk7Ghg0btO7z4MEDTJo0CStWrMCbb74pbg8NDVXbb+nSpXB0dER0dDSkUim6deuGtLQ0LFy4EJMnT4ZMJqvQthhL69xslDxcvGjJm6LgruuPAGOs8nFM051v4tSSJRrx7u7589g9Zgz6lZB13NjMvTz/mlW2R6mpOBcZiYA33qhxa7LXtLimbaqLtguCxkzfq244RrKyklhZab9QhVJMwyiDUveCunTpgi5dupT6xBKJBGPGjMGYMWNKXUZlMDPgauC2bdugVCoxbtw4vfvFxsaif//+ahcThgwZgsWLFyMhIQGdO3cua3XLlZm5udZfwuJL3tTr0gW//t//8TJejFUTz2NMe5Saij82bkSHmTNLlW+iwUsvAUC5Zu7l+desspV2zmN1UJPimrb5pfVDQrReEDR0CUJTpa9DzTGSlVV+Tg5UBQVaL1QZOw2jLB3uKvkEvvjii1i9ejXSasiwu9OnT6Nx48ZYv349vL29YWFhgZYtWyI2Nlbc5/Hjx0hJSUHjxo3Vjm3cuDEEQcDVq1cru9olUimVOn8JL0ZH4//atMHjtDQeLs5YDVOTYhoRQe7sjA4zZ+qMaYbmm+DMvYxVX9Uhrmmdvgf901kub9+OPw8cgO2/Hdfq9H2sqENd0y7+MBNBhNzMTAS88YbmKNtKnIZRJZ9Cd3d3TJ8+HbVr18ZLL72EDRs24NGjR1VRlXJx584dJCYm4qOPPsL8+fMRGxuLunXrIjQ0FJcuXQIAZP6bPMfe3l7tWKlUCmtrazx48EBn+U+fPsXDhw/VfiqDYGam/Rf0X2mXL8PGzU1tuDh/+WSs+qspMe3Z5Tzu/vGHzphmTL4JztzLWPVTkXGtvGKarul7JV0Q9OnVC4KZWZVfDOSh38zUPE5Lg62HB0KjojT+9p/58kvUqlNH63PlOQ2jSibTbt++HdnZ2dixYwe2bt2K8ePHY+LEiejZsyfCwsLQp0+fSp/rR0RQ/ruONFCYHd3cwCEDKpUK2dnZ2LRpkzj3p3PnzvDx8cEnn3yic/6QoRYvXox58+aVqYzSEARB/AV99iprdZ8LxFhN97zHNG1DMdMuXcLrZ8+WKd8Ef5lkzxNTm+dtqnGtvGKarul7QOEFwbTLl/Hy558jOCICZubmWqezVOXFQB76zUxNQU4OBDMz+A8fjnrdumlMtRAEQedz5TUNo8rGl9jY2GDkyJHYt28fUlNT8dlnn+HBgwcYMmQIXF1dK70+x48fh0QiEX+0rSOui4ODAwCga9eu4jaJRIJOnTqJV0uLrpJmZWWpHZuXl4cnT55AoVDoLH/OnDnIysoSf1JSUgyuW1kV/YJOSU7mpbwYq0ae55imayhm8btDpY1pPOyRPU+yU1MRv3Sp9ky/VcBU41p5xTR90/eAwhiWdOQIQMTTWRgzgmBmJuZdeXbkmr7nyoNJpIl2dHTEiy++iJs3byIxMRF3796t9DoEBATgzJkz4mNbW1uDj23WrJnO54qWk5DL5ahTp47GfJ/ExEQQkcb8oOJkMlmVZvUt/ktYHomBGGMV73mOabqGYgL/3R0KXbNG790hY/Edb1bTiEtPPX4MVUEBiKjK/+6balwrr5hWNH1P28oIwH9zSHMzM3k6C2NGEgQBd86fx9qOHTHm5Em4t25t0HNlVaouu1KpRHx8PLZt24YNGzZo/Bjqr7/+wsKFC9G8eXO0aNEC69atw+DBgxEfH1+aapWJra0t2rRpI/74+voafGyfPn0AAIcPHxa35eXl4fjx4wgICBC39ezZE7t370Z+fr64bevWrbC3t0dQUFA5tKLiCIIgDqnkudmMmb7nOabpG4oJFN4dOr18OczMzfE/J6dyuTvEd7xZTfJsvoPj8+bh0T//lHm92bKq6XGt+PQ9fXNIH1ezBMPWTk5q/zJWlfRdqKqIi1hG39n+9ddf0b9/f6SkpICINJ4XBAEjR47UW8by5csRHR2Nc+fOwc7ODgMGDMDnn3+Ozp07G7R8Q2U6e/YskpOTxczpp0+fBgA4OzsjODgYANC6dWsMGDAAEyZMwIMHD+Du7o5Vq1bh7t27mDFjhljWjBkzsGnTJgwdOhRvvfUWLly4gKVLl2LhwoUmtbY4Y6zmqskx7VFqKn5bswYdZs0ybDmPggLk3L9fSbVjrHrQlu8AAE4tWYLQqCj4Dx9uclPIalJc0ze/tGgOaUFOToXXozzJnZ3V/mWsMkisrau6CoXISG3btiV/f386duwY3bt3jzIzMzV+SiKXy2no0KH0ww8/UF5enrFVqFSjRo0iABo/wcHBavtlZ2fT5MmTydnZmWQyGQUFBdGpU6c0yvvpp5+oXbt2JJPJyNPTkxYvXkwqlcqoOmVlZREAysrKKkvTGGPPoZoa01QqFSnz84mISKlUUlZKCn1sYUERgMbPxxYWlHXrFj1OS6MIgG6fO1fq8zJWXdw+d67E33eVSmXQZ8fYz3hFM7W4Vu4xLT9f7fy63kt977Gxx5SmLJ2unCMKQOG/jJWCMb+npfnslPRcWRh9Z/vSpUuIiYkRrxSWxr1792BtKlcbSrBu3TqsW7euxP3kcjm++OILfPHFF3r3CwoKEq+4MsZYZauJMY1UKjy6fRvnIiPx4K+/UOfFF/HCm2+WuJJCemJiFdaaMdOjL98BAKgKCnDu668RHBEBwcAs4JWhJsa1ipxDagjOQ8Gqo2e/DygaNChcTaEK1503urPt4+NT5jVRq0tHmzHGmGnTNuT14pYtuJWQgL7r19eooZiMVZSiKRidPvhAb74DV39/1AsJER9zwtSKV1WJ0HgZL1adWFhZGTQFxsLKqvLrZuwBn332GaZMmYIWLVrozTb7rFq1aiEuLg4BAQGwtbXVG5gFQdBYdoExxhgrjnQs8QUAFzZtQvqVKxh94gSvpMBYCbJTU3Fq8WK9+Q78hgxB3w0bkJ2aiuMRESZz14gZhu9UM1P3KDUV5yIjC2OKkb+ncmdnnd8HVAUF+GHcONTr1q1K8gYY3dl+++23cefOHfj5+cHDw0Nck7CIIAj4448/NI6bNm0a3P994aZNm8ZfdhhjjJVJSUNeU3/9FT8tWYLg8HCcWLgQrcaOVfsDzl8+GSu2xFd2NlQqldalp1z9/dF3wwZc2LwZe8aPrzaJ09h/+E41M3XZqak4Pm8efENDjetsCwIs7e1xfN68kqfAhIeXU20NZ3RnOyAgoFQd5fBijYvgDztjjLEyKmmJLwDIuHEDZhYW6PTBBxrP8ZdP9rwzNN9Bu6lT8eiffzQ62oD6XSNbDw++mfIcMPpCpZM78Hp44b+MlTOJlRXMLCwM/j5Q2UPJje5sG5KAoiRdu3bF6tWrtQ5Dv3btGiZOnIijR4+W+TyMMcZqLpVSadgSX0olzEwomRNjpsDgfAdJSWgeFoaTCxZUu8RprGIYfaHSyR14w4j9GTNCfk4OVAUFBi/5Wdn5WqpkvM+xY8d0Jll7+PAhTpw4Uck1YowxVt0IZmYIeOMNmFlov25sZmGBgIkTeWgrY88oKd/Bt23bwtLeHsHh4ej/3XewkMkMu2vEHW3GWGUjQm5mpkHfB3IzMyu3bijFnW0AyMzMxPbt23Ht2jXk5uZqPF/SkgoAdA4zio+Ph4uLS2mqxRhj5YKIQCoVzMzNoVIqIZiZ8dBIEyQIAmw9PEpc4ovfO8YKSf5dDcaYfAeLbGwwOzOTR5EwxkzW47Q0OPn6muSSn0Z3tq9fv46goCA8ffoUjx8/hrOzMx48eICCggI4ODjAzs5Oa2d78eLFWLx4MYDCL0hdunSB2TN3G54+fYqCggK89dZbpWwOY4yVjSmu0ch0E8zM4D98uN4lvhh73olJ0B4/hqqgwKh8Bx3mzEFBXp7WxGlFeBQJY6wqFeTkGPR9oCqW/DS6s/3ee++hXbt2iImJgVwux/79+9GiRQts3boV77//PmJiYrQeFxQUhGnTpoGI8PHHH2Po0KHw9PRU20cqlaJJkyZ45ZVXStcaxhgrA0PWaOQvk6ZHMDODrYcHL/HFmBYaFxAbNkTw3LkG36kuSi4osbTkUSSMMZNmit8HjO5s//LLL4iKioJMJgMA5OXlwdzcHGFhYUhPT8c777yDn376SeO44OBgBAcHAyi8s/3666/Dw8OjjNVnjLHyoW8OI2fbNX2CICA7LQ2/rVmjscQXY88rXRcQHerXR+vXXzfqTjWPImGMVQeCIODO+fNY27Ejxpw8CffWrau0PkZHxqdPn6JWrVowMzODQqHA7du3xef8/Pzw+++/l1hGeHg4d7QZYyalpDmMRdl2SaWq5JoxQ9m6u6PTBx9wR5sx6L+AePqzz2Dj7o7QqCiNhEL67lQXv2vUf9MmBIeH8xSbas7oZbwYqyJFOScMlf/kSQXVxDhG39n28fHBzZs3AQCtWrXC6tWr0b17d1hYWCAyMtLgTvSff/6JdevW6Uyy9sMPPxhbNcYYKzWD5zBy8h/GmAl4lJqKc5GRhTkltHSU9F1AvHv+PHaNHIl+GzcafaeaR5HULEYv48VYJXs25wQRqV0INLYTXtmM7mwPGTIEv//+O0aMGIH58+fjpZdegoODAwRBABFh/fr1JZZx5swZBAcHw9vbG9euXYO/vz+ysrKQnJwMT09PNGzYsFSNYYyx0uI1mxlj1Ul2aiqOz5sH39BQrR3eki4gXoyOhn3duui6aJHR8xuLRpEwxlhF0pe0FoKgtxNuKkqVIK1I+/btcfHiRcTGxiI3Nxddu3aFn59fiWXMnDkTgwcPRlRUFCQSCaKiotC6dWvEx8dj6NChmDVrlrHVYoyxUnmUmorf1qxB+3ff5Wy7jLEaw5ALiGYWFiCVCndNaH4jY4wBunNOZCQloe/69ciuJivHlLk2derUwYQJE/DOO+8Y1NEGgD/++ANDhw4Vl/4qGkYeFBSEiIgIzJ49u6zVYoyxEhER5M7O6PTBB7CQSsU1m42Zw8gYY6ZIMDNDwBtvaMSzIs9eQDSV+Y2MsedX0ZBwXTknXP398eratTj/3Xf4vF49nFiwABe3bMGJBQvweb16OP/ddyCVChZWVlXVBA1G39kGgPz8fERFReHMmTNISUnBqlWr0KhRI2zduhX+/v5o0qSJ3uMFQYBUKoUgCHBxccHNmzcRFBQEAPD09MS1a9dKUy3GGDOYtqFJ7aZO5Wy7jLFqQ99cRUEQxAuIJS3XxUmyGGNVSWNeto6cE+2mTsWjf/7BnvHj9a4cI3d2rszq62V0Z/vGjRsICQlBeno6WrVqhVOnTuHRo0cAgBMnTuDHH3/E2rVr9ZbRtGlT/PXXX+jSpQsCAwPx6aefonnz5pBIJFiyZAkalDDsiTHGjEFEIJUKZubmUCmVEARB53rag3fsgE/v3giOiPhvfzMzvqPNGDMZJSUMKmLocl2cJIsxVlWevfnh1LgxgufO1cw5IQjwe+01nFq8uMSVY4LDwyuh5oYxurP9zjvvwNnZGb/88gvs7e0hlUrF54KDgzFnzpwSy5gwYYKY0XzRokXo0aMHWrRoAQCQy+XYvn27sdVijDGtng3iQdOnQ+7ionM97W39+2NKcnJh8g2Ak6ExxkyKvoRB2kbfFF+uy5gkaIwxVtG0zssWBARNn66Rc0JiZQWJtbVhK8dYWJjMUHKjO9vHjh3Dli1b4OTkBKVSqfacm5sbUlNTSyxjxIgR4v+bNGmCK1euICEhATk5OWjfvj1cXFyMrRZjjGnQCOKCgNBvvzXsqmhEBATuaDPGTIiuhEGnlixBaFQU/IcP197hFgTc4SRojDETomteNohwcetWtBo3Ti1pbX5ODvKfPDFs5ZiCAhTk5FRk9Q1m9ARECwsLEJHW5+7evQsbGxujK2FjY4Pu3bsjNDSUO9qMsXKhLYgbdVWUO9qMMROi84sp/pur+Cg1Ved3NICToDHGTIeuedkA8POKFbCtXRuvfPvtf0kei3XCS0r8mJuZWYE1N47Rd7aDg4Px6aefomfPnmI28aI1tr/55ht069ZN63E7duww6jz9+/c3tmqMMSbSFsSNuirK62kzxkyIvi+mAI/KeZ5wQjtWE5iZm+u8+XH3/HnsGjkS/TZuRP2QEDHnRP6TJ7Dz8iox8WN6YmJlNaNERne2P/nkEwQFBaFp06YIDQ2FIAhYtWoVLl68iOvXr+OXX37RetzAgQMNPocgCBpD1Nl/iq5aP3z4sIprwphpu3X1KnKLbyDC6XXr0GDwYBxevBgqLXHGzNwcjYYNw6Ps7Cqd02hra/vczKnkmMaYYTRi2jP+SUxE9uPHWp97lJ2N3H//lVfRZ+15iWvlFdN0vmdyOVq/9x7omXOYwnvMmKFUSiVknp46Y9rZ6Gg4BASg9fjxaPXuu2LOiYePHqFuaCjGXLiA39esQWZyMuzr1kXLsWNh6+aGR9nZyEhL0/pZ0PcZKc3nx5CYJpC+8UY6JCUlISIiAocOHUJ6ejoUCgVCQkIwb948nZnEixKiGcrb29vYaj03bt26hTp16lR1NRhjFSgrKwu1atWq6mpUCo5pjD0fnpe4xjGNseeDITGtVJ1tVrVUKhVu375dIVeIHz58iDp16iAlJaXa/0GsKW3hdpiWymrH83IHCKjYmAbw756pqSntAGpOWziulS+OaYapKe0Aak5buB3GMeQzbvQw8vL0448/4syZM0hJScGHH34ILy8vnDhxAg0bNoTHv8vuME1mZmbw9PSs0HPUqlWrWn/IiqspbeF2mJaa0g5TUBkxDag57xm3w/TUlLbUlHZUNY5pxqkp7QBqTlu4HeXHoM722LFjDS5QEARERUXp3SctLQ19+/bF6dOnxasOEydOhJeXF9asWQO5XI5Vq1YZfE7GGGOMMcYYY8yUGNTZXrduHWxtbdGgQQO9S0oAMGi4zNSpU5GWloaLFy+iUaNGkEql4nMhISFYsGCBIdVijDHGGGOMMcZMkkGd7cDAQJw+fRpKpRJhYWEYMmRImRKY7du3D//3f/+HJk2aaGQdr1OnDm7dulXqslnZyGQyhIeHQyaTVXVVyqymtIXbYVpqSjueJzXlPeN2mJ6a0paa0o7nRU15v2pKO4Ca0xZuR/kzOEHa33//jejoaGzevBkXLlxAYGAgwsLCMHjwYDg5ORl1UhsbG2zbtg29evWCUqmERCLB2bNn0bp1a+zatQtjx47FgwcPStUgxhhjjDHGGGOsqpkZuqOXlxdmzpyJ33//HRcuXECXLl2wYsUKeHh4oGfPnoiNjTX4pO3atcOaNWu0PhcdHY0XX3zR4LIYY4wxxhhjjDFTU6alv3JzczF37lwsX74coaGh2LFjh0HHJSQkoEuXLmjbti0GDhyId999Fx988AGuXLmCffv24dSpU2jdunVpq8UYY4wxxhhjjFUpozvbSqUSBw8eRHR0NHbv3g0LCwsMGDAA48ePxwsvvGBwOQkJCZg9ezbi4+OhVCohCAICAwOxdOlSBAYGGt0QxhhjjDHGGGPMVBg8jPzEiRN488034erqisGDB0OpVGLTpk24c+cOIiMjDe5o5+XlYceOHXB1dcXx48fx8OFD3Lp1C48ePcKpU6e4o12BVq9ejT59+sDZ2RmCIGD79u069923bx+CgoIgl8vh4OCALl26aCSui4+PR2BgIKysrODt7Y1PPvmkxGz1FeX+/fvi8nFyuRx+fn74+uuvNfa7ffs2BgwYAFtbWygUCowfPx4PHz6sghqX7OrVq+jevTvkcjnc3Nwwc+ZM5OXlVXW1SvTDDz+gXbt2sLW1hbu7OwYPHowbN25o7BcVFQUfHx9YWlqiRYsW2Lt3bxXUttCff/6JiRMnomXLlrCwsICfn5/W/TIzM/HOO+/Aw8MDlpaWaNCgAT799FO1ffLy8jBjxgy4ublBLpeje/fuSExMrIxmPHc4pnFMqwwc0zimVSaOaxzXKhrHtEqOaWQAT09PsrS0pH79+tG2bdsoJyfHkMN0kslkFBcXV6YymPHatWtH7dq1o5EjRxIAiomJ0brfxo0bSSqV0pw5c+jo0aO0e/dumj59Ol2/fl3c5/r162RjY0P9+vWjw4cP0/Lly0kqldLSpUsrqzlqunTpQu7u7rR27Vo6cuQITZs2jQDQN998I+6Tl5dHfn5+5OfnRz/88ANFR0eTp6cn9e7du0rqrM+DBw/I3d2dOnXqRD/++CNFRUWRnZ0dTZo0qaqrpldcXByZmZnR6NGj6dChQxQdHU0+Pj7UoEEDevLkibjfli1bSBAE+vDDD+no0aP0xhtvkIWFBSUkJFRJvXft2kWenp40YMAAat68OTVr1kxjn+zsbGrRogUFBARQdHQ0xcXFUWRkpMbv/BtvvEF2dnYUFRVFP/74I3Xs2JFq165NmZmZldWc5wbHNI5pFY1jGse0ysZxjeNaReKYVvkxzaDOtiAIJJVKycbGhmxtbfX+1KpVq8TyWrRoQevXry9z5ZlxlEolERElJSXpDOD379+nWrVq0erVq/WWNWHCBPL29qanT5+K2+bMmUP29vaUm5tbvhUvQWpqKgGgtWvXqm3v1KkTde3aVXy8efNmEgSBrl69Km47cOAAAaCff/65sqprkEWLFpFcLqf79++L2yIjI8nc3Jz++eefKqyZfm+88QbVq1ePVCqVuO3o0aMEgE6cOCFu8/HxoaFDh6odGxgYSD179qy0uhZX9NkgIho1apTWIP7hhx9S/fr1KTs7W2c5KSkpZG5uTpGRkeK2+/fvk1wup08++aR8K804pnFMq3Ac0zimVTaOaxzXKhLHtMqPaQYNIw8PD8f777+P6dOnY9q0aXp/3nvvvRLLW7x4MRYsWICzZ88aeR+elYWZWclv97Zt26BUKjFu3Di9+8XGxqJv376QSqXitiFDhiAzMxMJCQllrqsx8vPzAQB2dnZq2+3s7NSGSsXGxsLf3x++vr7itu7du0OhUGD//v2VU1kDxcbGIiQkBAqFQtw2ePBgqFQqHDx4sAprpl9+fj5sbW0hCIK4reh9KXovbty4gWvXrmHw4MFqxw4ZMgRHjhzB06dPK6/C/zLks/Htt99i7NixkMvlOvc5ePAgVCoVBg0aJG5TKBTo0aOHyf2O1QQc0zimVTSOaRzTKhvHNY5rFYljWuXHNIM728b8lGTmzJm4f/8+2rVrBxcXFzRv3hz+/v7iT4sWLcrcMFY6p0+fRuPGjbF+/Xp4e3vDwsICLVu2VFva7fHjx0hJSUHjxo3Vjm3cuDEEQcDVq1crtc516tRBjx49sGjRIly+fBmPHj3Ctm3bcPDgQUyaNEnc7+rVqxp1FgQBjRs3rvQ6l0RbXe3t7eHu7m5ydS1u9OjRuHz5MlavXo2srCzcuHED77//Plq1aiUu6VdU/2fb16RJE+Tl5SEpKanS612S5ORk3LlzB05OTggNDYVMJoNCocDrr7+O7Oxscb+rV6/CxcUFDg4Oasc3adLEpN+3moxjmmngmGZaOKZVbxzXTEN1jGsc0yo/pllUSKklCAgIQJs2bari1KwEd+7cQWJiIj766CP873//g7u7O1atWoXQ0FD8/vvvaNasGTIzMwEUBpTipFIprK2t8eDBg0qv944dO/Daa6+hWbNmAABzc3OsXLkSAwYMEPfJyMjQqDMAODg4VEmd9alOdS2uY8eO2LlzJ8LCwsQ/ni1btsSPP/4Ic3NzAIVtAzR/f4oCnym2786dOwCA6dOno3///ti/fz+uX7+O2bNnIzs7G1u2bAFQfd+3moxjmmmoTnUtjmNa9XzfajqOa6ahOtW1CMe0yn/PqqSzvW7duqo47XODiKBUKsXHgiCIH6CSqFQqZGdnY9OmTQgNDQUAdO7cGT4+Pvjkk0+wYcOGCqmzobS1zczMDGPGjMH169exefNmuLu749ChQ5g6dSocHBwwZMiQKqzx8yU+Ph4jRozA66+/jj59+uD+/fuYP38+evfujZMnT8LKyqqqq1gqKpUKAODj44P169cDALp16wYLCwu8/vrrWLhwIerXr1+VVazROKZxTKsqHNNYReG4xnGtKnBMq3xV0tlmFev48ePo0qWL+Dg4OBjHjh0z6Niiq1Zdu3YVt0kkEnTq1AkXL14E8N+VrqysLLVj8/Ly8OTJE7W5K+VNW9umT5+OmJgYnD9/Hs2bNwdQ+Efn3r17mDZtmhjAHRwcNOoMFF7lqlOnToXVuTT01bUiX9+yeuedd9C1a1e1ZRbat28PLy8vbNy4ERMmTBB/x7KysuDm5ibuV3Ql1RTbV1Tn4r97QGEgB4BLly6hfv361fZ9M3Uc0zimVRWOadXzfasOOK5xXKsKHNMq/z3jznYNFBAQgDNnzoiPbW1tDT62aGiPNrm5uQAAuVyOOnXqaMxtSExMBBFpzPEoT9ratnv3bpibm2usudeqVSt8++23ePLkCaytrdG4cWNcuHBBbR8iQmJiIrp3715hdS4NbXOTsrKykJqaWqGvb1ldvnwZr776qto2T09PODk54a+//gLw3xygq1evqiVAuXr1KqRSqUneTWnQoAFkMpnO54s+G40bN8bdu3eRkZGhNh9I27wuZjiOaYU4plU+jmkc0yoKx7VCHNcqF8e0yo9pBiVIY9WLra0t2rRpI/4U/6CUpE+fPgCAw4cPi9vy8vJw/PhxBAQEiNt69uyJ3bt3i9klAWDr1q2wt7dHUFBQObRCO21t8/b2hlKpxPnz59X2PXfuHFxcXGBtbS3W+Y8//sD169fFfY4cOYL79++jV69eFVbn0ujZsycOHz4szrkCgJiYGJiZmaFHjx5VV7ESeHt749dff1XbdvPmTaSnp6Nu3boAgPr168PHxwcxMTFq+23duhXdunVTy5pqKqRSKXr06IEjR46obT906BAAoHXr1gCAHj16wMzMDN9//724T0ZGBg4ePGhyv2PVCce0QhzTKh/HNI5pFYXjWiGOa5WLY1oVxLQKWVCMmaQzZ85QTEwMrV69mgDQtGnTKCYmho4dO6a234ABA8jZ2ZmioqJo//791Lt3b7K0tKTz58+L+1y/fp3kcjkNGDCAjhw5QitWrCCpVKqxcHxlePjwIXl5eVHDhg1p48aNdPjwYZo5cyaZmZnR/Pnzxf3y8vLIz8+PmjdvTnv27KGtW7dSnTp1qHfv3pVe55I8ePCA3N3dKTg4mA4cOEBr1qwhe3t7mjRpUlVXTa8VK1YQAHrnnXfo0KFDFB0dTX5+fuTq6krp6enifkXraM6dO5fi4uJo4sSJZGFhQfHx8VVS78ePH1NMTAzFxMRQ586dqU6dOuLje/fuERHR2bNnSSqVUlhYGB04cIC+/PJLsrW1pWHDhqmV9cYbb5C9vT2tWbOGDhw4QMHBwVS7dm3KzMysiqbVaBzTOKZVNI5pHNMqG8c1jmsViWNa5cc07mw/R0aNGkUANH6Cg4PV9svOzqbJkyeTs7MzyWQyCgoKolOnTmmU99NPP1G7du1IJpORp6cnLV68mFQqVSW1Rt3169dp8ODB5OHhQdbW1tSsWTNasWIFFRQUqO1369Yt6t+/P9nY2JC9vT2NHTuWsrKyqqTOJbl8+TJ169aNrKysyMXFhaZPn05Pnz6t6mrppVKp6KuvviJ/f3+Sy+Xk5uZG/fr1oytXrmjs++2331LDhg1JKpWKf1SrSlJSktbPBgCKi4sT9zt8+DC1adOGZDIZubm50bRp0yg3N1etrNzcXJo2bRq5uLiQlZUVhYSEaG0/KzuOaRzTKhrHNI5plY3jGse1isQxrfJjmkBUbCV5xhhjjDHGGGOMlRnP2WaMMcYYY4wxxsoZd7YZY4wxxhhjjLFyxp1txhhjjDHGGGOsnHFnmzHGGGOMMcYYK2fc2WaMMcYYY4wxxsoZd7YZY4wxxhhjjLFyxp1txhhjjDHGGGOsnHFnmxkkIiICgiCgdu3aUKlUGs+/+OKLEAQBo0ePNqrczMxMRERE4PLly2rbk5OTIQgCtm/fXpZql9mKFSsgCIL4+NixYxAEAWfPnq20OkRERCA+Pl5juyAIWLZsWaXVQ5tdu3ZBEAQkJycDKN37tmLFCuzfv7+CasiYdhzTCnFMU8cxjVVnHNcKcVxTx3GtanFnmxlMIpEgPT0dJ06cUNt+8+ZNJCQkwMbGxugyMzMzMW/ePI0A7u7ujoSEBHTt2rVMdS5vrVu3RkJCApo0aVJp55w3b57WAJ6QkIBhw4ZVWj0MUZr3jQM4qyoc0zimlYRjGqtuOK5xXCsJx7XKZVHVFWDVh1QqRUhICLZs2YLOnTuL26Ojo9GsWTOYm5uX27lkMhnat29fbuWVl1q1apVYr5ycHFhZWVV4XUzx9THV940xbTimcUwriam+b4zpwnGN41pJTPV9q6n4zjYzytChQ7F9+3bk5+eL2zZv3oywsDCt+584cQJBQUGwsrKCk5MTxo4diwcPHgAoHMZSr149AMCgQYMgCII4zEXbEBeVSoUFCxagbt26kMlkaNy4MSIjI9XOFxERARsbG1y4cAEdOnSAtbU1/Pz8cODAgRLb9vDhQ4wcORK2trZwdnbGzJkzUVBQoLaPtqFJgiBgyZIlmDVrFtzc3ODi4gIAICIsW7YMPj4+kMlkqF+/Pj777DON8165cgX9+/eHQqGAtbU1WrRogS1btohlA8CMGTPE1+fYsWPic88OTYqMjISvry9kMhnq1q2LBQsWqA0lW7duHQRBwG+//YaePXtCLpejUaNG2LBhQ4mvT35+PqZOnQqFQgE7OzuMGzcO2dnZavtoe99++OEHtGnTBjY2NrC3t0ebNm3Eq6N169bFzZs3sWrVKrF969atAwBs2LABHTp0gEKhgIODAzp37oxffvlF7XzGvN8bNmxAq1atYGlpCScnJ/Tq1Qs3b94Un7916xaGDx8OJycnWFlZoVOnTjh37lyJrwur3jimcUzjmMZqGo5rHNc4rpkO7mwzo7zyyit4+vQpDh48CAC4fPkyzp8/jyFDhmjse+7cOXTv3h22traIiYnBJ598gj179qBnz55QKpVwd3fHjh07AACLFi1CQkICEhIS4O7urvXcM2bMQEREBEaPHo09e/agR48emDhxIr788ku1/fLz8zFs2DCMHj0aO3fuhIuLCwYMGID79+/rbdvYsWOxc+dOLFmyBOvXr8fly5exYsUKg16Xzz//HNeuXUNUVBS+++47AMCUKVMwd+5cjBo1Cvv27cPo0aMxa9YsfP311+Jx169fR2BgIK5fv44vvvgCP/zwA8aMGYO///4bQOHwIwCYPHmy+Pq0bt1aax1WrlyJiRMn4qWXXsKePXswevRoREREYObMmRr7Dhs2DD169MCuXbvQqlUrjB49GleuXNHbxjlz5mD16tWYMWMGtm3bBqVSidmzZ+s95q+//sLAgQPRrFkz7Ny5E1u3bsXgwYORkZEBANi5cyfc3NwwcOBAsX29e/cGUPjHYOTIkYiJicHmzZvh5eWFTp064dq1a2rnMOT9Xrp0KUaNGoWAgADs2LEDUVFRaNSoEdLS0gAAGRkZ6NChA37//XesXLkS33//PeRyObp27Yp79+7pbSOr3jimaccxTTuOaaw64LimHcc17TiuVTBizADh4eEkl8uJiCgsLIyGDx9OREQffvghBQYGEhFRixYtaNSoUeIx/fr1Iy8vL8rLyxO3HThwgADQDz/8QERESUlJBIBiYmLUzvfs9rS0NJJIJDR79my1/YYOHUrOzs5UUFAg1hMA7du3T6OsjRs36mzfpUuXSBAEioqKErcVFBRQvXr1qPjHJC4ujgDQmTNnxG0AqGnTpqRSqcRtf/75JwmCQJGRkWrnmTVrFrm5uZFSqRRfS2dnZ8rKytJZNwC0dOlSvdsLCgrIycmJhgwZorbPnDlzSCqVUnp6OhERrV27lgDQqlWrxH2ys7PJ2tqa5s+fr7MO9+/fJysrK/roo4/Utnfq1IkAUFJSEhFpvm8xMTEEgB4+fKizbG9vb5o0aZLO54mIlEol5efnk6+vL82ZM0fcbsj7nZmZSdbW1jRhwgSd5c+dO5fs7Ozo7t274rbc3Fzy8vKiGTNm6K0bq544phXimMYxjdUcHNcKcVzjuGZK+M42M9rQoUOxe/du5OTkIDo6GkOHDtW638mTJ/Hqq69CIpGI23r06AF7e3ucOnXKqHP+/PPPyM/Px6BBg9S2v/baa0hLS1O7gmZmZoaQkBDxcd26dWFlZYVbt27pLP/MmTMgIvTr10/cZm5ujr59+xpUv549e6plwjx8+DAAYMCAASgoKBB/QkJCcOfOHaSkpAAAjhw5goEDB6JWrVoGnUeXq1evIj09Xevrk5eXpzGkp0ePHuL/5XI5vL299b4+Fy5cQE5OjtrrU9Q+ffz9/WFubo6wsDDs2bMHWVlZhjYJV65cQb9+/eDq6gpzc3NIJBIkJiZqXC0t6f1OSEjAkydPMG7cOJ3nOnjwILp06QKFQiG+V+bm5ggODsaZM2cMrjOrnjimaeKYph3HNFZdcFzTxHFNO45rFYsTpDGjvfTSS5BIJJg7dy6SkpIwePBgrftlZGTA1dVVY7urq6s4F8hQRUNZni2v6HHx8qysrCCVStX2k0qlyM3N1Vl+amoqJBIJHBwctJZfkmf3S09PBxHByclJ6/4pKSnw9vbG/fv34eHhYdA59DHm9QEAe3t7tceGvD4AxDlOz5avi4+PD/bu3YtFixahX79+MDMzw8svv4wvv/wSXl5eOo979OgRevToAWdnZyxfvhze3t6wtLTE+PHjNepZ0vtdNERJ3+ucnp6O06dPq33ZKNKgQQO9bWTVH8c0TRzTtOOYxqoLjmuaOK5px3GtYnFnmxlNIpFgwIABWL58Obp166bzQ6xQKLTOobh79y4UCoVR5yza/969e6hdu7ZaWcWfLy13d3fk5+cjIyNDLYgXlV+S4ldKi+ojCAJOnTqlEVwAwNfXFwDg6OiI27dvl6Hm/50PgMbrXZ6vT1H52l5/fV5++WW8/PLLePjwIX788Ue8++67GDNmDI4cOaLzmISEBNy6dQt79+5FixYtxO1ZWVnw9PQ0qu6Ojo4AgNu3b+s8VqFQ4OWXX8b8+fM1npPJZEadj1U/HNM0cUzTjWMaqw44rmniuKYbx7WKw8PIWamMHz8er7zyCqZMmaJznw4dOmDXrl1qWSIPHTqEzMxMdOjQAQDE4KbvSh0AtG3bFhKJBDExMWrbt23bBhcXF/j4+JS2KQCAF154AUBhEogiSqUSu3btKlV53bp1A1B4pa5NmzYaP7a2tgCAkJAQbN++HY8ePdJZlkQiKfH18fX1hbOzs9bXRyqVom3btqVqR5HmzZvDyspK7fUBgO+//97gMmrVqoXBgwdjyJAhagk+tF2pzcnJEZ8rEh8fj+TkZKPrHhgYCGtra6xdu1bnPiEhIbh8+TKaNGmi8V41b97c6HOy6odjmn4c0zRxTGOmjuOafhzXNHFcK398Z5uVStu2bUsMbh988AGCgoLQp08fTJ48GXfv3sXs2bPRtm1b9OrVCwDg5uYGe3t7bNmyBfXq1YNMJoO/v79GWU5OTpg8eTKWLl0KS0tLtG/fHvv378fmzZuxcuXKMq8b2bRpU/Tr1w9Tp05Fbm4u6tati9WrVyMvL69U5fn4+GDSpEkYMWIEZsyYgXbt2iE/Px/Xrl1DXFyc+NqFh4dj79696NChA2bOnAl3d3dcvnwZT548ETNTNmnSBLt370bHjh0hl8vh6+sr/gEoYm5ujo8++gjvvPMOXFxc0KtXL5w+fRqffPIJpk6dKl4xLC2FQoGJEydiyZIlsLKyQuvWrbFlyxb89ddfeo+LjIxEQkICXn75Zbi7uyMpKQnfffed2jykJk2a4OjRozh06BAcHBxQr149tG/fHjY2Npg0aRJmz56Nf/75B+Hh4WpXag1lZ2eH8PBwzJo1CyqVCq+++ipUKhXi4uIwdOhQtGnTBu+99x42bdqE4OBgTJkyBV5eXkhLS8PPP/8MDw8PvPvuu0afl1UvHNP045hWiGMaq044runHca0Qx7UKVpXZ2Vj1UTzDpS7PZrgkIjp27BgFBgaSTCYjhUJBo0ePpvv376vts3PnTmrSpAnJZDIxW6K2zJdKpZI+/vhj8vLyIolEQo0aNaKvv/7aoHra2dlReHi43vpnZGTQsGHDSC6Xk6OjI7333nu0dOlSgzJcastAqVKpaOXKleTn50dSqZQUCgUFBgbS8uXL1fa7dOkShYaGUq1atcja2ppatmxJ0dHR4vMnT56k1q1bk5WVFQGguLg4nef96quvqFGjRiSRSMjLy4vmz58vZtMk+i/DZVpamtpx2t67Zz19+pQmT55M9vb2VKtWLRo1ahRt3LhRb4bL+Ph46t27N7m7u5NUKiUvLy+aMmWKWsbLixcvUseOHcnW1pYA0Nq1a4mIKDY2lpo1a0aWlpbk7+9P+/fvp+DgYOrdu7d4rDHv95o1a6h58+YklUrJ0dGR+vTpQzdv3hSfT01NpXHjxol19fT0pIEDB9JPP/2k93Vh1RPHtEIc0zimsZqD41ohjmsc10yJQERU4T16xhhjjDHGGGPsOcJzthljjDHGGGOMsXLGnW3GGGOMMcYYY6yccWebMcYYY4wxxhgrZ9zZZowxxhhjjDHGyhl3thljjDHGGGOMsXLGnW1WYZKTkyEIArZv327UcceOHcOiRYs0tkdERMDGxqa8qleiFStWYP/+/eVW3q5du7B69WqN7aNHj4afn1+5nae8Vfbrzpgp47imjuMaY9UbxzR1HNNYeePONjM5ugL4+PHjERcXV2n1qKwAbuoq+3VnrCbiuGZaOK4xVjYc00wLxzTTZVHVFWDVCxEhLy8PMpms0s/t6ekJT0/PSj/v8+rp06eQSCTl9roXlWdmxtf4mGnhuPb84LjGngcc054fHNNMH7+STK+iYTP79+9HixYtIJPJsGfPHgBAQkICunbtCrlcDjs7O4SFheHevXt6y9uwYQM6dOgAhUIBBwcHdO7cGb/88ov4fEREBObNm4fHjx9DEAQIgoDOnTuLzxUNkXn8+DHkcjmWLVumcY6BAwciMDBQfJyZmYm33noL7u7ukMlkCAgIwMGDB/XWs27durh58yZWrVol1mPdunUAAJVKhQULFqBu3bqQyWRo3LgxIiMjS3wd169fj0uXLonljR49Wm2fY8eOoVWrVpDL5Wjbti3OnTun9jwRYdmyZfDx8YFMJkP9+vXx2Wef6T1v0bn9/PwQGxsLPz8/WFpaIiAgAKdPn9Zo89tvv43//e9/8Pb2hpWVFR48eKB1aNLNmzcxcOBA2NnZQS6X46WXXsKFCxcMKk9fHQ8fPgx/f39YWVkhODgYycnJePDgAQYPHoxatWqhQYMG2Lp1q8bx+/btQ7t27WBlZQVnZ2e8+eabePz4sfj848eP8fbbb8PX1xfW1taoW7cuJk6ciKysLK11XrVqFby9vWFnZ4e+ffsiLS2txNeZVR8c1ziucVzjuFaTcEzjmMYxzYRjGjGmx6hRo8jBwYEaNGhAa9eupSNHjtD169cpPj6epFIp9e3bl/bs2UPR0dHUsGFDat++vXhsUlISAaCYmBhx27x58ygyMpIOHz5M+/fvpxEjRpBMJqPExEQiIkpJSaFx48aRlZUVJSQkUEJCAl26dImIiMLDw0kul4tlDRkyhAICAtTq+/DhQ7K0tKQvvviCiIiePn1Kbdq0oTp16lBUVBT9+OOPNHz4cLKwsKDz58/rbPevv/5Kbm5uNHDgQLEe9+7dIyKi9957j8zNzSk8PJwOHDhAkydPJgC0cuVKneX9+eef1KtXL6pfv75Y3p9//im+xo6OjtS8eXPatGkT7d27l5o3b0516tShvLw8sYzJkyeTlZUVLViwgA4dOkTz5s0jiURCX331VYnvoUKhoLp169K6deto9+7dFBgYSLVq1aK7d++K+3l7e5Obmxt17NiRdu7cST/88AM9efJE43V/+PAh1a1bl+rXr0+bN2+mHTt2UEBAANnb29Pff/9dYnm66ujo6Ej+/v4UHR1N33//PdWuXZuCgoIoJCSEPv74Yzp48CANGjSILCwsKDk5WTw2JiaGzMzMaNy4cRQbG0tr1qwhFxcXeu2118R97t27RxMnTqSYmBg6duwYbdy4kRo3bkydO3dWq4e3tzfVqVOHevToQXv27KG1a9eSvb29Wlms+uO4xnGN4xrHtZqEYxrHNI5pphvTuLPN9Bo1ahQBoNOnT6tt79SpEwUFBZFKpRK3Xbp0iQRBoH379hGR9gBenFKppPz8fPL19aU5c+aI258NGLq27969mwDQtWvXxG3r168nc3NzunPnDhERrVmzhiwsLMQ/AkXatWtHgwYN0tt2b29vmjRpktq2tLQ0kkgkNHv2bLXtQ4cOJWdnZyooKNBZ3qhRo6hZs2ZatwuCQBcvXhS3xcXFEQA6efIkERX+ARAEgSIjI9WOnTVrFrm5uZFSqdR7XgB05MgRcVtmZibZ2tqqtcPb25scHR0pOztb7fhnX/fPP/+cBEGgy5cvi9vu379Pcrmc3nvvvRLL01XHZ1+DlStXEgCaNWuWuC0jI4PMzc1pxYoVRESkUqnI29ubhg4dqlZebGysRnnF5efn06lTpwiA+OWhqM6enp6Um5ur1n6JRKL3NWbVC8c1jmsc1ziu1SQc0zimcUwz3ZjGw8hZiRwdHdGuXTvx8ZMnT/DTTz9h0KBBUCqVKCgoQEFBAXx8fFCnTh2cOXNGZ1lXrlxBv3794OrqCnNzc0gkEiQmJuLatWtG1+vll1+Gvb09oqOjxW3R0dHo0qULXF1dAQAHDx5E8+bN4ePjI9azoKAA3bt311tPXX7++Wfk5+dj0KBBattfe+01pKWllaodAODh4YFmzZqJj5s2bQoAuHXrFgDg8OHDAIABAwaotSMkJAR37txBSkqK3vLt7OzQtWtXtcchISH4+eef1fbr3Lkz5HK53rJOnjwJPz8/NGnSRNymUCjQvXt3nDp1yujyijz7Gvj4+AAAQkJCxG329vZwcXER23vt2jXcvHkTgwcPVntdgoODYWZmhrNnz4rHbty4Ea1atYKNjQ0kEgk6dOggllFccHCw2jy3pk2bIj8/v8Rhd6x64bj2H45rHNdY9ccx7T8c0zimmRLubLMSFQXDIhkZGVAqlXj33XchkUjUfv7++2+dweTRo0fo0aMHbt68ieXLl+PkyZM4c+YMWrRogdzcXKPrJZVKMWDAADGA379/H4cOHUJYWJi4T3p6On777TeNei5YsKDEoKdNRkYGAM3XpOixrnkuJbG3t1d7LJVKAUB8XdLT00FEcHJyUmtH9+7dAaDEtjg7O2tsc3V1RWpqqtZ26JORkaF1P1dXV432G1JeEV2vgbbtxV8XAOjXr5/a62JtbQ2lUim+Ljt37sTIkSPRtm1bbNu2DadPn8bOnTsBQON3r6T3gtUMHNfU2w5wXOO4xqozjmnqbQc4pnFMMw2cjZyVSBAEtcf29vYQBAHvv/8++vbtq7G/k5OT1nISEhJw69Yt7N27Fy1atBC3Z2VllTqD4tChQxEVFYXz588jISEB5ubm6N+/v/i8QqGAv78/oqKiSlX+sxQKBQDg3r17qF27trj97t27as+XN4VCAUEQcOrUKTGgFOfr66v3eG1JI+7evQt3d3e1bc++17rqkpiYqLW8Z9tvSHllUXS+L7/8Uu2KfhEPDw8AQExMDFq2bKmWHOX48eMVWjdm2jiu/YfjGsc1Vv1xTPsPxzSOaaaEO9vMaHK5HIGBgbhy5QoWLFhg8HE5OTkAoBaA4uPjkZycrDYkRSqV4unTpwaV2blzZ7i5uWHLli1ISEhAz549YWdnJz4fEhKC/fv3w8PDQ/wwG6r4Vbkibdu2hUQiQUxMDFq1aiVu37ZtG1xcXMThNIaWZ6hu3boBKLwi/Morrxh9fFZWFo4ePSoOT8rKysLhw4cxadIko8vq0KEDtm/fjsTERPEPR0ZGBg4fPowJEyYYXV5ZNG7cGJ6enrhx44betuTk5Gj84du0aVNFV49VIxzXOK5xXGM1Ccc0jmkc00wDd7ZZqSxduhRdu3bFa6+9hiFDhsDBwQG3bt3CoUOHMGbMGHEJiOLat28PGxsbTJo0CbNnz8Y///yD8PBwtauOANCkSRMUFBTg888/R1BQEGrVqqXzaqC5uTkGDx6MdevW4d69e2pzggBg5MiRiIyMROfOnTF9+nT4+PggMzMTv/32G/Ly8rB48WKdbWzSpAmOHj2KQ4cOwcHBAfXq1YOTkxMmT56MpUuXwtLSEu3bt8f+/fuxefNmrFy5Eubm5nrLW7NmDbZs2YJGjRrByckJdevW1f0iF+Pj44NJkyZhxIgRmDFjBtq1a4f8/Hxcu3YNcXFx2LVrl97jFQoFxo0bh3nz5sHe3h5LliwBEWHq1KkGnb+4MWPG4LPPPkPv3r2xYMECWFpaYuHChbCwsChVeWUhCAKWL1+OsLAwPH78GL1794ZcLsfNmzexb98+LFq0CD4+PujevTsmTZqE+fPnIzAwEPv378eRI0cqta7M9HFc47jGcY3VJBzTOKZxTDMBVZmdjZk+XVkZiYjOnDlDvXr1Ijs7O7KysqJGjRrRxIkTKSUlhYi0Z7iMjY2lZs2akaWlJfn7+9P+/fspODiYevfuLe6Tn59Pb731Frm6upIgCBQcHExEujNfJiQkEACysbHRulxBVlYWvfvuu+Tl5UUSiYTc3d2pV69etHfvXr1tv3jxInXs2JFsbW0JAK1du5aICjNzfvzxx2J5jRo1oq+//lpvWUX1GDJkCDk6OhIAGjVqFBFpf40zMjLUzklUmM1x5cqV5OfnR1KplBQKBQUGBtLy5cv1nreo/L1791KTJk1IKpVSq1at6KefflLbT1tGTyLtr3tycjL179+fbG1tydramrp3766xPIeu8vTVsbiiLJ9nzpwpsdyDBw9ScHAwyeVyksvl1KxZM5o2bRplZmYSEVFBQQFNmzaNnJ2dydbWlgYOHEinT5/W+P3UVvbOnTsJACUlJRnUFmb6OK5xXOO4xnGtJuGYxjGNY5rpxjSBiKjyuvaMsco2evRonD17FhcvXqzqqjDGWLnguMYYq0k4ptVcnI2cMcYYY4wxxhgrZ9zZZowxxhhjjDHGyhkPI2eMMcYYY4wxxsoZ39lmjDHGGGOMMcbKGXe2Gatgbdu2xapVq3Q+//vvv0MQBBw7dqxCzt+9e3csXLiwQspmjD1/OKYxxmoajmusonBnm7EKtHPnTiQnJ2Ps2LFVVof3338fy5YtQ0ZGRpXVgTFWM3BMY4zVNBzXWEXizjZjFWjFihUYOnQorKysqqwOXbp0gYODA9avX19ldWCM1Qwc0xhjNQ3HNVaRuLPNWAVJSkrCyZMnMXDgQLXtCxYsgJubG2xsbNC/f3/cu3dP41giwrJly+Dj4wOZTIb69evjs88+09hv586d8PX1haWlJdq3b49ff/0V9vb2iIiIUNtv0KBBHMAZY2XCMY0xVtNwXGMVjTvbjFWQI0eOwMLCAm3bthW3ffnll/joo48wYsQIfP/996hfvz7GjRunceyUKVMwd+5cjBo1Cvv27cPo0aMxa9YsfP311+I+v/32GwYNGoSmTZtix44dGDVqFF577TU8ffpUo7ygoCD8/vvvSEtLq5jGMsZqPI5pjLGahuMaq3DEGKsQEyZMoGbNmomPCwoKyMPDg0aMGKG234gRIwgAxcXFERHRn3/+SYIgUGRkpNp+s2bNIjc3N1IqlURENGjQIGrYsKH4mIho48aNBIDCw8PVjk1KSiIAtHfv3nJsIWPsecIxjTFW03BcYxWN72wzVkFSU1Ph7OwsPr516xZu376Nfv36qe337NClw4cPAwAGDBiAgoIC8SckJAR37txBSkoKAODMmTPo06cPzMz++xi/+uqrWuvi5OQk1okxxkqDYxpjrKbhuMYqmkVVV4Cxmio3NxcymUx8XBQ8XVxc1PZzdXVVe5yeng4iEoPus1JSUuDt7a3xBwIAbG1tYWlpqXFMUT1ycnKMbwhjjIFjGmOs5uG4xioad7YZqyAKhQLJycniY3d3dwDQSLJx9+5djeMEQcCpU6cglUo1yvX19RXLe3Zez6NHj5Cbm6txTGZmJgDA0dHR6HYwxhjAMY0xVvNwXGMVjYeRM1ZBfH19kZSUJD729PSEu7s7du7cqbbf9u3b1R5369YNAHD//n20adNG48fW1hYA8MILL2Dv3r1QqVTisbt27dJal6I/JEXBnzHGjMUxjTFW03BcYxWN72wzVkFefPFFfPzxx7h16xY8PT1hbm6O2bNnY8qUKXB1dUX37t1x8OBBxMXFqR3n4+ODSZMmYcSIEZgxYwbatWuH/Px8XLt2DXFxcWKQnjNnDl544QUMGDAAEyZMwM2bN7Fs2TJYWlqqzQ0CgLNnz8LGxgYtW7aspNYzxmoajmmMsZqG4xqrcFWcoI2xGuvp06fk6OhI33zzjbhNpVLRvHnzyMXFhaytrSk0NJR+/PFHtQyXRfutXLmS/Pz8SCqVkkKhoMDAQFq+fLnaOb7//nvy8fEhmUxGAQEBdOrUKbKwsKAVK1ao7ffKK69oZNZkjDFjcExjjNU0HNdYRROIiKq4v89YjTVt2jT89ttvOHr0aKWc78iRIwgJCcGxY8cQHBwMAMjIyICbmxsOHTqETp06VUo9GGM1E8c0xlhNw3GNVSTubDNWgVJTU9GwYUPEx8ejRYsW5V7+W2+9hW7dusHR0RGXLl3C/Pnz4eHhgbNnz4rDkz7++GMcO3as0v6IMMZqLo5pjLGahuMaq0g8Z5uxCuTu7o5169ZpZKIsLxkZGZg8eTLS09NhZ2eHl19+GcuWLVObB6RQKPDFF19UyPkZY88XjmmMsZqG4xqrSHxnmzHGGGOMMcYYK2e89BdjjDHGGGOMMVbOuLPNGGOMMcYYY4yVM+5sM8YYY4wxxhhj5Yw724wxxhhjjDHGWDnjzjZjjDHGGGOMMVbOuLPNGGOMMcYYY4yVM+5sM8YYY4wxxhhj5Yw724wxxhhjjDHGWDnjzjZjjDHGGGOMMVbO/h+hE1hwVDagbAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1636,13 +1636,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3939/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/tmp/ipykernel_91138/725447372.py:207: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " data[\"deg_mean_for_std\"][ix] = (\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADc8ElEQVR4nOydeViUVdvAf88w7CCLIII7uC+YWvqWKe65lLmlpqaZmFq5VNrrDri3a7aoueSumflWll+ZpWmLlVlk5ooroIICIjsz5/tjmHGGWZhBlO38rotrmOc5z3nODMM9933uTRFCCCQSiUQikUgkEolEIpGUGKrSXoBEIpFIJBKJRCKRSCQVDWlsSyQSiUQikUgkEolEUsJIY1sikUgkEolEIpFIJJISRhrbEolEIpFIJBKJRCKRlDDS2JZIJBKJRCKRSCQSiaSEkca2RCKRSCQSiUQikUgkJYw0tiUSiUQikUgkEolEIilhpLEtkUgkEolEIpFIJBJJCSONbYlEIpFIJBKJRCKRSEoYaWxLJGWY/fv3oygKn3zySWkvRSKRSO6Y8+fPoygKb7zxRmkvRSKRSBymbt26PProo6W9DEk5QhrbknLDb7/9xgsvvECzZs3w9PSkdu3aDB48mFOnTtm8Li8vj6ZNm1pU8FJTUxk+fDh+fn6EhoayZs0as+t///13PDw8OHfuXIm+HolEUrm5desWUVFR9OzZE39/fxRF4aOPPjIbp9Vq+eijj+jbty+1atXC09OT5s2bs2DBArKzs03G5uTkMHHiRAIDA6lZsyYLFiwwm+/y5ct4eXnx448/3q2XJpFIJGb88ccf9O3bF39/fzw8PGjevDnvvPOOyZiVK1dSr149/P39eeqpp7h586bJea1WS6tWrVi0aNG9XLpEUmzUpb0AicReXn31VX788UeeeOIJwsPDuXLlCu+++y6tW7fml19+oXnz5havW758ORcvXrR4burUqezfv5+YmBjOnDnD2LFjadKkCQ899BAAQggmTZrElClTqFev3l17bRKJpPKRnJzMvHnzqF27Ni1btmT//v0Wx2VmZjJ69Gj+85//MH78eKpVq8bPP/9MVFQU+/bt47vvvkNRFABef/11NmzYwKxZs0hPT2fevHmEhYXx5JNPGuabNm0affv2pX379vfiZUokEgnffPMNjz32GK1atWLOnDl4eXlx9uxZLl++bBhz6NAhJkyYwKRJkwgNDWXx4sVMmzaNlStXGsZ8+OGHpKWl8fLLL5fGy5BIHEdIJOWEH3/8UeTk5JgcO3XqlHB1dRXDhw+3eM3Vq1eFj4+PmDdvngDE66+/bnI+KChIrF+/3vA8IiJCTJ8+3fB848aNIiQkRKSnp5fgK7Gf77//XgBix44dd/U+t27duqvzSyQSc7Kzs0ViYqIQQojffvtNAGLdunVm43JycsSPP/5odjwmJkYAYu/evYZj7dq1EzExMYbno0aNEkOHDjU8P3jwoPD09BSXLl0qwVdiP+fOnbMoi0saKdMkkrJDWlqaCAoKEv379xcajcbquP/+97+ic+fOhufr1q0T1atXNzxPSUkRAQEBYufOnXd1vbaoU6eO6NOnz129R15enpm+Kym/yDBySbnhoYcewsXFxeRYgwYNaNasGf/++6/Fa6ZPn06jRo0YMWKExfNZWVn4+fkZnvv7+5OZmQlARkYG06dPZ/HixXh5eTm01vj4eMaMGUNISAiurq7Uq1ePCRMmkJubaxgTFxfHE088YQin+s9//sOXX35pcT6tVsvChQupWbMmbm5udO3alTNnzpiNO3z4MD179sTHxwcPDw8iIiLMQkWjo6NRFIXjx48zbNgw/Pz8ePjhhw3nN23aRJs2bXB3d8ff35+hQ4dy6dIlkzk6depE8+bNOX78OJ07d8bDw4MaNWrw2muvma0pOzub6OhoGjZsiJubG8HBwQwYMICzZ8+avL6lS5fSrFkz3NzcCAoKYty4caSkpNj3hksk5RBXV1eqV69e5DgXFxdDtI0x/fv3BzCRf7ZkmlarZfLkybzyyivUrFnTobWmpqby4osvUrduXVxdXalZsyYjR44kOTnZMObatWuMGTOGoKAg3NzcaNmyJevXr7c656pVqwgLC8PV1ZUHHniA3377zWzMiRMnGDRoEP7+/ri5uXH//ffz+eefm4z56KOPUBSFAwcO8Nxzz1GtWjWT17dnzx46dOiAp6cn3t7e9OnTh3/++cdkjqeffhovLy/i4+Pp168fXl5eBAYGMnXqVDQajclYrVbLsmXLaNGiBW5ubgQGBtKzZ09+//13k3H2yFKJpDKwZcsWrl69ysKFC1GpVGRkZKDVas3G2ZJfoNNfWrRowYABAxy6vz3/s/n5+cyfP98gk+rWrcvMmTPJycmxOOehQ4do27Ytbm5uhIaGsmHDBrMxqampTJkyhVq1auHq6kr9+vV59dVXTV67cR2LpUuXGu5//PhxwDEZ+OOPP/LSSy8RGBiIp6cn/fv3JykpyWxde/bsISIiAm9vb6pUqcIDDzzAli1bTMbYo09K7KS0rX2J5E7QarWiRo0aokePHmbnDh8+LFQqlfjpp5+selO6du0qOnXqJE6dOiX+7//+T7i7u4tNmzYJIYSYOXOmaNu2rdBqtQ6tKT4+XoSEhAgPDw8xZcoUsWLFCjFnzhzRpEkTkZKSIoQQ4sqVKyIoKEh4e3uLWbNmibfeeku0bNlSqFQq8emnnxrm0nu2W7VqJdq0aSPefvttER0dLTw8PETbtm1N7rtv3z7h4uIiHnzwQfHmm2+Kt99+W4SHhwsXFxdx+PBhw7ioqCgBiKZNm4rHH39cvP/+++K9994TQgixYMECoSiKGDJkiHj//fdFTEyMCAgIEHXr1jWsXQhdBEBISIioVauWmDx5snj//fdFly5dBCC++uorw7j8/HzRtWtXAYihQ4eKd999VyxevFh06dJF/O9//zOMi4yMFGq1WowdO1asWLFC/Pe//xWenp7igQceELm5uQ69/xJJecSWZ9sa33zzjQDEli1bDMfGjBkjmjdvLmJjY8VPP/0kqlevLhYsWCCEEGLVqlWidu3aIjMz06G1paeni+bNmwsnJycxduxY8cEHH4j58+eLBx54QBw9elQIIURmZqZo0qSJcHZ2Fi+++KJ45513RIcOHQQgli5daphLL4tbtWol6tevL1599VXx2muviYCAAFGzZk2T//djx44JHx8f0bRpU/Hqq6+Kd999V3Ts2FEoimIiJ9etW2eQaREREWL58uViyZIlQgghNmzYIBRFET179hTLly8Xr776qqhbt67w9fUV586dM8wxatQo4ebmJpo1ayaeeeYZ8cEHH4iBAwcKQLz//vsm78fTTz8tANGrVy+xdOlS8cYbb4jHH39cLF++3DDGXlkqkVQGBg4cKKpUqSL27t0rGjZsKADh6ekpxo8fL7KysgzjNm7cKDw8PMTXX38tTp06JTp27Ci6desmhBDin3/+Ea6uruKvv/5y+P72/M+OGjVKAGLQoEHivffeEyNHjhSA6Nevn8lcderUEY0aNRJBQUFi5syZ4t133xWtW7cWiqKIY8eOGcZlZGSI8PBwUbVqVTFz5kyxYsUKMXLkSKEoipg8ebJhnF4mNm3aVISGhoolS5aIt99+W1y4cMFhGdiqVSvRpUsXsXz5cvHyyy8LJycnMXjwYJP1r1u3TiiKIpo3by4WLlwo3nvvPREZGSmeeuopwxh79UmJfUhjW1Ku2bhxowDEmjVrTI5rtVrRtm1b8eSTTwohrIcuxsbGipo1awpAAGLgwIFCo9GIuLg44e7uLn7++WeH1zRy5EihUqnEb7/9ZnZOb7hPmTJFAOLgwYOGc+np6aJevXqibt26hjArvbHdpEkTk5CiZcuWCUD8/fffhnkbNGggHnnkEZPNgczMTFGvXj3RvXt3wzG9sa1/b/ScP39eODk5iYULF5oc//vvv4VarTY5HhERIQCxYcMGw7GcnBxRvXp1MXDgQMOxtWvXCkC89dZbVt+LgwcPCkBs3rzZ5Pz//d//WTwukVREimNsd+vWTVSpUsXEeLt06ZJo1qyZQaZ16NBBpKeni9TUVBEYGCi2bdvm8Nrmzp0rABPlTo/+/3jp0qUCMGxWCiFEbm6uePDBB4WXl5e4efOmEOK2LK5ataq4ceOGYexnn30mAPHFF18YjnXt2lW0aNFCZGdnm9zvoYceEg0aNDAc0yuaDz/8sMjPzzccT09PF76+vmLs2LEma75y5Yrw8fExOa5XtOfNm2cyVr/Rqee7774TgJg0aZLV98IRWSqRVAbCw8OFh4eH8PDwEBMnThQ7d+4UEydONGzE68nPzxcDBgwwyK9atWqJ2NhYIYQQPXr0EOPHj3f43vb8z/75558CEJGRkSbnp06dKgDx3XffGY7VqVNHAOKHH34wHLt27ZpwdXUVL7/8suHY/Pnzhaenpzh16pTJnNOnTxdOTk7i4sWLQojbMrFKlSri2rVrJmMdlYHdunUz0QFffPFF4eTkJFJTU4UQQqSmpgpvb2/Rrl07k00O4/fCEX1SYh+lbmxfvXpVXLhwwexHIimKf//9V1SpUkU8+OCDJgqWEDojz93d3UyYWcoTzMrKEr/99ps4ffq04Vj//v3FiBEjhBBC7Ny5U4SHh4u6deuKmJgYm55ujUYjqlSpIh5//HGba2/YsKGZZ1oIIRYvXmxiROuN7ddee81k3B9//CEA8dlnn5k8X79+vUhKSjL5iYyMFK6urgYDXm9sHzhwwGTOt956SyiKIk6fPm02R5MmTQy7y0LojG0vLy+z96Jv376iVatWhud9+vQRAQEBIi8vz+p7MWnSJOHj4yOuXbtmdl8vLy+zLz+JpCLiqLG9cOFCi15XIXRG7tGjR8U///xj+L9/8cUXxcMPPyyE0G1wtW3bVtSsWVNMnDixyNzAZs2aiZYtW9oc06NHD1G9enWzfMytW7eaGNF6Wfzcc8+ZjLtx44YAxLJly4QQQly/fl0oiiLmz59vJhf0ueqXL18WQtxWNI3rbwghxKeffmpQlAvP0aNHD1G/fn3DWL2xXVjZnTRpkvDz8zM8f/7554WiKOL69etW3wtHZKlEUhkIDQ0VgJmxPG7cOAGYGaSnT58Wv//+u8Eg/Oyzz4Svr69ISkoSly9fFo8++qgIDg4Wjz76qIiPj7d5b3v+ZxctWiQAcfz4cZPjiYmJAjAxouvUqSOaNm1qNkd4eLjo37+/yfOePXuayYBvv/3WZGNSLxNHjx5tMl9xZODHH39sModeBuqjAXbs2CEAsWvXLqvvhSP6pMQ+SqUa+fXr15k4cSKffvopeXl5JueEECiKYpYjJZEYc+XKFfr06YOPjw+ffPIJTk5OhnM3b95kxowZTJs2jVq1ahU5lz4HRs93333HN998w8mTJzl58iRDhw5l5cqV1K1blyeffJJatWoxevRoi3MlJSVx8+ZNq5XR9Vy4cIF27dqZHW/SpInhvPEctWvXNhmnz2nS5zSfPn0agFGjRlm9Z1pamkkuVOHq6qdPn0YIQYMGDSxe7+zsbPK8Zs2ahgrIxuuKjY01PD979iyNGjVCrbYuak6fPk1aWhrVqlWzeP7atWtWr5VIKiPbt29n9uzZjBkzhgkTJpidd3Z25r777jM8P3HiBO+//z4//fQTN27coE+fPkyfPp3OnTszevRoFi5cSExMjNX7nT17loEDB9pc04ULF2jQoAEqlWkpGGOZZkxRMu3MmTMIIZgzZw5z5syxeM9r165Ro0YNw3NLMg2gS5cuFq+vUqWKyXN9LmfhdRnXjjh79iwhISH4+/tbnFN/X0dkqURS0XF3dwcw6YoAMGzYMFauXMnPP/9s8v9Sv359w++5ubm8/PLLREVFERAQQIcOHQgODuaLL75gyZIlDBs2zGonB7Dvf/bChQuoVCqT+wJUr14dX1/fIuUXmMuK06dPExsbayZT9BTWbQrLr+LIwKLkqr5Wji0dtTj6pMQ2pWJsR0ZGcuDAAWbMmEHTpk3Nil5JJLZIS0ujV69epKamcvDgQUJCQkzOv/HGG+Tm5jJkyBDOnz8PYGgtkZKSwvnz5wkJCbH4udNoNEyePJnp06dTo0YN5s+fz0MPPWQwrseNG8fmzZutGtt3C+PNBGOEEACGYhuvv/66iZJtTOEib/ovPz1arRZFUdizZ4/F+xW+vqg12YtWq6VatWps3rzZ4nlrX1QSSWVk7969jBw5kj59+rBixQq7rnnxxRcZMWIErVu3ZuPGjfj7+zNjxgwAXnnllSKN7buBvTJt6tSpPPLIIxbHFlaMLck0gI0bN1osRFd4E9DamhzFUVkqkVR0QkJC+OeffwgKCjI5rt9kt1UM9e2330atVvPCCy9w6dIlDh06xLlz56hbty6vvfYaoaGhXL582eGij5Yo7ECwhj36j1arpXv37rzyyisWxzZs2NDkuTX55YgMLAm9rDj6pMQ2pWJsf//997zzzjuMHDmyNG4vKcdkZ2fz2GOPcerUKb799luaNm1qNubixYukpKTQrFkzs3OLFi1i0aJFHD161KIQ+eCDD0hPT2fq1KkAJCQkmBjzISEhxMfHW11fYGAgVapU4dixYzZfR506dTh58qTZ8RMnThjOO0JYWBig89R069bNoWuN5xBCUK9ePbMvgeISFhbG4cOHycvLs+rNCQsL49tvv6V9+/ZmXzYSieQ2hw8fpn///tx///18/PHHNiNG9OzevZuffvrJ4K1ISEggODjYcL4omQa6/1F7ZFpsbCxardbEu11cmRYaGgrovMB3ItNAp9AXdw5Lc3799dfcuHHDqqfsbshSiaQ806ZNG/bu3Ut8fDyNGjUyHE9ISACsb6onJiayYMECduzYgVqtNozX62X6x/j4eKvGtj3/s3Xq1EGr1XL69GlDNA7A1atXSU1NdVh+6e9769atYsuekpCBltYEcOzYMTNDvfCYO9EnJaYUq/XXP//8w9ChQw3l6f/44w8AZs2axZ49e4q83tfXl4CAgOLcWlKJ0Wg0DBkyhJ9//pkdO3bw4IMPWhw3adIkdu3aZfKzcuVKQNfeZdeuXWbhOgA3btwgKiqK119/HTc3NwCCgoIMyiLoWuzYatWjUqno168fX3zxhVkbGLi9u9i7d29+/fVXfv75Z8O5jIwMVq1aRd26dS1uItiiTZs2hIWF8cYbb3Dr1i2z85ZaPxRmwIABODk5ERMTY7YLKoTg+vXrDq0JYODAgSQnJ/Puu++andPfY/DgwWg0GubPn282Jj8/n9TUVIfvK5FUNP7991/69OlD3bp12b17t10bU7m5ubz00kvMnj3b4EEKCgrizJkz5OfnG+Ytqv3YwIED+euvv9i1a5fZOWOZduXKFbZv3244l5+fz/Lly/Hy8iIiIsLu1wo6A7lTp06sXLmSxMREs/P2yLRHHnmEKlWqsGjRIrOUNXvnKMzAgQMRQliMBNC/F3dDlkok5ZnBgwcDsGbNGpPjq1evRq1W06lTJ4vXTZ8+nY4dO9KzZ08Ag2dcr5fp2x7akmH2/M/27t0bgKVLl5qcf+uttwDo06eP1fmtMXjwYH7++We+/vprs3OpqakGGWyNkpCBhenRowfe3t4sXryY7Oxsk3P696Ik9EmJKQ57tvfu3UufPn1o06YNw4cPZ8GCBYZzzs7OvP/++/Tq1cvmHK+88grLly+nR48edu3MSyQAL7/8Mp9//jmPPfYYN27cYNOmTSbn9b20W7duTevWrU3O6cPJmzVrRr9+/SzOP2fOHFq0aMETTzxhODZw4EDmzZvHhAkTqFOnDitXrjQIX2ssWrSIb775hoiICJ599lmaNGlCYmIiO3bs4NChQ/j6+jJ9+nS2bt1Kr169mDRpEv7+/qxfv55z586xc+dOs7zHolCpVKxevZpevXrRrFkzRo8eTY0aNYiPj+f777+nSpUqfPHFFzbnCAsLY8GCBcyYMYPz58/Tr18/vL29OXfuHLt27eLZZ581ePztZeTIkWzYsIGXXnqJX3/9lQ4dOpCRkcG3337Lc889x+OPP05ERATjxo1j8eLF/Pnnn/To0QNnZ2dOnz7Njh07WLZsGYMGDXLovhJJeeHdd98lNTXV4LH54osvDGkvEydOxMfHh/T0dB555BFSUlKYNm0aX375pckcYWFhFjcfly1bBsDkyZMNx3r37s3zzz/PsGHDeOihh5g/fz6RkZE21zht2jQ++eQTnnjiCZ555hnatGnDjRs3+Pzzz1mxYgUtW7bk2WefZeXKlTz99NMcOXKEunXr8sknn/Djjz+ydOlSvL29HX5v3nvvPR5++GFatGjB2LFjCQ0N5erVq/z8889cvnyZv/76y+b1VapU4YMPPuCpp56idevWDB06lMDAQC5evMiXX35J+/btLW4E2qJz58489dRTvPPOO5w+fZqePXui1Wo5ePAgnTt35oUXXrgrslQiKc+0atWKZ555hrVr15Kfn09ERAT79+9nx44dzJgxwywdEODXX39l+/btJnVg6taty/3338/TTz/NmDFjWL16Ne3atbPpebbnf7Zly5aMGjWKVatWkZqaSkREBL/++ivr16+nX79+dO7c2eHXPG3aND7//HMeffRRnn76adq0aUNGRgZ///03n3zyCefPny/S8XinMrAwVapU4e233yYyMpIHHniAYcOG4efnx19//UVmZibr168vEX1SUghHK6q1adPG0IstLy9PKIoijhw5IoQQ4n//+5+oUaNGkXO88MILonbt2qJ27driqaeeEhMnTjT5sVSeXyLRt5uy9mMLW9XIhdC1AHNxcTH0jDXmo48+EnXr1hVVq1YVL730klnlc0tcuHBBjBw5UgQGBgpXV1cRGhoqnn/+eZOqv2fPnhWDBg0Svr6+ws3NTbRt21bs3r3bZB59NfIdO3ZYfD2FKxcfPXpUDBgwQFStWlW4urqKOnXqiMGDB4t9+/YZxuirkSclJVlc+86dO8XDDz8sPD09haenp2jcuLF4/vnnxcmTJw1jIiIiRLNmzcyuHTVqlKhTp47JsczMTDFr1ixRr1494ezsLKpXry4GDRokzp49azJu1apVok2bNsLd3V14e3uLFi1aiFdeeUUkJCRYXKdEUhHQt5Gx9KPvA63/f7f2M2rUKLN5r1y5Iry9vcXnn39udm7Pnj2icePGwtfXV4wcOVJkZGQUuc7r16+LF154QdSoUUO4uLiImjVrilGjRonk5GTDmKtXr4rRo0eLgIAA4eLiIlq0aGEmo2zJYkBERUWZHDt79qwYOXKkqF69unB2dhY1atQQjz76qPjkk08MY/SVeC21WxRCJ0cfeeQR4ePjI9zc3ERYWJh4+umnxe+//24YM2rUKOHp6Wl2rV5eGpOfny9ef/110bhxY+Hi4iICAwNFr169DLqQHntkqURSWcjNzRXR0dGiTp06wtnZWdSvX1+8/fbbFsdqtVrRrl078dJLL5mdO3PmjOjYsaPw8vISHTt2NNMlLGHP/2xeXp6IiYkx6Cq1atUSM2bMMGm7JYROZvfp08fsHhERESIiIsLkWHp6upgxY4aoX7++cHFxEQEBAeKhhx4Sb7zxhsjNzRVCFK2f3okM1OuQ33//vcnxzz//XDz00EPC3d1dVKlSRbRt21Zs3brVZIw9+qTEPhQhHKtm5ObmxhdffEH37t3RaDQ4Ozvz+++/07p1aw4cOMAjjzxiFppQGEshvMYoikJcXJwjy5JIJBKJRCKRSCQSiaTM4HAMt7+/vyHcrTCnTp0yKbxijXPnzjl6W4lEIpFIJBKJRCKRSMoNDhdI69evH1FRUSaVlBVF4cqVK7zxxhtF9uIsj5w5c4bx48dz3333oVarrfanS01NZdKkSYSEhODm5kZYWBhvvvmmyZjc3FymTZtG9erV8fT0pHv37harUkskEsndQso0iURSkZAyTSKRlFUc9mwvXryY3377jfDwcFq0aAHAM888Q1xcHI0aNSI6Otruuc6cOcOpU6cshp0PGDDA0aXdNf755x++/PJL2rVrh1arNfSgMyYjI4NOnTqhVqt5++23CQoK4tSpU9y8edNk3KRJk9i2bRtvvfUWNWrUYOHChXTt2pV//vkHHx+fe/WSJBJJJUbKNIlEUpGQMk0ikZRZipPonZubK9auXSuefPJJ0b17dzFkyBDx4YcfmhR/skVaWpro0qWLUKlUQqVSCUVRhKIohucqlao4y7praDQaw++jRo2yWBhq9uzZIjQ0VNy6dcvqPJcuXRJOTk5i5cqVhmPXr18Xnp6e4tVXXy3ZRUskEokVpEyTSCQVCSnTJBJJWaVYfbadnZ0ZPXo0W7Zs4ZtvvmHbtm1ERkbi4uJi1/X//e9/uXLlCgcPHkQIwa5du9i/fz9jxoyhXr16/PLLL8VZ1l3DnjZMq1ev5plnnsHT09PqmG+++QatVmvSWsrf358ePXrw1VdflchaJRKJpCikTJNIJBUJKdMkEklZxWFj+6+//rIqcL766iuTfnjW+L//+z9mzZpFu3btAAgJCaFjx46sWrWKxx9/3Cx/pqxz/vx5rly5QkBAAH379sXV1RV/f3/Gjh1r0hD+xIkTVKtWDT8/P5PrmzRpwokTJ+71siUSicQiUqZJJJKKhJRpEomktHDY2H7xxRf5+eefLZ779ddfefnll4uc49q1a9SqVQsnJyc8PT25fv264Vzv3r35v//7P0eXVapcuXIFgKlTp+Ln58dXX33FokWL2LFjB2PHjjWMS0lJwdfX1+x6Pz8/bty4YXX+nJwcbt68afhJS0sjKSkJ4VjXNolEIrELKdMkEklFQso0iURSWjhsbP/555+0b9/e4rkHH3yQP/74o8g5atWqRXJyMgANGjTg888/N5z7+eefcXNzc3RZpYq+EEfDhg1Zv349Xbt2Zfz48bzxxhts27btjnuGL168GB8fH8OPr68v1apVIz09vSSWL5FUChL/+IMYRSGxkIyydrwyI2WaRFL2uReyq6LIRynT5Heg5O5g6/Pj6GerJD+LZelz7bCxnZOTQ25urtVzliqLF6Z79+58++23gM5TvmLFCtq0acODDz5IVFQUI0eOdHRZpYo+3Khz584mx7t27QroqmTqx6WlpZldn5KSgr+/v9X5Z8yYQVpamuHn0qVLJbV0iUQiMUPKNImk/JKemMj+6GjSExNLeyllBinTJJI7Q8qV4uOwsd2qVSs2bNhg8dyGDRto2bJlkXO8+uqrxMTEAPDUU0+xc+dOGjduTHBwMO+++y5LlixxdFmlSlhYGK6urlbP6zcgGjduzNWrV0lJSTE5f+LECRo3bmz1eldXV6pUqWLyI5FIJHcLKdMkkvLLrcREDsTEcEsqxQakTJNI7MOaUV3acqU8G/sOG9szZsxg165d9OnTh08++YSffvqJTz75hD59+vC///2PWbNmFTmHh4cHAQEBhuf9+/dn8+bNfPrpp0yYMMGuqpJlCRcXF3r06MG+fftMju/duxeA1q1bA9CjRw9UKhU7d+40jElJSeGbb76hd+/e927BEolEYgMp0yQSSUVCyjSJxD5K26i2Rlldlz2oHb2gT58+bNmyhWnTpjF48GAURUEIQc2aNdmyZQt9+vSxe65///2X33//nUuXLvHMM89QvXp1zpw5Q1BQEN7e3o4u7a6RmZlpqMB+4cIFbt68ySeffAJAREQEgYGBREVF8dBDDzF8+HBGjRrF6dOnmTFjBsOHDycsLAyAmjVrEhkZybRp03BycqJGjRosWrQIHx8fxo0bV2qvTyKRVC6kTJNIJBUJKdMkEklZxWFjG2DIkCEMGTKEkydPcv36dapWrUqjRo3svj4zM5PIyEg+/vhjFEVBq9XSs2dPqlevzowZM6hXrx6vvfZacZZ2V7h27ZpJz0XA8Pz777+nU6dOtGnThq+++orp06fTt29f/Pz8ePbZZ1m4cKHJdcuWLcPLy4vp06eTnp5O+/bt+fbbb/Hx8blnr0cikVRupEyTSCQVCSnTJBJJWaVYxrYeRwxsY6ZOncp3333HV199RYcOHfD09DSc6927N2+//XaZMrbr1q1rV/uGrl278ttvv9kc4+rqyhtvvMEbb7xRUsuTSCQSh5AyTSKRVCSkTJNIJGWVYhnbJ0+eZOfOnVy+fNms+riiKKxZs8bm9Z988gmvv/46PXr0QKPRmJyrW7cu58+fL86yJBKJRCKRSCQSiUQiKRM4bGxv3LiR0aNH4+bmRp06dXBxcTE5ryhKkXPcunWL4OBgi+cyMjIcXZJEIpHYhbOHR2kvQSKRSCQSiURSSXDY2J4/fz6DBg1i7dq1eBRTcQ0PD2fnzp306NHD7NyXX37J/fffX6x5JRKJxBJCCILCw5mZkYE2Px8hhF0bgxKJRFKSpCcmcmTlStqMG4e3kdPB2nGJRCKRlG8cNrYTEhL44IMPim1oA8yZM4fHH3+czMxMnnjiCRRF4ddff2Xr1q2sXbvWUFFSIpFI7hSh1ZKekMCRlSu5cfYs/mFhOoU2JASloM2g9HhLJJJ7gb59TaO+fU2MamvHJRKJRFK+cbihdceOHTl27Ngd3bRPnz5s27aNQ4cO0a9fP4QQPPfcc2zfvp3NmzfTtWvXO5pfIpFUbNITE9kfHU16Ef0WhVZL7KZNLKtXjx8WLODY1q38sGABy+rV49SXXyK0WoPHOyg83K4COxKJRCKRlCbWvgPt/W6USCT3DoeN7UWLFvHhhx+ycuVK4uLiuHHjhtmPPQwaNIhz585x4sQJDh06xPHjx7l48SKDBg1y+EVIJJLKhd4LdMuGoiGEID0hgc/HjEGbn28yrumgQdTv2ZP0hAQOxMSwc9gwDsTEkB4fj9Bq7+VLkUgkkjKNjPwpe1j7DrR2XCIpS1S2TSGHw8hbt24NwIQJE6zmPBauMG6Lhg0b0rBhQ0eXIZFIJGYYh2J6VqvGkZUrzQztoPBw+m3YwN9btvBFZKTJ+UNLltB3zRrCR4wwhJhLJBJJZUTWupBIJHeDypY247CxvXbt2hIRtpcuXeJ///sfly5dstg+bNmyZXd8D4lEUjlRVCpUTk7cOHvW7Fy7KVNIj483M7QBtPn5fD5mDPW6dtXldEvFUiKR2KCiFjazp9aFRCKRSIrGYWP76aefvuObfvzxxzz11FNotVqqVatmsX2YNLYlEklxEVotWo0G/7Aw0xOKQvMhQzi0eLGZoa1Hm5/PkRUriIiORnFyugerlUgk5ZWK6KHR17oonIIjI38kkopDRd0oLIuUirScOXMm/fr1Izk5mfj4eM6dO2fyExcXVxrLkkgkFQhFpaLNuHGo1Lf3FJ3d3XH28LDo8TYmJS4OlTS0JRJJMSnJnMTizFXcPGtbtS70kT/6mhgSiaT8IvP77x3FMrZ/+OEHRowYQdu2bQkPDzf7KYqkpCSeffZZfHx8inN7iUQisYpeyVQUBe+QEPquWWMwuPOyssjLzDT3eBfCLzQUrQO1JyQSicSYklRkHZnLOM+6OB0WhFZrsdaFHn3kjywkWbGQRfAkkruHw8b2119/TZcuXUhOTub333+nVq1aBAQEcPLkSTIyMrj//vuLnKNnz5788ssvxVqwRCKRWMKSkqmoVISPGMHk8+fpOHs2LZ58kuQTJ8w83sao1GrajB8vwyQlEkm5Qmi1pMfH31GHBWu1LoyRkT8VhzvdnJGUDSpbde/yhsM521FRUUyZMoVXX30VZ2dn5s+fT+vWrblw4QKPPPIIXbp0KXKOFStWMGTIEDIzM+natSu+vr5mY/RVzyUSiaQoiirm4x0SQkRUFCq1Gm1+PopKRd81a8xCJVVqNX3XrsU7OFgWR5NIJOUCtbt7ieVZW6x1UQh95I80uMs3sghexcFa7QiZl102cNjY/vfff1m4cCEqlQpFUcjIyACgTp06REdHEx0dzYgRI2zOkZ6eTmZmJosXL2bJkiUm5/StJRxpHyaRSComRX1ROKJkXomNZV2HDow+eJDg1q0JHzGCel27cmTFClLi4vALDaXN+PE6Q1sqGhKJ5A5QpSYREax7vNt4BgYWmWdtb4cFfa2LQ0uWWAwll5E/5Z+S3JyRlG3KQgFHmaJQDGPbzc0NrVaLoigEBwdz9uxZOnToAIC3tzeXLl0qco6RI0dy8eJFli9fTsOGDc2qkUskEgnY/qJw9vBwSMkEyMvMNJy36PF2cpIebYlEcseo0pLpFAJJacl39T7Onp64+fpyICamRDosGNe6kJE/FZOS3JyRSKxhnKKgzc83OFMrIw4b2y1btuTkyZN0796drl27snDhQgICAnB2dmb27Nm0aNGiyDl+/fVXtmzZQr9+/YqzZolEUoax5o0uqXAmEwGu0XAgOtouJdMSiqKYebwlEonEmHsViumIB8ggB2/dAijRPGt9rQsZ+VMBUZQS3ZyRSCwhUxRMcdjYnjJlCufOnQNg0aJFPPbYY/Tt2xeAmjVrsmvXriLnaNCgAflW/sklEkn5xpo3urg5RcYKqLEAT7t8mX7r1tmvZNrYUTX2eEskkvJPSRrIdzsU01EPkIkiGxfH42vXlnietYz8qZg4u7ujUqtlETzJXcOeFAW1u3sprvDe47Cx3bt3b8PvNWrU4MiRI5w5c4asrCwaN25sV0j4W2+9xdSpU2nevDmNGzd2dAkSiaQCYU2RNVNACwtwRaHPe+/Z38ZLVlmVSCoNZSFX0R4c8QBZy7UN7daNVmPGlHietYz8qXjkZWWhzc+XRfAkVrmTehNCCLtSFDwDA63OURFzvB325c+bN4+EhATDc0VRaNCgAeHh4Vy/fp158+YVOceUKVO4fPkyzZs3p3bt2mZ9ulu2bOnosiQSSTmmsHAt3MLmamysuQAXgmPbt9NqzBjZxksikdwx97J9jrHhvKxePX5YsIBjW7fyw4IFLKtXj9hNm8xadlnLtT28dCneNWrw2OrVZrKwJPKsZeRPBUIIslNTZfvLcsq9kFH6ehMqC/UmrBnC+uNCq+XIypVFpii4WehCVZHb0Dns2Y6JiaFnz56EFBQcMiYhIYGYmBjmzp1rc442bdrIUCSJRGIxfBIhzDzYfVev5tDixWYC/PDSpYSPGMFjq1fzRWSkLOYjkUiKzb30hjta3NFWru3V2Fj+N3Ik/TZsoF6XLvyxapXMs5ZYJSMpiYBGjWQRvHLIPZNRboUcIFZSXQofVzk52ZeioFabhJJX9Bxvh41tW7lEiYmJFntmF+ajjz5y9LYSiaSCYUm4tp8+neyUFBMFwNndHWcPD4sC3ETJ7NyZPz78UCqZEomkbOBmJRzSwSJVUHSu7bFt20g6fpyey5YRER2NyslJ5llLLJKflSWL4EksIoSg6qNPQP/hVM3LNThACutq7aZMwd3Pz/R4/fpEzJ1rX4pCfj75WVmVpg2dXavfunUrffv2pW/fviiKwssvv2x4rv/p0aMHI0eO5KGHHrrbay6zfP7557Rr1w5vb2+Cg4MZPHgwcXFxZuPWrFlDw4YNcXNzo2XLluzevbsUViuRlA5WwycXLkRRFLMQpLysLPIyM60K8GPbtvHh/feTkZRERHQ0AzZvJiIqqsLsiJYmUqZJJI5jUFgPZVD10SfMwiEdLlKlKHbl2l6NjeXcvn0gBIs8PbkaGysN7UJImXYb4yJ48nvz7lGc0O97mdKix5C+N28+O4cN4/dVHxoiDY11tZOff45rlSr8tXGjqQ43fz6xmzbReuzYIlMUslNTAfsifNITE8t9SLld/1G5ubmkp6eTnp6OEIKMjAzDc/2PoiiMHDmSlStX3u01l0n2799P//79adq0Kbt27WLp0qX89ddf9OjRg6ysLMO4bdu2MXbsWIYMGcKePXt48MEH6d+/P7/88ksprl4iuTfY6o1t1YNtR2520vHjeFWvTnZKilQySwgp0yQVlZJUZFWpSXQO9TAUEyqssB6YN5/0+HiT/GtHi1RR4F2yN9c2OzVV5llbQMo085xbRVG4GhsrvzfvIvrQ71sOyJviXFNcrDlAnD08SLt40UxXazdlCunx8WapewC/vP02XsHB9F2zxmb9iIykJEOEjz053oXrV5Q37AojHzVqFKNGjQKgc+fOfPDBB7KKeCG2bdtGnTp1WLt2rUFYVatWjS5duvD777/ToUMHAKKiohg6dCjz588HdO9nbGws8+bN46uvviq19UskdxN7emPb8mDbm5udfPKkVDJLCCnTJBWVksp7FEIQ2KEzQWcz0Obl2d/yxshwdqSCuL25tsknTxb7NVVkKrNMK6q9nPzerLxYdIAoCs2HDDGvlWPteAH61L7+GzfaTFHIz8oqVoRPecXhnO3vv//e4vHc3Fy72n5VVPLy8vD29jYRXj4+PgCG8Ie4uDhOnTrFq6++anLt0KFDmTZtGjk5Obi6ut67RUsk9wC7e2MbebALK6DGudmh3brZFOCSkkHKNInEOoVrTjw0dSqe1arZ1fLG2cOjWEWq7M21lXLQMpVVplX04lOSO8BK/QhrkYa2aujoObZtG75169Jl0SIioqJQqdUW60cUK8KnnOLwf9nGjRtZvny54fmxY8do0KABHh4edOrUiWvXrtm8XgjBjRs3yMnJcXy1ZZinn36a48eP8/7775OWlkZcXBwzZ86kVatWtG/fHoATJ04AmEUFNGnShNzcXM6dO3fP1y2RFJeiQjEthSb9tX69zfxrWy1sjn/yCWe+/hrv4GCZY3YPkDJNIrGMWcjltm0ENG5sMxwysGlTMq5exc3Pj5kZGVRt0AAUhfARI5h8/jwdZ8+mxbBhdJw9m8nnzxM+fLhVuSZzbYtHZZRp9rSXM64KLalcWPMuW4s0LKqGjh6VWo3Qam2nKNyDNnRlpWe3w6t//fXXURm96IkTJ+Li4sLSpUtJTExk5syZNq/Py8ujWrVqfPvtt46vtgzToUMHdu3axfTp0/H19SUsLIyrV6+yZ88enJycAEhJSQEwq9ju5+cHwI0bNyzOnZOTw82bN01+JJLSpqicIouhSUXkX1+NjeWz0aNp+dRTFhXQhr17o6hUMsfsHiBlmkRijiiozFtkxwRF0Sl6ikLzoUMZ+/vvuFetyoHoaF0ud0wM6fHxAMUynGWureNUNplm6bOqx7j4lGdgYCmtsHJTGkXQCmPVu2xNV7Ojhk5hA9lWikJGUhLeISFF5ng7Kt/KWs9uh43t8+fP07RpUwCSk5M5ePAgb775Ji+88ALz5s3j66+/tnm9i4sLNWvWRKPRFG/FZZSffvqJp556irFjx/Ldd9+xY8cOtFotffr0MSm8URwWL16Mj4+P4adWrVoltGqJ5C5ho/CFLe+1Sq0m7JFHgKIVUJljdneRMk0i0aFKTSIiWPcotFqbHROCwsPpu3Yts27dYmZGBrMyMui/aROn9+xhef36Fr2LCMH106eLZThLOWg/lU2mWfqsGqMvPuVmR8teSclzL4ugWcWGd9marlaUDueIgWycGuNohI/Vl6QvUhkTY7KxWZpF1hzO2VapVOTm5gK6/G1nZ2c6d+4MQHBwMNevXy9yjueff5633nqLHj164Obm5ugSyiSTJk2iS5cuvPnmm4Zj//nPf6hduzYbN27k2WefNeyMpqWlUb16dcM4/U6qv7+/xblnzJjBSy+9ZHh+8+bNMiHIJRWf9MREjqxcqcvvslBIyFqIjq3CF470xr4SG8u6Dh0YffAgwa1bF7ler4IQc687KHok0SFlmkSiQ5WWTKcQSLqVgsrJyWrHhLaTJhExdy7iWjxO6xfD5bOoa4YhBoyjYa9eNB00iGPbthkuK5zLLQ3nu0tlkmmKSmX5s1qIlLg4VGq1DCWvxFirH6GPNOy3fr1ZrZyc9HRaPvWUzRo6jmCcGmMtx9seymrPboeN7ZYtW/L+++9Ts2ZN3nnnHbp06WIoFnHx4kWqVatW5BwXL17k1KlT1K5dm06dOhEUFGTyhiqKwrJlyxxdWqly/PhxHn/8cZNjNWvWJCAggLMFwk6fA3TixAkaNWpkGHfixAlcXFwIDQ21OLerq2u5K8ghKV9YM6qtVe21VdlUlZrEQ75ZaPPybPbGTjp+nL5r1xIRHY3KycmqcHVEAfUODqZTdLQDr1xiDSnTJJJCaDRoNRqLcu3MV19x36hR8NVGVPMjQXNb0VM+WgJzVtN/wwaSjh/namys4ZzeuxgRFWXz1mUl97A8U5lkmtBqrX5WjfELDUWbny+L6lViiiq8qCiKVUO4JAxkPYqiOOxgMcaetIl6XbvqoiTvcdqNw+b9okWL+OGHHwgPD+fvv/8mJibGcG7Xrl20bdu2yDl2796Nq6srnp6e/Pbbb+zevZsvvvjC5Ke8UadOHf744w+TYxcuXCA5OZm6desCEBoaSsOGDdmxY4fJuO3bt9O1a9dKXc1dUro4Es5UVIiOKi2ZTsGCnISLNgtflJXe2NIbbhkp0yQScxSVyqJcq9+7N+LqJZRChjYAmnyU+ZGIpATaTZ5sNqct72JZyz0sz1Q2mWbts6rHuC+7pHyjyk0i4lHdo93XpCbROdQDVaruGoN3ee4cXfre3DmG9D1rNSLuRu0IWw4WW5uO9qZNlEY4ucOe7fbt2xs802FhYSZFJMaMGUP9+vWLnKO8VXO0h/HjxzNlyhQmT57MY489xvXr11mwYAHVqlVj8ODBhnHR0dEMHz6csLAwOnfuzPbt2zl8+DA//PBDKa5eIrEPe0J0nKr4gpsHWWdO4Ne5l109Ya0J15I0hK3NJb3hlpEyTSIxR+/NMZFrikKLIUNQrV9sbmjr0eTj9NlqWoyawedjxpicsuZdlC2bSpbKJtMsflYLkH3ZyyfG9SNMjucl0+kxSMpLtmseIQSBHToTdDYDbV6uITpRURSSd+8g8L0pXH9+KYH9h5tcZ01Xu9spMEX1iQfsT5soKIZ4L3HY2Abw9vamTZs2Zsd79+59xwsqr0yaNAlXV1c++OAD1qxZg7e3Nw8++CA7duygatWqhnFPPvkkmZmZLFmyhCVLltCoUSN27drFgw8+WIqrl0iKpqgQncPLltFk4ED8Oj0ChzLwy8tFKWhtY6snrJuvr1WDuiQNYWlUO4aUaZKKSnG8QMaYhFyuXEnGtWuoPTzgsm1Fj/g41B4eqN3dDYa1Ne+iPRubMs/WMSqLTDP2/sm+7BULQ/2INFOjWpWeYvJoC5ubeIpCwKNPQP/hBOTl6npbl3KnA3s3He1Om9Bo7rnBbZex/dZbbzF8+HCCgoJ46623bI5VFIUXX3yxyDnj4+NZunQphw4d4saNG/j7+9OhQwcmT55MjRo17Ft9GUJRFMaPH8/48eOLHDtmzBjGFNrZlkjKOrZCdJoPHUr/DRsgORFlw4dw+SxKzTAYOA4lIMRmXo80gssmUqZJKirWvEDWvEYAuJmGL+pDLjtFRaE4OSE0Gp3Ms0WNUPIzM00MbUveRXtzD2XLJseo6DLNmvevpIpPSYouGltaqG6lmjxaw9omXsq5c/Rfvx6RnICyc6WJDkdACJRSJI0jBc/0aROHliyxqKfeac/uO8EuY3vq1Kk8/PDDBAUFMXXqVJtj7TG2jx07RseOHcnLy6N79+7cd999XL16lRUrVrBmzRp++OEHmjVrZv+rkEgkdxVblU2DwsPpv2EDytdbzPMVP1oCc9eg9BpB8unTfHj//cUqfCGRSCo390LJVaUl0ynUw9RrJIRlT49Wi5KcAHrFdMRUGDBOJ/MshZI7qREDx5P077+0GDbMpnfR3tzDooqqSSoPRXn/7rT4lESHtaKx5QFrm3hB4eH0W7cO9myyqsPR695H0jha8MzetInS2GSyy9jWGiWTa0sgsXzq1KmEhYXxzTffGNosgK61Qo8ePZg6dSp79uy54/tIJJKSwVZl03ZTpkBygtXCQMwbAw+UbGsbWdRMIqlc3G0lVwhB1QKjuqo+h1EInWwz9vQMeQF8A2HPJp1s08u8uH9g4+8wZzUUloVOaohaCwHBBPkHMWDzZqveRdmySeIIand3h7x/sr1c5cXaJl67KVMQ1+LNuigAZjrcvcTuTcfoaJSCsHB70iZKg2LlbN8phw4dYvPmzSaGNoCfnx+zZs3iqaeeKo1lSSQSG1gM0VEUWgwdiuqjRTYLA7FzBe5jS84LI0PPJRJJSVHYK1irfXsemDABsWcTirFBDVAzDB7oYmpoA5yOhaiRELMB2naDnSsgPg5qhMLA8RCgU/Su/PmnTe+ibNkkcQTPwEC7vX+SyovVTbyC4o5ORRR3LGkdrigc2nQslH9dFtMm7DK2Ha3A2LFjR9s3VavJycmxeC4nJwenUqgUJ5FILKMvtmIpRMfZ3V3nWbGjMJAivTASScUkOVEXTj1wHATc22gTa+HlNvOvC3Dy9LXoFQzt3h1t4kWcChvUigLdB8M6K4rp19sg7jjMXYt4VudtEXm5KGpnkyJDRXkX7c09tNaySUb+VBIUBTdfXw7ExNjl/ZPcOfbIFXuvsTVXce5j697KjasWN/Gc3d3tLu5Y0jpcUW287qTgWVlLm7DL2O7UqROKohj6OxrvDlgqv67RaGzO161bN2bNmsV9991Hw4YNDcdPnz7NnDlz6N69u90vQCKR3B2EEAS1aKErtpKXp/tfLxyic/683YWBhEYjvTASSUUkORE+jIGIvndsbN/650+SF0whYPZSvJrdV/R4K+Hl1qr2wu2KvR6B9cy9grY8Pa7uukJpthTT07Gw+S2UBZuhawDJLywza59TFHfasqkkI3+k4V52cXZ3R6VW2+/9kwXR7hhbcsXRa2zKqGLcp6h7W9rEy8vKIj8zE7U9OlwJRdLY08YLSqbgWVlJm7DL2D569Kjh92vXrjFmzBg6d+7MoEGDCAoK4urVq+zYsYP9+/ezZs2aIud76623iIiIoGnTpjRv3pygoCCuXbvG33//Te3atYuseC6RSIqHvV6gooqteIeEEDF3DipnFxACbb9IVDYKA2n7jUWlUknPtkQisUnWqX+oe/oASaf+scvYLg66ir0KLtXD+HneAhNFzqanJycLsjN1oeS2qBGq82inXS/2GstKyyaZslOGURS0+fl2e/8ocJhJiqasVh2/Eyxu4gnB39u3E953DE42dDgGjifLSiSNI9jbxsvqegso7YJnjmKXsd2yZUvD74MGDWLo0KG89tprJmMee+wxpk2bxgcffFCkZ7p27dr8/fffrF27lkOHDpGSkkLDhg155plnGD16NF5eXsV4KRKJpChseoFCPbgh8u0utpK8eweB77+I9qt4lMAaiDmrzYukOakRc9agBIag1Who/8or0kMikUhKjGKHW7pVReXsauoVVBRQFOueHiHgm+3w+BibVccZOJ7s+Is4srVoyYNcFnMPJaWPwTN46xZarbbMtjsqz1jVlTQp0KbgsRxiaRMvLzMTVXBtxNw15jUqjIo7ZliJpLEHewv5FXbIlNWCZ47icIG0r7/+mk8//dTiuR49ejBgwAC75vHy8mLSpElMmjTJ0SVIJJJiYkkxNa7C66vRFFlsJeyRR/CsVs3QDkfR5KPJy0fVcxja1p1w+my1oTCQ5vFIlMAQsm/exN3PT3pIJBJ7KMUc6PKGw+GWQuA7YBqoZyO0Gh6aOhVtXh71e/emxZAhqD08dGkz/ceiWDKoty6F3iN07XBsKKZZ3+9xyNi25kEua7mHktLFWjG/iuD9Kw+otKk6Y1ubWtpLKTaFoxO1ebmgKCi9RsADXS0Wd+QOI2nsLeRnqeJ5Rdh0dNjY9vLyYt++fRa913v37pVeaYmkDFNYMRVaLXlZWahddKJAUSDj2jUCmzblamys2fVNBw3Cs2pVSIo3aYfjNHAcVA3m4qlz1Bw1A7WHB/mZmRz7eDvuAYE07N27XAlGiaRUKcEc6IqCKjeJiEd1j3bjVqgAj9BCZgLK8ZVw8yxKlTCqNxnHoI+3I1Kuo1q/GC6fRdWyPWLQeMuenrjj8PcvUIRiqrmZWiKvW09ZyT2UlB6WPIPHtm7l8s8/02/9+nLv/bur3IMNzJIMPS9RD3phOYhuEy959w4C33yW6y+v0tWVUBQIDEFEzkFxdrFY3LFYOFLIL8pyxfPyvunosLH9/PPPM3fuXK5evUq/fv2oVq0a165dY9euXWzcuJGYmBiL11WpUoXvv/+eNm3a4O3tbVPxVhSFtLQ0R5cmkUjsxKmKrgovCJzyklAdX2NQPoMaRfLs77+za+RIjm3bZrgmKDyc/hs2wP9tNgsXVz5agpi7hjq9RvDbBx+QeOQIVWrUkF/2EomkRFDlJdPpMUjKK9qDbbFnNgJOb4IDY0AYya4/lyAiVqMKHQY/fK4rcPb1VpS/f0ZEr0c80BXFikFtSzH1CAgweZRI7gQhhFXP4N+bN5P87788/cMP5dr7d1dxcAOzOOkpmf/GwqoYMjs+eOfGdnE86GpTo9qiHCz8ecgutIlnZIQn641w/ZqKmbLjUCG/Iiqel9dNR4eN7dmzZ+Pr68uSJUtYv369oUp5cHAwS5cuZeLEiRave/nllwku+PC9/PLLUgBIJKWIR5Nw3S+nN+H0Q6SJ8qn6cwmi42r6b9hA0vHjBg93uylTENfiURXOywbQ5KPMG4N4oCsPjB+P4uSEtkD5lP/rEkkFoBieIUcri4N1j46+grj+0dp4SwV42k+fjjMpKIUMbd0F+SgHIiGoEzw5WRcaDrBnM8q5fxEf/nC7jZdGAyrVbZlmQzHVh0NaCouUSBxFaLUcWbnSqmcw8Y8/+HHJEiKioljk6VkuvX9lieJUA1ffOE2nx+D6jdPAI0Xfoyjvtdp6ayxjhBD49J8GzrPxycvRdY4q2JyxpxCZRQob4RS/QnpeVpb9hfxKqOJ5WcNhYxvghRde4LnnnuPy5cskJiYSHBxMzZo1Udn4A0YVhAYIIZg0aRKenp64uroWb9USyb2mnIUgWUOlSYH7FVyDQhC3LqMqZGgDOuXzh0i0QZ1oN3kyn48ZY7sdjh5NPsrOFYixc/khrAqNPvyUoC5Ff+FIJJJyQDFC261VFrcl66x5dHQVxG8/Fh7v7O1iuQCPotBh5gyUYyvNZZ0ekQ+nVkOPGbeNbYATf6B8tATtmNl8FhmJT82alhVWC4qpRFKSqJyc7PYMinJUdbysVv0uThi3o95oa+MtGc/WnBbWcvjtKXJ7zxCC7NRUuwr5ZZdAxfOySLHfbZVKRe3atWnXrh21a9e2aWgbk5eXR7Vq1fj222+Le2uJ5N6jVzSTE+/aLfTVL28l3r17qLSp8FAAigpUJz+0qXw6nV5NiyeHAkW0wzEmPg5F7czBRIHWV3p0JJLKQGbCCWhT8GgHd0PWuTZsazHM1tndHbW7B9wsQnalx+lyG10LhTDGx6FyceWf7dv5YcECltWrR+ymTQVpOBLJvUGr0VRIz2CJyoLkRFgZXSJ6WkkWQnPEcBdaLenx8RyYt4Cdw4ZxYN4C0uPjTeWNm4chFTB20yaW1avHDwsWcGzrVpw9PEi7eNFmIbL0xMR7viGTkZRkaOOlUpv6eY0L+WUkOdhVopxwzxMpXVxcqFmzJhqN5l7fWiKp3Oir8I68BoqTXcqn2t2D+55+mgdffhmhybevv2w5+7KXSMoNJahMliQ5yXHQpuCxVFBwrtnEYphtXlYW+VmZUKUI2eUdqvNQ5xSSXTVCyc/MNMi00lRYJZUXRaWizbhxZoaKnoroGUxPTGR/dDTphQxxa8cz/o2FD2N0j4XJSYI2BY/G3AOZaq/hbsl41m/wnfryS4RWS9VHB8OhDHw79TTfXFQUmg8ZwtE1a0yOOXt4GGpJ6AuR3evNwvysLEMbr8nnz9Nx9mxaDBtGx9mzmXz+POHDh6PcYcXzskypVC16/vnneeutt8jOzi6N20skFZtLf8LKTrpHPUILmfEoRxfAvuGgybFL+RRaDY+vW0fEnNmgctKF0TtZyT4p6C+bVYG+7CWSMsU9iLApSax5dNTJJxj1pO6xRFC7m/fM1iMEZ775BtFkHChWZJeihoaR8M020+NOajSPR/L3NtPjpaWwSioviqJUOs+gNa+3oRBZIaM6MznZ5NGE3GSdsZ1rei4z9nv4I0b3WIrYKoDXdNAg6vfUGdcH5s1j5/DhOhlUaHPR2d0dZw8Pbpw9S1B4OH3XrmXWrVvMzMhg1q1b9F27lqDwcF26gZMTODnd65dp0sZrwObNRERF2Z9HXo4pVs72nXLx4kVOnTpF7dq16dSpE0FBQSb5CIqisGzZstJYmkRSMhQjx7tYrW0sceUfcP5N91jrPp2hXbgKb81u0HgM/LnEcii5oobGz+p+f9jzdmuIgJAi+8tmnDx5Z+uXSCQVAmseHXVqHHU7QUpqSXnCFbR5OdbDbAXgGYKIWGNeJE1R6457hsBWI73DSY2YswYlMITDFvSR0lRYJZUTvWfQVouviuoZNKa4hboskZMch0dBVI595ciKSRHFzqwVwAsKD6ffhg38vWULX0RGotVo8KhaFbVroc1FRQFFIS8zk8b9+tF//XrEtXhdnZ3LZ1HXDCO87xhajhjBv7t2odVooJQijMt7G6/iUCrG9u7du3F1dcXV1ZXffvvN7Lw0tiXlnmIUE7La2sYRw10IxH2DUB4YjsjLQRECMhPM2t3w91JoMAIiVsOBSDPlk45rwCMYReUExqGSKlWR/WUrw5e9RFLpsBaGeS8prLAKgW9BISFFk0/76dM5/dVXJP7xhy580t2dvOxswh55BLQC6g+HoAhdMbT0OF3oeOOx4FUTcTMVpWNfCGsONULR9n8WqlZn18iRho4MxviFhuoUXz8/QLb4ktwbjD2DssVX2ceuYmdOzlYL4LWbMoX0+Hh+fecdHl21ihZDhqD28EBoNDw0dSravDzq9+5tOK7Ny6PpoEHw1UazzjFOHy1BzFlN00FP3Xnv7BKgvLbxKg4lYmxnZmaSkJBAWFiYXf/w586dK4nbSiRll5JUTO013LVaSE5A2fkh3LiC4h8M42bDcQtVeG/EwvcjofMGCOkC/666rXw2jATPEPjuU0SnfiiFcxgL+ssyNgrUasjP13l3yoDwlkgkdwkrYZj3BH29CfVsfPNzdBuAQhTIu5Vw+SxKzTCcB45j7K+/cvHQIWo88ABqDw/yMzNRu7mhvXIJ1bT+MPh5XdVxNw9djvY321B++QYxezWMiwaVE0KTT35WNh/95z86w70Q+vxYRaWy3uIrIFgnI+9S9woAr+BgIqKi8CpDVZwld5/K6Bm8U7JSUnA3erwb5KnSOVcVPEU6YLkNoXE3g9vjUywXwCvIwT61ezeRv/xi4qlWaoZRfdgUBm3fjrh6CdX6JXD1EqohExH+1VCstWidH4lo2w0lMOQuvQsSSzgcJP/GG28QExNjeH7w4EFq1KhBo0aNaNCgAWeLaE0gkVQKSlAx1edgFc7FyslJ5Ny5aHJzk3SG9tGDiJwsxPi5MGslYvwchOIE2jzLE5/dBp/eryuUdn80dNkMLWbAgX3w9H+gZXuy4y/qlNLCKAqciYWHPXWP0tCWSCSF0CuTear04k8itIjMeJSjC+H70ShHFyIy4wEBy6fD2oVw4DNYuxBl+XQAare9H7WzLrxb7eyEEALVwS/gxB+6FJgOXjrZ9bCn7vk321HWv6oL4nnYk5T9X+Ps4UG7yZNt5sfadC4EBOuM97tobHsHB9MpOrpMtUyS3DvutmfQWiGy8oi+cJy9BeSsyS5bMi1Plc6FqiD8qtgsdqbvZiD8qnAp0IM8Vbp5ATxFwaNqVZw9PGgyYADK11twGtDgtrw7+AWKZxU4uBvVke9h9HSIXgeNWqKkXIPQppZfWEGLVsS9qTchNwR1OOzZXr16NdOmTTM8f+mll2jWrBnTp09nwYIFzJw5k+3btxc5T3JyMm+//TaHDx829Or+z3/+w+TJkwksvEMskVQQitNTMjM5GU+jRz25l/YTf+U9alZ9CtRuiNYdyM1JIOF8NFlZZ3F3DyMkZBwuDyxAuXVBZ1wX5kYsxO8D/7bQLVDn6XFSwxu7ICAYN60GDmUQkJer8yQVVi5lf1mJpGxTjPoRJUWeKp0L/tDgRmGFNYMLwQG452RYvdbJp5rO0L7wJeRcR7SajqL2QORnwtmPwasuxKyHOR+CizvkZoHaFQUBuUlwbI1uI7FKGErTcbrX/9ch+HqbTpYVll3xcShOurQZzc1Uu/JjJZKKjL5AWaO+fcvFhk5xemNbw7rssny8YAWo1QF41e1stdiZNj+fw8uW0WTgQAIjXiFIPQtNXg4A3iEhDP70U7JuXKf54MGo3T0QWg1KbjbKT3tg1iroMUTnAMnPhfx8lId7wa14+HuxQd7RKBI2/g5RI3XyrjDxcbqCt8WpN2HJ+WID/YZgZcdhY/vSpUvUr18fgPj4eI4cOcKBAwfo0KED+fn5TJgwocg5Dh8+TM+ePdFqtXTr1o2GDRty9epVli9fzvLly/nmm29o166d469GIinjFOfLK09J4XwfD1yU218gQgi8wgbzcP0nEUKDQOHq1U2cPDkGYRQyfvHiEho1WkNQ5w0oKcd1xrUxihqajodz/0Knfrr862EvgrevWYimTlkP0YWRSySS8oGj9SMyE3WpJ03Hgcft8cULw1RQqTyA25t0QggCBy5AURbrZFehHMY8VSYXa9YmqHl7RE4K1O5Jbk48CZcW395ErB2Ji1stlJwUXf2Jm2chqD00mwCnN5vXqPhzCXRcDTEbIO44nLbQGqhGKCI/zyRtRubHSiTlh5LsjW1JdhXcBbU6gMKBwUIIQvovo4byLkJoyLqeQuN+/Tj+ySegUuHh70/mjRs0HzyYfhs2oKhUKAVTqNRqhFaLoig0fLQPZCSgHNMZz0qVMGg+GRZugfRLt41qg7zb5Li8qxEKWgcLpAlBwGODof9wAvLzLDtfJFZx2Nh2d3fn5s2bAOzbtw8vLy8eeughAHx9fUlLSytyjueff55mzZrx1VdfUaVKFcPxtLQ0evXqxQsvvGCxcFpF4MSJE0ycOJGffvoJb29vRo4cyYIFC3BxcSntpUlKGU36eS4EB+Caft5wTAhB9cfGour3AlpNTkFfV6HzYCeuJCvrLLVqTcXZuZqZoa27Pp+TJ8fg59sFlxZTUA48c/ukooaINeBeHRpVhwWbEXl5Ou/Onk3mFcc/WqKrRN5rhDS4JSZIuVYOsebxzkyEP2Kgbl8TYzs7NRV3o0djLHmqhRAE932LGur30OZbll3u7mGEBI/DxTUERVEVGOLzUZRFCKFTBK9e2cTJU5EWNhFXE1RtGMqFz3WbiDW7w62L5oon6J7/EAnVO8GTk3WyzZiCtoXZly+YvbYi82PvQW625N4jZdq9QZWaRESw7rFEKKLqtz1Ykl2KopgZ1LePay3KtUEfbyc7NQ033yooipNOpgkFFKzKQa4cQtnd9bYM8w+HNnPh9EbTYrbFlXcFss5g6VtAX+zRUPTRUA/o7jtfKmrYucPGdtu2bVmyZAkqlYrXX3+dXr164VQQinD27Flq1KhR5Bz//PMPO3bsMDG0AXx8fJg+fTpDhgxxdFnlgpSUFLp06UKDBg349NNPiY+P56WXXiIzM5N33323tJcnKUWEEAT1mo6izDIIcRDk5iaQkKATyD4+7QkJmVDIg63QqNFqLl5cbGZo3547n4TEldRtGAU348wLoe3bCV0HQtcActYexs3d1dzQBt3zeWN0lchlcQ1JAVKulVPiY3VG9X8eNDEUM5KS8NQ/2lFg25Kn2j7ZpePixSW0bLkPH5+HLW8iFjK0dffM5+TJSPx8OuHSYjLKgUgIGwJHF1tuZQi646dWwyMzzJXPgraFWd/vseq1t5ofq8/NllQYKptMK00Dp8TaeFkqomiv59XIQBdCayK73N3DqFlzCmq1n5mBXCPkBZxdAi3KtaysczRpsh6VRwbnz79llxxs1GgNQUFPgl/T21GILaZARnyhrjGK/fKuh5G8M5J1hvfGQli4Z5NwGBuFZ/PWOkO7COeL2r3kSs5V1LBzh43tN954g0cffZTHHnuMOnXqsHDhQsO57du3G7zctqhfvz6pVooUpKWlERoa6uiyygUrVqzg5s2b7Nq1C39/fwDy8/N57rnnmDlzJiEh0oCp6FjaxS28K2pNIPv5dScn56LJMZXKHScnD7KybBcmzMqKQ1HUED4DXG9X4eXj99C+8T8UAcrNG7iG1ILV880NbT2afF3LL33hH+nRqfRIuVZOsVLE0VqNCEvciezS4+HRlCpVHizeJuKV1dQNmwE/TtQpzDeLKNCaHqeTf+Ni4MJJs7aFmpupRbziO6eiem4qEpVNppVVA8dur7fQQmYCyvGVt0Ovm44DjxBTD66l1oEGAz0XIbRmssvTM5w6deZy9epGTp403fhzcwvDz6+LmVzz9AynceN1BXNF2iUHDVGIPhEFG4hjsGpUq93tl3duHvDY01CtpomsQwgCHn1CFxZeuCaPfgNRCEiKL9L54lunjpRpReCwsd20aVPi4uK4fv06VatWNTn35ptvUr169SLneP3113n++eepVasWERERhuP79+8nOjq6Qu4cAuzZs4du3boZhDfA4MGDGT9+PN988w1PP/106S1Ock8ovIsrhJarVzaaeG8sC2SFatWGmCmfWm0WGk0m7u5hhW9lgrt7KEJoUB72Ald3QyE0MWcNSrUa5CRexs3VHcXZBS4XIcD1xTWkR0eClGuVFUuKqSOyS0/NmlPIzY0v/iai2gMEkJ+pKw5kC29drqJ4+r8ozq6IvBwUtcs9zT0sq4aN5DZSppUNivJ6O1Xx1Rna1vKWI9ZAgxGAYu71RpgY6LSaQ66nt5khfFs+FY6wUahWbbBFuWb5GttyEAptIB4YY92ozs+yW94JrQYlah0iLxdF7ayTdfaGhQutLtWoCOeL87hoKdOKoNjB9lWrVkUIQUJCAvkF1fZatGhhVyXxadOmkZaWRpcuXfD396dRo0b4+/vTtWtX0tLS+O9//0t4eDjh4eG0bNmyyPmuX7/Onj17WLt2Le+99x7btm3j6NGjBeFsZYcTJ07QuHFjk2O+vr4EBwdz4sSJUlqV5F5iXC1TCF3+ommYpE4gJyauMRHI1pVPwbVr2wkOHqPzXFtAUdSEhIxH5GvgmVm6QmhjZqPZdQZ6DQcg88TfkJOFyMuFmkUIcH1xDYkEKdfKK1kpKSaPdlHgGTLILgtGtf2yy/o1Dm0i5meCJhPObofGY3S1KCyhLwapqEjd9Tqs9dQ9yiI/kkJImVY+8KjfGDITrOctX/5G93tmPMrRBbBvGMqJ1YDQGehb6sHRBbpOLb5hJCSstGBQm8snsCXXiiMHb2PYQHRyt2FUC7vlXfbFc/CwJ8m7d9w2tPdsgsfqwZoF8PVW3eNj9XTHtUYtwVRO9jtfSpHy0KLOYc82wNdff01UVBRHjx5Fo9Hw66+/0rp1a5599lkiIiIYPny4zevbtGlzx9U809LSWL9+PevXr+fPP/80M6wVRcHLy4v+/fszduxY2rdvf0f3KwlSUlLw9fU1O+7n58eNGzesXpeTk0NOTo7hub5Anb2cuqIbHxrggbqgh9+1tGxSs3LxdnMm2NfdbGxtXw/c3HRjk29lc+NWLu4uKmr5exVr7Nlrt9BotYT4euBVMDY1I5tr6bm4qFXUDSje2PPJt8jN11LN2wVfTzcAbmXnk5Ca6dBYJ5WKsGq3x166cYusXC3+Xi4EeOnGZuHC5ZQcVNduFTk2O19wK78KN9PyMU6KuJaTQEL3AFxyruCPloTElXYJZFvK5+XLSwkKGkGjRqvNdl8VRU2jRmtwcQkmPycXxsxG5eKKNjcHTV4+KkVBKQifvOQcgNuFiwQMGIfy0RLLu5kFxTXSsjVcvZlh8W+ffsv0Okt/z5L4nOj/nnf6OSn8t7/Tz0l2dj4XU3X5nQ2rm9alqIgUR65JmWb7s5qXkkOwkwv6o/rPn2taLnWM3gfDZzUvFd+v1sLAcdzyCrT4Wb2cnkvmlZuGz2p2aipOWjWnrtzCy0imqdJTSMv34NLVVJRb2brPtRD49p8GzrPxycuFEpJd9mwiXry4xKInSFHUhFSPvN3S8O+lOi9WxOpC+Y3oFM9Oa8EjmBu3cjmX7U/oYYG2u69hyKkrN7nh5MvRBCda+uiS1cuKTItLzSOtSjWTNUiZdvcoDZkGjsm1uNQ8UvxqkG3UWir5lu6zku4VYHFe50Jji/q8Gl5Ldj7pV27eFV3tXIZA4+KHsbmmH6vKB737zvjzWgVAUXCtUQuOzrect+wfDp3W2VdYTO2BonIxk0O2DGRrcq04ctAY/QaioinoiqA3qv9cYvo67ZR3Z459ha/WE0WDzqOfnGAzLFw80JV8/2Cc1SqdU8Ve54vKySG5djM7nxS/GlxKz8c4+NyWrLqRZrpm/Vhx7pKhy4/id/v7zzhpoLTlmsPG9tatWxkxYgSDBw9m7NixjB071nAuLCyMdevWFWlsf/TRRw4v1JhFixbxxhtv4OfnxxNPPEFUVBQtW7YkICAAV1dXUlNTOX/+PL///jt79uyha9euPPzww7zzzjs0bWql0XsZZvHixcTExBT7+h5LDwKwZmQbujatXnDsAKlZ+TirFE4v6m02NqZvE0Y9pDMTey09SNKtXJxUCmctjH2uUyiv9GwCQP/3fuJSShaKAucW9zGM7frWAQCG3F+TVwfpohWeWHmY09duoQDnlpiP7d6kGh+OegCA0R8d4eilVADOG43t9IZubLt6fmwfp6sX8NzmI/xwOtnq2OYhVdg9qQMAMz6N5YvYRLOxHV87gADqVfXg+2mdAVhX+1Fe++wGcMBkbMTrB9AKqO7jyi8zugGw/YyWqItb4KLgvO4QQghCB0fj6ryI3LxcFMXJAYFsXfnMyIjlxImRNG68AT+/biQkrCArKw5391BCQsbj4hJMek4+3q6uiPw8AHKFit3/3mDQ/bV09/UJoEOHtTT5MoEvJz6MMneNuUA2Kq4xdPkh/k1M55VHGvFcZ10rwEeXH+JKWg4K8LTRyvV/z1EP1SambwsAnvjgZ85dz7T6t38sPJjlw3RVf0es+Y1jCTet/j07Nghgwxhdq8Bxm/7g8LkUq2Nb1fJl1/O6jbcXtx9l77/XzMZ2fkP3t29QzYu9L+nSXObv/oftv182G9vx9QMIAbX83Dn43y4AvLP/NO/vjzMbK7mNlGlFy7S+jSfyTsGx2zJNcN7ofdCPDffO5/NdMWQ0fZAZlwJNZJq+4FnHncloOWgi0/4v4z9MOt8Cjt+WaapbqTwS/z5XLgbwlPNp5j/WrCDkcBVcvYSqTkMYPaNEZNcdbyK6hqD8vUx38EYs7B+N6LQeanRDOb7CUAxSNB2P4hEMiopuSw9wI6MOnt7r2e+Ua5hT/7dvXasf7/nqVPwyJdMmrCHGKCdSyrSyxZ3KNHBMrg3/JhmeXUlYXDYT2+qO6eWaMn41L1uY96nGHgal3x65NqXAUzB+/w3OfX7Q5LOdnphI12VHAMVOubYfUHgwxJ2tk3SfK51c80PpsJ5fuWk0tkBXc3djd8ExY13tt3aAq7suBcRa3rKDhcWE0JjJIdsGsmW5Vhw5qEdR1IQEj9MZ2HqsGdUF8o4CeYeRvKPpeF0nCUXFYweBjuuYnJjOi3aEhSs7V6BERgEqUFTk938WtQ3ni2bAOJwK8uIdkWv//SmVP59dyf/2JHH+djZxkXJttNHt9XKtXhUnOhUcM5ZrPw++LS9LW645HEY+f/58pkyZwtatW83yVpo1a8axY8dKam1W2b9/P59++ilnz55lyZIl9O3blzp16uDp6YlarSYgIID777+f8ePH89lnn5GYmEhERAT79++/62uzhZ+fn8XWaCkpKSa5QYWZMWMGaWlphp9Lly7dzWVWeFR5ubAyWtf65h6hq3AZT8Ll+Rw/Poz4ywsQIt+mQC4cFn758lJcXGrQqNFqs3NJSZ9w48bXuLgEU7duNE2bbqZu3WhytdVY9NUJTlxJR1EUru/eQddpG2gc9Q0zd93+X9UWKJf/Jqbz+/kUXXuvL87DmNnQc5ju8Yvz0HM4qFT8m5h+F94lSXmkOHJNyrSSRVvgscpMNs9ttHSsKNyc1TQN9ib60aZw6Ev49VsYPR2i18GwyRYV0+LJLsG1ax8THDzW7Br9JmK1asP4z3/OU6fObKpVG0adOrP5T9uzBAWNQMm5CXX6Qv1h0Go2ou2roCgoHiGIVrOhy2Zy7pvLhSwfm61ujAnt1rWMFvpR8C6T66p4SJlWNLcSE3W1EhxElZddMgvIyULk51rJWy4wqk+ssa+wWH4mCC0hZnLIdprebbm2xuh88XQ43QbiWt0GYo1HoNVsnVyr0xeyU6HBU/DkudvHW81GWyDv8Agh9745BnlnVhgOUKud7A4LVzur9YtCCQxBO2eNztlijJMa7dy1KMaVzSXWEQ7i6uoqvv32WyGEEPn5+UJRFHHkyBEhhBDfffedcHNzc3TKSkOHDh1Ev379TI6lpqYKRVHEunXr7J4nLS1NACItLc2u8ScT08TJxDSRl5dnOHY1NUucTEwTCSmZFsdmZd0em5SuG3vxenqxx565mi5OJqaJdKOxKbd0Y88lFX/suSTd2JRbWYZj6Vl5tsf+8YsQbRDi3yOGsWeumo69eF03Nim9YN5/j4jMNi7i1E8/FT1WCJH100aR9F4Vcennz4RWqxGJievF/v1q8f33GH4SEtaJrKwLZsd//TVcaDS5IjHxI7Nz//wzXGi1+SI7+7KIi5st/vlnmIiLmy2ysy8LrVYjtBqNyM/NET/+WFuc+/IVs7/9tU83iRttvcThjRtN/vYJR46IyX41xKF9v9z+e2q1QpuXq/s1L1cIrdYw3tbf/t/jceL7qChxMyHB6t+zJD4n+r/nnX5OCv89HRlr8W9fMPZkon3/n+WdkpBrUqbd5lxSujj1008ivaOvEP/qvlv1n7/zv/xskF36sScT08TpjzcJ0QZx7dNNZp/Va5/qzsVu2WTyWb2xfb7I+UAt/ly/+PbnWqsV2rxs3a/5eUKbnSVEfq4QqeeE+HW2EN8+KcTvMUKr1YrszPMlIrtycq5YlZH796tFUtLnOtmWq1u3NjtDaD9bI8SMIUKbeUtoNfm645p8kZenMbyPN7bPF0krq4s/1y82+XteTc0ShzduFMltvXTvjR1/+98PHBbRIBIKdB0p0yo2pSHThHBMrh3a94uY7FdDxB0+bDiWlJ4lDu37RbzsFWD4rBrPG3f49ufYns9rwpEjIhrEiR8Pm30GE44cEVN8g8Whfb/Y9Xk9/8vP4uKDgTr9q4D0rDxxeONGkfign8n/YlFyTS/Tss6fEdr0S0KsUguxkts/azx0E337pOnxlYoQeRk6WWZyHCHO7RJabb5ITDCVXbZk2v79apGS8oPQajUmcu3y5XetyrSidDixZ7MQn60RIitD9xqyMnTPXxkkxO/fC6HVyTtNXo6JvDuzYaFIWlldnNqw0OR9P7xxo7j4YKC4tGOTEJp8Id6frfsOsfbz/myhzc83XJ+WlSO0Go3QXr2su3bWMN2Yq5eFVqMRWTm3xzoi1078eFhM9qshDu8/bHGsJVn183emclg/9sSPt48bf070n9+EI0dKXa45HEZevXp1Tpw4QdeuXc3OxcbGUqdOHQtXSQB69erFokWLSE1NNeQD7dixA5VKRY8ePe7afS3lIlTzcaOaj5tdYwO83Aw5DsUda5wTpsfX082Qk1HcscZ5IXq83NQW12YYm+pseWxyoi7EZuA4alloZ+VOLg38XMF4fcmJ1Cq4Bq/b93RTK7i55SOatiU3t3AhIR2XL79NUNBwGjVaY3Je59EZTZMm683DwqtHAhg82IripOttm6/7+X3lStq+8AIh15Lwqd8SPwvvg5/mFvU8FQKN8r+8goPpNymS8Ca1DbmqKArKmb8hsgPK6oPQuLVhvM2/ffUqNDaqTGnp71kSnxNLf/sS/ZzYMdY4102Pm5WxFZXSkGsVWqZV9QTfB+BACuTngxC3P3+pLiZ9UfWf1SSjb3Jrn9XqbhBY6LiLKp/abvn4VfMyb58T1B6aTbBQ6VdBaTkNF9caNGq42qTAY5GyS2hxUQeZyC4unUXJvkJQgxH4+XW1mAaj7PgAXp+oCx0t6KRA1FoUV3du7l1NlauzSHWbjN/g2SavL4ArOLnl35Zp6D4niqdCVc0tjBsK2frbJyaYqkpSplVsyoOuFurrjF9KPG7q25/NAC838nyd8b5lGs2in9f4c2zP51Ufv1bFTU2whbX5piYS6utsyMMF65/XOj4ukJsE7qb6Vz1PhcDcFJP/xaLkmn5szpV43Go/bB5ibU9hscI50L9HodR+lKDqI/Dz7UTCldUGOaTJTyMo6CmraXqKABenaqZyLSeboCDLMg0U8/FCQfnmY5hdkIY7P/J25xjDG9MYEf4gysYqpHnNMJF3/q5a/LKu4ORqVOAMCt7fJJKc0Hm7B47T9ci2UZNHMapIXsXNRfdLYIiu1ataDfn5KE5OoCjoT4NjsqqKmxq/lHhqeauLHKv/2xeWw/qxxseNPyeJl2+PLW255rCxPWzYMKKjo2ncuDGdOnUCdMXIjh07xmuvvcaECRNKeo02mTdvntVzKpUKHx8f7rvvPjp06HAPV2WZ8ePHs3z5cvr168fMmTOJj49n2rRpjB8/vsL1bSyPZPwbi+eHurxHzw4WwvXcPMyPJSfChzEQ0fd2v2khEK2eQHlgOAgNCeejLebn6MMkmzTZaC6Qg8eiE8j+1K09G8XJFaHJgfxcQ+iWJicXtbs7mqwc/t62jcPLltGob1+0mnzq1nwFQjvb/dpttqMxFvYSSSGkXCtBClqyUNCSBeOWLIoC9cPhUIbBCC+J8D0nn2qW2+dYKiQE6BTWbTrFNGiYmWKqUybB5fpp6taagaL20FUMP7sdxTUAavaEEQ/A1csoqcm6FoRRayGsOeRWMVFA87JyQCsQnfqhXL+iq3xbuDd22jXITgZzHU8iKRZSppU8+toRGUlJeDYucrhduFavATdTIHQYBHWCU6tv5y1rNNBknP2FxW7Ewv6nUTqtx0UdYKp3afJQNBpc0hXzjcL3hkCbTjBoAuTngbMTaAXKzRuwdCou4+eZX7NiGEx5k4zMC/yV8CR1rvShRv/3oNXDOoNXUyDfjXWvAkM499K/uOYXUydTFN13SRE1eSx+rygKnImFyA5QyPkiKRqHje3o6Gj++ecfunfvbuiz3atXL5KSknj00UeZPn16iS/SFm+//Ta5ublkZekq97m5uZGdrcsJcXd3Jy8vD41GQ+vWrfnqq6/sak12t/Dz82Pfvn1MnDiRfv364e3tTWRkJAsXLiy1NUluk5mcjKfRowEhEPVboBzKQOTnodhSco29Q7cuo3ReZ7PVw7Vr23B1rUto6KJCiuk2lIt74L7pUPU+ABQtCK0KodGya+RIjm3fjrO7O3mZOsGrUqsZ9tVXKConuD+6JN4SiaRIpFwrIfQtWQorQQnnIHq9dSNc5XDplduoPXBt2NZC+xzrhYQAg8KqXNyDS8516oYZya5rv0L16ig+DeDoEsi4jOJZAxqPRXjVhJupKA8/ajCcNY9HogqqCYpCzs2b/PTmm2TfuIGbjw9txo/HOTgYJTAEETm71HpjSyoXUqaVPFb1q+KiKLiG1ILV8+GHz+HJydBjhs4pkp0JP38DHR7V9do2lm22Cos1HgtaLUrsr9CsHTiBIhTIEzDuPygn/tDJ2yr+uo1C0OUuv/gWiqIgAAXQarWoAkJQ2vdGeaKZTi/UX2Nk1N76/iNynS4aXo89hnDO0S9xvZP3TaXS1eR5oCvsXGFxA9Mm0vlSLBw2tl1cXPjss8/4/vvv2bt3L8nJyfj7+9OtWze6devm8AIuXbrEpUuXaNmyJZ6ejv8LfvfddwwZMoSoqCgef/xxvLy8uHXrFrt27WLevHls2LCBzMxMRowYwbRp0+64Evqd0qRJE7799ttSXYPEAQo8TUqBkqtYU3Jd3S14hxRExMoiWz2oVGrQZKGs9QK1O4p+11JRIx5aqvsVEIoCru6c/vJLjn/yCQhhYmj3XbsW7+DgO26rJ5E4ipRrd4i1liwNwiFqnc4Inx9peu6jJTrFrNcInKr42p6/cFSOEPgOmAbq2bhoNXAk2r5CQnpuxML3I6HzRpSsqyZGtWg6HhQFofZHuW8WOLtCXg4iLw8EaFw9UFlpQegdEkLErBmonF3RFhjVenmWuut1/G4tJrVQ+KREcjeQMq14pCcmcmTlStqMG3d3C/r5VEVxdtFtPp6O1clO49DrBuE6Y7v+cAiKMPV6N35Wp9udOAUtCgx0rQZO/gnzHtPNV6BvUas+bPwdhk66LYONDG0xdw1KtRpkXLvGb+++y42zZ/EPC6PdlCm49xqBYsOoVVJuUkcBZ+Gtm88OQ1iTdu3O3zuVyiwsnIKwcMndwWFj++LFiwQHB9O5c2c6dzYNU83PzychIYHatWsXOc+qVauIiYnhypUrAPz222+0bt2a/v3706lTJyZPnmzXep5//nlefvllk3ZjXl5ePPXUU2RkZDBlyhQOHz7M7NmzbYacSyRmWPM0GSm5uBbkPfsFWvAOASiEBI+1s9WD0OUZgc7Q7rQWxSOYG9/twT9qMMkvryKw/3Aa9unD5PPnObJiBSlxcfiFhtJm/HidoV3ErqTWJ4D9CdDEJ8DmOIlEcg+x1pLlySlwLd7c0AZDX1Qe6Ip7WCMr8woCHn0C+g8nIC9XZ9QjzKJvzKvzWst5NOLsNgh6GG3jcWibT0ft7kF+dhYqZxcuHPiBtPPnaD54CGpnyM/TcOzjHfjWC6VOhw4I/WtRwNnDw2BQK4piMKoL5yTq1lUyXhUpByWVEa/gYCKiou5qtf1biYmGnsclYmxb2CjUyzSh0egcIEbnDJ7XJ6fA1cvwykAY/Pxtr7fQwB8H4Y1HTY3qV96F+ztD3HHTuU7HQtRIiNmAaNsNxcgI1vaLRAmqxcVDh9jQtauhKwTAoSVLGPzppzTs0wfGzkZRm0flOGu9qZcKKb7et19DgSFsLZJHq/KFI6Dt7ntn76sMC7+nOBx/Vq9ePY4ePWrx3F9//UW9evWKnGPp0qVMnDiRkSNH8vXXXyPE7f4BnTp1YseOHXav5+jRo1aLstWtW5e///4bgObNm1ts5SCRWMSapwluK7nJiTojW1HA2xeOrzTzDikqZ1xcQmjU0Fqrh4JesbV7m7R0EMPOo9QfDooKzc1Uk9AdgwcoKooBmzcTERWFd0hIkYY26Fp8HUi83epLIpGUASy1ZFEU6DEEPltjsy8qO1fgVsPCBrdWC0nxKKvnw6xhKLs+BIQu+mZLPTi6AE6vL7qQkIWWN7r1qdHWfoy/NmxgoacXizw9Wejuwa4RI6jdvj31unTl4JIlfPbMMxxcvJjQ7j2o06EDikpF2q7XYK0nabtetxyJU0JGtTWkHJRURvS1WcpDCzkhBFUffQIOZVD10Sd0dkJhmXbqLxgwzrwtlbHsPPGHTl/r4KX7ycmBX/fpjGjdjXT61dalUK0GzFltPt+3nyB++j+oWp38p2fCgs3kj5pBSnoOt65eNTO0QdeO8eMBA0hPTCT7Uizn/+dJ0mdz7fMeF2w6stZT92h0jdbJT2dsO/kV4121gAwLvyc47Nk2NowLk5OTg6tr0dkEy5cvZ86cOcyePRuNRmNyrlGjRpw8edLu9dSpU4fVq1fTs2dPs3OrVq0yGOLXr18nIEDuYkvsxJqnSU+BksvYKN2uqJPaqndIubCboHoWCglVj9QZ2pe/hZrdEK3noDi5IDS5KCpnm0JZURSuxMayrkMHRh88SHBruSspkZRbtBpdHrYxru46T4wdfVEVZxfwqWo0n4WonHbd4Wbhgmc2qvNaKyQEusibiDXgHszhZctMUlqObdtG0vHj9F27loioKFROTmYh4VqVLxzOdMg7Y82jo/XyhdSCR4lEUu4RWi3pCQkcWbmSG2fPUqt9ex6YMAGxZxOKsUyL+0cX4j1ntWn0jyXZKQRkZcA32+HxMeYVuY082LTtZjGMOys1lcNLl3Lz8mWq1KxJxNy5HIiJMTO09Wjz8zmyYgURc2dTd2+mqQfbHkpg07EyR/Hci0gOe7HL2D5x4gTHjx83PN+/fz+XL182GZOdnc3WrVsJDQ0tcr74+Hgeeughi+ecnZ25deuWPcsCYPHixQwePJhGjRrx6KOPEhgYSFJSErt37yYuLs7gJd+3bx8dO3a0e15JJcbJybKnqTDxcbp8l3YeoM237h0K6Yyy6z+4NH/etJDQ2W0ox96Dnp8DCsk/7SDw9LMkN1hFYIfbaREeBZtEHhY2i/QKrkQiKV+Y5DZWr27ekiUnS+d1KGyEG9MgHIa/rAun3Jd8O1S8cFSO3tPzt4WCZzar845GFBQSUowKCYnGz4JnDf43ciRXY2PNlpV0/Dhe1auTd+FvXPe3NwsJN3hnetrvnbF2jdbbz+TRcLykwi0lEsndxShUXGi1xG7axOdjxhiM2NDu3dEmXsSpcKShVQM5TDfOkuzcuhR6jzA30AG+/QR6Dof2vRGRc1CcXQxh3Iqi4O7nR8ScWYaaEiq1mhtnbeuJKXFxqJxdwcnd5ri7hT6Kp1EljOKx2WXnHmOXsb19+3ZiYmIAnUfNWsVxX19fuwqQ1alTh19//ZUuXbqYnTt8+DANGza0Z1kA9O/fn19//ZXFixeza9cuEhMTCQ4O5oEHHmD79u3cd999ALz33nt2zymp5Gg0lj1NxhQouWg08GaSzpPUeKx171CLSSgHInXKrL4ImqKGTmvBw6jVgoWdTM+CCvqepVhJXyKRlCxmuY2FK9EKYd0LA/DIUJ2Sef0qyqroggKO9eHZueZROXpPj6WCZ4ZiZxsgpDP8++Fto7rJeIRWy8XfTlGz3QxdXnZWJme+/poGfaoT1qMH/2zfbuLZMS7WmL73y+K3qbETrXMA+7+AJuGmm5HFMeglkvJOWfLmFYUhVLz/cKrm5SKEID0hwcTQRlFoMWQITusXW440/HqbLs967lrEs9EoTk6IvFxdVxZLPaXt8GCjUpH6yWtmBRkL15TwGTgD/zDbBXD9QkN1hrkmq6TeNkk5xC5je8qUKTz99NMIIQgNDeXTTz+lVatWJmNcXFyoXr26XZWQx44dS3R0NIGBgQwYMACAvLw8vvzyS15//XWH2yu0atWKjz/+2KFrJBKbKCrLghpMlFxWReuKcESvA48Q6LgafjD3DllsM9F0fIGhfQeteyQSScXAUiXa7EyoXtu8HUyDcJ0M+r8tpt4ZNw+YMM88KicnC3KzrBc8O7sNUo5DxFpEm2gUlRNCq+HK0T/57JneOu+1opi0Gmw+dCj9N26kXteuVos1lkjl3CLQugRyYDc0ipGbkRJJWfLm2aJwqLh//fpEzJ3LkZUrTTbvnN3dUXsUkU5zOhY2v4WyYLNu7oLDirVWWjY82Cbpe9Y2CguOKyoVbcaN49CSJRZDyVVqNW3Gjyfv0r8Ot+uSkTkVC7uMbR8fH3x8fAA4d+4cwcHBuLi4FPumU6dO5eLFizz77LOMGzcOgPbt2wPw3HPP8dxzzxVr3jttIyapHGQkJeGpf2xsZZC1noeFlVytRqfgTn8PDu6GzsOgeifTNhMNI3We79Sc24psfg6K073vFVuedr0lkkqHoRKtXgHM1W1gFzbCh7+s2+wrHAZpLfRcCLhyCZqMM4++0ZNyHOFR3aCpKkBOerrJHMZpK8e2bcO3bl26LFpExNw5qJxdzHKzJRKJxBinKr4WQ8WdPTzoPG+eWVh2XlYW+VlZqG1FGoKuOnhuDrueHo1/WJguPSckBMVGKy2hKAiErrVqwTSOSC5FUfAOCaHvmjWm3nhMI3zS9v2Aq6V6EzYMahmZU7Fw2KVWp04dg6GdmZnJjRs3zH7s4Z133uH06dO89957LFiwgHfffZd///2Xd955x9ElsWrVKmrUqEGdOnXo0KGDocBa//79WbZsmcPzSSoG6YmJ7I+OJj0x0eR4ZnKyyaMJxm0m9J6mL87DmNnQcxjMXadTcre9A7NWwcFbuh+1Gh7qBXOfggP7dL0bu2zWPR7YB0//B61KjaKoYH0AqZ++br+hHRCsK8QWYGogF8dwLk/VSCWSSomikLx7BzzsqXtUFBMjnAWbEQ1bwqcWCjgah54bV9RVFAiqBe7VddE3hSuMF6S0KB7ButY2s4bBymhqNwrl2d9/p/nQoRaXqlKrEVpt0dXFSwF9YSBtJSwMJJGUVdzrNzYNFVcUnD08yMvOJi8z0zwsWwjSLl1CWKo6rsdJjebxSP7atJljW7fyw4IFLKtXj9hNm3RGdEErLRZs1j0GhiCA9Ph4DsxbwM5hwzgwbwHp8fEIrdah16OoVISPGMHk8+fpOHs2LYYNo+Ps2Uw+f57w4cNRVCrybmktVhAv8cridxsruqikaIpVjXzBggWsXLmSxEJGjJ7CFcatERoaavBsF5elS5fy3//+l5deeomuXbvSo0cPwzl9GzF7e3ZLKhaO9Hu0lDukFFJyFWcXXSGi73bCR79ARryu4NDNs7rwzCbjYMFmiBql8zi5uuu8TE5qxJw1KIEhaPPzUOVcB0dqZQQEw7hos8PlJVxMIqkMmBQ8K4nNrMItWQqM8MD3pqB8m2Q9rNJSASBXd93P9uU6r07h6Jum43WG+NyRsGezYSrVR0sQc1bTf8MGko4fNymGpg+RNLQcdCA321aF3JIKn6zMhYEkkjKJuyeuIbX4Zd58Aps2pd2UKbQYMgS1hwf5mZmkXb5Mm/HjTcOyFYUqtWqBszNizmqUwtE8RvrVYSPnmjY/n8/HjKFe1654h4Tocq2zl5EetBDv7pFmnnXQ9cbuu2YN4SNG4ORTDVLte1mGdqxz56Jydkabl4eiVpeZjccSw4oueq+4F5GZJf49XoDDxvbbb7/NW2+9xSuvvMKsWbOYPXs2Tk5ObNu2jdzcXGbNmmXXPBqNhsOHD3P58mWys7PNzo8cOdKueUqyjZikElGo+qVJ7pBxCJJKZa7kdhkAZzab5maDLjwzYg3M2wAtHoTYn6BGKJrHI1ECQ8i+eROn1IsO5+5IJJKyj7XNvRL/8k67rgsvtxZWqS8ANG/j7QJACecgNwduXIOn7ocnJ0OPGTo5mJ+r6z07sq2uJ60xmnyU+ZFoW3ei3eTJfD5mDGAaImlLobTarsuGIWy16nglbmEjkZRrhCCgwJmh0mpo/uSTRMydi7gWryt8dvks6pph+D0+BqV6ME/t28fGrl3RajR4VK2Ks7s7h5cv54Hx49G27oTTZ6sNIeHa/s9C1ersstAZQZufz4n//Y/7J0zAp/80cJ6NlybfvAib0Xi9ge7S8GH41P5NP0VRuPL337Id613kXjiYHHHSOYLDxvaaNWuIiYnh+eefZ9asWfTr14/WrVszZ84c+vbty5kzZ4qc448//mDAgAFcunTJYt9uRVHsNrZLso2YpBJgJPQD8vMQWi2nvvySjwcMsLrDafDcpF3XebYzE8wNbdA9PzAGQrogBk1AGfw8+ZmZHPt4O+4BgTTs3Zu0f77GFdkTViKpLJT4l7cQ5CRcws1aAUfQFQB6eal5VI7+mnljdF5vNw/Yew02vGZuaOvR5OP02WpajpnNuX37zIqg2aIk8w6tGeiyDoVEUobRaiE5AWXnSl00Tsv2BAyaAHs2oSpUuEwfSVOn91NMT0vDSe2EysUVodFQu317dg4bRv1evWgxaoauaJpWw8UfDvJ/kx+12IKw+dCh3D9uHLf0zpS4OB5fu9asCJvJcg29secUS3aVVDtWWy1fLaH18oVUqVuWVRzO2T5//jz33XcfTk5OODs7k5qaqptIpeK5556zq/XXhAkT8PHx4bvvvuPq1aukpKSY/Nib9w2324hZwtE2YpIKjlYLSfEoq+fDrGEoH86DpAQa9OxJ00GDTIcW7HCmJybe3hBy8wBFwIkPLRcYAt3xf1eC0PLZM89wcPFiQrv3oGHv3igqFTnO/uz/AvL9G9zlF1tCyBwdiaTMkXnmxO0CjoXzGJ3UELUWfANN8r9T9v+f6TVC6H7ciqj0CxAfh8rFlQGbNxMxd/btqJ8ygLU6FNIIl0hKD7W7u07n2rMJHqsHaxbA11vBzQPlykWUwhXCQRdJc3iv7vpbN1CtWaDT1VZFU71GNQZu2ULc3r0s9PJikZcXedk5nNu3z6KhHRQeTr8NG4jdvJll9erxw4IFnPzf/1C7utrZG9tFl3pTSlhr+WqtFoXW28/kUVK2cNizXbVqVYO3uHbt2vzxxx+GftnJyclk2rGr888//7Bjxw4iIiIcvb0ZJd1GTFLxMBH6hQS88tESsJKTaByCpM/nVsByr1pj0uNQnNQ8vnatWXXectemppRzdCQSiTmam6mWW4UV6hVrIDvT8jX68HI7Kv2KvByUjf6kGfWd1eNonvW9MIRthRxKQ1wisQ9nD4+iB1nAMzAQkhNMdS5FgR5DYJ2VntkNwiFqHcpXG806LVjS1Y5t306rMWMstt5qN2UK6fHxfBEZaTiXl5VluQhbIXS9sXNR5Zj3xi7tllyyFkX5xOGt6fbt2/Pbb78BMGzYMKKjo5k6dSozZswwFCkrioYNG3Lz5k3HV2uBqVOn8swzz/Dss88SWLAD1L59ex5//HGeeuqpYrcRk1QcLAp9PQU5iSIpgXaTJ+u+WAoMY+MQpAPz5rNz+HC0eTnWe9Xq8Q5F5OeUueq8EomkgqFSIQJDEM9G6yrtPhuNCAwxNbQtXGOozjt/E8LJCQbarvTLwPHkXvrXahE0R6vq2uqKYM1zU5IGsuzKIJHYRghBUHg4MzMyCAoPt5jyaRVFwd3XF3YW6pjg6m47kubJKXAt3rylIRh0NSXlGo+vXUuLYcPIy8zEp3Zt+q5Zg0pt2n2h+ZAhHF2zxtQIF8JgoJuMN0Jf+DEn/qLF8yVZQbwyd0yobBueDnu2o6OjiY+PB2DmzJmkpqaydetWsrKy6N69O8uXLy9yjrfffpvJkyfTsmVLGje21ujYft555x2mTJnC3r17uX79Ov7+/nTt2pUGDcpJqK7k7qEX+h/GWN5JBQhtilPade4bNYpWzzxDfmYmZ/Z+Q4PefYjdvNlkZzS0WzfC+4/ByVqvWkUNTceTe/FfXC0oprYEjNY5gP1fQJPwyid4JRKJ4xiKO65aRdqlS/jUrGla3NEaimJSnbdK90hdeHnhDUl9SHpAMDlHv7wnxR2teW5Ks/tCZVMMJZWbIovGFoGzuzuKWm1uVOdk6bosWIqkKcrrDTqDe+cKqj8bzYDNm9Hm5YKiED5iBPW6duXIihWkxMVRtVEjnD08LIaLH166lPARI3hs9WoT3Q5MCz+mfL/HoaYxxaEye6krWzcdh43tRo0a0ahRIwBcXV1ZtmyZXb2sW7RoYeLhS0xMpHnz5oSEhODr62syVlEU/vrrL4fWVRJtxCQVD6tCX88jQyFmAyQloKyKNlTFbNR/LDipiNu710QYH166lJYjn0JErEE5MMbU4FbUiIJetTmnLSumtgSMR51waBOle5RIJBIrOFXxRWi1RbavMSjGbqahoEKI29V583IQioJSREi6Ju2aw+usKBXEK5tiKKm8OCRXrJCXlYXIzzfvmCAEfLMdHh9jXtyxKK+3nvg4FCcn6BrA9ReWEdh/OChKQeutOaicXdDm5aLVaCyGi1+NjeV/I0fSb8MG6nXpwh+rVpESF2dW+FFzM7Wot0oisRuHje3i0qZNmxILp/3hhx8cGt+xY8cSua+k/GFV6IMuPyhmA/zfFov5QWLOavqtW8e1v/82LcAhgPrD0QRF4GTUq1bTMBKVd00cibYyRip0EonEHtzrNy6yfU3YI4/gWa2aod5E1bxcXSioENa9VsbVy/NyUdTOhrQaW7mK1ozqyuy5kUjKG6JANhTVFss7JKSoichKTcXDUseErUuh9wiYs9pU77Ll9TamRqhONqVdNzms6Fu0vvks119eRUC/YbQZN85iPvexbdu4fuoUT//wAxFRUajUarQF8q68pv1Zi4yUUTllg2IZ29u2bWPHjh1cunTJrEe2Na+0PVXK7aVTp04oimLIITH+5xBCmP2zFO6/LSl/FLtXrS2hb0d+UOH+su2mTOHm5ct8PHAgDzz/PC2enIHa3YP8rEz+3rqN3957j6Gff45Hs4fhArgVitqQSCRlB2typcR7Y5ckioJrSC1+mTffavuapoMG4VG1Kunx8Qajulb79jwwYUKRXquUH/biHzWY5JdX6bxGBeT7N9Apc0PM07OkUS2RlH+EVmtfWyw7nAIZSUl4NGpknp5yOhZiRkP0emjbzTSSRghd/QhrLQ0L6kdkx1+0HuKdrUvfUwq83X3XrDGTdyq1mnZTpuDs7k7K93vwjxrM9ULyrqxizXi2VnxXOnHKBg4b2zNnzmTJkiW0adOGhg0b4uLi4vBNn3nmGebMmUO9evXMzl24cIGYmBjWrl1r9fqjR48afr927Rpjxoyhc+fODBo0iKCgIK5evcqOHTvYv38/a9ascXh9krLHnfSqtSj07cwPcvpsNS1GzdAZ2wVFNw4tXkziH3/w+ZgxfB4ZibO7u0lvxSMrVhARNQcAdz/ZhkEiKatYkysl3hu7JHF1R+XsYrV9jXHLG5N6E927k3bxYpFeK/ewRgaF1WRMMQxq6VWRSO4Od+N/S+XkZF9bLCcnQ8SLNfKzsmx3TFCUgkKNhSJpXN2LrB+RZWc+taJSmeVzWwwXtyDvyirSeC6fOGxsr127lnnz5jF79uyiB1vho48+Yvz48RaN7eTkZNavX2/T2G7ZsqXh90GDBjF06FBee+01kzGPPfYY06ZN44MPPqB79+7FXquk/GNR6F+Ltzs/SO3hgdrdHUVRzItuCGFiaEPBl5HaBZxKr0ejRCKpoORkoc3Ltdq+xlLLG+ONwiK9VnPnlNhSi6MYSgNdIimau2F0WctzNsYvNBStRoPd+XKG7geW01P0od+GSBpFKbKloSP51IpKZZbPXZ7DxSXlE4dbfwG0a9fujm9s7YN++vRpqlatavc8X3/9tVVjukePHuzdu7dY65PcOemJieyPjiY9MbFs3MNI6BO1FqHR2JUflJ+ZSX5WlmM9GvNzQWPeo1EikUjuCCHISbhEm3HjzNvXWGl54+zubrU6rzEpcXGonF103qVSQrblkkhKB0WlsixXCtC3xbKnIrnpxLp8ah721D0W1v8Le5aNdbUFm3WPRbU0xHorLUVRuF5w/+u7d9xzQ7tYLb4CgmFslO7RDuQmZdnGYWM7MjKSLVu2OHyjDz74gPDwcMLDw1EUhWHDhhme638aNmzIyJEjHfJEe3l5sW/fPovn9u7di5eXl8NrLQ7Xr19n/Pjx1K5dG09PT5o3b86KFSvMxiUkJDBw4EC8vb3x9/cnMjKyxHqOlzX0oZi3LBjC1oxkRw10W/ewiJHQz7l8vsj+smLgeLRC0HH2bFo8+STJJ07Y92WUYrlHo0RSXpAyrZQpVEHcmKwzJwz5iMayyJpR7dBGYV6urliRRFIBkXLNOsZ5zoV1HOO2WHpj1dnDuoyyiCPh2kUZ6BbQp7poraW6WEqPsWIIuzdsxvkGEbg3bGb/mq3g0SQcno3SPdpLQDCMi7bb2K7sm5QOfxbvMQ6Hkc+fP5/JkyfTvn17unbtarFt14svvmh2XUhICG3atAHg2LFjNGrUiMBA038IFxcXmjRpwpiCYlT28PzzzzN37lyuXr1Kv379qFatGteuXWPXrl1s3LiRmJgYR19isXjiiSc4ceIEixYtonbt2nz11VdMmDABJycnxo4dC0BeXh6PPPIIAFu2bCEzM5OpU6cybNgwdu/efU/WWVYo9VzJ7Ewyz5zArXMvm/lBSkAwzopiFIKUh+LkZLXohuHL6PQvcARoV75b3kgqL1Km3X0sKQhCCLMK4mZFP2+mWs5HDAtDm59vblQLwbHt22k1ZozF6rxwe6Mwx1bxIYmknCPlmm3syXMWQhAUHs7MjAy0+flmMqpEDZ+7nE9trRaFV7P78Nq6v0TuYS3kX3qj75yiPotlBYeN7e+++47169eTnp7Ozz//bHbemrH9+OOP8/jjjxuez50712LOtqPMnj0bX19flixZwvr16w1VyoODg1m6dCkTJ06843sUxZUrV/j+++9Zt24dTz/9NABdunTht99+Y9u2bQYB/sknn/DPP//w77//GnqV+/n58cgjj/Drr7/Stm3bu75WSQFuHrq8H1sFPArygxQwaSkR2H94kV9GCDedse0qq/NKyh9Spt1drCkIQqu13pbLQs9si/mITk4WW94cXrqU8BEjeGz1atN8bkw3ClPsLD4kkZQ3pFyzD4Nc0bfFys9HcXIqUkahKOXC8LkTrLU5LA6y2NmdYdf3ZRnBYWP7+eef5/777+edd96hYcOGODs7O3zTdevWOXyNLV544QWee+45Ll++TGJiIsHBwdSsWRPVPXqz8/LyAPDx8TE57uPjw61btwzP9+zZQ3h4uEF4A3Tv3h1/f3+++uqrCi/AywIWvUZFFPAwYLTDauvLSCIp70iZdvewpCA88MILeAYGWm3LNfjTT2nYpw9VHx1s5vEu3F82sP9wiy1vrsbG8tno0fRbv57Qbt1sV+d1EOmhkZQHpFyzH0VRuBIby7oOHRh98CDBrVsjtFqLMirl3Dn6rV/PrXJi+NwJss1h2cDaZ9G4jWVZ+tw5bGxfunSJ5cuX06zZnecxFJcPPviAZ555BldXV8MxlUpF7dq1qV27tsVr/v77b5KSkujSpUuJr6dWrVr06NGDRYsW0ahRI2rVqsWePXv45ptv2Lx5s2HciRMnaNy4scm1iqLQuHFjTpw4UeLrkphS1C6YWVXMIrD0ZSSRVASkTCt51O7uVhUEv7Aw6nXpYrEtV9NBg6jfs6dN2aX1CWB/XKbB22IrFFSfl1mS1Xmlh0ZSHpByzXH03VaEEKQnJJjJqKDwcB5ft47YTZvMImaMDR+nKr73eumSCoq1zyKYtrH0DgkpMw4wh83+hx9+mJMnT96NtdjNRx99RJ06dXjxxRf56aefDLuVhUlISGDNmjV069aNhx56iJSUlLu2pk8//ZSgoCCaNWtGlSpVGDZsGG+//TYDBw40jElJSTHLcQddeNKNGzeszp2Tk8PNmzdNfsoS96LqeHFxLmjbpVdyl9Wrxw8LFnBs61Z+WLCAZfXqEbtpE0Kr1X0ZFCM/qHDrL4mkIlCZZdrdwDMw0LKCoCg0GzyYPz780Exx0PfM/nvLFpuySxVc26wwkHH0zYDNm4mIijIY58Wpziu915KKwN2SaxVdpgmtliMrV5rJKIutBgvQGz7piYm4hzVCUsZwsOJ5WcHaZ1GPvo2l0Grv8cqs47Bne9GiRYwaNQoXFxe6detmUSD5+/uXxNqscvjwYXbt2sWyZct45513cHZ2pmHDhgQGBuLq6kpqairnzp3j2rVr+Pv7M2rUKDZt2kT16tXv+N5CCDQajeG5oiioVCpGjx7N6dOn2bJlC8HBwezdu5cpU6bg5+fH0KFD7+ieixcvvmeF3orDPStqZgVrRYYMuUMFHu2idsHkl4GkMiJl2j1AUXDz9eVATIyZDLLVlsseRbZe1654BloOaSwy+saBzUXpvZaUJ+61XKvIMk1RqVA5OZnLqIJWg4cWLy7S8ImYO+cerFTiEPqK5+UMi5/FQqTExaFycrpHKyoah43tBx54AIDxBeFoljAWcHeL/v37079/f86fP8+3337L77//TmJiItnZ2dSpU4cePXrQvn17OnXqVKy8cmscOHCAzp07G55HREQwdepUduzYQWxsLC1atACgU6dOXLt2jZdfftkgwP38/EhLSzObMyUlhVq1alm954wZM3jppZcMz2/evGlzfEWlsFFtV5GhuDgeX7vWrl2wEv0yKKc7hpLKh5Rpdx9nd3dUarVFBcFqWy5HFNmoKJv3dyT6xiMgwORRIimP3Gu5VpFlmtBq0Wo0ZjLK1kahMSlxcaicXcBVll6U3DmWPouF8QsNRavRlBmD22Fje+3atSUWAy+E4NSpU9y4cQN/f38aNmzo8Nx169YlMjKSyMjIEllTUbRp04bffvvN8Nzb25vPPvsMJycnmjdvbjK2VatWrF69mszMTDw8PGjcuDF///23yRghBCdPnrTZW9zV1dUkP72yYcmopiBno6giQ84eHqg3b3boy6BElMxyumMoqXxImXb3ycvKstySC6y25XJIkVWrUbs7pshaq6qr95Jb85ZLJOWBey3XKrpMU1Qqsy4HVjcKC+EXGoo2LxdVKebPlmQVcUnpYumzaIy+jWW5LpCmb5dwp7z//vvMmzePpKQkw7Fq1aoxd+5cJkyYUCL3uBt4e3tz//33mxyrU6cOGo2G2NhYWrZsaTh+5MgRqlWrhkeBR7ZXr15s2rSJ06dP06BBAwD27dvH9evX6d279717EWUcYw924aJmtdq354EJE+wuMuTQl0F+PqqcLItKpjVBLfMYJeUdKdMcIz0xkSMrV+oKlNn5f+/s7k52aqpVBUHflsu4grijsis/K8uh12G1qq6MypFUAKRcK1n0hRVNuhxY2Sg0Jrh1a9pPnw6KCg5lmHRSKC7FMZxlFfGKg8XPYgHGbSzLSnE0KEaBtJJg1apVvPDCC3Tt2pVdu3bx008/sWvXLrp06cILL7zA6tWrS2NZxaZ3797Url2bQYMGsWnTJvbt28d///tfPvroI5M+34MGDaJZs2YMHDiQ3bt38/HHH/PMM8/Qp0+fStFKojC2wsKDwsMtFjVz9vAg7eJF+4sMGX0ZqNSW95YMu2C3Uq2uVS+otYUEtT6PsTRy1SWSu4WUadbR16i4ZUdBSGOZ5ubra1AQCsuipOPHufzLL4SPGMHk8+fpOHs2LZ58kuQTJ2gzblyRsis7NbUkXpoOfVSONLYlFQwp1+4MfZcDg4waNoy8zEx8ate2KNdaDB9O5K+/kp2SwoGYGHYOG8aBefNJj4+/o+JV1vSxe4F0sJQNLH0WO86ezeTz5wkfPrxMebXBTs92eHg4W7ZsoXnz5rRo0cLmboGiKPz1118253v77beZNGkSS5cuNTnet29fAgMDeeONN+5ZWHhJ4O3tzb59+5g1axb//e9/SU1NpV69erz11lu88MILhnHOzs783//9H5MmTeLJJ59ErVYzYMAA3n777VJc/b3HnrDwh6ZOxbNaNVOj2kYOo62QS73X6LHVq80KDZnsgl0o3Sr7EklZQcq04mErKsc/LIx2U6ZYbcml73OtryCuUqvR5uejqFRF7uAnl3KHEImkPCDl2p1jSUahKGZyreZDD1mNQizPLcFkociyg8XvSyenMuXR1mOXsd2mTRs8PT0Nv9/pCzl37hyPPvqoxXN9+vRhxYoVdzR/aVC/fn22b99e5LgaNWqwc+fOe7CisoldYeGKQt/Vq82MalsGta2Qy6uxsfxv5Ej6bdhAvS5d+GPVKotKLjmOhWFKJBUZKdPsx2wD0Uo/7UNLljD4009p2KePVQXBUgXxogx0R0PIJZLKipRrd47FLgcFob0GuVYCXWDKW7FG6fW+9xTZcaOMYJexvW7dOsPvH3300R3fNDg4mJ9//plu3bqZnfvll18Ilh/UCoklBTS0e3ezsHBrRrXNHMYicoeObdvG9VOnePqHH25/GeTloqidy+QumEQiKTmKk2dtL4U3EC1G5RSgzc/n4wEDmHz+PGpXV5bWqWNVQTCuIF6edvAlEknloHCXA4Ph07Ej01NT77gLTHkr1ii93qWHIx03SgOHg9qfeeYZzp07Z/HchQsXeOaZZ4qcY8yYMcyfP5/Zs2fz559/kpiYyF9//cXs2bNZsGBBuQohl9iHKAgTtxQWfnTNGhOBbNWoLiL/+vDSpXjXqGExd0ilVtNuyhSc3d1JPfA1POzJ9d07pLIqkVQCHMmzthe1u7t5XYlt2who3NguJdPN19chBUFRFK7GxrLI05OrsbFSdkkklYD0xET2R0eTXoKy664jhNVWh8bIlmCSyoLDxvZHH31kUkHcmOTkZNavX1/kHLNmzWLixIm8/vrrtGnThpo1a9K6dWtef/11Jk6cyMyZMx1dlqSMI7RaMwXUali4DaNab1A/tnq1fUWGLBRNyFPU7I/LRCtbQEgkkmLiGRhotoF4t9t1QdnfwZdIJCXH3dgovNvYbHVohL4lmEzhk1R0HG79BVjdUT99+jRVq1a16/o333yTmTNncvjwYVJSUvD396dt27Z2XS8pXygqFSonJ4fCwq0VNbsaG8tno0fTb/16Qrt1s7/IkFHIZXFaQMhcHIlEYkBRcPP15UBMjH1ROYUobrsuiUQiKfMIYbPVIdzupJATfxHp15ZUdOwytj/44AM++OADQGcoDxs2DPdCO/LZ2dmcP3+eJ554osj5NmzYQJ8+fahatapZz8IbN26we/duRo4cae9rkJRxhFaLVqOxGRZeWCAbFzWzZFQrhYtx2FFk6E6QuTgSiUSPs7u75TBJO/rO3pV2XRKJRFKGyEhKIqBRoyI7Kdz4/RcOO9gzWyK5mxRuS1wS2BVGHvL/7d15XFTl/gfwz2EZlgGBUVZRXMEFccFUSMUFzaVMRc0l9zLLa5rm1q3QNLVcskxv9gu3UlEsNbfc18SuWl5Tc0sxTdwBV2T7/v7wci4jA8wAAwN83q/XvGrOnPOc55mRz8xzznOe4+OD4OBgBAcHQ0QQEBCgPs98tG7dGp9++qlRM4kPHjwYf+YwzO7SpUsYPHiwaa0gi6dYWRm8X2xuw8JPr12LC9u2wfm/Z5W7r1iBsMhIOPv4QLGyMuoaRg65JKLCltswydwyLeuPzIc5XI5FZC4l8vpfKpHSHj826l7IKTb2Jt8zmyMNyRyy3lXEMyjo6W2JC4lRZ7ZffvllvPzyy+rzDz74ANWqVcv3TnNrQEJCApydnfNdNlmmzDPRzx7lNHZY+PXjx3M8S80ONREVqVyGSeY1Koe366Liknn9b0CXLoU+Kz+RIea4kwJHGlJhe/auIrrq1Z/eveS/J/cKyuRrtrPeBizTo0ePcO3aNVSvXj3HP6CtW7di69at6vM5c+bA09NTb53k5GTs3r0bDRo0MLVaVAJkHuU0dL/YvIaFA0XQqa7gDbwe+fS/RFSm5TWULLdhkqfXrkVgv37w79SJt+siojItt8v6cj1Lzd9kVAQM3ZYYAA7OnIkuUVEIevXVAne4Te5sz549Gw8fPkRkZCQA4MCBA+jSpQvu3buHqlWrYtu2bahuYGjduXPnsHHjRgBP//AOHDgAOzs7vXU0Gg0CAwMxffr0/LSFLNCzP1jzOspZrDenr+ANvDG5aPdJRBYl61CyjLQ0iIjBDnLWYZKGDiAaMyqHiKisMHTCJNez1Cb+JsvP8HIOSS/bDN6W+L8y0tLw49ChqNq27dMz3AU4UG5yZ/ubb77BuHHj1OdjxoxB3bp1MXHiREybNg3vvfceVq9enW27UaNGYdSoUQCAqlWrYv369ahfv36+K06W5dlOdW4/WPOavIzDwomoOORnKJkxwyTNnWn8wUhEZV1+hpdzSHrZZui2xFllpKXh2FdfIWzyZCjW1vnej8md7StXrqBGjRoAgL///hvHjh3Dvn370KJFC6SlpeHNN9/Ms4xLly6ZXlOySIY61fjvkaK8frCyU01ElsDGwaFAQ8kK++4HpuIPRiIiItMYui3xsxIuXoRVATraQD462w4ODrh37x4AYNeuXXByckJoaCgAwNXVFUlJSQWqEJUcz54FqvT883juzTfNfu0DEVFh0rq7Gz2ULDc8gEhEZHk4+ocMMXhb4me4VauGjPT0AnW4Te71NGnSBDNnzsTmzZsxa9YsdOzYEdb/rcCff/6JihUr5rsyVHJkngX6vGpV7J82DSdXrYKtoyOS/vor1x+s9+PjC3U6fQYoERWIosDe1dWooWSSkVHElSOyTLyNGJUkmaN/OAs/ZZXTbYkzWdnYPJ3EuYAnCU3eevbs2YiPj8dLL72EBw8e4OOPP1ZfW716tXqWm0qfzC/XlEePsp8FUhQEvvIKfouKKtIfrAxQIioIWwcHWNnYGD+UjLOJE6m3EXvAzjYRlVBZb0v8bIfbysYGXRYvfjrZaQG/900eRl6nTh1cvHgRd+7cQfny5fVemzNnDry8vApUIbJcD+Ljse+jj9Dy/feznQWydXCAraMjf7ASUYmS+vgxMtLSjB5KhkIcmVOcOCqIiIjKOmPuKlJQJne2M5UvXx4igvj4eHh4eMDGxgb16tUrcIXIsuV0Fij18WOkPnpU5n6wElEJJ4LkxEQEv/EGDs6caXBkTmENJSsOOXWqOakaERGVNffj43Fs0aKnEzf/93vRmLuKFES+fjls27YNzZo1g729PSpXrowTJ04AAIYNG4YVK1YYVcapU6fQu3dvVK9eHXZ2dvj1118BAP/85z+xdevW/FSLikCOZ4FEcHL1ajQcOtTs1z4QERWmh7duFclQMmMV5llnXmpDRET0VE6XwCiKghsnTmC6VosbJ04U6ve9yb2eVatWoVOnTqhatSoWLlyIjCzX31avXh1LlizJs4wdO3agYcOGuHz5Mvr164fU1FT1NVtbWyxcuNDUalFRyXIW6Nkfpb/MmwfnihXx0jffFPoPVg55JCJzSXv8WB1KNiouDi3ffx/1+vZFy/ffx6i4OAT161ekBwnZQSai4sbfXVQWmeOuIiYPI586dSpGjx6NOXPmID09Ha+//rr6Wt26dfHZZ5/lWcakSZPQu3dvLF++HGlpaZg2bZr6WsOGDfHNN9+YWi0qQg9v3UKFgAB0iYrSmyTtxokT2DB4MLouW4Zq4eH5uvahKIY88guEiAwx91AyIqKSgpeaEBUOkzvbFy9eRKdOnQy+ptVqjbrP9smTJzFjxgwAyPYjxtXVFbdv3za1WlSEsp4FMjShQObsfrn9YC3O6wj5BUJUOhm6Fisvto6Oes8VRcH1EyewpEULDD5wAN6NGpmjqkRERFQGmDwuzsvLC2fOnDH42okTJ+Dn55dnGTqdDteuXTP42rlz5+DNM44lQtazQN1XrEBYZCScfXygWFnlee0Dh0kSUWEz5XZEIgLPoCC89/AhPIOCIM9M2miOoWRZ5WeEDUflkLnwvtlEROZhcme7b9++mDx5Mnbt2qUuUxQFJ0+exKeffopXX301zzK6du2KyMhInD17Vq+M69evY/bs2YiIiDC1WmazcOFCvPjii3B3d4eiKFi7dm2O627evBmhoaHQarVwc3ND69atcfXqVb11Dh06hJCQEDg4OMDPzw+ffPJJth95JUlenWpz/2AlItMw0wDJyMD9v//GvilT8H3fvtg3ZQru//03JMscJOaWnwOOPEhJ5lLS75vNXCMiS2VyZ3vy5MkIDQ1Fu3bt1Htqd+zYEfXr10fjxo0xceLEPMuYMWMG3N3dERQUhKZNmwIAhgwZgoCAALi4uGCyBQ3xXb58OW7fvp3j0PlM3333Hbp3745WrVph06ZNWLZsGRo3bozk5GR1nQsXLuCFF16At7c3Nm3ahNGjR+PDDz/EnDlzzN0Ms7PETjXPAhFlV1YzzdbRETYODpCMDJz47jt8XrUq9k+bhpOrVmH/tGn4vGpVnPjuO0hGBmwcHIq7ukRkgrKaa0Rk+Uy+Zluj0WDDhg3Ys2cPduzYgdu3b0On0yE8PBzh4eFGleHi4oJDhw7hu+++w44dO6DT6aDT6TBixAgMGDAAGo3G5IaYy6FDh2BlZYW4uDgsX77c4Dp3797FiBEjMG/ePLz55pvq8i5duuitN2vWLJQvXx7R0dHQaDRo27Ytbt26hY8//hgjR46EnZ2dWdtS1vDabKLsylqmZR0unpGRgfvXrulN7JgpIy0NPw4diqpt20Lr7l5MtSWi/ChruUZEJUe+72XSunVrTJ8+HV9//TVmzpxpdEc7k62tLQYPHoyVK1di+/btiI6OxmuvvWZRHW0AsDLidi9r1qxBeno6hg4dmut6W7duRdeuXfXa2Lt3byQmJiI2NrbAdSUiyktZyjS94eL9+iEjNRXHFi3K1tHOlJGWhmNffQV7V9dcy312UjUiKl5lKdcsGUcUEmVXdDcOzeL555/HwoULcevWreLYfaE7fPgwatWqhWXLlsHPzw82NjZo0KABtm7dqq7z8OFDXLlyBbVq1dLbtlatWlAUJcdJ54iIilpJzzRDw8XPrl8PGzs73P3zz1y3Tbh4EVY2NgaHkuc1qRoRWa6SnmslAeeVIMquWDrb3t7eePfdd1GxYkW88MILWL58Oe7fv18cVSkU169fx9mzZ/HBBx9g6tSp2Lp1K6pUqYIuXbrg1KlTAIDExEQAT29tlpVGo4GjoyPu3r2bY/lPnjzBvXv39B7FhWd0iEq/kp5pWnf3bMPFUx8/RuqjR9BVr57rtm7VqiEjLQ1pjx/rLbeESdWICqosf4ebM9cs6XcaEVmWYulsr127Fjdv3sQ333wDGxsbvPbaa/D09ERERAS+//57PHnypMjrJCJIS0tTH+np6UZvm5GRgQcPHuDrr7/GgAED0K5dO8TExMDX1xeffPJJges2Y8YMuLi4qI9KlSoVuExT8YwOUclSZjNNUWDv6pp9uLgITq5ejYZDh8LKxvB0JVY2NggePhzJ//3BrW7KSdWohCst3+GWmmuW8DutKHG4OJHxiqWzDQBOTk4YMGAANm/ejPj4eHz22We4e/cuevfuDU9PzyKvz759+2Bra6s+2rZta/S2bm5uAIA2bdqoy2xtbdGyZUv1aGnmUdKkpCS9bVNSUvDo0SPodLocy580aRKSkpLUx5UrV4yuW2HgGR2ikqesZpqtgwOsbGwMDhf/Zd48OFesiJe++SZbh9vKxgZdFi+Gs7c3Hma5xElE8pxU7X58PCdVI4tVmr7DLTXXivt3WlHjcHGyFCXhwI/Js5GbQ/ny5fH888/j8uXLOHv2LG7cuFHkdQgODsaRI0fU587OzkZvW7du3Rxfy7ydhFarRaVKlbJd73P27FmISLbrg7Kys7MrttkvM8/oPPtD8+DMmegSFYWgV1/lGR0iC1RWMy318WNkpKUZHC5+48QJrB8wAF2XL0fVNm3w69dfI+HiRbhVq4bg4cPh7O0NxcpKbwi5ZGQYNalaWGSkWdpDVBDGfIcrRkwuZiksNdeK83caUVlWEu48lK+ETU9Px6FDh7BmzRosX74828NYf/75Jz7++GPUq1cP9evXx9KlS9GrVy8cOnQoP9UqEGdnZzRu3Fh9BAQEGL3tiy++CADYuXOnuiwlJQX79u1DcHCwuqxjx47YsGEDUlNT1WWrV6+Gq6srQkNDC6EVhYtndKgsux8fj72TJ+N+fHxxVyVfymymiSA5MRHBb7xhcLj4yehoRDVrBgedDmGRkei+YgXCIiPh7OOTrdOhWFnBytq6QJOqlYSj7lQ6GfsdXpKGlJfZXCOiEsvkM9u//vorunfvjitXrhgMaEVRMGDAgFzLmDt3LqKjo3Hs2DG4uLggIiICn3/+OVq1amXU7RuK0tGjRxEXF6fOnH748GEAgLu7O8LCwgAAjRo1QkREBIYNG4a7d+/C29sbCxYswI0bNzBu3Di1rHHjxmHFihXo06cP3nrrLfz++++YNWsWPv74Y4u75RnAMzpUtj2Ij8e+KVMQ0KVLqRoqVxYy7eGtW6gQEIAuUVHZOhpWNjZoOno0bB0ccPvsWfxf48YYfOAAvBs1ylaOZGQgIz0935OqASXjqDuVTkZ/h5eCf5+lOdfK8qR2RKWByZ3tN998Ey4uLli2bBnq1KmTr+D58MMP0aVLF3zwwQfo0KEDbG1tTS6jqHz55ZdYtmyZ+nzOnDkAgLCwMOzdu1ddvmzZMkyaNAkTJ07EvXv3EBwcjJ07d6JevXrqOjVq1MD27dsxZswYdOrUCe7u7pgyZQrGjh1bZO0xRUHP6BCR5SkLmZb2+DEUKysEvfoqqrZti2NffZXjcPHUR49yLUuxskLwG2/g4MyZBjstOU2qRlTcjP4Ot7YGFKWIamUepTHXsk5ql5GWBhGBUsI/J6KyyOTO9qlTpxATE6MeKcyPmzdvwrGEHKlbunQpli5dmud6Wq0WX3zxBb744otc1wsNDVWPuFq6gp7RISLLU5YyTbGygrOPD8IiI2FlY4OMtDQo1tYm/WBVFAXOPj45niXPnFTt0Z07HC5OFsXo7/D0dKAEDSU3pLTlmmRk4P61azi2aBHu/vkndNWrI/iNNwxe7kJEls3kv1h/f/8C3z+wpHS0y7rMMzqm3iaHiMhSKIqCGydOYLpWixsnTuTrzFDmWfJRcXFo+f77qNe3L1q+/z5GxcUhqF8/KFZW0Lq7c3ZesijGfoez82ZZjLnVIBGVHCYn7GeffYYZM2Zkm6kxL+XKlcOxY8cAPJ3goly5cjk+XFxcTK0WmUHWMzrG3iaHiMgS5TVcPC9Zz5LnNqkakaUw9jucQ5MtR2mc1I6orDN5GPk//vEPXL9+HYGBgfDx8VHvSZhJURT85z//ybbd2LFj4f3fI/5jx45luJcQxl73SERU2imKgusnTmBJixY5TqpGZEmM+Q4ny2HKpHaKtXUR146I8sPkznZwcHC+OsqRWWasnlwKZr4sSwrjukciotKioGfJiYoSv8NLDpMmtSOiEsHkzrYxE1DkpU2bNli4cCFq1aqV7bVz585h+PDh2L17d4H3Q4UntzM6vI8sERGR5eKojJLBlEnt2OEmKhmKZfzQ3r17c5xk7d69e9i/f38R14iMZeiMTuZ9ZDkxEBERkeUqzFEZvP9z4eOkdkSlj8lntgEgMTERa9euxblz55CcnJzt9bxuqQAgx+FLhw4dgoeHR36qRURERERmxPs/m4+xtxosae83R0BSWWZyZ/v8+fMIDQ3FkydP8PDhQ7i7u+Pu3btIS0uDm5sbXFxcDHa2Z8yYgRkzZgB4GiatW7eG1TNH5p48eYK0tDS89dZb+WwOEREREZkD7/9sfqVxUrvMEZBEZZHJne0xY8agadOmiImJgVarxZYtW1C/fn2sXr0a7733HmJiYgxuFxoairFjx0JE8NFHH6FPnz7w9fXVW0ej0aB27dp46aWX8tcasig8kklERFQy5DUsPPP+z8+ecT04cya6REUh6NVXS2RH0BJxUjui0sPkzva///1vREVFwc7ODgCQkpICa2tr9O3bF7dv38bbb7+Nn3/+Odt2YWFhCAsLA/D0zPbrr78OHx+fAlafLBmPZFJJx2sSyyYeKKSyxJhh4cbc/7lq27ZPz3CzQ1goOKkdUelg8iHIJ0+eoFy5crCysoJOp8O1a9fU1wIDA3H8+PE8y4iMjGRHm4gsVtYfn55BQRCR4q4SFSFO+khlhWRk4P7ff2PflCn4vm9f7JsyBff//huSkZFtPWPu//zsdlRwvNUgUclm8pltf39/XL58GQDQsGFDLFy4EO3atYONjQ0WLVpkdCf6woULWLp0aY6TrP3444+mVo2IqMB4TSIRlQWmDAvn/Z+JqLQo6lGLJne2e/fujePHj6N///6YOnUqXnjhBbi5uUFRFIgIli1blmcZR44cQVhYGPz8/HDu3DkEBQUhKSkJcXFx8PX1RY0aNfLVGCKiguA1iSUfh/4T5c3UYeG8/zMRlXTFdScFk381jhkzBnPmzAEANGvWDCdPnsTChQsxZ84cHD9+HP369cuzjPHjx6NXr144efIkRARRUVG4ePEiDh48CEVRMGHCBNNbQkRUAMb8+LwfH88h5RaKQ/+JjGfqsHDe/5mISjJjLpkx13wt+brPdlaVKlXCsGHDTNrmP//5DyZOnKje+itzGHloaCgmT56MiRMn4oUXXiho1YiIjGbsj8+wyZOh8MyNReHQfyLjKVZWJg8LL633fyai0s/YUYvmmtg5X53t1NRUREVF4ciRI7hy5QoWLFiAmjVrYvXq1QgKCkLt2rVz3V5RFGg0GiiKAg8PD1y+fBmhoaEAAF9fX5w7dy4/1SIiyjdek1gyGfMlauPgUIw1JLIskpGRr2HhpfH+z0RUulnCnRRMTsaLFy8iICAA48ePx4ULF7Br1y7cv38fALB//358+umneZZRp04d/PnfH7UhISGYM2cOTp48ibNnz2LmzJmonscXABFRYTPlxydZBmOH/mvd3YuphkSWKb/DwrPe/7n7ihUIi4zkCBIisliWcCcFk9Px7bffhru7Oy5evIhdu3bpXRcXFhaG/fv351nGsGHDcP36dQDA9OnTcePGDdSvXx916tTBkSNHMHv2bFOrRURUILwmseQx9kvU3tW1aCtGZOGyDgt/NvPyGhauKApunDiB6Votbpw4waHjRGSxLGHUosnDyPfu3YtVq1ahQoUKSH/mDI+Xlxfi4+PzLKN///7q/9euXRt//PEHYmNj8fjxYzRr1gweHh6mVouKgLkmDiCyBLwmseQx+kvUxoZDyYmeUdBh4bz/MxFZOku4k4LJnW0bG5scZ3m9ceMGnJycTK6Ek5MT2rVrZ/J2VLTMNXEAkaXgNYkli9FfomlpSHv8uIhqRVRyZB0WbmVjg4y0NCjW1jyoSESlQuaoxYMzZxocBVcUoxZN7myHhYVhzpw56NixozqbeOY9tr/++mu0bdvW4HY//PCDSfvp3r27qVUjIiow/vgsOYz9Ek1OTCz6yhGVEIqi4PqJE1jSogUGHzgA70aNirtKRESFwhJGLZrc2f7kk08QGhqKOnXqoEuXLlAUBQsWLMDJkydx/vx5/Pvf/za4XY8ePYzeh6Io2Yao0/9kjiy4d+9eMdeEqPS6fvw4vuvQAa/+9BO8GjQo8v07OzuXmQ5+QTJNnJzQ5ssvsWXECL3J66ysrdFpwQKIVovr588jGcD9Bw+gzbKP+w8eGFyem/xsQ2QJcvu3e//BA9x/9Mjof9f5/TsoK7lWWL/TmDdEhaNKly4Y/PvvOL54MRLj4uBapQoaDBkCZy8v3H/wIN/lGpNpiuQ0JjwXly5dwuTJk7Fjxw7cvn0bOp0O4eHhmDJlSo4ziV++fNmkffj5+ZlarTLj6tWrqFSpUnFXg4jMKCkpCeXKlSvuahQJZhpR2VBWco2ZRlQ2GJNp+epsU/HKyMjAtWvXzHKE+N69e6hUqRKuXLlS4r8QS0tb2A7LUlTtKCtngADzZhrAf3uWprS0Ayg9bWGuFS5mmnFKSzuA0tMWtsM0xvyNmzyMvDD99NNPOHLkCK5cuYL3338flStXxv79+1GjRg34+PgUZ9UsmpWVFXx9fc26j3LlypXoP7KsSktb2A7LUlraYQmKItOA0vOZsR2Wp7S0pbS0o7gx00xTWtoBlJ62sB2Fx6jO9pAhQ4wuUFEUREVF5brOrVu30LVrVxw+fFg96jB8+HBUrlwZixcvhlarxYIFC4zeJxEREREREZElMaqzvXTpUjg7O6N69eo53vYrkzHDZUaPHo1bt27h5MmTqFmzJjQajfpaeHg4pk2bZky1iIiIiIiIiCySUZ3tkJAQHD58GOnp6ejbty969+5doAnMNm/ejP/7v/9D7dq1s806XqlSJVy9ejXfZVPB2NnZITIyEnZ2dsVdlQIrLW1hOyxLaWlHWVJaPjO2w/KUlraUlnaUFaXl8yot7QBKT1vYjsJn9ARpf/31F6Kjo7Fy5Ur8/vvvCAkJQd++fdGrVy9UqFDBpJ06OTlhzZo16NSpE9LT02Fra4ujR4+iUaNGWL9+PYYMGYK7d+/mq0FERERERERExc3K2BUrV66M8ePH4/jx4/j999/RunVrzJs3Dz4+PujYsSO2bt1q9E6bNm2KxYsXG3wtOjoazz//vNFlEREREREREVmaAt36Kzk5GR9++CHmzp2LLl264IcffjBqu9jYWLRu3RpNmjRBjx498M477+Cf//wn/vjjD2zevBkHDx5Eo0aN8lstIiIiIiIiomJlcmc7PT0d27dvR3R0NDZs2AAbGxtERETgtddew3PPPWd0ObGxsZg4cSIOHTqE9PR0KIqCkJAQzJo1CyEhISY3hIiIiIiIiMhSGD2MfP/+/XjzzTfh6emJXr16IT09HStWrMD169exaNEiozvaKSkp+OGHH+Dp6Yl9+/bh3r17uHr1Ku7fv4+DBw+yo21GCxcuxIsvvgh3d3coioK1a9fmuO7mzZsRGhoKrVYLNzc3tG7dOtvEdYcOHUJISAgcHBzg5+eHTz75JM/Z6s3lzp076u3jtFotAgMD8dVXX2Vb79q1a4iIiICzszN0Oh1ee+013Lt3rxhqnLczZ86gXbt20Gq18PLywvjx45GSklLc1crTjz/+iKZNm8LZ2Rne3t7o1asXLl68mG29qKgo+Pv7w97eHvXr18emTZuKobZPXbhwAcOHD0eDBg1gY2ODwMBAg+slJibi7bffho+PD+zt7VG9enXMmTNHb52UlBSMGzcOXl5e0Gq1aNeuHc6ePVsUzShzmGnMtKLATGOmFSXmGnPN3JhpRZxpYgRfX1+xt7eXbt26yZo1a+Tx48fGbJYjOzs72bNnT4HKINM1bdpUmjZtKgMGDBAAEhMTY3C9b7/9VjQajUyaNEl2794tGzZskHfffVfOnz+vrnP+/HlxcnKSbt26yc6dO2Xu3Lmi0Whk1qxZRdUcPa1btxZvb29ZsmSJ7Nq1S8aOHSsA5Ouvv1bXSUlJkcDAQAkMDJQff/xRoqOjxdfXVzp37lwsdc7N3bt3xdvbW1q2bCk//fSTREVFiYuLi4wYMaK4q5arPXv2iJWVlQwaNEh27Ngh0dHR4u/vL9WrV5dHjx6p661atUoURZH3339fdu/eLW+88YbY2NhIbGxssdR7/fr14uvrKxEREVKvXj2pW7dutnUePHgg9evXl+DgYImOjpY9e/bIokWLsv2bf+ONN8TFxUWioqLkp59+khYtWkjFihUlMTGxqJpTZjDTmGnmxkxjphU15hpzzZyYaUWfaUZ1thVFEY1GI05OTuLs7Jzro1y5cnmWV79+fVm2bFmBK0+mSU9PFxGRS5cu5Rjgd+7ckXLlysnChQtzLWvYsGHi5+cnT548UZdNmjRJXF1dJTk5uXArnof4+HgBIEuWLNFb3rJlS2nTpo36fOXKlaIoipw5c0Zdtm3bNgEgv/zyS1FV1yjTp08XrVYrd+7cUZctWrRIrK2t5e+//y7GmuXujTfekKpVq0pGRoa6bPfu3QJA9u/fry7z9/eXPn366G0bEhIiHTt2LLK6ZpX5tyEiMnDgQIMh/v7770u1atXkwYMHOZZz5coVsba2lkWLFqnL7ty5I1qtVj755JPCrTQx05hpZsdMY6YVNeYac82cmGlFn2lGDSOPjIzEe++9h3fffRdjx47N9TFmzJg8y5sxYwamTZuGo0ePmngengrCyirvj3vNmjVIT0/H0KFDc11v69at6Nq1KzQajbqsd+/eSExMRGxsbIHraorU1FQAgIuLi95yFxcXvaFSW7duRVBQEAICAtRl7dq1g06nw5YtW4qmskbaunUrwsPDodPp1GW9evVCRkYGtm/fXow1y11qaiqcnZ2hKIq6LPNzyfwsLl68iHPnzqFXr1562/bu3Ru7du3CkydPiq7C/2XM38Y333yDIUOGQKvV5rjO9u3bkZGRgZ49e6rLdDod2rdvb3H/xkoDZhozzdyYacy0osZcY66ZEzOt6DPN6M62KY+8jB8/Hnfu3EHTpk3h4eGBevXqISgoSH3Ur1+/wA2j/Dl8+DBq1aqFZcuWwc/PDzY2NmjQoIHerd0ePnyIK1euoFatWnrb1qpVC4qi4MyZM0Va50qVKqF9+/aYPn06Tp8+jfv372PNmjXYvn07RowYoa535syZbHVWFAW1atUq8jrnxVBdXV1d4e3tbXF1zWrQoEE4ffo0Fi5ciKSkJFy8eBHvvfceGjZsqN7SL7P+z7avdu3aSElJwaVLl4q83nmJi4vD9evXUaFCBXTp0gV2dnbQ6XR4/fXX8eDBA3W9M2fOwMPDA25ubnrb165d26I/t9KMmWYZmGmWhZlWsjHXLENJzDVmWtFnmo1ZSs1DcHAwGjduXBy7pjxcv34dZ8+exQcffIBPP/0U3t7eWLBgAbp06YLjx4+jbt26SExMBPA0ULLSaDRwdHTE3bt3i7zeP/zwA1555RXUrVsXAGBtbY358+cjIiJCXSchISFbnQHAzc2tWOqcm5JU16xatGiBdevWoW/fvuqXZ4MGDfDTTz/B2toawNO2Adn//WQGnyW27/r16wCAd999F927d8eWLVtw/vx5TJw4EQ8ePMCqVasAlNzPrTRjplmGklTXrJhpJfNzK+2Ya5ahJNU1EzOt6D+zYulsL126tDh2W2aICNLT09XniqKof0B5ycjIwIMHD7BixQp06dIFANCqVSv4+/vjk08+wfLly81SZ2MZapuVlRUGDx6M8+fPY+XKlfD29saOHTswevRouLm5oXfv3sVY47Ll0KFD6N+/P15//XW8+OKLuHPnDqZOnYrOnTvjwIEDcHBwKO4q5ktGRgYAwN/fH8uWLQMAtG3bFjY2Nnj99dfx8ccfo1q1asVZxVKNmcZMKy7MNDIX5hpzrTgw04pesXS2ybz27duH1q1bq8/DwsKwd+9eo7bNPGrVpk0bdZmtrS1atmyJkydPAvjfka6kpCS9bVNSUvDo0SO9a1cKm6G2vfvuu4iJicGJEydQr149AE+/dG7evImxY8eqAe7m5patzsDTo1yVKlUyW53zI7e6mvP9Lai3334bbdq00bvNQrNmzVC5cmV8++23GDZsmPpvLCkpCV5eXup6mUdSLbF9mXXO+m8PeBrkAHDq1ClUq1atxH5ulo6ZxkwrLsy0kvm5lQTMNeZacWCmFf1nxs52KRQcHIwjR46oz52dnY3eNnNojyHJyckAAK1Wi0qVKmW7tuHs2bMQkWzXeBQmQ23bsGEDrK2ts91zr2HDhvjmm2/w6NEjODo6olatWvj999/11hERnD17Fu3atTNbnfPD0LVJSUlJiI+PN+v7W1CnT5/Gyy+/rLfM19cXFSpUwJ9//gngf9cAnTlzRm8ClDNnzkCj0Vjk2ZTq1avDzs4ux9cz/zZq1aqFGzduICEhQe96IEPXdZHxmGlPMdOKHjONmWYuzLWnmGtFi5lW9Jlm1ARpVLI4OzujcePG6iPrH0peXnzxRQDAzp071WUpKSnYt28fgoOD1WUdO3bEhg0b1NklAWD16tVwdXVFaGhoIbTCMENt8/PzQ3p6Ok6cOKG37rFjx+Dh4QFHR0e1zv/5z39w/vx5dZ1du3bhzp076NSpk9nqnB8dO3bEzp071WuuACAmJgZWVlZo37598VUsD35+fvj111/1ll2+fBm3b99GlSpVAADVqlWDv78/YmJi9NZbvXo12rZtqzdrqqXQaDRo3749du3apbd8x44dAIBGjRoBANq3bw8rKyt8//336joJCQnYvn27xf0bK0mYaU8x04oeM42ZZi7MtaeYa0WLmVYMmWaWG4qRRTpy5IjExMTIwoULBYCMHTtWYmJiZO/evXrrRUREiLu7u0RFRcmWLVukc+fOYm9vLydOnFDXOX/+vGi1WomIiJBdu3bJvHnzRKPRZLtxfFG4d++eVK5cWWrUqCHffvut7Ny5U8aPHy9WVlYydepUdb2UlBQJDAyUevXqycaNG2X16tVSqVIl6dy5c5HXOS93794Vb29vCQsLk23btsnixYvF1dVVRowYUdxVy9W8efMEgLz99tuyY8cOiY6OlsDAQPH09JTbt2+r62XeR/PDDz+UPXv2yPDhw8XGxkYOHTpULPV++PChxMTESExMjLRq1UoqVaqkPr9586aIiBw9elQ0Go307dtXtm3bJl9++aU4OztLv3799Mp64403xNXVVRYvXizbtm2TsLAwqVixoiQmJhZH00o1ZhozzdyYacy0osZcY66ZEzOt6DONne0yZODAgQIg2yMsLExvvQcPHsjIkSPF3d1d7OzsJDQ0VA4ePJitvJ9//lmaNm0qdnZ24uvrKzNmzJCMjIwiao2+8+fPS69evcTHx0ccHR2lbt26Mm/ePElLS9Nb7+rVq9K9e3dxcnISV1dXGTJkiCQlJRVLnfNy+vRpadu2rTg4OIiHh4e8++678uTJk+KuVq4yMjLkX//6lwQFBYlWqxUvLy/p1q2b/PHHH9nW/eabb6RGjRqi0WjUL9XicunSJYN/GwBkz5496no7d+6Uxo0bi52dnXh5ecnYsWMlOTlZr6zk5GQZO3aseHh4iIODg4SHhxtsPxUcM42ZZm7MNGZaUWOuMdfMiZlW9JmmiGS5kzwRERERERERFRiv2SYiIiIiIiIqZOxsExERERERERUydraJiIiIiIiIChk720RERERERESFjJ1tIiIiIiIiokLGzjYRERERERFRIWNnm4iIiIiIiKiQsbNNRpk8eTIURUHFihWRkZGR7fXnn38eiqJg0KBBJpWbmJiIyZMn4/Tp03rL4+LioCgK1q5dW5BqF9i8efOgKIr6fO/evVAUBUePHi2yOkyePBmHDh3KtlxRFMyePbvI6mHI+vXroSgK4uLiAOTvc5s3bx62bNliphoSGcZMe4qZpo+ZRiUZc+0p5po+5lrxYmebjGZra4vbt29j//79essvX76M2NhYODk5mVxmYmIipkyZki3Avb29ERsbizZt2hSozoWtUaNGiI2NRe3atYtsn1OmTDEY4LGxsejXr1+R1cMY+fncGOBUXJhpzLS8MNOopGGuMdfywlwrWjbFXQEqOTQaDcLDw7Fq1Sq0atVKXR4dHY26devC2tq60PZlZ2eHZs2aFVp5haVcuXJ51uvx48dwcHAwe10s8f2x1M+NyBBmGjMtL5b6uRHlhLnGXMuLpX5upRXPbJNJ+vTpg7Vr1yI1NVVdtnLlSvTt29fg+vv370doaCgcHBxQoUIFDBkyBHfv3gXwdBhL1apVAQA9e/aEoijqMBdDQ1wyMjIwbdo0VKlSBXZ2dqhVqxYWLVqkt7/JkyfDyckJv//+O5o3bw5HR0cEBgZi27Ztebbt3r17GDBgAJydneHu7o7x48cjLS1Nbx1DQ5MURcHMmTMxYcIEeHl5wcPDAwAgIpg9ezb8/f1hZ2eHatWq4bPPPsu23z/++APdu3eHTqeDo6Mj6tevj1WrVqllA8C4cePU92fv3r3qa88OTVq0aBECAgJgZ2eHKlWqYNq0aXpDyZYuXQpFUfDbb7+hY8eO0Gq1qFmzJpYvX57n+5OamorRo0dDp9PBxcUFQ4cOxYMHD/TWMfS5/fjjj2jcuDGcnJzg6uqKxo0bq0dHq1SpgsuXL2PBggVq+5YuXQoAWL58OZo3bw6dTgc3Nze0atUK//73v/X2Z8rnvXz5cjRs2BD29vaoUKECOnXqhMuXL6uvX716Fa+++ioqVKgABwcHtGzZEseOHcvzfaGSjZnGTGOmUWnDXGOuMdcsBzvbZJKXXnoJT548wfbt2wEAp0+fxokTJ9C7d+9s6x47dgzt2rWDs7MzYmJi8Mknn2Djxo3o2LEj0tPT4e3tjR9++AEAMH36dMTGxiI2Nhbe3t4G9z1u3DhMnjwZgwYNwsaNG9G+fXsMHz4cX375pd56qamp6NevHwYNGoR169bBw8MDERERuHPnTq5tGzJkCNatW4eZM2di2bJlOH36NObNm2fU+/L555/j3LlziIqKwnfffQcAGDVqFD788EMMHDgQmzdvxqBBgzBhwgR89dVX6nbnz59HSEgIzp8/jy+++AI//vgjBg8ejL/++gvA0+FHADBy5Ej1/WnUqJHBOsyfPx/Dhw/HCy+8gI0bN2LQoEGYPHkyxo8fn23dfv36oX379li/fj0aNmyIQYMG4Y8//si1jZMmTcLChQsxbtw4rFmzBunp6Zg4cWKu2/z555/o0aMH6tati3Xr1mH16tXo1asXEhISAADr1q2Dl5cXevToobavc+fOAJ5+GQwYMAAxMTFYuXIlKleujJYtW+LcuXN6+zDm8541axYGDhyI4OBg/PDDD4iKikLNmjVx69YtAEBCQgKaN2+O48ePY/78+fj++++h1WrRpk0b3Lx5M9c2UsnGTDOMmWYYM41KAuaaYcw1w5hrZiZERoiMjBStVisiIn379pVXX31VRETef/99CQkJERGR+vXry8CBA9VtunXrJpUrV5aUlBR12bZt2wSA/PjjjyIicunSJQEgMTExevt7dvmtW7fE1tZWJk6cqLdenz59xN3dXdLS0tR6ApDNmzdnK+vbb7/NsX2nTp0SRVEkKipKXZaWliZVq1aVrH8me/bsEQBy5MgRdRkAqVOnjmRkZKjLLly4IIqiyKJFi/T2M2HCBPHy8pL09HT1vXR3d5ekpKQc6wZAZs2alevytLQ0qVChgvTu3VtvnUmTJolGo5Hbt2+LiMiSJUsEgCxYsEBd58GDB+Lo6ChTp07NsQ537twRBwcH+eCDD/SWt2zZUgDIpUuXRCT75xYTEyMA5N69ezmW7efnJyNGjMjxdRGR9PR0SU1NlYCAAJk0aZK63JjPOzExURwdHWXYsGE5lv/hhx+Ki4uL3LhxQ12WnJwslStXlnHjxuVaNyqZmGlPMdOYaVR6MNeeYq4x1ywJz2yTyfr06YMNGzbg8ePHiI6ORp8+fQyud+DAAbz88suwtbVVl7Vv3x6urq44ePCgSfv85ZdfkJqaip49e+otf+WVV3Dr1i29I2hWVlYIDw9Xn1epUgUODg64evVqjuUfOXIEIoJu3bqpy6ytrdG1a1ej6texY0e9mTB37twJAIiIiEBaWpr6CA8Px/Xr13HlyhUAwK5du9CjRw+UK1fOqP3k5MyZM7h9+7bB9yclJSXbkJ727dur/6/VauHn55fr+/P777/j8ePHeu9PZvtyExQUBGtra/Tt2xcbN25EUlKSsU3CH3/8gW7dusHT0xPW1tawtbXF2bNnsx0tzevzjo2NxaNHjzB06NAc97V9+3a0bt0aOp1O/aysra0RFhaGI0eOGF1nKpmYadkx0wxjplFJwVzLjrlmGHPNvDhBGpnshRdegK2tLT788ENcunQJvXr1MrheQkICPD09sy339PRUrwUyVuZQlmfLy3yetTwHBwdoNBq99TQaDZKTk3MsPz4+Hra2tnBzczNYfl6eXe/27dsQEVSoUMHg+leuXIGfnx/u3LkDHx8fo/aRG1PeHwBwdXXVe27M+wNAvcbp2fJz4u/vj02bNmH69Ono1q0brKys0KFDB3z55ZeoXLlyjtvdv38f7du3h7u7O+bOnQs/Pz/Y29vjtddey1bPvD7vzCFKub3Pt2/fxuHDh/V+bGSqXr16rm2kko+Zlh0zzTBmGpUUzLXsmGuGMdfMi51tMpmtrS0iIiIwd+5ctG3bNsc/Yp1OZ/Aaihs3bkCn05m0z8z1b968iYoVK+qVlfX1/PL29kZqaioSEhL0Qjyz/LxkPVKaWR9FUXDw4MFs4QIAAQEBAIDy5cvj2rVrBaj5//YHINv7XZjvT2b5ht7/3HTo0AEdOnTAvXv38NNPP+Gdd97B4MGDsWvXrhy3iY2NxdWrV7Fp0ybUr19fXZ6UlARfX1+T6l6+fHkAwLVr13LcVqfToUOHDpg6dWq21+zs7EzaH5U8zLTsmGk5Y6ZRScBcy465ljPmmvlwGDnly2uvvYaXXnoJo0aNynGd5s2bY/369XqzRO7YsQOJiYlo3rw5AKjhltuROgBo0qQJbG1tERMTo7d8zZo18PDwgL+/f36bAgB47rnnADydBCJTeno61q9fn6/y2rZtC+DpkbrGjRtnezg7OwMAwsPDsXbtWty/fz/HsmxtbfN8fwICAuDu7m7w/dFoNGjSpEm+2pGpXr16cHBw0Ht/AOD77783uoxy5cqhV69e6N27t94EH4aO1D5+/Fh9LdOhQ4cQFxdnct1DQkLg6OiIJUuW5LhOeHg4Tp8+jdq1a2f7rOrVq2fyPqnkYabljpmWHTONLB1zLXfMteyYa4WPZ7YpX5o0aZJnuP3zn/9EaGgoXnzxRYwcORI3btzAxIkT0aRJE3Tq1AkA4OXlBVdXV6xatQpVq1aFnZ0dgoKCspVVoUIFjBw5ErNmzYK9vT2aNWuGLVu2YOXKlZg/f36B7xtZp04ddOvWDaNHj0ZycjKqVKmChQsXIiUlJV/l+fv7Y8SIEejfvz/GjRuHpk2bIjU1FefOncOePXvU9y4yMhKbNm1C8+bNMX78eHh7e+P06dN49OiROjNl7dq1sWHDBrRo0QJarRYBAQHqF0Ama2trfPDBB3j77bfh4eGBTp064fDhw/jkk08wevRo9Yhhful0OgwfPhwzZ86Eg4MDGjVqhFWrVuHPP//MdbtFixYhNjYWHTp0gLe3Ny5duoTvvvtO7zqk2rVrY/fu3dixYwfc3NxQtWpVNGvWDE5OThgxYgQmTpyIv//+G5GRkXpHao3l4uKCyMhITJgwARkZGXj55ZeRkZGBPXv2oE+fPmjcuDHGjBmDFStWICwsDKNGjULlypVx69Yt/PLLL/Dx8cE777xj8n6pZGGm5Y6Z9hQzjUoS5lrumGtPMdfMrDhnZ6OSI+sMlzl5doZLEZG9e/dKSEiI2NnZiU6nk0GDBsmdO3f01lm3bp3Url1b7Ozs1NkSDc18mZ6eLh999JFUrlxZbG1tpWbNmvLVV18ZVU8XFxeJjIzMtf4JCQnSr18/0Wq1Ur58eRkzZozMmjXLqBkuDc1AmZGRIfPnz5fAwEDRaDSi0+kkJCRE5s6dq7feqVOnpEuXLlKuXDlxdHSUBg0aSHR0tPr6gQMHpFGjRuLg4CAAZM+ePTnu91//+pfUrFlTbG1tpXLlyjJ16lR1Nk2R/81weevWLb3tDH12z3ry5ImMHDlSXF1dpVy5cjJw4ED59ttvc53h8tChQ9K5c2fx9vYWjUYjlStXllGjRunNeHny5Elp0aKFODs7CwBZsmSJiIhs3bpV6tatK/b29hIUFCRbtmyRsLAw6dy5s7qtKZ/34sWLpV69eqLRaKR8+fLy4osvyuXLl9XX4+PjZejQoWpdfX19pUePHvLzzz/n+r5QycRMe4qZxkyj0oO59hRzjblmSRQREbP36ImIiIiIiIjKEF6zTURERERERFTI2NkmIiIiIiIiKmTsbBMREREREREVMna2iYiIiIiIiAoZO9tEREREREREhYydbTKbuLg4KIqCtWvXmrTd3r17MX369GzLJ0+eDCcnp8KqXp7mzZuHLVu2FFp569evx8KFC7MtHzRoEAIDAwttP4WtqN93IkvGXNPHXCMq2Zhp+phpVNjY2SaLk1OAv/baa9izZ0+R1aOoAtzSFfX7TlQaMdcsC3ONqGCYaZaFmWa5bIq7AlSyiAhSUlJgZ2dX5Pv29fWFr69vke+3rHry5AlsbW0L7X3PLM/Kisf4yLIw18oO5hqVBcy0soOZZvn4TlKuMofNbNmyBfXr14ednR02btwIAIiNjUWbNm2g1Wrh4uKCvn374ubNm7mWt3z5cjRv3hw6nQ5ubm5o1aoV/v3vf6uvT548GVOmTMHDhw+hKAoURUGrVq3U1zKHyDx8+BBarRazZ8/Oto8ePXogJCREfZ6YmIi33noL3t7esLOzQ3BwMLZv355rPatUqYLLly9jwYIFaj2WLl0KAMjIyMC0adNQpUoV2NnZoVatWli0aFGe7+OyZctw6tQptbxBgwbprbN37140bNgQWq0WTZo0wbFjx/ReFxHMnj0b/v7+sLOzQ7Vq1fDZZ5/lut/MfQcGBmLr1q0IDAyEvb09goODcfjw4Wxt/sc//oFPP/0Ufn5+cHBwwN27dw0OTbp8+TJ69OgBFxcXaLVavPDCC/j999+NKi+3Ou7cuRNBQUFwcHBAWFgY4uLicPfuXfTq1QvlypVD9erVsXr16mzbb968GU2bNoWDgwPc3d3x5ptv4uHDh+rrDx8+xD/+8Q8EBATA0dERVapUwfDhw5GUlGSwzgsWLICfnx9cXFzQtWtX3Lp1K8/3mUoO5hpzjbnGXCtNmGnMNGaaBWeaEOVi4MCB4ubmJtWrV5clS5bIrl275Pz583Lo0CHRaDTStWtX2bhxo0RHR0uNGjWkWbNm6raXLl0SABITE6MumzJliixatEh27twpW7Zskf79+4udnZ2cPXtWRESuXLkiQ4cOFQcHB4mNjZXY2Fg5deqUiIhERkaKVqtVy+rdu7cEBwfr1ffevXtib28vX3zxhYiIPHnyRBo3biyVKlWSqKgo+emnn+TVV18VGxsbOXHiRI7t/vXXX8XLy0t69Oih1uPmzZsiIjJmzBixtraWyMhI2bZtm4wcOVIAyPz583Ms78KFC9KpUyepVq2aWt6FCxfU97h8+fJSr149WbFihWzatEnq1asnlSpVkpSUFLWMkSNHioODg0ybNk127NghU6ZMEVtbW/nXv/6V52eo0+mkSpUqsnTpUtmwYYOEhIRIuXLl5MaNG+p6fn5+4uXlJS1atJB169bJjz/+KI8ePcr2vt+7d0+qVKki1apVk5UrV8oPP/wgwcHB4urqKn/99Vee5eVUx/Lly0tQUJBER0fL999/LxUrVpTQ0FAJDw+Xjz76SLZv3y49e/YUGxsbiYuLU7eNiYkRKysrGTp0qGzdulUWL14sHh4e8sorr6jr3Lx5U4YPHy4xMTGyd+9e+fbbb6VWrVrSqlUrvXr4+flJpUqVpH379rJx40ZZsmSJuLq66pVFJR9zjbnGXGOulSbMNGYaM81yM42dbcrVwIEDBYAcPnxYb3nLli0lNDRUMjIy1GWnTp0SRVFk8+bNImI4wLNKT0+X1NRUCQgIkEmTJqnLnw2MnJZv2LBBAMi5c+fUZcuWLRNra2u5fv26iIgsXrxYbGxs1C+BTE2bNpWePXvm2nY/Pz8ZMWKE3rJbt26Jra2tTJw4UW95nz59xN3dXdLS0nIsb+DAgVK3bl2DyxVFkZMnT6rL9uzZIwDkwIEDIvL0C0BRFFm0aJHethMmTBAvLy9JT0/Pdb8AZNeuXeqyxMREcXZ21muHn5+flC9fXh48eKC3/bPv++effy6Kosjp06fVZXfu3BGtVitjxozJs7yc6vjsezB//nwBIBMmTFCXJSQkiLW1tcybN09ERDIyMsTPz0/69OmjV97WrVuzlZdVamqqHDx4UACoPx4y6+zr6yvJycl67be1tc31PaaShbnGXGOuMddKE2YaM42ZZrmZxmHklKfy5cujadOm6vNHjx7h559/Rs+ePZGeno60tDSkpaXB398flSpVwpEjR3Is648//kC3bt3g6ekJa2tr2Nra4uzZszh37pzJ9erQoQNcXV0RHR2tLouOjkbr1q3h6ekJANi+fTvq1asHf39/tZ5paWlo165drvXMyS+//ILU1FT07NlTb/krr7yCW7du5asdAODj44O6deuqz+vUqQMAuHr1KgBg586dAICIiAi9doSHh+P69eu4cuVKruW7uLigTZs2es/Dw8Pxyy+/6K3XqlUraLXaXMs6cOAAAgMDUbt2bXWZTqdDu3btcPDgQZPLy/Tse+Dv7w8ACA8PV5e5urrCw8NDbe+5c+dw+fJl9OrVS+99CQsLg5WVFY4ePapu++2336Jhw4ZwcnKCra0tmjdvrpaRVVhYmN51bnXq1EFqamqew+6oZGGu/Q9zjblGJR8z7X+Yacw0S8LONuUpMwwzJSQkID09He+88w5sbW31Hn/99VeOYXL//n20b98ely9fxty5c3HgwAEcOXIE9evXR3Jyssn10mg0iIiIUAP8zp072LFjB/r27auuc/v2bfz222/Z6jlt2rQ8Q8+QhIQEANnfk8znOV3nkhdXV1e95xqNBgDU9+X27dsQEVSoUEGvHe3atQOAPNvi7u6ebZmnpyfi4+MNtiM3CQkJBtfz9PTM1n5jysuU03tgaHnW9wUAunXrpve+ODo6Ij09XX1f1q1bhwEDBqBJkyZYs2YNDh8+jHXr1gFAtn97eX0WVDow1/TbDjDXmGtUkjHT9NsOMNOYaZaBs5FTnhRF0Xvu6uoKRVHw3nvvoWvXrtnWr1ChgsFyYmNjcfXqVWzatAn169dXlyclJeV7BsU+ffogKioKJ06cQGxsLKytrdG9e3f1dZ1Oh6CgIERFReWr/GfpdDoAwM2bN1GxYkV1+Y0bN/ReL2w6nQ6KouDgwYNqoGQVEBCQ6/aGJo24ceMGvL299ZY9+1nnVJezZ88aLO/Z9htTXkFk7u/LL7/UO6KfycfHBwAQExODBg0a6E2Osm/fPrPWjSwbc+1/mGvMNSr5mGn/w0xjplkSdrbJZFqtFiEhIfjjjz8wbdo0o7d7/PgxAOgF0KFDhxAXF6c3JEWj0eDJkydGldmqVSt4eXlh1apViI2NRceOHeHi4qK+Hh4eji1btsDHx0f9YzZW1qNymZo0aQJbW1vExMSgYcOG6vI1a9bAw8NDHU5jbHnGatu2LYCnR4Rfeuklk7dPSkrC7t271eFJSUlJ2LlzJ0aMGGFyWc2bN8fatWtx9uxZ9YsjISEBO3fuxLBhw0wuryBq1aoFX19fXLx4Mde2PH78ONsX34oVK8xdPSpBmGvMNeYalSbMNGYaM80ysLNN+TJr1iy0adMGr7zyCnr37g03NzdcvXoVO3bswODBg9VbQGTVrFkzODk5YcSIEZg4cSL+/vtvREZG6h11BIDatWsjLS0Nn3/+OUJDQ1GuXLkcjwZaW1ujV69eWLp0KW7evKl3TRAADBgwAIsWLUKrVq3w7rvvwt/fH4mJifjtt9+QkpKCGTNm5NjG2rVrY/fu3dixYwfc3NxQtWpVVKhQASNHjsSsWbNgb2+PZs2aYcuWLVi5ciXmz58Pa2vrXMtbvHgxVq1ahZo1a6JChQqoUqVKzm9yFv7+/hgxYgT69++PcePGoWnTpkhNTcW5c+ewZ88erF+/PtftdTodhg4diilTpsDV1RUzZ86EiGD06NFG7T+rwYMH47PPPkPnzp0xbdo02Nvb4+OPP4aNjU2+yisIRVEwd+5c9O3bFw8fPkTnzp2h1Wpx+fJlbN68GdOnT4e/vz/atWuHESNGYOrUqQgJCcGWLVuwa9euIq0rWT7mGnONuUalCTONmcZMswDFOTsbWb6cZmUUETly5Ih06tRJXFxcxMHBQWrWrCnDhw+XK1euiIjhGS63bt0qdevWFXt7ewkKCpItW7ZIWFiYdO7cWV0nNTVV3nrrLfH09BRFUSQsLExEcp75MjY2VgCIk5OTwdsVJCUlyTvvvCOVK1cWW1tb8fb2lk6dOsmmTZtybfvJkyelRYsW4uzsLABkyZIlIvJ0Zs6PPvpILa9mzZry1Vdf5VpWZj169+4t5cuXFwAycOBAETH8HickJOjtU+TpbI7z58+XwMBA0Wg0otPpJCQkRObOnZvrfjPL37Rpk9SuXVs0Go00bNhQfv75Z731DM3oKWL4fY+Li5Pu3buLs7OzODo6Srt27bLdniOn8nKrY1aZs3weOXIkz3K3b98uYWFhotVqRavVSt26dWXs2LGSmJgoIiJpaWkyduxYcXd3F2dnZ+nRo4ccPnw4279PQ2WvW7dOAMilS5eMagtZPuYac425xlwrTZhpzDRmmuVmmiIiUnRdeyIqaoMGDcLRo0dx8uTJ4q4KEVGhYK4RUWnCTCu9OBs5ERERERERUSFjZ5uIiIiIiIiokHEYOREREREREVEh45ltIiIiIiIiokLGzjaRmTVp0gQLFizI8fXjx49DURTs3bvXLPtv164dPv74Y7OUTURlDzONiEob5hqZCzvbRGa0bt06xMXFYciQIcVWh/feew+zZ89GQkJCsdWBiEoHZhoRlTbMNTIndraJzGjevHno06cPHBwciq0OrVu3hpubG5YtW1ZsdSCi0oGZRkSlDXONzImdbSIzuXTpEg4cOIAePXroLZ82bRq8vLzg5OSE7t274+bNm9m2FRHMnj0b/v7+sLOzQ7Vq1fDZZ59lW2/dunUICAiAvb09mjVrhl9//RWurq6YPHmy3no9e/ZkgBNRgTDTiKi0Ya6RubGzTWQmu3btgo2NDZo0aaIu+/LLL/HBBx+gf//++P7771GtWjUMHTo027ajRo3Chx9+iIEDB2Lz5s0YNGgQJkyYgK+++kpd57fffkPPnj1Rp04d/PDDDxg4cCBeeeUVPHnyJFt5oaGhOH78OG7dumWexhJRqcdMI6LShrlGZidEZBbDhg2TunXrqs/T0tLEx8dH+vfvr7de//79BYDs2bNHREQuXLggiqLIokWL9NabMGGCeHl5SXp6uoiI9OzZU2rUqKE+FxH59ttvBYBERkbqbXvp0iUBIJs2bSrEFhJRWcJMI6LShrlG5sYz20RmEh8fD3d3d/X51atXce3aNXTr1k1vvWeHLu3cuRMAEBERgbS0NPURHh6O69ev48qVKwCAI0eO4MUXX4SV1f/+jF9++WWDdalQoYJaJyKi/GCmEVFpw1wjc7Mp7goQlVbJycmws7NTn2eGp4eHh956np6ees9v374NEVFD91lXrlyBn59fti8IAHB2doa9vX22bTLr8fjxY9MbQkQEZhoRlT7MNTI3draJzESn0yEuLk597u3tDQDZJtm4ceNGtu0URcHBgweh0WiylRsQEKCW9+x1Pffv30dycnK2bRITEwEA5cuXN7kdREQAM42ISh/mGpkbh5ETmUlAQAAuXbqkPvf19YW3tzfWrVunt97atWv1nrdt2xYAcOfOHTRu3Djbw9nZGQDw3HPPYdOmTcjIyFC3Xb9+vcG6ZH6RZIY/EZGpmGlEVNow18jceGabyEyef/55fPTRR7h69Sp8fX1hbW2NiRMnYtSoUfD09ES7du2wfft27NmzR287f39/jBgxAv3798e4cePQtGlTpKam4ty5c9izZ48a0pMmTcJzzz2HiIgIDBs2DJcvX8bs2bNhb2+vd20QABw9ehROTk5o0KBBEbWeiEobZhoRlTbMNTK7Yp6gjajUevLkiZQvX16+/vprdVlGRoZMmTJFPDw8xNHRUbp06SI//fST3gyXmevNnz9fAgMDRaPRiE6nk5CQEJk7d67ePr7//nvx9/cXOzs7CQ4OloMHD4qNjY3MmzdPb72XXnop28yaRESmYKYRUWnDXCNzU0REirm/T1RqjR07Fr/99ht2795dJPvbtWsXwsPDsXfvXoSFhQEAEhIS4OXlhR07dqBly5ZFUg8iKp2YaURU2jDXyJzY2SYyo/j4eNSoUQOHDh1C/fr1C738t956C23btkX58uVx6tQpTJ06FT4+Pjh69Kg6POmjjz7C3r17i+xLhIhKL2YaEZU2zDUyJ16zTWRG3t7eWLp0abaZKAtLQkICRo4cidu3b8PFxQUdOnTA7Nmz9a4D0ul0+OKLL8yyfyIqW5hpRFTaMNfInHhmm4iIiIiIiKiQ8dZfRERERERERIWMnW0iIiIiIiKiQsbONhEREREREVEhY2ebiIiIiIiIqJCxs01ERERERERUyNjZJiIiIiIiIipk7GwTERERERERFTJ2tomIiIiIiIgKGTvbRERERERERIXs/wEsIg5fRXYLigAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEfCAYAAABRb9VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADc8ElEQVR4nOydeViUVdvAf88w7CCLIII7uC+YWvqWKe65lLmlpqaZmFq5VNrrDri3a7aoueSumflWll+ZpWmLlVlk5ooroIICIjsz5/tjmHGGWZhBlO38rotrmOc5z3nODMM9933uTRFCCCQSiUQikUgkEolEIpGUGKrSXoBEIpFIJBKJRCKRSCQVDWlsSyQSiUQikUgkEolEUsJIY1sikUgkEolEIpFIJJISRhrbEolEIpFIJBKJRCKRlDDS2JZIJBKJRCKRSCQSiaSEkca2RCKRSCQSiUQikUgkJYw0tiUSiUQikUgkEolEIilhpLEtkUgkEolEIpFIJBJJCSONbYlEIpFIJBKJRCKRSEoYaWxLJGWY/fv3oygKn3zySWkvRSKRSO6Y8+fPoygKb7zxRmkvRSKRSBymbt26PProo6W9DEk5QhrbknLDb7/9xgsvvECzZs3w9PSkdu3aDB48mFOnTtm8Li8vj6ZNm1pU8FJTUxk+fDh+fn6EhoayZs0as+t///13PDw8OHfuXIm+HolEUrm5desWUVFR9OzZE39/fxRF4aOPPjIbp9Vq+eijj+jbty+1atXC09OT5s2bs2DBArKzs03G5uTkMHHiRAIDA6lZsyYLFiwwm+/y5ct4eXnx448/3q2XJpFIJGb88ccf9O3bF39/fzw8PGjevDnvvPOOyZiVK1dSr149/P39eeqpp7h586bJea1WS6tWrVi0aNG9XLpEUmzUpb0AicReXn31VX788UeeeOIJwsPDuXLlCu+++y6tW7fml19+oXnz5havW758ORcvXrR4burUqezfv5+YmBjOnDnD2LFjadKkCQ899BAAQggmTZrElClTqFev3l17bRKJpPKRnJzMvHnzqF27Ni1btmT//v0Wx2VmZjJ69Gj+85//MH78eKpVq8bPP/9MVFQU+/bt47vvvkNRFABef/11NmzYwKxZs0hPT2fevHmEhYXx5JNPGuabNm0affv2pX379vfiZUokEgnffPMNjz32GK1atWLOnDl4eXlx9uxZLl++bBhz6NAhJkyYwKRJkwgNDWXx4sVMmzaNlStXGsZ8+OGHpKWl8fLLL5fGy5BIHEdIJOWEH3/8UeTk5JgcO3XqlHB1dRXDhw+3eM3Vq1eFj4+PmDdvngDE66+/bnI+KChIrF+/3vA8IiJCTJ8+3fB848aNIiQkRKSnp5fgK7Gf77//XgBix44dd/U+t27duqvzSyQSc7Kzs0ViYqIQQojffvtNAGLdunVm43JycsSPP/5odjwmJkYAYu/evYZj7dq1EzExMYbno0aNEkOHDjU8P3jwoPD09BSXLl0qwVdiP+fOnbMoi0saKdMkkrJDWlqaCAoKEv379xcajcbquP/+97+ic+fOhufr1q0T1atXNzxPSUkRAQEBYufOnXd1vbaoU6eO6NOnz129R15enpm+Kym/yDBySbnhoYcewsXFxeRYgwYNaNasGf/++6/Fa6ZPn06jRo0YMWKExfNZWVn4+fkZnvv7+5OZmQlARkYG06dPZ/HixXh5eTm01vj4eMaMGUNISAiurq7Uq1ePCRMmkJubaxgTFxfHE088YQin+s9//sOXX35pcT6tVsvChQupWbMmbm5udO3alTNnzpiNO3z4MD179sTHxwcPDw8iIiLMQkWjo6NRFIXjx48zbNgw/Pz8ePjhhw3nN23aRJs2bXB3d8ff35+hQ4dy6dIlkzk6depE8+bNOX78OJ07d8bDw4MaNWrw2muvma0pOzub6OhoGjZsiJubG8HBwQwYMICzZ8+avL6lS5fSrFkz3NzcCAoKYty4caSkpNj3hksk5RBXV1eqV69e5DgXFxdDtI0x/fv3BzCRf7ZkmlarZfLkybzyyivUrFnTobWmpqby4osvUrduXVxdXalZsyYjR44kOTnZMObatWuMGTOGoKAg3NzcaNmyJevXr7c656pVqwgLC8PV1ZUHHniA3377zWzMiRMnGDRoEP7+/ri5uXH//ffz+eefm4z56KOPUBSFAwcO8Nxzz1GtWjWT17dnzx46dOiAp6cn3t7e9OnTh3/++cdkjqeffhovLy/i4+Pp168fXl5eBAYGMnXqVDQajclYrVbLsmXLaNGiBW5ubgQGBtKzZ09+//13k3H2yFKJpDKwZcsWrl69ysKFC1GpVGRkZKDVas3G2ZJfoNNfWrRowYABAxy6vz3/s/n5+cyfP98gk+rWrcvMmTPJycmxOOehQ4do27Ytbm5uhIaGsmHDBrMxqampTJkyhVq1auHq6kr9+vV59dVXTV67cR2LpUuXGu5//PhxwDEZ+OOPP/LSSy8RGBiIp6cn/fv3JykpyWxde/bsISIiAm9vb6pUqcIDDzzAli1bTMbYo09K7KS0rX2J5E7QarWiRo0aokePHmbnDh8+LFQqlfjpp5+selO6du0qOnXqJE6dOiX+7//+T7i7u4tNmzYJIYSYOXOmaNu2rdBqtQ6tKT4+XoSEhAgPDw8xZcoUsWLFCjFnzhzRpEkTkZKSIoQQ4sqVKyIoKEh4e3uLWbNmibfeeku0bNlSqFQq8emnnxrm0nu2W7VqJdq0aSPefvttER0dLTw8PETbtm1N7rtv3z7h4uIiHnzwQfHmm2+Kt99+W4SHhwsXFxdx+PBhw7ioqCgBiKZNm4rHH39cvP/+++K9994TQgixYMECoSiKGDJkiHj//fdFTEyMCAgIEHXr1jWsXQhdBEBISIioVauWmDx5snj//fdFly5dBCC++uorw7j8/HzRtWtXAYihQ4eKd999VyxevFh06dJF/O9//zOMi4yMFGq1WowdO1asWLFC/Pe//xWenp7igQceELm5uQ69/xJJecSWZ9sa33zzjQDEli1bDMfGjBkjmjdvLmJjY8VPP/0kqlevLhYsWCCEEGLVqlWidu3aIjMz06G1paeni+bNmwsnJycxduxY8cEHH4j58+eLBx54QBw9elQIIURmZqZo0qSJcHZ2Fi+++KJ45513RIcOHQQgli5daphLL4tbtWol6tevL1599VXx2muviYCAAFGzZk2T//djx44JHx8f0bRpU/Hqq6+Kd999V3Ts2FEoimIiJ9etW2eQaREREWL58uViyZIlQgghNmzYIBRFET179hTLly8Xr776qqhbt67w9fUV586dM8wxatQo4ebmJpo1ayaeeeYZ8cEHH4iBAwcKQLz//vsm78fTTz8tANGrVy+xdOlS8cYbb4jHH39cLF++3DDGXlkqkVQGBg4cKKpUqSL27t0rGjZsKADh6ekpxo8fL7KysgzjNm7cKDw8PMTXX38tTp06JTp27Ci6desmhBDin3/+Ea6uruKvv/5y+P72/M+OGjVKAGLQoEHivffeEyNHjhSA6Nevn8lcderUEY0aNRJBQUFi5syZ4t133xWtW7cWiqKIY8eOGcZlZGSI8PBwUbVqVTFz5kyxYsUKMXLkSKEoipg8ebJhnF4mNm3aVISGhoolS5aIt99+W1y4cMFhGdiqVSvRpUsXsXz5cvHyyy8LJycnMXjwYJP1r1u3TiiKIpo3by4WLlwo3nvvPREZGSmeeuopwxh79UmJfUhjW1Ku2bhxowDEmjVrTI5rtVrRtm1b8eSTTwohrIcuxsbGipo1awpAAGLgwIFCo9GIuLg44e7uLn7++WeH1zRy5EihUqnEb7/9ZnZOb7hPmTJFAOLgwYOGc+np6aJevXqibt26hjArvbHdpEkTk5CiZcuWCUD8/fffhnkbNGggHnnkEZPNgczMTFGvXj3RvXt3wzG9sa1/b/ScP39eODk5iYULF5oc//vvv4VarTY5HhERIQCxYcMGw7GcnBxRvXp1MXDgQMOxtWvXCkC89dZbVt+LgwcPCkBs3rzZ5Pz//d//WTwukVREimNsd+vWTVSpUsXEeLt06ZJo1qyZQaZ16NBBpKeni9TUVBEYGCi2bdvm8Nrmzp0rABPlTo/+/3jp0qUCMGxWCiFEbm6uePDBB4WXl5e4efOmEOK2LK5ataq4ceOGYexnn30mAPHFF18YjnXt2lW0aNFCZGdnm9zvoYceEg0aNDAc0yuaDz/8sMjPzzccT09PF76+vmLs2LEma75y5Yrw8fExOa5XtOfNm2cyVr/Rqee7774TgJg0aZLV98IRWSqRVAbCw8OFh4eH8PDwEBMnThQ7d+4UEydONGzE68nPzxcDBgwwyK9atWqJ2NhYIYQQPXr0EOPHj3f43vb8z/75558CEJGRkSbnp06dKgDx3XffGY7VqVNHAOKHH34wHLt27ZpwdXUVL7/8suHY/Pnzhaenpzh16pTJnNOnTxdOTk7i4sWLQojbMrFKlSri2rVrJmMdlYHdunUz0QFffPFF4eTkJFJTU4UQQqSmpgpvb2/Rrl07k00O4/fCEX1SYh+lbmxfvXpVXLhwwexHIimKf//9V1SpUkU8+OCDJgqWEDojz93d3UyYWcoTzMrKEr/99ps4ffq04Vj//v3FiBEjhBBC7Ny5U4SHh4u6deuKmJgYm55ujUYjqlSpIh5//HGba2/YsKGZZ1oIIRYvXmxiROuN7ddee81k3B9//CEA8dlnn5k8X79+vUhKSjL5iYyMFK6urgYDXm9sHzhwwGTOt956SyiKIk6fPm02R5MmTQy7y0LojG0vLy+z96Jv376iVatWhud9+vQRAQEBIi8vz+p7MWnSJOHj4yOuXbtmdl8vLy+zLz+JpCLiqLG9cOFCi15XIXRG7tGjR8U///xj+L9/8cUXxcMPPyyE0G1wtW3bVtSsWVNMnDixyNzAZs2aiZYtW9oc06NHD1G9enWzfMytW7eaGNF6Wfzcc8+ZjLtx44YAxLJly4QQQly/fl0oiiLmz59vJhf0ueqXL18WQtxWNI3rbwghxKeffmpQlAvP0aNHD1G/fn3DWL2xXVjZnTRpkvDz8zM8f/7554WiKOL69etW3wtHZKlEUhkIDQ0VgJmxPG7cOAGYGaSnT58Wv//+u8Eg/Oyzz4Svr69ISkoSly9fFo8++qgIDg4Wjz76qIiPj7d5b3v+ZxctWiQAcfz4cZPjiYmJAjAxouvUqSOaNm1qNkd4eLjo37+/yfOePXuayYBvv/3WZGNSLxNHjx5tMl9xZODHH39sModeBuqjAXbs2CEAsWvXLqvvhSP6pMQ+SqUa+fXr15k4cSKffvopeXl5JueEECiKYpYjJZEYc+XKFfr06YOPjw+ffPIJTk5OhnM3b95kxowZTJs2jVq1ahU5lz4HRs93333HN998w8mTJzl58iRDhw5l5cqV1K1blyeffJJatWoxevRoi3MlJSVx8+ZNq5XR9Vy4cIF27dqZHW/SpInhvPEctWvXNhmnz2nS5zSfPn0agFGjRlm9Z1pamkkuVOHq6qdPn0YIQYMGDSxe7+zsbPK8Zs2ahgrIxuuKjY01PD979iyNGjVCrbYuak6fPk1aWhrVqlWzeP7atWtWr5VIKiPbt29n9uzZjBkzhgkTJpidd3Z25r777jM8P3HiBO+//z4//fQTN27coE+fPkyfPp3OnTszevRoFi5cSExMjNX7nT17loEDB9pc04ULF2jQoAEqlWkpGGOZZkxRMu3MmTMIIZgzZw5z5syxeM9r165Ro0YNw3NLMg2gS5cuFq+vUqWKyXN9LmfhdRnXjjh79iwhISH4+/tbnFN/X0dkqURS0XF3dwcw6YoAMGzYMFauXMnPP/9s8v9Sv359w++5ubm8/PLLREVFERAQQIcOHQgODuaLL75gyZIlDBs2zGonB7Dvf/bChQuoVCqT+wJUr14dX1/fIuUXmMuK06dPExsbayZT9BTWbQrLr+LIwKLkqr5Wji0dtTj6pMQ2pWJsR0ZGcuDAAWbMmEHTpk3Nil5JJLZIS0ujV69epKamcvDgQUJCQkzOv/HGG+Tm5jJkyBDOnz8PYGgtkZKSwvnz5wkJCbH4udNoNEyePJnp06dTo0YN5s+fz0MPPWQwrseNG8fmzZutGtt3C+PNBGOEEACGYhuvv/66iZJtTOEib/ovPz1arRZFUdizZ4/F+xW+vqg12YtWq6VatWps3rzZ4nlrX1QSSWVk7969jBw5kj59+rBixQq7rnnxxRcZMWIErVu3ZuPGjfj7+zNjxgwAXnnllSKN7buBvTJt6tSpPPLIIxbHFlaMLck0gI0bN1osRFd4E9DamhzFUVkqkVR0QkJC+OeffwgKCjI5rt9kt1UM9e2330atVvPCCy9w6dIlDh06xLlz56hbty6vvfYaoaGhXL582eGij5Yo7ECwhj36j1arpXv37rzyyisWxzZs2NDkuTX55YgMLAm9rDj6pMQ2pWJsf//997zzzjuMHDmyNG4vKcdkZ2fz2GOPcerUKb799luaNm1qNubixYukpKTQrFkzs3OLFi1i0aJFHD161KIQ+eCDD0hPT2fq1KkAJCQkmBjzISEhxMfHW11fYGAgVapU4dixYzZfR506dTh58qTZ8RMnThjOO0JYWBig89R069bNoWuN5xBCUK9ePbMvgeISFhbG4cOHycvLs+rNCQsL49tvv6V9+/ZmXzYSieQ2hw8fpn///tx///18/PHHNiNG9OzevZuffvrJ4K1ISEggODjYcL4omQa6/1F7ZFpsbCxardbEu11cmRYaGgrovMB3ItNAp9AXdw5Lc3799dfcuHHDqqfsbshSiaQ806ZNG/bu3Ut8fDyNGjUyHE9ISACsb6onJiayYMECduzYgVqtNozX62X6x/j4eKvGtj3/s3Xq1EGr1XL69GlDNA7A1atXSU1NdVh+6e9769atYsuekpCBltYEcOzYMTNDvfCYO9EnJaYUq/XXP//8w9ChQw3l6f/44w8AZs2axZ49e4q83tfXl4CAgOLcWlKJ0Wg0DBkyhJ9//pkdO3bw4IMPWhw3adIkdu3aZfKzcuVKQNfeZdeuXWbhOgA3btwgKiqK119/HTc3NwCCgoIMyiLoWuzYatWjUqno168fX3zxhVkbGLi9u9i7d29+/fVXfv75Z8O5jIwMVq1aRd26dS1uItiiTZs2hIWF8cYbb3Dr1i2z85ZaPxRmwIABODk5ERMTY7YLKoTg+vXrDq0JYODAgSQnJ/Puu++andPfY/DgwWg0GubPn282Jj8/n9TUVIfvK5FUNP7991/69OlD3bp12b17t10bU7m5ubz00kvMnj3b4EEKCgrizJkz5OfnG+Ytqv3YwIED+euvv9i1a5fZOWOZduXKFbZv3244l5+fz/Lly/Hy8iIiIsLu1wo6A7lTp06sXLmSxMREs/P2yLRHHnmEKlWqsGjRIrOUNXvnKMzAgQMRQliMBNC/F3dDlkok5ZnBgwcDsGbNGpPjq1evRq1W06lTJ4vXTZ8+nY4dO9KzZ08Ag2dcr5fp2x7akmH2/M/27t0bgKVLl5qcf+uttwDo06eP1fmtMXjwYH7++We+/vprs3OpqakGGWyNkpCBhenRowfe3t4sXryY7Oxsk3P696Ik9EmJKQ57tvfu3UufPn1o06YNw4cPZ8GCBYZzzs7OvP/++/Tq1cvmHK+88grLly+nR48edu3MSyQAL7/8Mp9//jmPPfYYN27cYNOmTSbn9b20W7duTevWrU3O6cPJmzVrRr9+/SzOP2fOHFq0aMETTzxhODZw4EDmzZvHhAkTqFOnDitXrjQIX2ssWrSIb775hoiICJ599lmaNGlCYmIiO3bs4NChQ/j6+jJ9+nS2bt1Kr169mDRpEv7+/qxfv55z586xc+dOs7zHolCpVKxevZpevXrRrFkzRo8eTY0aNYiPj+f777+nSpUqfPHFFzbnCAsLY8GCBcyYMYPz58/Tr18/vL29OXfuHLt27eLZZ581ePztZeTIkWzYsIGXXnqJX3/9lQ4dOpCRkcG3337Lc889x+OPP05ERATjxo1j8eLF/Pnnn/To0QNnZ2dOnz7Njh07WLZsGYMGDXLovhJJeeHdd98lNTXV4LH54osvDGkvEydOxMfHh/T0dB555BFSUlKYNm0aX375pckcYWFhFjcfly1bBsDkyZMNx3r37s3zzz/PsGHDeOihh5g/fz6RkZE21zht2jQ++eQTnnjiCZ555hnatGnDjRs3+Pzzz1mxYgUtW7bk2WefZeXKlTz99NMcOXKEunXr8sknn/Djjz+ydOlSvL29HX5v3nvvPR5++GFatGjB2LFjCQ0N5erVq/z8889cvnyZv/76y+b1VapU4YMPPuCpp56idevWDB06lMDAQC5evMiXX35J+/btLW4E2qJz58489dRTvPPOO5w+fZqePXui1Wo5ePAgnTt35oUXXrgrslQiKc+0atWKZ555hrVr15Kfn09ERAT79+9nx44dzJgxwywdEODXX39l+/btJnVg6taty/3338/TTz/NmDFjWL16Ne3atbPpebbnf7Zly5aMGjWKVatWkZqaSkREBL/++ivr16+nX79+dO7c2eHXPG3aND7//HMeffRRnn76adq0aUNGRgZ///03n3zyCefPny/S8XinMrAwVapU4e233yYyMpIHHniAYcOG4efnx19//UVmZibr168vEX1SUghHK6q1adPG0IstLy9PKIoijhw5IoQQ4n//+5+oUaNGkXO88MILonbt2qJ27driqaeeEhMnTjT5sVSeXyLRt5uy9mMLW9XIhdC1AHNxcTH0jDXmo48+EnXr1hVVq1YVL730klnlc0tcuHBBjBw5UgQGBgpXV1cRGhoqnn/+eZOqv2fPnhWDBg0Svr6+ws3NTbRt21bs3r3bZB59NfIdO3ZYfD2FKxcfPXpUDBgwQFStWlW4urqKOnXqiMGDB4t9+/YZxuirkSclJVlc+86dO8XDDz8sPD09haenp2jcuLF4/vnnxcmTJw1jIiIiRLNmzcyuHTVqlKhTp47JsczMTDFr1ixRr1494ezsLKpXry4GDRokzp49azJu1apVok2bNsLd3V14e3uLFi1aiFdeeUUkJCRYXKdEUhHQt5Gx9KPvA63/f7f2M2rUKLN5r1y5Iry9vcXnn39udm7Pnj2icePGwtfXV4wcOVJkZGQUuc7r16+LF154QdSoUUO4uLiImjVrilGjRonk5GTDmKtXr4rRo0eLgIAA4eLiIlq0aGEmo2zJYkBERUWZHDt79qwYOXKkqF69unB2dhY1atQQjz76qPjkk08MY/SVeC21WxRCJ0cfeeQR4ePjI9zc3ERYWJh4+umnxe+//24YM2rUKOHp6Wl2rV5eGpOfny9ef/110bhxY+Hi4iICAwNFr169DLqQHntkqURSWcjNzRXR0dGiTp06wtnZWdSvX1+8/fbbFsdqtVrRrl078dJLL5mdO3PmjOjYsaPw8vISHTt2NNMlLGHP/2xeXp6IiYkx6Cq1atUSM2bMMGm7JYROZvfp08fsHhERESIiIsLkWHp6upgxY4aoX7++cHFxEQEBAeKhhx4Sb7zxhsjNzRVCFK2f3okM1OuQ33//vcnxzz//XDz00EPC3d1dVKlSRbRt21Zs3brVZIw9+qTEPhQhHKtm5ObmxhdffEH37t3RaDQ4Ozvz+++/07p1aw4cOMAjjzxiFppQGEshvMYoikJcXJwjy5JIJBKJRCKRSCQSiaTM4HAMt7+/vyHcrTCnTp0yKbxijXPnzjl6W4lEIpFIJBKJRCKRSMoNDhdI69evH1FRUSaVlBVF4cqVK7zxxhtF9uIsj5w5c4bx48dz3333oVarrfanS01NZdKkSYSEhODm5kZYWBhvvvmmyZjc3FymTZtG9erV8fT0pHv37harUkskEsndQso0iURSkZAyTSKRlFUc9mwvXryY3377jfDwcFq0aAHAM888Q1xcHI0aNSI6Otruuc6cOcOpU6cshp0PGDDA0aXdNf755x++/PJL2rVrh1arNfSgMyYjI4NOnTqhVqt5++23CQoK4tSpU9y8edNk3KRJk9i2bRtvvfUWNWrUYOHChXTt2pV//vkHHx+fe/WSJBJJJUbKNIlEUpGQMk0ikZRZipPonZubK9auXSuefPJJ0b17dzFkyBDx4YcfmhR/skVaWpro0qWLUKlUQqVSCUVRhKIohucqlao4y7praDQaw++jRo2yWBhq9uzZIjQ0VNy6dcvqPJcuXRJOTk5i5cqVhmPXr18Xnp6e4tVXXy3ZRUskEokVpEyTSCQVCSnTJBJJWaVYfbadnZ0ZPXo0W7Zs4ZtvvmHbtm1ERkbi4uJi1/X//e9/uXLlCgcPHkQIwa5du9i/fz9jxoyhXr16/PLLL8VZ1l3DnjZMq1ev5plnnsHT09PqmG+++QatVmvSWsrf358ePXrw1VdflchaJRKJpCikTJNIJBUJKdMkEklZxWFj+6+//rIqcL766iuTfnjW+L//+z9mzZpFu3btAAgJCaFjx46sWrWKxx9/3Cx/pqxz/vx5rly5QkBAAH379sXV1RV/f3/Gjh1r0hD+xIkTVKtWDT8/P5PrmzRpwokTJ+71siUSicQiUqZJJJKKhJRpEomktHDY2H7xxRf5+eefLZ779ddfefnll4uc49q1a9SqVQsnJyc8PT25fv264Vzv3r35v//7P0eXVapcuXIFgKlTp+Ln58dXX33FokWL2LFjB2PHjjWMS0lJwdfX1+x6Pz8/bty4YXX+nJwcbt68afhJS0sjKSkJ4VjXNolEIrELKdMkEklFQso0iURSWjhsbP/555+0b9/e4rkHH3yQP/74o8g5atWqRXJyMgANGjTg888/N5z7+eefcXNzc3RZpYq+EEfDhg1Zv349Xbt2Zfz48bzxxhts27btjnuGL168GB8fH8OPr68v1apVIz09vSSWL5FUChL/+IMYRSGxkIyydrwyI2WaRFL2uReyq6LIRynT5Heg5O5g6/Pj6GerJD+LZelz7bCxnZOTQ25urtVzliqLF6Z79+58++23gM5TvmLFCtq0acODDz5IVFQUI0eOdHRZpYo+3Khz584mx7t27QroqmTqx6WlpZldn5KSgr+/v9X5Z8yYQVpamuHn0qVLJbV0iUQiMUPKNImk/JKemMj+6GjSExNLeyllBinTJJI7Q8qV4uOwsd2qVSs2bNhg8dyGDRto2bJlkXO8+uqrxMTEAPDUU0+xc+dOGjduTHBwMO+++y5LlixxdFmlSlhYGK6urlbP6zcgGjduzNWrV0lJSTE5f+LECRo3bmz1eldXV6pUqWLyI5FIJHcLKdMkkvLLrcREDsTEcEsqxQakTJNI7MOaUV3acqU8G/sOG9szZsxg165d9OnTh08++YSffvqJTz75hD59+vC///2PWbNmFTmHh4cHAQEBhuf9+/dn8+bNfPrpp0yYMMGuqpJlCRcXF3r06MG+fftMju/duxeA1q1bA9CjRw9UKhU7d+40jElJSeGbb76hd+/e927BEolEYgMp0yQSSUVCyjSJxD5K26i2Rlldlz2oHb2gT58+bNmyhWnTpjF48GAURUEIQc2aNdmyZQt9+vSxe65///2X33//nUuXLvHMM89QvXp1zpw5Q1BQEN7e3o4u7a6RmZlpqMB+4cIFbt68ySeffAJAREQEgYGBREVF8dBDDzF8+HBGjRrF6dOnmTFjBsOHDycsLAyAmjVrEhkZybRp03BycqJGjRosWrQIHx8fxo0bV2qvTyKRVC6kTJNIJBUJKdMkEklZxWFjG2DIkCEMGTKEkydPcv36dapWrUqjRo3svj4zM5PIyEg+/vhjFEVBq9XSs2dPqlevzowZM6hXrx6vvfZacZZ2V7h27ZpJz0XA8Pz777+nU6dOtGnThq+++orp06fTt29f/Pz8ePbZZ1m4cKHJdcuWLcPLy4vp06eTnp5O+/bt+fbbb/Hx8blnr0cikVRupEyTSCQVCSnTJBJJWaVYxrYeRwxsY6ZOncp3333HV199RYcOHfD09DSc6927N2+//XaZMrbr1q1rV/uGrl278ttvv9kc4+rqyhtvvMEbb7xRUsuTSCQSh5AyTSKRVCSkTJNIJGWVYhnbJ0+eZOfOnVy+fNms+riiKKxZs8bm9Z988gmvv/46PXr0QKPRmJyrW7cu58+fL86yJBKJRCKRSCQSiUQiKRM4bGxv3LiR0aNH4+bmRp06dXBxcTE5ryhKkXPcunWL4OBgi+cyMjIcXZJEIpHYhbOHR2kvQSKRSCQSiURSSXDY2J4/fz6DBg1i7dq1eBRTcQ0PD2fnzp306NHD7NyXX37J/fffX6x5JRKJxBJCCILCw5mZkYE2Px8hhF0bgxKJRFKSpCcmcmTlStqMG4e3kdPB2nGJRCKRlG8cNrYTEhL44IMPim1oA8yZM4fHH3+czMxMnnjiCRRF4ddff2Xr1q2sXbvWUFFSIpFI7hSh1ZKekMCRlSu5cfYs/mFhOoU2JASloM2g9HhLJJJ7gb59TaO+fU2MamvHJRKJRFK+cbihdceOHTl27Ngd3bRPnz5s27aNQ4cO0a9fP4QQPPfcc2zfvp3NmzfTtWvXO5pfIpFUbNITE9kfHU16Ef0WhVZL7KZNLKtXjx8WLODY1q38sGABy+rV49SXXyK0WoPHOyg83K4COxKJRCKRlCbWvgPt/W6USCT3DoeN7UWLFvHhhx+ycuVK4uLiuHHjhtmPPQwaNIhz585x4sQJDh06xPHjx7l48SKDBg1y+EVIJJLKhd4LdMuGoiGEID0hgc/HjEGbn28yrumgQdTv2ZP0hAQOxMSwc9gwDsTEkB4fj9Bq7+VLkUgkkjKNjPwpe1j7DrR2XCIpS1S2TSGHw8hbt24NwIQJE6zmPBauMG6Lhg0b0rBhQ0eXIZFIJGYYh2J6VqvGkZUrzQztoPBw+m3YwN9btvBFZKTJ+UNLltB3zRrCR4wwhJhLJBJJZUTWupBIJHeDypY247CxvXbt2hIRtpcuXeJ///sfly5dstg+bNmyZXd8D4lEUjlRVCpUTk7cOHvW7Fy7KVNIj483M7QBtPn5fD5mDPW6dtXldEvFUiKR2KCiFjazp9aFRCKRSIrGYWP76aefvuObfvzxxzz11FNotVqqVatmsX2YNLYlEklxEVotWo0G/7Aw0xOKQvMhQzi0eLGZoa1Hm5/PkRUriIiORnFyugerlUgk5ZWK6KHR17oonIIjI38kkopDRd0oLIuUirScOXMm/fr1Izk5mfj4eM6dO2fyExcXVxrLkkgkFQhFpaLNuHGo1Lf3FJ3d3XH28LDo8TYmJS4OlTS0JRJJMSnJnMTizFXcPGtbtS70kT/6mhgSiaT8IvP77x3FMrZ/+OEHRowYQdu2bQkPDzf7KYqkpCSeffZZfHx8inN7iUQisYpeyVQUBe+QEPquWWMwuPOyssjLzDT3eBfCLzQUrQO1JyQSicSYklRkHZnLOM+6OB0WhFZrsdaFHn3kjywkWbGQRfAkkruHw8b2119/TZcuXUhOTub333+nVq1aBAQEcPLkSTIyMrj//vuLnKNnz5788ssvxVqwRCKRWMKSkqmoVISPGMHk8+fpOHs2LZ58kuQTJ8w83sao1GrajB8vwyQlEkm5Qmi1pMfH31GHBWu1LoyRkT8VhzvdnJGUDSpbde/yhsM521FRUUyZMoVXX30VZ2dn5s+fT+vWrblw4QKPPPIIXbp0KXKOFStWMGTIEDIzM+natSu+vr5mY/RVzyUSiaQoiirm4x0SQkRUFCq1Gm1+PopKRd81a8xCJVVqNX3XrsU7OFgWR5NIJOUCtbt7ieVZW6x1UQh95I80uMs3sghexcFa7QiZl102cNjY/vfff1m4cCEqlQpFUcjIyACgTp06REdHEx0dzYgRI2zOkZ6eTmZmJosXL2bJkiUm5/StJRxpHyaRSComRX1ROKJkXomNZV2HDow+eJDg1q0JHzGCel27cmTFClLi4vALDaXN+PE6Q1sqGhKJ5A5QpSYREax7vNt4BgYWmWdtb4cFfa2LQ0uWWAwll5E/5Z+S3JyRlG3KQgFHmaJQDGPbzc0NrVaLoigEBwdz9uxZOnToAIC3tzeXLl0qco6RI0dy8eJFli9fTsOGDc2qkUskEgnY/qJw9vBwSMkEyMvMNJy36PF2cpIebYlEcseo0pLpFAJJacl39T7Onp64+fpyICamRDosGNe6kJE/FZOS3JyRSKxhnKKgzc83OFMrIw4b2y1btuTkyZN0796drl27snDhQgICAnB2dmb27Nm0aNGiyDl+/fVXtmzZQr9+/YqzZolEUoax5o0uqXAmEwGu0XAgOtouJdMSiqKYebwlEonEmHsViumIB8ggB2/dAijRPGt9rQsZ+VMBUZQS3ZyRSCwhUxRMcdjYnjJlCufOnQNg0aJFPPbYY/Tt2xeAmjVrsmvXriLnaNCgAflW/sklEkn5xpo3urg5RcYKqLEAT7t8mX7r1tmvZNrYUTX2eEskkvJPSRrIdzsU01EPkIkiGxfH42vXlnietYz8qZg4u7ujUqtlETzJXcOeFAW1u3sprvDe47Cx3bt3b8PvNWrU4MiRI5w5c4asrCwaN25sV0j4W2+9xdSpU2nevDmNGzd2dAkSiaQCYU2RNVNACwtwRaHPe+/Z38ZLVlmVSCoNZSFX0R4c8QBZy7UN7daNVmPGlHietYz8qXjkZWWhzc+XRfAkVrmTehNCCLtSFDwDA63OURFzvB325c+bN4+EhATDc0VRaNCgAeHh4Vy/fp158+YVOceUKVO4fPkyzZs3p3bt2mZ9ulu2bOnosiQSSTmmsHAt3MLmamysuQAXgmPbt9NqzBjZxksikdwx97J9jrHhvKxePX5YsIBjW7fyw4IFLKtXj9hNm8xadlnLtT28dCneNWrw2OrVZrKwJPKsZeRPBUIIslNTZfvLcsq9kFH6ehMqC/UmrBnC+uNCq+XIypVFpii4WehCVZHb0Dns2Y6JiaFnz56EFBQcMiYhIYGYmBjmzp1rc442bdrIUCSJRGIxfBIhzDzYfVev5tDixWYC/PDSpYSPGMFjq1fzRWSkLOYjkUiKzb30hjta3NFWru3V2Fj+N3Ik/TZsoF6XLvyxapXMs5ZYJSMpiYBGjWQRvHLIPZNRboUcIFZSXQofVzk52ZeioFabhJJX9Bxvh41tW7lEiYmJFntmF+ajjz5y9LYSiaSCYUm4tp8+neyUFBMFwNndHWcPD4sC3ETJ7NyZPz78UCqZEomkbOBmJRzSwSJVUHSu7bFt20g6fpyey5YRER2NyslJ5llLLJKflSWL4EksIoSg6qNPQP/hVM3LNThACutq7aZMwd3Pz/R4/fpEzJ1rX4pCfj75WVmVpg2dXavfunUrffv2pW/fviiKwssvv2x4rv/p0aMHI0eO5KGHHrrbay6zfP7557Rr1w5vb2+Cg4MZPHgwcXFxZuPWrFlDw4YNcXNzo2XLluzevbsUViuRlA5WwycXLkRRFLMQpLysLPIyM60K8GPbtvHh/feTkZRERHQ0AzZvJiIqqsLsiJYmUqZJJI5jUFgPZVD10SfMwiEdLlKlKHbl2l6NjeXcvn0gBIs8PbkaGysN7UJImXYb4yJ48nvz7lGc0O97mdKix5C+N28+O4cN4/dVHxoiDY11tZOff45rlSr8tXGjqQ43fz6xmzbReuzYIlMUslNTAfsifNITE8t9SLld/1G5ubmkp6eTnp6OEIKMjAzDc/2PoiiMHDmSlStX3u01l0n2799P//79adq0Kbt27WLp0qX89ddf9OjRg6ysLMO4bdu2MXbsWIYMGcKePXt48MEH6d+/P7/88ksprl4iuTfY6o1t1YNtR2520vHjeFWvTnZKilQySwgp0yQVlZJUZFWpSXQO9TAUEyqssB6YN5/0+HiT/GtHi1RR4F2yN9c2OzVV5llbQMo085xbRVG4GhsrvzfvIvrQ71sOyJviXFNcrDlAnD08SLt40UxXazdlCunx8WapewC/vP02XsHB9F2zxmb9iIykJEOEjz053oXrV5Q37AojHzVqFKNGjQKgc+fOfPDBB7KKeCG2bdtGnTp1WLt2rUFYVatWjS5duvD777/ToUMHAKKiohg6dCjz588HdO9nbGws8+bN46uvviq19UskdxN7emPb8mDbm5udfPKkVDJLCCnTJBWVksp7FEIQ2KEzQWcz0Obl2d/yxshwdqSCuL25tsknTxb7NVVkKrNMK6q9nPzerLxYdIAoCs2HDDGvlWPteAH61L7+GzfaTFHIz8oqVoRPecXhnO3vv//e4vHc3Fy72n5VVPLy8vD29jYRXj4+PgCG8Ie4uDhOnTrFq6++anLt0KFDmTZtGjk5Obi6ut67RUsk9wC7e2MbebALK6DGudmh3brZFOCSkkHKNInEOoVrTjw0dSqe1arZ1fLG2cOjWEWq7M21lXLQMpVVplX04lOSO8BK/QhrkYa2aujoObZtG75169Jl0SIioqJQqdUW60cUK8KnnOLwf9nGjRtZvny54fmxY8do0KABHh4edOrUiWvXrtm8XgjBjRs3yMnJcXy1ZZinn36a48eP8/7775OWlkZcXBwzZ86kVatWtG/fHoATJ04AmEUFNGnShNzcXM6dO3fP1y2RFJeiQjEthSb9tX69zfxrWy1sjn/yCWe+/hrv4GCZY3YPkDJNIrGMWcjltm0ENG5sMxwysGlTMq5exc3Pj5kZGVRt0AAUhfARI5h8/jwdZ8+mxbBhdJw9m8nnzxM+fLhVuSZzbYtHZZRp9rSXM64KLalcWPMuW4s0LKqGjh6VWo3Qam2nKNyDNnRlpWe3w6t//fXXURm96IkTJ+Li4sLSpUtJTExk5syZNq/Py8ujWrVqfPvtt46vtgzToUMHdu3axfTp0/H19SUsLIyrV6+yZ88enJycAEhJSQEwq9ju5+cHwI0bNyzOnZOTw82bN01+JJLSpqicIouhSUXkX1+NjeWz0aNp+dRTFhXQhr17o6hUMsfsHiBlmkRijiiozFtkxwRF0Sl6ikLzoUMZ+/vvuFetyoHoaF0ud0wM6fHxAMUynGWureNUNplm6bOqx7j4lGdgYCmtsHJTGkXQCmPVu2xNV7Ojhk5hA9lWikJGUhLeISFF5ng7Kt/KWs9uh43t8+fP07RpUwCSk5M5ePAgb775Ji+88ALz5s3j66+/tnm9i4sLNWvWRKPRFG/FZZSffvqJp556irFjx/Ldd9+xY8cOtFotffr0MSm8URwWL16Mj4+P4adWrVoltGqJ5C5ho/CFLe+1Sq0m7JFHgKIVUJljdneRMk0i0aFKTSIiWPcotFqbHROCwsPpu3Yts27dYmZGBrMyMui/aROn9+xhef36Fr2LCMH106eLZThLOWg/lU2mWfqsGqMvPuVmR8teSclzL4ugWcWGd9marlaUDueIgWycGuNohI/Vl6QvUhkTY7KxWZpF1hzO2VapVOTm5gK6/G1nZ2c6d+4MQHBwMNevXy9yjueff5633nqLHj164Obm5ugSyiSTJk2iS5cuvPnmm4Zj//nPf6hduzYbN27k2WefNeyMpqWlUb16dcM4/U6qv7+/xblnzJjBSy+9ZHh+8+bNMiHIJRWf9MREjqxcqcvvslBIyFqIjq3CF470xr4SG8u6Dh0YffAgwa1bF7ler4IQc687KHok0SFlmkSiQ5WWTKcQSLqVgsrJyWrHhLaTJhExdy7iWjxO6xfD5bOoa4YhBoyjYa9eNB00iGPbthkuK5zLLQ3nu0tlkmmKSmX5s1qIlLg4VGq1DCWvxFirH6GPNOy3fr1ZrZyc9HRaPvWUzRo6jmCcGmMtx9seymrPboeN7ZYtW/L+++9Ts2ZN3nnnHbp06WIoFnHx4kWqVatW5BwXL17k1KlT1K5dm06dOhEUFGTyhiqKwrJlyxxdWqly/PhxHn/8cZNjNWvWJCAggLMFwk6fA3TixAkaNWpkGHfixAlcXFwIDQ21OLerq2u5K8ghKV9YM6qtVe21VdlUlZrEQ75ZaPPybPbGTjp+nL5r1xIRHY3KycmqcHVEAfUODqZTdLQDr1xiDSnTJJJCaDRoNRqLcu3MV19x36hR8NVGVPMjQXNb0VM+WgJzVtN/wwaSjh/namys4ZzeuxgRFWXz1mUl97A8U5lkmtBqrX5WjfELDUWbny+L6lViiiq8qCiKVUO4JAxkPYqiOOxgMcaetIl6XbvqoiTvcdqNw+b9okWL+OGHHwgPD+fvv/8mJibGcG7Xrl20bdu2yDl2796Nq6srnp6e/Pbbb+zevZsvvvjC5Ke8UadOHf744w+TYxcuXCA5OZm6desCEBoaSsOGDdmxY4fJuO3bt9O1a9dKXc1dUro4Es5UVIiOKi2ZTsGCnISLNgtflJXe2NIbbhkp0yQScxSVyqJcq9+7N+LqJZRChjYAmnyU+ZGIpATaTZ5sNqct72JZyz0sz1Q2mWbts6rHuC+7pHyjyk0i4lHdo93XpCbROdQDVaruGoN3ee4cXfre3DmG9D1rNSLuRu0IWw4WW5uO9qZNlEY4ucOe7fbt2xs802FhYSZFJMaMGUP9+vWLnKO8VXO0h/HjxzNlyhQmT57MY489xvXr11mwYAHVqlVj8ODBhnHR0dEMHz6csLAwOnfuzPbt2zl8+DA//PBDKa5eIrEPe0J0nKr4gpsHWWdO4Ne5l109Ya0J15I0hK3NJb3hlpEyTSIxR+/NMZFrikKLIUNQrV9sbmjr0eTj9NlqWoyawedjxpicsuZdlC2bSpbKJtMsflYLkH3ZyyfG9SNMjucl0+kxSMpLtmseIQSBHToTdDYDbV6uITpRURSSd+8g8L0pXH9+KYH9h5tcZ01Xu9spMEX1iQfsT5soKIZ4L3HY2Abw9vamTZs2Zsd79+59xwsqr0yaNAlXV1c++OAD1qxZg7e3Nw8++CA7duygatWqhnFPPvkkmZmZLFmyhCVLltCoUSN27drFgw8+WIqrl0iKpqgQncPLltFk4ED8Oj0ChzLwy8tFKWhtY6snrJuvr1WDuiQNYWlUO4aUaZKKSnG8QMaYhFyuXEnGtWuoPTzgsm1Fj/g41B4eqN3dDYa1Ne+iPRubMs/WMSqLTDP2/sm+7BULQ/2INFOjWpWeYvJoC5ubeIpCwKNPQP/hBOTl6npbl3KnA3s3He1Om9Bo7rnBbZex/dZbbzF8+HCCgoJ46623bI5VFIUXX3yxyDnj4+NZunQphw4d4saNG/j7+9OhQwcmT55MjRo17Ft9GUJRFMaPH8/48eOLHDtmzBjGFNrZlkjKOrZCdJoPHUr/DRsgORFlw4dw+SxKzTAYOA4lIMRmXo80gssmUqZJKirWvEDWvEYAuJmGL+pDLjtFRaE4OSE0Gp3Ms0WNUPIzM00MbUveRXtzD2XLJseo6DLNmvevpIpPSYouGltaqG6lmjxaw9omXsq5c/Rfvx6RnICyc6WJDkdACJRSJI0jBc/0aROHliyxqKfeac/uO8EuY3vq1Kk8/PDDBAUFMXXqVJtj7TG2jx07RseOHcnLy6N79+7cd999XL16lRUrVrBmzRp++OEHmjVrZv+rkEgkdxVblU2DwsPpv2EDytdbzPMVP1oCc9eg9BpB8unTfHj//cUqfCGRSCo390LJVaUl0ynUw9RrJIRlT49Wi5KcAHrFdMRUGDBOJ/MshZI7qREDx5P077+0GDbMpnfR3tzDooqqSSoPRXn/7rT4lESHtaKx5QFrm3hB4eH0W7cO9myyqsPR695H0jha8MzetInS2GSyy9jWGiWTa0sgsXzq1KmEhYXxzTffGNosgK61Qo8ePZg6dSp79uy54/tIJJKSwVZl03ZTpkBygtXCQMwbAw+UbGsbWdRMIqlc3G0lVwhB1QKjuqo+h1EInWwz9vQMeQF8A2HPJp1s08u8uH9g4+8wZzUUloVOaohaCwHBBPkHMWDzZqveRdmySeIIand3h7x/sr1c5cXaJl67KVMQ1+LNuigAZjrcvcTuTcfoaJSCsHB70iZKg2LlbN8phw4dYvPmzSaGNoCfnx+zZs3iqaeeKo1lSSQSG1gM0VEUWgwdiuqjRTYLA7FzBe5jS84LI0PPJRJJSVHYK1irfXsemDABsWcTirFBDVAzDB7oYmpoA5yOhaiRELMB2naDnSsgPg5qhMLA8RCgU/Su/PmnTe+ibNkkcQTPwEC7vX+SyovVTbyC4o5ORRR3LGkdrigc2nQslH9dFtMm7DK2Ha3A2LFjR9s3VavJycmxeC4nJwenUqgUJ5FILKMvtmIpRMfZ3V3nWbGjMJAivTASScUkOVEXTj1wHATc22gTa+HlNvOvC3Dy9LXoFQzt3h1t4kWcChvUigLdB8M6K4rp19sg7jjMXYt4VudtEXm5KGpnkyJDRXkX7c09tNaySUb+VBIUBTdfXw7ExNjl/ZPcOfbIFXuvsTVXce5j697KjasWN/Gc3d3tLu5Y0jpcUW287qTgWVlLm7DL2O7UqROKohj6OxrvDlgqv67RaGzO161bN2bNmsV9991Hw4YNDcdPnz7NnDlz6N69u90vQCKR3B2EEAS1aKErtpKXp/tfLxyic/683YWBhEYjvTASSUUkORE+jIGIvndsbN/650+SF0whYPZSvJrdV/R4K+Hl1qr2wu2KvR6B9cy9grY8Pa7uukJpthTT07Gw+S2UBZuhawDJLywza59TFHfasqkkI3+k4V52cXZ3R6VW2+/9kwXR7hhbcsXRa2zKqGLcp6h7W9rEy8vKIj8zE7U9OlwJRdLY08YLSqbgWVlJm7DL2D569Kjh92vXrjFmzBg6d+7MoEGDCAoK4urVq+zYsYP9+/ezZs2aIud76623iIiIoGnTpjRv3pygoCCuXbvG33//Te3atYuseC6RSIqHvV6gooqteIeEEDF3DipnFxACbb9IVDYKA2n7jUWlUknPtkQisUnWqX+oe/oASaf+scvYLg66ir0KLtXD+HneAhNFzqanJycLsjN1oeS2qBGq82inXS/2GstKyyaZslOGURS0+fl2e/8ocJhJiqasVh2/Eyxu4gnB39u3E953DE42dDgGjifLSiSNI9jbxsvqegso7YJnjmKXsd2yZUvD74MGDWLo0KG89tprJmMee+wxpk2bxgcffFCkZ7p27dr8/fffrF27lkOHDpGSkkLDhg155plnGD16NF5eXsV4KRKJpChseoFCPbgh8u0utpK8eweB77+I9qt4lMAaiDmrzYukOakRc9agBIag1Who/8or0kMikUhKjGKHW7pVReXsauoVVBRQFOueHiHgm+3w+BibVccZOJ7s+Is4srVoyYNcFnMPJaWPwTN46xZarbbMtjsqz1jVlTQp0KbgsRxiaRMvLzMTVXBtxNw15jUqjIo7ZliJpLEHewv5FXbIlNWCZ47icIG0r7/+mk8//dTiuR49ejBgwAC75vHy8mLSpElMmjTJ0SVIJJJiYkkxNa7C66vRFFlsJeyRR/CsVs3QDkfR5KPJy0fVcxja1p1w+my1oTCQ5vFIlMAQsm/exN3PT3pIJBJ7KMUc6PKGw+GWQuA7YBqoZyO0Gh6aOhVtXh71e/emxZAhqD08dGkz/ceiWDKoty6F3iN07XBsKKZZ3+9xyNi25kEua7mHktLFWjG/iuD9Kw+otKk6Y1ubWtpLKTaFoxO1ebmgKCi9RsADXS0Wd+QOI2nsLeRnqeJ5Rdh0dNjY9vLyYt++fRa913v37pVeaYmkDFNYMRVaLXlZWahddKJAUSDj2jUCmzblamys2fVNBw3Cs2pVSIo3aYfjNHAcVA3m4qlz1Bw1A7WHB/mZmRz7eDvuAYE07N27XAlGiaRUKcEc6IqCKjeJiEd1j3bjVqgAj9BCZgLK8ZVw8yxKlTCqNxnHoI+3I1Kuo1q/GC6fRdWyPWLQeMuenrjj8PcvUIRiqrmZWiKvW09ZyT2UlB6WPIPHtm7l8s8/02/9+nLv/bur3IMNzJIMPS9RD3phOYhuEy959w4C33yW6y+v0tWVUBQIDEFEzkFxdrFY3LFYOFLIL8pyxfPyvunosLH9/PPPM3fuXK5evUq/fv2oVq0a165dY9euXWzcuJGYmBiL11WpUoXvv/+eNm3a4O3tbVPxVhSFtLQ0R5cmkUjsxKmKrgovCJzyklAdX2NQPoMaRfLs77+za+RIjm3bZrgmKDyc/hs2wP9tNgsXVz5agpi7hjq9RvDbBx+QeOQIVWrUkF/2EomkRFDlJdPpMUjKK9qDbbFnNgJOb4IDY0AYya4/lyAiVqMKHQY/fK4rcPb1VpS/f0ZEr0c80BXFikFtSzH1CAgweZRI7gQhhFXP4N+bN5P87788/cMP5dr7d1dxcAOzOOkpmf/GwqoYMjs+eOfGdnE86GpTo9qiHCz8ecgutIlnZIQn641w/ZqKmbLjUCG/Iiqel9dNR4eN7dmzZ+Pr68uSJUtYv369oUp5cHAwS5cuZeLEiRave/nllwku+PC9/PLLUgBIJKWIR5Nw3S+nN+H0Q6SJ8qn6cwmi42r6b9hA0vHjBg93uylTENfiURXOywbQ5KPMG4N4oCsPjB+P4uSEtkD5lP/rEkkFoBieIUcri4N1j46+grj+0dp4SwV42k+fjjMpKIUMbd0F+SgHIiGoEzw5WRcaDrBnM8q5fxEf/nC7jZdGAyrVbZlmQzHVh0NaCouUSBxFaLUcWbnSqmcw8Y8/+HHJEiKioljk6VkuvX9lieJUA1ffOE2nx+D6jdPAI0Xfoyjvtdp6ayxjhBD49J8GzrPxycvRdY4q2JyxpxCZRQob4RS/QnpeVpb9hfxKqOJ5WcNhYxvghRde4LnnnuPy5cskJiYSHBxMzZo1Udn4A0YVhAYIIZg0aRKenp64uroWb9USyb2mnIUgWUOlSYH7FVyDQhC3LqMqZGgDOuXzh0i0QZ1oN3kyn48ZY7sdjh5NPsrOFYixc/khrAqNPvyUoC5Ff+FIJJJyQDFC261VFrcl66x5dHQVxG8/Fh7v7O1iuQCPotBh5gyUYyvNZZ0ekQ+nVkOPGbeNbYATf6B8tATtmNl8FhmJT82alhVWC4qpRFKSqJyc7PYMinJUdbysVv0uThi3o95oa+MtGc/WnBbWcvjtKXJ7zxCC7NRUuwr5ZZdAxfOySLHfbZVKRe3atWnXrh21a9e2aWgbk5eXR7Vq1fj222+Le2uJ5N6jVzSTE+/aLfTVL28l3r17qLSp8FAAigpUJz+0qXw6nV5NiyeHAkW0wzEmPg5F7czBRIHWV3p0JJLKQGbCCWhT8GgHd0PWuTZsazHM1tndHbW7B9wsQnalx+lyG10LhTDGx6FyceWf7dv5YcECltWrR+ymTQVpOBLJvUGr0VRIz2CJyoLkRFgZXSJ6WkkWQnPEcBdaLenx8RyYt4Cdw4ZxYN4C0uPjTeWNm4chFTB20yaW1avHDwsWcGzrVpw9PEi7eNFmIbL0xMR7viGTkZRkaOOlUpv6eY0L+WUkOdhVopxwzxMpXVxcqFmzJhqN5l7fWiKp3Oir8I68BoqTXcqn2t2D+55+mgdffhmhybevv2w5+7KXSMoNJahMliQ5yXHQpuCxVFBwrtnEYphtXlYW+VmZUKUI2eUdqvNQ5xSSXTVCyc/MNMi00lRYJZUXRaWizbhxZoaKnoroGUxPTGR/dDTphQxxa8cz/o2FD2N0j4XJSYI2BY/G3AOZaq/hbsl41m/wnfryS4RWS9VHB8OhDHw79TTfXFQUmg8ZwtE1a0yOOXt4GGpJ6AuR3evNwvysLEMbr8nnz9Nx9mxaDBtGx9mzmXz+POHDh6PcYcXzskypVC16/vnneeutt8jOzi6N20skFZtLf8LKTrpHPUILmfEoRxfAvuGgybFL+RRaDY+vW0fEnNmgctKF0TtZyT4p6C+bVYG+7CWSMsU9iLApSax5dNTJJxj1pO6xRFC7m/fM1iMEZ775BtFkHChWZJeihoaR8M020+NOajSPR/L3NtPjpaWwSioviqJUOs+gNa+3oRBZIaM6MznZ5NGE3GSdsZ1rei4z9nv4I0b3WIrYKoDXdNAg6vfUGdcH5s1j5/DhOhlUaHPR2d0dZw8Pbpw9S1B4OH3XrmXWrVvMzMhg1q1b9F27lqDwcF26gZMTODnd65dp0sZrwObNRERF2Z9HXo4pVs72nXLx4kVOnTpF7dq16dSpE0FBQSb5CIqisGzZstJYmkRSMhQjx7tYrW0sceUfcP5N91jrPp2hXbgKb81u0HgM/LnEcii5oobGz+p+f9jzdmuIgJAi+8tmnDx5Z+uXSCQVAmseHXVqHHU7QUpqSXnCFbR5OdbDbAXgGYKIWGNeJE1R6457hsBWI73DSY2YswYlMITDFvSR0lRYJZUTvWfQVouviuoZNKa4hboskZMch0dBVI595ciKSRHFzqwVwAsKD6ffhg38vWULX0RGotVo8KhaFbVroc1FRQFFIS8zk8b9+tF//XrEtXhdnZ3LZ1HXDCO87xhajhjBv7t2odVooJQijMt7G6/iUCrG9u7du3F1dcXV1ZXffvvN7Lw0tiXlnmIUE7La2sYRw10IxH2DUB4YjsjLQRECMhPM2t3w91JoMAIiVsOBSDPlk45rwCMYReUExqGSKlWR/WUrw5e9RFLpsBaGeS8prLAKgW9BISFFk0/76dM5/dVXJP7xhy580t2dvOxswh55BLQC6g+HoAhdMbT0OF3oeOOx4FUTcTMVpWNfCGsONULR9n8WqlZn18iRho4MxviFhuoUXz8/QLb4ktwbjD2DssVX2ceuYmdOzlYL4LWbMoX0+Hh+fecdHl21ihZDhqD28EBoNDw0dSravDzq9+5tOK7Ny6PpoEHw1UazzjFOHy1BzFlN00FP3Xnv7BKgvLbxKg4lYmxnZmaSkJBAWFiYXf/w586dK4nbSiRll5JUTO013LVaSE5A2fkh3LiC4h8M42bDcQtVeG/EwvcjofMGCOkC/666rXw2jATPEPjuU0SnfiiFcxgL+ssyNgrUasjP13l3yoDwlkgkdwkrYZj3BH29CfVsfPNzdBuAQhTIu5Vw+SxKzTCcB45j7K+/cvHQIWo88ABqDw/yMzNRu7mhvXIJ1bT+MPh5XdVxNw9djvY321B++QYxezWMiwaVE0KTT35WNh/95z86w70Q+vxYRaWy3uIrIFgnI+9S9woAr+BgIqKi8CpDVZwld5/K6Bm8U7JSUnA3erwb5KnSOVcVPEU6YLkNoXE3g9vjUywXwCvIwT61ezeRv/xi4qlWaoZRfdgUBm3fjrh6CdX6JXD1EqohExH+1VCstWidH4lo2w0lMOQuvQsSSzgcJP/GG28QExNjeH7w4EFq1KhBo0aNaNCgAWeLaE0gkVQKSlAx1edgFc7FyslJ5Ny5aHJzk3SG9tGDiJwsxPi5MGslYvwchOIE2jzLE5/dBp/eryuUdn80dNkMLWbAgX3w9H+gZXuy4y/qlNLCKAqciYWHPXWP0tCWSCSF0CuTear04k8itIjMeJSjC+H70ShHFyIy4wEBy6fD2oVw4DNYuxBl+XQAare9H7WzLrxb7eyEEALVwS/gxB+6FJgOXjrZ9bCn7vk321HWv6oL4nnYk5T9X+Ps4UG7yZNt5sfadC4EBOuM97tobHsHB9MpOrpMtUyS3DvutmfQWiGy8oi+cJy9BeSsyS5bMi1Plc6FqiD8qtgsdqbvZiD8qnAp0IM8Vbp5ATxFwaNqVZw9PGgyYADK11twGtDgtrw7+AWKZxU4uBvVke9h9HSIXgeNWqKkXIPQppZfWEGLVsS9qTchNwR1OOzZXr16NdOmTTM8f+mll2jWrBnTp09nwYIFzJw5k+3btxc5T3JyMm+//TaHDx829Or+z3/+w+TJkwksvEMskVQQitNTMjM5GU+jRz25l/YTf+U9alZ9CtRuiNYdyM1JIOF8NFlZZ3F3DyMkZBwuDyxAuXVBZ1wX5kYsxO8D/7bQLVDn6XFSwxu7ICAYN60GDmUQkJer8yQVVi5lf1mJpGxTjPoRJUWeKp0L/tDgRmGFNYMLwQG452RYvdbJp5rO0L7wJeRcR7SajqL2QORnwtmPwasuxKyHOR+CizvkZoHaFQUBuUlwbI1uI7FKGErTcbrX/9ch+HqbTpYVll3xcShOurQZzc1Uu/JjJZKKjL5AWaO+fcvFhk5xemNbw7rssny8YAWo1QF41e1stdiZNj+fw8uW0WTgQAIjXiFIPQtNXg4A3iEhDP70U7JuXKf54MGo3T0QWg1KbjbKT3tg1iroMUTnAMnPhfx8lId7wa14+HuxQd7RKBI2/g5RI3XyrjDxcbqCt8WpN2HJ+WID/YZgZcdhY/vSpUvUr18fgPj4eI4cOcKBAwfo0KED+fn5TJgwocg5Dh8+TM+ePdFqtXTr1o2GDRty9epVli9fzvLly/nmm29o166d469GIinjFOfLK09J4XwfD1yU218gQgi8wgbzcP0nEUKDQOHq1U2cPDkGYRQyfvHiEho1WkNQ5w0oKcd1xrUxihqajodz/0Knfrr862EvgrevWYimTlkP0YWRSySS8oGj9SMyE3WpJ03Hgcft8cULw1RQqTyA25t0QggCBy5AURbrZFehHMY8VSYXa9YmqHl7RE4K1O5Jbk48CZcW395ErB2Ji1stlJwUXf2Jm2chqD00mwCnN5vXqPhzCXRcDTEbIO44nLbQGqhGKCI/zyRtRubHSiTlh5LsjW1JdhXcBbU6gMKBwUIIQvovo4byLkJoyLqeQuN+/Tj+ySegUuHh70/mjRs0HzyYfhs2oKhUKAVTqNRqhFaLoig0fLQPZCSgHNMZz0qVMGg+GRZugfRLt41qg7zb5Li8qxEKWgcLpAlBwGODof9wAvLzLDtfJFZx2Nh2d3fn5s2bAOzbtw8vLy8eeughAHx9fUlLSytyjueff55mzZrx1VdfUaVKFcPxtLQ0evXqxQsvvGCxcFpF4MSJE0ycOJGffvoJb29vRo4cyYIFC3BxcSntpUlKGU36eS4EB+Caft5wTAhB9cfGour3AlpNTkFfV6HzYCeuJCvrLLVqTcXZuZqZoa27Pp+TJ8fg59sFlxZTUA48c/ukooaINeBeHRpVhwWbEXl5Ou/Onk3mFcc/WqKrRN5rhDS4JSZIuVYOsebxzkyEP2Kgbl8TYzs7NRV3o0djLHmqhRAE932LGur30OZbll3u7mGEBI/DxTUERVEVGOLzUZRFCKFTBK9e2cTJU5EWNhFXE1RtGMqFz3WbiDW7w62L5oon6J7/EAnVO8GTk3WyzZiCtoXZly+YvbYi82PvQW625N4jZdq9QZWaRESw7rFEKKLqtz1Ykl2KopgZ1LePay3KtUEfbyc7NQ033yooipNOpgkFFKzKQa4cQtnd9bYM8w+HNnPh9EbTYrbFlXcFss5g6VtAX+zRUPTRUA/o7jtfKmrYucPGdtu2bVmyZAkqlYrXX3+dXr164VQQinD27Flq1KhR5Bz//PMPO3bsMDG0AXx8fJg+fTpDhgxxdFnlgpSUFLp06UKDBg349NNPiY+P56WXXiIzM5N33323tJcnKUWEEAT1mo6izDIIcRDk5iaQkKATyD4+7QkJmVDIg63QqNFqLl5cbGZo3547n4TEldRtGAU348wLoe3bCV0HQtcActYexs3d1dzQBt3zeWN0lchlcQ1JAVKulVPiY3VG9X8eNDEUM5KS8NQ/2lFg25Kn2j7ZpePixSW0bLkPH5+HLW8iFjK0dffM5+TJSPx8OuHSYjLKgUgIGwJHF1tuZQi646dWwyMzzJXPgraFWd/vseq1t5ofq8/NllQYKptMK00Dp8TaeFkqomiv59XIQBdCayK73N3DqFlzCmq1n5mBXCPkBZxdAi3KtaysczRpsh6VRwbnz79llxxs1GgNQUFPgl/T21GILaZARnyhrjGK/fKuh5G8M5J1hvfGQli4Z5NwGBuFZ/PWOkO7COeL2r3kSs5V1LBzh43tN954g0cffZTHHnuMOnXqsHDhQsO57du3G7zctqhfvz6pVooUpKWlERoa6uiyygUrVqzg5s2b7Nq1C39/fwDy8/N57rnnmDlzJiEh0oCp6FjaxS28K2pNIPv5dScn56LJMZXKHScnD7KybBcmzMqKQ1HUED4DXG9X4eXj99C+8T8UAcrNG7iG1ILV880NbT2afF3LL33hH+nRqfRIuVZOsVLE0VqNCEvciezS4+HRlCpVHizeJuKV1dQNmwE/TtQpzDeLKNCaHqeTf+Ni4MJJs7aFmpupRbziO6eiem4qEpVNppVVA8dur7fQQmYCyvGVt0Ovm44DjxBTD66l1oEGAz0XIbRmssvTM5w6deZy9epGTp403fhzcwvDz6+LmVzz9AynceN1BXNF2iUHDVGIPhEFG4hjsGpUq93tl3duHvDY01CtpomsQwgCHn1CFxZeuCaPfgNRCEiKL9L54lunjpRpReCwsd20aVPi4uK4fv06VatWNTn35ptvUr169SLneP3113n++eepVasWERERhuP79+8nOjq6Qu4cAuzZs4du3boZhDfA4MGDGT9+PN988w1PP/106S1Ock8ovIsrhJarVzaaeG8sC2SFatWGmCmfWm0WGk0m7u5hhW9lgrt7KEJoUB72Ald3QyE0MWcNSrUa5CRexs3VHcXZBS4XIcD1xTWkR0eClGuVFUuKqSOyS0/NmlPIzY0v/iai2gMEkJ+pKw5kC29drqJ4+r8ozq6IvBwUtcs9zT0sq4aN5DZSppUNivJ6O1Xx1Rna1vKWI9ZAgxGAYu71RpgY6LSaQ66nt5khfFs+FY6wUahWbbBFuWb5GttyEAptIB4YY92ozs+yW94JrQYlah0iLxdF7ayTdfaGhQutLtWoCOeL87hoKdOKoNjB9lWrVkUIQUJCAvkF1fZatGhhVyXxadOmkZaWRpcuXfD396dRo0b4+/vTtWtX0tLS+O9//0t4eDjh4eG0bNmyyPmuX7/Onj17WLt2Le+99x7btm3j6NGjBeFsZYcTJ07QuHFjk2O+vr4EBwdz4sSJUlqV5F5iXC1TCF3+ommYpE4gJyauMRHI1pVPwbVr2wkOHqPzXFtAUdSEhIxH5GvgmVm6QmhjZqPZdQZ6DQcg88TfkJOFyMuFmkUIcH1xDYkEKdfKK1kpKSaPdlHgGTLILgtGtf2yy/o1Dm0i5meCJhPObofGY3S1KCyhLwapqEjd9Tqs9dQ9yiI/kkJImVY+8KjfGDITrOctX/5G93tmPMrRBbBvGMqJ1YDQGehb6sHRBbpOLb5hJCSstGBQm8snsCXXiiMHb2PYQHRyt2FUC7vlXfbFc/CwJ8m7d9w2tPdsgsfqwZoF8PVW3eNj9XTHtUYtwVRO9jtfSpHy0KLOYc82wNdff01UVBRHjx5Fo9Hw66+/0rp1a5599lkiIiIYPny4zevbtGlzx9U809LSWL9+PevXr+fPP/80M6wVRcHLy4v+/fszduxY2rdvf0f3KwlSUlLw9fU1O+7n58eNGzesXpeTk0NOTo7hub5Anb2cuqIbHxrggbqgh9+1tGxSs3LxdnMm2NfdbGxtXw/c3HRjk29lc+NWLu4uKmr5exVr7Nlrt9BotYT4euBVMDY1I5tr6bm4qFXUDSje2PPJt8jN11LN2wVfTzcAbmXnk5Ca6dBYJ5WKsGq3x166cYusXC3+Xi4EeOnGZuHC5ZQcVNduFTk2O19wK78KN9PyMU6KuJaTQEL3AFxyruCPloTElXYJZFvK5+XLSwkKGkGjRqvNdl8VRU2jRmtwcQkmPycXxsxG5eKKNjcHTV4+KkVBKQifvOQcgNuFiwQMGIfy0RLLu5kFxTXSsjVcvZlh8W+ffsv0Okt/z5L4nOj/nnf6OSn8t7/Tz0l2dj4XU3X5nQ2rm9alqIgUR65JmWb7s5qXkkOwkwv6o/rPn2taLnWM3gfDZzUvFd+v1sLAcdzyCrT4Wb2cnkvmlZuGz2p2aipOWjWnrtzCy0imqdJTSMv34NLVVJRb2brPtRD49p8GzrPxycuFEpJd9mwiXry4xKInSFHUhFSPvN3S8O+lOi9WxOpC+Y3oFM9Oa8EjmBu3cjmX7U/oYYG2u69hyKkrN7nh5MvRBCda+uiS1cuKTItLzSOtSjWTNUiZdvcoDZkGjsm1uNQ8UvxqkG3UWir5lu6zku4VYHFe50Jji/q8Gl5Ldj7pV27eFV3tXIZA4+KHsbmmH6vKB737zvjzWgVAUXCtUQuOzrect+wfDp3W2VdYTO2BonIxk0O2DGRrcq04ctAY/QaioinoiqA3qv9cYvo67ZR3Z459ha/WE0WDzqOfnGAzLFw80JV8/2Cc1SqdU8Ve54vKySG5djM7nxS/GlxKz8c4+NyWrLqRZrpm/Vhx7pKhy4/id/v7zzhpoLTlmsPG9tatWxkxYgSDBw9m7NixjB071nAuLCyMdevWFWlsf/TRRw4v1JhFixbxxhtv4OfnxxNPPEFUVBQtW7YkICAAV1dXUlNTOX/+PL///jt79uyha9euPPzww7zzzjs0bWql0XsZZvHixcTExBT7+h5LDwKwZmQbujatXnDsAKlZ+TirFE4v6m02NqZvE0Y9pDMTey09SNKtXJxUCmctjH2uUyiv9GwCQP/3fuJSShaKAucW9zGM7frWAQCG3F+TVwfpohWeWHmY09duoQDnlpiP7d6kGh+OegCA0R8d4eilVADOG43t9IZubLt6fmwfp6sX8NzmI/xwOtnq2OYhVdg9qQMAMz6N5YvYRLOxHV87gADqVfXg+2mdAVhX+1Fe++wGcMBkbMTrB9AKqO7jyi8zugGw/YyWqItb4KLgvO4QQghCB0fj6ryI3LxcFMXJAYFsXfnMyIjlxImRNG68AT+/biQkrCArKw5391BCQsbj4hJMek4+3q6uiPw8AHKFit3/3mDQ/bV09/UJoEOHtTT5MoEvJz6MMneNuUA2Kq4xdPkh/k1M55VHGvFcZ10rwEeXH+JKWg4K8LTRyvV/z1EP1SambwsAnvjgZ85dz7T6t38sPJjlw3RVf0es+Y1jCTet/j07Nghgwxhdq8Bxm/7g8LkUq2Nb1fJl1/O6jbcXtx9l77/XzMZ2fkP3t29QzYu9L+nSXObv/oftv182G9vx9QMIAbX83Dn43y4AvLP/NO/vjzMbK7mNlGlFy7S+jSfyTsGx2zJNcN7ofdCPDffO5/NdMWQ0fZAZlwJNZJq+4FnHncloOWgi0/4v4z9MOt8Cjt+WaapbqTwS/z5XLgbwlPNp5j/WrCDkcBVcvYSqTkMYPaNEZNcdbyK6hqD8vUx38EYs7B+N6LQeanRDOb7CUAxSNB2P4hEMiopuSw9wI6MOnt7r2e+Ua5hT/7dvXasf7/nqVPwyJdMmrCHGKCdSyrSyxZ3KNHBMrg3/JhmeXUlYXDYT2+qO6eWaMn41L1uY96nGHgal3x65NqXAUzB+/w3OfX7Q5LOdnphI12VHAMVOubYfUHgwxJ2tk3SfK51c80PpsJ5fuWk0tkBXc3djd8ExY13tt3aAq7suBcRa3rKDhcWE0JjJIdsGsmW5Vhw5qEdR1IQEj9MZ2HqsGdUF8o4CeYeRvKPpeF0nCUXFYweBjuuYnJjOi3aEhSs7V6BERgEqUFTk938WtQ3ni2bAOJwK8uIdkWv//SmVP59dyf/2JHH+djZxkXJttNHt9XKtXhUnOhUcM5ZrPw++LS9LW645HEY+f/58pkyZwtatW83yVpo1a8axY8dKam1W2b9/P59++ilnz55lyZIl9O3blzp16uDp6YlarSYgIID777+f8ePH89lnn5GYmEhERAT79++/62uzhZ+fn8XWaCkpKSa5QYWZMWMGaWlphp9Lly7dzWVWeFR5ubAyWtf65h6hq3AZT8Ll+Rw/Poz4ywsQIt+mQC4cFn758lJcXGrQqNFqs3NJSZ9w48bXuLgEU7duNE2bbqZu3WhytdVY9NUJTlxJR1EUru/eQddpG2gc9Q0zd93+X9UWKJf/Jqbz+/kUXXuvL87DmNnQc5ju8Yvz0HM4qFT8m5h+F94lSXmkOHJNyrSSRVvgscpMNs9ttHSsKNyc1TQN9ib60aZw6Ev49VsYPR2i18GwyRYV0+LJLsG1ax8THDzW7Br9JmK1asP4z3/OU6fObKpVG0adOrP5T9uzBAWNQMm5CXX6Qv1h0Go2ou2roCgoHiGIVrOhy2Zy7pvLhSwfm61ujAnt1rWMFvpR8C6T66p4SJlWNLcSE3W1EhxElZddMgvIyULk51rJWy4wqk+ssa+wWH4mCC0hZnLIdprebbm2xuh88XQ43QbiWt0GYo1HoNVsnVyr0xeyU6HBU/DkudvHW81GWyDv8Agh9745BnlnVhgOUKud7A4LVzur9YtCCQxBO2eNztlijJMa7dy1KMaVzSXWEQ7i6uoqvv32WyGEEPn5+UJRFHHkyBEhhBDfffedcHNzc3TKSkOHDh1Ev379TI6lpqYKRVHEunXr7J4nLS1NACItLc2u8ScT08TJxDSRl5dnOHY1NUucTEwTCSmZFsdmZd0em5SuG3vxenqxx565mi5OJqaJdKOxKbd0Y88lFX/suSTd2JRbWYZj6Vl5tsf+8YsQbRDi3yOGsWeumo69eF03Nim9YN5/j4jMNi7i1E8/FT1WCJH100aR9F4Vcennz4RWqxGJievF/v1q8f33GH4SEtaJrKwLZsd//TVcaDS5IjHxI7Nz//wzXGi1+SI7+7KIi5st/vlnmIiLmy2ysy8LrVYjtBqNyM/NET/+WFuc+/IVs7/9tU83iRttvcThjRtN/vYJR46IyX41xKF9v9z+e2q1QpuXq/s1L1cIrdYw3tbf/t/jceL7qChxMyHB6t+zJD4n+r/nnX5OCv89HRlr8W9fMPZkon3/n+WdkpBrUqbd5lxSujj1008ivaOvEP/qvlv1n7/zv/xskF36sScT08TpjzcJ0QZx7dNNZp/Va5/qzsVu2WTyWb2xfb7I+UAt/ly/+PbnWqsV2rxs3a/5eUKbnSVEfq4QqeeE+HW2EN8+KcTvMUKr1YrszPMlIrtycq5YlZH796tFUtLnOtmWq1u3NjtDaD9bI8SMIUKbeUtoNfm645p8kZenMbyPN7bPF0krq4s/1y82+XteTc0ShzduFMltvXTvjR1/+98PHBbRIBIKdB0p0yo2pSHThHBMrh3a94uY7FdDxB0+bDiWlJ4lDu37RbzsFWD4rBrPG3f49ufYns9rwpEjIhrEiR8Pm30GE44cEVN8g8Whfb/Y9Xk9/8vP4uKDgTr9q4D0rDxxeONGkfign8n/YlFyTS/Tss6fEdr0S0KsUguxkts/azx0E337pOnxlYoQeRk6WWZyHCHO7RJabb5ITDCVXbZk2v79apGS8oPQajUmcu3y5XetyrSidDixZ7MQn60RIitD9xqyMnTPXxkkxO/fC6HVyTtNXo6JvDuzYaFIWlldnNqw0OR9P7xxo7j4YKC4tGOTEJp8Id6frfsOsfbz/myhzc83XJ+WlSO0Go3QXr2su3bWMN2Yq5eFVqMRWTm3xzoi1078eFhM9qshDu8/bHGsJVn183emclg/9sSPt48bf070n9+EI0dKXa45HEZevXp1Tpw4QdeuXc3OxcbGUqdOHQtXSQB69erFokWLSE1NNeQD7dixA5VKRY8ePe7afS3lIlTzcaOaj5tdYwO83Aw5DsUda5wTpsfX082Qk1HcscZ5IXq83NQW12YYm+pseWxyoi7EZuA4alloZ+VOLg38XMF4fcmJ1Cq4Bq/b93RTK7i55SOatiU3t3AhIR2XL79NUNBwGjVaY3Je59EZTZMm683DwqtHAhg82IripOttm6/7+X3lStq+8AIh15Lwqd8SPwvvg5/mFvU8FQKN8r+8goPpNymS8Ca1DbmqKArKmb8hsgPK6oPQuLVhvM2/ffUqNDaqTGnp71kSnxNLf/sS/ZzYMdY4102Pm5WxFZXSkGsVWqZV9QTfB+BACuTngxC3P3+pLiZ9UfWf1SSjb3Jrn9XqbhBY6LiLKp/abvn4VfMyb58T1B6aTbBQ6VdBaTkNF9caNGq42qTAY5GyS2hxUQeZyC4unUXJvkJQgxH4+XW1mAaj7PgAXp+oCx0t6KRA1FoUV3du7l1NlauzSHWbjN/g2SavL4ArOLnl35Zp6D4niqdCVc0tjBsK2frbJyaYqkpSplVsyoOuFurrjF9KPG7q25/NAC838nyd8b5lGs2in9f4c2zP51Ufv1bFTU2whbX5piYS6utsyMMF65/XOj4ukJsE7qb6Vz1PhcDcFJP/xaLkmn5szpV43Go/bB5ibU9hscI50L9HodR+lKDqI/Dz7UTCldUGOaTJTyMo6CmraXqKABenaqZyLSeboCDLMg0U8/FCQfnmY5hdkIY7P/J25xjDG9MYEf4gysYqpHnNMJF3/q5a/LKu4ORqVOAMCt7fJJKc0Hm7B47T9ci2UZNHMapIXsXNRfdLYIiu1ataDfn5KE5OoCjoT4NjsqqKmxq/lHhqeauLHKv/2xeWw/qxxseNPyeJl2+PLW255rCxPWzYMKKjo2ncuDGdOnUCdMXIjh07xmuvvcaECRNKeo02mTdvntVzKpUKHx8f7rvvPjp06HAPV2WZ8ePHs3z5cvr168fMmTOJj49n2rRpjB8/vsL1bSyPZPwbi+eHurxHzw4WwvXcPMyPJSfChzEQ0fd2v2khEK2eQHlgOAgNCeejLebn6MMkmzTZaC6Qg8eiE8j+1K09G8XJFaHJgfxcQ+iWJicXtbs7mqwc/t62jcPLltGob1+0mnzq1nwFQjvb/dpttqMxFvYSSSGkXCtBClqyUNCSBeOWLIoC9cPhUIbBCC+J8D0nn2qW2+dYKiQE6BTWbTrFNGiYmWKqUybB5fpp6taagaL20FUMP7sdxTUAavaEEQ/A1csoqcm6FoRRayGsOeRWMVFA87JyQCsQnfqhXL+iq3xbuDd22jXITgZzHU8iKRZSppU8+toRGUlJeDYucrhduFavATdTIHQYBHWCU6tv5y1rNNBknP2FxW7Ewv6nUTqtx0UdYKp3afJQNBpc0hXzjcL3hkCbTjBoAuTngbMTaAXKzRuwdCou4+eZX7NiGEx5k4zMC/yV8CR1rvShRv/3oNXDOoNXUyDfjXWvAkM499K/uOYXUydTFN13SRE1eSx+rygKnImFyA5QyPkiKRqHje3o6Gj++ecfunfvbuiz3atXL5KSknj00UeZPn16iS/SFm+//Ta5ublkZekq97m5uZGdrcsJcXd3Jy8vD41GQ+vWrfnqq6/sak12t/Dz82Pfvn1MnDiRfv364e3tTWRkJAsXLiy1NUluk5mcjKfRowEhEPVboBzKQOTnodhSco29Q7cuo3ReZ7PVw7Vr23B1rUto6KJCiuk2lIt74L7pUPU+ABQtCK0KodGya+RIjm3fjrO7O3mZOsGrUqsZ9tVXKConuD+6JN4SiaRIpFwrIfQtWQorQQnnIHq9dSNc5XDplduoPXBt2NZC+xzrhYQAg8KqXNyDS8516oYZya5rv0L16ig+DeDoEsi4jOJZAxqPRXjVhJupKA8/ajCcNY9HogqqCYpCzs2b/PTmm2TfuIGbjw9txo/HOTgYJTAEETm71HpjSyoXUqaVPFb1q+KiKLiG1ILV8+GHz+HJydBjhs4pkp0JP38DHR7V9do2lm22Cos1HgtaLUrsr9CsHTiBIhTIEzDuPygn/tDJ2yr+uo1C0OUuv/gWiqIgAAXQarWoAkJQ2vdGeaKZTi/UX2Nk1N76/iNynS4aXo89hnDO0S9xvZP3TaXS1eR5oCvsXGFxA9Mm0vlSLBw2tl1cXPjss8/4/vvv2bt3L8nJyfj7+9OtWze6devm8AIuXbrEpUuXaNmyJZ6ejv8LfvfddwwZMoSoqCgef/xxvLy8uHXrFrt27WLevHls2LCBzMxMRowYwbRp0+64Evqd0qRJE7799ttSXYPEAQo8TUqBkqtYU3Jd3S14hxRExMoiWz2oVGrQZKGs9QK1O4p+11JRIx5aqvsVEIoCru6c/vJLjn/yCQhhYmj3XbsW7+DgO26rJ5E4ipRrd4i1liwNwiFqnc4Inx9peu6jJTrFrNcInKr42p6/cFSOEPgOmAbq2bhoNXAk2r5CQnpuxML3I6HzRpSsqyZGtWg6HhQFofZHuW8WOLtCXg4iLw8EaFw9UFlpQegdEkLErBmonF3RFhjVenmWuut1/G4tJrVQ+KREcjeQMq14pCcmcmTlStqMG3d3C/r5VEVxdtFtPp6O1clO49DrBuE6Y7v+cAiKMPV6N35Wp9udOAUtCgx0rQZO/gnzHtPNV6BvUas+bPwdhk66LYONDG0xdw1KtRpkXLvGb+++y42zZ/EPC6PdlCm49xqBYsOoVVJuUkcBZ+Gtm88OQ1iTdu3O3zuVyiwsnIKwcMndwWFj++LFiwQHB9O5c2c6dzYNU83PzychIYHatWsXOc+qVauIiYnhypUrAPz222+0bt2a/v3706lTJyZPnmzXep5//nlefvllk3ZjXl5ePPXUU2RkZDBlyhQOHz7M7NmzbYacSyRmWPM0GSm5uBbkPfsFWvAOASiEBI+1s9WD0OUZgc7Q7rQWxSOYG9/twT9qMMkvryKw/3Aa9unD5PPnObJiBSlxcfiFhtJm/HidoV3ErqTWJ4D9CdDEJ8DmOIlEcg+x1pLlySlwLd7c0AZDX1Qe6Ip7WCMr8woCHn0C+g8nIC9XZ9QjzKJvzKvzWst5NOLsNgh6GG3jcWibT0ft7kF+dhYqZxcuHPiBtPPnaD54CGpnyM/TcOzjHfjWC6VOhw4I/WtRwNnDw2BQK4piMKoL5yTq1lUyXhUpByWVEa/gYCKiou5qtf1biYmGnsclYmxb2CjUyzSh0egcIEbnDJ7XJ6fA1cvwykAY/Pxtr7fQwB8H4Y1HTY3qV96F+ztD3HHTuU7HQtRIiNmAaNsNxcgI1vaLRAmqxcVDh9jQtauhKwTAoSVLGPzppzTs0wfGzkZRm0flOGu9qZcKKb7et19DgSFsLZJHq/KFI6Dt7ntn76sMC7+nOBx/Vq9ePY4ePWrx3F9//UW9evWKnGPp0qVMnDiRkSNH8vXXXyPE7f4BnTp1YseOHXav5+jRo1aLstWtW5e///4bgObNm1ts5SCRWMSapwluK7nJiTojW1HA2xeOrzTzDikqZ1xcQmjU0Fqrh4JesbV7m7R0EMPOo9QfDooKzc1Uk9AdgwcoKooBmzcTERWFd0hIkYY26Fp8HUi83epLIpGUASy1ZFEU6DEEPltjsy8qO1fgVsPCBrdWC0nxKKvnw6xhKLs+BIQu+mZLPTi6AE6vL7qQkIWWN7r1qdHWfoy/NmxgoacXizw9Wejuwa4RI6jdvj31unTl4JIlfPbMMxxcvJjQ7j2o06EDikpF2q7XYK0nabtetxyJU0JGtTWkHJRURvS1WcpDCzkhBFUffQIOZVD10Sd0dkJhmXbqLxgwzrwtlbHsPPGHTl/r4KX7ycmBX/fpjGjdjXT61dalUK0GzFltPt+3nyB++j+oWp38p2fCgs3kj5pBSnoOt65eNTO0QdeO8eMBA0hPTCT7Uizn/+dJ0mdz7fMeF2w6stZT92h0jdbJT2dsO/kV4121gAwLvyc47Nk2NowLk5OTg6tr0dkEy5cvZ86cOcyePRuNRmNyrlGjRpw8edLu9dSpU4fVq1fTs2dPs3OrVq0yGOLXr18nIEDuYkvsxJqnSU+BksvYKN2uqJPaqndIubCboHoWCglVj9QZ2pe/hZrdEK3noDi5IDS5KCpnm0JZURSuxMayrkMHRh88SHBruSspkZRbtBpdHrYxru46T4wdfVEVZxfwqWo0n4WonHbd4Wbhgmc2qvNaKyQEusibiDXgHszhZctMUlqObdtG0vHj9F27loioKFROTmYh4VqVLxzOdMg7Y82jo/XyhdSCR4lEUu4RWi3pCQkcWbmSG2fPUqt9ex6YMAGxZxOKsUyL+0cX4j1ntWn0jyXZKQRkZcA32+HxMeYVuY082LTtZjGMOys1lcNLl3Lz8mWq1KxJxNy5HIiJMTO09Wjz8zmyYgURc2dTd2+mqQfbHkpg07EyR/Hci0gOe7HL2D5x4gTHjx83PN+/fz+XL182GZOdnc3WrVsJDQ0tcr74+Hgeeughi+ecnZ25deuWPcsCYPHixQwePJhGjRrx6KOPEhgYSFJSErt37yYuLs7gJd+3bx8dO3a0e15JJcbJybKnqTDxcbp8l3YeoM237h0K6Yyy6z+4NH/etJDQ2W0ox96Dnp8DCsk/7SDw9LMkN1hFYIfbaREeBZtEHhY2i/QKrkQiKV+Y5DZWr27ekiUnS+d1KGyEG9MgHIa/rAun3Jd8O1S8cFSO3tPzt4WCZzar845GFBQSUowKCYnGz4JnDf43ciRXY2PNlpV0/Dhe1auTd+FvXPe3NwsJN3hnetrvnbF2jdbbz+TRcLykwi0lEsndxShUXGi1xG7axOdjxhiM2NDu3dEmXsSpcKShVQM5TDfOkuzcuhR6jzA30AG+/QR6Dof2vRGRc1CcXQxh3Iqi4O7nR8ScWYaaEiq1mhtnbeuJKXFxqJxdwcnd5ri7hT6Kp1EljOKx2WXnHmOXsb19+3ZiYmIAnUfNWsVxX19fuwqQ1alTh19//ZUuXbqYnTt8+DANGza0Z1kA9O/fn19//ZXFixeza9cuEhMTCQ4O5oEHHmD79u3cd999ALz33nt2zymp5Gg0lj1NxhQouWg08GaSzpPUeKx171CLSSgHInXKrL4ImqKGTmvBw6jVgoWdTM+CCvqepVhJXyKRlCxmuY2FK9EKYd0LA/DIUJ2Sef0qyqroggKO9eHZueZROXpPj6WCZ4ZiZxsgpDP8++Fto7rJeIRWy8XfTlGz3QxdXnZWJme+/poGfaoT1qMH/2zfbuLZMS7WmL73y+K3qbETrXMA+7+AJuGmm5HFMeglkvJOWfLmFYUhVLz/cKrm5SKEID0hwcTQRlFoMWQITusXW440/HqbLs967lrEs9EoTk6IvFxdVxZLPaXt8GCjUpH6yWtmBRkL15TwGTgD/zDbBXD9QkN1hrkmq6TeNkk5xC5je8qUKTz99NMIIQgNDeXTTz+lVatWJmNcXFyoXr26XZWQx44dS3R0NIGBgQwYMACAvLw8vvzyS15//XWH2yu0atWKjz/+2KFrJBKbKCrLghpMlFxWReuKcESvA48Q6LgafjD3DllsM9F0fIGhfQeteyQSScXAUiXa7EyoXtu8HUyDcJ0M+r8tpt4ZNw+YMM88KicnC3KzrBc8O7sNUo5DxFpEm2gUlRNCq+HK0T/57JneOu+1opi0Gmw+dCj9N26kXteuVos1lkjl3CLQugRyYDc0ipGbkRJJWfLm2aJwqLh//fpEzJ3LkZUrTTbvnN3dUXsUkU5zOhY2v4WyYLNu7oLDirVWWjY82Cbpe9Y2CguOKyoVbcaN49CSJRZDyVVqNW3Gjyfv0r8Ot+uSkTkVC7uMbR8fH3x8fAA4d+4cwcHBuLi4FPumU6dO5eLFizz77LOMGzcOgPbt2wPw3HPP8dxzzxVr3jttIyapHGQkJeGpf2xsZZC1noeFlVytRqfgTn8PDu6GzsOgeifTNhMNI3We79Sc24psfg6K073vFVuedr0lkkqHoRKtXgHM1W1gFzbCh7+s2+wrHAZpLfRcCLhyCZqMM4++0ZNyHOFR3aCpKkBOerrJHMZpK8e2bcO3bl26LFpExNw5qJxdzHKzJRKJxBinKr4WQ8WdPTzoPG+eWVh2XlYW+VlZqG1FGoKuOnhuDrueHo1/WJguPSckBMVGKy2hKAiErrVqwTSOSC5FUfAOCaHvmjWm3nhMI3zS9v2Aq6V6EzYMahmZU7Fw2KVWp04dg6GdmZnJjRs3zH7s4Z133uH06dO89957LFiwgHfffZd///2Xd955x9ElsWrVKmrUqEGdOnXo0KGDocBa//79WbZsmcPzSSoG6YmJ7I+OJj0x0eR4ZnKyyaMJxm0m9J6mL87DmNnQcxjMXadTcre9A7NWwcFbuh+1Gh7qBXOfggP7dL0bu2zWPR7YB0//B61KjaKoYH0AqZ++br+hHRCsK8QWYGogF8dwLk/VSCWSSomikLx7BzzsqXtUFBMjnAWbEQ1bwqcWCjgah54bV9RVFAiqBe7VddE3hSuMF6S0KB7ButY2s4bBymhqNwrl2d9/p/nQoRaXqlKrEVpt0dXFSwF9YSBtJSwMJJGUVdzrNzYNFVcUnD08yMvOJi8z0zwsWwjSLl1CWKo6rsdJjebxSP7atJljW7fyw4IFLKtXj9hNm3RGdEErLRZs1j0GhiCA9Ph4DsxbwM5hwzgwbwHp8fEIrdah16OoVISPGMHk8+fpOHs2LYYNo+Ps2Uw+f57w4cNRVCrybmktVhAv8cridxsruqikaIpVjXzBggWsXLmSxEJGjJ7CFcatERoaavBsF5elS5fy3//+l5deeomuXbvSo0cPwzl9GzF7e3ZLKhaO9Hu0lDukFFJyFWcXXSGi73bCR79ARryu4NDNs7rwzCbjYMFmiBql8zi5uuu8TE5qxJw1KIEhaPPzUOVcB0dqZQQEw7hos8PlJVxMIqkMmBQ8K4nNrMItWQqM8MD3pqB8m2Q9rNJSASBXd93P9uU6r07h6Jum43WG+NyRsGezYSrVR0sQc1bTf8MGko4fNymGpg+RNLQcdCA321aF3JIKn6zMhYEkkjKJuyeuIbX4Zd58Aps2pd2UKbQYMgS1hwf5mZmkXb5Mm/HjTcOyFYUqtWqBszNizmqUwtE8RvrVYSPnmjY/n8/HjKFe1654h4Tocq2zl5EetBDv7pFmnnXQ9cbuu2YN4SNG4ORTDVLte1mGdqxz56Jydkabl4eiVpeZjccSw4oueq+4F5GZJf49XoDDxvbbb7/NW2+9xSuvvMKsWbOYPXs2Tk5ObNu2jdzcXGbNmmXXPBqNhsOHD3P58mWys7PNzo8cOdKueUqyjZikElGo+qVJ7pBxCJJKZa7kdhkAZzab5maDLjwzYg3M2wAtHoTYn6BGKJrHI1ECQ8i+eROn1IsO5+5IJJKyj7XNvRL/8k67rgsvtxZWqS8ANG/j7QJACecgNwduXIOn7ocnJ0OPGTo5mJ+r6z07sq2uJ60xmnyU+ZFoW3ei3eTJfD5mDGAaImlLobTarsuGIWy16nglbmEjkZRrhCCgwJmh0mpo/uSTRMydi7gWryt8dvks6pph+D0+BqV6ME/t28fGrl3RajR4VK2Ks7s7h5cv54Hx49G27oTTZ6sNIeHa/s9C1ersstAZQZufz4n//Y/7J0zAp/80cJ6NlybfvAib0Xi9ge7S8GH41P5NP0VRuPL337Id613kXjiYHHHSOYLDxvaaNWuIiYnh+eefZ9asWfTr14/WrVszZ84c+vbty5kzZ4qc448//mDAgAFcunTJYt9uRVHsNrZLso2YpBJgJPQD8vMQWi2nvvySjwcMsLrDafDcpF3XebYzE8wNbdA9PzAGQrogBk1AGfw8+ZmZHPt4O+4BgTTs3Zu0f77GFdkTViKpLJT4l7cQ5CRcws1aAUfQFQB6eal5VI7+mnljdF5vNw/Yew02vGZuaOvR5OP02WpajpnNuX37zIqg2aIk8w6tGeiyDoVEUobRaiE5AWXnSl00Tsv2BAyaAHs2oSpUuEwfSVOn91NMT0vDSe2EysUVodFQu317dg4bRv1evWgxaoauaJpWw8UfDvJ/kx+12IKw+dCh3D9uHLf0zpS4OB5fu9asCJvJcg29secUS3aVVDtWWy1fLaH18oVUqVuWVRzO2T5//jz33XcfTk5OODs7k5qaqptIpeK5556zq/XXhAkT8PHx4bvvvuPq1aukpKSY/Nib9w2324hZwtE2YpIKjlYLSfEoq+fDrGEoH86DpAQa9OxJ00GDTIcW7HCmJybe3hBy8wBFwIkPLRcYAt3xf1eC0PLZM89wcPFiQrv3oGHv3igqFTnO/uz/AvL9G9zlF1tCyBwdiaTMkXnmxO0CjoXzGJ3UELUWfANN8r9T9v+f6TVC6H7ciqj0CxAfh8rFlQGbNxMxd/btqJ8ygLU6FNIIl0hKD7W7u07n2rMJHqsHaxbA11vBzQPlykWUwhXCQRdJc3iv7vpbN1CtWaDT1VZFU71GNQZu2ULc3r0s9PJikZcXedk5nNu3z6KhHRQeTr8NG4jdvJll9erxw4IFnPzf/1C7utrZG9tFl3pTSlhr+WqtFoXW28/kUVK2cNizXbVqVYO3uHbt2vzxxx+GftnJyclk2rGr888//7Bjxw4iIiIcvb0ZJd1GTFLxMBH6hQS88tESsJKTaByCpM/nVsByr1pj0uNQnNQ8vnatWXXectemppRzdCQSiTmam6mWW4UV6hVrIDvT8jX68HI7Kv2KvByUjf6kGfWd1eNonvW9MIRthRxKQ1wisQ9nD4+iB1nAMzAQkhNMdS5FgR5DYJ2VntkNwiFqHcpXG806LVjS1Y5t306rMWMstt5qN2UK6fHxfBEZaTiXl5VluQhbIXS9sXNR5Zj3xi7tllyyFkX5xOGt6fbt2/Pbb78BMGzYMKKjo5k6dSozZswwFCkrioYNG3Lz5k3HV2uBqVOn8swzz/Dss88SWLAD1L59ex5//HGeeuqpYrcRk1QcLAp9PQU5iSIpgXaTJ+u+WAoMY+MQpAPz5rNz+HC0eTnWe9Xq8Q5F5OeUueq8EomkgqFSIQJDEM9G6yrtPhuNCAwxNbQtXGOozjt/E8LJCQbarvTLwPHkXvrXahE0R6vq2uqKYM1zU5IGsuzKIJHYRghBUHg4MzMyCAoPt5jyaRVFwd3XF3YW6pjg6m47kubJKXAt3rylIRh0NSXlGo+vXUuLYcPIy8zEp3Zt+q5Zg0pt2n2h+ZAhHF2zxtQIF8JgoJuMN0Jf+DEn/qLF8yVZQbwyd0yobBueDnu2o6OjiY+PB2DmzJmkpqaydetWsrKy6N69O8uXLy9yjrfffpvJkyfTsmVLGje21ujYft555x2mTJnC3r17uX79Ov7+/nTt2pUGDcpJqK7k7qEX+h/GWN5JBQhtilPade4bNYpWzzxDfmYmZ/Z+Q4PefYjdvNlkZzS0WzfC+4/ByVqvWkUNTceTe/FfXC0oprYEjNY5gP1fQJPwyid4JRKJ4xiKO65aRdqlS/jUrGla3NEaimJSnbdK90hdeHnhDUl9SHpAMDlHv7wnxR2teW5Ks/tCZVMMJZWbIovGFoGzuzuKWm1uVOdk6bosWIqkKcrrDTqDe+cKqj8bzYDNm9Hm5YKiED5iBPW6duXIihWkxMVRtVEjnD08LIaLH166lPARI3hs9WoT3Q5MCz+mfL/HoaYxxaEye6krWzcdh43tRo0a0ahRIwBcXV1ZtmyZXb2sW7RoYeLhS0xMpHnz5oSEhODr62syVlEU/vrrL4fWVRJtxCQVD6tCX88jQyFmAyQloKyKNlTFbNR/LDipiNu710QYH166lJYjn0JErEE5MMbU4FbUiIJetTmnLSumtgSMR51waBOle5RIJBIrOFXxRWi1RbavMSjGbqahoEKI29V583IQioJSREi6Ju2aw+usKBXEK5tiKKm8OCRXrJCXlYXIzzfvmCAEfLMdHh9jXtyxKK+3nvg4FCcn6BrA9ReWEdh/OChKQeutOaicXdDm5aLVaCyGi1+NjeV/I0fSb8MG6nXpwh+rVpESF2dW+FFzM7Wot0oisRuHje3i0qZNmxILp/3hhx8cGt+xY8cSua+k/GFV6IMuPyhmA/zfFov5QWLOavqtW8e1v/82LcAhgPrD0QRF4GTUq1bTMBKVd00cibYyRip0EonEHtzrNy6yfU3YI4/gWa2aod5E1bxcXSioENa9VsbVy/NyUdTOhrQaW7mK1ozqyuy5kUjKG6JANhTVFss7JKSoichKTcXDUseErUuh9wiYs9pU77Ll9TamRqhONqVdNzms6Fu0vvks119eRUC/YbQZN85iPvexbdu4fuoUT//wAxFRUajUarQF8q68pv1Zi4yUUTllg2IZ29u2bWPHjh1cunTJrEe2Na+0PVXK7aVTp04oimLIITH+5xBCmP2zFO6/LSl/FLtXrS2hb0d+UOH+su2mTOHm5ct8PHAgDzz/PC2enIHa3YP8rEz+3rqN3957j6Gff45Hs4fhArgVitqQSCRlB2typcR7Y5ckioJrSC1+mTffavuapoMG4VG1Kunx8Qajulb79jwwYUKRXquUH/biHzWY5JdX6bxGBeT7N9Apc0PM07OkUS2RlH+EVmtfWyw7nAIZSUl4NGpknp5yOhZiRkP0emjbzTSSRghd/QhrLQ0L6kdkx1+0HuKdrUvfUwq83X3XrDGTdyq1mnZTpuDs7k7K93vwjxrM9ULyrqxizXi2VnxXOnHKBg4b2zNnzmTJkiW0adOGhg0b4uLi4vBNn3nmGebMmUO9evXMzl24cIGYmBjWrl1r9fqjR48afr927Rpjxoyhc+fODBo0iKCgIK5evcqOHTvYv38/a9ascXh9krLHnfSqtSj07cwPcvpsNS1GzdAZ2wVFNw4tXkziH3/w+ZgxfB4ZibO7u0lvxSMrVhARNQcAdz/ZhkEiKatYkysl3hu7JHF1R+XsYrV9jXHLG5N6E927k3bxYpFeK/ewRgaF1WRMMQxq6VWRSO4Od+N/S+XkZF9bLCcnQ8SLNfKzsmx3TFCUgkKNhSJpXN2LrB+RZWc+taJSmeVzWwwXtyDvyirSeC6fOGxsr127lnnz5jF79uyiB1vho48+Yvz48RaN7eTkZNavX2/T2G7ZsqXh90GDBjF06FBee+01kzGPPfYY06ZN44MPPqB79+7FXquk/GNR6F+Ltzs/SO3hgdrdHUVRzItuCGFiaEPBl5HaBZxKr0ejRCKpoORkoc3Ltdq+xlLLG+ONwiK9VnPnlNhSi6MYSgNdIimau2F0WctzNsYvNBStRoPd+XKG7geW01P0od+GSBpFKbKloSP51IpKZZbPXZ7DxSXlE4dbfwG0a9fujm9s7YN++vRpqlatavc8X3/9tVVjukePHuzdu7dY65PcOemJieyPjiY9MbFs3MNI6BO1FqHR2JUflJ+ZSX5WlmM9GvNzQWPeo1EikUjuCCHISbhEm3HjzNvXWGl54+zubrU6rzEpcXGonF103qVSQrblkkhKB0WlsixXCtC3xbKnIrnpxLp8ah721D0W1v8Le5aNdbUFm3WPRbU0xHorLUVRuF5w/+u7d9xzQ7tYLb4CgmFslO7RDuQmZdnGYWM7MjKSLVu2OHyjDz74gPDwcMLDw1EUhWHDhhme638aNmzIyJEjHfJEe3l5sW/fPovn9u7di5eXl8NrLQ7Xr19n/Pjx1K5dG09PT5o3b86KFSvMxiUkJDBw4EC8vb3x9/cnMjKyxHqOlzX0oZi3LBjC1oxkRw10W/ewiJHQz7l8vsj+smLgeLRC0HH2bFo8+STJJ07Y92WUYrlHo0RSXpAyrZQpVEHcmKwzJwz5iMayyJpR7dBGYV6urliRRFIBkXLNOsZ5zoV1HOO2WHpj1dnDuoyyiCPh2kUZ6BbQp7poraW6WEqPsWIIuzdsxvkGEbg3bGb/mq3g0SQcno3SPdpLQDCMi7bb2K7sm5QOfxbvMQ6Hkc+fP5/JkyfTvn17unbtarFt14svvmh2XUhICG3atAHg2LFjNGrUiMBA038IFxcXmjRpwpiCYlT28PzzzzN37lyuXr1Kv379qFatGteuXWPXrl1s3LiRmJgYR19isXjiiSc4ceIEixYtonbt2nz11VdMmDABJycnxo4dC0BeXh6PPPIIAFu2bCEzM5OpU6cybNgwdu/efU/WWVYo9VzJ7Ewyz5zArXMvm/lBSkAwzopiFIKUh+LkZLXohuHL6PQvcARoV75b3kgqL1Km3X0sKQhCCLMK4mZFP2+mWs5HDAtDm59vblQLwbHt22k1ZozF6rxwe6Mwx1bxIYmknCPlmm3syXMWQhAUHs7MjAy0+flmMqpEDZ+7nE9trRaFV7P78Nq6v0TuYS3kX3qj75yiPotlBYeN7e+++47169eTnp7Ozz//bHbemrH9+OOP8/jjjxuez50712LOtqPMnj0bX19flixZwvr16w1VyoODg1m6dCkTJ06843sUxZUrV/j+++9Zt24dTz/9NABdunTht99+Y9u2bQYB/sknn/DPP//w77//GnqV+/n58cgjj/Drr7/Stm3bu75WSQFuHrq8H1sFPArygxQwaSkR2H94kV9GCDedse0qq/NKyh9Spt1drCkIQqu13pbLQs9si/mITk4WW94cXrqU8BEjeGz1atN8bkw3ClPsLD4kkZQ3pFyzD4Nc0bfFys9HcXIqUkahKOXC8LkTrLU5LA6y2NmdYdf3ZRnBYWP7+eef5/777+edd96hYcOGODs7O3zTdevWOXyNLV544QWee+45Ll++TGJiIsHBwdSsWRPVPXqz8/LyAPDx8TE57uPjw61btwzP9+zZQ3h4uEF4A3Tv3h1/f3+++uqrCi/AywIWvUZFFPAwYLTDauvLSCIp70iZdvewpCA88MILeAYGWm3LNfjTT2nYpw9VHx1s5vEu3F82sP9wiy1vrsbG8tno0fRbv57Qbt1sV+d1EOmhkZQHpFyzH0VRuBIby7oOHRh98CDBrVsjtFqLMirl3Dn6rV/PrXJi+NwJss1h2cDaZ9G4jWVZ+tw5bGxfunSJ5cuX06zZnecxFJcPPviAZ555BldXV8MxlUpF7dq1qV27tsVr/v77b5KSkujSpUuJr6dWrVr06NGDRYsW0ahRI2rVqsWePXv45ptv2Lx5s2HciRMnaNy4scm1iqLQuHFjTpw4UeLrkphS1C6YWVXMIrD0ZSSRVASkTCt51O7uVhUEv7Aw6nXpYrEtV9NBg6jfs6dN2aX1CWB/XKbB22IrFFSfl1mS1Xmlh0ZSHpByzXH03VaEEKQnJJjJqKDwcB5ft47YTZvMImaMDR+nKr73eumSCoq1zyKYtrH0DgkpMw4wh83+hx9+mJMnT96NtdjNRx99RJ06dXjxxRf56aefDLuVhUlISGDNmjV069aNhx56iJSUlLu2pk8//ZSgoCCaNWtGlSpVGDZsGG+//TYDBw40jElJSTHLcQddeNKNGzeszp2Tk8PNmzdNfsoS96LqeHFxLmjbpVdyl9Wrxw8LFnBs61Z+WLCAZfXqEbtpE0Kr1X0ZFCM/qHDrL4mkIlCZZdrdwDMw0LKCoCg0GzyYPz780Exx0PfM/nvLFpuySxVc26wwkHH0zYDNm4mIijIY58Wpziu915KKwN2SaxVdpgmtliMrV5rJKIutBgvQGz7piYm4hzVCUsZwsOJ5WcHaZ1GPvo2l0Grv8cqs47Bne9GiRYwaNQoXFxe6detmUSD5+/uXxNqscvjwYXbt2sWyZct45513cHZ2pmHDhgQGBuLq6kpqairnzp3j2rVr+Pv7M2rUKDZt2kT16tXv+N5CCDQajeG5oiioVCpGjx7N6dOn2bJlC8HBwezdu5cpU6bg5+fH0KFD7+ieixcvvmeF3orDPStqZgVrRYYMuUMFHu2idsHkl4GkMiJl2j1AUXDz9eVATIyZDLLVlsseRbZe1654BloOaSwy+saBzUXpvZaUJ+61XKvIMk1RqVA5OZnLqIJWg4cWLy7S8ImYO+cerFTiEPqK5+UMi5/FQqTExaFycrpHKyoah43tBx54AIDxBeFoljAWcHeL/v37079/f86fP8+3337L77//TmJiItnZ2dSpU4cePXrQvn17OnXqVKy8cmscOHCAzp07G55HREQwdepUduzYQWxsLC1atACgU6dOXLt2jZdfftkgwP38/EhLSzObMyUlhVq1alm954wZM3jppZcMz2/evGlzfEWlsFFtV5GhuDgeX7vWrl2wEv0yKKc7hpLKh5Rpdx9nd3dUarVFBcFqWy5HFNmoKJv3dyT6xiMgwORRIimP3Gu5VpFlmtBq0Wo0ZjLK1kahMSlxcaicXcBVll6U3DmWPouF8QsNRavRlBmD22Fje+3atSUWAy+E4NSpU9y4cQN/f38aNmzo8Nx169YlMjKSyMjIEllTUbRp04bffvvN8Nzb25vPPvsMJycnmjdvbjK2VatWrF69mszMTDw8PGjcuDF///23yRghBCdPnrTZW9zV1dUkP72yYcmopiBno6giQ84eHqg3b3boy6BElMxyumMoqXxImXb3ycvKstySC6y25XJIkVWrUbs7pshaq6qr95Jb85ZLJOWBey3XKrpMU1Qqsy4HVjcKC+EXGoo2LxdVKebPlmQVcUnpYumzaIy+jWW5LpCmb5dwp7z//vvMmzePpKQkw7Fq1aoxd+5cJkyYUCL3uBt4e3tz//33mxyrU6cOGo2G2NhYWrZsaTh+5MgRqlWrhkeBR7ZXr15s2rSJ06dP06BBAwD27dvH9evX6d279717EWUcYw924aJmtdq354EJE+wuMuTQl0F+PqqcLItKpjVBLfMYJeUdKdMcIz0xkSMrV+oKlNn5f+/s7k52aqpVBUHflsu4grijsis/K8uh12G1qq6MypFUAKRcK1n0hRVNuhxY2Sg0Jrh1a9pPnw6KCg5lmHRSKC7FMZxlFfGKg8XPYgHGbSzLSnE0KEaBtJJg1apVvPDCC3Tt2pVdu3bx008/sWvXLrp06cILL7zA6tWrS2NZxaZ3797Url2bQYMGsWnTJvbt28d///tfPvroI5M+34MGDaJZs2YMHDiQ3bt38/HHH/PMM8/Qp0+fStFKojC2wsKDwsMtFjVz9vAg7eJF+4sMGX0ZqNSW95YMu2C3Uq2uVS+otYUEtT6PsTRy1SWSu4WUadbR16i4ZUdBSGOZ5ubra1AQCsuipOPHufzLL4SPGMHk8+fpOHs2LZ58kuQTJ2gzblyRsis7NbUkXpoOfVSONLYlFQwp1+4MfZcDg4waNoy8zEx8ate2KNdaDB9O5K+/kp2SwoGYGHYOG8aBefNJj4+/o+JV1vSxe4F0sJQNLH0WO86ezeTz5wkfPrxMebXBTs92eHg4W7ZsoXnz5rRo0cLmboGiKPz1118253v77beZNGkSS5cuNTnet29fAgMDeeONN+5ZWHhJ4O3tzb59+5g1axb//e9/SU1NpV69erz11lu88MILhnHOzs783//9H5MmTeLJJ59ErVYzYMAA3n777VJc/b3HnrDwh6ZOxbNaNVOj2kYOo62QS73X6LHVq80KDZnsgl0o3Sr7EklZQcq04mErKsc/LIx2U6ZYbcml73OtryCuUqvR5uejqFRF7uAnl3KHEImkPCDl2p1jSUahKGZyreZDD1mNQizPLcFkociyg8XvSyenMuXR1mOXsd2mTRs8PT0Nv9/pCzl37hyPPvqoxXN9+vRhxYoVdzR/aVC/fn22b99e5LgaNWqwc+fOe7CisoldYeGKQt/Vq82MalsGta2Qy6uxsfxv5Ej6bdhAvS5d+GPVKotKLjmOhWFKJBUZKdPsx2wD0Uo/7UNLljD4009p2KePVQXBUgXxogx0R0PIJZLKipRrd47FLgcFob0GuVYCXWDKW7FG6fW+9xTZcaOMYJexvW7dOsPvH3300R3fNDg4mJ9//plu3bqZnfvll18Ilh/UCoklBTS0e3ezsHBrRrXNHMYicoeObdvG9VOnePqHH25/GeTloqidy+QumEQiKTmKk2dtL4U3EC1G5RSgzc/n4wEDmHz+PGpXV5bWqWNVQTCuIF6edvAlEknloHCXA4Ph07Ej01NT77gLTHkr1ii93qWHIx03SgOHg9qfeeYZzp07Z/HchQsXeOaZZ4qcY8yYMcyfP5/Zs2fz559/kpiYyF9//cXs2bNZsGBBuQohl9iHKAgTtxQWfnTNGhOBbNWoLiL/+vDSpXjXqGExd0ilVtNuyhSc3d1JPfA1POzJ9d07pLIqkVQCHMmzthe1u7t5XYlt2who3NguJdPN19chBUFRFK7GxrLI05OrsbFSdkkklYD0xET2R0eTXoKy664jhNVWh8bIlmCSyoLDxvZHH31kUkHcmOTkZNavX1/kHLNmzWLixIm8/vrrtGnThpo1a9K6dWtef/11Jk6cyMyZMx1dlqSMI7RaMwXUali4DaNab1A/tnq1fUWGLBRNyFPU7I/LRCtbQEgkkmLiGRhotoF4t9t1QdnfwZdIJCXH3dgovNvYbHVohL4lmEzhk1R0HG79BVjdUT99+jRVq1a16/o333yTmTNncvjwYVJSUvD396dt27Z2XS8pXygqFSonJ4fCwq0VNbsaG8tno0fTb/16Qrt1s7/IkFHIZXFaQMhcHIlEYkBRcPP15UBMjH1ROYUobrsuiUQiKfMIYbPVIdzupJATfxHp15ZUdOwytj/44AM++OADQGcoDxs2DPdCO/LZ2dmcP3+eJ554osj5NmzYQJ8+fahatapZz8IbN26we/duRo4cae9rkJRxhFaLVqOxGRZeWCAbFzWzZFQrhYtx2FFk6E6QuTgSiUSPs7u75TBJO/rO3pV2XRKJRFKGyEhKIqBRoyI7Kdz4/RcOO9gzWyK5mxRuS1wS2BVGHvL/7d15XFTl/gfwz2EZlgGBUVZRXMEFccFUSMUFzaVMRc0l9zLLa5rm1q3QNLVcskxv9gu3UlEsNbfc18SuWl5Tc0sxTdwBV2T7/v7wci4jA8wAAwN83q/XvGrOnPOc55mRz8xzznOe4+OD4OBgBAcHQ0QQEBCgPs98tG7dGp9++qlRM4kPHjwYf+YwzO7SpUsYPHiwaa0gi6dYWRm8X2xuw8JPr12LC9u2wfm/Z5W7r1iBsMhIOPv4QLGyMuoaRg65JKLCltswydwyLeuPzIc5XI5FZC4l8vpfKpHSHj826l7IKTb2Jt8zmyMNyRyy3lXEMyjo6W2JC4lRZ7ZffvllvPzyy+rzDz74ANWqVcv3TnNrQEJCApydnfNdNlmmzDPRzx7lNHZY+PXjx3M8S80ONREVqVyGSeY1Koe366Liknn9b0CXLoU+Kz+RIea4kwJHGlJhe/auIrrq1Z/eveS/J/cKyuRrtrPeBizTo0ePcO3aNVSvXj3HP6CtW7di69at6vM5c+bA09NTb53k5GTs3r0bDRo0MLVaVAJkHuU0dL/YvIaFA0XQqa7gDbwe+fS/RFSm5TWULLdhkqfXrkVgv37w79SJt+siojItt8v6cj1Lzd9kVAQM3ZYYAA7OnIkuUVEIevXVAne4Te5sz549Gw8fPkRkZCQA4MCBA+jSpQvu3buHqlWrYtu2bahuYGjduXPnsHHjRgBP//AOHDgAOzs7vXU0Gg0CAwMxffr0/LSFLNCzP1jzOspZrDenr+ANvDG5aPdJRBYl61CyjLQ0iIjBDnLWYZKGDiAaMyqHiKisMHTCJNez1Cb+JsvP8HIOSS/bDN6W+L8y0tLw49ChqNq27dMz3AU4UG5yZ/ubb77BuHHj1OdjxoxB3bp1MXHiREybNg3vvfceVq9enW27UaNGYdSoUQCAqlWrYv369ahfv36+K06W5dlOdW4/WPOavIzDwomoOORnKJkxwyTNnWn8wUhEZV1+hpdzSHrZZui2xFllpKXh2FdfIWzyZCjW1vnej8md7StXrqBGjRoAgL///hvHjh3Dvn370KJFC6SlpeHNN9/Ms4xLly6ZXlOySIY61fjvkaK8frCyU01ElsDGwaFAQ8kK++4HpuIPRiIiItMYui3xsxIuXoRVATraQD462w4ODrh37x4AYNeuXXByckJoaCgAwNXVFUlJSQWqEJUcz54FqvT883juzTfNfu0DEVFh0rq7Gz2ULDc8gEhEZHk4+ocMMXhb4me4VauGjPT0AnW4Te71NGnSBDNnzsTmzZsxa9YsdOzYEdb/rcCff/6JihUr5rsyVHJkngX6vGpV7J82DSdXrYKtoyOS/vor1x+s9+PjC3U6fQYoERWIosDe1dWooWSSkVHElSOyTLyNGJUkmaN/OAs/ZZXTbYkzWdnYPJ3EuYAnCU3eevbs2YiPj8dLL72EBw8e4OOPP1ZfW716tXqWm0qfzC/XlEePsp8FUhQEvvIKfouKKtIfrAxQIioIWwcHWNnYGD+UjLOJE6m3EXvAzjYRlVBZb0v8bIfbysYGXRYvfjrZaQG/900eRl6nTh1cvHgRd+7cQfny5fVemzNnDry8vApUIbJcD+Ljse+jj9Dy/feznQWydXCAraMjf7ASUYmS+vgxMtLSjB5KhkIcmVOcOCqIiIjKOmPuKlJQJne2M5UvXx4igvj4eHh4eMDGxgb16tUrcIXIsuV0Fij18WOkPnpU5n6wElEJJ4LkxEQEv/EGDs6caXBkTmENJSsOOXWqOakaERGVNffj43Fs0aKnEzf/93vRmLuKFES+fjls27YNzZo1g729PSpXrowTJ04AAIYNG4YVK1YYVcapU6fQu3dvVK9eHXZ2dvj1118BAP/85z+xdevW/FSLikCOZ4FEcHL1ajQcOtTs1z4QERWmh7duFclQMmMV5llnXmpDRET0VE6XwCiKghsnTmC6VosbJ04U6ve9yb2eVatWoVOnTqhatSoWLlyIjCzX31avXh1LlizJs4wdO3agYcOGuHz5Mvr164fU1FT1NVtbWyxcuNDUalFRyXIW6Nkfpb/MmwfnihXx0jffFPoPVg55JCJzSXv8WB1KNiouDi3ffx/1+vZFy/ffx6i4OAT161ekBwnZQSai4sbfXVQWmeOuIiYPI586dSpGjx6NOXPmID09Ha+//rr6Wt26dfHZZ5/lWcakSZPQu3dvLF++HGlpaZg2bZr6WsOGDfHNN9+YWi0qQg9v3UKFgAB0iYrSmyTtxokT2DB4MLouW4Zq4eH5uvahKIY88guEiAwx91AyIqKSgpeaEBUOkzvbFy9eRKdOnQy+ptVqjbrP9smTJzFjxgwAyPYjxtXVFbdv3za1WlSEsp4FMjShQObsfrn9YC3O6wj5BUJUOhm6Fisvto6Oes8VRcH1EyewpEULDD5wAN6NGpmjqkRERFQGmDwuzsvLC2fOnDH42okTJ+Dn55dnGTqdDteuXTP42rlz5+DNM44lQtazQN1XrEBYZCScfXygWFnlee0Dh0kSUWEz5XZEIgLPoCC89/AhPIOCIM9M2miOoWRZ5WeEDUflkLnwvtlEROZhcme7b9++mDx5Mnbt2qUuUxQFJ0+exKeffopXX301zzK6du2KyMhInD17Vq+M69evY/bs2YiIiDC1WmazcOFCvPjii3B3d4eiKFi7dm2O627evBmhoaHQarVwc3ND69atcfXqVb11Dh06hJCQEDg4OMDPzw+ffPJJth95JUlenWpz/2AlItMw0wDJyMD9v//GvilT8H3fvtg3ZQru//03JMscJOaWnwOOPEhJ5lLS75vNXCMiS2VyZ3vy5MkIDQ1Fu3bt1Htqd+zYEfXr10fjxo0xceLEPMuYMWMG3N3dERQUhKZNmwIAhgwZgoCAALi4uGCyBQ3xXb58OW7fvp3j0PlM3333Hbp3745WrVph06ZNWLZsGRo3bozk5GR1nQsXLuCFF16At7c3Nm3ahNGjR+PDDz/EnDlzzN0Ms7PETjXPAhFlV1YzzdbRETYODpCMDJz47jt8XrUq9k+bhpOrVmH/tGn4vGpVnPjuO0hGBmwcHIq7ukRkgrKaa0Rk+Uy+Zluj0WDDhg3Ys2cPduzYgdu3b0On0yE8PBzh4eFGleHi4oJDhw7hu+++w44dO6DT6aDT6TBixAgMGDAAGo3G5IaYy6FDh2BlZYW4uDgsX77c4Dp3797FiBEjMG/ePLz55pvq8i5duuitN2vWLJQvXx7R0dHQaDRo27Ytbt26hY8//hgjR46EnZ2dWdtS1vDabKLsylqmZR0unpGRgfvXrulN7JgpIy0NPw4diqpt20Lr7l5MtSWi/ChruUZEJUe+72XSunVrTJ8+HV9//TVmzpxpdEc7k62tLQYPHoyVK1di+/btiI6OxmuvvWZRHW0AsDLidi9r1qxBeno6hg4dmut6W7duRdeuXfXa2Lt3byQmJiI2NrbAdSUiyktZyjS94eL9+iEjNRXHFi3K1tHOlJGWhmNffQV7V9dcy312UjUiKl5lKdcsGUcUEmVXdDcOzeL555/HwoULcevWreLYfaE7fPgwatWqhWXLlsHPzw82NjZo0KABtm7dqq7z8OFDXLlyBbVq1dLbtlatWlAUJcdJ54iIilpJzzRDw8XPrl8PGzs73P3zz1y3Tbh4EVY2NgaHkuc1qRoRWa6SnmslAeeVIMquWDrb3t7eePfdd1GxYkW88MILWL58Oe7fv18cVSkU169fx9mzZ/HBBx9g6tSp2Lp1K6pUqYIuXbrg1KlTAIDExEQAT29tlpVGo4GjoyPu3r2bY/lPnjzBvXv39B7FhWd0iEq/kp5pWnf3bMPFUx8/RuqjR9BVr57rtm7VqiEjLQ1pjx/rLbeESdWICqosf4ebM9cs6XcaEVmWYulsr127Fjdv3sQ333wDGxsbvPbaa/D09ERERAS+//57PHnypMjrJCJIS0tTH+np6UZvm5GRgQcPHuDrr7/GgAED0K5dO8TExMDX1xeffPJJges2Y8YMuLi4qI9KlSoVuExT8YwOUclSZjNNUWDv6pp9uLgITq5ejYZDh8LKxvB0JVY2NggePhzJ//3BrW7KSdWohCst3+GWmmuW8DutKHG4OJHxiqWzDQBOTk4YMGAANm/ejPj4eHz22We4e/cuevfuDU9PzyKvz759+2Bra6s+2rZta/S2bm5uAIA2bdqoy2xtbdGyZUv1aGnmUdKkpCS9bVNSUvDo0SPodLocy580aRKSkpLUx5UrV4yuW2HgGR2ikqesZpqtgwOsbGwMDhf/Zd48OFesiJe++SZbh9vKxgZdFi+Gs7c3Hma5xElE8pxU7X58PCdVI4tVmr7DLTXXivt3WlHjcHGyFCXhwI/Js5GbQ/ny5fH888/j8uXLOHv2LG7cuFHkdQgODsaRI0fU587OzkZvW7du3Rxfy7ydhFarRaVKlbJd73P27FmISLbrg7Kys7MrttkvM8/oPPtD8+DMmegSFYWgV1/lGR0iC1RWMy318WNkpKUZHC5+48QJrB8wAF2XL0fVNm3w69dfI+HiRbhVq4bg4cPh7O0NxcpKbwi5ZGQYNalaWGSkWdpDVBDGfIcrRkwuZiksNdeK83caUVlWEu48lK+ETU9Px6FDh7BmzRosX74828NYf/75Jz7++GPUq1cP9evXx9KlS9GrVy8cOnQoP9UqEGdnZzRu3Fh9BAQEGL3tiy++CADYuXOnuiwlJQX79u1DcHCwuqxjx47YsGEDUlNT1WWrV6+Gq6srQkNDC6EVhYtndKgsux8fj72TJ+N+fHxxVyVfymymiSA5MRHBb7xhcLj4yehoRDVrBgedDmGRkei+YgXCIiPh7OOTrdOhWFnBytq6QJOqlYSj7lQ6GfsdXpKGlJfZXCOiEsvkM9u//vorunfvjitXrhgMaEVRMGDAgFzLmDt3LqKjo3Hs2DG4uLggIiICn3/+OVq1amXU7RuK0tGjRxEXF6fOnH748GEAgLu7O8LCwgAAjRo1QkREBIYNG4a7d+/C29sbCxYswI0bNzBu3Di1rHHjxmHFihXo06cP3nrrLfz++++YNWsWPv74Y4u75RnAMzpUtj2Ij8e+KVMQ0KVLqRoqVxYy7eGtW6gQEIAuUVHZOhpWNjZoOno0bB0ccPvsWfxf48YYfOAAvBs1ylaOZGQgIz0935OqASXjqDuVTkZ/h5eCf5+lOdfK8qR2RKWByZ3tN998Ey4uLli2bBnq1KmTr+D58MMP0aVLF3zwwQfo0KEDbG1tTS6jqHz55ZdYtmyZ+nzOnDkAgLCwMOzdu1ddvmzZMkyaNAkTJ07EvXv3EBwcjJ07d6JevXrqOjVq1MD27dsxZswYdOrUCe7u7pgyZQrGjh1bZO0xRUHP6BCR5SkLmZb2+DEUKysEvfoqqrZti2NffZXjcPHUR49yLUuxskLwG2/g4MyZBjstOU2qRlTcjP4Ot7YGFKWIamUepTHXsk5ql5GWBhGBUsI/J6KyyOTO9qlTpxATE6MeKcyPmzdvwrGEHKlbunQpli5dmud6Wq0WX3zxBb744otc1wsNDVWPuFq6gp7RISLLU5YyTbGygrOPD8IiI2FlY4OMtDQo1tYm/WBVFAXOPj45niXPnFTt0Z07HC5OFsXo7/D0dKAEDSU3pLTlmmRk4P61azi2aBHu/vkndNWrI/iNNwxe7kJEls3kv1h/f/8C3z+wpHS0y7rMMzqm3iaHiMhSKIqCGydOYLpWixsnTuTrzFDmWfJRcXFo+f77qNe3L1q+/z5GxcUhqF8/KFZW0Lq7c3ZesijGfoez82ZZjLnVIBGVHCYn7GeffYYZM2Zkm6kxL+XKlcOxY8cAPJ3goly5cjk+XFxcTK0WmUHWMzrG3iaHiMgS5TVcPC9Zz5LnNqkakaUw9jucQ5MtR2mc1I6orDN5GPk//vEPXL9+HYGBgfDx8VHvSZhJURT85z//ybbd2LFj4f3fI/5jx45luJcQxl73SERU2imKgusnTmBJixY5TqpGZEmM+Q4ny2HKpHaKtXUR146I8sPkznZwcHC+OsqRWWasnlwKZr4sSwrjukciotKioGfJiYoSv8NLDpMmtSOiEsHkzrYxE1DkpU2bNli4cCFq1aqV7bVz585h+PDh2L17d4H3Q4UntzM6vI8sERGR5eKojJLBlEnt2OEmKhmKZfzQ3r17c5xk7d69e9i/f38R14iMZeiMTuZ9ZDkxEBERkeUqzFEZvP9z4eOkdkSlj8lntgEgMTERa9euxblz55CcnJzt9bxuqQAgx+FLhw4dgoeHR36qRURERERmxPs/m4+xtxosae83R0BSWWZyZ/v8+fMIDQ3FkydP8PDhQ7i7u+Pu3btIS0uDm5sbXFxcDHa2Z8yYgRkzZgB4GiatW7eG1TNH5p48eYK0tDS89dZb+WwOEREREZkD7/9sfqVxUrvMEZBEZZHJne0xY8agadOmiImJgVarxZYtW1C/fn2sXr0a7733HmJiYgxuFxoairFjx0JE8NFHH6FPnz7w9fXVW0ej0aB27dp46aWX8tcasig8kklERFQy5DUsPPP+z8+ecT04cya6REUh6NVXS2RH0BJxUjui0sPkzva///1vREVFwc7ODgCQkpICa2tr9O3bF7dv38bbb7+Nn3/+Odt2YWFhCAsLA/D0zPbrr78OHx+fAlafLBmPZFJJx2sSyyYeKKSyxJhh4cbc/7lq27ZPz3CzQ1goOKkdUelg8iHIJ0+eoFy5crCysoJOp8O1a9fU1wIDA3H8+PE8y4iMjGRHm4gsVtYfn55BQRCR4q4SFSFO+khlhWRk4P7ff2PflCn4vm9f7JsyBff//huSkZFtPWPu//zsdlRwvNUgUclm8pltf39/XL58GQDQsGFDLFy4EO3atYONjQ0WLVpkdCf6woULWLp0aY6TrP3444+mVo2IqMB4TSIRlQWmDAvn/Z+JqLQo6lGLJne2e/fujePHj6N///6YOnUqXnjhBbi5uUFRFIgIli1blmcZR44cQVhYGPz8/HDu3DkEBQUhKSkJcXFx8PX1RY0aNfLVGCKiguA1iSUfh/4T5c3UYeG8/zMRlXTFdScFk381jhkzBnPmzAEANGvWDCdPnsTChQsxZ84cHD9+HP369cuzjPHjx6NXr144efIkRARRUVG4ePEiDh48CEVRMGHCBNNbQkRUAMb8+LwfH88h5RaKQ/+JjGfqsHDe/5mISjJjLpkx13wt+brPdlaVKlXCsGHDTNrmP//5DyZOnKje+itzGHloaCgmT56MiRMn4oUXXiho1YiIjGbsj8+wyZOh8MyNReHQfyLjKVZWJg8LL633fyai0s/YUYvmmtg5X53t1NRUREVF4ciRI7hy5QoWLFiAmjVrYvXq1QgKCkLt2rVz3V5RFGg0GiiKAg8PD1y+fBmhoaEAAF9fX5w7dy4/1SIiyjdek1gyGfMlauPgUIw1JLIskpGRr2HhpfH+z0RUulnCnRRMTsaLFy8iICAA48ePx4ULF7Br1y7cv38fALB//358+umneZZRp04d/PnfH7UhISGYM2cOTp48ibNnz2LmzJmonscXABFRYTPlxydZBmOH/mvd3YuphkSWKb/DwrPe/7n7ihUIi4zkCBIisliWcCcFk9Px7bffhru7Oy5evIhdu3bpXRcXFhaG/fv351nGsGHDcP36dQDA9OnTcePGDdSvXx916tTBkSNHMHv2bFOrRURUILwmseQx9kvU3tW1aCtGZOGyDgt/NvPyGhauKApunDiB6Votbpw4waHjRGSxLGHUosnDyPfu3YtVq1ahQoUKSH/mDI+Xlxfi4+PzLKN///7q/9euXRt//PEHYmNj8fjxYzRr1gweHh6mVouKgLkmDiCyBLwmseQx+kvUxoZDyYmeUdBh4bz/MxFZOku4k4LJnW0bG5scZ3m9ceMGnJycTK6Ek5MT2rVrZ/J2VLTMNXEAkaXgNYkli9FfomlpSHv8uIhqRVRyZB0WbmVjg4y0NCjW1jyoSESlQuaoxYMzZxocBVcUoxZN7myHhYVhzpw56NixozqbeOY9tr/++mu0bdvW4HY//PCDSfvp3r27qVUjIiow/vgsOYz9Ek1OTCz6yhGVEIqi4PqJE1jSogUGHzgA70aNirtKRESFwhJGLZrc2f7kk08QGhqKOnXqoEuXLlAUBQsWLMDJkydx/vx5/Pvf/za4XY8ePYzeh6Io2Yao0/9kjiy4d+9eMdeEqPS6fvw4vuvQAa/+9BO8GjQo8v07OzuXmQ5+QTJNnJzQ5ssvsWXECL3J66ysrdFpwQKIVovr588jGcD9Bw+gzbKP+w8eGFyem/xsQ2QJcvu3e//BA9x/9Mjof9f5/TsoK7lWWL/TmDdEhaNKly4Y/PvvOL54MRLj4uBapQoaDBkCZy8v3H/wIN/lGpNpiuQ0JjwXly5dwuTJk7Fjxw7cvn0bOp0O4eHhmDJlSo4ziV++fNmkffj5+ZlarTLj6tWrqFSpUnFXg4jMKCkpCeXKlSvuahQJZhpR2VBWco2ZRlQ2GJNp+epsU/HKyMjAtWvXzHKE+N69e6hUqRKuXLlS4r8QS0tb2A7LUlTtKCtngADzZhrAf3uWprS0Ayg9bWGuFS5mmnFKSzuA0tMWtsM0xvyNmzyMvDD99NNPOHLkCK5cuYL3338flStXxv79+1GjRg34+PgUZ9UsmpWVFXx9fc26j3LlypXoP7KsSktb2A7LUlraYQmKItOA0vOZsR2Wp7S0pbS0o7gx00xTWtoBlJ62sB2Fx6jO9pAhQ4wuUFEUREVF5brOrVu30LVrVxw+fFg96jB8+HBUrlwZixcvhlarxYIFC4zeJxEREREREZElMaqzvXTpUjg7O6N69eo53vYrkzHDZUaPHo1bt27h5MmTqFmzJjQajfpaeHg4pk2bZky1iIiIiIiIiCySUZ3tkJAQHD58GOnp6ejbty969+5doAnMNm/ejP/7v/9D7dq1s806XqlSJVy9ejXfZVPB2NnZITIyEnZ2dsVdlQIrLW1hOyxLaWlHWVJaPjO2w/KUlraUlnaUFaXl8yot7QBKT1vYjsJn9ARpf/31F6Kjo7Fy5Ur8/vvvCAkJQd++fdGrVy9UqFDBpJ06OTlhzZo16NSpE9LT02Fra4ujR4+iUaNGWL9+PYYMGYK7d+/mq0FERERERERExc3K2BUrV66M8ePH4/jx4/j999/RunVrzJs3Dz4+PujYsSO2bt1q9E6bNm2KxYsXG3wtOjoazz//vNFlEREREREREVmaAt36Kzk5GR9++CHmzp2LLl264IcffjBqu9jYWLRu3RpNmjRBjx498M477+Cf//wn/vjjD2zevBkHDx5Eo0aN8lstIiIiIiIiomJlcmc7PT0d27dvR3R0NDZs2AAbGxtERETgtddew3PPPWd0ObGxsZg4cSIOHTqE9PR0KIqCkJAQzJo1CyEhISY3hIiIiIiIiMhSGD2MfP/+/XjzzTfh6emJXr16IT09HStWrMD169exaNEiozvaKSkp+OGHH+Dp6Yl9+/bh3r17uHr1Ku7fv4+DBw+yo21GCxcuxIsvvgh3d3coioK1a9fmuO7mzZsRGhoKrVYLNzc3tG7dOtvEdYcOHUJISAgcHBzg5+eHTz75JM/Z6s3lzp076u3jtFotAgMD8dVXX2Vb79q1a4iIiICzszN0Oh1ee+013Lt3rxhqnLczZ86gXbt20Gq18PLywvjx45GSklLc1crTjz/+iKZNm8LZ2Rne3t7o1asXLl68mG29qKgo+Pv7w97eHvXr18emTZuKobZPXbhwAcOHD0eDBg1gY2ODwMBAg+slJibi7bffho+PD+zt7VG9enXMmTNHb52UlBSMGzcOXl5e0Gq1aNeuHc6ePVsUzShzmGnMtKLATGOmFSXmGnPN3JhpRZxpYgRfX1+xt7eXbt26yZo1a+Tx48fGbJYjOzs72bNnT4HKINM1bdpUmjZtKgMGDBAAEhMTY3C9b7/9VjQajUyaNEl2794tGzZskHfffVfOnz+vrnP+/HlxcnKSbt26yc6dO2Xu3Lmi0Whk1qxZRdUcPa1btxZvb29ZsmSJ7Nq1S8aOHSsA5Ouvv1bXSUlJkcDAQAkMDJQff/xRoqOjxdfXVzp37lwsdc7N3bt3xdvbW1q2bCk//fSTREVFiYuLi4wYMaK4q5arPXv2iJWVlQwaNEh27Ngh0dHR4u/vL9WrV5dHjx6p661atUoURZH3339fdu/eLW+88YbY2NhIbGxssdR7/fr14uvrKxEREVKvXj2pW7dutnUePHgg9evXl+DgYImOjpY9e/bIokWLsv2bf+ONN8TFxUWioqLkp59+khYtWkjFihUlMTGxqJpTZjDTmGnmxkxjphU15hpzzZyYaUWfaUZ1thVFEY1GI05OTuLs7Jzro1y5cnmWV79+fVm2bFmBK0+mSU9PFxGRS5cu5Rjgd+7ckXLlysnChQtzLWvYsGHi5+cnT548UZdNmjRJXF1dJTk5uXArnof4+HgBIEuWLNFb3rJlS2nTpo36fOXKlaIoipw5c0Zdtm3bNgEgv/zyS1FV1yjTp08XrVYrd+7cUZctWrRIrK2t5e+//y7GmuXujTfekKpVq0pGRoa6bPfu3QJA9u/fry7z9/eXPn366G0bEhIiHTt2LLK6ZpX5tyEiMnDgQIMh/v7770u1atXkwYMHOZZz5coVsba2lkWLFqnL7ty5I1qtVj755JPCrTQx05hpZsdMY6YVNeYac82cmGlFn2lGDSOPjIzEe++9h3fffRdjx47N9TFmzJg8y5sxYwamTZuGo0ePmngengrCyirvj3vNmjVIT0/H0KFDc11v69at6Nq1KzQajbqsd+/eSExMRGxsbIHraorU1FQAgIuLi95yFxcXvaFSW7duRVBQEAICAtRl7dq1g06nw5YtW4qmskbaunUrwsPDodPp1GW9evVCRkYGtm/fXow1y11qaiqcnZ2hKIq6LPNzyfwsLl68iHPnzqFXr1562/bu3Ru7du3CkydPiq7C/2XM38Y333yDIUOGQKvV5rjO9u3bkZGRgZ49e6rLdDod2rdvb3H/xkoDZhozzdyYacy0osZcY66ZEzOt6DPN6M62KY+8jB8/Hnfu3EHTpk3h4eGBevXqISgoSH3Ur1+/wA2j/Dl8+DBq1aqFZcuWwc/PDzY2NmjQoIHerd0ePnyIK1euoFatWnrb1qpVC4qi4MyZM0Va50qVKqF9+/aYPn06Tp8+jfv372PNmjXYvn07RowYoa535syZbHVWFAW1atUq8jrnxVBdXV1d4e3tbXF1zWrQoEE4ffo0Fi5ciKSkJFy8eBHvvfceGjZsqN7SL7P+z7avdu3aSElJwaVLl4q83nmJi4vD9evXUaFCBXTp0gV2dnbQ6XR4/fXX8eDBA3W9M2fOwMPDA25ubnrb165d26I/t9KMmWYZmGmWhZlWsjHXLENJzDVmWtFnmo1ZSs1DcHAwGjduXBy7pjxcv34dZ8+exQcffIBPP/0U3t7eWLBgAbp06YLjx4+jbt26SExMBPA0ULLSaDRwdHTE3bt3i7zeP/zwA1555RXUrVsXAGBtbY358+cjIiJCXSchISFbnQHAzc2tWOqcm5JU16xatGiBdevWoW/fvuqXZ4MGDfDTTz/B2toawNO2Adn//WQGnyW27/r16wCAd999F927d8eWLVtw/vx5TJw4EQ8ePMCqVasAlNzPrTRjplmGklTXrJhpJfNzK+2Ya5ahJNU1EzOt6D+zYulsL126tDh2W2aICNLT09XniqKof0B5ycjIwIMHD7BixQp06dIFANCqVSv4+/vjk08+wfLly81SZ2MZapuVlRUGDx6M8+fPY+XKlfD29saOHTswevRouLm5oXfv3sVY47Ll0KFD6N+/P15//XW8+OKLuHPnDqZOnYrOnTvjwIEDcHBwKO4q5ktGRgYAwN/fH8uWLQMAtG3bFjY2Nnj99dfx8ccfo1q1asVZxVKNmcZMKy7MNDIX5hpzrTgw04pesXS2ybz27duH1q1bq8/DwsKwd+9eo7bNPGrVpk0bdZmtrS1atmyJkydPAvjfka6kpCS9bVNSUvDo0SO9a1cKm6G2vfvuu4iJicGJEydQr149AE+/dG7evImxY8eqAe7m5patzsDTo1yVKlUyW53zI7e6mvP9Lai3334bbdq00bvNQrNmzVC5cmV8++23GDZsmPpvLCkpCV5eXup6mUdSLbF9mXXO+m8PeBrkAHDq1ClUq1atxH5ulo6ZxkwrLsy0kvm5lQTMNeZacWCmFf1nxs52KRQcHIwjR46oz52dnY3eNnNojyHJyckAAK1Wi0qVKmW7tuHs2bMQkWzXeBQmQ23bsGEDrK2ts91zr2HDhvjmm2/w6NEjODo6olatWvj999/11hERnD17Fu3atTNbnfPD0LVJSUlJiI+PN+v7W1CnT5/Gyy+/rLfM19cXFSpUwJ9//gngf9cAnTlzRm8ClDNnzkCj0Vjk2ZTq1avDzs4ux9cz/zZq1aqFGzduICEhQe96IEPXdZHxmGlPMdOKHjONmWYuzLWnmGtFi5lW9Jlm1ARpVLI4OzujcePG6iPrH0peXnzxRQDAzp071WUpKSnYt28fgoOD1WUdO3bEhg0b1NklAWD16tVwdXVFaGhoIbTCMENt8/PzQ3p6Ok6cOKG37rFjx+Dh4QFHR0e1zv/5z39w/vx5dZ1du3bhzp076NSpk9nqnB8dO3bEzp071WuuACAmJgZWVlZo37598VUsD35+fvj111/1ll2+fBm3b99GlSpVAADVqlWDv78/YmJi9NZbvXo12rZtqzdrqqXQaDRo3749du3apbd8x44dAIBGjRoBANq3bw8rKyt8//336joJCQnYvn27xf0bK0mYaU8x04oeM42ZZi7MtaeYa0WLmVYMmWaWG4qRRTpy5IjExMTIwoULBYCMHTtWYmJiZO/evXrrRUREiLu7u0RFRcmWLVukc+fOYm9vLydOnFDXOX/+vGi1WomIiJBdu3bJvHnzRKPRZLtxfFG4d++eVK5cWWrUqCHffvut7Ny5U8aPHy9WVlYydepUdb2UlBQJDAyUevXqycaNG2X16tVSqVIl6dy5c5HXOS93794Vb29vCQsLk23btsnixYvF1dVVRowYUdxVy9W8efMEgLz99tuyY8cOiY6OlsDAQPH09JTbt2+r62XeR/PDDz+UPXv2yPDhw8XGxkYOHTpULPV++PChxMTESExMjLRq1UoqVaqkPr9586aIiBw9elQ0Go307dtXtm3bJl9++aU4OztLv3799Mp64403xNXVVRYvXizbtm2TsLAwqVixoiQmJhZH00o1ZhozzdyYacy0osZcY66ZEzOt6DONne0yZODAgQIg2yMsLExvvQcPHsjIkSPF3d1d7OzsJDQ0VA4ePJitvJ9//lmaNm0qdnZ24uvrKzNmzJCMjIwiao2+8+fPS69evcTHx0ccHR2lbt26Mm/ePElLS9Nb7+rVq9K9e3dxcnISV1dXGTJkiCQlJRVLnfNy+vRpadu2rTg4OIiHh4e8++678uTJk+KuVq4yMjLkX//6lwQFBYlWqxUvLy/p1q2b/PHHH9nW/eabb6RGjRqi0WjUL9XicunSJYN/GwBkz5496no7d+6Uxo0bi52dnXh5ecnYsWMlOTlZr6zk5GQZO3aseHh4iIODg4SHhxtsPxUcM42ZZm7MNGZaUWOuMdfMiZlW9JmmiGS5kzwRERERERERFRiv2SYiIiIiIiIqZOxsExERERERERUydraJiIiIiIiIChk720RERERERESFjJ1tIiIiIiIiokLGzjYRERERERFRIWNnm4iIiIiIiKiQsbNNRpk8eTIURUHFihWRkZGR7fXnn38eiqJg0KBBJpWbmJiIyZMn4/Tp03rL4+LioCgK1q5dW5BqF9i8efOgKIr6fO/evVAUBUePHi2yOkyePBmHDh3KtlxRFMyePbvI6mHI+vXroSgK4uLiAOTvc5s3bx62bNliphoSGcZMe4qZpo+ZRiUZc+0p5po+5lrxYmebjGZra4vbt29j//79essvX76M2NhYODk5mVxmYmIipkyZki3Avb29ERsbizZt2hSozoWtUaNGiI2NRe3atYtsn1OmTDEY4LGxsejXr1+R1cMY+fncGOBUXJhpzLS8MNOopGGuMdfywlwrWjbFXQEqOTQaDcLDw7Fq1Sq0atVKXR4dHY26devC2tq60PZlZ2eHZs2aFVp5haVcuXJ51uvx48dwcHAwe10s8f2x1M+NyBBmGjMtL5b6uRHlhLnGXMuLpX5upRXPbJNJ+vTpg7Vr1yI1NVVdtnLlSvTt29fg+vv370doaCgcHBxQoUIFDBkyBHfv3gXwdBhL1apVAQA9e/aEoijqMBdDQ1wyMjIwbdo0VKlSBXZ2dqhVqxYWLVqkt7/JkyfDyckJv//+O5o3bw5HR0cEBgZi27Ztebbt3r17GDBgAJydneHu7o7x48cjLS1Nbx1DQ5MURcHMmTMxYcIEeHl5wcPDAwAgIpg9ezb8/f1hZ2eHatWq4bPPPsu23z/++APdu3eHTqeDo6Mj6tevj1WrVqllA8C4cePU92fv3r3qa88OTVq0aBECAgJgZ2eHKlWqYNq0aXpDyZYuXQpFUfDbb7+hY8eO0Gq1qFmzJpYvX57n+5OamorRo0dDp9PBxcUFQ4cOxYMHD/TWMfS5/fjjj2jcuDGcnJzg6uqKxo0bq0dHq1SpgsuXL2PBggVq+5YuXQoAWL58OZo3bw6dTgc3Nze0atUK//73v/X2Z8rnvXz5cjRs2BD29vaoUKECOnXqhMuXL6uvX716Fa+++ioqVKgABwcHtGzZEseOHcvzfaGSjZnGTGOmUWnDXGOuMdcsBzvbZJKXXnoJT548wfbt2wEAp0+fxokTJ9C7d+9s6x47dgzt2rWDs7MzYmJi8Mknn2Djxo3o2LEj0tPT4e3tjR9++AEAMH36dMTGxiI2Nhbe3t4G9z1u3DhMnjwZgwYNwsaNG9G+fXsMHz4cX375pd56qamp6NevHwYNGoR169bBw8MDERERuHPnTq5tGzJkCNatW4eZM2di2bJlOH36NObNm2fU+/L555/j3LlziIqKwnfffQcAGDVqFD788EMMHDgQmzdvxqBBgzBhwgR89dVX6nbnz59HSEgIzp8/jy+++AI//vgjBg8ejL/++gvA0+FHADBy5Ej1/WnUqJHBOsyfPx/Dhw/HCy+8gI0bN2LQoEGYPHkyxo8fn23dfv36oX379li/fj0aNmyIQYMG4Y8//si1jZMmTcLChQsxbtw4rFmzBunp6Zg4cWKu2/z555/o0aMH6tati3Xr1mH16tXo1asXEhISAADr1q2Dl5cXevToobavc+fOAJ5+GQwYMAAxMTFYuXIlKleujJYtW+LcuXN6+zDm8541axYGDhyI4OBg/PDDD4iKikLNmjVx69YtAEBCQgKaN2+O48ePY/78+fj++++h1WrRpk0b3Lx5M9c2UsnGTDOMmWYYM41KAuaaYcw1w5hrZiZERoiMjBStVisiIn379pVXX31VRETef/99CQkJERGR+vXry8CBA9VtunXrJpUrV5aUlBR12bZt2wSA/PjjjyIicunSJQEgMTExevt7dvmtW7fE1tZWJk6cqLdenz59xN3dXdLS0tR6ApDNmzdnK+vbb7/NsX2nTp0SRVEkKipKXZaWliZVq1aVrH8me/bsEQBy5MgRdRkAqVOnjmRkZKjLLly4IIqiyKJFi/T2M2HCBPHy8pL09HT1vXR3d5ekpKQc6wZAZs2alevytLQ0qVChgvTu3VtvnUmTJolGo5Hbt2+LiMiSJUsEgCxYsEBd58GDB+Lo6ChTp07NsQ537twRBwcH+eCDD/SWt2zZUgDIpUuXRCT75xYTEyMA5N69ezmW7efnJyNGjMjxdRGR9PR0SU1NlYCAAJk0aZK63JjPOzExURwdHWXYsGE5lv/hhx+Ki4uL3LhxQ12WnJwslStXlnHjxuVaNyqZmGlPMdOYaVR6MNeeYq4x1ywJz2yTyfr06YMNGzbg8ePHiI6ORp8+fQyud+DAAbz88suwtbVVl7Vv3x6urq44ePCgSfv85ZdfkJqaip49e+otf+WVV3Dr1i29I2hWVlYIDw9Xn1epUgUODg64evVqjuUfOXIEIoJu3bqpy6ytrdG1a1ej6texY0e9mTB37twJAIiIiEBaWpr6CA8Px/Xr13HlyhUAwK5du9CjRw+UK1fOqP3k5MyZM7h9+7bB9yclJSXbkJ727dur/6/VauHn55fr+/P777/j8ePHeu9PZvtyExQUBGtra/Tt2xcbN25EUlKSsU3CH3/8gW7dusHT0xPW1tawtbXF2bNnsx0tzevzjo2NxaNHjzB06NAc97V9+3a0bt0aOp1O/aysra0RFhaGI0eOGF1nKpmYadkx0wxjplFJwVzLjrlmGHPNvDhBGpnshRdegK2tLT788ENcunQJvXr1MrheQkICPD09sy339PRUrwUyVuZQlmfLy3yetTwHBwdoNBq99TQaDZKTk3MsPz4+Hra2tnBzczNYfl6eXe/27dsQEVSoUMHg+leuXIGfnx/u3LkDHx8fo/aRG1PeHwBwdXXVe27M+wNAvcbp2fJz4u/vj02bNmH69Ono1q0brKys0KFDB3z55ZeoXLlyjtvdv38f7du3h7u7O+bOnQs/Pz/Y29vjtddey1bPvD7vzCFKub3Pt2/fxuHDh/V+bGSqXr16rm2kko+Zlh0zzTBmGpUUzLXsmGuGMdfMi51tMpmtrS0iIiIwd+5ctG3bNsc/Yp1OZ/Aaihs3bkCn05m0z8z1b968iYoVK+qVlfX1/PL29kZqaioSEhL0Qjyz/LxkPVKaWR9FUXDw4MFs4QIAAQEBAIDy5cvj2rVrBaj5//YHINv7XZjvT2b5ht7/3HTo0AEdOnTAvXv38NNPP+Gdd97B4MGDsWvXrhy3iY2NxdWrV7Fp0ybUr19fXZ6UlARfX1+T6l6+fHkAwLVr13LcVqfToUOHDpg6dWq21+zs7EzaH5U8zLTsmGk5Y6ZRScBcy465ljPmmvlwGDnly2uvvYaXXnoJo0aNynGd5s2bY/369XqzRO7YsQOJiYlo3rw5AKjhltuROgBo0qQJbG1tERMTo7d8zZo18PDwgL+/f36bAgB47rnnADydBCJTeno61q9fn6/y2rZtC+DpkbrGjRtnezg7OwMAwsPDsXbtWty/fz/HsmxtbfN8fwICAuDu7m7w/dFoNGjSpEm+2pGpXr16cHBw0Ht/AOD77783uoxy5cqhV69e6N27t94EH4aO1D5+/Fh9LdOhQ4cQFxdnct1DQkLg6OiIJUuW5LhOeHg4Tp8+jdq1a2f7rOrVq2fyPqnkYabljpmWHTONLB1zLXfMteyYa4WPZ7YpX5o0aZJnuP3zn/9EaGgoXnzxRYwcORI3btzAxIkT0aRJE3Tq1AkA4OXlBVdXV6xatQpVq1aFnZ0dgoKCspVVoUIFjBw5ErNmzYK9vT2aNWuGLVu2YOXKlZg/f36B7xtZp04ddOvWDaNHj0ZycjKqVKmChQsXIiUlJV/l+fv7Y8SIEejfvz/GjRuHpk2bIjU1FefOncOePXvU9y4yMhKbNm1C8+bNMX78eHh7e+P06dN49OiROjNl7dq1sWHDBrRo0QJarRYBAQHqF0Ama2trfPDBB3j77bfh4eGBTp064fDhw/jkk08wevRo9Yhhful0OgwfPhwzZ86Eg4MDGjVqhFWrVuHPP//MdbtFixYhNjYWHTp0gLe3Ny5duoTvvvtO7zqk2rVrY/fu3dixYwfc3NxQtWpVNGvWDE5OThgxYgQmTpyIv//+G5GRkXpHao3l4uKCyMhITJgwARkZGXj55ZeRkZGBPXv2oE+fPmjcuDHGjBmDFStWICwsDKNGjULlypVx69Yt/PLLL/Dx8cE777xj8n6pZGGm5Y6Z9hQzjUoS5lrumGtPMdfMrDhnZ6OSI+sMlzl5doZLEZG9e/dKSEiI2NnZiU6nk0GDBsmdO3f01lm3bp3Url1b7Ozs1NkSDc18mZ6eLh999JFUrlxZbG1tpWbNmvLVV18ZVU8XFxeJjIzMtf4JCQnSr18/0Wq1Ur58eRkzZozMmjXLqBkuDc1AmZGRIfPnz5fAwEDRaDSi0+kkJCRE5s6dq7feqVOnpEuXLlKuXDlxdHSUBg0aSHR0tPr6gQMHpFGjRuLg4CAAZM+ePTnu91//+pfUrFlTbG1tpXLlyjJ16lR1Nk2R/81weevWLb3tDH12z3ry5ImMHDlSXF1dpVy5cjJw4ED59ttvc53h8tChQ9K5c2fx9vYWjUYjlStXllGjRunNeHny5Elp0aKFODs7CwBZsmSJiIhs3bpV6tatK/b29hIUFCRbtmyRsLAw6dy5s7qtKZ/34sWLpV69eqLRaKR8+fLy4osvyuXLl9XX4+PjZejQoWpdfX19pUePHvLzzz/n+r5QycRMe4qZxkyj0oO59hRzjblmSRQREbP36ImIiIiIiIjKEF6zTURERERERFTI2NkmIiIiIiIiKmTsbBMREREREREVMna2iYiIiIiIiAoZO9tEREREREREhYydbTKbuLg4KIqCtWvXmrTd3r17MX369GzLJ0+eDCcnp8KqXp7mzZuHLVu2FFp569evx8KFC7MtHzRoEAIDAwttP4WtqN93IkvGXNPHXCMq2Zhp+phpVNjY2SaLk1OAv/baa9izZ0+R1aOoAtzSFfX7TlQaMdcsC3ONqGCYaZaFmWa5bIq7AlSyiAhSUlJgZ2dX5Pv29fWFr69vke+3rHry5AlsbW0L7X3PLM/Kisf4yLIw18oO5hqVBcy0soOZZvn4TlKuMofNbNmyBfXr14ednR02btwIAIiNjUWbNm2g1Wrh4uKCvn374ubNm7mWt3z5cjRv3hw6nQ5ubm5o1aoV/v3vf6uvT548GVOmTMHDhw+hKAoURUGrVq3U1zKHyDx8+BBarRazZ8/Oto8ePXogJCREfZ6YmIi33noL3t7esLOzQ3BwMLZv355rPatUqYLLly9jwYIFaj2WLl0KAMjIyMC0adNQpUoV2NnZoVatWli0aFGe7+OyZctw6tQptbxBgwbprbN37140bNgQWq0WTZo0wbFjx/ReFxHMnj0b/v7+sLOzQ7Vq1fDZZ5/lut/MfQcGBmLr1q0IDAyEvb09goODcfjw4Wxt/sc//oFPP/0Ufn5+cHBwwN27dw0OTbp8+TJ69OgBFxcXaLVavPDCC/j999+NKi+3Ou7cuRNBQUFwcHBAWFgY4uLicPfuXfTq1QvlypVD9erVsXr16mzbb968GU2bNoWDgwPc3d3x5ptv4uHDh+rrDx8+xD/+8Q8EBATA0dERVapUwfDhw5GUlGSwzgsWLICfnx9cXFzQtWtX3Lp1K8/3mUoO5hpzjbnGXCtNmGnMNGaaBWeaEOVi4MCB4ubmJtWrV5clS5bIrl275Pz583Lo0CHRaDTStWtX2bhxo0RHR0uNGjWkWbNm6raXLl0SABITE6MumzJliixatEh27twpW7Zskf79+4udnZ2cPXtWRESuXLkiQ4cOFQcHB4mNjZXY2Fg5deqUiIhERkaKVqtVy+rdu7cEBwfr1ffevXtib28vX3zxhYiIPHnyRBo3biyVKlWSqKgo+emnn+TVV18VGxsbOXHiRI7t/vXXX8XLy0t69Oih1uPmzZsiIjJmzBixtraWyMhI2bZtm4wcOVIAyPz583Ms78KFC9KpUyepVq2aWt6FCxfU97h8+fJSr149WbFihWzatEnq1asnlSpVkpSUFLWMkSNHioODg0ybNk127NghU6ZMEVtbW/nXv/6V52eo0+mkSpUqsnTpUtmwYYOEhIRIuXLl5MaNG+p6fn5+4uXlJS1atJB169bJjz/+KI8ePcr2vt+7d0+qVKki1apVk5UrV8oPP/wgwcHB4urqKn/99Vee5eVUx/Lly0tQUJBER0fL999/LxUrVpTQ0FAJDw+Xjz76SLZv3y49e/YUGxsbiYuLU7eNiYkRKysrGTp0qGzdulUWL14sHh4e8sorr6jr3Lx5U4YPHy4xMTGyd+9e+fbbb6VWrVrSqlUrvXr4+flJpUqVpH379rJx40ZZsmSJuLq66pVFJR9zjbnGXGOulSbMNGYaM81yM42dbcrVwIEDBYAcPnxYb3nLli0lNDRUMjIy1GWnTp0SRVFk8+bNImI4wLNKT0+X1NRUCQgIkEmTJqnLnw2MnJZv2LBBAMi5c+fUZcuWLRNra2u5fv26iIgsXrxYbGxs1C+BTE2bNpWePXvm2nY/Pz8ZMWKE3rJbt26Jra2tTJw4UW95nz59xN3dXdLS0nIsb+DAgVK3bl2DyxVFkZMnT6rL9uzZIwDkwIEDIvL0C0BRFFm0aJHethMmTBAvLy9JT0/Pdb8AZNeuXeqyxMREcXZ21muHn5+flC9fXh48eKC3/bPv++effy6Kosjp06fVZXfu3BGtVitjxozJs7yc6vjsezB//nwBIBMmTFCXJSQkiLW1tcybN09ERDIyMsTPz0/69OmjV97WrVuzlZdVamqqHDx4UACoPx4y6+zr6yvJycl67be1tc31PaaShbnGXGOuMddKE2YaM42ZZrmZxmHklKfy5cujadOm6vNHjx7h559/Rs+ePZGeno60tDSkpaXB398flSpVwpEjR3Is648//kC3bt3g6ekJa2tr2Nra4uzZszh37pzJ9erQoQNcXV0RHR2tLouOjkbr1q3h6ekJANi+fTvq1asHf39/tZ5paWlo165drvXMyS+//ILU1FT07NlTb/krr7yCW7du5asdAODj44O6deuqz+vUqQMAuHr1KgBg586dAICIiAi9doSHh+P69eu4cuVKruW7uLigTZs2es/Dw8Pxyy+/6K3XqlUraLXaXMs6cOAAAgMDUbt2bXWZTqdDu3btcPDgQZPLy/Tse+Dv7w8ACA8PV5e5urrCw8NDbe+5c+dw+fJl9OrVS+99CQsLg5WVFY4ePapu++2336Jhw4ZwcnKCra0tmjdvrpaRVVhYmN51bnXq1EFqamqew+6oZGGu/Q9zjblGJR8z7X+Yacw0S8LONuUpMwwzJSQkID09He+88w5sbW31Hn/99VeOYXL//n20b98ely9fxty5c3HgwAEcOXIE9evXR3Jyssn10mg0iIiIUAP8zp072LFjB/r27auuc/v2bfz222/Z6jlt2rQ8Q8+QhIQEANnfk8znOV3nkhdXV1e95xqNBgDU9+X27dsQEVSoUEGvHe3atQOAPNvi7u6ebZmnpyfi4+MNtiM3CQkJBtfz9PTM1n5jysuU03tgaHnW9wUAunXrpve+ODo6Ij09XX1f1q1bhwEDBqBJkyZYs2YNDh8+jHXr1gFAtn97eX0WVDow1/TbDjDXmGtUkjHT9NsOMNOYaZaBs5FTnhRF0Xvu6uoKRVHw3nvvoWvXrtnWr1ChgsFyYmNjcfXqVWzatAn169dXlyclJeV7BsU+ffogKioKJ06cQGxsLKytrdG9e3f1dZ1Oh6CgIERFReWr/GfpdDoAwM2bN1GxYkV1+Y0bN/ReL2w6nQ6KouDgwYNqoGQVEBCQ6/aGJo24ceMGvL299ZY9+1nnVJezZ88aLO/Z9htTXkFk7u/LL7/UO6KfycfHBwAQExODBg0a6E2Osm/fPrPWjSwbc+1/mGvMNSr5mGn/w0xjplkSdrbJZFqtFiEhIfjjjz8wbdo0o7d7/PgxAOgF0KFDhxAXF6c3JEWj0eDJkydGldmqVSt4eXlh1apViI2NRceOHeHi4qK+Hh4eji1btsDHx0f9YzZW1qNymZo0aQJbW1vExMSgYcOG6vI1a9bAw8NDHU5jbHnGatu2LYCnR4Rfeuklk7dPSkrC7t271eFJSUlJ2LlzJ0aMGGFyWc2bN8fatWtx9uxZ9YsjISEBO3fuxLBhw0wuryBq1aoFX19fXLx4Mde2PH78ONsX34oVK8xdPSpBmGvMNeYalSbMNGYaM80ysLNN+TJr1iy0adMGr7zyCnr37g03NzdcvXoVO3bswODBg9VbQGTVrFkzODk5YcSIEZg4cSL+/vtvREZG6h11BIDatWsjLS0Nn3/+OUJDQ1GuXLkcjwZaW1ujV69eWLp0KW7evKl3TRAADBgwAIsWLUKrVq3w7rvvwt/fH4mJifjtt9+QkpKCGTNm5NjG2rVrY/fu3dixYwfc3NxQtWpVVKhQASNHjsSsWbNgb2+PZs2aYcuWLVi5ciXmz58Pa2vrXMtbvHgxVq1ahZo1a6JChQqoUqVKzm9yFv7+/hgxYgT69++PcePGoWnTpkhNTcW5c+ewZ88erF+/PtftdTodhg4diilTpsDV1RUzZ86EiGD06NFG7T+rwYMH47PPPkPnzp0xbdo02Nvb4+OPP4aNjU2+yisIRVEwd+5c9O3bFw8fPkTnzp2h1Wpx+fJlbN68GdOnT4e/vz/atWuHESNGYOrUqQgJCcGWLVuwa9euIq0rWT7mGnONuUalCTONmcZMswDFOTsbWb6cZmUUETly5Ih06tRJXFxcxMHBQWrWrCnDhw+XK1euiIjhGS63bt0qdevWFXt7ewkKCpItW7ZIWFiYdO7cWV0nNTVV3nrrLfH09BRFUSQsLExEcp75MjY2VgCIk5OTwdsVJCUlyTvvvCOVK1cWW1tb8fb2lk6dOsmmTZtybfvJkyelRYsW4uzsLABkyZIlIvJ0Zs6PPvpILa9mzZry1Vdf5VpWZj169+4t5cuXFwAycOBAETH8HickJOjtU+TpbI7z58+XwMBA0Wg0otPpJCQkRObOnZvrfjPL37Rpk9SuXVs0Go00bNhQfv75Z731DM3oKWL4fY+Li5Pu3buLs7OzODo6Srt27bLdniOn8nKrY1aZs3weOXIkz3K3b98uYWFhotVqRavVSt26dWXs2LGSmJgoIiJpaWkyduxYcXd3F2dnZ+nRo4ccPnw4279PQ2WvW7dOAMilS5eMagtZPuYac425xlwrTZhpzDRmmuVmmiIiUnRdeyIqaoMGDcLRo0dx8uTJ4q4KEVGhYK4RUWnCTCu9OBs5ERERERERUSFjZ5uIiIiIiIiokHEYOREREREREVEh45ltIiIiIiIiokLGzjaRmTVp0gQLFizI8fXjx49DURTs3bvXLPtv164dPv74Y7OUTURlDzONiEob5hqZCzvbRGa0bt06xMXFYciQIcVWh/feew+zZ89GQkJCsdWBiEoHZhoRlTbMNTIndraJzGjevHno06cPHBwciq0OrVu3hpubG5YtW1ZsdSCi0oGZRkSlDXONzImdbSIzuXTpEg4cOIAePXroLZ82bRq8vLzg5OSE7t274+bNm9m2FRHMnj0b/v7+sLOzQ7Vq1fDZZ59lW2/dunUICAiAvb09mjVrhl9//RWurq6YPHmy3no9e/ZkgBNRgTDTiKi0Ya6RubGzTWQmu3btgo2NDZo0aaIu+/LLL/HBBx+gf//++P7771GtWjUMHTo027ajRo3Chx9+iIEDB2Lz5s0YNGgQJkyYgK+++kpd57fffkPPnj1Rp04d/PDDDxg4cCBeeeUVPHnyJFt5oaGhOH78OG7dumWexhJRqcdMI6LShrlGZidEZBbDhg2TunXrqs/T0tLEx8dH+vfvr7de//79BYDs2bNHREQuXLggiqLIokWL9NabMGGCeHl5SXp6uoiI9OzZU2rUqKE+FxH59ttvBYBERkbqbXvp0iUBIJs2bSrEFhJRWcJMI6LShrlG5sYz20RmEh8fD3d3d/X51atXce3aNXTr1k1vvWeHLu3cuRMAEBERgbS0NPURHh6O69ev48qVKwCAI0eO4MUXX4SV1f/+jF9++WWDdalQoYJaJyKi/GCmEVFpw1wjc7Mp7goQlVbJycmws7NTn2eGp4eHh956np6ees9v374NEVFD91lXrlyBn59fti8IAHB2doa9vX22bTLr8fjxY9MbQkQEZhoRlT7MNTI3draJzESn0yEuLk597u3tDQDZJtm4ceNGtu0URcHBgweh0WiylRsQEKCW9+x1Pffv30dycnK2bRITEwEA5cuXN7kdREQAM42ISh/mGpkbh5ETmUlAQAAuXbqkPvf19YW3tzfWrVunt97atWv1nrdt2xYAcOfOHTRu3Djbw9nZGQDw3HPPYdOmTcjIyFC3Xb9+vcG6ZH6RZIY/EZGpmGlEVNow18jceGabyEyef/55fPTRR7h69Sp8fX1hbW2NiRMnYtSoUfD09ES7du2wfft27NmzR287f39/jBgxAv3798e4cePQtGlTpKam4ty5c9izZ48a0pMmTcJzzz2HiIgIDBs2DJcvX8bs2bNhb2+vd20QABw9ehROTk5o0KBBEbWeiEobZhoRlTbMNTK7Yp6gjajUevLkiZQvX16+/vprdVlGRoZMmTJFPDw8xNHRUbp06SI//fST3gyXmevNnz9fAgMDRaPRiE6nk5CQEJk7d67ePr7//nvx9/cXOzs7CQ4OloMHD4qNjY3MmzdPb72XXnop28yaRESmYKYRUWnDXCNzU0REirm/T1RqjR07Fr/99ht2795dJPvbtWsXwsPDsXfvXoSFhQEAEhIS4OXlhR07dqBly5ZFUg8iKp2YaURU2jDXyJzY2SYyo/j4eNSoUQOHDh1C/fr1C738t956C23btkX58uVx6tQpTJ06FT4+Pjh69Kg6POmjjz7C3r17i+xLhIhKL2YaEZU2zDUyJ16zTWRG3t7eWLp0abaZKAtLQkICRo4cidu3b8PFxQUdOnTA7Nmz9a4D0ul0+OKLL8yyfyIqW5hpRFTaMNfInHhmm4iIiIiIiKiQ8dZfRERERERERIWMnW0iIiIiIiKiQsbONhEREREREVEhY2ebiIiIiIiIqJCxs01ERERERERUyNjZJiIiIiIiIipk7GwTERERERERFTJ2tomIiIiIiIgKGTvbRERERERERIXs/wEsIg5fRXYLigAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1692,7 +1692,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAERCAYAAABrZbQnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACT40lEQVR4nOzdeVhU5dsH8O9h2JQdlURxQ0FUMEtTXEhNRREUcEHQFnPJsmyxnymYuZSgJdWbZllaVi6oKKAouKKhEllZaYqIoCLizuYCDDPP+8cwxzkzA8zgMAvcn+vi0jmcmXlA7znn2e6bY4wxEEIIIYQQQgghRGfMDN0AQgghhBBCCCGksaHONiGEEEIIIYQQomPU2SaEEEIIIYQQQnSMOtuEEEIIIYQQQoiOUWebEEIIIYQQQgjRMepsE0IIIYQQQgghOkadbUIIIYQQQgghRMeos00IIYQQQgghhOgYdbYJIYQQQgghhBAdo842MbjLly+D4zhs3LjR0E0hhNQDxTAhpo1imBDTRjFsvKiz3cScOXMGEyZMQIcOHWBtbY22bdtixIgRWL16taGbZhAXLlzAe++9hwEDBsDa2hocx+Hy5cuGbhYhNaIYFkpISMDIkSPRpk0bWFlZwc3NDRMmTMDZs2cN3TRC1KIYFlqyZAk4jlP5sra2NnTTCFGLYlioY8eOamOY4zh4eHgYunkGxzHGmKEbQfTj5MmTGDp0KNq3b49XXnkFrVu3Rn5+Pn777TdcunQJOTk5BmkXYwwVFRWwsLCASCTS63tv3LgR06dPR/fu3WFubo6///4beXl56Nixo17bQYgmKIZVLVu2DOfOncMzzzyDli1b4saNG/jhhx9QWFiIjIwMPP3003ptDyG1oRhWtWTJEixduhTffPMNbG1t+eMikQgRERF6bQshdaEYVpWYmIj79+8Ljl25cgUffvghZs+eja+//lqv7TE25oZuANGf5cuXw8HBAadOnYKjo6Pge7du3TJMowCDjmCPHTsWxcXFsLOzw6pVq/D3338bpB2EaIJiWNVHH32kcmzGjBlwc3PDN998g2+//dYArSJEPYrhmk2YMAEtW7Y0aBsIqQvFsKqQkBCVY5988gkAYMqUKXpujfGhZeRNyKVLl9CjRw+VDwcAcHFxUTm2adMm9O7dG82aNYOzszPCw8ORn58vOOfixYsYP348WrduDWtra7i5uSE8PBwlJSX8OQcPHsSgQYPg6OgIW1tbdO3aFVFRUfz3a9pncuTIEfj5+cHGxgaOjo4IDg7G+fPnBefIl5/l5ORg6tSpcHR0hIODA1599VU8fPiwzt+Js7Mz7Ozs6jyPEGNAMawZFxcXNG/eHMXFxfV6PiENhWK4ZowxlJaWghZcEmNGMayZLVu2oFOnThgwYEC9nt+Y0Mx2E9KhQwdkZGTg7Nmz8Pb2rvXc5cuXY9GiRQgLC8OMGTNw+/ZtrF69Gs8//zxOnz4NR0dHVFZWYuTIkaioqMCcOXPQunVrFBQUIDk5GcXFxXBwcMB///2HoKAg9OzZE8uWLYOVlRVycnJw4sSJWt//0KFDCAgIgLu7O5YsWYJHjx5h9erVGDhwIP766y+VZd5hYWHo1KkTYmJi8Ndff2H9+vVwcXHBypUrn/TXRojRoBiuWXFxMcRiMW7cuIEvv/wSpaWlGDZsmEbPJURfKIZr5u7ujvv378PGxgYhISGIjY3FU089pdFzCdEXiuG6nT59GufPn8fChQu1el6jxUiTceDAASYSiZhIJGL9+/dnH3zwAdu/fz+rrKwUnHf58mUmEonY8uXLBcfPnDnDzM3N+eOnT59mANiOHTtqfM8vvviCAWC3b9+u8Zy8vDwGgP3444/8sV69ejEXFxd29+5d/tg///zDzMzM2Msvv8wfW7x4MQPApk2bJnjN0NBQ1qJFi5p/GWp89tlnDADLy8vT6nmE6AvFcM26du3KADAAzNbWln344YdMIpFo/HxC9IFiWNWXX37J3nrrLbZ582YWHx/P3nnnHWZubs48PDxYSUlJnc8nRJ8ohuv2/vvvMwDs3LlzWj+3MaJl5E3IiBEjkJGRgbFjx+Kff/7Bp59+ipEjR6Jt27bYvXs3f96uXbsglUoRFhaGO3fu8F+tW7eGh4cH0tLSAAAODg4AgP3799e4zES+zCYpKQlSqVSjdhYWFuLvv//G1KlT4ezszB/v2bMnRowYgX379qk85/XXXxc89vPzw927d1FaWqrRexJiCiiGa/bjjz8iNTUVa9euRbdu3fDo0SNIJBKNnkuIvlAMq3rnnXewevVqTJ48GePHj8eXX36Jn376CRcvXsTatWs1ai8h+kIxXDupVIq4uDg888wz6Natm8bPa8yos93EPPfcc9i1axeKiorw+++/IzIyEmVlZZgwYQLOnTsHQLZ3hDEGDw8PtGrVSvB1/vx5PgFEp06dMHfuXKxfvx4tW7bEyJEj8fXXXwv2mEyaNAkDBw7EjBkz8NRTTyE8PBzbt2+v9cPiypUrAICuXbuqfK9bt264c+cOHjx4IDjevn17wWMnJycAQFFRUT1+S4QYL4ph9fr374+RI0fijTfewP79+7Fp0yZERkZq9FxC9IliuG6TJ09G69atcejQIa2fS0hDoxiu2bFjx1BQUECJ0RTQnu0mytLSEs899xyee+45eHp64tVXX8WOHTuwePFiSKVScByHlJQUteUDFEtzxMbGYurUqUhKSsKBAwfw9ttvIyYmBr/99hvc3NzQrFkz/Prrr0hLS8PevXuRmpqKbdu24YUXXsCBAwd0Vp6gptdhlGiFNFIUwzVzcnLCCy+8gM2bN2PVqlVP2jRCGgTFcO3atWuHe/fuPUmTCGlQFMOqNm/eDDMzMyrbp4A62wR9+vQBIFtyAgCdO3cGYwydOnWCp6dnnc/38fGBj48PPvzwQ5w8eRIDBw7Et99+y6f9NzMzw7BhwzBs2DB8/vnniI6OxsKFC5GWlobhw4ervF6HDh0AABcuXFD5XlZWFlq2bAkbG5t6/7yENDYUw6oePXokmBkgxJhRDAsxxnD58mU888wzDfYehOgSxTBQUVGBnTt3YsiQIWjTpo1OX9uU0TLyJiQtLU3t6JR834Z8qcm4ceMgEomwdOlSlfMZY7h79y4AoLS0FFVVVYLv+/j4wMzMDBUVFQCgdlS6V69eAMCfo8zV1RW9evXCTz/9JCjdc/bsWRw4cACjR4/W4KclpPGhGFalrq7p5cuXcfjwYf7mhxBjQTGs6vbt2yrHvvnmG9y+fRujRo3S2fsQogsUwzXbt28fiouLaQm5EprZbkLmzJmDhw8fIjQ0FF5eXqisrMTJkyexbds2dOzYEa+++ioA2WjcJ598gsjISFy+fBkhISGws7NDXl4eEhIS8Nprr+F///sfjhw5grfeegsTJ06Ep6cnqqqq8Msvv0AkEmH8+PEAgGXLluHXX39FYGAgOnTogFu3bmHt2rVwc3PDoEGDamzrZ599hoCAAPTv3x/Tp0/nyxU4ODhgyZIlOvudlJSUYPXq1QDAl1BYs2YNHB0d4ejoiLfeektn70XIk6IYVuXj44Nhw4ahV69ecHJywsWLF7FhwwaIxWKsWLFCZ+9DiC5QDKvq0KEDJk2aBB8fH1hbW+P48eOIi4tDr169MGvWLJ29DyG6QDFcs82bN8PKyopvN6mmt7znxOBSUlLYtGnTmJeXF7O1tWWWlpasS5cubM6cOezmzZsq5+/cuZMNGjSI2djYMBsbG+bl5cXefPNNduHCBcYYY7m5uWzatGmsc+fOzNramjk7O7OhQ4eyQ4cO8a9x+PBhFhwczNq0acMsLS1ZmzZtWEREBMvOzubPUVeugDHGDh06xAYOHMiaNWvG7O3t2ZgxY1TKCMjLFSiXQ/jxxx81KuMlf291Xx06dNDgt0qI/lAMq1q8eDHr06cPc3JyYubm5qxNmzYsPDyc/fvvv5r8SgnRK4phVTNmzGDdu3dndnZ2zMLCgnXp0oXNnz+flZaWavIrJUSvKIbVKykpYdbW1mzcuHF1ntvUcIxRBilCCCGEEEIIIUSXaM82IYQQQgghhBCiY9TZJoQQQgghhBBCdIw624QQQgghhBBCiI5RZ5sQQgghhBBCCNEx6mwTQgghhBBCCCE6Rp1tQgghhBBCCCFEx6izrYQxhtLSUlBFNEJME8UwIaaNYpgQ00XxS4gQdbaVlJWVwcHBAWVlZYZuCiGkHiiGCTFtFMOEmC6KX0KEqLNNCCGEEEIIIYToGHW2CSGEEEIIIYQQHaPONiGEEEIIIYQQomPU2SaEEEIIIYQQQnSMOtuEmBiJWFzrY0IIIYQQQojhUWebEBPCGENOairW+/oi2tYW6319cSk1lUpsEEIIIYQQYmSos02IiZCIxchOTkZccDAKMjMhfvAABZmZ2BocjIvJyY9nuCUSwzaUEFJ/FL+EmDaKYUJMVwPEL3W2CTERIgsLpC9fDijPYjOG9OhoiCwsgJs3gV69gMOHDdJGQsgTqKgAgoOBlSsN3RJCSH188gkwfjxQWWnolhBCtHXgAPDss0BBgU5fljrbhJiQW2fP1n48JgY4exZ4910aXSfElFRUyG7S9+4Fli4Frl41dIsIIdpYvhxYtAhISgL27DF0awgh2jh4UDbY/e+/Oh/wNtf2CVKpFH///TcyMzNRWFiIR48eoUWLFujatSsGDRqEVq1a6bSBhJDHXLy9UZCZqfY4AODvvwF3d2DfPkAk0m/jCCH1U1EBTJgg62g3awYkJwPt2xu6VYQQNSRisWwlmeLj3buBDz+UHYiJkQ2ckRqp/R0qPCZErw4fBsaOBcrLgTFjgFWrdPryGne2L126hK+//hqbN2/G7du3IRKJ4OjoCCsrKxQXF+Phw4fgOA5+fn6YOXMmIiIiYGZGE+eE6IpELMbzCxdia3CwcCk5x8EvMhKS3FyICgqAo0eBdu0M1k5CSO1UbjTv3ZM9traWzYi98IIBW0cIqYk8SWn68uW4dfYsXLy98fzChfAIDQUXGgo89xywYIGhm2nUavwdBgWB4zhDN480NceOyTrY5eVAUBCwYwdgaanTt9CoN/zaa6+hR48e+Oeff7B06VL8/fffKC8vx+3bt3Ht2jXcv38ft27dQnJyMp5++ml88MEH6N69O06ePKnTxhLSlIksLOARFISIpCS4+frC0tYWbr6+iEhMhEdQEESffQYcOUIdbUKMmNqKAqdOgcXHA5mZwLBhhm4iIaSacmnNyvv38ffGjeqTlH7/PRAZaaCWmgaNE70Soi9t2wItWgCjRwPx8YCVlc7fgmMa1Ax67bXXMH/+fHTu3FmjF5VIJNiyZQtEIhEmT578xI3Up9LSUjg4OKCkpAT29vaGbg4hKlRmxR48gGjxYuCdd6ijDYphYrwkVVXISUlBnJrVKRFJSeg8ahQtpQTFMDEOjDFkJycLZmD9oqLgGRSEtMWLUZSTg7LCQlxNT0fbvn0xPSPD0E02CnXF73pfX7Xb4dx8fel3SBqc2i0MDx/KOtnW1g3ynhp1tpsSusgTk8AYoLjcSioFaNsGAIphYlyUL+ylBQVImTMHWQkJgvPoRvMximFiaBKxGDmpqSoDY17jxiFk40ZY2dnxx4ry8nDkww8xfvNmQzTV6NQVv9G2thA/eKBy3NLWFpFlZfpoImmi1A6gLVwIzwbewkB354SYmvx8oG9f4M8/Hx+jjjYhRkfdkvHCP/9EWHw8vEJDBefWVGmAEKJ/6kpteoWGImzHDlxOSxPE9K0zZzDul18M2FrTwid01fA4IbpQ0xaGuOBgZCcnQ9KA5fq0ntmeNm1ajd8zMzODg4MDnnnmGYwbNw7Nmzd/4gbqG42oE6OWnw8MGQLk5gJ9+gC//y6c4SYUw8QoyGfGtoWGov2gQbBzdZUtOT1+HJN27YKLtzdWe3iASaUAaGZbEcUwMQbRtraoevQI7f38YNe2LfxXrcL1U6cQFxKisg0kPCkJXUaOhEjHiZVMUW3xKxGLcSk1VW2iV9pKQxqaobYwaF366/Tp07h+/Tpu374NZ2dnuLi44NatW7h37x5atWoFGxsb/N///R8WLlyII0eOaLzPmxBSB8WOtrs7sGsXdbQJMVIiCwvknziBORcvwqlTJ/54UV4e/ly3Dl3HjkV7Pz9cOXZMVlEgKorK3xBiRPq+9RZ6z5oliF/X3r3hFRIi3AbCGI5HR6PrmDEGaKVpUUz0mh4dLdgLT9nISUOraQVZQ68s03rt6WeffQZ7e3ukp6fjzp07OHfuHO7cuYNjx47B3t4eX3/9Nc6fPw8rKyt88MEHDdFmQpoe5Y42lfcixOgNi47GrTNnVJacDouOBgA4deokqyiQlCSrKEAdbUKMgqSqSm380jaQJ8dxHDqPGoXpGRmILCvD9IwMdB41ijrapOFcvgxA8y0Mus6Kr/Uy8l69emHevHmYMmWKyvd++eUXrFy5EmfPnsWPP/6I999/H/fu3dNZY/WBlq8Ro0Mdba1QDBNjIBGLZZnH1S05TUxEl4AAvnNNM9pCFMPE0GpKkCaPX9oGUjOKX6IParOKq7uO5ucDS5dCsmYNcg4eVB/TSUnoPGIEVrVujZZeXjqv+671zPaFCxfg6Oio9ntOTk64dOkSAKBz58549OjREzWOEAJgyRJZ5/qdd4CMDOpoE2ICRBYWSI+OFl7UAdmS05gYwU0BdbQJMS7qEqQB4OPXyd0d7f38ZMcUtoEQQhqeuuSjl1JToTx/LBGLZffM69dDZG0Nz6AghCclwc3XF5a2tnDz9UV4UhI8g4Lw2//9HypKShqk7rvWe7a9vLywatUqDB06VJAA7cGDB/jss8/QvXt3AMD169fx1FNP6aSRhDRlkm++ESRdoVkwQkxDTUtLb587p+eWEEK0Vdf+TqdOnSCpqKD9xoTokbpVJ/IOsmKSPXmHXLHM17hNm9Bl1ChBfoWq8nKc+PRTHF6w4PGbMIb06Gh46igPg9Yz26tXr8Yff/wBNzc3jB8/Hq+//jrGjx8PNzc3/PXXX/jqq68AAP/++y8mTJigk0YS0uSUlACMyT4s9u+vc/SOEGJEqqoAqN8f5hUaitlKnW2aESPE+DzVs6fa4/K4Dv7xR9pvTIie1brqZMUKiCwsIJVIkJ+Rge3jx8Pc2hpdx4yBubU11nh54VJqKiQSCf+0Va1bCzva1XSZh0HrzvagQYNw8eJFzJgxA0VFRTh27BiKiorw2muv4eLFixg4cCAAIDo6GqtWrdJZQwlpMvLzgT59ILl7V21NQF0vbyGE6JBYDEREQHL5Mp5fuFBQMcArNBRh8fEo/OsvGkAjxMgoX1Nf3L8fXuPGCU9Ss2ScVpoRol/qOsJeoaEYt3kzAMBMJEL7AQOwoLQUU48exfitWzH16FHMuXgRV0+cgEgk4p/X0stL7Xvosu671p1tAGjdujU+/fRTHDlyBOfPn8eRI0ewcuVKtG7dWmcNI6RJys8H5s8HXnoJopYtcTwmRu3oXXp0NF3gCTE21R1txMdD9MEH8AgMRET1/jAre3sErF6N7L17aQCNECOjbg/olaNHEbZjBwbOn8/v76TKAYQYnnJHWD6QffPff7He1xc7J08Gk0qRe/BgjdVAANkAm/KgOACd52HQOhu5XFFREc6ePYv8/HwEBATAyckJ5eXlsLS0hJlZvfrwRoGyKBKDuXMHkocPIWrfnj9UfPky9s+dK6zpCcDS1haRZWX6bqFJoBgmDaHOzKdiMTB5MhAfD1haAgkJwOjRKuet9/VFQWamyutTNuPHKIaJPtWWeVxxD6j8XOpo147ilzQkiViMS6mp2Fodr5yZGebk5ODWmTOICwkBx3GCx3VVA2GM4WJycoPWfde6V8wYQ1RUFNq1a4fBgwfjpZdeQl5eHgBg3Lhx+Pjjj3XSMEKalJISMGdn5Pz9t2AU7ua//6qt6anL5S2EkNrVmflULAamTHnc0d61Cxg9GoDqEtO6ki4RQvSrtj2gyqvIqKNNiGGJLCzgERTErxrr7O8Pp06d+Oof7f38BI8F1FQD0Ufdd60724sWLcKaNWsQGxuL7OxswT6zsWPHYs+ePTprHCGmSnnpibqlKIrHJM2by5aXhoQIlpfGhYQgOzkZ/qtWgZOvGKEyI4TojUQsrjt3wosvAjt2yDraO3cCgYE1vl5NA2U0gEaI4dAgGCHGS/l+VyqR8B3kKSkpAB7Hqp2rq+CxMnXHlQfRdD2opnVne+PGjYiOjsasWbPQqVMnwfc6d+7M19kmpKnSpP6f4jmbqpez1FXTs7O/P+0ZI0TPNJr16tYNsLCQdbSDgmp8LX3tDyOEaIcGwQgxTmrvqVNSYGYurF4tj9WywkLBY2WGiGmtO9t3795Ft27d1H5PIpFATDcLpAmrcxZMIoFUIsGt//7D9vHjUZCZiWaOjgDqHoWbkpJCZUYIMYA662V/9BFw/TokI0cKvq/ceVZe/kZJlwgxPIlYDL8aBsEGRUVBUllpmIYR0kTJr50arSyDcCD7ano6ivLy4BcVZTQD21p3tj09PXHw4EG13zt69Ci8aRSQNGE1zYINi4mB+4gREIlEMBOJ8JS3NxaUlmLYihVaj8LRDTkh+lVnvWwzM7AWLVRG33PUlPTSx/4wQkgdfvoJ2LYNgOya6hkYiPDERMEgWHhiIjwDAyGytDRwYwlpOuQz2Xtnz9aopjYgHMhu27cvjnz4ITyDghBuJAPbWne233vvPcTGxmLRokU4Wz3af+3aNXz99df46quvMHfuXK1eb9++fRg8eDBatWoFKysruLu7Y+7cuSgpKRGct2fPHjz99NOwtraGp6cnfvzxR5XXqqysxLx589C6dWvY2NhgxIgRuHDhgrY/IiFPRHkWbNiKFRj4wQe4pFSCIPfgQQysLg90/8aN2peXVlXp8SfQHMUvaewkVVW11sveN2cOJJWVyM/IwLbQUGHOheBgZCcnq8yMNfT+MG1QDJMm56efgFdfBV56CSgoAAD8unw5XHx8BINgLt7e2PXSSwZubN0ohkljIamq4meyy4uKANRdU1tOWlWFzgEBmJ6RgfGbN4MzM0MXYxnYZvUQGxvL7OzsmJmZGeM4jnEcx2xtbVlsbKzWr/XLL7+wefPmsfj4eJaWlsZWr17NWrRowUaMGMGfk56ezkQiEZs1axY7cuQI+/DDDxnHcWzHjh2C15o1axZzcHBgGzZsYKmpqczPz4+1bduWFRcXa9yekpISBoCVlJRo/bMQwhhj3/frx5YAbAnAlpmbs8pHj1jW7t1sCcfxx5cAbAnHsazdu1nlw4es7MYNJpVIWFZSElvv68uibW3Zel9fdu3331lVZaXg9ZUfG5KxxS9jFMPkyamLuYLff2frfX1ZjL09K7l2jV37/Xd2LzdXcN693FwWFxoqiPP1vr76bLrWKIZJk/Lzz4xxHGOhoazq5k3Bt+7l5rLDH37I4sPD2Y+DB7OlZmZGH7+MGV8MU/wSbShfb0uuXWNxoaHsx8GDGWPCe+olAIsLDeXvl7/v148tt7Fh3/frxy7s3s2kUqkBfoK61auzzRhjZWVlbP/+/Wzz5s0sJSVF64tpbb777jsGgBUUFDDGGPP392cDBgwQnBMREcG6devGP87Pz2cikYitW7eOP3b37l1mY2PDVq5cqfF704cEeRJVlZXsgkLHOuWddxhjqh8W6m7ED86fr3LzLpVKTeoDhTHDxi9jFMPkyUilUpa1e3edMafuYp+VlMSkEomgwx1ta2ugn6T+KIZJo3TqFGNffcXY+vWy+FWKc5X45Th2Yfduoxrg1hTdRxNToO56K4/DbePHs3u5uSwrKYm/p15qZqZyTHECy1jjVetl5HK2trbw9/fH5MmTMWrUKDg4ONT3pVS0aNECgGw5S0VFBdLS0jBx4kTBOeHh4Th//jwuX74MADhw4ACkUqngPGdnZ/j7+2Pfvn06axshtVFOgNTSywuAZiUIfl+zBqu7dMHGIUOwc/JklF2/juw9e1TKgSknhjA2FL/EVNWajGXPHkgKCoBvvnl8ngal+kwxmzHFMDFlKqU3q6pkWzn69AHmzAGmT0flgwf4e+NG9fEbG4t2AwaYdOJCimFi7Gq63srjcMSnn+LgvHmyvdfV+RSUa2oLKFYIMTLmdZ8C/Pzzz1q96Msvv6x1Q+SZzM+dO4dly5Zh7Nix6NixI86dOwexWAyv6k6LnDwjelZWFjp27IisrCy4uLjAyclJ5bwNGzZo3R5C6kueAMlzzBj+mIu3NwoyM1XOVbwRf6pnT1zLyMCVY8fQYfBg2LVpU+sHiuLrGxrFL2kMai3zFRMDz4wMYORI2Xk1xObxmBhMz8hAez8/XPn1Vz6bsbEnWaIYJo0Bq06ulL58OW6dPYu+b72FYdHRyE5J4Y+5eHvDLyoKYTt2YPuECchKSJA/mY/faSdOQCIWm1TiQophYkrqKnk7PSMDD+/cwfYJE+AfG4vpGRn8KXwlECU1TWwZmkad7alTpwoeyz98mMIvSPEDqT6d7Q4dOqCgOlHFqFGjsGXLFgBAUfUGecfq8khy8g+De/fu8ecpnyM/T36OOhUVFaioqOAfl5aWat120rRJxGLBSJrK48pK+C1ciLjgYOGHikIJApGFBV7cvx+JU6cia9cu2Lm6AtBsRtwYGCp+AYpholt1xpy7u0bndXj+efR//314BgWZxA07xTAxBSrX16oqgDGILCwgEYuRk5rKX2s5MzP0njWLX4Uiv/7KZ8/CExPhv2oVLiQlgUmlAIRxbYwzZLWh+2hiauoqq+kdHg7OzAzNW7YUfP/N8+eRMmfO44Gyasa6kkyjZeRFRUX816lTp9ChQwd8+OGH+Oeff3Djxg38888/WLhwITp06IBMNbN3mti3bx9OnjyJ77//HufPn8eYMWMgkUjq9VraiImJgYODA//Vrl27Bn9P0njIR9EVs4xfUir3I7K0VFuCIDwpCR6BgUh85RWs9/XFlaNHEbZjBwbOn4/y4mIAmpcDMzRDxS9AMUyejPKSU01jrq7zhi5bhi4jR5pERxugGCbGT/l6e2jBApiZmdVYJqi9n1+tS06Px8TAyd0d7f38+MPGdm3VBt1HE2OnyfVWsaxmn9dfR+/XXgMAHFqwgL/PLvzrL4TFx8MrNPTxEw1UQ1sTGnW2FYNowYIFeO2117B06VL4+PjAxcUFPj4+WLZsGWbOnIn58+fXqyE9e/ZE//79MWPGDCQlJSEtLQ0JCQn8yJtyCQP5SJ2zszMA2cib8jny8+TnqBMZGYmSkhL+Kz8/v17tJ01Prfs7k5MhKSvjz+U4TqUEgUuPHtg+YQLObt36+Hl792Loxx9jSkoKJGJx7eXAjOgDxVDxC1AMk/pTvHmPsbdHaUEB/DSIOU1j09iXjiuiGCbGRvkaV3n/Pr/PuurRo8ez1jWUCdJ0hZj8PGO8tmqD7qOJMdPkeqtYVlNxEutyWhqGRUejs7//47Kae/ci4KuvYGVvb9Aa2prQOkHayZMn0bt3b7Xf6927N3777bcnblTPnj1hYWGBnJwcdO7cGRYWFsjKyhKcI38s34Pi5eWFmzdv8h8eiucp71NRZGVlBXt7e8EXIZqodX9ndDREdnaAwkoPxQ+AvbNnY7WHh3AJjFJyB+Vka/IZcWP+QAH0G78AxTCpH+XBssqyMqTMmQPPwECVVSgR1atQ0hYtQrStLdIWLYJHYKDJxaamKIaJoalbNXY5LQ1hO3bAKzRUZda6rLAQgHCmTN0xRfLj5cXFj1ebNYL4Beg+mhgXTa63Vvb2CFi9Gtl799aYNI1PPsoYjkdHw97NDQtKSgxbQ1sDWne2XVxcsG3bNrXfi4uLQ6tWrZ64UZmZmRCLxXB3d4eVlRWGDh2K+Ph4wTnbtm1Dt27d0LFjRwCAv78/zMzMsHPnTv6coqIiHDhwAKNHj37iNpGmSSWrqdLjOvd3dumi9vv//Pwzv0estteTJ1tTnBE35g8UgOKXmAZ1g2VZCQnYPmECXJ99VhBzHQYPxvaJE3Fi5UqIHzzAiZUrsX3iRHQYMsSkYlNTFMPEkOrKUuy/ahXs3NwAPL5mXk1PR1FeHvyioviZMnXHeAqz2FNSUvjVZoV//GGyM9uKKIaJMdHkerugpAT2bdvWmjRNcduH8v2yMQ+SaZQgTVFUVBRmzZqFS5cuISQkBC4uLrh16xYSEhLw66+/Yt26dVq93rhx49CnTx/07NkTzZo1wz///IPPPvsMPXv2REhICABg0aJFGDJkCGbPno2wsDCkpaVhy5Ytgk6/m5sbZsyYgXnz5kEkEqFt27aIjo6Gg4MDZs2ape2PSQgYY6gqLxcEcFV5OczMzfkb6jqzjFeX31D3/bqyk8spf4AY0wcKxS8xZeoGy7ISEnA5LQ3zFWZ3No0ahWsKmVABIGvXLmy+cQPTTpzgjxlTbGqKYpgYG02yFLfz9QXw+FrKpFIceP99hMXHIzwxEcdjYnDr7Fn8uW4dhkVHIyIpCenR0Xw28kGRkbLVKosXoygnB2WFhbiano62ffsKsh6bAophYgpqut7mHT6MBSUlQGUlYGmp8bYPk8qvUJ/i3Hv27GG+vr7MwsKCcRzHLCwsWL9+/dju3bu1fq2YmBjWq1cvZmdnx2xsbFiPHj3YokWLWElJieC8pKQk5uPjwywtLVmXLl3Yhg0bVF6rvLycvf/++8zFxYU1a9aMDR8+nJ0/f16r9pSUlDAAKu9PmpYqsZhJJRKWlZTEvu/Xjy23sWHf9+vHspKSmFQiYVViMauqrGRZSUlsCcexJcDjL45jWUlJrEosVv/alZXswu7dap93YfduVlVZqeeftv6MLX4Zoxgmmvu+Xz9hDAIsLjSUlVy7JjhvuY2NynlLABZta2uglusOxTAxRnXF3G9ffaX2GhwXGsru5eYKXuvhvXusqqJCcOxebi6LCw1tFDFtbDFM8UvUUXe9XQKw9b6+shN+/lmj834cPNjk7pc5xpSHDjUnlUpx+/ZttGrVCmZmWq9IN0qlpaVwcHBASUkJ7TtpYhRLikjEYuSkpAjKhQAAOA7hiYnoEhAAkYUFmFSK7ORkfhTdxdsbo776Cq179aq1HBhjDBeTkwUj7X5RUfAwkTJBxoximGhCIhbjUmoqtiqU5JMnZ8neuxfpy5fD2skJL6akYL2vr9qVKG6+viY3C2YKKIZJXTF3ZssW+EyerPYaPCgqCp6Bgfh97VrcOXcOHgEBKtfWDQMGqKxWUXx9Un8Uv0SZclk+HschPCkJXfz9IbK3h+TiRVz65x/BdZk/LzERLj4+SHjxRQxasMCk7pefqLPdGNGHRNPEGEPl/fuwsrPjj2lyg31owQL0njULTp06CV4re88eQUf6+YULVT4Y6qrPTeqHYphoSj7odTElBVXl5Ri+ciWu/faboE7vnJwc3DpzRu3AW0RSEjqPGkVxq2MUw02buoEwAGpjrvLBA1Tevw/bp57iTxM/egSLZs0Er6d8rdX09Yn2KH6JOowxZCcnIyclBVWPHsG8WTN0CQiAp/zeePVqYNIksFat6pyMMrX7ZY062/Pnz8fcuXPxlMKHWV2Sk5NRWVmJcePGPVED9Y0+JJoeSVUVzMzMkF0d3F4hIRhUXc9P/OCByvlW9vZYUFICqVSKgt9+w8YhQ9BuwADYtWkD/1WrcP2PP+jG3IAohklt6hrkKi0oQMqcOXylAH62W2n2jFaiNByK4aZN8ZqsEnOBgTgcFYXf16x5PJAdGIi/1q/HtYwMmDdrpnYmWxmtLms4FL+kJirX38pKtSUyG9tklEad7YkTJ2Lv3r0YOXIkJkyYgIEDB/LZC+UePXqE06dPIyUlBdu2bcOjR4+wceNGDBs2rKHa3iDoQ6LpUV4y3nHoULxy5IjamW2v0FAErF4N+7Zt+WMVZWVIX74cN//5B1NoyanBUQyTmshH1tOXL4eTuzvGbdrELxlXvOH2DArC9gkTBB3ukZ9/DkeF656pX/yNGcUwUbdqrKK0FImvvoqsXbsen6hmIFvT2GxsN/TGguK3aaornhSvv/yqz6goeIwZ0+gHuDReRv7XX3/hq6++ws6dO/Hw4UPY2tqiZcuWsLKyQnFxMW7fvg2pVApvb2/MnDkTM2bMgLW1dUO3X+foQ6JpUuwgc2ZmmFtQgOunTiEuNBTtBw2CnasrnLp0wdClS1VuzpWXiNc0I25pa4vIsjK9/lxNEcUwUUdSVSUbVAsOBsdxtS4PD09MhIu3N1Z7ePAl+toNGCDIPE4aDsUwyfjiC/R54w1YKNxHKq86kaOBbONC8dv0qO1IK9wb17Znuyms+tR6z/bDhw9x8uRJ/PHHHygsLER5eTmcnZ3RtWtXDBw4EB4eHg3VVr2gD4mmSbmDLF86WvngAb+PW9MPC5rZNiyKYSJX0xLxR/fuYerRo3XG6sYhQ3Dl2LEmc0NgLCiGibqbd3WrTgAayDY2FL+Nn0pCYTX3xl7jxiFk40b+Hrop3xtrXWe7efPmGD58OIYPH94Q7SHEIGqqe3356FFBVuKaan+mR0fDc8wYSKqq8PzChWoTr/hFRdEyNUL0hDGGnNRUlZv1sPh4/PbllwDU1/1UPO7UqRMkFRW0l5MQPVJ3816QmYm4kBCEJybCf9UqXEhK4ledmFS9XUJMnOK1taZ7Y6/QUITt2IHsvXtR8PvveOHjj+u83so1xvvkxlGvi5AnIO8go/pGmjMzg39sLLKTkxEXHIyCzEw0c3QEUPfNucjcHB5BQYhISoKbry8sbW3h5uuLiKQkeAQFNboPEEKMkUQsFsSv+MED/mY9OzkZPSZNAlDzTbr8ePCPP2J6RgY6jxpFHW1C9ERkYVHjwPbxmBg4ubujvZ+f7JjCQDYhpGEpX1vV3RtzZmYIXLsW2Xv3Ii44GFfT0wHUfb3dFBCA9b6+uJSaisZWKIs626RJUrwwi8zN0XnUKMzMzESfN97AC8uXw6lTJxxfsYK/2JcVFgKo+8MCADiOQ+dRozA9IwORZWV0s06IntV1s27fti3KCgvhFxXFD7Lx1Ny80yAZIQ1PMeY0WXVCA9mE6JfytVXdvXGHwYNh27o1f97V9HQU5eXVeL0dFBUF8aNHyDt0CAWZmdgaHIyLycmNagCNOtukyZEvgVnv64toW1us9/XFzb//xlO9eiFw7VoMWrAAADB+yxZ4hYYCQN0fFpGRtd6c040AIQ1L+cJc1836uZ074RkUhHBahUKIwcmvy3tnzwZAq04IMVaK19ar6em4f+OGYHVoxyFDBOcxqRQH3n9fdr1NTBRcb8MTE+EZGAiLZs3QbuBA2YtWb81sTNdg6myTJkXd8lK7Nm3g2ru3agf8338RFh8Pr9DQuj8s6OacEINRvFE/vnIlgLpv1vu99RY4MzO4Dx9Oq1AIMSDF6/Kf69bVOQtGq04IMRzla6vI2hoe1QPXfd54A6179VI5LyshAdsnTICLj4/geuvi7Y1dL70EALBzdeXPr2mw3FRRZ5s0KcpLYNTtz1be3+m/ahU4MzPZh8XEieg4dKjKh0Xhn382qiUvhJgKiViM63/8ARdvb9nKlPnzIRGLBSPtPIVVKH///DM2DhmCFQ4OyD95EtKqKgB0806Ivilel2sd2E5KooFtQgxI+draYfBgWNrY4N6lS3AfMQKBa9ei69ixkIjFKgNmWQkJWO3hgasnTkBaVYXU997Dag8PFOfmAni8JB1ofEkP693ZLioqQnp6OrZs2YKioiIAQHl5OaTV2SEJMVaKI2bt/fzg1KkT0qOja03G0tnfH26+vnhm6lRY2tjgz+++Q9Krr2Lv7Nm4/d9/cO3Th24ACDEAkYUF2vTujVtnzvArU9IWLYJHYKBKokLFVShVDx9CUlGBSTt3wq1/f5iZa12cgxBST7Vt+6hpFqzLyJG06oQQAxJZWPBJgPu88Qb6vfMORBYWcHZ3R+6BA1jv64sYe3tUlJaqHTCbtGsX2vXvj4d37uD3r74CYwyDIiNRlJvLJ1JrjEkPta6zzRjDwoUL8dVXX+Hhw4fgOA6nTp3Cs88+i9GjR6Nfv35YvHhxQ7W3wVF9wMZPsdafd3g4xm/dqlJnW065fqdELAY4DiKFG/PGWKbAlFEMNy0SsRg5KSmICwmptcYnABTl5uLP777D8BUrBM+n+DUuFMONm2IN7V5Tp6LP66+rrcHLmZmh96xZCFy71kAtJfVB8dv4KV83K8rKkDh1KrJ27QJQXforPh6VDx4IrsEVpaWwtLXFrpdeQnFurqysZmAgDkdF4dTXX/MlOhtbqU2tZ7YXLVqENWvWIDY2FtnZ2YL07GPHjsWePXt02kBCdEl5CYw2WcYB2aieSGkGjG7UCTEckYWF2pUpWbt2YfOoUQCAY8uWYeOQIVjt6Yl2AwdCUlkpeD4hRD/k+7O3hYbC3NoaV0+cgKSyEn5qtn0wxtAlIEAQr4QQw2KMoaq8XOV42I4dfFJh+eqUitJSwTlmFhbgzMwwfvNmPkeKVCrF8BUrGnXeFK072xs3bkR0dDRmzZqFTp06Cb7XuXNnXLp0SWeNI0RX5MtRFJfAuPn64sbp0ygtKFB7oW+MS1kIMUXKMahp5vGb//4LACjOy5MtGU9IkC0jt7RsmIYSQmolsrBA/smTmHPxIqYePYpxv/wCkaWl2soA/B5tildCjIKkqgpgDJfT0gQJhS+npQEAAteuBWcm61pmJSRgbffuAIA/1q3D3tmzkXvokGCStqlMYGm9Se3u3bvo1q2b2u9JJBKIqWNCjIw8U3H68uW4dfYs+r71FvwWLoTnmDH8OXZt2iA8KQnHo6Nx6+xZuHh7Y1AjXMpCiKlRjl8Xb288v3ChIDZdvL1VlqDKjwOyMkEAIKmspHgmRM+Ul5wOXbYMN/7+GzsjIviYHr16NbqMGoWuCtflqooKQzSXEFKT6i0gitu25AmFwxMT0SUgAB0GD+Y7362qO9t9Zs0C0HSvwVrPbHt6euLgwYNqv3f06FF4N7IMcsS0qSv1dWLlSqx0csLVEydw/+ZNlBUW8tmMBVnGe/RA4R9/0Mw2IQaiLn4LMjOxNTgY2cnJKL12DcWXL9e4MkWlTBDNkBGiV/LBMsVZsJzUVLTp3Rt2bdrwMf19v37ISUnBg9u3kbl6NVLffRcxdna4mJxM12BCjERN27bkCYVFFhZ8nW11q0Ob6jVY6872e++9h9jYWCxatAhnq5fuXbt2DV9//TW++uorzJ07V+eNJKS+lEt9yTGJBAf/9z/YPvUU7FxdkTJnDlZ36YKNQ4ZgZ0SEbH+nhwdS3n67US5pIcQU1BS/YAzHo6Nh7+aGvzZsgGdgoGqZoMREeAYGUvwSYiA1DZbFVQ+WyctqAuBv1m1atcL5nTuR+X//B6lYjPToaIphQvSovtu25MdFlpZw8/VFRFISPKhUH4B6LCOfOnUq7t27hyVLliA6OhoAEBISAhsbG3zyyScICwvTeSMJeRJ1fTDI/86kUlw5dkyj5xJC9KOu+C3KycH2CRPgHxuL6RkZ/PeLcnNxOCpKkHmcEKI/tQ6WxcRgekYG2vv58dddeUzbubryp9I1mBD90cW2rUELFmDQggWQiMVNcsm4OvWqsz137lxcv34dKSkp2LRpE/bt24dr167RrDYxSppkGtc0GzkhRL/qis2ywkJkJSRgdZcu2BwQAECWfXy1pyfaDRhAS1AJMaC6BssUO9aKMa18jBDSsGpaiXJ640ZU3r/Pn/O8hgmFaUb7Ma072z///DPu3r0LW1tb+Pv7Y/LkyRg1ahQcHBxw7949/Pzzzw3RTkLqRSIW15lpXJsPD0KI/tQWv4OiolBVXg67tm3RYfBgAEB5cTEA4P6NG5i0a5cskzFd8AkxGE0GywDwMS1+9Aj5J07wx+gaTIh+qFuJ4hUairAdO/js44mvvAKPwEC+oo982xYtGa8dx5jy+p7aiUQiZGRkoG/fvirf+/PPP9G3b19IJBKdNVDfSktL4eDggJKSEtjb2xu6OaQOyllOlR8DsmUxF5OTka6QadyvOtN49p49KDh1CkOXLkX23r2CbOR+lI3cJFEMmzblGGaMIXvPHhyPiXlcKSAyEp5BQY/3ewIoysvDozt38FSvXhBZWKAoNxeP7t7lHxPTQTHcOEjEYlxKTcXW4GDhUnKOQ3hSElyfeQZre/RAq+7dBTG9OSAA5cXFdA02URS/piva1hbiBw8AAJyZGebk5ODWmTOC7ONeoaHwj42Fk0L5Z0llZZNNfqYJrfds19Y3Lyoqgp2d3RM1iBBNabK3RK7DkCGCUl8VpaUAYzi7bRuKc3PhNXasStkR2m9CiH6pi+mA1avRJSAAXceO5c+7f+MGHty+DdunnuKPNW/ZEo4dOyInJQXZycnwCAigG3VCDInj4FGdvFDtYBnHYUFJCQBZjoVdL72E8Zs3Y0pKCgC6BhOib4r7sdv7+cGpUyfsjIgQDJZlJSTgQlISes+ahcC1awE03SzjmtKos52SkoKU6g8/AIiNjcVTCjc5AFBeXo4jR46gV69eOm0gIYoUZ704joOLtzfs2rRBQWYmXxIoIikJnUeNgsjCAhKxGDmpqdgWGor2gwbBztUVZYWFuHr8OMITEhCycSN/nvLsF82GEdLw5LEnj9U4hVmwgsxMrO/XD+GJiWjTpw8OzJsHJ3d32UoUNatVPIOC4O7vD4/Ro+lGnRADE5mb48/vvoP7iBEqyQuPLFyIYdHROLZsGfKOHMHV9HS0VVoxSddgQvRHUlWF5xcu5FeiyPMpqMu7wKRS/PvLL3xnm9ROo852dnY29uzZA0DWwUlPT4eVlZXgHEtLS3h7e/MZygnRNXWzXn5RUQiLj8f2CROQlZAAMIb06Gh4jhmDgx98gBGffor05cvBJBKVTOPy8wC6qBNiCPKYzklJQeDatXVmLr5fWIgXPvlElsRFYVlbQWYm4kJCEJ6YiC7VSdIopgkxDMXB696vvYaivDwcWbQIRTk5ssHu9HRYNG+OYdHRuHP+vOzaXL1nm5ajEqI/irEqMjdH51GjMDMzEylvv83nQKkr+zipm0YJ0t555x3k5eUhLy8P7du3R0pKCv9Y/nXhwgUkJiaie/fuDd1m0gTVlCVx27hxyM/IQOA336Dj0KHgzMz4UTifKVMAAHeystS+JpUUIcRwFGO6vKgIgCwmOTMzdBg8GN7h4egweLAgpjv7+8OpUyekR0fX2CmnTjYhhiMfQFvv64toW1us9/XFrTNnMHTpUlRVVODKsWNgUil/o15eXAw3X1+EJyXJEhpSR5sQvVAXq5dSU+Hapw+mZ2RgSkpKrQmEB0VGUvJCDWmdIK2xo8QOxmu9r69gdE1dkoaivDz8uW6doLZuVXk5fvu//8PhBQsEr+fm6ytY2kYaB4ph0yGP6Q6DB2Pq0aM4tGABes+aVWdMKyZxUWRpa4vIsjK9tJ00HIph06RuKwgAWUK0xES4eHtjtYcHGGOC7V4AJVhqTCh+jZPiLHZtsRqRlITOI0dClJAATJoEJpUiOzm5ziSlpGZaJ0iTy8nJQXZ2NsrLy1W+N27cuCdqFCGAalZixZlor9BQhMXHIzs5GTsjIgTLyodFR+PhnTv4P3d3tOreHX4LF2LgBx8AwOMOt0JJEZoJI+TJaVIZQJk8pq+mp+P+zZsYFh1dY0xLqqogMpddsmhZGyHGR13pIACCrSC9Z81Sm7yQOtqENBzFbZjWTk54MSWlxljlt1haWkJy7x5uXroEFx8flbwLhX/+SdU+NKT1zHZpaSlCQ0Nx9OhRAI+zkyt+aFLpL/KkGGOyBEjLl6PD889jxKef8rNgNZUjAMCPyrn26YMv3NzApFK+zEjnESMQ6+qKll5eVFKkEaMY1j/FeK2tMoByB1wxpucWFKDg1KmaR9oVkh7WVE5IebaMmCaKYdMVY2+PSjWrSxRXndAgd+NG8WtclGexvcPDMX7rVo1XiEnEYkglElhYW/PHKsrKYGlrS/fQGtJ6/n/+/Pm4ceMG0tPTwRhDQkICjh49iunTp6NTp0747bffGqKdpAlR3p9deu0aJGIx/KKiAI7jyxHUtG8zPToadq6uaO/nxx87Hh0Nc2trzC8qwvSMDHQYPFj/PxghjVBN+RS2BgfjYnIyv6dLIhbjxt9/Y72vL2Ls7VFaUAC/hQvBiUToO2cObFu3Rk5KiurFuzqm+SQuFhbwCApCRFIS3Hx9YWlrCzdfX0QkJcEjKIhu4gnRI+U9m2+ePw+v0FCV8xRXnVCMEqI/8hUnHMehw+DBaNmtG4CaV4LJj28KCOD3cZtbWuLQggX83u4rR48CjEFSVaWvH8Okad3ZTk1NxcKFC9GvXz8AQJs2bfD888/ju+++Q3BwMGJjY3XeSNK0KC9FK7t+HSILC3gGBSE8MREdnn8eQM0JzuTH5WULFI/lpKZi45AhWOnsLOgIEELqp7alo/JO8t7Zs5GTmoo2vXvDrk0bVJaVIWXOHHgGBmJ+URFGffklACBw7VrMyclRuVlXjnWO49B51ChMz8hAZFkZpmdkoPPIkTTKTkgDUr5eqkuwVPjXXwiLjxfGsMK2LXWvQwhpWE7u7piTk4OpR49i8Ecf8YnPOJFImJBUJMKgyEgU5eYi98ABfuA8OzkZvV97DVWPHgmOqVz3iVpad7Zv3bqFdu3aQSQSwcbGBnfv3uW/N3r0aKSmpuq0gaRpUry5vpqejqK8PFz/80+4+Phg6LJlAOoelSsrLFQ5lpOaKsuGKpEIZssIIfVX18BXeVER4qovzqPXrIH35Mlo1aMHAODy0aMqmYuVb9bVxbpy7NKeT0IajmLHWr4yRd2KlrjgYGTv3YuAr76Clb09n2ncIygIv69Zw8+UUW5eQvRn3KZNuHXmDH+tTVu0CB7Vg91Tjx7F+K1bMfXoUcwvKoJnUBAO/O9/sm2YAJ9zwcndXbhilKp/aEzrzna7du1w584dAICHhwd2797Nfy8jIwPWCmv6CdGU8ki34s01k0px4P330aZ3b9w6cwZ733wT92/ehF8t5QiKcnNxNT398bGoKIgfPcKpr7/mT6XSX4TohiYDX14hIXCtntkev3kzBn/0EbL37lW9WQ8JQXZyMvxXrZJlOlWaFSOE6Jd8q8i20FCYW1tjwP/+B/u2bXE8JoZfmsrPjHEcjkdHw97NDQtKSjA9IwMuPXrg+h9/wCs4GNdPnVLZYkIIaTgSsVh2rQ0J4a+1d7OzAagOdl+pzselrLYVo6RuWne2R4wYgUOHDgEA3nvvPXz77bfo3bs3+vfvj8WLF+Pll1/WeSNJ46ZuxFy5I52VkIDtEyei49ChCPz6a9g+9RQ8a9i36RkUhD+/+w4WzZsL6ndmfvUVpAr7SyhzMSFPrq46nEW5uWjesiXC4uNR+OefWO/ri00BAXVmLnZyd0fvWbNoLzYhBiaysED+iROYc/EivwwVACYlJGDu9euCmbE5OTlwdHcHAGSuXo2NQ4ZgtYcHUt9++/HMmFIeBkJIw1G+1nJmZvCPja0x14pgsLtabStGSd207myvXLkSS5cuBQC89NJL2LlzJ7y8vODq6oo1a9ZghUItVE3s2LEDwcHBcHNzg42NDXr16oUffvhBZYnRhg0b4OnpCWtrazz99NNITk5Wea2SkhJMnz4dzs7OsLOzw4QJE1Co8B+DGB/l5EqKeznDlTrSvV55BZY2NkhbvBj3b93CnawstPL2FuzbdBswAFKJBMNXrHi8l9PfHyc++0xYZ5tmy3SGYrhpqylhWXhiIjyDgnDwgw8w4rPPZHFePbLezNERQN3LzwPXrkXnUaNoL3YDovglmhgWHS1Yhrre1xfXf/8dNq1aCRIn3TpzBuN++QUAcH7nTtm2LalUZWaMZsV0h2KY1EUx3upKMqyyZLyGFaN0D605rTvbzZs3R8uWLfnHoaGh2Lx5M3bt2oU33ngDZloWOP/888/RvHlzxMbGYs+ePQgICMDMmTOxrHpfLgDExcVh5syZmDRpElJSUtC/f3+EhoaqZD6fNGkSDhw4gG+//RabN2/GhQsXEBAQgCrKlme01M1uZSUkYPuECXB99llBR9rFxwfbJ0zAlWPHYOvigqRXX8XqLl2wccgQ7IyIwMYhQ7DKxQU/v/CC8D0sLeHSrRtlLm4gFMNEXcIyF29vbJ8wAQ/v3FG5sMtHx+tafg5Q5uKGRvFL6sIPiissQ60pcVJcSAiy9+6F+NEj5J84wb+G8swYzYrpDsUwqYtivNU14CU/7tSpU40rRukeWjta19lW9PDhQ5SXl6scd3Z21vg17ty5I+i8A8Brr72Gbdu2oaioCGZmZujatSt69+6NLVu28OcMGDAAjo6O2LdvHwDZfvEBAwZg//798Pf3BwBcuHAB3bp1Q1xcHMLCwjRqD9UH1L+aav1Z2dtjQUkJ/7i0oAApc+bA3MpKqxqBgGpdT6rzqTsUw0QZYwwXk5NxMSUFT/XsiT6vvy6IV87MDHNycnDrzBnEhYRQvWwDMrb4BSiGjdF6X18UZGaqHHfz9cX0jAxsHDIEV44dU3+M4xCemAgXb2+s9vAAY4xiXIeMLYYpfo2LRCzGpdRUbK2us91h8GBMrd6rXVtMy1WVl4MBgjrbdA+tHa1ntktLS/H666+jRYsWsLOzQ6tWrVS+tKH8AQEAzzzzDEpLS/HgwQPk5uYiOztbJcjDw8Nx+PBhVFRUAABSUlLg6OiIESNG8Od07doVvXr14j9IiHGqaYS7VffuAB7X+pOXFHHq0qXW52mUuZg+JHSGYpgAwiSHHMeh88iRCFy7Fn1efx2A+qSH8nJ+tOrEcCh+SU0UY7o+pTblM2PyvClHFi1C2759KcZ1jGKYqCOPX+WtXjdOn1abGwkAvzy8orQUf6xbh4wvvkDuwYMwt7ISnEaxqx1zbZ/w6quv4siRI5gxYwY8PT1h2QDlVo4fP462bdvCzs4O6dX7A7y8vATndOvWDZWVlcjLy4OXlxeysrLQtWtXlb193bp1Q1ZWls7bSHRDnlxJPuLGU9gjknvgAJhUirjgYIQnJaHPrFkovnwZflFRamfF5PtI6MPAcCiGmxZ5ksP05ctx6+xZuHh7w2/hQngGBmLXSy9hxKefwm/hQsQpxLk86WHIxo3oOnYs/1oSsZj2aBsYxS+Rx3RVeTl6TJwIF29vtbNgtSVOCv7xRwBAVWUlODMzjN+8GQDFuD5QDDdtitdkJ3d3jNu0CR2GDIHnmDH8OXZt2iAiKQnp0dGPr9tRUfAICgLHcegzaxYAildd0LqzfejQIaxduxZTpkxpiPbg+PHjiIuLQ2xsLACgqKgIAOBYnVBHzsnJCQBw7949/jzlc+Tnyc9Rp6Kigh/VA2Qz90R/FEfcFAN+UGQkPIOCsH3CBGGtv+hofnmLQ4cOtX5QEMOgGG5aJGIxclJTBR1peb3d8MREvPDxx0h95x1M3L4d4UlJOK4Qr72mToWlra3g9WiQzLD0Hb8AxbCxkYjFKL5yBe4jRsDC2lqjQXFBqc3ISJQWFODgvHkou34d+SdPYurRo2jbty/MzM0pxhsYXYObNsVrMsdxGL91q6x037hxaD9oEOxcXVFWWIjmLVsi+McfBR1wdR1ritcnp3Vn29XVFQ4ODg3RFly7dg2TJk3C0KFD8fbbbzfIeyiLiYnhs6sTw5AnV1IM+KK8POwIC8Oje/fgHR6OssJCXE1PFyxlU/c8SWUldbQNiGK46amrhNf0jAw8vHMH2ydMQMDq1YK9YBSvxsUQ8QtQDBsbkYUFnDt3RnZyMtKXL0ePSZPg++67KoNlg6Ki4BkUhH83bYJF8+YqA+VZCQn8ax54/31B7JOGQdfgxq+uHESK1+T2zz8Pp06dsDMiAkwi4fMqyN0vLMQ0hUSG1LFuGFrv2V6yZAliYmJQXFys04YUFxcjICAALVq0wM6dO/ms5vKRtxKFRFnA45E6eTI2JycnlXPk59WWsC0yMhIlJSX8V35+vk5+HvJkrOzsMPrrr1Xqdz735psAHu/jzklNBZNKkbl6NfbOno1L+/erlLsg+kEx3HRpsp8zKyEBa6vzMMiJGmAbEqkfQ8UvQDFsDJRL+FTev4+/N27E9VOn4BUSgut//AEXpVKbLj16oPCPP+AdHq5SNUSxow1QqS99oGtw4ydfHq5Ygu9SaqrKfa+mpfZu/vtvwzaYAKjHzHZ4eDj+/fdftG/fHr169VJZcsJxHJKSkrR6zUePHiEoKAglJSXIyMgQzJzL95jI95LIZWVlwdLSEu7u7vx5hw4dAmNMMFOSlZUFHx+fGt/bysoKVkob/4l+qdvv+fzChfAIDMShBQvw+5o1/BLxYdHRuH/jhnAfd2IiPAMDsf/dd/HHt99SllMDoBhu2jTdz9lKqbNNjIMh4xegGDY0tTkXoqIQtmMH0hYv5mfGrp86hfZ+fvwy1Kvp6Wjbt69gxnrXlCm4pmYGm0p9NSy6Bjd+NW3Z2hocrHLfK78mK5baq+0aTRqW1jPbX3zxBVasWAEbGxtIJBKUlZUJvrTdq1FVVYWwsDCcP38eqampaNu2reD77u7u8PT0xI4dOwTHt23bhmHDhvEJ2gICAlBUVITDhw/z52RnZ+P06dMYPXq0tj8m0RO+fmdwsEb1Oy/u3Sscwatequrk7o72fn4AY0iPjqaOth5RDDdt8v2c6rKaCvZzKiQvJMaD4rdpq+kaHBcSguzkZPR96y0AspkxJpXiyrFjOBsXhyvHjoFJpYIZM4lYDL/IyBozHFPsNwyK4aahti1bJz79FCILC9w8cwaSqir4RUUBHIer6ekoysvjHwtwHAZFRUFSWam/H6KpYlpycXFhb731FpNIJNo+Va2ZM2cyACw2NpZlZGQIvsrLyxljjG3ZsoVxHMc++ugjlpaWxl5//XVmbm7OTp48KXitkSNHsnbt2rHt27ez3bt3Mx8fH/b0008zsViscXtKSkoYAFZSUqKTn4/U7ft+/dgSQOVrva8vY4yxHwcPrvVYtK0tY4yx+PBwwWOiHxTDTVuVWMykEgnLSkpi6319WbStLVvv68uydu9mUomExU+ezNb7+rILu3czqVRq6OYSJcYWv4xRDDe0qspKweO6rsGansMYY1KplF3YvVvwWUCx37CMLYYpfhvOchsblRhMX7GCiR89EpxXVVnJrv3+O1vv68viJ0+WXaOV4jKL4lJvtO5sOzo6skOHDumsAR06dGAA1H7l5eXx561fv5516dKFWVpaMh8fH7Znzx6V1youLmbTpk1jjo6OzNbWlo0bN44VFBRo1R76kNA/dR8e6jrRNR1T7oArX/xJw6IYJgfnz2f3cnMFxyofPhQ8Vr7BJ8bB2OKXMYrhhiSVSlnW7t3s+3792O/ffMMYq/saXHbjBstKSmJLOE54DsexC7t3q8R2XY+JbhlbDFP8NhzlQa/0FSsEMb3cxoZ936+f2o50VUVFrY9Jw+EY0y6b1BtvvIHmzZvzJQUam9LSUjg4OKCkpAT29vaGbk6TsN7XV+1eEjdfX0zPyMDGIUP4DIoqxzgO4YmJcPH2xmoPDzDGaM92E0cxrH8x9vYQP3gg2M+Zf+IE3IcPx5SUFEM3j5gYiuGGobzns98772DUl1/WeQ3+9eOP4bdwIbL37hVkI6dSm0Qdit+GIRGLcSk1lS/BZ2ZujgVlZcg9eFCwjxuA7N44KQldFO6Fi3JzIamshHOXLjAz1zplF3kCWne2N23ahA8//BADBgzA8OHD1dbkGzdunK7ap3f0IaEf8lIFyh8ePOVOtFTKf3i4PvMM1vbogVbdu8tKjwQGYtdLL6E4N5cu/oRiWA+US42UFhQgZc4clQzE8pt1QrRBMdxwFDvWdd2sKw9cSyorBRUElD8HCAEofhsSYwwXk5ORHh2N9n5+GPHpp3UOlp3ZsgVXjx9Hl1Gj4BkUBKlUChF1tvVK6862vJRAjS/IcZBIJE/UKEOiD4mGxxjj63c6ubtj3KZN6kfMAwNxOCoKp77+WlDTU7EjTRd/ooxiWLeUY4oxhsr792FlZ8cfqygrg6WNjbDkT/WAWZeAAIpJohWK4YYTbWsL8YMH/ONhK1Zg4AcfIDs5WW0NbRq4Jtqi+G1Yytdk5ZiWs7S1RWRZGf+4KDcXf373HYavWKGXdpLHtB7ayMvLa4h2kCZCUlWFnJQUfhS9IDMTVeXl8I+NFcyAVVVUQCqRYPiKFfwHg6SyUuXCr1ynl27qCdEdplAS6Pa5c3gnLw/NnJxwOS0N6UqDY55BQRjz3XfIO3xYtuokMlJ2s17HAC0hRH+USwAdXrAAAOD7zjvoOmYMf1zd9ZYQYnj8fS5jAMfVWdbr759+wt8//oir6emwaN6cOtsGoHVnu0OHDg3RDtKIKY7CiczN4frss+g2bhwe3rnD7+9c4+mJZ2fORODatcj44gs4d+4Mz6Agwesod6wJIQ1HeX9nx6FDYWVvLysTFBIiqPMZFxLCz2IvKCkBIBtFL/zzTzzVqxcNghFiBORl+pS3bRX8/jskYjHMra0fn0wdbUKMEn9PzXGycnsLF6rdBjIoKgriR4+wZ8YMSKuqAFBdbUPRaMrh3r17kEql/N/r+iJETj4ztt7XF9G2tljv64uy69cxfutWTD16lP/zrexslFffpF///XdZjc+9e6n+HyEGIq/pyXEcOgwejOfefBMiCwscX7FCbZ3P4zExEFlY4MLu3dg7ezZu//cfXPv0oY42IUZCZGEBj6AgRCQloc8bb6DX1KkIWrcOYTt24PLRo4Lr9KXUVGi5y5AQ0sCU76nPxsXBMygI4UlJcPP1haWtLdx8fRGelATPoCBkfvUV39GmeveGo9GebZFIhIyMDPTt2xdmZmZ1Li2iPdsEUJ0ZAwCv0FCExccje+9epC9frrIMlTMz4zONU3IlUh8Uw7qzc/JkvLB8OZw6deKPFV++jP1z56okQ1PeH0b5E0h9UQw3oJISSKysIKqexVZ3nQagNkEaIZqg+G0Y8ljdFhqK9oMG8StDPQID4fvOO8L8RZWVKLl6FQkvvUTVA4yARsvIf/jhB3Tu3Jn/O/1DkZoIloxXz4zJL+CcmRn8Y2NrXoaalAT34cORf+IEAODW2bMG+RkIITLjNm1CdnIydkZECC7YYfHxwmRoUF2eRjfohBiZoiIwBwfkVGcztnZywospKYLrNI8xpEdHw1NhHzchpGEpD1Ir31PfLyzEnIsXBQPgRXl5SFuyBMOjo3Fu505cTU9HWWEhxq5fL5iwkojF1H8zEI0626+88gr/96lTpzZUW4iJU0ym1LJbN4T8+KOgw9zezw9OnTphZ0SE+mWo0dHoOmYM2g0ciCvHjtHeEkIaWG0Xdn7Gq4b92f6rVuFCUhJflk++PI062YQYD0FM29oiZ+9ePqa9w8MB1DywTQPehOiP4j20fHB79OrVgrwnvV97DRVlZTi0YAF+X7OGHwAf9sknAIDzu3bh7JYtAICya9cwrXryCqABcEPSOk2su7s7/vnnH7XfO3v2LNzd3Z+4UcT0SMRi2Yx1cDAKMjNRXJ21XrHDbOfqCqDuC7udqyvtLSGkganLp6C4T1N5ZYrCE3E8JgZO7u7o7O8PN19fRCQlwSMoiC7mhBgReYzvnT0bx1eskOVciInhY7qssBBAzUmTaMCbEP1QvocWP3gAuzZt4Nq7t8p1+nJaGoZFR6Ozvz8/AJ6dnAyJWAwbFxf+NW/++68BfyKiSOvO9uXLl1FRUaH2ew8fPkR+fv4TN4qYHuUb86vp6SjKy4NfVBSf1VTTC7u1kxPdvBPSgNRd2AsyM7E1OBgXqy/aQN0DY1NSUjA9IwOdR42i5WmE6JnyYLSkqkpwjOM4uI8YgcC1azGousTX+C1b4BUaCkD9dVrhyRgUGUkD3oToQa3bLpWu0/LOtf+qVbLSmgoJSps5O/OvSYNlxkOjznZ5eTnu3buHu3fvApAlP1DOQH79+nUkJiaiTZs2DdpgYrwUb8yZVIoD778vy5KYmAg3X1/cOH0apQUF8Fu4UO2FXT6THbh2Ld28E9KAapu1To+O5ge5NJ3xokExQvRLeWXKoQULYGZmxh/bOXkymFSK3IMHBbNiN//9F2Hx8fAKDVV7neazGScmwpMGvAnRGZXBMaXH6rZdpkdH17q6rL2fn/C58nNpdahR0aizvXLlSrRq1QouLi7gOA4jR45Eq1atBF/t2rXDypUrMWPGjIZuMzFSyjfgWQkJ2D5hAlx798b0jAwsKCmBfdu28KwuPaJ4YVeeyaYLPCENq65Za2lVFZ6vY2CMEKJ/8pUp20JDYW5tja5jx6Lf22/zs2DXT53CC8uXazQrlpWQgO0TJ6Lj0KGYnpGByLIyTM/IgIu3Nwr//JPinBAdqGvbFvAE2y4VnluQmUlbu4yQRgnSQkJC0LFjRzDGMG3aNHz44Yd8dnI5S0tLdOvWDb169WqIdhIjJxGL8fzChdiqVD4kKzERvV59FSJLSxyaPx/m1tZ45tVX0XnUKEGWU8qSSIh+uXh7oyAzU+1xAEiPicHzCxciPCkJx6OjqXwIIUZCZGGB/BMnVLISy2fB2j//fO3JSGNiZNs//P1RXlyMZ6ZOhaWNDf787jtcy8iAebNm8AgIoDgnRAfUldeTb9uSl9cDILiHVtx2Wdt1uqywUDAAPnnvXv49KXaNh0Z1thX99NNPCAwMRMuWLRuqTQZF9QHrjzGG7ORkwY35oOr62Sc+/RSHq/eM8fU7AwIgMtdovIcQjVEM100iFiMnJUWQaRwAwHEIT0yEi7c3Vnt4oGtwMPxjYwU39JRxnDQ0iuG6MakU2dUlvOTVP6JtbSF+8ADe4eEYv3Ur/1iZpa0tIsvK+McSsRjgOMH1mOKc1BfFr6r1vr5qO81uvr58eS7GGC5Wx/Ttc+cw+9w5FP71l6CTDuDxddrHBwkvvohBCxbQwJiR07qzrc6JEydw/vx5+Pn5oWvXrrpol8HQh4R2lC/I4vJyWFhb84+LcnPx8O5dNG/RAqs9PGRlgiD8gCFElyiGNSO/WT8eE/N4cCwyEp5BQYIa2pyZGXrPmoXAtWsN3GLSVFAM1055sKzD4MGYevQof0Ov/FgZXX9JQ6L4VaXxwFdREUROTvxjdZNYyqvLaGDM+GmdjXzy5Ml49dVX+cfffvst/Pz88Nprr6FXr144fPiwThtIjJe6PSi5Bw6ASaXI+PxzbBwyBKs9PJD69tuCRA4A1e8kxJAkYjEK//wTLj4+wn2aPj6CjjYg65T/+8svBmwtIUSRyMJCkDhJOat4XVnGKecCIfqlcbLRrVuBIUOA7dsBxsBxHLqMGiW4TnceOVIwi00dbeOndWf7+PHjCAgI4B/HxMRgxowZKC0txYQJE7B06VKdNpDoR11ZEtWdX1vyFa+QEFxNTweTSlUSOQBUkoAQQxJZWMC1Tx/cPnuWr8ELALumTBF0tOUoXgkxLrVV/2jbty+OfPih7HEdyUgJIQ1LntNIo4Gv2bOBlSuBiRP585VjVWRp2dBNJjqmdWf79u3bcK3uNP3333/Iz8/HO++8A1tbW7zyyis4c+aMzhtJGpYmWRKV1VY6SLkkgSCRA0Aj64QYAY7j0HnUKL4Gr0Qshl9kJM2EEWIC6qr+MX7zZnBmZqqzYlRWkxC9EllYwKO2KjyZmUB1aWUAQL9+qtdhYtK07my3aNECV65cAQCkpqbC1dUVPXr0AABIJBJIq/fkEtNQ4wx1aCiuZWRAWlVV43Nvnzun9rhgJpvjMCgqCqXXruHG6dM0sk6IERGtXi1bsrZnT903BBSvhDSI+qwsUzdTlpWYiBt//QWJwnVbZVaM4pgQvZMPbqsMfB04APj5AcOGAffvG7qZpIFonQo6ICAA8+fPxz///IONGzfipZde4r939uxZdFLIWkuMn7oZaq/QULUZiJWzlb55/jxS5sxRWXYqH3G3dnLib9Q5jsOCkhL+tWhknRAD+/xz4P33ZX8fOhQYM4a/IaCyfIToh3xlWfry5XwCpOcXLqw1uzA/MJaYiHSFBIdUlo8Q46Uy8PXTT8CmTUB4OPD884CNjYFaRhqa1p3tVatWQSKRIDU1FaNHj8aSJUv47yUkJGBUdb04YjoU9355hYYiLD4e2cnJ2BkRIbz4Bwbi0IIF+H3NGtmFfeFChMXHCxMqKSw5DVy7Vu2NOo2sE6J/yhlLJaGhEB0/DvTsCSxezB+nmTBC9EOT+rvy+BPE761b4KKj0fmdd+CpkFWcBsYIMRGHDkEybBhEM2bwh6gEX+Olk9JfjUlTLFkgLw/CmZlhTk4Obp05U2f9XSaVyo4lJcH1mWewtkcPtOrenUbWicE1xRiui7x8iGD2TB6rZlrvJiKkQTWlGK6rPNemgACUFxU9nu0uLQUGDQLOngXc3ICMDNmfhBiJxh6/KgPX2naIjxwBGzJEdk1WKOkln9Q6HBXFT2rVtcqFmIZ632UVFRUhPT0dW7ZsQVFREQCgvLyc9mybGMW9X+39/ODUqZOgpAhPTeIzMIbj0dGwd3PDgpISSr5CiBFR3PfJcRxcvL1h16YNn5dha0gILu7dS4nPCDGgmspgyo83c3TkZ7svJidDUloKnDsHtGkDHDmi0tHWdv83IURz9UkoLLBtGySdOslyJYWECHIlbQ0ORnZyMnq/9hqqHj0Sxj3FsUnTurPNGENUVBTatWuHwYMH46WXXkJeXh4AYNy4cfj444913kjScBSTInV4/nkAdV/8FUt4Ub1sQoyPuhuCW2fOICw+Hl6hofKTkB4dTUvUCDGgmsrqPdWzJwCgZbdu6DB4MDiOk8Vru3ZASAiQlgZ4eAie88QdAUJIjWpKKKxVh/iFFyDSclKLrtOmT+vO9qJFi7BmzRrExsYiOztb8CE+duxY7NmzR6cNJA1PnhRp6LJlAGq++KuU8FI4dnzFCrqwE2IEaqwwEBKC7ORk+K9axS8dp8EyQgynpqziXuPGYUpqKgBg8EcfYerRo5iTkwNHd3fZCd98A3h6qrzWE3cECCE1qqnkLcdxuJiSUmeHWCIWA61aAaBJraZG6872xo0bER0djVmzZqlkHu/cuTMuXbqks8YR/VFMwqLu4g+Ow6DISBTl5uJqerrgmEQsxqUDB+jCTogRqOmGQN2oeU0Da4SQhqeu3N7A+fMRtmMHLh89qrIyZdwvv8ie6OKi9rVqinuaGSNEN5Q7vl6hoZiTk4PAtWv5Y5KqKrXbOW78/Tf2zp4NoH6TWsR0ad3Zvnv3Lrp166b2exKJBGLqZBm92vZ01VZr1zMoCH9+9x0smjeHm68vwhMT4RkUhEd37+LKsWOyF6ALOyEGp9GoucJgGSHEMJTr7w79+GNk792rfmVKHTkW6op7QsiTUez4yqv33DpzBntnz0biq6/iz+++g5mZmcp2jpzUVLTp3RsPbt1CUV4e/KKiwIlE6DB4MLzDw2VbRUQitZNa8go/xHRpXfrL09MTBw8exLBhw1S+d/ToUXjTCIxR06SmJ8dx6DxihEqt3aqKCgxfsQLDV6wAAFSUlgIA9s6eLctOXo0u7IQYlou3t9oMx/IbBWsnJ36wjLKRE6I/dWUyrnVlSnQ0ulZfl9VlQK4r7gkh9Sdf+bk1OBgcx8E/NhbX//wTLj4+6Dp2LH9eRVkZ/t64kY/FgsxMxAUHIzwxESM+/RQH583DxO3bMb+oCFZ2doLnWdrY4HBUFCyaN5eV2KUKP42C1ndZ7733HmJjY7Fo0SKcre5UXbt2DV9//TW++uorzJ07V+eNJLqh8Z6u/HyIfHyAIUOAd98Fbt2CyMICZubCsZmK0lJhje1qdGEnxHAkYjH8atgKIh8hD1y7Fi7e3ij8808aMSdETzRNYFbXDPWRRYtUnlfbFjCaGSPkySmu/Ow9axacOnVCm969cevMGUFMX05LQ9iOHY+TkQKCbVwtq1cHK28VuXL0KMBxGL5iBSLLyqjCTyNSrzrbn3/+OZYsWYIHDx7wH/Y2NjZYunSpyXe2G3t9wLpqeqKkBHjjDWDHDmDiRGD1aqBFC5XzJVVVuJSSgq3BwSr1uCOSktB51ChaSk4MorHHsCaYVIrs5GQcj4nhV7AMiozkZ7IzvvgCLbp0oRFzYpQaYwxLxGLkpKYiToNrZl3X6Y1DhuDKr7+qPI8xhotKtXtpZozoW2OMX0XyVSUSsRg5KSmICwlRienwxES4eHtjtYcHv/LT0tYWkWVluH/zJr81hO6fm4Z6dbYB4P79+zh58iTu3LkDZ2dn9O/fHw4ODrpun9419g+JaFtbiB88UDku/xCQk5SXQ2Rt/fixmiVrdGEnxqixx7A6yvG5c/JkvLB8OZwUklgW5ebiyKJFGL95s9rnEGIsGmsM1znYLZVCcucOLv32G7bWcAPftm9f7Jw8GVeOHUPbvn1lz1NQ1zJ1QhpaY41fdTQaGKvOacTHuQbPI42L1nu25WxtbeHv76/LthA9qGtP16aAAJQXFcFv4UJ4BgZi14svoig3V2VfN/A4sYvy3m7qaBOiP4p5GKydnPBiSgqKcnOxuksXtPfzg52rK8oKC3E1PR1t+/bln0c34IToV50JzMzMIHJxgceYMYhISqpxIPuVI0dQlJeHIx9+qPJaynFNcU5Iw9G4hBfHYVBUFB7evYvmLVpQMsMmhjLjNCGalPXKrS7hFRccjOzkZLzwySe4fupUjSW96MJOiOHI8zBsCw2FubU1mjk7o6ywEH5RUWCM4cqxYzgbF4crx46BMUZ7NwkxoLrK/WwKCMB6X18U/vGHIEP59IwMdBg8GIcjI9WXAiOEGERdMV1eXCyo6NO8eltmXc8jjQt1tpuQmsp6ybMSH/jf/x5nFVeuyUslvQgxOiILC+SfOIE5Fy9i6tGjGL95M+xcXdElIAAzMjNVyvd5BAVRDBNiANoMdn/frx8upaZCUlUFaVUVrp48iZXOzjixcqVqKbDKSsP8QIQ0cZokJZySkqKS6IySGTY9Bu9s5+Tk4PXXX0evXr1gbm5eY+mwDRs2wNPTE9bW1nj66aeRnJysck5JSQmmT58OZ2dn2NnZYcKECShUKAxPVGt6Ts/IgIuPj9qs4srLYGh5C1GHYtiwhkVHq2RDzUlJQZs+fQRxTllNSU0ohhuetoPd6dHREJmbw8zcHAfmzgWTSIQvWF0KTGRpqf8fhhgdimH9E1lYwCMwEBGJiXUObCv/Xd1nAQ2IN14G72z/999/2Lt3L7p06YLu3burPScuLg4zZ87EpEmTkJKSgv79+yM0NBS//fab4LxJkybhwIED+Pbbb7F582ZcuHABAQEBqKqq0sePYrJ2TZmi0tEGHi9nKav+kKXlLUQdimH9Uhz1lojFyN67F3EhIYJyfnEhIcjes0dwLl3ASU0ohvWjPoPdyn+v6RzStFEMG0BKCrjwcHT28dF6YFvdZwENiDdizMAkEgn/91deeYX16NFD5RxPT08WEREhONa/f38WEBDAPz558iQDwPbv388fy8rKYhzHsW3btmncnpKSEgaAlZSUaPNjmAypVMqydu9m3/frx6Lt7FjJtWssa/dutoTj2BLg8RfHsaykJHbv0iW21MyMLeE4dmH3blZVWWnoH4EYGYph/ZHHb/Ibb7D0mBjGGGPr+/cXxm7113pfXwO3lpgKimE9u3+fsQ0bGGOaxe/3/fpRjJNaGVMMN6b4Vb7n5R+npDBmZcUYwNjEiYyJxZo9jzRJ9ZrZ/u+//xAeHo7OnTvDysoKf/31FwBg4cKFSElJ0eq1zMxqb0Jubi6ys7MRFhYmOB4eHo7Dhw+joqICAJCSkgJHR0eMGDGCP6dr167o1asX9u3bp1WbGit5MqW44GAUZGaisqwMKXPmwDMwEOHKS9uqkzkcWbQIbfv2peUtpEYUw/ohEYtx/Y8/4OLtjcC1azFowQIAwPgtW+AVGqpyPs16EU1RDOtRWRng7w/MnAnJlSvwi4ysde8m7e8kmqAY1j1WXelDcYvWpdRU2XaPH38EKiqA0FBg82bA3Lzu59Wv0jJpBLTubB88eBDPPPMMrly5gilTpkCs8EFvYWGBtWvX6rSBWVlZAAAvLy/B8W7duqGyshJ5eXn8eV27dlVZgtGtWzf+NdSpqKhAaWmp4KuxEllYIH35ckHtzqyEBGyfMAGuzz4rWM7SZeRIcGZmGL95My1vIU+EYlg3RBYWaNO7t8r+7Jv//ouw+HiVDjdt+yC6QjGsQ2++CZw8CdjbQySR1Ll3k/Z3El1oyBhujPGrPDkl36LFV+aJiQHGjQPi4gCluva1Po8Gx5okrTvbkZGRCA8PR0ZGBj766CPB95555hmcPn1aZ40DgKKiIgCAo6Oj4LiTkxMA4N69e/x5yufIz5Ofo05MTAwcHBz4r3bt2umm4UZK3WxXVkIC1irt8VFOukIXdFJfFMO6wV/E1e3PTk6G/6pV4OSzGzTrRXSIYliHoqOB554DDh0C3N012rtJ+zvJk2rIGG6M8atucgqALDHhypUQubsD27YBau6Va3oeVfRpurTubJ89exYvvfQSAKh80Ds6OuLOnTu6aZmeREZGoqSkhP/Kz883dJMaVE2zXa1qSKhBiLFrKjEssrBAenS0+ot/dZm+zv7+NOtFTE6jj2HFmHVzAzIzgd69+UPKcaoubjU5hxBDaKzxe/vcOZVjXqGhGLd5s+xB9dJx5UFtSmhIlGnd2XZ2dsb169fVfi87Oxuu1WWidEU+6lZSUiI4Lh+lc3Z25s9TPkd+nvwcdaysrGBvby/4alSuXgVCQoDbt2nvFzEIiuEntH697At1X8TV1fQk5ElRDD+B+/eB4cNls2ByFJtEzxoyhk01fpXveZUfv3n+vGB7lldoKMLi43Hz339r3Y9d06QWbe1qurTubIeEhGDx4sW4cOECf4zjONy4cQOrVq3C+PHjddpA+f4S5b0iWVlZsLS0hLu7O3/ehQsXVBIQZGVlqexRaTKuXgWGDgWSkoCZM2nvFzEIiuEnsH49MHMmsGkTAM0v4hTLRJcohuvpwQMgKAg4cgSYPRt48KDOG3xCGgLFsJC6JGY51cnPdk6ejPW+vij86y8+HwpnZgb/2Fi1W7kU92PTpBZRR+vOdkxMDFq1aoWePXuiX79+AIBp06aha9eucHBwwJIlS3TaQHd3d3h6emLHjh2C49u2bcOwYcNgWb1fIiAgAEVFRTh8+DB/TnZ2Nk6fPo3Ro0frtE0mQd7Rzs0F3N2B1asB0N4von8Uw/W0YYOsow0AzzxDF3FiMBTD9fDwoayjfewYYG8PZGSANW9OWYqJQVAMP1ZTErNtoaHIz8jAyC++gEXz5tgWGorsvXsR8NVX6DJqFJw6dapxK5d8PzZNahF1zOs+RcjBwQEnT57Epk2bcPDgQTg7O8PZ2RlvvvkmXn75ZT5gNfXw4UO+nMCVK1dQWlqK+Ph4AMDgwYPRqlUrLFmyBFOmTEHnzp0xdOhQbNu2DZmZmfj111/51+nfvz9GjhyJadOmITY2FtbW1li4cCF69uyJcePGaftjmjbljvbRo4BCwgra+0V0iWK4AWzYAMyYIfv7228Dn38OEcfxF/H06GjcOnsWLt7e8IuKgkdQEA2YkXqjGNYxeUf76FHAzg7Yvx+STp2QU32DL79Zl8+KRSQlofOoUXQtJvVGMaw5dUnMvEJD4R8bC6dOnQAArxw5gqK8PPy5bh26jhmDyXv3AtBsP7Z8UstzzBj+mEQspmt0U2aoAt9yeXl5DIDar7S0NP689evXsy5dujBLS0vm4+PD9uzZo/JaxcXFbNq0aczR0ZHZ2tqycePGsYKCAq3aU1JSwgCwkpKSJ/3RDOPKFcbc3RkDZH9evWroFpFGjmJYxzZsYIzjZDH89tuMSaWCb1dVVtb6mBBtUQzr0IMHjL3wgix+7ewYO3mS/9b3/fqxJYDK13pfXwM2mDQGxhTDphC/y21s+PiLCw1lUomEZSUlse/79WPLbWzY9/36saykJCaVSATPoxgm9cExpt36pX/++QcFBQVql5Ps27cPbm5u6NmzpzYvaVRKS0vh4OCAkpISk0nyIPDCC0BamtoZbUKaApOO4fx8oEsXoLISmDMH+L//o2RKpMkx6Rj++mvgrbcAW1tg/35gwAD+W9G2thA/eKDyFEtbW0SWlemzlYQ0GFOI3/W+vijIzARnZoY5OTm4deYM4kJChEvEOQ7hiYnoEhAAkYUFJGIxLqWmYqvC6hT5ebQ6hdRG6z3b7733HjIyMtR+7/fff8f777//xI0iT2DDBlmHmzrahJiedu2AuDjg3Xepo02IKZo9G5g3D0hNFXS0AcpSTIgxUMx/0t7Pr9a92MdjYvgONO3HJvWl9cy2s7MztmzZglGjRql8b//+/Zg8eTLu3r2rswbqmymMyKkQiwEKckIAmGgMP3oENGtm6FYQYhRMLobLywEzM6CWnDU0K0aaCmOPX0lVFczMzJCdnIzrf/yBocuWabzqRFJVBTAmiFWJWEyxS2ql9cx2RUUFKisra/xeeXn5EzeKaCE/H+jZU1beixBiejZuBHr0AC5fNnRLCCHaKi8HQkKAsDDZ9o8a0KwYIcZBZG6Ow1FRcPHxwdBlywDUvepkU0CArHpASgrMzIW5pSl2SV20ntkeNGgQWrduzWc5VDRhwgRcv34dJ0+e1FkD9c3YR+QE8vOBIUNkWce9vIB//6UZbtLkmVQM//QT8OqrspmuxYsBHZdOJMQUmUwMyzva+/cDzZsDJ08CTz9d61OUZ8FoVow0NqYQv9G2tqh69AgdBg/G+K1bUZCZWeOebRdvb6z28ACTSmklCqkXrWe2IyMjkZCQgMDAQMTHx+PkyZOIj49HYGAgEhMTsXDhwoZoJ1Gm2NF2dwcOHKCONiGmRLGjPXu2rLNNCDEN5eVAaOjjjva+fXV2tAEqvUmIMXDx9gaTSnE5LQ1733gDnkFBCE9MFKw6CU9MhGdQEA7873+yjjYgqKlNiKa0rrMdGBiILVu2YN68eQgLCwPHcWCMwc3NDVu2bEFgYGBDtJMoUu5oUzI0QkzLzz8/7mi/8QawZg0lQyPEVFRUAOPHy5KgNWsG7N0LDB5s6FYRQjQgT5Amz5+QlZCA7RMmwD82FtMVEkAX5eVh+4QJyEpIEDy/plrbhNRE65ltAJg0aRKuXr2K8+fPIz09HefPn8fVq1cRFham6/YRZdTRJsS0/fILMHXq4472119TR5sQU1FRAYwbJ5vJlne0hwwxdKsIIRoSFRTAIzAQEQoz2fcLC3H77Fko7qzdNWWKSkcboOoBRHtaz2wr6tq1q67aQTT17bfU0SbEVInFwKpVso7266/TjDYhpub8edm1t1kzIDkZGDrU0C0ihGhj505wJ06g8+rV8FSYyZaIxeCqr8cSsRh+kZFqqwf4RUVRrgWiFY06259//jmmTJmCp556Cp9//nmt53Ich/fee08njSNqfPyx7M/XX6eONiGmxsICOHgQWL8eWLBAVi6IEGI6evUCUlJkA2cvvGDo1hBCtPX++4CTE0Q2NoLDip1nxeoB6dHRuHX2LFy8veEXFQWPoCC+U06IJjTKRm5mZobffvsNffv2hVkdN4ccx0EikeisgfpmlFkUb94EWrQAzJ9oIQIhTYJRxrB8NQohpE5GF8OVlcDVq0CXLoZuCSFGz+jiFwCys4E2bQBbW62eRtUDiC5oNK0ilUrRt29f/u+1fZlyR9so5ecDAwYAL74IVFUZujWEEG1t3gx07Qps2GDolhBCtFVZKauh3b+/rLwmIcS0nDsHDBoEBAQAZWVaPZWqBxBdoDWMxkwxGdqpU8Ddu4ZuESFEG1u2AC+/LBsoO3XK0K0hhGhDLAYmTQKSkmQ36TdvGrpFhBBtnD8v2+5x+zbw4IEspgnRs3qtS37w4AE2btyI48eP4969e3B2doafnx9eeeUV2CjtgSD1pC7r+FNPGbpVhBBNbdkCvPQSIJUCM2YAa9caukWEEE3JO9qJiYCVlazDPWKEoVtFCNFUVpYsgeHNm7JcC4cOAc7Ohm4VaYK0ntnOz89Hz5498fbbb+PChQswMzPDhQsX8Pbbb+Ppp59Gfn5+Q7SzaaHyXoSYNuWO9rp1lAyNEFMhFgPh4UBCgqyjnZgIjBxp6FYRQjR14cLjjnbPntTRJgal9d3f3LlzAQDnzp3DX3/9hZSUFPz111/477//wHEc3n//fZ03skmhjjYhpm3r1scd7enTqaNNiCkRi4GICGDXLsDSUtbhHjXK0K0ihGgqO1vW0b5xA/DxAQ4fliUZJsRAtL4DPHjwIKKjo1VqbHft2hUff/wxDhw4oLPGNUk5OcD169TRJsRU/fff4472d99RR5sQU1JRIZsNk3e0AwIM3SJCiDbKy2WJDb29ZR3tli0N3SLSxGm9Z7uqqgrNmjVT+71mzZpRNvInNXQosG+frMQIdbQJMT0ffww8+ywQEkIdbUJMja2t7Bp8+jTw/POGbg0hRFs9e8omq1xcgFatDN0aQrSf2R44cCA++eQTlJSUCI6XlJRg+fLlGDhwoM4a12Tk58v2l8gNHUodbUJMyZEjwKNHsr9zHDBuHHW0CTEVVVWyfdlydnbU0SbElOTmAidOPH7s7S3rbBNiBLS+G4yNjUVOTg7atWuHkJAQzJo1C6GhoWjXrh0uXbqEVatWNUQ7Gy/5Hu0hQ4QdbkKIadi+HfD3B8aOlS1fI4SYjqoqWY6F0FAgJsbQrSGEaCsvTzZJNXIkcPKkoVtDiAqtO9ve3t74999/MWPGDFy/fh1HjhzB9evXMXPmTPzzzz/w9vZuiHY2TorJ0Jo3l30RQkzHjh3A5MmARCJbjWJpaegWEUI0VVUFvPwyEBcHWFgA3bsbukWENEkSpfrXyo9rdPmyrKN99SrQti3QqZPuG0fIE6pXnW03Nzd8/vnnum5L00JZxwkxbTt2yLIWSyTA1KnA+vW0dJwQUyGRAK+8IqseYG4uW6ESHGzoVhHS5DDGkJOaivTly3Hr7Fm4eHvj+YUL4REUBI7jan7ilSuyjvaVK4CHB5CWBri66q/hhGiI7gwNgTrahJg2xY72K69QR5sQUyIfINuy5XFHOyTE0K0ipMmRiMXITk5GXHAwCjIzIX7wAAWZmdgaHIyLyck1z3BfvSrraF++LEsonJYGtGmj17YToimt7w4fPXqEqKgoeHp6onnz5hCJRCpfpBbXrlFHmxBTtmuXsKO9YQNAn3uEmAbGgGnTgE2bZHG7bZtsvzYhRO9EFhZIX75cFpeKGEN6dDREFhaqT7pxQ9bRzssDOneWdbTbttVPgwmpB62Xkb/55pvYsmULIiIi0L17d1jSHkXt2NoCLVrI/k4dbUJMT7t2sjgODqaONiGmhuNkpfm2bJHt1R43ztAtIqRJu3X2rFbH4ewsyzYOyDrabm4N1DJCdEPrzvaePXuwatUqvPXWWw3RnsbP0RE4cAC4f58+IAgxRc89B/zxhywRC3W0CTE977wDBAXJZsUIIQbl4u2NgsxMtcfVsrSUbeW6e5f2aBOToPUycpFIBE9Pz4ZoS+OVnw/88MPjx46O1NEm9VbvrJ2k/hITgd9/f/y4SxfqaBNiKqRSIDoaKCp6fIw62oQYnEQsxvMLF8pWnCjiOPhFRT2+v7l+XRbD8uXmlpbU0SYmQ+vO9htvvIFffvmlIdrSOMmToU2fLuxwE1IP8qyd6319EW1ri/W+vriUmgqmvN+J6M6uXcDEicCIEUB2tqFbQwjRhlQKzJwJLFwIBATIci0QQoyCyMICHkFBiEhKgpuvLyxtbeHm64uIpCR4BAXJ9mwXFgIvvCCL4WXLDN1kQrSm0TJyxTJfNjY2SE9Px4ABAzB8+HA4OjoKzuU4Du+9955OG2mylLOOjxhh6BYREyYRi5GTmoq44GB+dFeetTMiKQmdR41Sn0yE1F9CAjBpkqwe75gxNBtGiCmRSoFZs2QD3WZmwHvv0YoUQowMx3HoPGoUPMeM4Y9JxGJZ2a8bN2Qd7QsXgPbtgZdfNmBLCakfjmkwJWamRUkbjuMgMeGR49LSUjg4OKCkpAT29vb1fyEq70UawHpfX7V7m9x8fTE9I8MALTI+OovhhAQgLEzW0Z4yBfjpJ7pRJ0QPdBLDUinw+uvA99/LOtqbNsmqCBBCGlR94lciFgsmCyRiMUQPHgADBgDnz8vun48eld1PE2JiNOpFS6VSjb9MuaOtM9TRJg1E66ydpH4SEx93tCdPpo42IaZEKgXeeONxR/uXX6ijTYgRUcw1U+P2OHt7wMtLVtYrLY062sRkab1nm9ShrIw62qTB1JSds8asnUR7v/4q26NdVSW7QaeONiGmZdEi4LvvZB3tn3+WDZgRQoyCvHO9YcAAFF++jOw9exAXHIyCzEyIHzzgt8ddTE6G5IsvZPfRtIWLmDCNOtsXL15E7969sW/fvhrPSUlJQe/evZGbm6uzxpkkOztZMhbqaBMd0zhrJ3kyzz0n2yMWESG7UTfXukIiIcSQXnlFdu396SfZFhBCiFGQiMXITk5GXHAwRJaWcOzYEemKWcblGEN6TAxEHTrIqn8QYsI06mzHxsbC1tYWo0ePrvGcgIAA2NvbY9WqVTprnMlasAD4+2/qaBOd0ihrJ3lyzZoBSUnU0SbEVHl6AllZwIsvGrolhBAFIgsLpC9fDjAGu+rSXbQ9jjR2GnW2Dxw4gGnTptV53rRp07B///4nbtSTyMrKwogRI2BjY4PWrVvjgw8+QGVlZcO+aX6+bPS8tPTxMTu7hn1P0iTJs3ZOz8hAZFkZpmdkoPOoUbKsnY2EQWJ4zx5ZWRH56Lq1NXW0CakHg8QvY8D77wOpqY+PNW/esO9JSCPV0DEs70SXFRYCoO1xpPHT6G6yoKAAnTXYL9GpUycUFBQ8caPqq6ioCC+88AI8PDywa9cuFBQUYO7cuXj48CHWrFnTMG+qmAwNADZvbpj3IaSa8gx2Y5rRNkgM79kDjB8PiMVAjx60v5OQejJI/DIGvP02sGYN8M03wKVLQPWMGSFEO/qIYRdvbxRkZuJqejqK8vLgFxWFuJAQ4VJyhe1xjekehzRNGnW2bW1tcfv27TrPu3PnDmxsbJ64UfX17bfforS0FAkJCXB2dgYAVFVVYfbs2YiKikKbNm10+4bKWcdXrNDt6xPSxOg9hpOTH3e0w8JkX4SQetF7/DIGvPuurKPNccDXX1NHm5An0NAxLM89szU4GEwqxYH330dYfDzCExNxPCYGt86ehYu3N/yiouARFNSoVu0R46W29JwOB3k0Wkbep08fbNu2rc7z4uLi0KdPnyduVH2lpKRg+PDh/AcEAISFhUEqleLAgQO6fTMq70WIzuk1hpOTgXHjHne0N2+mpeOEPAG9xi9jwHvvAV99JXu8fj3w6qu6fQ9CmpiGjmHl3DO5Bw/icFQUOg4d2qi3xxHjVWPpOeWkfU9Ao872m2++ie3bt2Pp0qVq62hLpVIsW7YMO3bswFtvvaWzxmkrKysLXl5egmOOjo5wdXVFVlaW7t6IOtqENAi9xbDijPbEidTRJkQH9Ba/jAFz5wL/93+yx99/D2iQV4YQUjt9xDDHcejs7893roevWAFzpfKatHSc6INidny1ped0VOVHo7vLsWPH4oMPPsDSpUuxbt06DBs2DO3btwfHcbh69SoOHz6MGzduYN68eRgzZoxOGlYfRUVFcHR0VDnu5OSEe/fuqX1ORUUFKioq+MeliknO1GFMNgtGHW1CdE4vMXz9uqyDXVkp+3PLFupoE6ID9YlfoB4xvHUr8OWXsr9/9x0wY0Y9WksIUaaXazAA0YwZsokrT09g/nyIqI42MQDF7PgCjCE9OhqeOurTajSzDQArVqxAcnIyunXrhvj4eMTExCA6Ohrx8fHo3r07kpOTscIE9yzHxMTAwcGB/2pXV8eZ42Sj6L6+1NEmxAhoHcNt2gBr1wKTJtGMNiFGQOsYDguTlfVatw6YOVM/jSSEqKV1/ALAypWylWVvvglQR5sYkD5Kz2nc2QaA0aNH4/Dhw7h//z5u3LiBGzduoKysDAcPHkRAQIDOGlVfTk5OKCkpUTleVFQk2H+iKDIyEiUlJfxXfn5+3W/k7Q2cPEkdbUJ0TG8x/OqrstkxWqpGiM7UJ36BesSwuTnw88/Aa689aZMJIQr0dg1u0wY4fhx4+uknbTIhT0QfpefqNaUjEong4uKis0boipeXl8qekpKSEhQWFqrsQZGzsrKClZWV9m9GiRsI0TmKYUJMV33iF6hnDFP8EqJzdA0mTYlidvyGLD2n1cy2sQsICMChQ4dQXFzMH9uxYwfMzMzg7+9vuIYRQjRCMUyI6aL4JcS0UQyTpkQ5O76lrS3cfH0RkZQEj6AgnSXq45guc5sbWFFREXr06AFPT09ERUWhoKAAc+fOxZQpU7BmzRqNXqO0tBQODg4oKSmBvb19A7eYEKKIYpgQ06WL+AUohgkxFLoGk6aooetsN6rONgCcP38ec+bMwcmTJ2FnZ4eXX34Zy5cvh6WlpUbPpw8JQgyLYpgQ0/Wk8QtQDBNiSHQNJkS3Gl1n+0nRhwQhpo1imBDTRjFMiOmi+CVEqFHt2SaEEEIIIYQQQowBFZhVIp/oLy0tNXBLCGl4dnZ24BpZRlCKYdKUUAwTYroofgkxbZrEMHW2lZSVlQEA2lENbdIENMZlXhTDpCmhGCbEdFH8EmLaNIlh2rOtRCqV4vr167WOVJSWlqJdu3bIz883uQ9JU227qbYbMO62N8ZR9bpi2Jj/PepCbdc/Y293U4thY//3qA213TCMue0Uv6aD2m4Yxt52mtmuBzMzM7i5uWl0rr29vVH+w2vCVNtuqu0GTLvtpkTTGDblfw9qu/6ZartNkSYxbMr/HtR2wzDltpsSil/jRW03DEqQRgghhBBCCCGE6Bh1tgkhhBBCCCGEEB2jznY9WFlZYfHixbCysjJ0U7Rmqm031XYDpt32xsiU/z2o7fpnqu1urEz534Pabhim3PbGxpT/LajthmHKbZejBGmEEEIIIYQQQoiO0cw2IYQQQgghhBCiY9TZJoQQQgghhBBCdIw624QQQgghhBBCiI5RZ1sLWVlZGDFiBGxsbNC6dWt88MEHqKysNGibcnJy8Prrr6NXr14wNzeHt7e32vM2bNgAT09PWFtb4+mnn0ZycrLKOSUlJZg+fTqcnZ1hZ2eHCRMmoLCwsEHavWPHDgQHB8PNzQ02Njbo1asXfvjhByinEDC2dgPAvn37MHjwYLRq1QpWVlZwd3fH3LlzUVJSIjhvz549ePrpp2FtbQ1PT0/8+OOPKq9VWVmJefPmoXXr1rCxscGIESNw4cKFBmt7U0bxqzsUvzIUv/pD8atbphrDFL+mi2JYd0w1foEmGsOMaOTevXvM1dWVPf/88yw1NZVt2LCBOTg4sDfffNOg7UpMTGRubm5s/PjxzMfHh/Xo0UPlnK1btzKO49iHH37Ijhw5wmbNmsXMzc1ZRkaG4LyRI0cyNzc3tm3bNpaUlMS8vb3Z008/zcRisc7b7evry8LDw1lcXBw7fPgwW7BgATMzM2NLliwx6nYzxtgvv/zC5s2bx+Lj41laWhpbvXo1a9GiBRsxYgR/Tnp6OhOJRGzWrFnsyJEj7MMPP2Qcx7EdO3YIXmvWrFnMwcGBbdiwgaWmpjI/Pz/Wtm1bVlxc3CBtb6oofnWL4leG4lc/KH51z1RjmOLXNFEM65apxi9jTTOGqbOtoejoaGZjY8Pu3r3LH1u3bh0TiUSsoKDAYO2SSCT831955RW1HxSenp4sIiJCcKx///4sICCAf3zy5EkGgO3fv58/lpWVxTiOY9u2bdN5u2/fvq1ybObMmcze3p7/mYyx3TX57rvvGAD+/4K/vz8bMGCA4JyIiAjWrVs3/nF+fj4TiURs3bp1/LG7d+8yGxsbtnLlSv00vImg+NUtil+KX32i+NW9xhTDFL/Gj2JYtxpT/DLW+GOYlpFrKCUlBcOHD4ezszN/LCwsDFKpFAcOHDBYu8zMav8nzM3NRXZ2NsLCwgTHw8PDcfjwYVRUVACQ/XyOjo4YMWIEf07Xrl3Rq1cv7Nu3T+ftbtmypcqxZ555BqWlpXjw4IHRtrsmLVq0ACBb0lJRUYG0tDRMnDhRpe3nz5/H5cuXAQAHDhyAVCoVnOfs7Ax/f3+9tr0poPjVLYpfil99ovjVvcYUwxS/xo9iWLcaU/wCjT+GqbOtoaysLHh5eQmOOTo6wtXVFVlZWQZqVd3kbVNue7du3VBZWYm8vDz+vK5du4LjOJXz9PXzHT9+HG3btoWdnZ1JtFsikaC8vBx//fUXli1bhrFjx6Jjx464dOkSxGKx2rbL2yz/08XFBU5OTnpve1ND8dvwKH711/amhuJXP0wphil+TQvFcMMzpfgFmlYMU2dbQ0VFRXB0dFQ57uTkhHv37um/QRoqKioCAJW2y/9zyttu6J/v+PHjiIuLw//+9z++PYBxt7tDhw5o1qwZevfuDVdXV2zZsoVvE2DcbW9qTPV3bSr/lyh+hecZ8/8pU2Sqv2tT+r9kajFM8WtaTPX3bSr/n0wtfoGmFcPU2SYGd+3aNUyaNAlDhw7F22+/bejmaGzfvn04efIkvv/+e5w/fx5jxoyBRCIxdLMI0SuKX0JMmynGMMUvITKmGL9A04phc0M3wFQ4OTmppKUHZCMrintQjI18JKikpAStW7fmj8tHjuRtd3JyQn5+vsrzG/rnKy4uRkBAAFq0aIGdO3fy+2eMvd0A0LNnTwBA//798dxzz6FXr15ISEhA9+7d+bYrtwkQtt0U/0+ZIlP9XRt7HFD8mt7/KVNkqr9rU4gDU41hil/TYqq/b2OPA1ONX6BpxTDNbGvIy8tLZQ9ASUkJCgsLVfYVGBN525TbnpWVBUtLS7i7u/PnXbhwQaVGn7p9Nrry6NEjBAUFoaSkBCkpKXBwcDCJdqvTs2dPWFhYICcnB507d4aFhYXatsvbLP/z5s2b/AeI4nnG/H/KFFH86h7FL8WvvlD8NozGEsMUv8aPYlj3Gkv8Ao0/hqmzraGAgAAcOnQIxcXF/LEdO3bAzMwM/v7+hmtYHdzd3eHp6YkdO3YIjm/btg3Dhg2DpaUlANnPV1RUhMOHD/PnZGdn4/Tp0xg9erTO21VVVYWwsDCcP38eqampaNu2rUm0uyaZmZkQi8Vwd3eHlZUVhg4divj4eJW2d+vWDR07dgQA+Pv7w8zMDDt37uTPKSoqwoEDB/Ta9qaA4le3KH4pfvWJ4lf3GlMMU/waP4ph3WpM8Qs0gRg2XNUx03Lv3j3m6urKBg8ezPbv389++OEH5ujoyN58802DtuvBgwdsx44dbMeOHWzIkCGsXbt2/ONbt24xxhjbsmUL4ziOffTRRywtLY29/vrrzNzcnJ08eVLwWiNHjmTt2rVj27dvZ7t372Y+Pj4NVth+5syZDACLjY1lGRkZgq/y8nKjbTdjjIWGhrLly5ezPXv2sEOHDrHY2FjWunVr1rNnT1ZRUcEYYyw9PZ2JRCL2xhtvsLS0NPbRRx8xjuPY9u3bBa81a9Ys5ujoyH744Qe2f/9+NnjwYNa2bVtWXFzcIG1vqih+dYviV4biVz8ofnXPVGOY4tc0UQzrlqnGL2NNM4aps62Fc+fOsWHDhrFmzZoxFxcX9r///Y//j2EoeXl5DIDar7S0NP689evXsy5dujBLS0vm4+PD9uzZo/JaxcXFbNq0aczR0ZHZ2tqycePG8QXmda1Dhw41tjsvL89o280YYzExMaxXr17Mzs6O2djYsB49erBFixaxkpISwXlJSUnMx8eHWVpasi5durANGzaovFZ5eTl7//33mYuLC2vWrBkbPnw4O3/+fIO1vSmj+NUdil8Zil/9ofjVLVONYYpf00UxrDumGr+MNc0Y5hhTWqhPCCGEEEIIIYSQJ0J7tgkhhBBCCCGEEB2jzjYhhBBCCCGEEKJj1NkmhBBCCCGEEEJ0jDrbhBBCCCGEEEKIjlFnmxBCCCGEEEII0THqbBNCCCGEEEIIITpGnW1CCCGEEEIIIUTHqLNdT0uWLAHHcWjbti2kUqnK9wcOHAiO4zB16lStXre4uBhLlizBuXPnBMcvX74MjuMQHx//JM1+Yl9++SU4juMfHz16FBzH4Y8//tBbG5YsWYKTJ0+qHOc4DqtWrdJbOwDg1q1bsLOzw9mzZ2s9T/n3pktlZWVwdnbGiRMnGuT1GyuKYRmKYYphU0UxLEMxTDFsiih+ZSh+G3/8Umf7CVhYWODOnTv49ddfBcevXLmCjIwM2Nraav2axcXFWLp0qcqHhKurKzIyMvDCCy88UZt17dlnn0VGRga6deumt/dcunSp2g+JjIwMTJkyRW/tAIDly5djyJAh8Pb21uv7KrKzs8OcOXMQFRVlsDaYKophimGKYdNGMUwxTDFsuih+KX6bQvxSZ/sJWFpaIiAgAFu3bhUcj4uLQ48ePdC5c2edvZeVlRV8fX3h7Oyss9fUBXt7e/j6+sLGxqbGcx49eqSXtvj6+sLV1VUv7wUA9+/fx4YNGzBt2jS9vWdNpk2bhl9//RX//POPoZtiUiiGKYYphk0bxTDFMMWw6aL4pfhtCvFLne0nFBERgfj4eIjFYv7Yli1bMHnyZLXn//rrrxgwYACaNWuGli1bYtq0abh37x4A2RKXTp06AQAmTpwIjuPAcRwuX76sdvmLVCrFJ598go4dO8LKygpeXl5Yt26d4P2WLFkCW1tbnDlzBoMGDULz5s3h7e2N/fv31/mzlZaW4uWXX4adnR1atWqFDz74AFVVVYJz1C1/4TgOK1aswPz589G6dWu4uLgAABhjWLVqFTw9PWFlZQV3d3d88cUXKu97/vx5jBs3Ds7OzmjevDmefvpp/oNYvoRk3rx5/O/n6NGj/PeUl7+sW7cOXbt2hZWVFTp27IhPPvlEsFxp48aN4DgOp0+fRkBAAGxsbODh4YGff/65zt+P/N8iICBA698bIBt9nT17NlxdXWFlZYXevXvjwIEDgnMYY1i2bBlat24NW1tbTJw4EYcOHRL83ADQoUMH9O3bFxs3bqyz3USIYphimGLYtFEMUwxTDJsuil+K30Yfv4zUy+LFi5mNjQ178OABs7GxYcnJyYwxxv777z8GgOXm5rKnn36avfLKK/xz/vjjD2Zpacn8/f3Znj172Pr161nLli1Z3759WVVVFSsvL2e7du1iAFh0dDTLyMhgGRkZrLy8nOXl5TEAbMeOHfzrzZ07l4lEIrZ48WK2f/9+NmfOHAaArV69WtBOS0tL5uPjw77//nuWmprKhg4dymxsbNidO3dq/RnHjx/PbG1t2Zo1a9jevXtZYGAga9u2LVP8b5OWlsYAsFOnTvHHALDWrVuzkJAQlpyczBITExljjM2ZM4c1a9aMffLJJ+zgwYNs6dKlzMLCgn3zzTf8c7Ozs5mDgwPz9vZmv/zyCzt48CD74osv2IoVKxhjjGVkZDAAbM6cOfzvp6SkhH/fzz77jH+tr776ij93//79bPHixUwkErH333+fP+fHH39kAFi3bt3Y559/zg4cOMAmTpzIOI5j586dq/X3M2XKFObn51ev31tFRQXr06cPa9euHduwYQNLTU1lL774IjM3N2f//vsvf97//d//MY7j2Pz589n+/fvZ/PnzWYcOHRgAlpaWJnjfd999l/Xo0aPWNpPHKIZlKIYphk0VxbAMxTDFsCmi+JWh+G388Uud7XqSf0gwxtjkyZPZiy++yBhj7MMPP2T9+/dnjDGVD4nQ0FDWvn17VllZyR/bv38/A8B2797NGGNqPwzUHb99+zazsLBgCxYsEJwXERHBWrVqxaqqqvh2AmB79+5Vea1ffvmlxp/vv//+YxzHsQ0bNvDHqqqqWKdOnTT6kOjevTuTSqX8sZycHMZxHFu3bp3gfebPn89at27NJBIJ/7ts1aoVH/jqKH8YqDteVVXFWrZsycLDwwXnREZGMktLS/4DUv4h8fXXX/Pn3L9/nzVv3px9/PHHNbaBMcY8PT3Zm2++KTim6e/thx9+YObm5uy///4TPL9fv35s4sSJ/PNcXV3ZtGnTBOdMnz5d7YfEjz/+yDiOY6WlpbW2m8hQDMtQDFMMmyqKYRmKYYphU0TxK0Px2/jjl5aR60BERASSkpLw6NEjxMXFISIiQu156enpCA4OhoWFBX/M398fjo6OOH78uFbvmZmZCbFYjIkTJwqOT5o0Cbdv30Z2djZ/zMzMDMOHD+cfd+zYEc2aNcO1a9dqfP1Tp06BMYbQ0FD+mEgkQkhIiEbtCwgIEGQNPHToEABg/PjxqKqq4r+GDx+OGzduID8/HwBw+PBhTJgwAfb29hq9T02ysrJw584dtb+fyspK/P7774Lj/v7+/N9tbGzQoUOHWn8/AFBYWIhWrVoJjmn6eztw4AB8fHzg6ekp+H2MGDECp06dAgBcu3YNhYWFGDt2rOC5wcHBatvTsmVLMMZw8+bNWttNVFEMq6IYphg2JRTDqiiGKYZNBcWvKorfxhO/5jp9tSZq5MiRsLCwwEcffYS8vDyEhYWpPa+oqAhPPfWUyvGnnnqK32+iqaKiIv65yq8FQPB6zZo1g6WlpeA8S0tLlJeX1/j6hYWFsLCwgJOTk9rXr4vyeXfu3AFjDC1btlR7fn5+Pjp06IC7d++iTZs2Gr1HbbT5/QCAo6Oj4HFdvx8AKC8vh5WVleCYpr+3O3fu4PTp04ILhpxIJOJfC4DKB5F8744yeVv0lUijMaEYVkUxTDFsSiiGVVEMUwybCopfVRS/jSd+qbOtAxYWFhg/fjw+//xzDBs2rMZAcnZ2xq1bt1SO37x5U+vsiPLzb926hbZt2wpeS/H79eXq6gqxWIyioiLBf3hNR3uUa+E5OzuD4zgcP35c5QMLALp27QoAaNGiBa5fv/4ELX/8fgBUft+6+v3IX6O4uFhwTNPfm7OzM3r27IkNGzbU+PryjJC3b98WHFf3fwgA35YWLVpo+iOQahTDqiiGKYZNCcWwKophimFTQfGriuK38cQvLSPXkRkzZmDMmDF45513ajxn0KBBSExMFGTUO3jwIIqLizFo0CAA4AOortGgvn37wsLCAjt27BAc3759O1xcXODp6VnfHwUA8NxzzwEAEhIS+GMSiQSJiYn1er1hw4YBAO7evYs+ffqofNnZ2QEAhg8fjvj4eJSVldX4WhYWFnX+frp27YpWrVqp/f1YWlqib9++9fo5lN8jLy9PcEzT39vw4cORm5uLNm3aqP19AICbmxtat26NpKQkwXNr+je4fPkyHBwc0Lp16yf8yZomiuHaUQwnCs6jGDY+FMO1oxhOFJxHMWxcKH5rR/GbKDjPlOKXZrZ1pG/fvnUG0MKFCzFgwAAEBQVhzpw5uHnzJhYsWIC+ffti9OjRAIDWrVvD0dERW7duRadOnWBlZYWePXuqvFbLli0xZ84cfPbZZ7C2toavry/27duHLVu2YPXq1fwSivrq3r07QkND8e6776K8vBwdO3bE2rVrUVlZWa/X8/T0xJtvvomXXnoJ8+bNQ79+/SAWi5GdnY20tDT+d7d48WIkJydj0KBB+OCDD+Dq6opz587h4cOH+OCDDwAA3bp1Q1JSEvz8/GBjY4OuXbvyHzJyIpEIixYtwttvvw0XFxeMHj0av/32G1auXIl3331XJ6NWAwcOxPbt2wXHNP29vfzyy1i3bh2GDBmC//3vf/D09ERxcTFOnz6NyspKxMTEQCQSITIyEu+++y6eeuopDB06FGlpafy+HTMz4VjZH3/8gQEDBqgcJ5qhGK4dxTDFsLGjGK4dxTDFsDGj+K0dxa8Jx69O0601IYpZFGuinEWRMcaOHj3K+vfvz6ysrJizszObOnUqu3v3ruCchIQE1q1bN2ZlZcUAsLy8PLXZFSUSCVu2bBlr3749s7CwYB4eHuzbb7/VqJ0ODg5s8eLFtba/qKiITZkyhdnY2LAWLVqwuXPnss8++0yjLIrqshxKpVK2evVq5u3tzSwtLZmzszPr378/+/zzzwXn/ffff2zs2LHM3t6eNW/enPXq1YvFxcXx309PT2fPPvssa9asmSCboLr3/eabb5iHhwezsLBg7du3Zx9//DGfsZGxx1kUb9++LXieun87ZX/++ScDwLKzs7X+vTHGWElJCXvvvff4fz9XV1c2evRovvyF/He2ZMkS5uLiwpo3b87Gjh3Ltm3bxgCwv//+mz+vsrKSOTs7C7I3ktpRDMtQDFMMmyqKYRmKYYphU0TxK0Px2/jjl2OMMd123wlpOnr37o3g4GB89NFHenvPRYsWITY2Fnfv3kWzZs0AAHv37sXkyZNRUFAAW1tbvbWFEFNHMUyIaaMYJsR0NYX4pc42IU8gKSkJb7zxBvLy8lQyKurC+fPnsWnTJgwYMACWlpY4evQoVq1ahTfeeANffvklf94LL7yAIUOG6PXDipDGgGKYENNGMUyI6WoK8Ut7tgl5AsHBwbh48SLy8/PRpUsXnb9+8+bNkZGRgW+++QZlZWVo27Yt5s2bhyVLlvDn3L9/H4MHD8Z7772n8/cnpLGjGCbEtFEME2K6mkL80sw2IYQQQgghhBCiY5QukRBCCCH/334dCwAAAAAM8reexM6yCACYyTYAAADMZBsAAABmsg0AAAAz2QYAAICZbAMAAMBMtgEAAGAm2wAAADCTbQAAAJgFzpPrMrFBG4kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAERCAYAAACEp98ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTzUlEQVR4nOzdeViU5foH8O8wLCogi0qiuKGgJpodTdEkNRVFUMAVtU6mlm222CkVM5cStLT6ZdmmJ0+5r6AouGKhku2lKSKKiog7mwswzDy/P8YZZwNmcJgFvp/r4tJ5eWfmAb3nfZ/tviVCCAEiIiIiIiIiMgsHazeAiIiIiIiIqDZhR5uIiIiIiIjIjNjRJiIiIiIiIjIjdrSJiIiIiIiIzIgdbSIiIiIiIiIzYkebiIiIiIiIyIzY0SYiIiIiIiIyI3a0iYiIiIiIiMyIHW0iIiIiIiIiM2JHm6zu3LlzkEgkWLVqlbWbQkTVwBgmsm+MYSL7xhi2Texo1zHHjh3DqFGj0KpVK9SrVw/NmzfHoEGDsGzZMms3zSpOnTqFN954A71790a9evUgkUhw7tw5azeLqEKMYW3btm3D4MGD0axZM7i4uMDPzw+jRo3C8ePHrd00IoMYw9rmzZsHiUSi91WvXj1rN43IIMawttatWxuMYYlEgoCAAGs3z6okQghh7UaQZRw5cgT9+/dHy5Yt8cwzz6Bp06bIycnBTz/9hDNnziArK8sq7RJCoLS0FE5OTpBKpRZ971WrVmHy5Ml4+OGH4ejoiD///BPZ2dlo3bq1RdtBZAzGsL4FCxbgxIkTePTRR9G4cWNcvnwZ//3vf5GXl4f09HQ88sgjFm0PUWUYw/rmzZuH+fPn44svvoCbm5v6uFQqxbhx4yzaFqKqMIb1JSQk4NatW1rHzp8/j3feeQcvvfQSPv/8c4u2x5Y4WrsBZDkLFy6Eh4cHfvnlF3h6emp97+rVq9ZpFGDVkevhw4ejoKAA7u7uWLJkCf7880+rtIPIGIxhfe+++67esSlTpsDPzw9ffPEFvvzySyu0isgwxnDFRo0ahcaNG1u1DURVYQzri4qK0jv2/vvvAwAmTJhg4dbYFi4dr0POnDmDTp066X0wAICPj4/esdWrV6Nbt26oX78+vL29ERMTg5ycHK1zTp8+jZEjR6Jp06aoV68e/Pz8EBMTg8LCQvU5e/fuRZ8+feDp6Qk3Nze0b98esbGx6u9XtK/kwIEDCAkJgaurKzw9PREZGYmTJ09qnaNacpaVlYWJEyfC09MTHh4eePbZZ3Hnzp0qfyfe3t5wd3ev8jwiW8AYNo6Pjw8aNGiAgoKCaj2fqKYwhismhEBRURG40JJsGWPYOGvXrkWbNm3Qu3fvaj2/tuCMdh3SqlUrpKen4/jx4wgKCqr03IULF2LOnDkYM2YMpkyZgmvXrmHZsmV44okn8Mcff8DT0xNlZWUYPHgwSktLMW3aNDRt2hS5ublISkpCQUEBPDw88M8//yAiIgJdunTBggUL4OLigqysLBw+fLjS99+3bx/CwsLg7++PefPm4e7du1i2bBkef/xx/P7773pLu8eMGYM2bdogPj4ev//+O1asWAEfHx8sXrz4QX9tRDaDMVyxgoICyGQyXL58GZ988gmKioowYMAAo55LZCmM4Yr5+/vj1q1bcHV1RVRUFJYuXYqHHnrIqOcSWQpjuGp//PEHTp48idmzZ5v0vFpJUJ2xZ88eIZVKhVQqFb169RJvv/222L17tygrK9M679y5c0IqlYqFCxdqHT927JhwdHRUH//jjz8EALFp06YK3/Pjjz8WAMS1a9cqPCc7O1sAEN9++636WNeuXYWPj4+4ceOG+thff/0lHBwcxL///W/1sblz5woAYtKkSVqvGR0dLRo1alTxL8OADz/8UAAQ2dnZJj2PyFIYwxVr3769ACAACDc3N/HOO+8IuVxu9POJLIExrO+TTz4Rr7zyilizZo3YvHmzeO2114Sjo6MICAgQhYWFVT6fyJIYw1V78803BQBx4sQJk59b23DpeB0yaNAgpKenY/jw4fjrr7/wwQcfYPDgwWjevDm2b9+uPm/r1q1QKBQYM2YMrl+/rv5q2rQpAgICkJqaCgDw8PAAAOzevbvCpSWqpTWJiYlQKBRGtTMvLw9//vknJk6cCG9vb/XxLl26YNCgQdi1a5fec1544QWtxyEhIbhx4waKioqMek8ie8AYrti3336LlJQULF++HB07dsTdu3chl8uNei6RpTCG9b322mtYtmwZxo8fj5EjR+KTTz7B//73P5w+fRrLly83qr1ElsIYrpxCocD69evx6KOPomPHjkY/r7ZiR7uOeeyxx7B161bk5+fj559/xqxZs1BcXIxRo0bhxIkTAJR7RYQQCAgIQJMmTbS+Tp48qU720KZNG0yfPh0rVqxA48aNMXjwYHz++edae0rGjh2Lxx9/HFOmTMFDDz2EmJgYbNy4sdIPivPnzwMA2rdvr/e9jh074vr167h9+7bW8ZYtW2o99vLyAgDk5+dX47dEZLsYw4b16tULgwcPxosvvojdu3dj9erVmDVrllHPJbIkxnDVxo8fj6ZNm2Lfvn0mP5eopjGGK/bDDz8gNze3zidBU+Ee7TrK2dkZjz32GB577DEEBgbi2WefxaZNmzB37lwoFApIJBIkJycbLBGgWX5j6dKlmDhxIhITE7Fnzx68+uqriI+Px08//QQ/Pz/Ur18fP/74I1JTU7Fz506kpKRgw4YNePLJJ7Fnzx6zlSCo6HUEk6pQLcUYrpiXlxeefPJJrFmzBkuWLHnQphHVCMZw5Vq0aIGbN28+SJOIahRjWN+aNWvg4ODA0nz3sKNN6N69OwDlMhMAaNu2LYQQaNOmDQIDA6t8fufOndG5c2e88847OHLkCB5//HF8+eWX6tT+Dg4OGDBgAAYMGICPPvoIcXFxmD17NlJTUzFw4EC912vVqhUA4NSpU3rfy8jIQOPGjeHq6lrtn5eotmEM67t7967WjACRLWMMaxNC4Ny5c3j00Udr7D2IzIkxDJSWlmLLli3o168fmjVrZtbXtldcOl6HpKamGhyVUu3TUC0vGTFiBKRSKebPn693vhACN27cAAAUFRWhvLxc6/udO3eGg4MDSktLAcDgaHTXrl0BQH2OLl9fX3Tt2hX/+9//tMrzHD9+HHv27MHQoUON+GmJah/GsD5DdUvPnTuH/fv3q298iGwFY1jftWvX9I598cUXuHbtGoYMGWK29yEyB8ZwxXbt2oWCggIuG9fAGe06ZNq0abhz5w6io6PRoUMHlJWV4ciRI9iwYQNat26NZ599FoByFO7999/HrFmzcO7cOURFRcHd3R3Z2dnYtm0bnn/+efznP//BgQMH8Morr2D06NEIDAxEeXk5vv/+e0ilUowcORIAsGDBAvz4448IDw9Hq1atcPXqVSxfvhx+fn7o06dPhW398MMPERYWhl69emHy5MnqkgQeHh6YN2+e2X4nhYWFWLZsGQCoyyR89tln8PT0hKenJ1555RWzvRfRg2IM6+vcuTMGDBiArl27wsvLC6dPn8bKlSshk8mwaNEis70PkTkwhvW1atUKY8eORefOnVGvXj0cOnQI69evR9euXTF16lSzvQ+ROTCGK7ZmzRq4uLio201gea+6JDk5WUyaNEl06NBBuLm5CWdnZ9GuXTsxbdo0ceXKFb3zt2zZIvr06SNcXV2Fq6ur6NChg3j55ZfFqVOnhBBCnD17VkyaNEm0bdtW1KtXT3h7e4v+/fuLffv2qV9j//79IjIyUjRr1kw4OzuLZs2aiXHjxonMzEz1OYZKEgghxL59+8Tjjz8u6tevLxo2bCiGDRumVypAVZJAt+TBt99+a1SpLtV7G/pq1aqVEb9VIsthDOubO3eu6N69u/Dy8hKOjo6iWbNmIiYmRvz999/G/EqJLIoxrG/KlCni4YcfFu7u7sLJyUm0a9dOzJgxQxQVFRnzKyWyKMawYYWFhaJevXpixIgRVZ5bl0iEYLYoIiIiIiIiInPhHm0iIiIiIiIiM2JHm4iIiIiIiMiM2NEmIiIiIiIiMiN2tImIiIiIiIjMiB1tIiIiIiIiIjNiR5uIiIiIiIjIjNjR1iGEQFFREVj1jMg+MYaJ7BtjmMh+MX6J7mNHW0dxcTE8PDxQXFxs7aYQUTUwhonsG2OYyH4xfonuY0ebiIiIiIiIyIzY0SYiIiIiIiIyI3a0iYiIiIiIiMyIHW0iIiIiIiIiM2JHm8jOyGWySh8TEREREZF1saNNZEeEEMhKScGK4GDEublhRXAwzqSksIwGEREREZENYUebyE7IZTJkJiVhfWQkco8ehez2beQePYp1kZE4nZR0f2ZbLrduQ4mo+hi/RPaNMUxkv8wcv+xoE9kJqZMT0hYuBHRnr4VAWlwcpE5OwJUrQNeuwP79VmkjET2A0lIgMhJYvNjaLSGi6nj/fWDkSKCszNotISJT7dkD/OtfQG6u2V6SHW0iO3L1+PHKj8fHA8ePA6+/zlF1IntSWqq8Qd+5E5g/H7hwwdotIiJTLFwIzJkDJCYCO3ZYuzVEZIq9e5UD3X//bdbBbkdTn6BQKPDnn3/i6NGjyMvLw927d9GoUSO0b98effr0QZMmTczWOCLS5hMUhNyjRw0eBwD8+Sfg7w/s2gVIpZZtHBFVT2kpMGqUspNdvz6QlAS0bGntVhGRAXKZTLmCTPPx9u3AO+8oD8THKwfNqEIGf4caj4ksav9+YPhwoKQEGDYMWLLEbC9tdEf7zJkz+Pzzz7FmzRpcu3YNUqkUnp6ecHFxQUFBAe7cuQOJRIKQkBA899xzGDduHBwcOGFOZC5ymQxPzJ6NdZGR2svHJRKEzJoF+dmzkObmAgcPAi1aWK2dRFQ5vZvMmzeVj+vVU86EPfmkFVtHRBVRJSRNW7gQV48fh09QEJ6YPRsB0dGQREcDjz0GzJxp7WbatAp/hxERkEgk1m4e1TU//KDsXJeUABERwKZNgLOz2V7eqJ7w888/j06dOuGvv/7C/Pnz8eeff6KkpATXrl3DxYsXcevWLVy9ehVJSUl45JFH8Pbbb+Phhx/GkSNHzNZQorpO6uSEgIgIjEtMhF9wMJzd3OAXHIxxCQkIiIiA9MMPgQMH2MkmsmEGKwf88gvE5s3A0aPAgAHWbiIR3aNbPrPs1i38uWqV4YSk33wDzJplpZbaB6OTuhJZSvPmQKNGwNChwObNgIuLWV9eIoyoC/T8889jxowZaNu2rVEvKpfLsXbtWkilUowfP/6BG2lJRUVF8PDwQGFhIRo2bGjt5hDp0ZsNu30b0rlzgddeYycbjGGyXfLycmQlJ2O9gVUp4xIT0XbIEC6fBGOYbIMQAplJSVozryGxsQiMiEDq3LnIz8pCcV4eLqSloXmPHpicnm7tJtuEquJ3RXCwwS1wfsHB/B1SjTO4beHOHWUHu149s7+fUR3tuoQXeLILQgCaS6wUCoBbNQAwhsm26F7Ui3JzkTxtGjK2bdM6jzeZ9zGGydrkMhmyUlL0BsU6jBiBqFWr4OLurj6Wn52NA++8g5Fr1lijqTanqviNc3OD7PZtvePObm6YVVxsiSZSHWVw8Gz2bATW4LYF3pkT2ZucHKBHD+C33+4fYyebyOYYWiae99tvGLN5MzpER2udW1FFASKyPEPlNDtER2PMpk04l5qqFdNXjx3DiO+/t2Jr7Ys6eauRx4nMoaJtC+sjI5GZlAR5DZXkM3lGe9KkSRV+z8HBAR4eHnj00UcxYsQINGjQ4IEbaGkcSSeblpMD9OsHnD0LdO8O/Pyz9sw2MYbJJqhmxDZER6Nlnz5w9/VVLjM9dAhjt26FT1AQlgUEQCgUADijrYkxTLYgzs0N5XfvomVICNybN0fokiW49MsvWB8Vpbf1IyYxEe0GD4bUjEmU7FVl8SuXyXAmJcVgUldun6GaZo1tCyaX9/rjjz9w6dIlXLt2Dd7e3vDx8cHVq1dx8+ZNNGnSBK6urvi///s/zJ49GwcOHDB6XzcRVUGzk+3vD2zdyk42kY2SOjkh5/BhTDt9Gl5t2qiP52dn47evvkL74cPRMiQE53/4QVk5IDaWJW6IbEiPV15Bt6lTteLXt1s3dIiK0t76IQQOxcWh/bBhVmilfdFM6poWF6e1951Zx6mmVbRyrCZXlJm83vTDDz9Ew4YNkZaWhuvXr+PEiRO4fv06fvjhBzRs2BCff/45Tp48CRcXF7z99ts10Waiuke3k80SXkQ2b0BcHK4eO6a3zHRAXBwAwKtNG2XlgMREZeUAdrKJbIK8vNxg/HLrx4OTSCRoO2QIJqenY1ZxMSanp6PtkCHsZFPNOXcOgPHbFsyZ/d7kpeNdu3bFW2+9hQkTJuh97/vvv8fixYtx/PhxfPvtt3jzzTdx8+ZNszXWErhkjWwOO9kmYQyTLZDLZMoM44aWmSYkoF1YmLpjzZlsbYxhsraKkqGp4pdbPyrG+CVLMJg93NB1NCcHmD8f8s8+Q9bevYZjOjERbQcNwpKmTdG4Qwez1nU3eUb71KlT8PT0NPg9Ly8vnDlzBgDQtm1b3L1794EaR0QA5s1Tdqxfew1IT2cnm8gOSJ2ckBYXp31BB5TLTOPjtW4I2Mkmsi2GkqEBUMevl78/WoaEKI9pbP0goppnKNHomZQU6M4dy2Uy5T3zihWQ1quHwIgIxCQmwi84GM5ubvALDkZMYiICIyLw0//9H0oLC81e193kPdodOnTAkiVL0L9/f61kZ7dv38aHH36Ihx9+GABw6dIlPPTQQw/cQKK6Tv7FF1oJVjj7RWQfKlpOeu3ECQu3hIhMVdV+Tq82bSAvLeX+YiILMrTaRNU51kyop+qMa5byGrF6NdoNGaKVT6G8pASHP/gA+2fOvP8mQiAtLg6BZsi7YPKM9rJly/Drr7/Cz88PI0eOxAsvvICRI0fCz88Pv//+Oz799FMAwN9//41Ro0Y9cAOJ6qTCQkAI5QfF7t1VjtoRkQ0pLwdgeD9Yh+hovKTT0eZMGJHteahLF4PHVXEd+e233F9MZGGVrjZZtAhSJyco5HLkpKdj48iRcKxXD+2HDYNjvXr4rEMHnElJgVwuVz9tSdOm2p3se8yVd8HkjnafPn1w+vRpTJkyBfn5+fjhhx+Qn5+P559/HqdPn8bjjz8OAIiLi8OSJUvM0kiiOiUnB+jeHfIbNwzW/DPnkhYiMjOZDBg3DvJz5/DE7NlalQE6REdjzObNyPv9dw6eEdkY3WvqU7t3o8OIEdonGVgmzhVmRJZlqBPcIToaI9asAQA4SKVo2bs3ZhYVYeLBgxi5bh0mHjyIaadP48Lhw5BKpernNe7QweB7mKuuu8kdbQBo2rQpPvjgAxw4cAAnT57EgQMHsHjxYjRt2tQsjSKqs3JygBkzgKefhrRxYxyKjzc4apcWF8eLO5GtudfJxubNkL79NgLCwzHu3n4wl4YNEbZsGTJ37uTgGZGNMbTn8/zBgxizaRMenzFDvZ+TFQKIrE+3E6waxL7y999YERyMLePHQygUOLt3b4VVPwDl4JrugDgAs+ZdMDnruEp+fj6OHz+OnJwchIWFwcvLCyUlJXB2doaDQ7X67zaB2RLJaq5fh/zOHUhbtlQfKjh3DrunT9eu2QnA2c0Ns4qLLd1Cu8AYpppQZYZTmQwYPx7YvBlwdga2bQOGDtU7b0VwMHKPHtV7fWYtvo8xTJZUWYZxzT2fqnPZya4c45dqklwmw5mUFKy7F68SBwdMy8rC1WPHsD4qChKJROtxVVU/hBA4nZRUY3XdTe4RCyEQGxuLFi1aoG/fvnj66aeRnZ0NABgxYgTee++9B24UUZ1TWAjh7Y2sP//UGn278vffBmt2mmtJCxFVrcoMpzIZMGHC/U721q3A0KEA9JeVVpVgiYgsq7I9n7qrx9jJJrIuqZMTAiIi1KvF2oaGwqtNG3WVj5YhIVqPtRio+lHTdd1N7mjPmTMHn332GZYuXYrMzEytfWXDhw/Hjh07zNIwInumu9zE0PITzWPyBg2US0qjorSWlK6PikJmUhJClyyBRLVShKVEiCxGLpNVnSvhqaeATZuUnewtW4Dw8Apfr6JBMg6eEVkPB8CIbJfu/a5CLld3jickJwO4H6vuvr5aj3UZOq47gGbOATWTO9qrVq1CXFwcpk6dijZt2mh9r23btuo62kR1lTH1/TTPWX1vCUtVNTvbhoZyjxiRhRk129WxI+DkpOxkR0RU+FqW2A9GRKbjABiRbTJ4T52cDAdH7QrVqlgtzsvTeqzL0jFtckf7xo0b6Nixo8HvyeVyyHijQHVYlbNfcjkUcjmu/vMPNo4cidyjR1Hf0xNA1aNvE5KTWUqEyAqqrIf97rvApUuQDx6s9X3djrPukjcmWCKyPrlMhpAKBsD6xMZCXlZmnYYR1VGqa6dRK8qgPYh9IS0N+dnZCImNtYlBbZM72oGBgdi7d6/B7x08eBBBHP2jOqyi2a8B8fHwHzQIUqkUDlIpHgoKwsyiIgxYtMjk0TfejBNZVpX1sB0cIBo10ht1zzJQtqum94MRkRH+9z9gwwYAymtqYHg4YhIStAbAYhISEBgeDqmzs5UbS1R3qGawd770klE1swHtQezmPXrgwDvvIDAiAjE2MKhtckf7jTfewNKlSzFnzhwcvzfKf/HiRXz++ef49NNPMX36dJNeb9euXejbty+aNGkCFxcX+Pv7Y/r06SgsLNQ6b8eOHXjkkUdQr149BAYG4ttvv9V7rbKyMrz11lto2rQpXF1dMWjQIJw6dcrUH5HogejOfg1YtAiPv/02zuiUGTi7dy8ev1cC6Nbly5UvKS0vt+BPYDzGL9V28vLySuth75o2DfKyMuSkp2NDdLR2joXISGQmJenNiNXkfjBTMYapzvnf/4BnnwWefhrIzQUA/LhwIXw6d9YaAPMJCsLWp5+2cmOrxhim2kJeXq6ewS7JzwdQdc1sFUV5OdqGhWFyejpGrlkDiYMD2tnCoLaohqVLlwp3d3fh4OAgJBKJkEgkws3NTSxdutTk1/r+++/FW2+9JTZv3ixSU1PFsmXLRKNGjcSgQYPU56SlpQmpVCqmTp0qDhw4IN555x0hkUjEpk2btF5r6tSpwsPDQ6xcuVKkpKSIkJAQ0bx5c1FQUGB0ewoLCwUAUVhYaPLPQiSEEN/07CnmAWIeIBY4Ooqyu3dFxvbtYp5Eoj4+DxDzJBKRsX27KLtzRxRfviwUcrnISEwUK4KDRZybm1gRHCwu/vyzKC8r03p93cfWZGvxKwRjmB6coZjL/flnsSI4WMQ3bCgKL14UF3/+Wdw8e1brvJtnz4r10dFacb4iONiSTTcZY5jqlO++E0IiESI6WpRfuaL1rZtnz4r977wjNsfEiG/79hXzHRxsPn6FsL0YZvySKXSvt4UXL4r10dHi2759hRDa99TzALE+Olp9v/xNz55ioaur+KZnT3Fq+3ahUCis8BNUrlodbSGEKC4uFrt37xZr1qwRycnJJl9IK/P1118LACI3N1cIIURoaKjo3bu31jnjxo0THTt2VD/OyckRUqlUfPXVV+pjN27cEK6urmLx4sVGvzc/IOhBlJeViVManerk114TQuh/UBi6Cd87Y4bejbtCobCbDxMVa8avEIxhejAKhUJkbN9eZcwZutBnJCYKhVyu1dmOc3Oz0k9SfYxhqpV++UWITz8VYsUKZfzqxLle/Eok4tT27TY1uG0s3keTPTB0vVXF4YaRI8XNs2dFRmKi+p56voOD3jHNyStbjFeTl46ruLm5ITQ0FOPHj8eQIUPg4eFR3ZfS06hRIwDKJSylpaVITU3F6NGjtc6JiYnByZMnce7cOQDAnj17oFAotM7z9vZGaGgodu3aZba2EVVGN9lR4w4dABhXZuDnzz7DsnbtsKpfP2wZPx7Fly4hc8cOvZJfukkgbA3jl+xVpYlXduyAPDcX+OKL++cZUY7PHrMWM4bJnumV1ywvV27f6N4dmDYNmDwZZbdv489VqwzH79KlaNG7t10nKWQMk62r6HqrisNBH3yAvW+9pdxrfS9/gm7NbC0G6t7bAseqTwG+++47k1703//+t8kNUWUsP3HiBBYsWIDhw4ejdevWOHHiBGQyGTrc67CoqDKfZ2RkoHXr1sjIyICPjw+8vLz0zlu5cqXJ7SGqLlWyo8Bhw9THfIKCkHv0qN65mjfhD3Xpgovp6Tj/ww9o1bcv3Js1q/TDRPP1rY3xS7VBpaW84uMRmJ4ODB6sPK+C2DwUH4/J6eloGRKC8z/+qM5abOsJlRjDVBuIe4mU0hYuxNXjx9HjlVcwIC4OmcnJ6mM+QUEIiY3FmE2bsHHUKGRs26Z6sjp+Jx0+DLlMZldJChnDZE+qKms7OT0dd65fx8ZRoxC6dCkmp6erT1FX/NBhi3XvjepoT5w4Ueux6oNHaPxyND+MqtPRbtWqFXLvJaUYMmQI1q5dCwDIv7cZ3vNeCSQV1QfBzZs31efpnqM6T3WOIaWlpSgtLVU/LioqMrntVLfJZTKtETS9x2VlCJk9G+sjI7U/UDTKDEidnPDU7t1ImDgRGVu3wt3XF4BxM+G2wFrxCzCGybyqjDl/f6POa/XEE+j15psIjIiwi5t1xjDZA73ra3k5IASkTk6Qy2TISklRX2slDg7oNnWqevWJ6vqrmjWLSUhA6JIlOJWYCKFQANCOa1ubGasK76PJ3lRVOjMoJgYSBwc0aNxY6/svnzyJ5GnT7g+S3WOLK8iMWjqen5+v/vrll1/QqlUrvPPOO/jrr79w+fJl/PXXX5g9ezZatWqFowZm7Yyxa9cuHDlyBN988w1OnjyJYcOGQS6XV+u1TBEfHw8PDw/1V4sWLWr8Pan2UI2ea2YTP6NT0kfq7GywzEBMYiICwsOR8MwzWBEcjPMHD2LMpk14fMYMlBQUADC+5Je1WSt+AcYwPRjdZabGxlxV5/VfsADtBg+2i042wBgm26d7vd03cyYcHBwqLAXUMiSk0mWmh+Lj4eXvj5YhIerDtnZtNQXvo8nWGXO91Syd2f2FF9Dt+ecBAPtmzlTfZ+f9/jvGbN6MDtHR959ohRrZxjCqo60ZQDNnzsTzzz+P+fPno3PnzvDx8UHnzp2xYMECPPfcc5gxY0a1GtKlSxf06tULU6ZMQWJiIlJTU7Ft2zb1iJtumQLVCJ23tzcA5Yib7jmq81TnGDJr1iwUFhaqv3JycqrVfqp7Kt3PmZQEeXGx+lyJRKJXZsCnUydsHDUKx9etu/+8nTvR/733MCE5GXKZrPKSXzb0YWKt+AUYw1R9mjfu8Q0boig3FyFGxJyxsWnry8U1MYbJ1uhe48pu3VLvqy6/e/f+bHUFpYCMXRmmOs8Wr62m4H002TJjrreapTM1J7DOpaZiQFwc2oaG3i+duXMnwj79FC4NG1qtRrYxTE6GduTIEXTr1s3g97p164affvrpgRvVpUsXODk5ISsrC23btoWTkxMyMjK0zlE9Vu056dChA65cuaL+4NA8T3dfiiYXFxc0bNhQ64vIGJXu54yLg9TdHdBY4aEZ/DtfegnLAgK0l73oJHLQTaymmgm31Q8TFUvGL8AYpurRHSgrKy5G8rRpCAwP11t9Mu7e6pPUOXMQ5+aG1DlzEBAebnexaSzGMFmbodVi51JTMWbTJnSIjtabrS7OywOgPUNm6Jgm1fGSgoL7q8xqQfwCvI8m22LM9dalYUOELVuGzJ07K0yQpk40KgQOxcWhoZ8fZhYWWq9GthFM7mj7+Phgw4YNBr+3fv16NGnS5IEbdfToUchkMvj7+8PFxQX9+/fH5s2btc7ZsGEDOnbsiNatWwMAQkND4eDggC1btqjPyc/Px549ezB06NAHbhPVTXrZS3UeV7mfs107g9//67vv1HvCKns9VWI1zZlwW/0wUWH8kj0wNFCWsW0bNo4aBd9//Usr5lr17YuNo0fj8OLFkN2+jcOLF2Pj6NFo1a+fXcWmsRjDZE1VZSMOXbIE7n5+AO5fMy+kpSE/OxshsbHqGTJDx9Q0Zq8nJCerV5nl/fqr3c5oa2IMky0x5no7s7AQDZs3rzRBmuZWD937ZVsdIDMqGZqm2NhYTJ06FWfOnEFUVBR8fHxw9epVbNu2DT/++CO++uork15vxIgR6N69O7p06YL69evjr7/+wocffoguXbogKioKADBnzhz069cPL730EsaMGYPU1FSsXbtWq8Pv5+eHKVOm4K233oJUKkXz5s0RFxcHDw8PTJ061dQfkwhCCJSXlGgFb3lJCRwcHdU301VmE79XYsPQ96vKQq6i++FhSx8mjF+yZ4YGyjK2bcO51FTM0JjVWT1kCC5qZDwFgIytW7Hm8mVMOnxYfcyWYtNYjGGyNcZkI24RHAzg/rVUKBTY8+abGLN5M2ISEnAoPh5Xjx/Hb199hQFxcRiXmIi0uDh11vE+s2YpV6nMnYv8rCwU5+XhQloamvfooZXd2B4whskeVHS9zd6/HzMLC4GyMsDZ2eitHnaTT6E6xbd37NghgoODhZOTk5BIJMLJyUn07NlTbN++3eTXio+PF127dhXu7u7C1dVVdOrUScyZM0ev0H1iYqLo3LmzcHZ2Fu3atRMrV67Ue62SkhLx5ptvCh8fH1G/fn0xcOBAcfLkSZPaU1hYKADovT/VLeUymVDI5SIjMVF807OnWOjqKr7p2VNkJCYKhVwuymUyUV5WJjISE8U8iUTMA+5/SSQiIzFRlMtkhl+7rEyc2r7d4PNObd8uysvKLPzTVp+txa8QjGEy3jc9e2rHICDWR0eLwosXtc5b6Oqqd948QMS5uVmp5ebDGCZbVFXM/fTppwavweujo8XNs2e1XuvOzZuivLRU69jNs2fF+ujoWhHTthbDjF8yxND1dh4gVgQHK0/47jujzvu2b1+7ul+WCKE7ZGg8hUKBa9euoUmTJnBwMHkVuk0qKiqCh4cHCgsLuc+kjtEsGyKXyZCVnKxVEgQAIJEgJiEB7cLCIHVyglAokJmUpB499wkKwpBPP0XTrl0rLfklhMDppCStEfaQ2FgE2EkpIFvGGCZjyGUynElJwTqNsnuqRCyZO3cibeFC1PPywlPJyVgRHGxwBYpfcLDdzX7ZA8YwVRVzx9auRefx4w1eg/vExiIwPBw/L1+O6ydOICAsTO/aurJ3b71VKpqvT9XH+CVduqX31CQSxCQmol1oKKQNG0J++jTO/PWX1nVZfV5CAnw6d8a2p55Cn5kz7eZ++YE62rURPyDqJiEEym7dgou7u/qYMTfX+2bORLepU+HVpo3Wa2Xu2KHViX5i9my9D4Wq6m9T9TCGyViqAa/TyckoLynBwMWLcfGnn7Tq8E7LysLVY8cMDrqNS0xE2yFDGLdmxhiu2wwNggEwGHNlt2+j7NYtuD30kPo02d27cKpfX+v1dK+1xr4+mY7xS4YIIZCZlISs5GSU370Lx/r10S4sDIGqe+Nly4CxYyGaNKlyIsqe7peN6mjPmDED06dPx0MaH2RVSUpKQllZGUaMGPFADbQ0fkDUPfLycjg4OCDzXmB3iIpCn3v1+mS3b+ud79KwIWYWFkKhUCD3p5+wql8/tOjdG+7NmiF0yRJc+vVX3pRbEWOYKlPVAFdRbi6Sp01TVwRQz3LrzJpxBUrNYQzXbZrXZL2YCw/H/thY/PzZZ/cHscPD8fuKFbiYng7H+vUNzmDr4qqymsP4pYroXX/LygyWwaxNE1FGdbRHjx6NnTt3YvDgwRg1ahQef/xxdZZClbt37+KPP/5AcnIyNmzYgLt372LVqlUYMGBATbW9RvADou7RXSbeun9/PHPggMEZ7Q7R0QhbtgwNmzdXHystLkbawoW48tdfmMBlplbHGKaKqEbU0xYuhJe/P0asXq1eJq55sx0YEYGNo0ZpdbYHf/QRPDWue/Z84bd1jGEytFqstKgICc8+i4ytW++faGAQ29jYrE0387aE8Vs3VRVPmtdf9WrP2FgEDBtWqwe3jF46/vvvv+PTTz/Fli1bcOfOHbi5uaFx48ZwcXFBQUEBrl27BoVCgaCgIDz33HOYMmUK6tWrV9PtNzt+QNRNmp1jiYMDpufm4tIvv2B9dDRa9ukDd19feLVrh/7z5+vdmOsuC69oJtzZzQ2ziost+nPVRYxhMkReXq4cUIuMhEQiqXRJeExCAnyCgrAsIEBdhq9F795aGcap5jCGKf3jj9H9xRfhpHEfqbvaRIWD2LaF8Vv3GOxEa9wbV7ZHu7av9jR5j/adO3dw5MgR/Prrr8jLy0NJSQm8vb3Rvn17PP744wgICKiptloEPyDqJt3OsWq5aNnt2+p928Z+UHBG27oYw6RS0bLwuzdvYuLBg1XG6qp+/XD+hx/qxM2ALWEMk6Ebd0OrTQAOYtsaxm/tp5c82MC9cYcRIxC1apX6Hrqu3hubXEe7QYMGGDhwIAYOHFgT7SGyiorqWp87eFAr+3BFtT3T4uIQOGwY5OXleGL2bINJVkJiY7k0jchChBDISknRu1Efs3kzfvrkEwCG63pqHvdq0wby0lLu3SSyIEM37rlHj2J9VBRiEhIQumQJTiUmqleb2E09XaJaQPPaWtG9cYfoaIzZtAmZO3ci9+ef8eR771V5vVWpbffJtaMmF9EDUHWOce8mWuLggNClS5GZlIT1kZHIPXoU9T09AVR9Yy51dERARATGJSbCLzgYzm5u8AsOxrjERARERNSqDw8iWyWXybTiV3b7tvpGPTMpCZ3GjgVQ8Q266njkt99icno62g4Zwk42kYVInZwqHNQ+FB8PL39/tAwJUR7TGMQmopqle201dG8scXBA+PLlyNy5E+sjI3EhLQ1A1dfb1WFhWBEcjDMpKahNBbHY0aY6SfOiLHV0RNshQ/Dc0aPo/uKLeHLhQni1aYNDixapL/TFeXkAqv6gAACJRIK2Q4Zgcno6ZhUX80adyMKqulFv2Lw5ivPyEBIbqx5gUzNw484BMqKapxlzxqw24SA2kWXpXlsN3Ru36tsXbk2bqs+7kJaG/OzsCq+3fWJjIbt7F9n79iH36FGsi4zE6aSkWjN4xo421TmqZS8rgoMR5+aGFcHBuPLnn3ioa1eEL1+OPjNnAgBGrl2LDtHRAFD1B8WsWZXemPMmgKhm6V6Uq7pRP7FlCwIjIhDD1SdEVqe6Lu986SUAXG1CZKs0r60X0tJw6/JlrVWhrfv10zpPKBTY8+abyuttQoLW9TYmIQGB4eFwql8fLR5/XPmi97Zj1pZrMDvaVKcYWlLq3qwZfLt10+98//03xmzejA7R0VV/UPDGnMhqNG/SDy1eDKDqG/Wer7wCiYMD/AcO5OoTIivSvC7/9tVXVc5+cbUJkfXoXlul9eoh4N6gdfcXX0TTrl31zsvYtg0bR42CT+fOWtdbn6AgbH36aQCAu6+v+vyKBsrtETvaVKfoLnsxtB9bdz9n6JIlkDg4KD8oRo9G6/799T4o8n77rdYscyGyJ3KZDJd+/RU+QUHKFSkzZkAuk2mNsKtprD7587vvsKpfPyzy8EDOkSNQlJcD4I07kaVpXpcrHdROTOSgNpEV6V5bW/XtC2dXV9w8cwb+gwYhfPlytB8+HHKZTG+wLGPbNiwLCMCFw4ehKC9HyhtvYFlAAArOngVwfxk6ULsSHFa7o52fn4+0tDSsXbsW+fn5AICSkhIo7mWBJLJVmiNlLUNC4NWmDdLi4ipNvNI2NBR+wcF4dOJEOLu64revv0bis89i50sv4do//8C3e3de/ImsQOrkhGbduuHqsWPqFSmpc+YgIDxcLymh5uqT8jt3IC8txdgtW+DXqxccHE0uwkFE1VTZVo+KZr/aDR7M1SZEViR1clIn/O3+4ovo+dprkDo5wdvfH2f37MGK4GDEN2yI0qIig4NlY7duRYtevXDn+nX8/OmnEEKgz6xZyD97Vp00rbYlODS5jrYQArNnz8ann36KO3fuQCKR4JdffsG//vUvDB06FD179sTcuXNrqr01jvX/aj/NWn5BMTEYuW6dXh1tFd36nHKZDJBIINW4Ka9tpQjsHWO4bpHLZMhKTsb6qKhKa3gCQP7Zs/jt668xcNEireczfm0LY7h206yR3XXiRHR/4QWDNXYlDg7oNnUqwpcvt1JLqToYv7Wf7nWztLgYCRMnImPrVgD3yntt3oyy27e1rsGlRUVwdnPD1qefRsHZs8rSmeHh2B8bi18+/1xdhrM2ldM0eUZ7zpw5+Oyzz7B06VJkZmZqpWAfPnw4duzYYdYGEpmT7rIXU7KJA8rRPKnOzBdv0omsR+rkZHBFSsbWrVgzZAgA4IcFC7CqXz8sCwxEi8cfh7ysTOv5RGQZqv3YG6Kj4VivHi4cPgx5WRlCDGz1EEKgXViYVrwSkXUJIVBeUqJ3fMymTeoEwqpVKaVFRVrnODg5QeLggJFr1qhzoigUCgxctKjW5kkxuaO9atUqxMXFYerUqWjTpo3W99q2bYszZ86YrXFE5qJagqK57MUvOBiX//gDRbm5Bi/ytW35CpG90o1BYzOMX/n7bwBAQXa2cpn4tm3KpePOzjXTUCKqlNTJCTlHjmDa6dOYePAgRnz/PaTOzgYrAKj3ZDNeiWyCvLwcEALnUlO1kgefS00FAIQvXw6Jg7JrmbFtG5Y//DAA4NevvsLOl17C2X37tCZo68Lklcmb0m7cuIGOHTsa/J5cLoeMnRKyMaqMxGkLF+Lq8ePo8corCJk9G4HDhqnPcW/WDDGJiTgUF4erx4/DJygIfWrZ8hUie6Qbvz5BQXhi9myt2PQJCtJbdqo6DihLAQGAvKyM8UxkYbrLTPsvWIDLf/6JLePGqWN66LJlaDdkCNprXJfLS0ut0Vwiqsi9bR+aW7VUyYNjEhLQLiwMrfr2VXe8m9zraHefOhVA3bwGmzyjHRgYiL179xr83sGDBxFUizLFkf0zVM7r8OLFWOzlhQuHD+PWlSsozstTZy3WyibeqRPyfv2VM9pEVmIofnOPHsW6yEhkJiWh6OJFFJw7V+GKFL1SQJwZI7Io1UCZ5uxXVkoKmnXrBvdmzdQx/U3PnshKTsbta9dwdNkypLz+OuLd3XE6KYnXYCIbUdFWLVXyYKmTk7qOtqFVoXXxGmxyR/uNN97A0qVLMWfOHBy/t1zv4sWL+Pzzz/Hpp59i+vTpZm8kUXXplvNSEXI59v7nP3B76CG4+/oiedo0LGvXDqv69cOWceOU+zkDApD86qu1bhkLkb2oKH4hBA7FxaGhnx9+X7kSgeHhhuvbh4czfomspKKBsvX3BspUpTMBqG/UXZs0wcktW3D0//4PCpkMaXFxjGEiC6ruVi3VcamzM/yCgzEuMREBLMdn+tLxiRMn4ubNm5g3bx7i4uIAAFFRUXB1dcX777+PMWPGmL2RRA+iqg8F1d+FQoHzP/xg1HOJyDKqit/8rCxsHDUKoUuXYnJ6uvr7+WfPYn9srFaGcSKynEoHyuLjMTk9HS1DQtTXXVVMu/v6qk/lNZjIcsyxVavPzJnoM3Mm5DJZnVsmbki16mhPnz4dly5dQnJyMlavXo1du3bh4sWLnM0mm2RMRnFjs44TkWVVFZvFeXnI2LYNy9q1w5qwMADKLOPLAgPRondvLjslsqKqBso0O9WaMa17jIhqVkUrUP5YtQplt26pz3nCyOTBdX0mW8XkjvZ3332HGzduwM3NDaGhoRg/fjyGDBkCDw8P3Lx5E999911NtJOoWuQyWZUZxU354CAiy6ksfvvExqK8pATuzZujVd++AICSggIAwK3LlzF261ZlxmJe7ImsxpiBMgDqmJbdvYucw4fVx3gNJrIMQytQOkRHY8ymTeos4wnPPIOA8HB15R7VVi0uE6+YRAjdNT2Vk0qlSE9PR48ePfS+99tvv6FHjx6Qy+Vma6ClFRUVwcPDA4WFhWjYsKG1m0NV0M1mqvsYUC6FOZ2UhDSNjOIh9zKKZ+7YgdxffkH/+fORuXOnVtbxEGYdt0uMYfumG8NCCGTu2IFD8fH3KwLMmoXAiIj7+zsB5Gdn4+7163ioa1dInZyQf/Ys7t64oX5M9oMxXDvIZTKcSUnBushI7eXjEgliEhPh++ijWN6pE5o8/LBWTK8JC0NJQQGvwXaK8Wu/4tzcILt9GwAgcXDAtKwsXD12TCvLeIfoaIQuXQovjRLP8rKyOpnozBgm79GurF+en58Pd3f3B2oQkbGM2Uui0qpfP61yXqVFRYAQOL5hAwrOnkWH4cP1SotwfwmRZRmK6bBly9AuLAzthw9Xn3fr8mXcvnYNbg89pD7WoHFjeLZujazkZGQmJSEgLIw36UTWJJEg4F6iQoMDZRIJZhYWAlDmVNj69NMYuWYNJiQnA+A1mMjSNPdftwwJgVebNtgybpzWQFnGtm04lZiIblOnInz5cgB1M5u4sYzqaCcnJyP53gcfACxduhQPadzgAEBJSQkOHDiArl27mrWBRJo0Z7skEgl8goLg3qwZco8eVZf9GZeYiLZDhkDq5AS5TIaslBRsiI5Gyz594O7ri+K8PFw4dAgx27YhatUq9Xm6s16cBSOqearYU8Xqeo3Zr9yjR7GiZ0/EJCSgWffu2PPWW/Dy91euQDGwSiUwIgL+oaEIGDqUN+lEViZ1dMRvX38N/0GD9BIVHpg9GwPi4vDDggXIPnAAF9LS0FxnpSSvwUSWIy8vxxOzZ6tXoKjyJxjKsyAUCvz9/ffqjjZVzKiOdmZmJnbs2AFA2blJS0uDi4uL1jnOzs4ICgpSZyInMjdDs10hsbEYs3kzNo4ahYxt2wAhkBYXh8Bhw7D37bcx6IMPkLZwIYRcrpdRXHUewAs6kTWoYjorORnhy5dXmaH4Vl4ennz/fWXCFo2lbLlHj2J9VBRiEhLQ7l5CNMY0kXVoDlx3e/555Gdn48CcOcjPylIOdKelwalBAwyIi8P1kyeV12ZV3XsuQSWyGM1YlTo6ou2QIXju6FEkv/qqOudJVVnGqXJGJUN77bXXkJ2djezsbLRs2RLJycnqx6qvU6dOISEhAQ8//HBNt5nqoIqyIW4YMQI56ekI/+ILtO7fHxIHB/XoW+cJEwAA1zMyDL4my4YQWY9mTJfk5wNQxqTEwQGt+vZFUEwMWvXtqxXTbUND4dWmDdLi4irskLODTWQ9qsGzFcHBiHNzw4rgYFw9dgz9589HeWkpzv/wA4RCob5JLykoUNa9T0xUJi9kJ5vIIgzF6pmUFPh2747J6emYkJxcabLgPrNmMVGhEUxOhlbbMYmD7VoRHKw1qmYoIUN+djZ+++orrdq55SUl+On//g/7Z87Uej2/4GCt5WxUOzCG7Ycqplv17YuJBw9i38yZ6DZ1apUxrZmwRZOzmxtmFRdbpO1UcxjD9snQ9g8AyuRnCQnwCQrCsoAACCG0tngBTKZUmzB+bZPm7HVlsTouMRFtBw+GdNs2YOxYCIUCmUlJVSYkJcNMToamkpWVhczMTJSUlOh9b8SIEQ/UKCJAP/uw5gx0h+hojNm8GZlJSdgybpzWUvIBcXG4c/06/s/fH00efhghs2fj8bffBoD7nW2NsiGcASN6cMZUANCliukLaWm4deUKBsTFVRjT8vJySB2VlywuZSOyPYbKAwHQ2v7RbepUg4kK2ckmqjmaWy/reXnhqeTkCmNVva3S2Rnymzdx5cwZ+HTurJdnIe+331jVwwgmz2gXFRUhOjoaBw8eBHA/C7nmBybLe9GDEkIokx0tXIhWTzyBQR98oJ79qqjkAAD1aJxv9+742M8PQqFQlxJpO2gQlvr6onGHDiwbUosxhi1PM14rqwCg2/nWjOnpubnI/eWXikfYNRIcVlQySHeWjOwTY9h+xTdsiDIDq0o0V5twgLt2Y/zaFt3Z66CYGIxct87olWFymQwKuRxO9eqpj5UWF8PZzY330EYwec5/xowZuHz5MtLS0iCEwLZt23Dw4EFMnjwZbdq0wU8//VQT7aQ6RHc/dtHFi5DLZAiJjQUkEnXJgYr2aabFxcHd1xctQ0LUxw7FxcGxXj3MyM/H5PR0tOrb1/I/GFEtVFH+hHWRkTidlKTewyWXyXD5zz+xIjgY8Q0boig3FyGzZ0MilaLHtGlwa9oUWcnJ+hfuezGtTtji5ISAiAiMS0yEX3AwnN3c4BccjHGJiQiIiOANPJEF6e7RfPnkSXSIjtY7T3O1CWOUyHJUK00kEgla9e2Lxh07Aqh4BZjq+OqwMPW+bUdnZ+ybOVO9l/v8wYOAEJCXl1vqx7BbJne0U1JSMHv2bPTs2RMA0KxZMzzxxBP4+uuvERkZiaVLl5q9kVS36C4/K750CVInJwRGRCAmIQGtnngCQMXJzFTHVaUJNI9lpaRgVb9+WOztrdUJIKLqqWy5qKqDvPOll5CVkoJm3brBvVkzlBUXI3naNASGh2NGfj6GfPIJACB8+XJMy8rSu1HXjXWJRIK2Q4Zgcno6ZhUXY3J6OtoOHszRdaIapHu9NJRMKe/33zFm82btGNbYqmXodYioZnn5+2NaVhYmHjyIvu++q05yJpFKtZOPSqXoM2sW8s+exdk9e9SD5plJSej2/PMov3tX65jedZ/0mNzRvnr1Klq0aAGpVApXV1fcuHFD/b2hQ4ciJSXFrA2kuknzxvpCWhrys7Nx6bff4NO5M/ovWACg6tG44rw8vWNZKSnKrKdyudYsGRFVX1WDXiX5+Vh/78I89LPPEDR+PJp06gQAOHfwoF6GYt0bdUOxrlf3nns8iWqMZqdatSLF0EqW9ZGRyNy5E2GffgqXhg3VGcUDIiLw82efqWfImIeXyHJGrF6Nq8eOqa+1qXPmIODeQPfEgwcxct06TDx4EDPy8xEYEYE9//mPcusloM6x4OXvr71SlFU+jGJyR7tFixa4fv06ACAgIADbt29Xfy89PR31NNbwExlLd4Rb88ZaKBTY8+abaNatG64eO4adL7+MW1euIKSSkgP5Z8/iQlra/WOxsZDdvYtfPv9cfSrLexGZhzGDXh2iouB7b0Z75Jo16Pvuu8jcuVP/Rj0qCplJSQhdskSZ0VRnNoyILEu1PWRDdDQc69VD7//8Bw2bN8eh+Hj1clT1jJhEgkNxcWjo54eZhYWYnJ4On06dcOnXX9EhMhKXfvlFb1sJEdUcuUymvNZGRamvtTcyMwHoD3Sfv5d/S1dlK0WpciZ3tAcNGoR9+/YBAN544w18+eWX6NatG3r16oW5c+fi3//+t9kbSbWboZFy3U50xrZt2Dh6NFr374/wzz+H20MPIbCCfZqBERH47euv4dSggVZ9zqOffgqFxn4SZigmenBV1dnMP3sWDRo3xpjNm5H3229YERyM1WFhVWYo9vL3R7epU7n3msjKpE5OyDl8GNNOn1YvPQWAsdu2YfqlS1ozYtOysuDp7w8AOLpsGVb164dlAQFIefXV+zNiOnkXiKjm6F5rJQ4OCF26tMLcKloD3fdUtlKUKmdyR3vx4sWYP38+AODpp5/Gli1b0KFDB/j6+uKzzz7DIo1ap8bYtGkTIiMj4efnB1dXV3Tt2hX//e9/9ZYVrVy5EoGBgahXrx4eeeQRJCUl6b1WYWEhJk+eDG9vb7i7u2PUqFHI0/hPQbZHN5GS5t7NGJ1OdNdnnoGzqytS587FratXcT0jA02CgrT2afr17g2FXI6Bixbd37sZGorDH36oXUebs2Rmwxiu2ypKThaTkIDAiAjsffttDPrwQ2Wc3xtRr+/pCaDqJefhy5ej7ZAh3Htdgxi/ZIwBcXFaS09XBAfj0s8/w7VJE60kSVePHcOI778HAJzcskW5VUuh0JsR42yY+TCGqSqa8VZVQmG9ZeIVrBTlPbRxTO5oN2jQAI0bN1Y/jo6Oxpo1a7B161a8+OKLcDCxePlHH32EBg0aYOnSpdixYwfCwsLw3HPPYcG9fbgAsH79ejz33HMYO3YskpOT0atXL0RHR+tlOB87diz27NmDL7/8EmvWrMGpU6cQFhaGcmbFs1mGZrUytm3DxlGj4Puvf2l1on06d8bGUaNw/ocf4Objg8Rnn8Wydu2wql8/bBk3Dqv69cMSHx989+ST2u/h7Ayfjh2ZobiGMIbJUHIyn6AgbBw1CneuX9e7qKtGxatacg4wQ3FNY/xSVdQD4hpLTytKkrQ+KgqZO3dCdvcucg4fVr+G7owYZ8PMhzFMVdGMt6oGu1THvdq0qXClKO+hjWdyHW1Nd+7cQUlJid5xb29vo1/j+vXrWh13AHj++eexYcMG5Ofnw8HBAe3bt0e3bt2wdu1a9Tm9e/eGp6cndu3aBUC5P7x3797YvXs3QkNDAQCnTp1Cx44dsX79eowZM8ao9rD+n+VVVMvPpWFDzCwsVD8uys1F8rRpcHRxMakGIKBft5N1PM2HMUy6hBA4nZSE08nJeKhLF3R/4QWteJU4OGBaVhauHjuG9VFRrIdtRbYWvwBj2Bapat7r8gsOxuT0dKzq1w/nf/jB8DGJBDEJCfAJCsKygAAIIRjjZmRrMcz4tS1ymQxnUlKw7l4d7VZ9+2Livb3ZlcW0SnlJCQSgVUeb99DGM3lGu6ioCC+88AIaNWoEd3d3NGnSRO/LFLofDgDw6KOPoqioCLdv38bZs2eRmZmpF+AxMTHYv38/SktLAQDJycnw9PTEoEGD1Oe0b98eXbt2VX+IkG2qaGS7ycMPA7hfy09VNsSrXbtKn2dUhmJ+QJgNY5gA7YSGEokEbQcPRvjy5ej+wgsADCc4VJXs42oT62H8UkU0Y7o65TRVM2KqPCkH5sxB8x49GONmxhgmQ1Txq7u96/IffxjMhQRAvSS8tKgIv371FdI//hhn9+6Fo4uL1mmMXeM5mvqEZ599FgcOHMCUKVMQGBgI5xooqXLo0CE0b94c7u7uSLu3H6BDhw5a53Ts2BFlZWXIzs5Ghw4dkJGRgfbt2+vt5evYsSMyMjLM3kYyD1UiJdVIm5rGnpCze/ZAKBRYHxmJmMREdJ86FQXnziEkNtbgbJhq3wg/CKyHMVy3qBIapi1ciKvHj8MnKAghs2cjMDwcW59+GoM++AAhs2djvUacqxIcRq1ahfbDh6tfSy6TcU+2lTF+SRXT5SUl6DR6NHyCggzOflWWJCny228BAOVlZZA4OGDkmjUAGOOWwBiu2zSvyV7+/hixejVa9euHwGHD1Oe4N2uGcYmJSIuLu3/djo1FQEQEJBIJuk+dCoDx+qBM7mjv27cPy5cvx4QJE2qiPTh06BDWr1+PpUuXAgDy8/MBAJ73kueoeHl5AQBu3rypPk/3HNV5qnMMKS0tVY/mAcoZe7IczZE2zWDvM2sWAiMisHHUKO1afnFx6iUtHq1aVfohQdbBGK5b5DIZslJStDrRqnq6MQkJePK995Dy2msYvXEjYhITcUgjXrtOnAhnNzet1+MAmXVZOn4BxrCtkctkKDh/Hv6DBsGpXj2jBsS1ymnOmoWi3FzsfestFF+6hJwjRzDx4EE079EDDo6OjPEaxmtw3aZ5TZZIJBi5bp2yPN+IEWjZpw/cfX1RnJeHBo0bI/Lbb7U634Y61YzXB2NyR9vX1xceHh410RZcvHgRY8eORf/+/fHqq6/WyHvoio+PV2dRJ+tQJVLSDPb87GxsGjMGd2/eRFBMDIrz8nAhLU1r+Zqh58nLytjJtiLGcN1TVZmuyenpuHP9OjaOGoWwZcu09n4xXm2LNeIXYAzbGqmTE7zbtkVmUhLSFi5Ep7FjEfz663oDZX1iYxEYEYG/V6+GU4MGeoPkGdu2qV9zz5tvasU+1Qxeg2u/qnIOaV6TWz7xBLzatMGWceMg5HJ1HgWVW3l5mKSRtJCdavMzeY/2vHnzEB8fj4KCArM2pKCgAGFhYWjUqBG2bNmizl6uGnEr1EiKBdwfoVMlXvPy8tI7R3VeZcnZZs2ahcLCQvVXTk6OWX4eejAu7u4Y+vnnevU5H3v5ZQD3921npaRAKBQ4umwZdr70Es7s3q1X0oIsgzFcdxmzfzNj2zYsv5d3QUVaA1uPqHqsFb8AY9gW6JbpKbt1C3+uWoVLv/yCDlFRuPTrr/DRKafp06kT8n79FUExMXrVQTQ72QDLeVkCr8G1n2pJuGaZvTMpKXr3vcaW07vy998122AyfUY7JiYGf//9N1q2bImuXbvqLTORSCRITEw06TXv3r2LiIgIFBYWIj09XWvGXLWnRLV3RCUjIwPOzs7w9/dXn7dv3z4IIbRmSDIyMtC5c+cK39vFxQUuOpv8ybIM7e98YvZsBISHY9/Mmfj5s8/Uy8IHxMXh1uXL2vu2ExIQGB6O3a+/jl+//JLZTK2AMVy3Gbt/s4lOR5tsgzXjF2AMW5vBHAuxsRizaRNS585Vz4hd+uUXtAwJUS89vZCWhuY9emjNVG+dMAEXDcxcs5xXzeI1uParaJvWushIvfte1TVZs5xeZddoqjkmz2h//PHHWLRoEVxdXSGXy1FcXKz1ZerejPLycowZMwYnT55ESkoKmjdvrvV9f39/BAYGYtOmTVrHN2zYgAEDBqiTsYWFhSE/Px/79+9Xn5OZmYk//vgDQ4cONfXHJAtR1+eMjDSqPufpnTu1R+7uLU/18vdHy5AQQAikxcWxk21BjOG6TbV/01D2Uq39mxqJCsl2MH7rtoquweujopCZlIQer7wCQDkjJhQKnP/hBxxfvx7nf/gBQqHQmimTy2QImTWrwkzGjP2awRiuGyrbpnX4gw8gdXLClWPHIC8vR0hsLCCR4EJaGvKzs9WPtUgk6BMbC3lZmeV+iLpImMjHx0e88sorQi6Xm/pUg5577jkBQCxdulSkp6drfZWUlAghhFi7dq2QSCTi3XffFampqeKFF14Qjo6O4siRI1qvNXjwYNGiRQuxceNGsX37dtG5c2fxyCOPCJlMZnR7CgsLBQBRWFholp+PqvZNz55iHqD3tSI4WAghxLd9+1Z6LM7NTQghxOaYGK3HZBmM4bqtXCYTCrlcZCQmihXBwSLOzU2sCA4WGdu3C4VcLjaPHy9WBAeLU9u3C4VCYe3mkg5bi18hGMM1rbysTOtxVddgY88RQgiFQiFObd+u9VnA2K9ZthbDjN+as9DVVS8G0xYtErK7d7XOKy8rExd//lmsCA4Wm8ePV16jdeIyg3FpESZ3tD09PcW+ffvM1oBWrVoJAAa/srOz1eetWLFCtGvXTjg7O4vOnTuLHTt26L1WQUGBmDRpkvD09BRubm5ixIgRIjc316T28APC8gx9cBjqQFd0TLfzrXvhp5rFGKa9M2aIm2fPah0ru3NH67HuzT3ZBluLXyEYwzVJoVCIjO3bxTc9e4qfv/hCCFH1Nbj48mWRkZgo5kkk2udIJOLU9u16sV3VYzIvW4thxm/N0R3wSlu0SCumF7q6im969jTYiS4vLa30MdUMiRCmZY568cUX0aBBA3XZgNqmqKgIHh4eKCwsRMOGDa3dnDphRXCwwb0jfsHBmJyejlX9+qkzJeodk0gQk5AAn6AgLAsIgBCCe7TrOMaw5cU3bAjZ7dta+zdzDh+G/8CBmJCcbO3mkZ1hDNcM3T2ePV97DUM++aTKa/CP772HkNmzkblzp1bWcZbTJEMYvzVDLpPhTEqKusyeg6MjZhYX4+zevVr7tgEo740TE9FO4144/+xZyMvK4N2uHRwcTU7RRdVkckd79erVeOedd9C7d28MHDjQYM29ESNGmKt9FscPCMtQlSPQ/eBQ0+1AKxTqDw7fRx/F8k6d0OThh5XlRcLDsfXpp1Fw9iwv/MQYtgDdciJFublInjZNL9Ow6kadyBSM4Zqj2amu6kZdd9BaXlamVSlA93OACGD81iQhBE4nJSEtLg4tQ0Iw6IMPqhwoO7Z2LS4cOoR2Q4YgMCICCoUCUna0LcbkjraqXECFLyiRQC6XP1CjrIkfEDVPCKGuz+nl748Rq1cbHikPD8f+2Fj88vnnWjU7NTvRvPCTLsaweenGlBACZbduwcXdXX2stLgYzq6u2mV97g2WtQsLY0ySSRjDNSfOzQ2y27fVjwcsWoTH334bmUlJBmtkc9CaTMX4rVm612TdmFZxdnPDrOJi9eP8s2fx29dfY+CiRRZpJymZPKSRnZ1dE+2gOkJeXo6s5GT16Hnu0aMoLylB6NKlWjNf5aWlUMjlGLhokfpDQV5WpnfR163Dyxt6IvMRGmV/rp04gdeys1HfywvnUlORpjMwFhgRgWFff43s/fuVq01mzVLeqFcxOEtElqNb5mf/zJkAgODXXkP7YcPUxw1db4nI+tT3uUIAEkmVpbv+/N//8Oe33+JCWhqcGjRgR9vCTO5ot2rVqibaQbWY5uib1NERvv/6FzqOGIE716+r93N+FhiIfz33HMKXL0f6xx/Du21bBEZEaL2ObqeaiGqO7n7O1v37w6VhQ2UpoKgorTqe66Oi1LPXMwsLAShHz/N++w0Pde3KATAiG6Aqxae7VSv3558hl8ngWK/e/ZPZySaySep7aolEWVJv9myDWz/6xMZCdvcudkyZAkV5OQDWzbYGo6Yabt68CYVCof57VV9EKqoZsRXBwYhzc8OK4GAUX7qEkevWYeLBg+o/X8nMRMm9G/RLP/+srOG5cyfr+xFZiapmp0QiQau+ffHYyy9D6uSEQ4sWGazjeSg+HlInJ5zavh07X3oJ1/75B77du7OTTWQjpE5OCIiIwLjERHR/8UV0nTgREV99hTGbNuHcwYNa1+kzKSkwcWchEdUw3Xvq4+vXIzAiAjGJifALDoazmxv8goMRk5iIwIgIHP30U3Unm/XsrcOoPdpSqRTp6eno0aMHHBwcqlxOxD3aBOjPiAFAh+hojNm8GZk7dyJt4UK9pacSBwd1RnEmUqLqYAybz5bx4/HkwoXwatNGfazg3Dnsnj5dL/GZ7n4w5kug6mIM16DCQshdXCC9N3tt6DoNwGAyNCJjMH5rhipWN0RHo2WfPuoVoQHh4Qh+7TXtfEVlZSi8cAHbnn6aVQKszKil4//973/Rtm1b9d/5j0QV0Vomfm9GTHXxljg4IHTp0oqXniYmwn/gQOQcPgwAuHr8uFV+BiJSGrF6NTKTkrBl3Diti/WYzZu1E59Bf0kab86JbEx+PoSHB7LuZS2u5+WFp5KTta7TakIgLS4OgRr7tomoZukOUOveU9/Ky8O006e1Br/zs7OROm8eBsbF4cSWLbiQlobivDwMX7FCa7JKLpOx/2YFRnW0n3nmGfXfJ06cWFNtITunmTipcceOiPr2W63OcsuQEHi1aYMt48YZXnoaF4f2w4ahxeOP4/wPP3AvCVENq+yirp7pqmA/duiSJTiVmKguvadaksYONpHt0IppNzdk7dypjumgmBgAFQ9qc7CbyHI076FVA9tDly3TynPS7fnnUVpcjH0zZ+Lnzz5TD34PeP99AMDJrVtxfO1aAEDxxYuYdG/iCuDgt7WYnA7W398ff/31l8HvHT9+HP7+/g/cKLI/cplMOVMdGYnco0dRcC87vWZn2d3XF0DVF3V3X1/uJSGqYYbyJ2juy9RdkaLxRByKj4eXvz/ahobCLzgY4xITERARwQs5kQ1RxfjOl17CoUWLlDkW4uPVMV2clweg4gRJHOwmsgzde2jZ7dtwb9YMvt266V2nz6WmYkBcHNqGhqoHvzOTkiCXyeDq46N+zSt//23Fn4hUTO5onzt3DqWlpQa/d+fOHeTk5Dxwo8j+6N6UX0hLQ352NkJiY9XZS429qNfz8uKNO1ENMnRRzz16FOsiI3H63gUbqHpQbEJyMianp6PtkCFckkZkYboD0fLycq1jEokE/oMGIXz5cvS5V8Zr5Nq16BAdDcDwdVrjyegzaxYHu4ksoNKtljrXaVXHOnTJEmX5TI1kpPW9vdWvyYEy22BUR7ukpAQ3b97EjRs3ACgTHehmGr906RISEhLQrFmzGm0w2S7Nm3KhUGDPm28qsyEmJMAvOBiX//gDRbm5CJk92+BFXTWDHb58OW/ciWpQZbPVaXFx6gEuY2e6OCBGZFm6K1L2zZwJBwcH9bEt48dDKBQ4u3ev1mzYlb//xpjNm9EhOtrgdVqdtTghAYEc7CYyG72BMZ3HhrZapsXFVbqqrGVIiPZzVedyVajNMKqjvXjxYjRp0gQ+Pj6QSCQYPHgwmjRpovXVokULLF68GFOmTKnpNpON0r35zti2DRtHjYJvt26YnJ6OmYWFaNi8OQLvlRfRvKjrzmDz4k5Us6qarVaUl+OJKgbFiMjyVCtSNkRHw7FePbQfPhw9X31VPft16Zdf8OTChUbNhmVs24aNo0ejdf/+mJyejlnFxZicng6foCDk/fYb45zIDKraqgU8wFZLjefmHj3K7Vw2xqhkaFFRUWjdujWEEJg0aRLeeecddRZyFWdnZ3Ts2BFdu3atiXaSjZPLZHhi9mys0ykRkpGQgK7PPgupszP2zZgBx3r18Oizz6LtkCFa2UyZDZHIsnyCgpB79KjB4wCQFh+PJ2bPRkxiIg7FxbFECJGNkDo5IefwYb3sw6rZr5ZPPFF54tH4eOWWj9BQlBQU4NGJE+Hs6orfvv4aF9PT4Vi/PgLCwhjnRGZgqISeaquWqoQeAK17aM2tlpVdp4vz8rQGv8fv3Kl+T8aubTCqjram//3vfwgPD0fjxo1rqk1Wxfp/1SeEQGZSktZNeZ979bEPf/AB9t/bI6auzxkWBqmjUWM9REZjDFdNLpMhKzlZK6M4AEAiQUxCAnyCgrAsIADtIyMRunSp1s08M4tTTWMMV00oFMi8V6ZLVeUjzs0Nstu3ERQTg5Hr1qkf6zJU8x4Sidb1mHFO1cX41bciONhgh9kvOFhdgksIgdP3YvraiRN46cQJ5P3+u8Ea9zEJCfDp3BnbnnoKfWbO5KCYDTO5o23I4cOHcfLkSYSEhKB9+/bmaJfV8APCNLoXY1lJCZzq1VM/zj97Fndu3ECDRo2wLCBAWQoI2h8uRObEGDaO6kb9UHz8/YGxWbMQGBGhVSNb4uCAblOnInz5ciu3mOoKxnDldAfKWvXti4kHD6pv5nUf6+L1l2oS41ef0YNe+fmQenmpHxuawNJdVcZBMdtmctbx8ePH49lnn1U//vLLLxESEoLnn38eXbt2xf79+83aQLJdhvacnN2zB0KhQPpHH2FVv35YFhCAlFdf1UraALA+J5E1yWUy5P32G3w6d9bel9m5s1YnG1B2yP/+/nsrtpaINEmdnLSSJOlmD68qmzhzLBBZltGJRdetA/r1AzZuBISARCJBuyFDtK7TbQcP1pq9Zifbtpnc0T506BDCwsLUj+Pj4zFlyhQUFRVh1KhRmD9/vlkbSJZRVTZEQ+dXlmilQ1QULqSlQSgUekkbAJYdILImqZMTfLt3x7Xjx9U1dgFg64QJWp1sFcYrkW2prMpH8x49cOCdd5SPq0g8SkQ1S5XDyKhBr5deAhYvBkaPVp+vG6tSZ+eabjKZkckd7WvXrsH3Xofpn3/+QU5ODl577TW4ubnhmWeewbFjx8zeSKpZxmRD1FVZeSDdsgNaSRsAjqgT2QCJRIK2Q4aoa+zKZTKEzJrFGTAiO1BVlY+Ra9ZA4uCgPxvG0plEFiV1ckJAZdV2jh4F7pVPBgD07Kl/HSa7ZXJHu1GjRjh//jwAICUlBb6+vujUqRMAQC6XQ3FvDy7ZhwpnpqOjcTE9HYry8gqfe+3ECYPHtWawJRL0iY1F0cWLuPzHHxxRJ7Ih0mXLlMvUduyo+maA8UpUI6qzoszQDFlGQgIu//475BrXbb3ZMMYxkcWpBrb1Br327AFCQoABA4Bbt6zdTKoBJqd8DgsLw4wZM/DXX39h1apVePrpp9XfO378ONpoZKcl22doZrpDdLTBTMO6WUlfPnkSydOm6S01VY201/PyUt+kSyQSzCwsVL8WR9SJrOyjj4A331T+vX9/YNgw9c0AS+8RWYZqRVnawoXqZEdPzJ5daRZh9aBYQgLSNJIZsvQeke3SG/T63/+A1auBmBjgiScAV1crtYxqkskd7SVLlkAulyMlJQVDhw7FvHnz1N/btm0bhtyrB0f2Q3OvV4foaIzZvBmZSUnYMm6c9oU/PBz7Zs7Ez599pryoz56NMZs3aydP0lhmGr58ucGbdI6oE1mebmZSeXQ0pIcOAV26AHPnqo9zBozIMoypr6uKP634vXoVkrg4tH3tNQRqZA/noBiRndi3D/IBAyCdMkV9iGX2aiezlPeqTepiWQJVCRCJgwOmZWXh6rFjVdbXFQqF8lhiInwffRTLO3VCk4cf5og6WV1djOGqqEqEaM2aqWLVweQdREQ1qi7FcFUluFaHhaEkP//+LHdREdCnD3D8OODnB6SnK/8kshG1PX71Bq1N7QwfOADRr5/ymqxRtks1obU/NlY9oVXV6hayfdW+w8rPz0daWhrWrl2L/Px8AEBJSQn3aNsZzb1eLUNC4NWmjVbZEDUDSc4gBA7FxaGhnx9mFhYy0QqRDdHc5ymRSOATFAT3Zs3UeRjWRUXh9M6dTHJGZEUVlbpUHa/v6ame5T6dlAR5URFw4gTQrBlw4IBeJ9vU/d5EZLzqJA/WsmED5G3aKHMjRUVp5UZaFxmJzKQkdHv+eZTfvasd94xju2VyR1sIgdjYWLRo0QJ9+/bF008/jezsbADAiBEj8N5775m9kVRzNBMgtXriCQBVX/g1y3SxHjaR7TF0M3D12DGM2bwZHaKjVSchLS6Oy9KIrKii0nkPdekCAGjcsSNa9e0LiUSijNcWLYCoKCA1FQgI0HrOA3cCiKhCFSUPNqkz/OSTkJo4ocXrtH0zuaM9Z84cfPbZZ1i6dCkyMzO1PsCHDx+OHTt2mLWBVPNUCZD6L1gAoOILv16ZLo1jhxYt4kWdyAZUVeM+dMkS9XJxDpQRWU9F2cM7jBiBCSkpAIC+776LiQcPYlpWFjz9/ZUnfPEFEBio91oP3AkgogpVVNZWIpHgdHJylZ1huUwGNGkCgBNadYnJHe1Vq1YhLi4OU6dO1csw3rZtW5w5c8ZsjSPL0Uy4YujCD4kEfWbNQv7Zs7iQlqZ1TC6T4cyePbyoE9mA6tS4JyLLM1RS7/EZMzBm0yacO3hQb0XKiO+/Vz7Rx8fga1UU95wRIzIP3U5vh+hoTMvKQvjy5epj8vJyg1s4Lv/5J3a+9BKA6k1okX0yuaN948YNdOzY0eD35HI5ZOxg2bzK9nBVVks3MCICv339NZwaNIBfcDBiEhIQGBGBuzdu4PwPPyhfgBd1IqszarRcY6CMiKxDt75u//feQ+bOnYZXpFSRU6GquCeiB6PZ6VVV6bl67Bh2vvQSEp59Fr99/TUcHBz0tnBkpaSgWbduuH31KvKzsxESGwuJVIpWffsiKCZGuT1EKjU4oaWq5EP2yeTyXoGBgdi7dy8GDBig972DBw8iiCMvNs2Ymp0SiQRtBw3Sq6VbXlqKgYsWYeCiRQCA0qIiAMDOl15SZiG/hxd1IuvyCQoymMlYs8a9aqCMWceJLKeqjMWVrkiJi0P7e9dlQ5mOq4p7Iqo+1YrPdZGRkEgkCF26FJd++w0+nTuj/fDh6vNKi4vx56pV6ljMPXoU6yMjEZOQgEEffIC9b72F0Rs3YkZ+Plzc3bWe5+zqiv2xsXBq0EBZRpeVfOyeyXdYb7zxBpYuXYo5c+bg+L0O1cWLF/H555/j008/xfTp083eSDIPo/dw5eRA2rkz0K8f8PrrwNWrkDo5wcFRe1ymtKhIu4b2PbyoE1mPXCZDSAXbPzRr3PsEBSHvt984Uk5kIcYmK6tqZvrAnDl6z6ts2xdnxIgenOaKz25Tp8KrTRs069YNV48d04rpc6mpGLNp0/3Eo4DW1q3G91YF624POX/wICCRYOCiRZhVXMxKPrVEtepof/TRR5g3bx5u376t/qB3dXXF/Pnz7b6jXdvr/1VVsxOFhcCLLwKbNgGjRwPLlgGNGumdLy8vx5nkZKyLjNSrtz0uMRFthwzh8nGyitoew8YQCgUyk5JwKD5evXKlz6xZ6hns9I8/RqN27ThSTjapNsawXCZDVkoK1htxzazqOr2qXz+c//FHvecJIXBapzYvZ8TI0mpj/GpSrSaRy2TISk7G+qgovZiOSUiAT1AQlgUEqFd8Oru5YVZxMW5duaLeDsL759qvWh1tALh16xaOHDmC69evw9vbG7169YKHh4e522dxtf0DIs7NDbLbt/WOqz4AVOQlJZDWq3f/sYFlaryoky2q7TFsiG58bhk/Hk8uXAgvjYSV+WfP4sCcORi5Zo3B5xDZitoaw1UOdCsUkF+/jjM//YR1Fdy8N+/RA1vGj8f5H35A8x49lM/TUNXSdKKaVlvj1xCjBsXu5TBSx7kRz6Paw+Q92ipubm4IDQ01Z1vIAqraw7U6LAwl+fkImT0bgeHh2PrUU8g/e1ZvHzdwP4mL7l5udrKJLEcz70I9Ly88lZyM/LNnsaxdO7QMCYG7ry+K8/JwIS0NzXv0UD+PN99EllVlsjIHB0h9fBAwbBjGJSZWOIj9zIEDyM/OxoF33tF7Ld24ZpwT1Ryjy3RJJOgTG4s7N26gQaNGTFxYhzALTh1iTOmus/fKdK2PjERmUhKefP99XPrllwrLdvGiTmQ9qrwLG6Kj4VivHup7e6M4Lw8hsbEQQuD8Dz/g+Pr1OP/DDxBCcK8mkRVVVdJndVgYVgQHI+/XX7UykU9OT0ervn2xf9Ysw+W+iMgqqorpkoICrco9De5txazqeVR7sKNdh1RUukuVfXjPf/5zP3u4bs1dlu0isjlSJyfkHD6MaadPY+LBgxi5Zg3cfX3RLiwMU44e1SvRFxARwRgmsgJTBrq/6dkTZ1JSIC8vh6K8HBeOHMFib28cXrxYv9xXWZl1fiCiOs6YBIQTkpP1kpoxcWHdYvWOdlZWFl544QV07doVjo6OFZYHW7lyJQIDA1GvXj088sgjSEpK0junsLAQkydPhre3N9zd3TFq1CjkaRR9J/2anZPT0+HTubPB7OG6S1+4pIUMYQxb14C4OL2sp1nJyWjWvbtWnDN7KVWEMVzzTB3oTouLg9TREQ6OjtgzfTqEXK79gvfKfUmdnS3/w5DNYQxbntTJCQHh4RiXkFDloLbu3w19FnAwvHayekf7n3/+wc6dO9GuXTs8/PDDBs9Zv349nnvuOYwdOxbJycno1asXoqOj8dNPP2mdN3bsWOzZswdffvkl1qxZg1OnTiEsLAzl5eWW+FHs1tYJE/Q62cD9JSzF9z5guaSFDGEMW5bmaLdcJkPmzp1YHxWlVbJvfVQUMnfs0DqXF2+qCGPYMqoz0K3794rOobqNMWwFycmQxMSgbefOJg9qG/os4GB4LSWsTC6Xq//+zDPPiE6dOumdExgYKMaNG6d1rFevXiIsLEz9+MiRIwKA2L17t/pYRkaGkEgkYsOGDUa3p7CwUAAQhYWFpvwYdkOhUIiM7dvFNz17ijh3d1F48aLI2L5dzJNIxDzg/pdEIjISE8XNM2fEfAcHMU8iEae2bxflZWXW/hHIxjCGLUcVv0kvvijS4uOFEEKs6NVLO3bvfa0IDrZya8leMIYt7NYtIVauFEIYF7/f9OzJGKdK2VIM16b41b3nVT9OThbCxUUIQIjRo4WQyYx7HtU51ZrR/ueffxATE4O2bdvCxcUFv//+OwBg9uzZSE5ONum1HBwqb8LZs2eRmZmJMWPGaB2PiYnB/v37UVpaCgBITk6Gp6cnBg0apD6nffv26Nq1K3bt2mVSm2orVeKk9ZGRyD16FGXFxUieNg2B4eGI0V3Odi9xw4E5c9C8Rw8uaaEKMYYtQy6T4dKvv8InKAjhy5ejz8yZAICRa9eiQ3S03vmc7SJjMYYtqLgYCA0FnnsO8vPnETJrVqV7Nbmfk4zBGDY/ca+ih+a2rDMpKcotHt9+C5SWAtHRwJo1gKNj1c+rXjVlsnMmd7T37t2LRx99FOfPn8eECRMg0/iQd3JywvLly83awIyMDABAhw4dtI537NgRZWVlyM7OVp/Xvn17vWUXHTt2VL+GIaWlpSgqKtL6qq2kTk5IW7hQqzZnxrZt2DhqFHz/9S+tJSztBg+GxMEBI9es4ZIWeiCMYfOQOjmhWbduevuxr/z9N8Zs3qzX2eZWDzIXxrAZvfwycOQI0LAhpHJ5lXs1uZ+TzKEmY7g2xq/uxJRqW5a6Ak98PDBiBLB+PaBTt77S53FgrM4xuaM9a9YsxMTEID09He+++67W9x599FH88ccfZmscAOTn5wMAPD09tY57eXkBAG7evKk+T/cc1XmqcwyJj4+Hh4eH+qtFixbmabiNMjTLlbFtG5br7OnRTbDCizlVF2PYPNQXcEP7sZOSELpkCSSqWQ3OdpEZMYbNKC4OeOwxYN8+wN/fqL2a3M9JD6omY7g2xq+hiSkAyiSEixdD6u8PbNgAGLhXruh5rNxTN5nc0T5+/DiefvppAND7kPf09MT169fN0zILmTVrFgoLC9VfOTk51m5SjapolqtJBckziGxdXYlhqZMT0uLiDF/475Xiaxsaytkusju1PoY1Y9bPDzh6FOjWTX1IN04Nxa0x5xBZQ22N32snTugd6xAdjRFr1igf3FsurjugzeSFpMnkjra3tzcuXbpk8HuZmZnwvVcKylxUo22FhYVax1Wjc97e3urzdM9Rnac6xxAXFxc0bNhQ66tWuXABiIoCrl3jXi+yCsbwA1qxQvmFqi/ghmp2Ej0oxvADuHULGDhQOfulwtgkC6vJGLbX+NW959V9/PLJk1pbsjpER2PM5s248vffle6/rmhCi9u56iaTO9pRUVGYO3cuTp06pT4mkUhw+fJlLFmyBCNHjjRrA1X7SXT3hmRkZMDZ2Rn+/v7q806dOqWXbCAjI0NvT0qdceEC0L8/kJgIPPcc93qRVTCGH8CKFcBzzwGrVwMw/gLOWCZzYgxX0+3bQEQEcOAA8NJLwO3bVd7cE9UExrA2QwnLsu4lOtsyfjxWBAcj7/ff1flPJA4OCF261OD2Lc3915zQIl0md7Tj4+PRpEkTdOnSBT179gQATJo0Ce3bt4eHhwfmzZtn1gb6+/sjMDAQmzZt0jq+YcMGDBgwAM739keEhYUhPz8f+/fvV5+TmZmJP/74A0OHDjVrm+yCqpN99izg7w8sWwaAe73I8hjD1bRypbKTDQCPPsoLOFkNY7ga7txRdrJ/+AFo2BBIT4do0IDZiMkqGMP3VZSwbEN0NHLS0zH444/h1KABNkRHI3PnToR9+inaDRkCrzZtKty+pdp/zQkt0uVY9SnaPDw8cOTIEaxevRp79+6Ft7c3vL298fLLL+Pf//63OliNdefOHXXJgPPnz6OoqAibN28GAPTt2xdNmjTBvHnzMGHCBLRt2xb9+/fHhg0bcPToUfz444/q1+nVqxcGDx6MSZMmYenSpahXrx5mz56NLl26YMSIEab+mPZNt5N98CCgkZyCe73InBjDNWDlSmDKFOXfX30V+OgjSCUS9QU8LS4OV48fh09QEEJiYxEQEcHBMqo2xrCZqTrZBw8C7u7A7t2Qt2mDrHs396obddVs2LjERLQdMoTXYqo2xrDxDCUs6xAdjdClS+HVpg0A4JkDB5CfnY3fvvoK7YcNw/idOwEYt/9aNaEVOGyY+phcJuM1uq6yVgFvlezsbAHA4Fdqaqr6vBUrVoh27doJZ2dn0blzZ7Fjxw691yooKBCTJk0Snp6ews3NTYwYMULk5uaa1J7CwkIBQBQWFj7oj2Yd588L4e8vBKD888IFa7eIajnGsJmtXCmERKKM4VdfFUKh0Pp2eVlZpY+JTMUYNqPbt4V48kll/Lq7C3HkiPpb3/TsKeYBel8rgoOt2GCqDWwphu0hfhe6uqrjb310tFDI5SIjMVF807OnWOjqKr7p2VNkJCYKhVyu9TzGMJlKIoRpa5b++usv5ObmGlxCsmvXLvj5+aFLly6mvKRNKSoqgoeHBwoLC+0moYOWJ58EUlMNzmQT1QV2HcM5OUC7dkBZGTBtGvB//8fESVTn2HUMf/458MorgJsbsHs30Lu3+ltxbm6Q3b6t9xRnNzfMKi62ZCuJaow9xO+K4GDkHj0KiYMDpmVl4eqxY1gfFaW9LFwiQUxCAtqFhUHq5AS5TIYzKSlYp7EqRXUeV6VQRUzeo/3GG28gPT3d4Pd+/vlnvPnmmw/cKHoAK1cqO9vsZBPZnxYtgPXrgddfZyebyB699BLw1ltASopWJxtgNmIiW6CZ76RlSEile68PxcerO8/cf03VYfKMtre3N9auXYshQ4bofW/37t0YP348bty4YbYGWpo9jMTpkckABjgRADuN4bt3gfr1rd0KIptgdzFcUgI4OACV5KjhbBjVFbYev/Lycjg4OCAzKQmXfv0V/RcsMHq1iby8HBBCK1blMhljlypk8ox2aWkpysrKKvxeSUnJAzeKTJCTA3TpoizhRUT2Z9UqoFMn4Nw5a7eEiExVUgJERQFjxii3fFSAs2FEtkHq6Ij9sbHw6dwZ/RcsAFD1apPVYWHKKgHJyXBw1M4jzdilypg8o92nTx80bdpUnc1Q06hRo3Dp0iUcOXLEbA20NFsfidOSkwP066fMLt6hA/D335zZpjrPrmL4f/8Dnn1WOcM1dy5g5vKIRPbIbmJY1cnevRto0AA4cgR45JFKn6I7+8XZMKpt7CF+49zcUH73Llr17YuR69Yh9+jRCvdo+wQFYVlAAIRCwRUoZDKTZ7RnzZqFbdu2ITw8HJs3b8aRI0ewefNmhIeHIyEhAbNnz66JdpIuzU62vz+wZw872UT2RLOT/dJLyo42EdmHkhIgOvp+J3vXrio72QDLaxLZAp+gIAiFAudSU7HzxRcRGBGBmIQErdUmMQkJCIyIwJ7//EfZyQa0amYTGcPkOtrh4eFYu3Yt3nrrLYwZMwYSiQRCCPj5+WHt2rUIDw+viXaSJt1ONhOfEdmX776738l+8UXgs8+Y+IzIXpSWAiNHKhOe1a8P7NwJ9O1r7VYRkRFUydBU+RIytm3DxlGjELp0KSZrJHvOz87GxlGjkLFtm9bzK6qlTWSIyTPaADB27FhcuHABJ0+eRFpaGk6ePIkLFy5gzJgx5m4f6WInm8i+ff89MHHi/U7255+zk01kL0pLgREjlDPYqk52v37WbhURGUmam4uA8HCM05jBvpWXh2vHj0NzN+3WCRP0OtkAqwSQaUye0dbUvn17c7WDjPXll+xkE9krmQxYskTZyX7hBc5kE9mbkyeV19769YGkJKB/f2u3iIhMsWULJIcPo+2yZQjUmMGWy2SQ3Lsey2UyhMyaZbBKQEhsLHMrkNGM6mh/9NFHmDBhAh566CF89NFHlZ4rkUjwxhtvmKVxZMB77yn/fOEFdrKJ7I2TE7B3L7BiBTBzprIkEBHZj65dgeRk5aDZk09auzVEZKo33wS8vCB1ddU6rNlx1qwSkBYXh6vHj8MnKAghsbEIiIhQd8iJqmJU1nEHBwf89NNP6NGjBxyquDGUSCSQy+Vma6Cl2WS2xCtXgEaNAMcHWoBAVCfYZAyrVqEQUZVsLobLyoALF4B27azdEiKbZ3PxCwCZmUCzZoCbm0lPY5UAelBGTacoFAr06NFD/ffKvuy5k22TcnKA3r2Bp54Cysut3RoiMtWaNUD79sDKldZuCRGZqqxMWSO7Vy9lCU0isi8nTgB9+gBhYUBxsUlPZZUAelBct2jLNBOf/fILcOOGtVtERKZYuxb497+Vg2S//GLt1hCRKWQyYOxYIDFReYN+5Yq1W0REpjh5UrnF49o14PZtZUwTWVC11iLfvn0bq1atwqFDh3Dz5k14e3sjJCQEzzzzDFx19jxQNRnKLv7QQ9ZuFREZa+1a4OmnAYUCmDIFWL7c2i0iImOpOtkJCYCLi7KzPWiQtVtFRMbKyFAmK7xyRZlbYd8+wNvb2q2iOsbkGe2cnBx06dIFr776Kk6dOgUHBwecOnUKr776Kh555BHk5OTURDvrFpbwIrJvup3sr75i4jMieyGTATExwLZtyk52QgIweLC1W0VExjp16n4nu0sXdrLJaky+85s+fToA4MSJE/j999+RnJyM33//Hf/88w8kEgnefPNNszeyTmEnm8i+rVt3v5M9eTI72UT2RCYDxo0Dtm4FnJ2Vne0hQ6zdKiIyVmamspN9+TLQuTOwf78yoTCRFZh897d3717ExcXp1dBu37493nvvPezZs8dsjauTsrKAS5fYySayV//8c7+T/fXX7GQT2ZPSUuUsmKqTHRZm7RYRkSlKSpRJDIOClJ3sxo2t3SKqw0zeo11eXo769esb/F79+vWZdfxB9e8P7NqlLCPCTjaR/XnvPeBf/wKiotjJJrI3bm7Ka/AffwBPPGHt1hCRqbp0UU5U+fgATZpYuzVUx5l8F/j444/j/fffR2FhodbxwsJCLFy4EI8//rjZGldn5OQo95Oo9O/PTjaRPTlwALh7V/l3iQQYMYKdbCJ7UV6u3Iet4u7OTjaRPTl7Fjh8+P7joCBlR5vIyky+E1y6dCmysrLQokULREVFYerUqYiOjkaLFi1w5swZLFmypCbaWXup9mT366fd2SYi+7BxIxAaCgwfrlyyRkT2o7xcmVMhOhqIj7d2a4jIVNnZygmqwYOBI0es3RoiLSZ3tIOCgvD3339jypQpuHTpEg4cOIBLly7hueeew19//YWgoKCaaGftpJn4rEED5RcR2Y9Nm4Dx4wG5XLkKxdnZ2i0iImOVlyvr3K9fDzg5AQ8/bO0WEdVJcp361rqPK3TunLKTfeEC0Lw50KaN+RtH9ACqVUfbz88PH330kbnbUrcwuziRfdu0SZmdWC4HJk4EVqzgcnEieyGXA888o6wS4OioXJkSGWntVhHVOUIIZKWkIG3hQlw9fhw+QUF4YvZsBEREQCKRVPzE8+eVnezz54GAACA1FfD1tVzDiYzAu0JrYCebyL5pdrKfeYadbCJ7ohocW7v2fic7KsrarSKqc+QyGTKTkrA+MhK5R49Cdvs2co8exbrISJxOSqp4ZvvCBWUn+9w5ZfLg1FSgWTOLtp3IGCbfGd69exexsbEIDAxEgwYNIJVK9b6oEhcvspNNZM+2btXuZK9cCfBzj8g+CAFMmgSsXq2M2w0blPuzicjipE5OSFu4UBmXmoRAWlwcpE5O+k+6fFnZyc7OBtq2VXaymze3TIOJTGTy0vGXX34Za9euxbhx4/Dwww/DmXsSTePmBjRqpPw7O9lE9qdFC2UcR0ayk01kbyQSZfm9tWuVe7NHjLB2i4jqtKvHj5t0HN7eyqzigLKT7edXQy0jenAmd7R37NiBJUuW4JVXXqmJ9tR+np7Anj3ArVv8cCCyR489Bvz6qzLpCjvZRPbntdeAiAjlbBgRWZVPUBByjx41eNwgZ2fl9q0bN7gnm2yeyUvHpVIpAgMDa6IttVdODvDf/95/7OnJTjZVW7Wzc1L1JSQAP/98/3G7duxkE9kLhQKIiwPy8+8fYyebyOrkMhmemD1budJEk0SCkNjY+/c3ly4pY1i1xNzZmZ1ssgsmd7RffPFFfP/99zXRltpJlfhs8mTtzjZRNaiyc64IDkacmxtWBAfjTEoKhO7+JjKfrVuB0aOBQYOAzExrt4aITKFQAM89B8yeDYSFKXMrEJFNkDo5ISAiAuMSE+EXHAxnNzf4BQdjXGIiAiIilHu08/KAJ59UxvCCBdZuMpFJjFo6rlnKy9XVFWlpaejduzcGDhwIT09PrXMlEgneeOMNszbSbulmFx80yNotIjsml8mQlZKC9ZGR6lFdVXbOcYmJaDtkiOHEIVR927YBY8cq6+0OG8ZZMCJ7olAAU6cqB7kdHIA33uBKFCIbI5FI0HbIEAQOG6Y+JpfJlKW9Ll9WdrJPnQJatlTWvSeyIxJhxFSYgwllayQSCeR2PGJcVFQEDw8PFBYWomHDhtV/IZbwohqwIjjY4F4mv+BgTE5Pt0KLbI/ZYnjbNmDMGGUne8IE4H//4006kQWYJYYVCuCFF4BvvlF2slevVlYLIKIaVZ34lctkWhMFcpkM0tu3gd69gZMnlffPBw8q76eJ7IhRPWiFQmH0lz13ss2GnWyqISZn56TqSUi438keP56dbCJ7olAAL754v5P9/ffsZBPZEM3cMhVuiWvYEOjQQVm6KzWVnWyySybv0aYqFBezk001pqIsnBVm5yTT/fijck92ebny5pydbCL7MmcO8PXXyk72d98pB8uIyCaoOtYre/dGwblzyNyxA+sjI5F79Chkt2+rt8SdTkqC/OOPlffR3LZFdsqojvbp06fRrVs37Nq1q8JzkpOT0a1bN5w9e9ZsjbNL7u7KxCvsZJOZGZ2dkx7MY48p94SNG6e8SXc0uQoiEVnTM88or73/+59y2wcR2QS5TIbMpCSsj4yE1NkZnq1bI00zm7iKEEiLj4e0VStllQ8iO2VUR3vp0qVwc3PD0KFDKzwnLCwMDRs2xJIlS8zWOLs1cybw55/sZJNZGZWdkx5c/fpAYiI72UT2KjAQyMgAnnrK2i0hIg1SJyekLVwICAH3e+W5uCWOajOjOtp79uzBpEmTqjxv0qRJ2L179wM36kFkZGRg0KBBcHV1RdOmTfH222+jrKysZt80J0c5al5UdP+Yu3vNvifVSarsnJPT0zGruBiT09PRdsgQZXbOWsIqMbxjh7J0iGpUvV49drKJqsEq8SsE8OabQErK/WMNGtTsexLVUjUdw6oOdHFeHgBuiaPazag7ydzcXLQ1Yn9EmzZtkJub+8CNqq78/Hw8+eSTCAgIwNatW5Gbm4vp06fjzp07+Oyzz2rmTTUTnwHAmjU18z5E9+jOXNemmWyrxPCOHcDIkYBMBnTqxP2cRNVklfgVAnj1VeCzz4AvvgDOnAHuzZQRkWksEcM+QUHIPXoUF9LSkJ+djZDYWKyPitJePq6xJa423eNQ3WNUR9vNzQ3Xrl2r8rzr16/D1dX1gRtVXV9++SWKioqwbds2eHt7AwDKy8vx0ksvITY2Fs2aNTPvG+pmF1+0yLyvT1THWDyGk5Lud7LHjFF+EVG1WDx+hQBef13ZyZZIgM8/Zyeb6AHUdAyrcs2si4yEUCiw5803MWbzZsQkJOBQfDyuHj8On6AghMTGIiAiolat1iPbZbC8nJkGeIxaOt69e3ds2LChyvPWr1+P7t27P3Cjqis5ORkDBw5UfzgAwJgxY6BQKLBnzx7zvhlLeBGZnUVjOCkJGDHifid7zRouFyd6ABaNXyGAN94APv1U+XjFCuDZZ837HkR1TE3HsG6umbN792J/bCxa9+9fq7fEke2qsLycboK+ajKqo/3yyy9j48aNmD9/vsE62QqFAgsWLMCmTZvwyiuvmKVh1ZGRkYEOHTpoHfP09ISvry8yMjLM90bsZBPVCIvFsOZM9ujR7GQTmYHF4lcIYPp04P/+T/n4m28AI/LIEFHlLBHDEokEbUND1R3rgYsWwVGnhCaXi5MlaGbBN1hezgzVfIy6sxw+fDjefvttzJ8/H1999RUGDBiAli1bQiKR4MKFC9i/fz8uX76Mt956C8OGDXvgRlVXfn4+PD099Y57eXnh5s2bBp9TWlqK0tJS9eMizYRmhgihnP1iJ5vI7CwSw5cuKTvXZWXKP9euZSebyAyqE79ANWJ43Trgk0+Uf//6a2DKlGq0loh0WeQaDEA6ZYpy0iowEJgxA1LWySYr0MyCr0UIpMXFIdAMfVqjZrQBYNGiRUhKSkLHjh2xefNmxMfHIy4uDps3b8bDDz+MpKQkLLLDPcrx8fHw8PBQf7WoqtMskShHz4OD2ckmsgEmx3CzZsDy5cDYsZzJJrIBJsfwmDHK0l1ffQU895xlGklEBpkcvwCweLFyRdnLLwPsZJMV1XR5OaM72gAwdOhQ7N+/H7du3cLly5dx+fJlFBcXY+/evQgLCzNLgx6El5cXCgsL9Y7n5+dr7TfRNGvWLBQWFqq/cnJyqn6joCDgyBF2sonMzGIx/OyzylkxLk8jMpvqxC9QjRh2dFTWuX/++QdtMhFpsNg1uFkz4NAh4JFHHrTJRA+kpsvLVWsqRyqVwsfHxywNMKcOHTro7SEpLCxEXl6e3p4TFRcXF7i4uJj+ZkzSQGR2jGEi+1Wd+AWqGcOMXyKz4zWY6hLNLPg1VV7OpBltWxcWFoZ9+/ahoKBAfWzTpk1wcHBAaGio9RpGREZhDBPZL8YvkX1jDFNdopsF39nNDX7BwRiXmIiAiAizJOWTCHPlL7cB+fn56NSpEwIDAxEbG4vc3FxMnz4dEyZMwGeffWbUaxQVFcHDwwOFhYVo2LBhDbeYiDQxhonslzniF2AME1kLr8FUF9VkHe1a1dEGgJMnT2LatGk4cuQI3N3d8e9//xsLFy6Es7OzUc/nBwSRdTGGiezXg8YvwBgmsiZeg4nMp9Z1tB8UPyCI7BtjmMi+MYaJ7Bfjl+i+WrVHm4iIiIiIiMjaWEBWh2qCv6ioyMotIap57u7ukNSyzJ+MYapLGMNE9ovxS2TfqophdrR1FBcXAwBasEY21QG1cWkXY5jqEsYwkf1i/BLZt6pimHu0dSgUCly6dKnSEYqioiK0aNECOTk5dvcBaa9tt9d2A7bd9to4ml5VDNvyv0dV2HbLs/V217UYtvV/j8qw7dZhy21n/NoPtt06bL3tnNE2kYODA/z8/Iw6t2HDhjb5j24Me227vbYbsO+22xNjY9ie/z3Ydsuz13bbI2Ni2J7/Pdh267DnttsTxq/tYtstj8nQiIiIiIiIiMyIHW0iIiIiIiIiM2JHuxpcXFwwd+5cuLi4WLspJrPXtttruwH7bnttZM//Hmy75dlru2sre/73YNutw57bXtvY878F224d9tx2gMnQiIiIiIiIiMyKM9pEREREREREZsSONhEREREREZEZsaNNREREREREZEbsaJsgIyMDgwYNgqurK5o2bYq3334bZWVlVm1TVlYWXnjhBXTt2hWOjo4ICgoyeN7KlSsRGBiIevXq4ZFHHkFSUpLeOYWFhZg8eTK8vb3h7u6OUaNGIS8vr0bavWnTJkRGRsLPzw+urq7o2rUr/vvf/0I3ZYCttRsAdu3ahb59+6JJkyZwcXGBv78/pk+fjsLCQq3zduzYgUceeQT16tVDYGAgvv32W73XKisrw1tvvYWmTZvC1dUVgwYNwqlTp2qs7XUZ49d8GL9KjF/LYfyal73GMOPXfjGGzcde4xeogzEsyCg3b94Uvr6+4oknnhApKSli5cqVwsPDQ7z88stWbVdCQoLw8/MTI0eOFJ07dxadOnXSO2fdunVCIpGId955Rxw4cEBMnTpVODo6ivT0dK3zBg8eLPz8/MSGDRtEYmKiCAoKEo888oiQyWRmb3dwcLCIiYkR69evF/v37xczZ84UDg4OYt68eTbdbiGE+P7778Vbb70lNm/eLFJTU8WyZctEo0aNxKBBg9TnpKWlCalUKqZOnSoOHDgg3nnnHSGRSMSmTZu0Xmvq1KnCw8NDrFy5UqSkpIiQkBDRvHlzUVBQUCNtr6sYv+bF+FVi/FoG49f87DWGGb/2iTFsXvYav0LUvRhmR9tIcXFxwtXVVdy4cUN97KuvvhJSqVTk5uZarV1yuVz992eeecbgh0RgYKAYN26c1rFevXqJsLAw9eMjR44IAGL37t3qYxkZGUIikYgNGzaYvd3Xrl3TO/bcc8+Jhg0bqn8mW2x3Rb7++msBQP1/ITQ0VPTu3VvrnHHjxomOHTuqH+fk5AipVCq++uor9bEbN24IV1dXsXjxYss0vI5g/JoX45fxa0mMX/OrTTHM+LV9jGHzqk3xK0TtjmEuHTdScnIyBg4cCG9vb/WxMWPGQKFQYM+ePVZrl4ND5f+EZ8+eRWZmJsaMGaN1PCYmBvv370dpaSkA5c/n6emJQYMGqc9p3749unbtil27dpm93Y0bN9Y79uijj6KoqAi3b9+22XZXpFGjRgCUy1hKS0uRmpqK0aNH67X95MmTOHfuHABgz549UCgUWud5e3sjNDTUom2vCxi/5sX4ZfxaEuPX/GpTDDN+bR9j2LxqU/wCtTuG2dE2UkZGBjp06KB1zNPTE76+vsjIyLBSq6qmaptu2zt27IiysjJkZ2erz2vfvj0kEoneeZb6+Q4dOoTmzZvD3d3dLtotl8tRUlKC33//HQsWLMDw4cPRunVrnDlzBjKZzGDbVW1W/enj4wMvLy+Lt72uYfzWPMav5dpe1zB+LcOeYpjxa18YwzXPnuIXqDsxzI62kfLz8+Hp6al33MvLCzdv3rR8g4yUn58PAHptV/3HVLXd2j/foUOHsH79evznP/9Rtwew7Xa3atUK9evXR7du3eDr64u1a9eq2wTYdtvrGnv9XdvL/yXGr/Z5tvx/yh7Z6+/anv4v2VsMM37ti73+vu3l/5O9xS9Qd2KYHW2yuosXL2Ls2LHo378/Xn31VWs3x2i7du3CkSNH8M033+DkyZMYNmwY5HK5tZtFZFGMXyL7Zo8xzPglUrLH+AXqTgw7WrsB9sLLy0sv9TygHFHR3HNia1QjQIWFhWjatKn6uGrESNV2Ly8v5OTk6D2/pn++goIChIWFoVGjRtiyZYt6v4yttxsAunTpAgDo1asXHnvsMXTt2hXbtm3Dww8/rG67bpsA7bbb4/8pe2Svv2tbjwPGr/39n7JH9vq7toc4sNcYZvzaF3v9fdt6HNhr/AJ1J4Y5o22kDh066K35LywsRF5ent4+Aluiaptu2zMyMuDs7Ax/f3/1eadOndKrwWdoX4253L17FxERESgsLERycjI8PDzsot2GdOnSBU5OTsjKykLbtm3h5ORksO2qNqv+vHLlivrDQ/M8W/4/ZY8Yv+bH+GX8Wgrjt2bUlhhm/No+xrD51Zb4BWp3DLOjbaSwsDDs27cPBQUF6mObNm2Cg4MDQkNDrdewKvj7+yMwMBCbNm3SOr5hwwYMGDAAzs7OAJQ/X35+Pvbv368+JzMzE3/88QeGDh1q9naVl5djzJgxOHnyJFJSUtC8eXO7aHdFjh49CplMBn9/f7i4uKB///7YvHmzXts7duyI1q1bAwBCQ0Ph4OCALVu2qM/Jz8/Hnj17LNr2uoDxa16MX8avJTF+za82xTDj1/Yxhs2rNsUvUMtj2HqVxezLzZs3ha+vr+jbt6/YvXu3+O9//ys8PT3Fyy+/bNV23b59W2zatEls2rRJ9OvXT7Ro0UL9+OrVq0IIIdauXSskEol49913RWpqqnjhhReEo6OjOHLkiNZrDR48WLRo0UJs3LhRbN++XXTu3LnGitY/99xzAoBYunSpSE9P1/oqKSmx2XYLIUR0dLRYuHCh2LFjh9i3b59YunSpaNq0qejSpYsoLS0VQgiRlpYmpFKpePHFF0Vqaqp49913hUQiERs3btR6ralTpwpPT0/x3//+V+zevVv07dtXNG/eXBQUFNRI2+sqxq95MX6VGL+Wwfg1P3uNYcavfWIMm5e9xq8QdS+G2dE2wYkTJ8SAAQNE/fr1hY+Pj/jPf/6j/k9hLdnZ2QKAwa/U1FT1eStWrBDt2rUTzs7OonPnzmLHjh16r1VQUCAmTZokPD09hZubmxgxYoS6eLy5tWrVqsJ2Z2dn22y7hRAiPj5edO3aVbi7uwtXV1fRqVMnMWfOHFFYWKh1XmJioujcubNwdnYW7dq1EytXrtR7rZKSEvHmm28KHx8fUb9+fTFw4EBx8uTJGmt7Xcb4NR/GrxLj13IYv+ZlrzHM+LVfjGHzsdf4FaLuxbBECJ2F+URERERERERUbdyjTURERERERGRG7GgTERERERERmRE72kRERERERERmxI42ERERERERkRmxo01ERERERERkRuxoExEREREREZkRO9pEREREREREZsSOdjXNmzcPEokEzZs3h0Kh0Pv+448/DolEgokTJ5r0ugUFBZg3bx5OnDihdfzcuXOQSCTYvHnzgzT7gX3yySeQSCTqxwcPHoREIsGvv/5qsTbMmzcPR44c0TsukUiwZMkSi7UDAK5evQp3d3ccP3680vN0f2/mVFxcDG9vbxw+fLhGXr+2YgwrMYYZw/aKMazEGGYM2yPGrxLjt3bHLzvaD8DJyQnXr1/Hjz/+qHX8/PnzSE9Ph5ubm8mvWVBQgPnz5+t9QPj6+iI9PR1PPvnkA7XZ3P71r38hPT0dHTt2tNh7zp8/3+AHRHp6OiZMmGCxdgDAwoUL0a9fPwQFBVn0fTW5u7tj2rRpiI2NtVob7BVjmDHMGLZvjGHGMGPYfjF+Gb+1PX7Z0X4Azs7OCAsLw7p167SOr1+/Hp06dULbtm3N9l4uLi4IDg6Gt7e32V7THBo2bIjg4GC4urpWeM7du3ct0pbg4GD4+vpa5L0A4NatW1i5ciUmTZpksfesyKRJk/Djjz/ir7/+snZT7ApjmDHMGLZvjGHGMGPYfjF+Gb+1PX7Z0X5A48aNw+bNmyGTydTH1q5di/Hjxxs8/8cff0Tv3r1Rv359NG7cGJMmTcLNmzcBKJe1tGnTBgAwevRoSCQSSCQSnDt3zuCSF4VCgffffx+tW7eGi4sLOnTogK+++krr/ebNmwc3NzccO3YMffr0QYMGDRAUFITdu3dX+bMVFRXh3//+N9zd3dGkSRO8/fbbKC8v1zrH0JIXiUSCRYsWYcaMGWjatCl8fHwAAEIILFmyBIGBgXBxcYG/vz8+/vhjvfc9efIkRowYAW9vbzRo0ACPPPKI+kNYtWzkrbfeUv9+Dh48qP6e7pKXr776Cu3bt4eLiwtat26N999/X2uJ0qpVqyCRSPDHH38gLCwMrq6uCAgIwHfffVfl70f1bxEWFmby7w1Qjrq+9NJL8PX1hYuLC7p164Y9e/ZonSOEwIIFC9C0aVO4ublh9OjR2Ldvn9bPDQCtWrVCjx49sGrVqirbTdoYw4xhxrB9YwwzhhnD9ovxy/it1fErqFrmzp0rXF1dxe3bt4Wrq6tISkoSQgjxzz//CADi7Nmz4pFHHhHPPPOM+jm//vqrcHZ2FqGhoWLHjh1ixYoVonHjxqJHjx6ivLxclJSUiK1btwoAIi4uTqSnp4v09HRRUlIisrOzBQCxadMm9etNnz5dSKVSMXfuXLF7924xbdo0AUAsW7ZMq53Ozs6ic+fO4ptvvhEpKSmif//+wtXVVVy/fr3Sn3HkyJHCzc1NfPbZZ2Lnzp0iPDxcNG/eXGj+t0lNTRUAxC+//KI+BkA0bdpUREVFiaSkJJGQkCCEEGLatGmifv364v333xd79+4V8+fPF05OTuKLL75QPzczM1N4eHiIoKAg8f3334u9e/eKjz/+WCxatEgIIUR6eroAIKZNm6b+/RQWFqrf98MPP1S/1qeffqo+d/fu3WLu3LlCKpWKN998U33Ot99+KwCIjh07io8++kjs2bNHjB49WkgkEnHixIlKfz8TJkwQISEh1fq9lZaWiu7du4sWLVqIlStXipSUFPHUU08JR0dH8ffff6vP+7//+z8hkUjEjBkzxO7du8WMGTNEq1atBACRmpqq9b6vv/666NSpU6VtpvsYw0qMYcawvWIMKzGGGcP2iPGrxPit3fHLjnY1qT4ghBBi/Pjx4qmnnhJCCPHOO++IXr16CSGE3gdEdHS0aNmypSgrK1Mf2717twAgtm/fLoQQBj8IDB2/du2acHJyEjNnztQ6b9y4caJJkyaivLxc3U4AYufOnXqv9f3331f48/3zzz9CIpGIlStXqo+Vl5eLNm3aGPUB8fDDDwuFQqE+lpWVJSQSifjqq6+03mfGjBmiadOmQi6Xq3+XTZo0UQe9IbofBIaOl5eXi8aNG4uYmBitc2bNmiWcnZ3VH46qD4jPP/9cfc6tW7dEgwYNxHvvvVdhG4QQIjAwULz88stax4z9vf33v/8Vjo6O4p9//tF6fs+ePcXo0aPVz/P19RWTJk3SOmfy5MkGPyC+/fZbIZFIRFFRUaXtJiXGsBJjmDFsrxjDSoxhxrA9YvwqMX5rd/xy6bgZjBs3DomJibh79y7Wr1+PcePGGTwvLS0NkZGRcHJyUh8LDQ2Fp6cnDh06ZNJ7Hj16FDKZDKNHj9Y6PnbsWFy7dg2ZmZnqYw4ODhg4cKD6cevWrVG/fn1cvHixwtf/5ZdfIIRAdHS0+phUKkVUVJRR7QsLC9PKDrhv3z4AwMiRI1FeXq7+GjhwIC5fvoycnBwAwP79+zFq1Cg0bNjQqPepSEZGBq5fv27w91NWVoaff/5Z63hoaKj6766urmjVqlWlvx8AyMvLQ5MmTbSOGft727NnDzp37ozAwECt38egQYPwyy+/AAAuXryIvLw8DB8+XOu5kZGRBtvTuHFjCCFw5cqVSttN+hjD+hjDjGF7whjWxxhmDNsLxq8+xm/tiF9Hs71SHTZ48GA4OTnh3XffRXZ2NsaMGWPwvPz8fDz00EN6xx966CH1/hJj5efnq5+r+1oAtF6vfv36cHZ21jrP2dkZJSUlFb5+Xl4enJyc4OXlZfD1q6J73vXr1yGEQOPGjQ2en5OTg1atWuHGjRto1qyZUe9RGVN+PwDg6emp9biq3w8AlJSUwMXFReuYsb+369ev448//tC6WKhIpVL1awHQ+xBS7dXRpWqLpZJm1CaMYX2MYcawPWEM62MMM4btBeNXH+O3dsQvO9pm4OTkhJEjR+Kjjz7CgAEDKgwib29vXL16Ve/4lStXTM6CqDr/6tWraN68udZraX6/unx9fSGTyZCfn6/1n93YUR7dWnfe3t6QSCQ4dOiQ3ocVALRv3x4A0KhRI1y6dOkBWn7//QDo/b7N9ftRvUZBQYHWMWN/b97e3ujSpQtWrlxZ4eurMj9eu3ZN67ih/0MA1G1p1KiRsT8C3cMY1scYZgzbE8awPsYwY9heMH71MX5rR/xy6biZTJkyBcOGDcNrr71W4Tl9+vRBQkKCVua8vXv3oqCgAH369AEAdfBUNQrUo0cPODk5YdOmTVrHN27cCB8fHwQGBlb3RwEAPPbYYwCAbdu2qY/J5XIkJCRU6/UGDBgAALhx4wa6d++u9+Xu7g4AGDhwIDZv3ozi4uIKX8vJyanK30/79u3RpEkTg78fZ2dn9OjRo1o/h+57ZGdnax0z9vc2cOBAnD17Fs2aNTP4+wAAPz8/NG3aFImJiVrPrejf4Ny5c/Dw8EDTpk0f8CermxjDlWMMJ2idxxi2PYzhyjGGE7TOYwzbFsZv5Ri/CVrn2Uv8ckbbTHr06FFl8MyePRu9e/dGREQEpk2bhitXrmDmzJno0aMHhg4dCgBo2rQpPD09sW7dOrRp0wYuLi7o0qWL3ms1btwY06ZNw4cffoh69eohODgYu3btwtq1a7Fs2TL1sonqevjhhxEdHY3XX38dJSUlaN26NZYvX46ysrJqvV5gYCBefvllPP3003jrrbfQs2dPyGQyZGZmIjU1Vf27mzt3LpKSktCnTx+8/fbb8PX1xYkTJ3Dnzh28/fbbAICOHTsiMTERISEhcHV1Rfv27dUfMCpSqRRz5szBq6++Ch8fHwwdOhQ//fQTFi9ejNdff90so1WPP/44Nm7cqHXM2N/bv//9b3z11Vfo168f/vOf/yAwMBAFBQX4448/UFZWhvj4eEilUsyaNQuvv/46HnroIfTv3x+pqanqfToODtrjZL/++it69+6td5yMwxiuHGOYMWzrGMOVYwwzhm0Z47dyjF87jV+zpVWrYzSzJVZEN1uiEEIcPHhQ9OrVS7i4uAhvb28xceJEcePGDa1ztm3bJjp27ChcXFwEAJGdnW0wi6JcLhcLFiwQLVu2FE5OTiIgIEB8+eWXRrXTw8NDzJ07t9L25+fniwkTJghXV1fRqFEjMX36dPHhhx8alS3RUDZDhUIhli1bJoKCgoSzs7Pw9vYWvXr1Eh999JHWef/8848YPny4aNiwoWjQoIHo2rWrWL9+vfr7aWlp4l//+peoX7++VtZAQ+/7xRdfiICAAOHk5CRatmwp3nvvPXVmRiHuZ0u8du2a1vMM/dvp+u233wQAkZmZafLvTQghCgsLxRtvvKH+9/P19RVDhw5Vl7hQ/c7mzZsnfHx8RIMGDcTw4cPFhg0bBADx559/qs8rKysT3t7eWlkaqXKMYSXGMGPYXjGGlRjDjGF7xPhVYvzW7viVCCGE+brtRHVLt27dEBkZiXfffddi7zlnzhwsXboUN27cQP369QEAO3fuxPjx45Gbmws3NzeLtYXI3jGGiewbY5jIftX2+GVHm+gBJCYm4sUXX0R2drZe5kRzOHnyJFavXo3evXvD2dkZBw8exJIlS/Diiy/ik08+UZ/35JNPol+/fhb9oCKqDRjDRPaNMUxkv2p7/HKPNtEDiIyMxOnTp5GTk4N27dqZ/fUbNGiA9PR0fPHFFyguLkbz5s3x1ltvYd68eepzbt26hb59++KNN94w+/sT1XaMYSL7xhgmsl+1PX45o01ERERERERkRkyLSERERERERGRG7GgTERERERERmRE72kRERERERERmxI42ERERERERkRmxo01ERERERPT/7dexAAAAAMAgf+tJ7CyLYCTaAAAAMBJtAAAAGIk2AAAAjEQbAAAARgH9Faty2779NAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1749,7 +1749,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABc4AAAMTCAYAAACYAITqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/pUlEQVR4nOzde1xU5fr///egMigiDIpK4iFNRDMPmZa6PQBKUZa6t4fMXZli8fFU2SbFs6Zieco0M9POu49uPOx2pm7U9JN+S7OzmWSmbg+b1GScsVDwsH5/9HNiBGQGBmaA1/PxmIfOWve617XWDBfDNfe6l8kwDEMAAAAAAAAAAECS5OftAAAAAAAAAAAA8CUUzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzlFhvfnmmzKZTNqxY4e3Q/GooUOH6tZbb9XVq1e9HYrP6t69uxo1auRSW5vNptDQUKWkpJRsUACckKMrLnI04PvI0RUXORooG8jTFRd52rMonKNEnD59WuPHj9dtt92mGjVqKCgoSI0bN1bfvn21cuVKb4fnUzIyMjRp0iTde++9Cg8Pl8lkUo8ePYrU1xdffKE333xTzz33nPz8/vjx/uCDD5SQkKBbb71VQUFBCgsLU8eOHfX666/r8uXLhfb78ssvy2QyyWQy6cSJE07rfvvtN40cOVLh4eGqVauWHn74YZ09ezZPH19++aWqVKmijRs3FunYvCU4OFjPPvusUlJS9PPPP3s7HMAjyNGu++yzz9S/f381bdpUNWrUUGBgoJo3b66xY8fqv//9r1t9kaM9jxyN8ogc7bodO3Y48t/1j1q1arnVFzna88jRKK/I067r3r17gXnaZDKpadOmLvdFnvY88nThTIZhGN4OAuXLsWPH1KFDB/3yyy/q16+fOnXqJH9/fx0+fFi7du3S+fPntW/fPm+HqStXrujSpUvy9/d3SrqlbceOHYqOjla9evXUrl07/etf/1JsbKy2bt3qdl8PPPCA9u/fr0OHDslkMjmW161bV4GBgerTp4+aN28um82mVatW6fPPP9e9996rDRs2OLXP7dixY7r11lslSb/++quOHz+uiIgIx/rRo0frjTfe0Lhx41StWjU9//zz6tixo95//31Hm8uXL6tDhw5q0aKF3n33XbePy9O6d++uo0eP6ujRoy61t9vtqlu3rkaMGKF58+aVbHBACSNHu+fvf/+73nnnHXXo0EHh4eHy8/PTt99+qzfffFNBQUH68ssvddNNN7nUFznaNeRoVGTkaPdc+xz9+OOPq0uXLk7rAgIC1K9fP5f7Ike7hhyNio487Z4tW7bo1KlTeZZv3rxZf//73zV27FjNnz/fpb7I064hT3uYAXjYqFGjDEnGiy++mO/6jIyMUo7It9ntduPUqVOO55KM2NhYt/s5cuSI4efnZ0yfPj3Puq1btxpXr151Wnb58mXjT3/6kyHJ+PDDDwvs95577jHuuOMO469//ashyTh+/LjT+vDwcGPKlCmO5ytXrjQqVapkXLhwwbEsJSXFqFWrlnHmzBm3j6skdOvWzWjYsKFb2wwaNMgIDQ11Oi6gLCJHe8bq1asNSfnm3PyQo11HjkZFRo52z/bt2w1JxhtvvFGsfsjRriNHo6IjT3vGtRx64MABl9qTp11HnvYspmqBx/3444+SpNjY2HzX161bN8+yn376SUOGDNFNN90kf39/RUREaMSIEfrll1+c2lmtViUlJalp06aqWrWqLBaLbrvtNj311FNO7TZv3qyYmBjVrl1bAQEBioiIUHx8vHbu3OloU9CcX+fOndPYsWN18803y2w2q06dOho0aJDjuK45evSoTCaTpk2bpk2bNumuu+5S1apVFRYWpieeeEK//fabS+crKChItWvXdqntjaxZs0ZXr17Vfffdl2ddbGxsnm9YK1WqpP79+0uSvv3223z7fPvtt7VlyxYtX75clSpVyrdNVlaWQkNDHc9r1qypK1eu6OLFi5J+fz9Mnz5dixYtcvuS2Wv+9a9/qUePHrJYLAoICFDjxo2VkJCQ5/3x97//XXfeeacCAwMVGBiou+66S6tWrSqw359//lkPP/ywatasqapVq6pr1676/PPP82173333KTMzU1u2bCnSMQC+ghztXo4uyLV5A8+dO+dSe3I0ORpwBTm66Dk6KytLFy5ccHs7iRwtkaMBV5Gni/9ZOj09Xbt27VKXLl0UFRXl0jbkafK0t1T2dgAof5o0aSJJeuONN/T888+rcuUbv82+/vprde/eXdWqVdPQoUPVsGFD/fjjj3rllVe0bds2ffbZZwoODpYkDRgwQNu3b9fjjz+uNm3aKCcnRz/99JPTtCYff/yxevXqpRYtWigpKUk1a9bUzz//rE8++URfffVVnss4czt//rw6d+6s77//XoMGDdKf/vQn/fTTT1q6dKk2b96s//f//p9atGjhtM2mTZu0ZMkSPfHEExoyZIi2bdum5cuXy2QyadmyZUU9jW7bvn27qlatqtatW7u8zcmTJyVJderUybPu1KlTevrpp/X000+rbdu2BfbRqVMnvfLKK/rTn/6kqlWr6vnnn1eLFi0UEhIiwzA0fPhwxcTE6KGHHnL/oCRNmTJFzz33nJo0aaLRo0crIiJCx44d0wcffKATJ044fjlda3fbbbdp6tSpMgxD7777rgYNGqTDhw9rwoQJTv3+9ttv6tKli9q1a6fnnntOp06d0sKFCxUfH6/Dhw8rKCgoz3FKv5/n+++/v0jHAvgCcnTRcnRWVpajKPP9999r/PjxkpTvh/f8kKPJ0YAryNFFy9FPPvmkHnvsMUlSRESE/vrXv2ry5MmqVq2aS9uTo8nRgKvI08Wvd6xYsUKSNHz4cJe3IU+Tp73Ge4PdUV799NNPRnBwsCHJqF27tvGXv/zFeP75541du3YZV65cydO+TZs2xs0332ycPXvWafmePXuMSpUqGdOmTTMMwzDOnTtnSDISExNvuP+nn37akGT8/PPPN2z3xhtvGJKM7du3O5ZNnjzZkGTMmjXLqe2OHTvyTKFy5MgRQ5JRtWpV46effnJqf/fddxtVqlQxfv311xvGkJ/r9+Oqhg0bGlFRUS63P378uBEcHGxYLJY8594wDKNfv37GzTffbPz222+GYRjGo48+mu+lSwcPHjSioqIMSYYkIyIiwti9e7dhGIbx6quvGkFBQcaxY8fcPh7DMIzPPvvMkGTcdddd+Z7La++ngwcPGn5+fkbr1q0d8RqGYfz6669Gy5YtjUqVKhlHjhxxLO/WrZshyZg9e7ZTf//7v/9rSDJeffXVfOOpXLmy0aNHjyIdC+AryNFFy9FTp0515DlJxs0332y8/fbbLm9PjiZHA64gR7uXo3ft2mXcd999xssvv2z861//MlauXGn06tXLkGTccccdTjnnRsjR5GjAVeTp4tU7srOzjVq1ahkWi8WtaUHI0+Rpb6FwjhJx9OhRY8yYMcbNN9+cp9Dw73//29Fu3759hiQjOTnZOHPmTJ5Hs2bNjI4dOxqG8XuCDQgIMNq2bZsncec2ffp0Q5KxePFiIycnp8B2+f0iadGihVGjRo18E3h0dLRhMpmMzMxMwzD++EXy0EMP5Wk7b948Q5Kxb9++Qs/V9YpaOK9WrZrRuXNnl9qeP3/euP322w2TyWSsW7cuz/p169YZkpxeq4J+kRiGYVy6dMn49ttvjS+//NK4ePGiYRiGcfLkSSM4ONhYsmSJYRiG8c9//tO44447jPDwcKNv37759nO9J598Ms9rlJ8XXnjBkGS89957eda99dZbeeag69atm+Hn55fndf7ll18MScYzzzyT735q165ttGrVqtC4AV9HjnY/R//000/Gli1bjLVr1xoTJkwwbrvtNmPhwoUub0+OJkcDriJHF/1z9DXjxo0zJBkpKSkutSdHk6MBd5Cni56nr90naPTo0W5tR54mT3sLhXOUuFOnThn//Oc/jYceesgwmUxGtWrVjB9//NEwDMP4xz/+4fSLJr9H48aNHX0tX77cMJvNhiQjMjLSGDZsmLF27Vrj8uXLjjZnz5417rjjDkOSERgYaPTo0cOYOXOmcfjwYae48vtFEhAQYLRr1y7f4xgzZowhyfjiiy8Mw/jjF8mkSZPytL3W944dO9w+X8UpnHfq1KnQdufPnze6dOlimEwm4+WXX86z3mq1GuHh4cbgwYOdlt/oF0l++vbta3Tu3Nm4evWq8dlnnxkmk8lYsGCBsXfvXuPuu+82WrVqle838rnFx8cbkgybzXbDdomJiQX+4v7yyy/z/GLu1q2bERERkW9fkowhQ4bkuy4sLMxo3br1DWMByhpydNFcGyXkTlGGHE2OBtxFji6aX3/91fDz83O5yEKOJkcDRUWedk/Pnj0NSca3337r1nbkafK0tzDHOUpc7dq11bt3b/Xu3VsNGjTQnDlztGrVKk2aNElXr16VJI0ePVoPPPBAvttXrVrV8f/hw4frgQce0KZNm/Txxx9r69atWrlypTp06KD/+7//U0BAgEJDQ7Vnzx598skn2rp1q3bu3Knp06dr+vTpeueddzRw4ECPHl9BN5GQJMMwPLqvGwkLC9PZs2dv2Ob8+fOKj4/XJ598oldeeUVPPPFEnjZTp07VuXPnNHLkSB06dMhpW+n3m4RcvHhRTZo0yXMDjmvWrl2rjRs36uuvv5bJZNKKFSvUsWNHPf3005KkxYsXKzIyUnv27FHHjh2LesjFUpTXzWq1qk2bNiUUEeAd5Oii6dChg6KiorRs2TLHfOc3Qo52Dzka+B05umgCAwNVu3ZtnT592qX25Gj3kKOBP5CnXXfkyBFt3bpVd911l2677Ta3tiVPu4c87TkUzlGqrt1w4NpNGiIjIx3revTo4VIfderU0ZAhQzRkyBAZhqEJEyY4fjkNGTJEkuTn56c//elP+tOf/iRJOn78uG6//XaNGzfuhr9ImjRpokOHDik7O1tms9lp3XfffSeTyaSbb77Z5eMtTS1bttS2bdt06dIlValSJc96m82me+65R5999plWrFihoUOH5tvPf/7zH124cMHxWl3v2s1GLly4oICAgDzrz507p1GjRmnSpEmOO2QfP35cDRo0cLSpX7++Y/mNfpFERkZq06ZN+uqrr9StW7cC2127Qcv+/fvVsmVLp3XfffedU5uiOnz4sC5fvuz2L3igLCFHu+fChQuyWq0utSVHk6OB4iJHu85ut+vUqVNq2rSpS+3J0eRowBPI0ze2cuVKxw013UWeJk97i5+3A0D5s2PHDmVlZeW7bv369ZLkuFNzmzZtdNttt2nlypU6cOBAnvaGYejMmTOSpKysrDz9mkwm3X777ZLk+PbxWvvc6tevrzp16hT6DeWf//xn2Ww2LV682Gn5zp079dFHHykmJkYWi+WGfXhL9+7ddfHiRX355Zd51tlsNsXFxWnv3r168803C/wlIknjxo1Tampqnkf37t0lSa+++qpSU1Pl7++f7/bPPPOMwsLCNG7cOMeym266Sd9++63j+bX/16tX74bHNHjwYEnShAkTdOHChTzrr31T2qdPH/n5+WnevHm6ePGiY31WVpbmzp2rSpUqqXfv3jfcV2E+/fRTSVJ0dHSx+gG8jRztnp9//jnf5f/61790+PBhl0eRkKPJ0YAryNHuyS8mwzD07LPPyjAM9enTx6V+yNHkaMBV5OmiuXLlit58803VqFGjSKPiydPkaW9hxDk87sUXX9T27dvVq1cvtWvXThaLRb/88os+/PBD/d///Z9atmzpSGQmk0nvvvuuYmJidPvtt2vIkCG67bbbdOnSJR09elT//Oc/9eijj2ratGk6ePCgunbtqj59+ujWW29VWFiYDh8+rGXLlikoKEh//vOfJUmPP/64jh07pri4ODVq1EiXL1/Whg0btH//fo0aNeqGsSclJWnt2rVKSkrSN998o06dOumnn37S0qVLFRwcrJdeeqlEztnMmTOdnh89etSxrGHDhnr44YcL7aNfv34aN26cNmzYoDvvvNNpXY8ePfT555+rd+/ejnOeW6tWrdSqVStJKrAItGHDBknSvffeq4iIiHzbfPTRR3rrrbf06aefOn0L/Mgjj2jlypV66KGH1LlzZ7300ktq1qxZnjiv1759e02YMEGzZ89Wq1at9NBDD6l+/fo6ceKE3n//fb3xxhtq06aNbrnlFk2cOFHPPfec7rrrLg0ePFiGYejdd9/Vvn37NGvWLDVq1OiG+yrMhg0bFBoa6vJIAcBXkaPdc++998pisahTp05q0KCBfv31V+3Zs0dr1qxRaGio5s2b51I/5GhyNOAKcrR77rnnHtWpU0d33HGHIiIidObMGb3//vvas2ePunbtqpEjR7rUDzmaHA24ijxdNBs3btTJkyeVmJiowMBAt7cnT5OnvaaU5lJHBbJ7924jKSnJ6NChg1GnTh2jcuXKRlBQkNGuXTtjxowZht1uz7PN8ePHjZEjRxqNGzc2/P39jZCQEOO2224znnzySWP//v2GYfx+B+Cnn37aaNu2rWGxWAyz2Ww0bNjQGDJkiHHgwAFHX2vXrjV69+5t1K9f3zCbzYbFYjE6dOhgLFu2zOnmDPndLMMwDCMzM9N46qmnjIYNGxpVqlQxatWqZTz44IPGDz/84NTu2s0ypk6dmud4Cuq7ILrBzUK6devmUh+GYRj333+/0aBBA+Pq1asu91/QMVyvsJtlZGVlGU2aNDGefvrpfNe//fbbRrNmzYygoCCjR48ejhumuGLNmjVG165djaCgICMgIMBo3LixMXz4cOOXX35xavfOO+8YHTp0MKpWrWpUrVrVuPPOO/O983S3bt2Mhg0b5rsvScajjz7qtMxmsxkBAQEF3n0aKEvI0e7l6KVLlxo9evQwwsPDDX9/f6Nq1apG8+bNjaeeeso4ceJEodvnRo4mRwOFIUe7l6PnzJljdO7c2ahdu7ZRpUoVo3r16kb79u2NhQsXGjk5OYVunxs5mhwNuII87X69wzB+z7HKdfPRoiBPk6e9wWQYpXj3QgAl6osvvlD79u21evVq9e/f39vhlBtz5szRrFmz9OOPP6pu3breDgdAGUWOLhnkaACeQI4uGeRoAJ5Cni4Z5Okbo3AOlDNDhw7V7t279d1338nPj9sYFJfNZtPNN9+spKQkJScnezscAGUcOdqzyNEAPIkc7VnkaACeRp72LPJ04SicAwAAAAAAAACQC1/PAAAAAAAAAACQC4VzAAAAAAAAAAByqbCF80OHDikxMVFt2rRR5cqV1bJly3zbrVy5UpGRkQoICFDr1q21YcOGUo4UAAAAAAAAAFCaKmzhfP/+/frwww91yy23qEWLFvm2WbVqlYYPH66BAwdq06ZN6tixo/r27avdu3eXcrQAAAAAAAAAgNJSYW8OevXqVccdeIcMGaLPP/9c3333nVObZs2aqV27dnrvvfccyzp16qSQkBBt3LjR5X0ZhqHz588rKChIJpPJMwcAAPAIcjQA+C5yNAD4NvI0gPKswo44v1Y0L8jhw4d18OBBDRgwwGn5gw8+qG3btik7O9vlfZ0/f17BwcE6f/58kWIFAJQccjQA+C5yNAD4NvI0gPKswhbOC5Oeni5JioqKclrevHlz5eTk6MiRI94ICwAAAAAAAABQwip7OwBfZbVaJUkhISFOyy0WiyQpMzOzwG2zs7OdRqTb7XbPBwgAAAAAAAAAKBGMOC8BKSkpCg4Odjzq16/v7ZAAAAAAAAAAAC6icF6AayPLbTab0/JrI9FDQ0ML3DY5OVk2m83xOH78eMkFCgAAAAAAAADwKArnBbg2t/m1uc6vSU9Pl7+/vxo3blzgtmazWTVq1HB6AAAAAOXFoUOHlJiYqDZt2qhy5cpq2bJlvu1WrlypyMhIBQQEqHXr1tqwYUMpRwoAAAAUDYXzAjRu3FiRkZFKTU11Wr569WrFxsbK39/fS5EBAAAA3rV//359+OGHuuWWW9SiRYt826xatUrDhw/XwIEDtWnTJnXs2FF9+/bV7t27SzlaAAAAwH0V9uagWVlZ2rhxoyTpP//5j+x2u9asWSNJ6tatm8LCwjRt2jQNHjxYTZo0UXR0tFavXq09e/bo448/9mbo8HE7dpjyXd69u1HKkQAoC8gZAMqi+++/X71795YkDRkyRJ9//nmeNlOnTtWDDz6o5557TpIUHR2tb7/9VjNmzHB8DgdQ/hX0WUf6/fNOYes91UdFkpqaqnfffVdffPGFrFarmjZtqjFjxuixxx6TyfTHuVq5cqWef/55HTt2TM2aNdOsWbPUq1cvL0YOeF9++aQi5hH8rsIWzk+fPq3+/fs7Lbv2fPv27erevbsGDRqkrKwszZkzR3PmzFGzZs20fv16dezY0RshAwAAAD7Bz+/GF64ePnxYBw8e1PPPP++0/MEHH1RSUpKys7NlNptLMkQAqLAWLFigRo0aaf78+QoLC9OWLVs0fPhwHT9+XFOnTpX0x1VBEydOVExMjFavXq2+fftq586duuuuu7x8BADgGyps4bxRo0YyjMK/MRo2bJiGDRtWChEBAAAA5cO1+wRdu2/QNc2bN1dOTo6OHDmSZx0AwDM++OAD1apVy/E8JiZGZ8+e1YIFCzR58mT5+flxVRAAuIA5zgEAAAB4lNVqlSSFhIQ4LbdYLJKkzMzMfLfLzs6W3W53egAA3JO7aH5N27ZtZbfb9dtvvzmuChowYIBTmwcffFDbtm1TdnZ2aYUKAD6two44BwAAAOBbUlJSNH36dG+HUSExRzRQvu3atUv16tVTUFCQdu7cKYmrggCgMG4Xzo8dO1bgOj8/PwUHBysoKKhYQQEAAAAou66NLLfZbKpbt65j+bWR6KGhoflul5ycrLFjxzqe2+121a9fvwQjBYDyb9euXVq1apXmz58vqehXBUm/XxmUe0Q6VwYBKM/cLpw3atTI6S7MBbV56qmnNHr06CIHBgAAAKBsujZSMT09Xc2aNXMsT09Pl7+/vxo3bpzvdmazmZuGAoAHnThxQgMHDlR0dLTGjBlT7P64MghAReL2HOfvvvuuIiIiFBMTo0WLFul///d/tWjRInXv3l316tXT4sWL1alTJz399NNavHhxScQMAAAAwIc1btxYkZGRSk1NdVq+evVqxcbGyt/f30uRAUDFce7cOcXHx6tmzZpau3at/Px+LwHlvioot8KuCpJ+vzLIZrM5HsePHy+h6AHA+9wecb5z507dc889evXVV52Wjxo1So8//ri++OILvfPOO6pRo4aWLl3KqHMAAACgnMnKytLGjRslSf/5z39kt9u1Zs0aSVK3bt0UFhamadOmafDgwWrSpImio6O1evVq7dmzRx9//LE3QweACuHChQvq1auXbDabPv30UwUHBzvWFfWqIIkrgwBULG6POF+1apX69euX77r+/ftr3bp1kqRevXrpyJEjxYsOAAAAgM85ffq0+vfvr/79+2vHjh06fvy44/n+/fslSYMGDdJrr72m9957T3fffbf+3//7f1q/fr06duzo5egBoHy7fPmyBgwYoAMHDmjz5s2qV6+e03quCgIA17g94tzPz0/ffPONevbsmWfd119/7bj0p1KlSqpatWrxIwQAAADgUxo1aiTDMAptN2zYMA0bNqwUIgIAXDNixAht2LBB8+fPl91u1+7dux3r2rZtK7PZzFVBAOACtwvngwcP1uTJk5WTk6P7779fYWFhOnPmjN5//33NnDlTTzzxhCTpiy++UIsWLTweMAAAAAAAAPKXlpYmSXrmmWfyrDty5IgaNWqkQYMGKSsrS3PmzNGcOXPUrFkzrgoCgOu4XTifP3++KleurJkzZ2ry5MmO5WazWSNHjtTzzz8vSercubPuvvtuz0UKAAAAAACAGzp69KhL7bgqCABuzO3CeZUqVbRgwQJNnjxZ3377rX7++WeFh4erZcuWTnde7tq1q0cDBQAAAAAAAACgNLhdOL/GYrGoW7dunowFAAAAAAAAAACvK1Lh/JdfftG8efO0d+9enThxQuvWrdOtt96qRYsW6c4779Rdd93l6TgBAACAMm3HDlO+y7t3L/wmmwAAAEBFkN9nZm99XvZzd4Mvv/xSTZs21apVqxQREaFDhw4pOztbknTy5EktXLjQ40ECACqeQ4cOKTExUW3atFHlypXVsmXLfNutXLlSkZGRCggIUOvWrbVhw4ZSjhQAAAAAAJQ3bhfOn376aXXs2FE//vijVq5cKcP4o+J/5513avfu3R4NEABQMe3fv18ffvihbrnlFrVo0SLfNqtWrdLw4cM1cOBAbdq0SR07dlTfvn35XQQAAAAAAIrF7cL53r17NWbMGFWpUkUmk/PQ+bCwMJ0+fdpjwQEAKq77779fx48f15o1a3T77bfn22bq1Kl68MEH9dxzzyk6OlrLli1T+/btNWPGjFKOFgAAAAAAlCduz3EeGBgou92e77pjx46pZs2axQ4KAAA/vxt/t3v48GEdPHhQzz//vNPyBx98UElJScrOzpbZbC7JEAEAKFRBc9tLFW9+e84FAAAoS9wunN99992aOXOmYmNjFRISIkkymUy6cOGCFi1apHvvvdfTMQKlhg/zQNmRnp4uSYqKinJa3rx5c+Xk5OjIkSN51gEAAAAAALjC7cL5888/r86dO6tp06aKjo6WyWTSpEmT9P3338tkMmnmzJklEScAAE6sVqskOb7EvcZisUiSMjMz890uOzvbcVNrSQVeRQUAAAAAnpbfgD0G6gG+ye05zuvVq6evv/5ao0ePVkZGhpo0aaKzZ89q8ODB+vzzz1W7du2SiBMAAI9ISUlRcHCw41G/fn1vhwQAAAAAAHyM2yPOpd9H902fPl3Tp0/3dDwAALjk2shym82munXrOpZfG4keGhqa73bJyckaO3as47ndbqd4DgAoEqb5gzf5yvuvoDj4GQAAlHVFKpyjYvGVD2QAkNu1+cvT09PVrFkzx/L09HT5+/urcePG+W5nNpu5aSgAAAAAALghlwrnN998s0ymgoun1zt8+HChbc6ePavPPvtMGRkZunDhgmrWrKlmzZqpTZs2bu0LAFAxNW7cWJGRkUpNTVXv3r0dy1evXq3Y2Fj5+/t7MToAAAAAAFCWuVQ47927t1Mxe82aNbLb7erRo4fq1KmjU6dOaevWrQoODla/fv0K7Mdms+mtt97SW2+9pa+//lqG4Txa2WQyqXr16urbt6+GDx+uzp07F/GwAABlXVZWljZu3ChJ+s9//iO73a41a9ZIkrp166awsDBNmzZNgwcPVpMmTRQdHa3Vq1drz549+vjjj70ZOgAAAAAAKONcKpy/+OKLjv/PnTtX9evX1+bNm1WjRg3HcpvNpvj4eNWpUyffPmbPnq158+bJYrGof//+mjp1qlq3bq1atWrJbDbr3LlzOnr0qD7//HNt2rRJsbGx+tOf/qSXXnpJLVq0KN5RAgDKnNOnT6t///5Oy6493759u7p3765BgwYpKytLc+bM0Zw5c9SsWTOtX79eHTt29EbIAAAAAACgnHB7jvOXXnpJS5cudSqaS1JwcLDGjx+vESNGaNy4cXm227Fjh9atW6fu3bvn22+tWrVUq1Yt3XHHHUpMTJTVatWSJUu0Y8cOCufFwPzk8CbefyiORo0a5bkyKT/Dhg3TsGHDSiEiAAAAAABQUbhdOM/MzJTNZst3nc1mk9VqzXddWlqaW/uxWCyaPHmyu+EBAAAAAAAAAFAsfu5uEBsbq3Hjxun//u//nJbv2LFD48ePV2xsrMeC8wXp6enq2bOnAgMDVbduXT377LPKycnxdlgAAAAAAAAAgBLi9ojzV199VQ888IBiYmIUHByssLAwnTlzRjabTW3bttWyZcsK7WPGjBkFrvPz81NwcLDatGmjLl26uBueR1mtVsXExKhp06Zat26dTp48qbFjxyorK0tLlizxamwAAAAAAAAAgJLhduE8PDxce/fu1ebNm/XZZ58pIyND4eHh6tChg+655x6X+li4cKFycnJ04cIFSVJAQIAuXrwoSapataouXbqkK1eu6Pbbb9fGjRsVFhbmbpgesWzZMtntdq1fv16hoaGSpMuXL2vEiBGaMGGCbrrpJq/EVR5VpLmwK9Kx4g+87gAAAAAAAGWH24Xza+655x6XC+XX++ijjzRw4EBNnTpVvXv3VvXq1fXrr79q/fr1mjFjht5++21lZWXpr3/9q5KSkvTmm28WNcxi2bRpk3r06OEomkvSgAEDlJiYqLS0NA0ZMsQrcQEA4Gv4cqh0cb4BAAAAoGQVuXBeHCNHjtQzzzyjwYMHO5ZVr15dDz/8sH777Tc99dRT2rNnjyZNmnTDaV1KWnp6uoYOHeq0LCQkROHh4UpPT/dSVAAAAAAAAACAkuT2zUE94auvvlLDhg3zXdeoUSPt27dPktSyZUvZbLbSDM2J1WpVSEhInuUWi0WZmZkFbpednS273e70AAAAAAAAAACUDV4Zcd6wYUOtWLEi36leli9f7iiqnz17VrVq1Srt8IotJSVF06dPL3Y/rlyGXVgbVy7XLqiPa9t64pLv0oizsH24cj4Li8MTfXhiH5441uKeT1f6KMlj9WScpXE+feU9DgBAaUpPT9fo0aP1ySefKCgoSI888ohmzpwpf39/b4cGAAAA3JBXCucpKSkaMGCAmjVrpl69eiksLExnzpzRhg0bdPjwYaWmpkqStm3bpq5du3ojREm/jyzPb8S71Wp1mvf8esnJyRo7dqzjud1uV/369UskRgAAAJQ8vpx0n9VqVUxMjJo2bap169bp5MmTGjt2rLKysrRkyRJvhwcAAIBiutEAwPzWlbXPzV4pnPft21efffaZUlJStH79emVkZCg8PFzt27fX6tWr1aZNG0nSyy+/7I3wHKKiovLMZW6z2ZSRkaGoqKgCtzObzTKbzSUdHgAAAOCzli1bJrvdrvXr1zsGnVy+fFkjRozQhAkTdNNNN3k5wsLxhUnp4nzDm3j/AQCu51bh/Oeff1ZaWprS09Mdc3yHhoYqKipKcXFxqlu3rst9tW3bVv/4xz/ci7aUxcfHa/bs2Tp37pxjrvPU1FT5+fkpLi7Ou8EBAAAAPmzTpk3q0aOH05WaAwYMUGJiotLS0jRkyBDvBQcAAAAUwqXC+aVLl/TMM89o2bJlunLlisLDw2WxWCT9fglmRkaGKlWqpP/5n//R/PnzVbmy6/X448eP6/jx42rdurUCAwOLdhQlJDExUYsXL1afPn00YcIEnTx5UklJSUpMTCwTI2QAAPAVjOICKp709HQNHTrUaVlISIjCw8PzXNUJAAAA+Bo/VxpNmjRJ77zzjl5++WVlZmbqxIkT2rdvn/bt26cTJ07IarVq6dKleueddzRp0iSXdrx8+XLVq1dPDRs2VJcuXfTDDz9I+n0al0WLFhX9iDzIYrFo27Ztqly5svr06aPx48crISFBCxYs8HZoAAAAgE+zWq2OqzZzs1gsjqtXr5ednS273e70AAAAALzBpaHhb7/9thYuXFjg5ZQ1atRQQkKCKlWqpAkTJmjOnDk37O/FF1/UuHHjNHbsWMXGxjpNe9K9e3elpqbqySefdP0oSlDz5s21detWb4cBAAAAlHspKSmaPn26R/py5UqXG93QKve/hfVTnDaeiLOwPlzZR2nE6Ynz6YljLY3zWRpxeuKKrdJ475TGz1Fx3juePJ8AgPLFpRHn58+fV0RERKHtIiIidP78+ULbLV68WJMnT1ZKSoqio6Od1jVr1swx+hwAAABA2WSxWGSz2fIst1qtTvOe55acnCybzeZ4HD9+vKTDBAAAAPLl0ojzjh07avbs2Wrfvr2Cg4PzbWO32zV79mx16tSp0P5OnjxZYLsqVaro119/dSUsAPAZjFABAMBZVFRUnrnMbTabMjIyFBUVle82ZrNZZrO5NMIDAAAAbsilwvmSJUsUExOj+vXrq0ePHoqKinLMV2iz2ZSenq6tW7cqKChI27ZtK7S/hg0b6rPPPlNMTEyedXv27FFkZKR7RwEAAADAp8THx2v27Nk6d+6c42+H1NRU+fn5OU3VCAClgYEuAAB3uVQ4b9asmfbv369XXnlFmzdv1sqVK2W1WiX9fglmVFSUkpOTlZiYmO8NgK43fPhwTZs2TWFhYfrzn/8sSbp06ZI+/PBDzZ07V7NmzSr6EQEAAADwusTERC1evFh9+vTRhAkTdPLkSSUlJSkxMVE33XSTt8MDAPiw/Oak58uP0lPYPQGAisKlwrkkhYSEKDk5WcnJycXe6d/+9jcdO3ZMjz/+uJ544glJUufOnSVJI0aM0IgRI4q9DwAAAADeY7FYtG3bNo0ePVp9+vRRUFCQEhISGCQDAACAMsHlwrmnvfTSS3rqqae0ZcsWnT17VqGhoYqNjVXTpk29FRLKOb4Z9T1l5TUpK3ECAOBrmjdvrq1bt3o7DAAAAMBtHi2cf/HFF3r55Zf1+uuvu9S+cePGjhHnAAAAAAAAAAD4Ao8Wzo8ePaq33nor38L5xx9/7FZfXbt29VRYAAAAAAAAAAC4zKXC+ZdffulSZ4cPHy5wXffu3WUymWQYv095YDL9caMBwzCcnkvSlStXXNonAAAAAAAAAACe5FLh/I477shT2M5PfgXwa7766ivH/0+fPq1hw4YpOjpa/fr1U506dXTq1CmlpqZqx44dWrlypYvhAyjvmF8cAAAAAACg/NixI2/92BfrPy4VzoODg9WzZ0+NHDnyhu127NihGTNm5LuudevWjv/369dPDz74oF544QWnNvfff7+SkpL0yiuvqGfPnq6EBgCo4NLT0zV69Gh98sknCgoK0iOPPKKZM2fK39/f26EBAAAAAIAyyqXCefv27XXmzBl169bthu1++eUXl3b673//W+vWrct3XVxcnP785z+71A8AoGKzWq2KiYlR06ZNtW7dOp08eVJjx45VVlaWlixZ4u3wAAAAAABAGeVS4bxLly5avnx5oe3CwsJcuqln9erVtW3btnxHlW/ZskXVq1d3JSwAQAW3bNky2e12rV+/XqGhoZKky5cva8SIEZowYYJuuukmL0dYNuR3mdw1vni5XEniXAAAAJQ/BX3G4/MdfFVJvGf5OXCfnyuNJk+erOPHjxfarmvXrtq+fXuh7UaOHKkXXnhBjz32mN5//319+umnev/99zVkyBDNnz+/0ClhAACQpE2bNqlHjx6OorkkDRgwQFevXlVaWpoXIwMAAAAAAGWZSyPOPW3SpEkKCQnRnDlz9NZbb8lkMskwDIWHh+vFF1/U6NGjvREWAKCMSU9P19ChQ52WhYSEKDw8XOnp6V6KCgAA17kyyssXRoL5QgzlCecTAADf55XCuSSNGjVKI0aM0IkTJ5SRkaHw8HBFRETIz8+lQfAAAMhqtSokJCTPcovFoszMzHy3yc7OVnZ2tuO53W4vqfAAAAAAAEAZ5bXCuST5+fmpQYMGatCggTfDAABUICkpKZo+fbpH+ipsPmxX5ssubMSZJ/ZRWBtXRr0VNh9eYX0UZx/Xti/OsZbGufBknIXxlThL4/1ZGnG60kdxf1Zd6QMAAACA7yi14d2vvPKK0wg/V+zbt08fffRRCUUEACjrLBaLbDZbnuVWq9Vp3vPckpOTZbPZHA9X7uEBAAAAAAAqllIrnL/55ptq2LChnn76aX3yySe6dOlSvu3++9//auXKlerRo4c6deokq9VaWiECAMqYqKioPHOZ22w2ZWRkKCoqKt9tzGazatSo4fQAAAAAKpr09HT17NlTgYGBqlu3rp599lnl5OR4O6xSt2OHKd9HRVBRjxtwlVtTtVy8eFFLly5VXFycWrZs6daO9uzZo/Xr12vRokV66aWXVKVKFUVGRiosLExms1nnzp3TkSNHdPr0aYWGhurRRx/Vu+++q7p167q1HwBAxREfH6/Zs2fr3LlzjrnOU1NT5efnp7i4OO8G5yFM7eAeT0wZg9LFawIAQOmzWq2KiYlR06ZNtW7dOp08eVJjx45VVlaWlixZ4u3wAMAnuFU4DwgI0KRJk9SuXbsi7axv377q27evjh49qq1bt+rzzz9XRkaGLl68qIYNGyouLk6dO3dW9+7dVaVKlSLtAwBQcSQmJmrx4sXq06ePJkyYoJMnTyopKUmJiYm66aabvB0eAAAA4JOWLVsmu92u9evXO6Y4vHz5skaMGKEJEybwWRoAVISbg7Zp00bff/+9unXrVuSdNmrUSAkJCUpISChyHyhbGE1W9vCaoSywWCzatm2bRo8erT59+igoKEgJCQmaNWuWt0MDAAAAfNamTZvUo0cPp/sCDRgwQImJiUpLS9OQIUO8F1w5UNQbwee3HX+bA97jduF80aJFGjx4sMLCwnTvvfeqWrVqJREXAAAuad68ubZu3ertMAAAAIAyIz09XUOHDnVaFhISovDw8Dz3EAKAisrtwnlMTIxycnI0cOBASVK1atVkMv3xjZjJZJLNZvNchAAAAGVIWRkVVFbi9ISKdKwAALjCarU67hGUm8ViUWZmZoHbZWdnKzs72/HcbreXRHgA4BPcLpw/88wzToVyAAAAAAAAlH8pKSmaPn26R/q60bQkBX3pfaMpUG607kZfot9oXWnvz91YrrUv6rqC9lfUc3IjRT2XnlxXnHNS2HZFWVfU91BRX4Oy8l4v6mtQEtwunE+bNq0EwgDgSYysAwAAQGnjMyhQdlgslnxnC7BarU7znl8vOTlZY8eOdTy32+2qX79+icQIAN7mduH8GsMwdPDgQWVmZio0NFSRkZEujUQ3DENWq1WBgYEym81F3T0AAAAAAACKICoqKs9c5jabTRkZGYqKiipwO7PZTC0HQIXhV5SNli5dqvDwcLVo0UKdO3dWixYtdNNNN+mVV14pdNtLly6pdu3aXr+R25YtW/TQQw+pSZMmMplMGjVqVL7tcnJylJSUpLp16yowMFA9e/bUDz/8UMrRAgAAAAAAeEZ8fLy2bt2qc+fOOZalpqbKz89PcXFx3gvMx1ybiuL6B4CKwe3C+fLlyzVq1CjFxsZq/fr1+vTTT7V+/XrFxMRo1KhRWrFixQ239/f3V0REhK5cuVLkoD1h8+bN+uabb9StW7d8b4hxzZgxY/Taa69p9uzZWrdunbKzsxUbG8sNUAEAAAAAQJmUmJiooKAg9enTR2lpaXrjjTeUlJSkxMRE3XTTTd4ODwB8gttTtSxcuFBjxozRiy++6LT8gQceUFhYmObNm6eEhIQb9jFy5EgtWLBAcXFxCggIcDcEj5g7d67mz58vSfroo4/ybXPixAmtWLFCS5cu1dChQyVJ7du3V4MGDfTqq6/q2WefLbV4AaAwjHwAAADwDXwug6+zWCzatm2bRo8erT59+igoKEgJCQmaNWuWt0MDAJ/hduH8yJEj6tWrV77r7rvvPi1btqzQPo4dO6aDBw+qQYMG6t69u+rUqeM0P7rJZNKiRYvcDc0tfn6FD7ZPS0vT1atX1b9/f8ey0NBQxcXFaePGjRTOAQAAUOFs2bJFb7zxhvbs2aPDhw9r5MiRWrJkSZ52OTk5mjhxot555x2dP39enTp10pIlS9SsWTMvRA0AuF7z5s29Po1uWcYXZED553bhPDw8XJ9++ql69OiRZ93u3bsVHh5eaB8bNmxw3FBi7969edaXRuHcFenp6apdu7YsFovT8ubNm2vlypVeigoAAADwntxTHmZmZhbYbsyYMVq1apUWLFigevXqadasWYqNjdX+/fsVHBxcihEDAAAA7nO7cD5s2DDNmDFD2dnZ6tevn+rUqaPTp08rNTVVc+fO1ZQpUwrt48iRI0UKtrRZrdZ85z+3WCw3/CMhOztb2dnZjud2u70kwgMAAABKHVMeAgAAoCJwu3A+ceJEWa1WzZ07VykpKX90VLmyRo8erYkTJ3o0QFfZbDZlZGQU2q5x48by9/cv0VhSUlI0ffr0Et0HKjYuCQMAAN5SVqY8dOXzUnn5TFVejsMVhR2rJ85FRTqfAACgYC4Vzu12u4KCgmQymWQymTR//nxNmDBBe/bskdVqVWhoqDp06KCaNWu6vOOTJ0/qxRdf1K5du5SZmanQ0FB16dJFTz75pOrVq+f2gaSmpmr48OGFtjtw4ICioqJc6tNischms+VZfu2YC5KcnKyxY8c6ntvtdtWvX9+lfQIAyo6K9Id1RTpWAMXHlIcAAHiWr3we95U4gNJQ+HAR/V5AvjYXeUxMjNLT01WzZk3de++9Gjx4sOLj490qmn/33Xe67bbbtGzZMoWHhysmJkbh4eFatmyZWrVqpf3797t9IAkJCTIMo9CHq0VzSYqKitKpU6dktVqdlqenp9+wH7PZrBo1ajg9AAAAgIqiOFMe2u12pwcAAADgDS6NOA8ICNDFixclSTt27Cj2B9i//e1vatKkidLS0pxGoVitVsXFxelvf/ubNm3aVKx9eEJcXJz8/Py0du1aJSQkSPo9xrS0NE2ePNnL0QEAAADFx5SHAAAAQF4uFc5btWqlpKQkxcfHS5JWrFihzZs359vWZDIVWlTetWuX/v73v+e5dNNisWjixIl6+OGHXQmrWP7zn/84RtFnZWXpp59+0po1ayRJ/fr1kyRFREQoISFBSUlJqlSpkurVq6fZs2crODhYTzzxRInHCPdwuRAAAID7mPIQAOANnv4bnpoAAE9zqXC+dOlSjRkzRi+//LJMJpNWrVqlSpUq5dvWlcJ55cqVlZ2dne+67OzsAvv2pO3bt+uxxx5zPN+8ebPjywDD+CPZLlq0SNWrV9f48eN1/vx5de7cWVu3blVwcHCJxwgAAOBNxf0DtCz9AVuWYvW0hIQEx9WVnpJ7ysPcg2VcmfLQbDZ7NBYAAACgKFya47xt27bauXOnzpw5I8MwtHXrVlmt1nwfN5qz8JoePXpo4sSJOnjwoNPyH3/8UZMnT1bPnj2LdjRuGDJkSIHzoOdmNps1b948nTp1SllZWdqyZYtb86QDAAAAFU3uKQ+vuTbl4b333uvFyAAAAADXuDTiPLft27erRYsWxdrpggUL1K1bN7Vo0UItW7ZUnTp1dPr0ae3bt08NGjTQggULitU/AAAAgJLBlIcAAG+pyFeIFRXnDCg6twvn3bp1K/ZOGzRooH379un111/Xrl27ZLVaFRkZqaFDh+qxxx5T9erVi70PADfmiV+e/AIGAKDiYcpDAAAAVARuF849pXr16hozZozGjBnjrRAAAADKrdL4cpMvUCumIUOGaMiQIYW2uzbl4bx580o+KAAAAMDDvFY4BwAAAAAAAIDSxOAPuKrUCuc1atTQ9u3b1a5dOwUFBclkMhXY1mQyyWazlVZoAAAAAAAAAAA4uFU4v3jxopYuXaq4uDi1bNnSrR0988wzCg8Pd/z/RoVzoCLjm08AAAAAAADAu9wqnAcEBGjSpElq166d2zuaOnWqpN9vGDRmzBgFBgbKbDa73Q8AAAAAAACAsoNBgiiL/NzdoE2bNvr++++LvMNLly6pdu3a2rp1a5H7AACUb1u2bNFDDz2kJk2ayGQyadSoUfm2y8nJUVJSkurWravAwED17NlTP/zwQylHCwAAAAAAyhu3C+eLFi3SwoULtWbNGmVlZbm9Q39/f0VEROjKlStubwsAqBg2b96sb775Rt26dVNISEiB7caMGaPXXntNs2fP1rp165Sdna3Y2FjukwEAAAAAAIrF7ZuDxsTEKCcnRwMHDpQkVatWzWm+cldu7Dly5EgtWLBAcXFxCggIcDeECoPLWABUVHPnztX8+fMlSR999FG+bU6cOKEVK1Zo6dKlGjp0qCSpffv2atCggV599VU9++yzpRYvKhZ+P5cuV863L7wmvhADAABAReJLn79KMxZfOu7yzu3CuSdu7Hns2DEdPHhQDRo0UPfu3VWnTp08xfdFixYVax8AgLLLz6/wC6LS0tJ09epV9e/f37EsNDRUcXFx2rhxI4VzAAAAAABQZG4XzqdNm1bsnW7YsEFms1lms1l79+7Ns57COQCgMOnp6apdu7YsFovT8ubNm2vlypVeigoAAAAAAJQHbhfOrzEMQwcPHlRmZqZCQ0MVGRnp8kj0I0eOFHW3AABIkqxWa77zn1ssFmVmZha4XXZ2trKzsx3P7XZ7SYQHAIDP4JJuZ5wPAOUNec238fqUXUUqnC9dulQzZszQmTNnZBiGTCaTateurSlTpuh//ud/PB0jShg/wCjvCnuP+8rPgK/EURJsNpsyMjIKbde4cWP5+/uXaCwpKSmaPn16ie4DAAAAAACUbW4XzpcvX65Ro0Zp0KBBGjhwoOrUqaNTp05p9erVGjVqlKpUqaKEhIRC+/nll1+0cOFC7dmzRxkZGQoPD9ddd92lJ598UmFhYUU6GACAb0pNTdXw4cMLbXfgwAFFRUW51KfFYsn3ZtRWq1WhoaEFbpecnKyxY8c6ntvtdtWvX9+lfQIAAAAAgIrB7cL5woULNWbMGL344otOyx944AGFhYVp3rx5hRbO9+zZo3vuuUdXr15Vjx49FBkZqVOnTmnx4sVavHix0tLSdOedd7obGgDARyUkJLj0pao7oqKidOrUKVmtVqd5ztPT029YfL92jw0AAAAAAFxVnq8SR/783N3gyJEj6tWrV77r7rvvPh09erTQPkaOHKlbb71Vx48f19q1a7V06VKtXbtWx44d06233qpRo0a5GxYAoIKJi4uTn5+f1q5d61hmtVqVlpame++914uRAQAAAACAss7tEefh4eH69NNP1aNHjzzrdu/erfDw8EL72L9/v1JTU1WjRg2n5cHBwRo/frwGDhzoblgAgHLkP//5j/bu3StJysrK0k8//aQ1a9ZIkvr16ydJioiIUEJCgpKSklSpUiXVq1dPs2fPVnBwsJ544gmvxQ4AAAAAAMo+twvnw4YN04wZM5Sdna1+/fqpTp06On36tFJTUzV37lxNmTKl0D5uueUWnTt3Lt91NptNjRs3djcsAEA5sn37dj322GOO55s3b9bmzZslSYbxx+VxixYtUvXq1TV+/HidP39enTt31tatWxUcHFzqMQMAAAAA4CpfmvrFl2LxJW4XzidOnCir1aq5c+cqJSXlj44qV9bo0aM1ceLEQvuYO3euRo4cqfr166tbt26O5Tt27NC0adO0ZMkSd8MCAJQjQ4YM0ZAhQwptZzabNW/ePM2bN6/kgwIAAAAAABWGW4VzwzBktVo1a9YsTZgwQXv27JHValVoaKg6dOigmjVrutRPUlKSbDabYmJiFBwcrLCwMJ05c0Y2m00Wi0Xjxo3TuHHjJEkmk0nffPON+0cGAICX8a09CsJ7AwAAAAB8m1uF80uXLql27dp6//33dd999xX55mvt2rWTyWQq0rYAAAAAAAAAyj8GnHhfRX4N3Cqc+/v7KyIiQleuXCnWTt98881ibY+KqSL/oAISPwMAAAAAAAClxe05zkeOHKkFCxYoLi5OAQEBJRETAAAAAADwMgZuAAAqMrcL58eOHdPBgwfVoEEDde/eXXXq1HGadsVkMmnRokUeDRIAAAAAAAAAgNLiduH8gw8+kNlsltls1t69e/Osp3AOAAAAAAAAACjL3C6cHz16tATCQFFx6RwAAAAAAAAAeJZbhfOLFy+qTp06evfdd3X//feXVEwAAAAAAAAAUCQMNIUn+LnTOCAgQNWqVVPlym4PVPcpV65c0QsvvKCuXbuqVq1aCg0NVXR0tHbu3JmnbU5OjpKSklS3bl0FBgaqZ8+e+uGHH7wQNQAAAOBdfI4GAABAReFW4VySHn30Ua1YsaIkYik1Fy5cUEpKitq1a6e33npL7733niwWi6Kjo/XRRx85tR0zZoxee+01zZ49W+vWrVN2drZiY2Nls9m8FD0AAADgHXyOBgAAQEXh9tBxi8Wi3bt3q1WrVrrnnntUp04dmUwmx3qTyaSnn37ao0F6WtWqVXX48GFZLBbHsp49e6ply5ZauHChYmJiJEknTpzQihUrtHTpUg0dOlSS1L59ezVo0ECvvvqqnn32Wa/ED+/hUh8AAFCR8TkaAAB4GrUW+Cq3C+fJycmSpIyMDH333Xd51peFwnmlSpWcPuxfW9aqVSsdOnTIsSwtLU1Xr15V//79HctCQ0MVFxenjRs38oEfAFAm8EEUgKfwORooPfz+BgDAu9yequXq1as3fFy5cqUk4ixxly9f1u7du9W8eXPHsvT0dNWuXTvPHwfNmzdXenp6aYcIAAAA+Bw+RwMAAKA8Ktt3+fSgF154QSdPnnQaLW+1WhUSEpKnrcViUWZmZoF9ZWdnKzs72/Hcbrd7NFYAAADAV/A5GgAAAOWRS4XzF154QY888ojq1q3rWPbJJ5+oTZs2qlatmmPZkSNHlJKSouXLl3s+0kLYbDZlZGQU2q5x48by9/d3WrZlyxZNnTpVU6ZMUbt27YodS0pKiqZPn17sfgAAAICSxudoAAAAIC+XCufJycnq3r27o3B+5coVdenSRXv37tXtt9/uaHf69GmtXLnSK4Xz1NRUDR8+vNB2Bw4cUFRUlOP5l19+qb/85S966KGHNGXKFKe2FotFNpstTx9Wq1WhoaEF7iM5OVljx451PLfb7apfv74rhwEAgFuY/xRAcfE5GgAAAMjLpTnODSPvH+X5LfOmhIQEGYZR6CP3h/1Dhw4pPj5enTp10ooVK/L0GRUVpVOnTslqtTotT09Pd+rnemazWTVq1HB6AAAAAL6Iz9EAAABAXm7fHLS8yMjIUFxcnBo0aKA1a9aoSpUqedrExcXJz89Pa9eudSyzWq1KS0vTvffeW5rhAgAAAD6Bz9EAAACoCCrkzUEvXLig+Ph4/fLLL1q0aJG+++47xzqz2ay2bdtKkiIiIpSQkKCkpCRVqlRJ9erV0+zZsxUcHKwnnnjCW+EDAFAuMe0M4Pv4HA0AAICKwuXCuclkcmlZWXDq1Cl98803kqQHHnjAaV3Dhg119OhRx/NFixapevXqGj9+vM6fP6/OnTtr69atCg4OLs2QAQAAAK/jczQAAAAqCpenaomOjnbMM2ixWCRJXbp0cZp/MDY2tsQC9aRGjRoVOHdj7g/70u8jZ+bNm6dTp04pKytLW7ZsueG8jAAAAEB5xedoAPBtV65c0QsvvKCuXbuqVq1aCg0NVXR0tHbu3JmnbU5OjpKSklS3bl0FBgaqZ8+e+uGHH7wQNQD4JpdGnE+dOrWk4wAAAAAAAEAxXLhwQSkpKRoyZIjGjRunSpUqafny5YqOjlZaWppiYmIcbceMGaNVq1ZpwYIFqlevnmbNmqXY2Fjt37+fq4MAQBTOAQAAAACokLi/SPlTtWpVHT582DFTgCT17NlTLVu21MKFCx2F8xMnTmjFihVaunSphg4dKklq3769GjRooFdffVXPPvusV+IHAF/i8lQtAACUBi4vBQAAAIqmUqVKTkXza8tatWql//73v45laWlpunr1qvr37+9YFhoaqri4OG3cuLHU4gUAX0bhHADgU65dXtquXTu99dZbeu+992SxWBQdHa2PPvrIqe2YMWP02muvafbs2Vq3bp2ys7MVGxsrm83mpegBAAAA33L58mXt3r1bzZs3dyxLT09X7dq18xTZmzdvrvT09NIOEQB8kktTtQAAUFq4vBQAAADwnBdeeEEnT57U008/7VhmtVoVEhKSp63FYlFmZmaBfWVnZys7O9vx3G63ezRWAPAlFM4BlGnMy1j+3Ojy0kOHDjmWFXZ5KYXz8oefdwCAL+D3EUqbzWZTRkZGoe0aN24sf39/p2VbtmzR1KlTNWXKFLVr167YsaSkpGj69OnF7gcAiqK0fwdTOAcA+Lxrl5d26dLFsexGl5euXLmytEMEAAAASkRqaqqGDx9eaLsDBw4oKirK8fzLL7/UX/7yFz300EOaMmWKU1uLxZLv9IZWq1WhoaEF7iM5OVljx451PLfb7apfv74rhwEAZQ6FcwCAz+PyUgAAAFRUCQkJSkhIcGubQ4cOKT4+Xp06ddKKFSvyrI+KitKpU6dktVqdBqKkp6c7Fd+vZzabZTab3YoFAMoqCucAgBLH5aUAAABA6cjIyFBcXJwaNGigNWvWqEqVKnnaxMXFyc/PT2vXrnUU5a1Wq9LS0jR58uTSDhkAfBKFcwBAiePyUgAAAKDkXbhwQfHx8frll1+0aNEifffdd451ZrNZbdu2lSRFREQoISFBSUlJqlSpkurVq6fZs2crODhYTzzxhLfCBwCfQuG8FBjG7xPXMx0AgLIoKChIJpOpWH348uWl5GgAZZkncrQvI0cDKOtKO0+fOnVK33zzjSTpgQcecFrXsGFDHT161PF80aJFql69usaPH6/z58+rc+fO2rp1q4KDg13eH3kaQFlWWI42GdeyHErMiRMnGM0IoMyy2WyqUaNGqe4zIyNDnTt3Vs2aNbV9+3ZVr149T5sTJ06oUaNGWrZsmdPlpQ0aNNDkyZP17LPPurQvcjSAsswbObo0kaMBlHXkaQDwXYXlaArnpeDq1av673//W6xvmq9NJXD8+PFy/Uu3tHA+PYvz6Vm+dj5Le5TMhQsX1LFjRx0+fFh///vfFRYW5liX+/JSSUpMTNTq1au1YMECx+Wlhw4d0v79+10eKUOO9j2cT8/ifHqWr53P8j7i3BM5WvK9162s43x6FufTs3ztfJKnb8zXXi9fwXnJi3OSF+ckL3fPSWG5i6laSoGfn58iIiI80leNGjX4YfAgzqdncT49q6Kez9K+vJQc7bs4n57F+fQszmfp8GSOlnjdPI3z6VmcT8/ifJYOT+VpXq/8cV7y4pzkxTnJy1PnhMI5AMCnNGrUSK5eDGU2mzVv3jzNmzevhKMCAAAAAAAViZ+3AwAAAAAAAAAAwJdQOC8jzGazpk6dKrPZ7O1QygXOp2dxPj2L81n28Jp5FufTszifnsX5LJt43TyL8+lZnE/P4nyWLbxe+eO85MU5yYtzkpenzwk3BwUAAAAAAAAAIBdGnAMAAAAAAAAAkAuFcwAAAAAAAAAAcqFwDgAAAAAAAABALhTOfVx6erp69uypwMBA1a1bV88++6xycnK8HVaZcOjQISUmJqpNmzaqXLmyWrZsmW+7lStXKjIyUgEBAWrdurU2bNhQypH6vtTUVPXu3VsREREKDAxUmzZt9Prrr+v6WyRwLl2zceNGdevWTWFhYTKbzWrcuLHGjh0rm83m1O6DDz5Q69atFRAQoMjISL3xxhteihgFIUcXHTnas8jTnkWeLj/I00VHnvYccrRnkaPLj4qeo8mzzsiV+SPn3divv/6qiIgImUwmff75507rPPFeoXDuw6xWq2JiYpSTk6N169Zp9uzZWr58ucaOHevt0MqE/fv368MPP9Qtt9yiFi1a5Ntm1apVGj58uAYOHKhNmzapY8eO6tu3r3bv3l3K0fq2BQsWqFq1apo/f74++OADxcfHa/jw4ZoxY4ajDefSdZmZmbrzzju1bNky/fvf/9bYsWP19ttvq3///o42u3btUt++fdWxY0dt2rRJAwcO1LBhw7RmzRovRo7cyNHFQ472LPK0Z5GnywfydPGQpz2HHO1Z5OjygRxNnr0euTJ/5Lwbe+6553T58uU8yz32XjHgs2bPnm0EBgYaZ8+edSx79dVXjUqVKhknT570YmRlw5UrVxz/f/TRR41bb701T5vIyEhj0KBBTss6duxoxMfHl3h8ZcmZM2fyLBs+fLhRo0YNx3nmXBbP8uXLDUmOn+24uDijU6dOTm0GDRpkNG/e3BvhIR/k6OIhR3sWebrkkafLHvJ08ZCnPYccXfLI0WUPOZo8ez1ypevIeb87cOCAERgYaCxbtsyQZOzdu9exzlPvFUac+7BNmzapR48eCg0NdSwbMGCArl69qrS0NC9GVjb4+d347X348GEdPHhQAwYMcFr+4IMPatu2bcrOzi7J8MqUWrVq5VnWtm1b2e12/fbbb5xLD6hZs6YkKScnR9nZ2dq+fbvTN8jS7+fzwIEDOnr0qBcixPXI0cVDjvYs8nTJI0+XPeTp4iFPew45uuSRo8secjR59nrkSteR8343evRoJSYmqlmzZk7LPfleoXDuw9LT0xUVFeW0LCQkROHh4UpPT/dSVOXHtXN4/Tlu3ry5cnJydOTIEW+EVWbs2rVL9erVU1BQEOeyiK5cuaKLFy/qyy+/1IwZM/TAAw+oUaNG+umnn3Tp0qV8z6ckfv59BDm6ZJFXio88XXzk6bKNPF2yyCvFQ44uPnJ02UaOLhy5gVyZGznP2Zo1a7Rv3z5NmTIlzzpPvlconPswq9WqkJCQPMstFosyMzNLP6Byxmq1SlKec2yxWCSJc3wDu3bt0qpVq/S3v/1NEueyqBo2bKiqVauqXbt2Cg8P13vvvSeJ81lWkKNLFj8HxUOe9gzydNlGni5Z/BwUHTnaM8jRZRs5unAV/b1MrnRGzvtDVlaWxo4dq9mzZ6tGjRp51nvynFA4B+CWEydOaODAgYqOjtaYMWO8HU6ZtnHjRn3yySd67bXXdODAAd1///26cuWKt8MCUMaRpz2HPA3A08jRnkOOBsovcmVe5Lw/zJw5U3Xq1NFjjz1W4vuqXOJ7QJFZLBbZbLY8y61Wq9M8YCiaa9802Ww21a1b17H82jdTnOO8zp07p/j4eNWsWVNr1651zMnGuSyaVq1aSZI6duyo9u3bq02bNlq/fr3jjurX//xzPn0LObpkkVeKhjztWeTpso08XbLIK+4jR3sWObpsI0cXrqLmBnJl/sh5v/vPf/6j+fPna/369Y5j/vXXXx3//vrrrx59rzDi3IdFRUXlmYvIZrMpIyMjzzw9cN+1c3j9OU5PT5e/v78aN27sjbB81oULF9SrVy/ZbDZt2rRJwcHBjnWcy+Jr1aqVqlSpokOHDqlJkyaqUqVKvudTyjtPF7yDHF2yyCvuI0+XLPJ02UOeLlnkFfeQo0sWObrsIUcXriLmBnKlaypyzjty5IhycnJ03333yWKxyGKx6P7775ckRUdHq0ePHh59r1A492Hx8fHaunWrzp0751iWmpoqPz8/xcXFeS+wcqJx48aKjIxUamqq0/LVq1crNjZW/v7+XorM91y+fFkDBgzQgQMHtHnzZtWrV89pPeey+Pbs2aNLly6pcePGMpvNio6O1po1a5zarF69Ws2bN1ejRo28EySckKNLFnnFPeTpkkeeLnvI0yWLvOI6cnTJI0eXPeTowlW03ECudF1Fznlt2rTR9u3bnR4LFy6UJC1btkxLly716HuFqVp8WGJiohYvXqw+ffpowoQJOnnypJKSkpSYmKibbrrJ2+H5vKysLG3cuFHS75dy2O12RyLp1q2bwsLCNG3aNA0ePFhNmjRRdHS0Vq9erT179ujjjz/2Zug+Z8SIEdqwYYPmz58vu92u3bt3O9a1bdtWZrOZc+mGP//5z7rjjjvUqlUrVa1aVd98843mzp2rVq1aqU+fPpKkyZMnq3v37hoxYoQGDBig7du367333tPq1au9GzwcyNHFQ472LPK0Z5GnywfydPGQpz2HHO1Z5OjygRxNnr0euTJ/5DxnISEh6t69e77r2rVrp9tvv12SPPdeMeDTvv/+eyM2NtaoWrWqUbt2beNvf/ubkZ2d7e2wyoQjR44YkvJ9bN++3dFuxYoVxi233GL4+/sbt912m/HBBx94L2gf1bBhwwLP5ZEjRxztOJeuSUlJMdq0aWMEBQUZgYGBxq233mpMnjzZsNlsTu3ef/9947bbbjP8/f2NW265xVi5cqWXIkZByNFFR472LPK0Z5Gnyw/ydNGRpz2HHO1Z5Ojyo6LnaPKsM3Jl/sh5hdu+fbshydi7d6/Tck+8V0yGYRjuldoBAAAAAAAAACi/mOMcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzkuBYRiy2+0yDMPboQAArkOOBgDfRY4GAN9GngZQnlE4LwXnz59XcHCwzp8/7+1QAADXIUcDgO8iRwOAbyNPAyjPKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgl8reDgAAUIDlpj/+/7jhvTgAwNPIb0DpyP2zJvHzBgAAyo9rn3NK8PMNI84BAD4nNTVVvXv3VkREhAIDA9WmTRu9/vrrMgznX4grV65UZGSkAgIC1Lp1a23YsMFLEQMAAAAAgPKEwjkAwOcsWLBA1apV0/z58/XBBx8oPj5ew4cP14wZMxxtVq1apeHDh2vgwIHatGmTOnbsqL59+2r37t1ejBwAABTLctMfDwAAAC9iqhYAgM/54IMPVKtWLcfzmJgYnT17VgsWLNDkyZPl5+enqVOn6sEHH9Rzzz0nSYqOjta3336rGTNmaOPGjd4KHQAAAAAAlAOMOAcA+JzcRfNr2rZtK7vdrt9++02HDx/WwYMHNWDAAKc2Dz74oLZt26bs7OzSChUAAAAAkB+uIkIZ5/aI82PHjhW4zs/PT8HBwQoKCipWUAAAXG/Xrl2qV6+egoKCtHPnTklSVFSUU5vmzZsrJydHR44cybMOAABUANx8GAAAeIjbhfNGjRrJZLrxN0WNGjXSU089pdGjRxc5MAAArtm1a5dWrVql+fPnS5KsVqskKSQkxKmdxWKRJGVmZhbYV3Z2ttOIdLvd7uFoAQAAAABAWed24fzdd99VcnKyIiMj1bt3b9WuXVunT5/W+vXr9eOPP2r8+PH69NNP9fTTT0sSxXMAQLGcOHFCAwcOVHR0tMaMGVPs/lJSUjR9+nQPRAYAAFAOXD+FAiP1AQCQVITC+c6dO3XPPffo1VdfdVo+atQoPf744/riiy/0zjvvqEaNGlq6dCmFcwBAkZ07d07x8fGqWbOm1q5dKz+/32/NcW1kuc1mU926dR3tr41EDw0NLbDP5ORkjR071vHcbrerfv36JRE+AAAAAAAoo9y+OeiqVavUr1+/fNf1799f69atkyT16tVLR44cKV50AIAK68KFC+rVq5dsNps2bdqk4OBgx7pr85enp6c7bZOeni5/f381bty4wH7NZrNq1Kjh9AAAAACAMombbwIlxu3CuZ+fn7755pt813399deO0YCVKlVS1apVixcdAKBCunz5sgYMGKADBw5o8+bNqlevntP6xo0bKzIyUqmpqU7LV69erdjYWPn7+5dmuAAAlF/XCjIUZQAAQAXj9lQtgwcP1uTJk5WTk6P7779fYWFhOnPmjN5//33NnDlTTzzxhCTpiy++UIsWLTweMACg/BsxYoQ2bNig+fPny263a/fu3Y51bdu2ldls1rRp0zR48GA1adJE0dHRWr16tfbs2aOPP/7Yi5EDAAAAAIDywO3C+fz581W5cmXNnDlTkydPdiw3m80aOXKknn/+eUlS586ddffdd3suUgBAhZGWliZJeuaZZ/KsO3LkiBo1aqRBgwYpKytLc+bM0Zw5c9SsWTOtX79eHTt2LO1wAQAAAHhK7itcuFktAC9ye6qWKlWqaMGCBTp58qQ++ugjvffee9q+fbtOnDjhKKpLUteuXXX77bd7PGAAQPl39OhRGYaR76NRo0aOdsOGDdOPP/6o7Oxsffvtt+rVq5f3ggaACiQ1NVW9e/dWRESEAgMD1aZNG73++usyDOcCx8qVKxUZGamAgAC1bt1aGzZs8FLEAFBxkKMBwDPcLpxfY7FY1K1bNw0cOFBdu3ZVaGioJ+MCAAAA4KMWLFigatWqaf78+frggw8UHx+v4cOHa8aMGY42q1at0vDhwzVw4EBt2rRJHTt2VN++fZ2m3wIAeB45GhUC9+BAKXB7qhZJ+uWXXzRv3jzt3btXJ06c0Lp163Trrbdq0aJFuvPOO3XXXXd5Ok4AAAAAPuKDDz5QrVq1HM9jYmJ09uxZLViwQJMnT5afn5+mTp2qBx98UM8995wkKTo6Wt9++61mzJihjRs3eit0ACj3yNEA4Blujzj/8ssv1bRpU61atUoRERE6dOiQsrOzJUknT57UwoULPR5khZX72zO+QQMA+AJ+L5W88nCOy+IxlMWYvSh3Qeaatm3bym6367ffftPhw4d18OBBDRgwwKnNgw8+qG3btjn+fgAAeB45GgA8w+3C+dNPP62OHTvqxx9/1MqVK53myLrzzju5rAcAAACogHbt2qV69eopKChI6enpkqSoqCinNs2bN1dOTo6OHDnijRABoMIiRwOA+9yeqmXv3r1at26dqlSpoitXrjitCwsL0+nTpz0WHAAAgMflHlH8uFFwOwAu27Vrl1atWqX58+dLkqxWqyQpJCTEqZ3FYpEkZWZm5ttPdna200hHu91eAtECQMXiqRwtkacBVCxujzgPDAwsMDEeO3ZMNWvWLHZQpYG7TAMAAADFd+LECQ0cOFDR0dEaM2ZMsfpKSUlRcHCw41G/fn0PRemjmCIIQAnzZI6WKmCeBlChuV04v/vuuzVz5kydPXvWscxkMunChQtatGiR7r33Xo8GWFK4yzQAoNzjXhm+gdcA5di5c+cUHx+vmjVrau3atfLz+/3Pi2ujFm02m1P7a6McQ0ND8+0vOTlZNpvN8Th+/HgJRg8A5Zunc7REngZQsbg9Vcvzzz+vzp07q2nTpoqOjpbJZNKkSZP0/fffy2QyaebMmSURp8dxl2kAAACg6C5cuKBevXrJZrPp008/VXBwsGPdtXlz09PT1axZM8fy9PR0+fv7q3Hjxvn2aTabZTabSzZwAKgASiJHSx7O09cGFTB1HgAf5faI83r16unrr7/W6NGjlZGRoSZNmujs2bMaPHiwPv/8c9WuXbsk4vQ47jINAAAAFM3ly5c1YMAAHThwQJs3b1a9evWc1jdu3FiRkZFKTU11Wr569WrFxsbK39+/NMMFgAqFHA0AnuH2iHPp9xtITJ8+XdOnT/d0PF6V+y7TO3fulHTju0xfvw7A/+/66QgYQQAAKG8q+E1mR4wYoQ0bNmj+/Pmy2+1OUxm2bdtWZrNZ06ZN0+DBg9WkSRNFR0dr9erV2rNnjz7++GMvRg4A5R85GgA8o0iF8/KIu0wDAAAArklLS5MkPfPMM3nWHTlyRI0aNdKgQYOUlZWlOXPmaM6cOWrWrJnWr1+vjh07lna4AFC4cvSFKDka5Rb3DEIpc6lwfvPNN8tkcv3Nefjw4ULbnD17Vp999pkyMjJ04cIF1axZU82aNVObNm3c2pcnlMRdpsvbaHwAAIAypRwVQHzR0aNHXWo3bNgwDRs2rGSDAQA4IUcDgGe4VDjv3bu3UzF7zZo1stvt6tGjh+rUqaNTp05p69atCg4OVr9+/Qrsx2az6a233tJbb72lr7/+Wobh/EeMyWRS9erV1bdvXw0fPlydO3cu4mG5zpW7TNetW9fR3tW7TI8dO9bx3G63q379+iURPgAAAAAAAHIr7zceLe/HB/gIlwrnL774ouP/c+fOVf369bV582bVqFHDsdxmsyk+Pl516tTJt4/Zs2dr3rx5slgs6t+/v6ZOnarWrVurVq1aMpvNOnfunI4eParPP/9cmzZtUmxsrP70pz/ppZdeUosWLYp3lAUoE3eZvh6jp8oe5vsGAAAAAAAAyhS35zh/6aWXtHTpUqeiuSQFBwdr/PjxGjFihMaNG5dnux07dmjdunXq3r17vv3WqlVLtWrV0h133KHExERZrVYtWbJEO3bsKJHCee67TO/cufOGd5nu3bu3Y3m5u8s0hXgAAAAAAAC4iloSvMEL7zu3C+eZmZmy2Wz5rrPZbI6pTK537eYUrrJYLJo8ebK74bmMu0wDAAAAqFC4EhIVBe91AIAHuF04j42N1bhx41S/fn1169bNsXzHjh0aP368YmNjPRpgSeEu0wCAYivtb7z5IxC+ilFHAAAAAMoZtwvnr776qh544AHFxMQoODhYYWFhOnPmjGw2m9q2batly5YV2seMGTMKXOfn56fg4GC1adNGXbp0cTc8l3GXaQAAAAAAAAAMBEF+3C6ch4eHa+/evdq8ebM+++wzZWRkKDw8XB06dNA999zjUh8LFy5UTk6OLly4IEkKCAjQxYsXJUlVq1bVpUuXdOXKFd1+++3auHGjwsLC3A0TAEoWv1QBAAAAAADKLbcL59fcc889LhfKr/fRRx9p4MCBmjp1qnr37q3q1avr119/1fr16zVjxgy9/fbbysrK0l//+lclJSXpzTffLGqYAAAAAAAAAFB8DKKrUIpcOC+OkSNH6plnntHgwYMdy6pXr66HH35Yv/32m5566int2bNHkyZNuuG0LigHmK8XAAAUhs8LAOA6ciYAAB7hlcL5V199pSlTpuS7rlGjRtq3b58kqWXLlrLZbKUZGsoDvv0DAAAAAACeQI0BnsT7qUzx88ZOGzZsqBUrVuS7bvny5WrYsKEk6ezZs6pVq1ZphgYAACqa5aY/HgAAAAAAyEsjzlNSUjRgwAA1a9ZMvXr1UlhYmM6cOaMNGzbo8OHDSk1NlSRt27ZNXbt29UaIKCmeKErw7RwAAABQNvFZHq7w9PuE6WsAAEXglcJ537599dlnnyklJUXr169XRkaGwsPD1b59e61evVpt2rSRJL388sveCA8AAAAAAAAA4I5y9gW5W4Xzn3/+WWlpaUpPT1dmZqYkKTQ0VFFRUYqLi1PdunVd7qtt27b6xz/+4V60AACUZWXhQ0RZiBEAAAAAgBLmUuH80qVLeuaZZ7Rs2TJduXJF4eHhslgskiSr1aqMjAxVqlRJ//M//6P58+ercmXX6/HHjx/X8ePH1bp1awUGBhbtKAAAAAAAAABXeWLASGkNOmFwC3K79n7gvVDiXLo56KRJk/TOO+/o5ZdfVmZmpk6cOKF9+/Zp3759OnHihKxWq5YuXap33nlHkyZNcmnHy5cvV7169dSwYUN16dJFP/zwg6Tfp3FZtGhR0Y8IAAAAAAAAAIBicKlw/vbbb2vhwoUaPny4goOD86yvUaOGEhISNH/+fL311luF9vfiiy9q9OjReuSRR5SWlibD+OMbku7duztuDgoAAAAAAAAAQGlzaU6V8+fPKyIiotB2EREROn/+fKHtFi9erMmTJ2vSpEm6cuWK07pmzZo5Rp8DPolLpAB4SlnIJ8WNsSwcIyom3psAAAAoDbk/d6JMcalw3rFjR82ePVvt27fPd8S5JNntds2ePVudOnUqtL+TJ08W2K5KlSr69ddfXQkLAAAAAAC4gwIOAAAucalwvmTJEsXExKh+/frq0aOHoqKiFBISIkmy2WxKT0/X1q1bFRQUpG3bthXaX8OGDfXZZ58pJiYmz7o9e/YoMjLSvaMAAAAAAAAAAMBDXCqcN2vWTPv379crr7yizZs3a+XKlbJarZIki8WiqKgoJScnKzEx0VFQv5Hhw4dr2rRpCgsL05///GdJ0qVLl/Thhx9q7ty5mjVrVtGPCED54O1L6L29f08oD8cAuOv6UXQVYXoZTxyzO/soC+cEAAAAAIrJpcK5JIWEhCg5OVnJycnF3unf/vY3HTt2TI8//rieeOIJSVLnzp0lSSNGjNCIESOKvQ8AQMWQnp6u0aNH65NPPlFQUJAeeeQRzZw5U/7+/t4ODQBQ0fGlE1AySuNni5/f8oPX0ndcey1KcqAHrzE8yOXCuae99NJLeuqpp7RlyxadPXtWoaGhio2NVdOmTb0VEiR+oXhDaYwULI94r0KS1WpVTEyMmjZtqnXr1unkyZMaO3assrKytGTJktIPiPclfAXvRe/jNQAAAADKNJcL51u2bNE//vEPGYahxx9/XB06dNDOnTuVnJysn376SY0aNdKYMWM0aNAgl3feuHFjx4hzAADctWzZMtntdq1fv16hoaGSpMuXL2vEiBGaMGGCbrrpJi9HCAAAvIpBKgAAoIhcKpyvW7dO/fv3V8OGDRUUFKT33ntPq1at0qBBg9S5c2c98sgj+vzzz/XXv/5VkvItnn/88cduBda1a1e32qMAjHYCUI5t2rRJPXr0cBTNJWnAgAFKTExUWlqahgwZ4r3gUH54+3fp9UWf4vbB5wEAAADf54nPgICnVNC/J1wqnM+ZM0cPP/yw3njjDZlMJi1evFgPPfSQhgwZopdfftnRbvjw4VqwYEG+hfPu3bvLZDLJMH4/uSbTHyfcMAyn55J05cqVIh0QAKDiSE9P19ChQ52WhYSEKDw8XOnp6V6KCgAAAAAAlHUuFc7T09OVkpLiKG4/8sgjevLJJ9W/f3+ndgMGDFBqamq+fXz11VeO/58+fVrDhg1TdHS0+vXrpzp16ujUqVNKTU3Vjh07tHLlyqIeDyroN0BlCt8a+8Yls/yslAtWq1UhISF5llssFmVmZua7TXZ2trKzsx3P7XZ7SYUHAIAzPn8UX1k4h2UhxvKGv7GAksfPGSoglwrn1atX17lz5xzPrVarJOn8+fNO7c6fP6+qVavm20fr1q0d/+/Xr58efPBBvfDCC05t7r//fiUlJemVV15Rz549XToAwOfwQRnewnvPJSkpKZo+fbpnOrv+PF///PrXxN32hW1f2IfX/N4H7u6jJGPOr/2NnrvClWN29xiLewzFPWdF+Xku6WMo7v4K66+wL1hdee978+exKK87AAAAAJ/i50qjbt26acqUKdq5c6e++eYbjRo1Snfeeadmz57tKKKfPXtWc+bMUbt27Qrt79///neBhfG4uDht2bLFjUMAAFRUFotFNpstz3Kr1eo073luycnJstlsjsfx48dLOkwAAICiW2764wEAAEqNSyPOn3/+ed19993q1q2bTCaTbr31Vm3btk1/+ctfVK9ePdWrV08nTpxQQECAli9fXmh/1atX17Zt2/Itnm/ZskXVq1d3/0hKSHp6ukaPHq1PPvlEQUFBeuSRRzRz5kz5+/t7O7TSUdhoKEZLlU+8rigjoqKi8sxlbrPZlJGRoaioqHy3MZvNMpvNpREe8lMRckpFOEYAAAAUDX9v3xjnp2SUpfN6LVYfiNOlwnmDBg30zTff6KuvvtKlS5fUsWNHVapUSWlpaVqxYoUOHDighg0b6qGHHlJERESh/Y0cOVJTpkzRqVOn1KdPH9WuXVunT5/W+vXr9c4773juEvpislqtiomJUdOmTbVu3TqdPHlSY8eOVVZWlpYsWeLt8ACgwouPj9fs2bN17tw5x1znqamp8vPzU1xcnHeDAwAAAAAAZZZLhXNJ8vf315133um0LCAgQKNGjXJ7p5MmTVJISIjmzJmjt956SyaTSYZhKDw8XC+++KJGjx7tdp8lYdmyZbLb7Vq/fr3jkv/Lly9rxIgRmjBhgm666SYvRwgAFVtiYqIWL16sPn36aMKECTp58qSSkpKUmJhYNnO0D3yjXmylfQzl4Zx5Q1k/b+7Oee4Lyvo5L4u8MbKqLI3myo8v3MAdAFC6yvrvrvyU1jGVx3Pna7z8Od+lOc5LwqhRo3Ts2DEdPXpUn3zyiY4eParjx4/7TNFckjZt2qQePXo4zZM7YMAAXb16VWlpaV6MDAAg/T7H+bZt21S5cmX16dNH48ePV0JCghYsWODt0AAAAAAAQBnm8ojzkuDn56cGDRqoQYMG3gyjQOnp6Ro6dKjTspCQEIWHh+eZUxclxBdGvfANIuDTmjdvrq1bt3o7DACAr/OFz5UAioa/yeApZeEqNU8p6s+ND80v7REFvebl5fhQokqtcP7KK69o6NChbt2Qbd++fTpz5oxiYmJKMLKCWa1Wx5y5uVksFmVmZha4XXZ2trKzsx3P7XZ7SYQHAAC8oSJ8yC5rx+gL8fpCDAAAuCE9PV2jR4/WJ598oqCgID3yyCOaOXOm/P39vR0aAPiEUiucv/nmm5o+fboGDRqk/v37q3379qpSpUqedv/973+1adMm/e///q/27NmjN998s7RC9JiUlBTP3OA0vz/AbjSn5+NG3vXFbe/u9tevL6z99VwZCeTpmNyNubjntDD5nYPCYrxRH544Zk9un1/M+a0v7ut8PXe39+T7rCg88fNFEQcAAABAPqxWq2JiYtS0aVOtW7dOJ0+e1NixY5WVlaUlS5Z4OzwA8AluFc4vXryopUuXKi4uTi1btnRrR3v27NH69eu1aNEivfTSS6pSpYoiIyMVFhYms9msc+fO6ciRIzp9+rRCQ0P16KOP6t1331XdunXd2o8nWSwW2Wy2PMutVqvTvOfXS05O1tixYx3P7Xa76tevXyIxuo1CWuHKwjkqCzHixsrije3g+8pDbigPxwAARcV0FGVDRXydKuIxl3PLli2T3W7X+vXrHfWNy5cva8SIEZowYYJuuukmL0dYgPI2jQh+x9/DvytLubaC/Cy6dXPQgIAATZo0SWfPni3Szvr27asdO3bop59+0pIlS9SpUydVr15dV65cUcOGDfXEE09o8+bN+u9//6t58+Z5tWguSVFRUXnmMrfZbMrIyFBUVFSB25nNZtWoUcPpAQAAAFQ06enp6tmzpwIDA1W3bl09++yzysnJ8XZYAFDhbdq0ST169HAaFDhgwABdvXpVaWlpXowMAHyH21O1tGnTRt9//726detW5J02atRICQkJSkhIKHIfpSE+Pl6zZ8/WuXPnHHOdp6amys/PT3Fxcd4NDr6jnH+7BqCcKWs5qyxcnVHWzilQSpgGAB5RlkbfAWVIenq6hg4d6rQsJCRE4eHheQYQAihBvjxy2xf/9iplbhfOFy1apMGDByssLEz33nuvqlWrVhJx+YTExEQtXrxYffr00YQJE3Ty5EklJSUpMTHRdy9bAgAAAHxAmZ0GAAAqAKvV6hggmJvFYlFmZmaB22VnZys7O9vx3G63l0R4AOAT3C6cx8TEKCcnRwMHDpQkVatWTSbTH99AmEymfOcFL4ssFou2bdum0aNHq0+fPgoKClJCQoJmzZrl7dAA3+KL34yWNZxDFIUn3jfF7YP3Lsor3tvFVtA0AImJiUpLS9OQIUO8FxwAoEhSUlI0ffp0z3SW+3dtQVeXXL+8oHXX95u7nau/03OP/L3R1S65290o1vz6c2ebG8Vd0PG5GveN2uXXX2HxFKfv/NoV1HdRzsmNePJ1cfW4r+fqa+lKrNf368n36o3idvd9d/375Pp+XX0tS+HzutuF82eeecapUF7eNW/eXFu3bvV2GAAAAECZwjQAwP/P29PNlMSl9gUVXa49h8+zWCz5Dnq0Wq1OX3heLzk5WWPHjnU8t9vtql+/fonECADe5nbhfNq0aSUQBlAMfDCDJ5T0+4j3KQCgginKNABMAQAApSMqKirPl5g2m00ZGRmKiooqcDuz2Syz2VzS4QGAT3C7cH6NYRg6ePCgMjMzFRoaqsjISJdGohuGIavVqsDAQJJtWURxEfAd/LwA8BTyCXxEiU0BkN9zd0fh5jeq9kZTCLgSgzsxurL/wuK53vXnIL/2JR1Tcc+hu9t74nX3ZAyeOGfuvu5F4e7rcr3iHnNx93+jeFzdZzkTHx+v2bNn69y5c44vOVNTU+Xn56e4uDjvBucLSuv1L+fvM3hQUd4rvL+Kza8oGy1dulTh4eFq0aKFOnfurBYtWuimm27SK6+8Uui2ly5dUu3atZn+BAAAACjHijINQHJysmw2m+Nx/Pjxkg4TACqkxMREBQUFqU+fPkpLS9Mbb7yhpKQkJSYmcvNmAPj/uT3ifPny5Ro1apQGDRqkgQMHqk6dOjp16pRWr16tUaNGqUqVKkpISChwe39/f0VEROjKlSvFChyAB/EtJAAA8LCiTAPAFAAAUDosFou2bdum0aNHq0+fPgoKClJCQoJmzZrl7dBQUopy80x4D6+RT3C7cL5w4UKNGTNGL774otPyBx54QGFhYZo3b94NC+eSNHLkSC1YsEBxcXEKCAhwNwQAAAAAPo5pAFBhUNwoe3jNJEnNmzdnNgAAuAG3C+dHjhxRr1698l133333admyZYX2cezYMR08eFANGjRQ9+7dVadOHaf50U0mkxYtWuRuaED++FAEifcB4Kvc/dnkZxkoMxITE7V48WL16dNHEyZM0MmTJ5kGAAAAAGWG24Xz8PBwffrpp+rRo0eedbt371Z4eHihfWzYsMFxGebevXvzrKdwDgAAAJRtTAOAUlEWv1AtizEDgKtczXHkQu/x9Lm/UX9l/HV2u3A+bNgwzZgxQ9nZ2erXr5/q1Kmj06dPKzU1VXPnztWUKVMK7ePIkSNFChaAi8p4YgIAAOUD0wAAAACgrHK7cD5x4kRZrVbNnTtXKSkpf3RUubJGjx6tiRMnejRAAAAAAPC46wcaLDfl386XFXewBIMtUFp4r6Gk8R7zLs4/yimXCud2u11BQUEymUwymUyaP3++JkyYoD179shqtSo0NFQdOnRQzZo1Xd7xyZMn9eKLL2rXrl3KzMxUaGiounTpoieffFL16tUr8gEBAAAAAFBmUHACAMAnuVQ4t1gs+vTTT9WhQwfFxMRo6dKlioqK0r333luknX733Xfq2rWrLl26pJ49e6pNmzY6deqUli1bppUrV+rjjz/WrbfeWqS+AQDwGfwh7Bt87XXwtXgAAABQfHzGgzfkft+VxavnfJxLhfOAgABdvHhRkrRjxw7Z7fZi7fRvf/ubmjRporS0NFksFsdyq9WquLg4/e1vf9OmTZuKtQ8AAAAAQAmjUAQAAMoplwrnrVq1UlJSkuLj4yVJK1as0ObNm/NtazKZNHny5Bv2t2vXLv397393KppLv49snzhxoh5++GFXwgIA38EfjSgJvK8qBl7nvDgnAAAAALzMpcL50qVLNWbMGL388ssymUxatWqVKlWqlG9bVwrnlStXVnZ2dr7rsrOzC+wbAAAAAFCG8EUYXMH7BAC8xxs5uIxMMeNS4bxt27bauXOnJMnPz09bt25Vhw4dirzTHj16aOLEiWrTpo0iIyMdy3/88UdNnjxZPXv2LHLfQKH4UOZ7eE0AAAAAAADgQ1wqnOe2fft2tWjRolg7XbBggbp166YWLVqoZcuWqlOnjk6fPq19+/apQYMGWrBgQbH6BwAAADyKL3kBAEBFw+cfVHBuF867detW7J02aNBA+/bt0+uvv65du3bJarUqMjJSQ4cO1WOPPabq1asXex8AAAAA4LLriwM+fNlwuVLaRZnCXuf84vH1wpGvxwcAQBnlduHcU6pXr64xY8ZozJgx3goBAAAAAAAAAIA8vFY4B4ByjZE/AACguPg8AQC+h9yM/PC+KJdKrXBeo0YNbd++Xe3atVNQUJBMpoIvfTSZTLLZbKUVGgAAAFC6+OMKAAAA8GluFc4vXryopUuXKi4uTi1btnRrR88884zCw8Md/79R4RwAAAAAAAAoNXypDeA6bhXOAwICNGnSJLVr187tHU2dOlWSZBiGxowZo8DAQJnNZrf7AVBBFfYhpqQ/5PAhCgAAXM/bN7ZE8fniOfXFmAAAqID83N2gTZs2+v7774u8w0uXLql27draunVrkfsoritXruiFF15Q165dVatWLYWGhio6Olo7d+7M0zYnJ0dJSUmqW7euAgMD1bNnT/3www9eiBoAAAAAAAAAypHHjT8ePsbtwvmiRYu0cOFCrVmzRllZWW7v0N/fXxEREbpy5Yrb23rKhQsXlJKSonbt2umtt97Se++9J4vFoujoaH300UdObceMGaPXXntNs2fP1rp165Sdna3Y2FjmYHeVD7/5AQAAAHgYn/8BAEA54fbNQWNiYpSTk6OBAwdKkqpVq+Y0X7krN/YcOXKkFixYoLi4OAUEBLgbQrFVrVpVhw8flsVicSzr2bOnWrZsqYULFyomJkaSdOLECa1YsUJLly7V0KFDJUnt27dXgwYN9Oqrr+rZZ58t9dgBAAAAAAAAACXL7cK5J27seezYMR08eFANGjRQ9+7dVadOnTzF90WLFhVrHzdSqVIlp6L5tWWtWrXSoUOHHMvS0tJ09epV9e/f37EsNDRUcXFx2rhxI4VzlF3MxwkfduXKFc2fP18bNmzQ999/r6tXr6p169aaMWOGunTp4tQ2JydHEydO1DvvvKPz58+rU6dOWrJkiZo1a+al6AEAAAAAQHngduF82rRpxd7phg0bZDabZTabtXfv3jzrS7pwnp/Lly9r9+7dTkWZ9PR01a5dO0+RvXnz5lq5cmWpxgcAFcW16bSGDBmicePGqVKlSlq+fLmio6OVlpbmuCpI+n06rVWrVmnBggWqV6+eZs2apdjYWO3fv1/BwcFePAoAAAAAAFCWuV04v8YwDB08eFCZmZkKDQ1VZGSkyyPRjxw5UtTdlpgXXnhBJ0+e1NNPP+1YZrVaFRISkqetxWJRZmZmgX1lZ2crOzvb8dxut3s0VieM5K0YeJ1RgTCdFgAAAAAA8LYiFc6XLl2qGTNm6MyZMzIMQyaTSbVr19aUKVP0P//zP56O0SU2m00ZGRmFtmvcuLH8/f2dlm3ZskVTp07VlClT1K5du2LHkpKSounTpxe7HwCoiJhOCwDgsxjMAAAAUGG4XThfvny5Ro0apUGDBmngwIGqU6eOTp06pdWrV2vUqFGqUqWKEhISCu3nl19+0cKFC7Vnzx5lZGQoPDxcd911l5588kmFhYW5fSCpqakaPnx4oe0OHDigqKgox/Mvv/xSf/nLX/TQQw9pypQpTm0tFku+Nzq1Wq0KDQ0tcB/JyckaO3as47ndblf9+vVdOQwAQD6YTgsAAAAAAJQmtwvnCxcu1JgxY/Tiiy86LX/ggQcUFhamefPmFVo437Nnj+655x5dvXpVPXr0UGRkpE6dOqXFixdr8eLFSktL05133ulWXAkJCS4V7HM7dOiQ4uPj1alTJ61YsSLP+qioKJ06dUpWq9WpMJOenu5UfL/etfnbUUYwcghlRQV+r5bZ6bQAAAAAlIwK/PcRgNLhduH8yJEj6tWrV77r7rvvPi1btqzQPkaOHKlbb71VGzduVI0aNRzLbTab4uPjNWrUqHxvGupJGRkZiouLU4MGDbRmzRpVqVIlT5u4uDj5+flp7dq1jqK81WpVWlqaJk+eXKLxAUB5wnRaQAXHH7YAAAAAyhi3C+fh4eH69NNP1aNHjzzrdu/erfDw8EL72L9/v1JTU52K5pIUHBys8ePHa+DAge6G5ZYLFy4oPj5ev/zyixYtWqTvvvvOsc5sNqtt27aSpIiICCUkJCgpKUmVKlVSvXr1NHv2bAUHB+uJJ54o0RgBn0LBA8XEdFoAAAAAgDKJmkiF5XbhfNiwYZoxY4ays7PVr18/1alTR6dPn1Zqaqrmzp2bp7CRn1tuuUXnzp3Ld53NZlPjxo3dDcstp06d0jfffCPp9ylmcmvYsKGOHj3qeL5o0SJVr15d48eP1/nz59W5c2dt3bpVwcHBJRojAJQnTKcFAAAAAADKErcL5xMnTpTVatXcuXOVkpLyR0eVK2v06NGaOHFioX3MnTtXI0eOVP369dWtWzfH8h07dmjatGlasmSJu2G5pVGjRjIM174tMpvNmjdvnubNm1eiMZUbfAsHwAOYTgsAAAAANQY3lcfz5Y1jKo/nEUXiVuHcMAxZrVbNmjVLEyZM0J49exyXxHfo0EE1a9Z0qZ+kpCTZbDbFxMQoODhYYWFhOnPmjGw2mywWi8aNG6dx48ZJkkwmk2N0OACg/GM6LQAAAAAA4G1uFc4vXbqk2rVr6/3339d9992ne++9t0g7bdeunUwmU5G2BeAD+PYVJYjptAAAKKLS+IzG50AAAFBBuFU49/f3V0REhK5cuVKsnb755pvF2h4AUH4xnRYAAACAMi/3F4186eibeF1QCD93Nxg5cqQWLFigixcvlkQ8AAAAAAAAAAB4lds3Bz127JgOHjyoBg0aqHv37qpTp47TtCsmk0mLFi3yaJAAAAAAAAAAgDKqDI7wd3vE+QcffCCz2azAwEDt3btXGzZs0AcffOD0AAAAAAAAQOm6cuWKXnjhBXXt2lW1atVSaGiooqOjtXPnzjxtc3JylJSUpLp16yowMFA9e/bUDz/84IWoAcA3uT3iPPdN2QCUEWXwWz0AAAAAgHsuXLiglJQUDRkyROPGjVOlSpW0fPlyRUdHKy0tTTExMY62Y8aM0apVq7RgwQLVq1dPs2bNUmxsrPbv36/g4GAvHgUA+Aa3CucXL15UnTp19O677+r+++8vqZgAAAAAAADgpqpVq+rw4cOyWCyOZT179lTLli21cOFCR+H8xIkTWrFihZYuXaqhQ4dKktq3b68GDRro1Vdf1bPPPuuV+AHAl7g1VUtAQICqVaumypXdHqgOAAAAAACAElSpUiWnovm1Za1atdJ///tfx7K0tDRdvXpV/fv3dywLDQ1VXFycNm7cWGrxAoAvc3uO80cffVQrVqwoiVgAAAAAAADgQZcvX9bu3bvVvHlzx7L09HTVrl07T5G9efPmSk9PL+0QAXjC48YfD3iE20PHLRaLdu/erVatWumee+5RnTp1ZDKZHOtNJpOefvppjwYJAAAAwPuuXLmi+fPna8OGDfr+++919epVtW7dWjNmzFCXLl2c2ubk5GjixIl65513dP78eXXq1ElLlixRs2bNvBQ9AFRML7zwgk6ePOlUq7FarQoJCcnT1mKxKDMzs8C+srOzlZ2d7Xhut9s9GisA+BK3C+fJycmSpIyMDH333Xd51lM4BwAAAMqnCnXTOUZrAfARNptNGRkZhbZr3Lix/P39nZZt2bJFU6dO1ZQpU9SuXbtix5KSkqLp06cXux8APorPP07cLpxfvXq1JOIAAAAA4OO46RwAlL7U1FQNHz680HYHDhxQVFSU4/mXX36pv/zlL3rooYc0ZcoUp7YWi0U2my1PH1arVaGhoQXuIzk5WWPHjnU8t9vtql+/viuHAQBljttznAMAAAComLjpHACUvoSEBBmGUegjd9H80KFDio+PV6dOnfK9T11UVJROnTolq9XqtDw9Pd2pn+uZzWbVqFHD6QEA5ZVLhfMXXnhBP//8s9OyTz75RFlZWU7Ljhw5oscff9xz0QEAAADwadx0DgB8S0ZGhuLi4tSgQQOtWbNGVapUydMmLi5Ofn5+Wrt2rWOZ1WpVWlqa7r333tIMFwB8lktTtSQnJ6t79+6qW7eupN9vCtSlSxft3btXt99+u6Pd6dOntXLlSi1fvrxkogUAAADgU7jpHAD4jgsXLig+Pl6//PKLFi1a5HRvOrPZrLZt20qSIiIilJCQoKSkJFWqVEn16tXT7NmzFRwcrCeeeMJb4QOAT3GpcG4YeSeGz28ZAAAAgLKFm84BQPlx6tQpffPNN5KkBx54wGldw4YNdfToUcfzRYsWqXr16ho/frzOnz+vzp07a+vWrd65gTM3JATgg9y+OSgAAACA8oObzgFA+dGoUSOXBzqazWbNmzdP8+bNK+GoAKBs4uagAAAAQAXGTecAAACAvFwunJtMJpeWAQAAACi/uOkcAAAAKgKXp2qJjo6Wn59znb1Lly5Oy65eveq5yAAAAAD4FG46BwAAgIrCpcL51KlTSzoOAAAAAD6uzN50DihPuIkiAAClgsI5AAAAAJdw0zkAAABUFNwcVNIXX3yhSpUqqXr16nnW5eTkKCkpSXXr1lVgYKB69uypH374wQtRAgAAAAAAAABKQ4UvnBuGoVGjRiksLCzf9WPGjNFrr72m2bNna926dcrOzlZsbKxsNlspRwoAAAAAAAAAKA0VvnD+xhtv6JdfftHQoUPzrDtx4oRWrFihF154QUOHDtXdd9+tf/7znzp37pxeffVVL0QLAAAAAAAAAChpLs1xXl6dO3dO48eP1+uvv67PP/88z/q0tDRdvXpV/fv3dywLDQ1VXFycNm7cqGeffbY0w0VFwc1+AADwPH6/AoDvICcD+eNnA/ApFXrE+aRJk9SuXTv16tUr3/Xp6emqXbu2LBaL0/LmzZsrPT29NEIEAAAAAAAAAJSyCjvi/Ouvv9bKlSv11VdfFdjGarUqJCQkz3KLxaLMzMwCt8vOzlZ2drbjud1uL1asAAAAAAAAAIDSU24K5zabTRkZGYW2a9y4sapUqaKRI0dqxIgRioqK8ngsKSkpmj59usf7BQAAAAAAAACUvHJTOE9NTdXw4cMLbXfgwAF9/fXXOnDggN577z2dO3dOknTx4kVJv897HhAQoICAAFksFtlstjx9WK1WhYaGFriP5ORkjR071vHcbrerfv36bh4RAAAAAAAAAMAbyk3hPCEhQQkJCS61XbVqlaxWqxo1apRnncVi0bhx4zRnzhxFRUXp1KlTslqtTvOcp6en33Ckutlsltlsdjw3jN9v7sCULQDKoqCgIJlMJm+HUWLI0QDKMnI0APg28jQA+K7CcnS5KZy7Y8iQIerevbvTsjfffFOrV6/Wpk2b1KBBA0lSXFyc/Pz8tHbtWkdR3mq1Ki0tTZMnT3Z5f+fPn5ckRp0D+P/au/PwqKu7//+vCZAJhpBMIEBIWBo0CyKL1AW4EZJAahQFWg1Q7lYroClLWlGUfbsRUAiLUEQLrq0lDcLtDQUaQKjwYxFr64JMqSXIYgpIhhkUSCCZ3x9+mWZMQmaSWZPn47rmusj5nPl83nMyec/wnjPnBCWr1armzZv7OwyvIUcDCGbkaAAIbORpAAhcNeVog/36x4MN3OzZs7V48WJ98803Tu3Z2dnKy8vTkiVLFBcXp/nz5+uLL77Q4cOHFRkZ6dK5y8vL9dVXX9Xqk+bry7ycPHmyXr/YehNj6BmMY90F6xjW91ky5Gj/YxzrjjGsu2AdQ3L0jQXr7zWQMIZ1xxh6RrCOI3m6esH6O/U0xoExuI5x+I4vx4EZ53W0fPlyNWvWTJMnT9bFixfVp08f7dixw+WiuSSFhIQoPj6+TnE0b968Qf/ReAJj6BmMY90xhoGFHB04GMe6YwzrjjEMLJ7I0RK/V09gDOuOMfQMxjGw8F7acxgHxuA6xuE7gTAOIX69egCZPXt2pdnm0nfrlS9evFhnzpzRpUuXtH379huubw4AAAAAAAAACG4UzgEAAAAAAAAAqIDCeYAzGo2aNWuWjEajv0MJWoyhZzCOdccY1j/8Tj2Dcaw7xrDuGMP6id9r3TGGdccYegbjWP/wO/0O48AYXMc4fCeQxoHNQQEAAAAAAAAAqIAZ5wAAAAAAAAAAVEDhHAAAAAAAAACACiicAwAAAAAAAABQAYXzAGU2mzVw4ECFh4erTZs2euaZZ1RaWurvsAJWfn6+Bg8erPj4eIWHh6t79+569dVX9f0l/NeuXavExESFhYWpW7du2rx5s58iDnzffPON4uPjZTAY9OGHHzodYxxv7I033lCPHj0UFhamli1bKjMzU5cvX3Yc37Rpk7p166awsDAlJibqtdde82O0qC3ytOvI0Z5Hjq4b8nT9R452D3na88jTtUeOrv8aWo4mx1atoefJhp7r/u///k933XWXIiIiFBsbq6ysLB07dqxSP78/F+wIOMXFxfbY2Fj7PffcY9+2bZt97dq19sjISPu4ceP8HVrAuvvuu+3Dhw+3r1u3zr5z50775MmT7SEhIfbZs2c7+vzhD3+wGwwG+/Tp0+3vvfee/YknnrA3btzYvn//fj9GHrieeeYZe+vWre2S7IcOHXK0M443Nm/ePHtERIR9wYIF9t27d9vXr19v/+Uvf2m/ePGi3W632/fs2WNv1KiR/YknnrC/99579unTp9sNBoM9Pz/fz5HDHeRp95CjPY8cXXvk6fqPHO0+8rTnkadrhxxd/zXEHE2OrVpDzpMNPdft2rXLHhISYn/00Uft27dvt69bt86emJho79Spk/3SpUuOfoHwXKBwHoDmz59vDw8Pt58/f97R9vLLL9sbNWpkP336tB8jC1znzp2r1DZmzBh78+bN7WVlZXa73W5PTEy0jxgxwqlPr1697JmZmT6JMZgcOXLEHh4ebl+9enWlFzHGsXpms9neuHFj+5YtW6rtk5GRYe/du7dT24gRI+wpKSneDg8eRJ52Dznas8jRtUeebhjI0e4jT3sWebp2yNENQ0PM0eTYyhpyniTX2e1PPPGE/Qc/+IG9vLzc0fbee+/ZJdnff/99R1sgPBdYqiUAbd26VQMGDFB0dLSjLSsrS+Xl5SooKPBjZIGrZcuWldp69Oghm82mb7/9VseOHdPRo0eVlZXl1Gf48OHauXOnSkpKfBVqUJgwYYKys7OVlJTk1M443thrr72mH/zgB8rMzKzyeElJiXbt2qWHH37YqX348OE6cuSIjh8/7oMo4QnkafeQoz2LHF175OmGgRztPvK0Z5Gna4cc3TA0xBxNjq2sIedJcp109epVRUREyGAwONoiIyMlybGEUaA8FyicByCz2azk5GSntqioKMXGxspsNvspquCzd+9excXFKSIiwjFu3x/XlJQUlZaWqrCw0B8hBqT169fr008/1cyZMysdYxxv7MCBA7rttts0b948tWrVSqGhoerTp48OHjwoSfrXv/6lq1evVjl+kvj7DiLk6bojR9cOObpuyNMNAznaM8jTtUOerj1ydMNAjv5OQ86xDT1PkuukRx99VJ9//rlWrVolq9WqY8eOaerUqerRo4f69OkjKXCeCxTOA5DFYlFUVFSldpPJpOLiYt8HFIT27t2rdevW6emnn5b03ZhKqjSuJpNJkhjX/+fSpUuaOHGi5s+fr+bNm1c6zjje2L///W8VFBTozTff1KpVq/S///u/MhgMysjI0NmzZxm/eoQ8XTfk6NohR9cdebphIEfXHXm6dsjTdUOObhjI0Q07x5InyXWS1LdvX23cuFGTJ09WVFSUOnXqpDNnzmjr1q1q1KiRpMB5LlA4R71z6tQpDRs2TKmpqcrJyfF3OEFl3rx5at26tX7xi1/4O5SgVF5erm+++Ubr16/XQw89pPvuu0//93//J7vdrpUrV/o7PCAgkKNrjxxdd+RpoGbk6dojT9cNORoNQUPPseRJcp0k7du3Tz/72c80ZswYvffee8rPz1d5ebnuv/9+Xb582d/hOaFwHoBMJpOsVmuldovF4rQOGCq7cOGCMjMz1aJFC73zzjsKCfnuKX79E6nvj+v1T7AYV+nLL79Ubm6u5syZI6vVqgsXLuibb76RJH3zzTf65ptvGMcamEwmtWjRQl27dnW0RUdHq0ePHjp8+DDjV4+Qp2uHHF175GjPIE83DOTo2iNP1x55uu7I0Q1DQ87RDT3Hkie/Q66TcnJylJaWptzcXKWmpuqhhx7Sn/70J3300Ud66623JAXO3wWF8wCUnJxcac0iq9WqoqKiSmv74D8uX76sQYMGyWq1auvWrY6NBaT/rIn0/XE1m80KDQ1VQkKCT2MNRIWFhSotLdX9998vk8kkk8mkBx54QJKUmpqqAQMGMI41uPXWW6s9duXKFXXq1ElNmjSpcvykymt3IXCRp91Hjq4bcrRnkKcbBnJ07ZCn64Y8XXfk6IahoeZocix58jpynfT555+re/fuTm3x8fFq2bKl/vWvf0kKnL8LCucBKDMzUzt27NCFCxccbfn5+QoJCVFGRob/Agtg165dU1ZWlo4cOaJt27YpLi7O6XhCQoISExOVn5/v1J6Xl6f09HSFhob6MtyA1L17d+3atcvptnTpUknS6tWrtWrVKsaxBoMGDdL58+f197//3dF2/vx5ffTRR+rZs6eMRqNSU1O1fv16p/vl5eUpJSVFHTt29G3AqDXytHvI0XVHjvYM8nTDQI52H3m67sjTdUeObhgaYo4mx36HPPkdcp3UoUMHffTRR05tX375pb7++mvH4wuY54IdAae4uNgeGxtr79evn/3Pf/6z/dVXX7VHRUXZx40b5+/QAtaYMWPskuy5ubn2/fv3O92uXLlit9vt9rfffttuMBjsM2fOtO/atcuenZ1tb9y4sX3fvn1+jj5w7dq1yy7JfujQIUcb41i9srIy+x133GHv1KmTfd26dfZ3333Xfvfdd9tbtGhhLyoqstvtdvuePXvsjRo1sv/yl7+079q1yz5z5ky7wWCw//GPf/Rz9HAHedo95GjvIEe7jzzdMJCj3Uee9g7ytHvI0Q1DQ8zR5NjqNcQ8Sa6z25ctW2aXZM/JybFv377dvm7dOnuXLl3srVu3tn/99deOfoHwXKBwHqA+//xze3p6ur1p06b2Vq1a2Z9++ml7SUmJv8MKWB06dLBLqvJWWFjo6LdmzRr7zTffbA8NDbXfdttt9k2bNvkv6CBQ1YuY3c443si5c+fs//3f/22PjIy0N23a1J6RkWE/fPiwU593333Xftttt9lDQ0PtN998s33t2rV+ihZ1QZ52HTnaO8jRtUOebhjI0e4hT3sHedp95OiGoaHlaHJs9Rpqnmzoua68vNz+0ksv2bt27WoPDw+3t2nTxj506FD7kSNHKvX193PBYLfb7V6d0g4AAAAAAAAAQBBhjXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA49wG73S6bzSa73e7vUAAA30OOBoDARY4GgMBGngZQn1E494GLFy8qMjJSFy9e9HcoAIDvIUcDQOAiRwNAYCNPA6jPKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAQD2Rn5+vwYMHKz4+XuHh4erevbteffVV2e12p35r165VYmKiwsLC1K1bN23evNlPEQNAYGrs7wAAoEH4oaH6Yx/aqz8GeALPPwBo2HgdABqUJUuWqGPHjsrNzVVMTIy2b9+uMWPG6OTJk5o1a5Ykad26dRozZoymTZumtLQ05eXlaejQodqzZ4/uvvtuPz8CoIIbvYZJvI7Bqwz273/kCI+z2WyKjIyU1WpV8+bN/R0OAH/gP6wBq0HkaJ5/AIJUg8jRvsDrANCgfP3112rZsqVT2+OPP668vDxZLBaFhIQoKSlJPXv21Ntvv+3o07t3b0VFRWnLli0uX4s8Da+jcA4/YqkWAAAAAACAeuL7RXNJ6tGjh2w2m7799lsdO3ZMR48eVVZWllOf4cOHa+fOnSopKfFVqAAQ0FiqBQAAAAAAoB7bu3ev4uLiFBERoT179kiSkpOTnfqkpKSotLRUhYWFlY41OPVllnN9eRyAn1A4BwAAAAAAqKf27t2rdevWKTc3V5JksVgkSVFRUU79TCaTJKm4uLjac5WUlDjNSLfZbB6OFgACB4VzAAACGevSIpDx/AQAIKCdOnVKw4YNU2pqqnJycup8vgULFmjOnDkeiAwAAp/bhfMTJ05UeywkJESRkZGKiIioU1AAAAAAAACovQsXLigzM1MtWrTQO++8o5CQ77a5uz6z3Gq1qk2bNo7+12eiR0dHV3vOKVOmaOLEiY6fbTab2rVr543wAcDv3C6cd+zYUQbDjddI6tixo379619rwoQJtQ4MAAAAAAAA7rt8+bIGDRokq9Wq/fv3KzIy0nHs+vrlZrNZSUlJjnaz2azQ0FAlJCRUe16j0Sij0ei9wAEggLhdOP/d736nKVOmKDExUYMHD1arVq109uxZbdy4Uf/85z81efJk7d+/X08++aQkUTwHAAAAAADwkWvXrikrK0tHjhzRnj17FBcX53Q8ISFBiYmJys/P1+DBgx3teXl5Sk9PV2hoqK9DBoCA5HbhfM+ePbr33nv18ssvO7WPHz9ejz/+uP7617/qrbfeUvPmzbVq1SoK5wAA1AfVrWXNOtYAAAABZezYsdq8ebNyc3Nls9l04MABx7EePXrIaDRq9uzZGjlypDp16qTU1FTl5eXp4MGDev/99/0YOQAEFrcL5+vWrdMf//jHKo89/PDDysrK0tq1azVo0CCtXbu2zgECAAAAAADANQUFBZKkp556qtKxwsJCdezYUSNGjNClS5e0cOFCLVy4UElJSdq4caN69erl63BR0Y02XpeYtAL4WIjbdwgJ0ccff1zlsb///e+OzSYaNWqkpk2b1i06L7r+laT4+HiFh4ere/fuevXVV2W3OyehtWvXKjExUWFhYerWrZs2b97sp4gBAAAAAABu7Pjx47Lb7VXeOnbs6Og3atQo/fOf/1RJSYk++eQTDRo0yH9BA0AAcnvG+ciRIzVjxgyVlpbqgQceUExMjM6dO6d3331X8+bN0xNPPCFJ+utf/6rOnTt7PGBPWbJkiTp27Kjc3FzFxMRo+/btGjNmjE6ePKlZs2ZJ+m52/ZgxYzRt2jSlpaUpLy9PQ4cO1Z49e3T33Xf7+REAkHTjT+T5NB4AAAAAAAC1YLB/f4p1Da5evapnn31Wq1evVklJiaPdaDTql7/8pZ5//nk1btxY77//vpo1a6bbb7/d40F7wtdff62WLVs6tT3++OPKy8uTxWJRSEiIkpKS1LNnT7399tuOPr1791ZUVJS2bNni8rVsNpsiIyNltVrVvHlzjz0GAAqewnmwxNkABXyO9sRzx5vn4PnbsJHb4GUBn6ODBX+rALyk3uZpfy2Z4unr1oelX+rDY0DQcnupliZNmmjJkiU6ffq03nvvPb399tvatWuXTp06pdzcXDVu/N0k9nvuuSdgi+aSKhXNpe82ybDZbPr222917NgxHT16VFlZWU59hg8frp07dzp9aAAAAAAAAAAAqD/cXqrlOpPJpH79+nkyFr/bu3ev4uLiFBERoT179kiSkpOTnfqkpKSotLRUhYWFlY4BAAAAAAAAAIKf2zPOpe+WOZk8ebLS09OVlJSkw4cPS5KWL1+uAwcOeDRAX9m7d6/WrVunp59+WpJksVgkSVFRUU79TCaTJKm4uLjac5WUlMhmszndAAAAAAAAAADBwe3C+UcffaRbbrlF69atU3x8vL744gvHsiWnT5/W0qVLPR6kt506dUrDhg1TamqqcnJy6ny+BQsWKDIy0nFr166dB6IEAAAAAAAAAPiC24XzJ598Ur169dI///lPrV27VhX3Fr3rrruCbsb5hQsXlJmZqRYtWuidd95RSMh3Q3J9ZrnVanXqf30menR0dLXnnDJliqxWq+N28uRJL0UPAAAAAAAAAPA0t9c4P3TokDZs2KAmTZqorKzM6VhMTIzOnj3rseC87fLlyxo0aJCsVqv279+vyMhIx7Hr65ebzWYlJSU52s1ms0JDQ5WQkFDteY1Go4xGo/cCBwAAAAAAAAB4jdszzsPDw6tds/vEiRNq0aJFnYPyhWvXrikrK0tHjhzRtm3bFBcX53Q8ISFBiYmJys/Pd2rPy8tTenq6QkNDfRkuAAAAAAAAAMBH3J5x/qMf/Ujz5s1Tenq6Y+NMg8Ggy5cva/ny5brvvvs8HaNXjB07Vps3b1Zubq5sNpvTEjM9evSQ0WjU7NmzNXLkSHXq1EmpqanKy8vTwYMH9f777/sxcgAAAAAAAACAN7ldOH/++efVp08f3XLLLUpNTZXBYND06dP1+eefy2AwaN68ed6I0+MKCgokSU899VSlY4WFherYsaNGjBihS5cuaeHChVq4cKGSkpK0ceNG9erVy9fhAgAAAAAAAAB8xO2lWuLi4vT3v/9dEyZMUFFRkTp16qTz589r5MiR+vDDD9WqVStvxOlxx48fl91ur/LWsWNHR79Ro0bpn//8p0pKSvTJJ59o0KBB/gsaAFCJ2WzWwIEDFR4erjZt2uiZZ55RaWmpv8MCAAAAAABBzO3CuSRFRUVpzpw52rdvn44ePaoDBw5o3rx5io6O9nR8AABUy2KxKC0tTaWlpdqwYYPmz5+vV155RRMnTvR3aABQr+Xn52vw4MGKj49XeHi4unfvrldffVV2u92p39q1a5WYmKiwsDB169ZNmzdv9lPEAAAAgHvcXqoFAIBAsXr1atlsNm3cuNHx4e21a9c0duxYTZ06VW3btvVzhABQPy1ZskQdO3ZUbm6uYmJitH37do0ZM0YnT57UrFmzJEnr1q3TmDFjNG3aNKWlpSkvL09Dhw7Vnj17dPfdd/v5EQAAAAA3ZrB/f1pIFX7wgx/IYDC4fNJjx47V2Of8+fP64IMPVFRUpMuXL6tFixZKSkpS9+7d3bpWMLDZbIqMjJTValXz5s39HQ5Qv/zwBvniwxrTm+8ES5xB5p577lF0dLT+93//19F24cIFRUdH69VXX9Wjjz5a4zkCPkd74rnjzXPw/G3YyG0N1tdff62WLVs6tT3++OPKy8uTxWJRSEiIkpKS1LNnT7399tuOPr1791ZUVJS2bNni0nUCPkcHC/5WAXhJvc3TN8qbkvdyp6ev66/H4Un14TEgaLk043zw4MFOxez169fLZrNpwIABat26tc6cOaMdO3YoMjJSDz30ULXnsVqteuONN/TGG2/o73//e6WvchoMBjVr1kxDhw7VmDFj1KdPn1o+LABAQ2A2m/XYY485tUVFRSk2NlZms9lPUQFA/ff9orkk9ejRQ7/97W/17bff6ty5czp69Kief/55pz7Dhw/XpEmTVFJSIqPR6KtwAQDwDoq6QL3mUuF82bJljn8vWrRI7dq107Zt25w+TbRarcrMzFTr1q2rPMf8+fO1ePFimUwmPfzww5o1a5a6deumli1bymg06sKFCzp+/Lg+/PBDbd26Venp6fqv//ovvfjii+rcuXPdHiUAoF6yWCyKioqq1G4ymVRcXFzlfUpKSlRSUuL42WazeSs8AGhQ9u7dq7i4OEVERGjPnj2SpOTkZKc+KSkpKi0tVWFhYaVjAAAAQCBxe43zF198UatWrar0FZzIyEhNnjxZY8eO1bPPPlvpfrt379aGDRvUv3//Ks/bsmVLtWzZUj/84Q+VnZ0ti8WilStXavfu3RTOAQAes2DBAs2ZM8czJ6vpq++ufDW+piVQapql4so1PDHTpa5x1GUsPHEOX1wj2OJ0hS+en4Ewnp44hyeuEcT27t2rdevWKTc3V9J3H2xKqvThpslkkiQ+3AQAAEDAc7twXlxcLKvVWuUxq9XqeJP8fQUFBW5dx2QyacaMGe6Gh/qsHv9nE0DtmEymKl+TLBaLY7PQ75syZYomTpzo+Nlms6ldu3ZeixEA6rtTp05p2LBhSk1NVU5OTp3O5dEPN+Ee1kEHAABwEuLuHdLT0/Xss8/qL3/5i1P77t27NXnyZKWnp3ssOAAAbiQ5ObnSWuZWq1VFRUXVLgFgNBrVvHlzpxsAoHYuXLigzMxMtWjRQu+8845CQr7778X1meXf/3Dz+iSbG324abVaHbeTJ096MXoAAACgem7POH/55Zf14IMPKi0tTZGRkYqJidG5c+dktVrVo0cPrV69usZzzJ07t9pjISEhioyMVPfu3dW3b193wwMANCCZmZmaP3++Lly44FgOID8/XyEhIcrIyPBvcABQz12+fFmDBg2S1WrV/v37FRkZ6Th2/cNLs9mspKQkR7vZbFZoaKgSEhKqPKfRaGTTUAAAAAQEtwvnsbGxOnTokLZt26YPPvhARUVFio2N1Z133ql7773XpXMsXbpUpaWlunz5siQpLCxMV65ckSQ1bdpUV69eVVlZmW6//XZt2bJFMTEx7oYJAGgAsrOztWLFCg0ZMkRTp07V6dOnNWnSJGVnZ6tt27b+Ds83+Pq8e3yx3jvQAFy7dk1ZWVk6cuSI9uzZo7i4OKfjCQkJSkxMVH5+vgYPHuxoz8vLU3p6ukJDQ30dMgAAAOAWtwvn1917770uF8q/77333tOwYcM0a9YsDR48WM2aNdM333yjjRs3au7cuXrzzTd16dIl/fd//7cmTZqk119/vbZhAgDqMZPJpJ07d2rChAkaMmSIIiIiNHr0aD333HP+Dg0A6rWxY8dq8+bNys3Nlc1m04EDBxzHevToIaPRqNmzZ2vkyJHq1KmTUlNTlZeXp4MHD+r999/3Y+QAAACAa2pdOK+LcePG6amnntLIkSMdbc2aNdPPfvYzffvtt/r1r3+tgwcPavr06Tdc1gUAgJSUFO3YscPfYQBAg1JQUCBJeuqppyodKywsVMeOHTVixAhdunRJCxcu1MKFC5WUlKSNGzeqV69evg4XAAAAcJtfCud/+9vfNHPmzCqPdezYUZ9++qkkqUuXLpU2FAIAAADgX8ePH3ep36hRozRq1CjvBgMAAAB4gV8K5x06dNCaNWuqXOrllVdeUYcOHSRJ58+fV8uWLX0dHgC474eGqttZCxkNRU3P9WD5WwiWOAEAANBwVff/z+t4Twt4hF8K5wsWLFBWVpaSkpI0aNAgxcTE6Ny5c9q8ebOOHTum/Px8SdLOnTt1zz33+CNEAAAAAAAAAEAD5ZfC+dChQ/XBBx9owYIF2rhxo4qKihQbG6s77rhDeXl56t69uyTpN7/5jT/CAwAAAAAAgDcxaxpAgHOrcP7vf/9bBQUFMpvNKi4uliRFR0crOTlZGRkZatOmjcvn6tGjh/74xz+6Fy0AeMON3rDxZg0AAAAAAKDBcalwfvXqVT311FNavXq1ysrKFBsbK5PJJEmyWCwqKipSo0aN9Mtf/lK5ublq3Nj1evzJkyd18uRJdevWTeHh4bV7FAAAABIfdgUaT/w++J0CAAAA8IMQVzpNnz5db731ln7zm9+ouLhYp06d0qeffqpPP/1Up06dksVi0apVq/TWW29p+vTpLl34lVdeUVxcnDp06KC+ffvqH//4h6TvlnFZvnx57R8RPO+HhupvAAAAAAAAAFDPuFQ4f/PNN7V06VKNGTNGkZGRlY43b95co0ePVm5urt54440az7ds2TJNmDBBP//5z1VQUCC7/T8zifr37+/YHBQAAAAAAAAAAF9zaU2VixcvKj4+vsZ+8fHxunjxYo39VqxYoRkzZmj69OkqKytzOpaUlOSYfY4g4Yn1oVljGt5U3fOL5xYAAAAABD82Gq0bxg88B6rkUuG8V69emj9/vu64444qZ5xLks1m0/z589W7d+8az3f69Olq+zVp0kTffPONK2EBAADUTw30jSkAAAAABAqXCucrV65UWlqa2rVrpwEDBig5OVlRUVGSJKvVKrPZrB07digiIkI7d+6s8XwdOnTQBx98oLS0tErHDh48qMTERPceBQAAAAAAQG3xLWgAwPe4VDhPSkrS4cOH9dJLL2nbtm1au3atLBaLJMlkMik5OVlTpkxRdna2o6B+I2PGjNHs2bMVExOjH//4x5Kkq1ev6k9/+pMWLVqk5557rvaPCAAAAAAAAABqi6VLIBcL55IUFRWlKVOmaMqUKXW+6NNPP60TJ07o8ccf1xNPPCFJ6tOnjyRp7NixGjt2bJ2vAQAAAAAAgKqZzWZNmDBB+/btU0REhH7+859r3rx5Cg0N9XdoABAQXC6ce9qLL76oX//619q+fbvOnz+v6Ohopaen65ZbbvFXSAAAAAhGnpjxw6whAEADYrFYlJaWpltuuUUbNmzQ6dOnNXHiRF26dEkrV670d3gAEBBcLpxfvXpVmzdv1ldffaWUlJQq1yc/ffq01q5dq5kzZ7p0zoSEBMeMcwAAAAAAAHjf6tWrZbPZtHHjRkVHR0uSrl27prFjx2rq1Klq27atnyMEAP9zqXB+/vx53XPPPTpy5IgkyWAw6Pbbb9ebb76plJQUR79Tp05pzpw5VRbO33//fbcCu+eee9zqDwAAAAAAgJpt3bpVAwYMcBTNJSkrK0vZ2dkqKCjQo48+6r/gACBAuFQ4nzFjhr799lv9f//f/6cePXpoz549evrpp9WrVy+tX79eAwYMqPEc/fv3l8FgkN3+3ddgDYb/LLJvt9udfpaksrIydx4HAAAAAAAAXGA2m/XYY485tUVFRSk2NlZms9lPUQFAYHGpcL5t2zb9z//8j3r16iVJGjhwoD744AM98cQTuv/++/Xqq69q5MiRNzzH3/72N8e/z549q1GjRik1NVUPPfSQWrdurTNnzig/P1+7d+/W2rVr6/CQAAAA4BGs+w0AQL1ksVgUFRVVqd1kMqm4uLja+5WUlKikpMTxs81m80Z4ABAQXCqcnzlzRh06dHBqMxqNev311xUfH69HHnlERUVF6tu3b7Xn6Natm+PfDz30kIYPH64XXnjBqc8DDzygSZMm6aWXXtLAgQPdeRwAAAAAAH/6oaHqdj6EA+qNBQsWaM6cOZ45mau5obrcUvEcnjhXbc4X6Nf11+Pw5Lk8HVugX9df/Tz59+ivx+AFIa506tixoz755JMqj82bN09Lly7Vs88+qxkzZrh00T//+c/VFsYzMjK0fft2l84DAAAAAAAA95hMJlmt1krtFovFad3z75syZYqsVqvjdvLkSW+GCQB+5dKM89TUVK1du1bjx4+v8viECRPUsmVLlzePaNasmXbu3Fll8Xz79u1q1qyZS+dBEHHlEykEFn5nAAAAAFAvJScnV1rL3Gq1qqioSMnJydXez2g0ymg0ejs8AAgILhXOc3JylJKSIovFIpPJVGWfESNGqG3bttq9e3eN5xs3bpxmzpypM2fOaMiQIWrVqpXOnj2rjRs36q233vLc1348wGw2a8KECdq3b58iIiL085//XPPmzVNoaKi/QwMABDo+ZEJ1eG4AuI7JCu5hvACPyMzM1Pz583XhwgXHWuf5+fkKCQlRRkaGf4MDgADhUuE8MTFRiYmJNfbr16+f+vXrV2O/6dOnKyoqSgsXLtQbb7whg8Egu92u2NhYLVu2TBMmTHAlLK+zWCxKS0vTLbfcog0bNuj06dOaOHGiLl26pJUrV/o7PM9hLUIAAAAAABqM7OxsrVixQkOGDNHUqVN1+vRpTZo0SdnZ2Wrbtq2/wwOAgOBS4dwbxo8fr7Fjx+rUqVMqKipSbGys4uPjFRLi0rLrPrF69WrZbDZt3LjRscbXtWvXNHbsWE2dOpUXEwAAAAAAEHRMJpN27typCRMmaMiQIYqIiNDo0aP13HPP+Tu0+omJiUBQ8lvhXJJCQkLUvn17tW/f3p9hVGvr1q0aMGCA08YYWVlZys7OVkFBgctrutcaX0NEoOPbCgAAAIB38F7bdfzfuVZSUlK0Y8cOf4cBAAHLZ9O7X3rpJZWUlLh1n08//VTvvfeelyKqmdlsrrQpRlRUlGJjYyttogEAAAAAAAAAqB98Vjh//fXX1aFDBz355JPat2+frl69WmW/r776SmvXrtWAAQPUu3dvWSwWX4VYicVicWySUZHJZFJxcXG19yspKZHNZnO6AQAAAGiAfmio/gZnjBUAAAggbi3VcuXKFa1atUoZGRnq0qWLWxc6ePCgNm7cqOXLl+vFF19UkyZNlJiYqJiYGBmNRl24cEGFhYU6e/asoqOj9cgjj+h3v/ud2rRp49Z1AsGCBQs0Z86cup/Ila+U1fSVNFe+slbTdep63Ffn8MRYePMcrn5FMFDiDPTfiSfjrOvj8MQ1bnQdT/7eg8T27dv12muv6eDBgzp27JjGjRtX5abMpaWlmjZtmt566y1dvHhRvXv31sqVK5WUlOSHqAEAAAAAQH3hVuE8LCxM06dPV8+ePWt1saFDh2ro0KE6fvy4duzYoQ8//FBFRUW6cuWKOnTooIyMDPXp00f9+/dXkyZNanUNTzKZTLJarZXaLRaL07rn3zdlyhRNnDjR8bPNZlO7du28EiMA1Efbtm3Txx9/rH79+t3wGz45OTlat26dlixZori4OD333HNKT0/X4cOHFRkZ6cOIAQAAAACoRpBNZqsTTz9WP46d25uDdu/eXZ9//rn69etX64t27NhRo0eP1ujRo2t9Dl9ITk6utJa51WpVUVFRpbXPKzIajTIajd4OD6heQ0rIqJcWLVqk3NxcSap2r4tTp05pzZo1WrVqlR577DFJ0h133KH27dvr5Zdf1jPPPOOzeOEjwZLbgiVOAAAAAEC13C6cL1++XCNHjlRMTIzuu+8+3XTTTd6IKyBkZmZq/vz5unDhgmOt8/z8fIWEhCgjI8O/wQFAPRYSUvMWHAUFBSovL9fDDz/saIuOjlZGRoa2bNlC4RwAAACAMyY41F8N7Xfb0B6vn7i9OWhaWpq+/PJLDRs2TBEREYqIiFDz5s0dt/r01fjs7GxFRERoyJAhKigo0GuvvaZJkyYpOztbbdu29Xd4ANCgmc1mtWrVSiaTyak9JSWl0reFAAAAAAAA3OH2jPOnnnpKBkPD2NXcZDJp586dmjBhgoYMGaKIiAiNHj1azz33nL9DA4AGz2KxOL4NVJHJZLrhuuglJSUqKSlx/Gyz2bwRHgAAAAAACGJuF85nz57thTACV0pKinbs2OHvMAAgqF3fH6ImCQkJCg0N9WosCxYs0Jw5c7x6DdQSXzcEAAAA4E38nwNucLtwfp3dbtfRo0dVXFys6OhoJSYmujQT3W63y2KxKDw8nA00AaCByM/P15gxY2rsd+TIkRtuvlyRyWSS1Wqt1G6xWBQdHV3t/aZMmaKJEyc6frbZbGrXrp1L1wQAAAHuhzf4PynFEgAA4Aa31ziXpFWrVik2NladO3dWnz591LlzZ7Vt21YvvfRSjfe9evWqWrVqxSxuAGhARo8eLbvdXuPN1aK5JCUnJ+vMmTOyWCxO7Waz+YbnMRqNTntzNG/evNaPCwAAAAAA1E9uzzh/5ZVXNH78eI0YMULDhg1T69atdebMGeXl5Wn8+PFq0qSJRo8eXe39Q0NDFR8fr7KysjoFDngFs1A8i/H0rQY23hkZGQoJCdE777zjeN2xWCwqKCjQjBkz/BwdAAAAAAAIZm4XzpcuXaqcnBwtW7bMqf3BBx9UTEyMFi9efMPCuSSNGzdOS5YsUUZGhsLCwtwNAQBQz3355Zc6dOiQJOnSpUv617/+pfXr10uSHnroIUlSfHy8Ro8erUmTJqlRo0aKi4vT/PnzFRkZqSeeeMJvsQMAADQo1S2P08AmdQAA6h+3C+eFhYUaNGhQlcfuv/9+rV69usZznDhxQkePHlX79u3Vv39/tW7d2ml9dIPBoOXLl7sbGqrCmxUAQWjXrl36xS9+4fh527Zt2rZtm6Tv9sq4bvny5WrWrJkmT56sixcvqk+fPtqxY4ciIyN9HjMAAAAAAKg/3C6cx8bGav/+/RowYEClYwcOHFBsbGyN59i8ebOMRqOMRqNjRmFFFM4BoGF79NFH9eijj9bYz2g0avHixVq8eLH3gwIAAAAAAA2G24XzUaNGae7cuSopKdFDDz2k1q1b6+zZs8rPz9eiRYs0c+bMGs9RWFhYq2ABAAAAAAAAAPA2twvn06ZNk8Vi0aJFi7RgwYL/nKhxY02YMEHTpk3zaIAAAAQslsNCIOP5+R+MBQAAAAA3uVQ4t9lsioiIkMFgkMFgUG5urqZOnaqDBw/KYrEoOjpad955p1q0aOHyhU+fPq1ly5Zp7969Ki4uVnR0tPr27atf/epXiouLq/UDAgAAABAYzGazJkyYoH379ikiIkI///nPNW/ePIWGhvo7NAAAgLpjgka95lLh3GQyaf/+/brzzjuVlpamVatWKTk5Wffdd1+tLvrZZ5/pnnvu0dWrVzVw4EB1795dZ86c0erVq7V27Vq9//77uvXWW2t1bjRgJKvg48rvjN8rAABByWKxKC0tTbfccos2bNig06dPa+LEibp06ZJWrlzp7/AAAACAG3KpcB4WFqYrV65Iknbv3i2bzVaniz799NPq1KmTCgoKZDKZHO0Wi0UZGRl6+umntXXr1jpdAwAAAID/rF69WjabTRs3blR0dLQk6dq1axo7dqymTp2qtm3b+jlCAAAAoHouFc67du2qSZMmKTMzU5K0Zs0abdu2rcq+BoNBM2bMuOH59u7dq9///vdORXPpu5nt06ZN089+9jNXwgIAAAACA9+QqmTr1q0aMGCAo2guSVlZWcrOzlZBQYEeffRR/wUH9/3QUP0xV5//njhHIKgvjwMAAH8KgtdMlwrnq1atUk5Ojn7zm9/IYDBo3bp1atSoUZV9XSmcN27cWCUlJVUeKykpqfbcAAAAAIKD2WzWY4895tQWFRWl2NhYmc1mP0UFAAAAuMalwnmPHj20Z88eSVJISIh27NihO++8s9YXHTBggKZNm6bu3bsrMTHR0f7Pf/5TM2bM0MCBA2t9bgAIWkHwaSsAAK6yWCyKioqq1G4ymVRcXFzlfUpKSpwm2NR1iUgAAACgtlwqnFe0a9cude7cuU4XXbJkifr166fOnTurS5cuat26tc6ePatPP/1U7du315IlS+p0fgAAAADBZ8GCBZozZ45nTubKchrV9anp+PU+rlyjpg/GXfngvK5xemJDdl+cw1dx+mI8ffHc8cQ16kucnvi9M4kFAPA9Ie7eoV+/fmrWrFmdLtq+fXt9+umnWrJkiRITE1VeXq7ExEQtXbpUn3zyidq1a1en8wMAAADwL5PJJKvVWqndYrE4rXte0ZQpU2S1Wh23kydPejtMAAAAoEpuzzj3lGbNmiknJ0c5OTn+CgFwH7MQAAAAXJKcnFxpLXOr1aqioiIlJydXeR+j0Sij0eiL8ADv8sX/G/i/CQDUP4Ge2wM9Pg9ze8Y5AAAAANQkMzNTO3bs0IULFxxt+fn5CgkJUUZGhv8CAwAAAFzgsxnnzZs3165du9SzZ09FRETIYKh+jTKDwVDl1zoBeFAD+5QQAAD4VnZ2tlasWKEhQ4Zo6tSpOn36tCZNmqTs7Gy1bdvW3+EBAAAAN+RW4fzKlStatWqVMjIy1KVLF7cu9NRTTyk2Ntbx7xsVzgEAAAAEN5PJpJ07d2rChAkaMmSIIiIiNHr0aD333HP+Ds11wTLRIFjiBGqL5zgAwA/cKpyHhYVp+vTp6tmzp9sXmjVrliTJbrcrJydH4eHhrF+I+qmub+p4UwgAAOqJlJQU7dixw99hAAAAAG5ze43z7t276/PPP6/1Ba9evapWrVrxBhoAAAAAAAA39qG9+hsAeJHba5wvX75cI0eOVExMjO677z7ddNNNbt0/NDRU8fHxKisrc/fSAAAAAAAAAAB4nduF87S0NJWWlmrYsGGSpJtuuslpvXJXNvYcN26clixZooyMDIWFhbkbAgAAAAAAAABfYpY/Ghi3C+ee2NjzxIkTOnr0qNq3b6/+/furdevWlYrvy5cvr9M1AAAAAAAAAACoDbcL57Nnz67zRTdv3iyj0Sij0ahDhw5VOk7hHF7BJ6MIdjyHAQAAAAAAfMLtwvl1drtdR48eVXFxsaKjo5WYmOjyTPTCwsLaXhYAAAAAAAAAAK8Kqc2dVq1apdjYWHXu3Fl9+vRR586d1bZtW7300kuejg8AgPrtQ3vVNwCBpbq/Vf5e4Qs89wC4qKysTC+88ILuuecetWzZUtHR0UpNTdWePXsq9S0tLdWkSZPUpk0bhYeHa+DAgfrHP/7hh6gBIDC5XTh/5ZVXNH78eKWnp2vjxo3av3+/Nm7cqLS0NI0fP15r1qxx6Txff/21pk2bpgEDBujWW2/VgAEDNH36dJ07d87tBwEAAAAAANDQXb58WQsWLFDPnj31xhtv6O2335bJZFJqaqree+89p745OTn67W9/q/nz52vDhg0qKSlRenq6rFarn6JHg3KjSQl8OIwA4fZSLUuXLlVOTo6WLVvm1P7ggw8qJiZGixcv1ujRo294joMHD+ree+9VeXm5BgwYoMTERJ05c0YrVqzQihUrVFBQoLvuusvd0AAAAAAAABqspk2b6tixYzKZTI62gQMHqkuXLlq6dKnS0tIkSadOndKaNWu0atUqPfbYY5KkO+64Q+3bt9fLL7+sZ555xi/xA0AgcbtwXlhYqEGDBlV57P7779fq1atrPMe4ceN06623asuWLWrevLmj3Wq1KjMzU+PHj69y01AAAAAACBjMiAMQYBo1auRUNL/e1rVrV33xxReOtoKCApWXl+vhhx92tEVHRysjI0NbtmyhcA4AqsVSLbGxsdq/f3+Vxw4cOKDY2Ngaz3H48GFNnjzZqWguSZGRkZo8ebI+++wzd8MCAAAAAADA91y7dk0HDhxQSkqKo81sNqtVq1aViuwpKSkym82+DhEAApLbM85HjRqluXPnqqSkRA899JBat26ts2fPKj8/X4sWLdLMmTNrPMfNN9+sCxcuVHnMarUqISHB3bAAwHuYTQYAAAAgSL3wwgs6ffq0nnzySUebxWJRVFRUpb4mk0nFxcXVnqukpEQlJSWOn202m0djBYBA4vaM82nTpmnChAlatGiRevbsqfj4eN1+++1atGiRJkyYoGnTptV4jkWLFmnWrFn6y1/+4tS+e/duzZ49W4sXL3Y3LLewyzQABC5yNAAA8Co2okOQsVqtMpvNNd5KS0sr3Xf79u2aNWuWZs6cqZ49e9Y5lgULFigyMtJxa9euXZ3PCQCByq3Cud1ul8Vi0XPPPaevvvpKmzZt0ptvvqnNmzfrq6++crngPWnSJFmtVqWlpSk6OlpJSUmKjo527N787LPPqmvXruratau6detWqwd2I+wyjaDHztOox8jRAAAAwH/k5+crJSWlxtuxY8ec7vfRRx/pJz/5iX76059WWh3AZDJV+Z7ZYrEoOjq62limTJkiq9XquJ08edIzDxIAApBbS7VcvXpVrVq10rvvvqv7779f9913X60u2rNnTxkMhlrd1xPYZRoAAhc5Gmhg+NAX3sJzC6gZfydBYfTo0Ro9erRb9/niiy+UmZmp3r17a82aNZWOJycn68yZM7JYLE7vu81ms5KTk6s9r9FolNFodCsWAAhWbhXOQ0NDFR8fr7Kysjpd9PXXX6/T/euKXaYBIHCRowEAAIDaKyoqUkZGhtq3b6/169erSZMmlfpkZGQoJCRE77zzjqMob7FYVFBQoBkzZvg6ZAAISG6vcT5u3DgtWbJEV65c8UY8fsMu0wAQuMjRAAAAQM0uX76szMxMff3115o5c6Y+++wzHThwQAcOHNDf/vY3R7/4+HiNHj1akyZN0muvvaaCggINHTpUkZGReuKJJ/z4CAAgcLg141ySTpw4oaNHj6p9+/bq37+/Wrdu7bTsisFg0PLlyz0apC+wyzQABC5yNAAAAOqkgSxLc+bMGX388ceSpAcffNDpWIcOHXT8+HHHz8uXL1ezZs00efJkXbx4UX369NGOHTsUGRnpy5ABIGC5XTjftGmTY02rQ4cOVTrur8K51WpVUVFRjf0SEhIUGhrq1OaNXabnzJlT5/MAQH1BjgYAAAC8r2PHjrLbXfuQwGg0avHixVq8eLGXowKA4OR24bzip5OBJD8/X2PGjKmx35EjR5w2uvDWLtMTJ050/Gyz2dSuXTtXHgYA1EvkaAAAAAAAEEzcWuP8ypUrioyM1KZNm7wVT62NHj1adru9xlvFgow7u0xX5Mou082bN3e6AUBDRo4GAAAAAADBxK3CeVhYmG666SY1buz2RPWA4+4u09dd32X6vvvu82W4ANCgkKMBAAAAAIA/uV0Bf+SRR7RmzRplZmZ6Ix6fqLjL9PLly/XZZ585jhmNRvXo0UOS8y7TjRo1UlxcnObPn88u0wDgReRowAUNZIMzAICfeeL1htcsAECQcrtwbjKZdODAAXXt2lX33nuvWrduLYPB4DhuMBj05JNPejRIT2OXaQAIXORoAAAAAADgbwa7q9st/z8hITde3cVgMKisrKxOQdU3NptNkZGRslqtnl9L94eG6o/xyT4A1MirORoAKqrufRvv2arl9RzN7wRV8cX/serLNTwhWOJElXgvDQS4G+VYiTxbA7dnnJeXl3sjDgAAAAAA4CnBUgwJljgBAA2OW5uDAgAAAAAAAABQ37lUOH/hhRf073//26lt3759unTpklNbYWGhHn/8cc9FBwAAAAAAAACAj7lUOJ8yZYpOnDjh+LmsrEx9+/aV2Wx26nf27FmtXbvWsxECAAAAAAAAAOBDLhXOq9o/1M09RQEAAAAAAAAACApubw4KAAAAAADqgA0xAQAIeGwOCgAAAAAAAABABS4Xzg0Gg0ttAAAAAAAAAAAEM5eXaklNTVVIiHOdvW/fvk5t5eXlnosMAAAAAAAAAAA/cKlwPmvWLG/HAQAAAAAAAABAQKBwDgAAAAAAAABABS4v1QIAAAAA9cqHdn9HAAAAgADl8uagAAAAAAAAAAA0BMw4D3bMkgEAAAgOvG8DggN/qwCA+oLXtDphxjkAAAAAAAAAABVQOAcAAAAAAAAAoAIK5wAAAAAAAAAAVEDhHAAAAAAAAACACiicAwAAAAAAAABQQWN/B9AQ2O3f7WBrs9n8HAkAuC8iIkIGg8HfYXgNORpAMCNHA0BgI08DQOCqKUdTOPeBixcvSpLatWvn50gAwH1Wq1XNmzf3dxheQ44GEMzI0QAQ2MjTABC4asrRBvv1jwfhNeXl5frqq6/q9EmzzWZTu3btdPLkyXr9ousrjKdnMZ6eFWjjWd9nyZCjAw/j6VmMp2cF2niSo10TaL+3YMd4ehbj6VmBNp7kadcE2u+tIeN3ETj4XXgfM84DQEhIiOLj4z1yrubNm/PH4kGMp2cxnp7FePoGOTpwMZ6exXh6FuPpG57M0RK/N09jPD2L8fQsxtM3yNP1F7+LwMHvwn/YHBQAAAAAAAAAgAoonAMAAAAAAAAAUAGF8yBhNBo1a9YsGY1Gf4dSLzCensV4ehbjGXz4nXkW4+lZjKdnMZ7Bid+bZzGensV4ehbjGZz4vQUOfheBg9+F/7E5KAAAAAAAAAAAFTDjHAAAAAAAAACACiicAwAAAAAAAABQAYVzAAAAAAAAAAAqoHAe4MxmswYOHKjw8HC1adNGzzzzjEpLS/0dVlD44osvlJ2dre7du6tx48bq0qVLlf3Wrl2rxMREhYWFqVu3btq8ebOPIw18+fn5Gjx4sOLj4xUeHq7u3bvr1Vdf1fe3SGAsXbNlyxb169dPMTExMhqNSkhI0MSJE2W1Wp36bdq0Sd26dVNYWJgSExP12muv+SliVIccXXvkaM8iT3sWebr+IE/XHnnac8jRnkWOrl/I0/5Bjg8MvD4EPgrnAcxisSgtLU2lpaXasGGD5s+fr1deeUUTJ070d2hB4fDhw/rTn/6km2++WZ07d66yz7p16zRmzBgNGzZMW7duVa9evTR06FAdOHDAx9EGtiVLluimm25Sbm6uNm3apMzMTI0ZM0Zz58519GEsXVdcXKy77rpLq1ev1p///GdNnDhRb775ph5++GFHn71792ro0KHq1auXtm7dqmHDhmnUqFFav369HyNHReTouiFHexZ52rPI0/UDebpuyNOeQ472LHJ0/UGe9h9yfGDg9SEI2BGw5s+fbw8PD7efP3/e0fbyyy/bGzVqZD99+rQfIwsOZWVljn8/8sgj9ltvvbVSn8TERPuIESOc2nr16mXPzMz0enzB5Ny5c5XaxowZY2/evLljnBnLunnllVfskhx/2xkZGfbevXs79RkxYoQ9JSXFH+GhCuTouiFHexZ52vvI08GHPF035GnPIUd7Hzk6OJGn/YccHxh4fQh8zDgPYFu3btWAAQMUHR3taMvKylJ5ebkKCgr8GFlwCAm58dP72LFjOnr0qLKyspzahw8frp07d6qkpMSb4QWVli1bVmrr0aOHbDabvv32W8bSA1q0aCFJKi0tVUlJiXbt2uU0a0b6bjyPHDmi48eP+yFCfB85um7I0Z5FnvY+8nTwIU/XDXnac8jR3keODk7kaf8hxwcGXh8CH4XzAGY2m5WcnOzUFhUVpdjYWJnNZj9FVX9cH8Pvj3FKSopKS0tVWFjoj7CCxt69exUXF6eIiAjGspbKysp05coVffTRR5o7d64efPBBdezYUf/617909erVKsdTEn//AYIc7V3klbojT9cdeTq4kae9i7xSN+TouiNHBz/ydOAiL/kPrw+BhcJ5ALNYLIqKiqrUbjKZVFxc7PuA6hmLxSJJlcbYZDJJEmN8A3v37tW6dev09NNPS2Isa6tDhw5q2rSpevbsqdjYWL399tuSGM9gQY72Lv4O6oY87Rnk6eBGnvYu/g5qjxztGeTo4EeeDlz8HfkHrw+Bh8I5ALecOnVKw4YNU2pqqnJycvwdTlDbsmWL9u3bp9/+9rc6cuSIHnjgAZWVlfk7LABBjjztOeRpAJ5GjvYccjSA+oTXh8DU2N8BoHomk0lWq7VSu8VicVoDDLVz/RM6q9WqNm3aONqvf6LHGFd24cIFZWZmqkWLFnrnnXcc66IxlrXTtWtXSVKvXr10xx13qHv37tq4caNjV/Pv//0znoGFHO1d5JXaIU97Fnk6uJGnvYu84j5ytGeRo4MfeTpwkZd8i9eHwMWM8wCWnJxcaV0vq9WqoqKiSusbwX3Xx/D7Y2w2mxUaGqqEhAR/hBWwLl++rEGDBslqtWrr1q2KjIx0HGMs665r165q0qSJvvjiC3Xq1ElNmjSpcjylyuubwT/I0d5FXnEfedq7yNPBhzztXeQV95CjvYscHZzI04GLvOQ7vD4ENgrnASwzM1M7duzQhQsXHG35+fkKCQlRRkaG/wKrJxISEpSYmKj8/Hyn9ry8PKWnpys0NNRPkQWea9euKSsrS0eOHNG2bdsUFxfndJyxrLuDBw/q6tWrSkhIkNFoVGpqqtavX+/UJy8vTykpKerYsaN/goQTcrR3kVfcQ572PvJ08CFPexd5xXXkaO8jRwcn8nTgIi/5Bq8PgY+lWgJYdna2VqxYoSFDhmjq1Kk6ffq0Jk2apOzsbLVt29bf4QW8S5cuacuWLZKkL7/8UjabzfHmqV+/foqJidHs2bM1cuRIderUSampqcrLy9PBgwf1/vvv+zP0gDN27Fht3rxZubm5stlsOnDggONYjx49ZDQaGUs3/PjHP9YPf/hDde3aVU2bNtXHH3+sRYsWqWvXrhoyZIgkacaMGerfv7/Gjh2rrKws7dq1S2+//bby8vL8GzwcyNF1Q472LPK0Z5Gn6wfydN2Qpz2HHO1Z5Oj6gzztP+T4wMDrQxCwI6B9/vnn9vT0dHvTpk3trVq1sj/99NP2kpISf4cVFAoLC+2Sqrzt2rXL0W/NmjX2m2++2R4aGmq/7bbb7Js2bfJf0AGqQ4cO1Y5lYWGhox9j6ZoFCxbYu3fvbo+IiLCHh4fbb731VvuMGTPsVqvVqd+7775rv+222+yhoaH2m2++2b527Vo/RYzqkKNrjxztWeRpzyJP1x/k6dojT3sOOdqzyNH1C3naP8jxgYHXh8BnsNvtds+X4wEAAAAAAAAACE6scQ4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAQD2Rn5+vwYMHKz4+XuHh4erevbteffVV2e12p35r165VYmKiwsLC1K1bN23evNlPEQNAYKJwDgAAAAAAUE8sWbJEN910k3Jzc7Vp0yZlZmZqzJgxmjt3rqPPunXrNGbMGA0bNkxbt25Vr169NHToUB04cMCPkQNAYDHYv/+RIzzObrfr4sWLioiIkMFg8Hc4AIAKyNEAELjI0QDgvq+//lotW7Z0anv88ceVl5cni8WikJAQJSUlqWfPnnr77bcdfXr37q2oqCht2bLF5WuRpwHUZ8w494GLFy8qMjJSFy9e9HcoAIDvIUcDQOAiRwOA+75fNJekHj16yGaz6dtvv9WxY8d09OhRZWVlOfUZPny4du7cqZKSEpevRZ4GUJ9ROAcAAAAAAKjH9u7dq7i4OEVERMhsNkuSkpOTnfqkpKSotLRUhYWF/ggRAAJOY38HAAAAAAAAAO/Yu3ev1q1bp9zcXEmSxWKRJEVFRTn1M5lMkqTi4uJqz1VSUuI0I91ms3k4WgAIHMw4BwAAAAAAqIdOnTqlYcOGKTU1VTk5OXU+34IFCxQZGem4tWvXzgNRAkBgonAOAAAAAABQz1y4cEGZmZlq0aKF3nnnHYWEfFcCuj6z3Gq1OvW/PhM9Ojq62nNOmTJFVqvVcTt58qSXogcA/2OpFgAAAAAAgHrk8uXLGjRokKxWq/bv36/IyEjHsetrm5vNZiUlJTnazWazQkNDlZCQUO15jUajjEaj9wIHgABC4RxAncwxGG54fJbd7qNIAHjKjf6u+ZsGAHgDrz2A51y7dk1ZWVk6cuSI9uzZo7i4OKfjCQkJSkxMVH5+vgYPHuxoz8vLU3p6ukJDQ30dcr3F/5eB4EbhHAAAAAAAoJ4YO3asNm/erNzcXNlsNh04cMBxrEePHjIajZo9e7ZGjhypTp06KTU1VXl5eTp48KDef/99P0YOAIGFwjkAAAAAAEA9UVBQIEl66qmnKh0rLCxUx44dNWLECF26dEkLFy7UwoULlZSUpI0bN6pXr16+DhcAAhaFcwAAAAAAgHri+PHjLvUbNWqURo0a5d1gACCIUTgHAAAAAACAT7G3AYBAF+LvAAAAAAAAAAAACCRuzzg/ceJEtcdCQkIUGRmpiIiIOgUFAAAAAAAAAIC/uF0479ixoww3+DrN9T6//vWvNWHChFoHBngCX/0CglN+fr5+97vf6a9//assFotuueUW5eTk6Be/+IXTa9DatWv1/PPP68SJE0pKStJzzz2nQYMG+TFyAAAAAEAgoCaEunJ7qZbf/e53io+PV1pampYvX64//OEPWr58ufr376+4uDitWLFCvXv31pNPPqkVK1Z4I2YAQD23ZMkS3XTTTcrNzdWmTZuUmZmpMWPGaO7cuY4+69at05gxYzRs2DBt3bpVvXr10tChQ3XgwAE/Rg4AAAAAAOoDt2ec79mzR/fee69efvllp/bx48fr8ccf11//+le99dZbat68uVatWsWscwCA2zZt2qSWLVs6fk5LS9P58+e1ZMkSzZgxQyEhIZo1a5aGDx+u//mf/5Ekpaam6pNPPtHcuXO1ZcsWf4UOAAAAAADqAbdnnK9bt04PPfRQlccefvhhbdiwQZI0aNAgFRYW1i06+Mwcg6HaGwD4WsWi+XU9evSQzWbTt99+q2PHjuno0aPKyspy6jN8+HDt3LlTJSUlvgoVAAAAAADUQ24XzkNCQvTxxx9Xeezvf/+7QkK+O2WjRo3UtGnTukUHAMD/s3fvXsXFxSkiIkJms1mSlJyc7NQnJSVFpaWlfHALAAAAAADqxO2lWkaOHKkZM2aotLRUDzzwgGJiYnTu3Dm9++67mjdvnp544glJ0l//+ld17tzZ4wEDABqevXv3at26dcrNzZUkWSwWSVJUVJRTP5PJJEkqLi6u9lwlJSVOM9JtNpuHowUAoDI2KAMAAAgubhfOc3Nz1bhxY82bN08zZsxwtBuNRo0bN07PP/+8JKlPnz760Y9+5LlIAQAN0qlTpzRs2DClpqYqJyenzudbsGCB5syZ44HIAAAAAAAIfHyAXztuF86bNGni2Jztk08+0b///W/FxsaqS5cuio6OdvS75557PBoogP8g4aGhuHDhgjIzM9WiRQu98847juXArs8st1qtatOmjaP/9ZnoFV+Pvm/KlCmaOHGi42ebzaZ27dp5I3wAAAAAABCk3C6cX2cymdSvXz9PxgIAgMPly5c1aNAgWa1W7d+/X5GRkY5j19c2N5vNSkpKcrSbzWaFhoYqISGh2vMajUYZjUbvBQ4AAAAAAIKe25uDStLXX3+tyZMnKz09XUlJSTp8+LAkafny5Tpw4IBHAwQANDzXrl1TVlaWjhw5om3btikuLs7peEJCghITE5Wfn+/UnpeXp/T0dIWGhvoyXAAAAAAAUM+4PeP8o48+Unp6uiIjI9WvXz/t3r3bscna6dOntXTpUuXl5Xk8UABAwzF27Fht3rxZubm5stlsTh/K9ujRQ0ajUbNnz9bIkSPVqVMnpaamKi8vTwcPHtT777/vx8gBAAAAAEB94Hbh/Mknn1SvXr307rvvymAw6K233nIcu+uuuyiaAwDqrKCgQJL01FNPVTpWWFiojh07asSIEbp06ZIWLlyohQsXKikpSRs3blSvXr18HS4AAAAAAKhn3C6cHzp0SBs2bFCTJk1UVlbmdCwmJkZnz571WHAAgIbp+PHjLvUbNWqURo0a5d1gAAAAAABAg+N24Tw8PFw2m63KYydOnFCLFi3qHBRQX80xGKo9Nstu92EkAAAAAAAAAKrj9uagP/rRjzRv3jydP3/e0WYwGHT58mUtX75c9913n0cDBAAAAAAAAADAl9wunD///POy2Wy65ZZblJWVJYPBoOnTp6tz5846f/685s2b5404AQAAAAAAAADwCbeXaomLi9Pf//53LV26VNu3b1enTp10/vx5jRw5UhMnTlR0dLQ34gQAAAAAoFo3WhZRYmlEAADgHrcL55IUFRWlOXPmaM6cOZ6OBwAAAAAAAAAAv3J7qRYAAAAADdsXX3yh7Oxsde/eXY0bN1aXLl2q7Ld27VolJiYqLCxM3bp10+bNm30cKQAAAFA7Ls04/8EPfiBDDV97q+jYsWM19jl//rw++OADFRUV6fLly2rRooWSkpLUvXt3t64FAAAAwLcOHz6sP/3pT7rrrrtUXl6u8vLySn3WrVunMWPGaNq0aUpLS1NeXp6GDh2qPXv26O677/ZD1AAAAIDrXCqcDx482KmYvX79etlsNg0YMECtW7fWmTNntGPHDkVGRuqhhx6q9jxWq1VvvPGG3njjDf3973+X/XtrzBkMBjVr1kxDhw7VmDFj1KdPn1o+LAAAAADe8sADD2jw4MGSpEcffVQffvhhpT6zZs3S8OHD9T//8z+SpNTUVH3yySeaO3eutmzZ4tN4AQAAAHe5VDhftmyZ49+LFi1Su3bttG3bNjVv3tzRbrValZmZqdatW1d5jvnz52vx4sUymUx6+OGHNWvWLHXr1k0tW7aU0WjUhQsXdPz4cX344YfaunWr0tPT9V//9V968cUX1blz57o9SgAAAMCPbrRpYTBuWBgScuMVH48dO6ajR4/q+eefd2ofPny4Jk2apJKSEhmNRm+GCAAAANSJ25uDvvjii1q1apVT0VySIiMjNXnyZI0dO1bPPvtspfvt3r1bGzZsUP/+/as8b8uWLdWyZUv98Ic/VHZ2tiwWi1auXKndu3dTOAcAAACCiNlsliQlJyc7taekpKi0tFSFhYWVjgEAEAhu9GG3FJwfeAOoHbcL58XFxbJarVUes1qtslgsVR4rKChw6zomk0kzZsxwNzwAAAAAfnb9/wRRUVFO7SaTSdJ3/6eoSklJiUpKShw/22w27wQIAAAA1ODG37GsQnp6up599ln95S9/cWrfvXu3Jk+erPT0dI8FBwAAAKDhWLBggSIjIx23du3a+TskAAAANFBuzzh/+eWX9eCDDyotLU2RkZGKiYnRuXPnZLVa1aNHD61evbrGc8ydO7faYyEhIYqMjFT37t3Vt29fd8MDAAAA4GfXZ5ZbrVa1adPG0X59Jnp0dHSV95syZYomTpzo+Nlms1E8BwAAgF+4XTiPjY3VoUOHtG3bNn3wwQcqKipSbGys7rzzTt17770unWPp0qUqLS3V5cuXJUlhYWG6cuWKJKlp06a6evWqysrKdPvtt2vLli2KiYlxN0wAAICAVd82igS+7/r65WazWUlJSY52s9ms0NBQJSQkVHk/o9HIpqEAACDgsPa9e+rLeLm9VMt19957r2bOnKmXXnpJM2fOdLloLknvvfee4uLi9NZbb8lms+nSpUuy2Wx644031LZtW/3lL39RQUGBTp06pUmTJtU2RAAAAAB+kJCQoMTEROXn5zu15+XlKT09XaGhoX6KDAAAAHCN2zPOPWHcuHF66qmnNHLkSEdbs2bN9LOf/Uzffvutfv3rX+vgwYOaPn36DZd1AQAAAOB7ly5d0pYtWyRJX375pWw2m9avXy9J6tevn2JiYjR79myNHDlSnTp1UmpqqvLy8nTw4EG9//77/gwdAAAAcIlfCud/+9vfNHPmzCqPdezYUZ9++qkkqUuXLrJarb4MDQAAAEANzp49q4cfftip7frPu3btUv/+/TVixAhdunRJCxcu1MKFC5WUlKSNGzeqV69e/ggZAICAxTJ+QGDyS+G8Q4cOWrNmTZXLu7zyyivq0KGDJOn8+fNq2bKlr8MDEKCC8c1EMMYMAEBNOnbsKLsLr2OjRo3SqFGjfBARAAAA4Fl+KZwvWLBAWVlZSkpK0qBBgxQTE6Nz585p8+bNOnbsmGMtxJ07d+qee+7xR4gAAAAAAA9gIgEAAAhGfimcDx06VB988IEWLFigjRs3qqioSLGxsbrjjjuUl5en7t27S5J+85vf+CM8AAAAAAAAAEAD5lbh/N///rcKCgpkNptVXFwsSYqOjlZycrIyMjLUpk0bl8/Vo0cP/fGPf3QvWgDwAGY9AYD/eCoHk8sBAAAAeJNLhfOrV6/qqaee0urVq1VWVqbY2FiZTCZJksViUVFRkRo1aqRf/vKXys3NVePGrtfjT548qZMnT6pbt24KDw+v3aMAAAAAAAAAAMBDXKpwT58+XW+99ZZ+85vfKCsrS5GRkU7HbTab/vjHP+qZZ55R06ZNtXDhwhrP+corr2jOnDkqKiqSwWDQoUOHdPvtt2vo0KHq37+/fvWrX9XuEQEAACCo+Wo2+Y2u4+lrAQCA+iPY30MEe/yAr7hUOH/zzTe1dOlSPfroo1Ueb968uUaPHq1GjRpp6tSpNRbOly1bpmeffVYTJ05Uenq6MjIyHMf69++v/Px8CudosHz51XO+5g4AAAAAAABU5lLh/OLFi4qPj6+xX3x8vC5evFhjvxUrVmjGjBmaPn26ysrKnI4lJSXpH//4hythAQAAAAAAAADgcSGudOrVq5fmz58vq9VabR+bzab58+erd+/eNZ7v9OnT1fZr0qSJvvnmG1fCAgAAAAAAAADA41yacb5y5UqlpaWpXbt2GjBggJKTkxUVFSVJslqtMpvN2rFjhyIiIrRz584az9ehQwd98MEHSktLq3Ts4MGDSkxMdO9RAAAAAACAgMCSkACA+sClwnlSUpIOHz6sl156Sdu2bdPatWtlsVgkSSaTScnJyZoyZYqys7MdBfUbGTNmjGbPnq2YmBj9+Mc/liRdvXpVf/rTn7Ro0SI999xztX9EAAAEEP7jCAAAAABA8HGpcC5JUVFRmjJliqZMmVLniz799NM6ceKEHn/8cT3xxBOSpD59+kiSxo4dq7Fjx9b5GgAAAAAAAAAA1IbLhfMbOXr0qNq3b6+wsDCX7/Piiy/q17/+tbZv367z588rOjpa6enpuuWWWzwREgAAAAAAAFAv3OibrNJ/vs3KN14Bz6lz4dxqtSolJUW7d+9W37593bpvQkKCY8Y5gPrL1Rf4YMMbEjRU9fVvGkD90pBfpxvyYwcAAPAUlwrnOTk51R4rLS2V3W7XsmXLlJ+fL4PBoOXLl1fq9/7777sV2D333ONWf28xm82aMGGC9u3bp4iICP385z/XvHnzFBoa6u/QAAAAAAAAAABe4FLhfOXKlYqMjKxy48/y8nIZDAbt27dPYWFh1RbO+/fvL4PBIPv/m+FgqDALwm63O/0sSWVlZe48Dq+wWCxKS0vTLbfcog0bNuj06dOaOHGiLl26pJUrV/o7PAAAAHgZ37AAAACAPwTqN8gCNS5vcHnG+WuvvaZHH31Uzz77rNNa5hcuXFB0dLTy8vJuOEv8b3/7m+PfZ8+e1ahRo5SamqqHHnpIrVu31pkzZ5Sfn6/du3dr7dq1dXhInrN69WrZbDZt3LhR0dHRkqRr165p7Nixmjp1qtq2bevnCPnPHAAAAAAAAAB4WogrnZYtW6a9e/dq165dSk5O1vr16x3Hvj9TvDrdunVz3F5++WUNHz5cb7zxhh544AHdeeedeuCBB/Tmm29q2LBheumll2r3aDxs69atGjBggKNoLklZWVkqLy9XQUGBHyMDAAAAAAAAAHiLy5uD3nbbbdq9e7d+//vf61e/+pVWrlypFStWqH379m5f9M9//rM2bNhQ5bGMjAz9+Mc/dvuc3mA2m/XYY485tUVFRSk2NlZms9lPUQEAAH+pr19LrK+PCwAAAIBrWNWiMpdmnFc0cuRI/eMf/1DPnj111113KScnx+VZ59c1a9ZMO3furPLY9u3b1axZM3fD8gqLxVLluu4mk0nFxcXV3q+kpEQ2m83pBgDwDrPZrIEDByo8PFxt2rTRM888o9LSUn+HBQAAAAQ03kcDwI25POO8ombNmik3N1ePPfaYnnrqKbVv395p3fOajBs3TjNnztSZM2c0ZMgQtWrVSmfPntXGjRv11ltvac6cObUJK2AsWLDAI4/BlU96XPm0xxfnuX7/QOvjqU/DfBmPp/p4Kp6azuOLeN25lq8et6vnCbS/rfqGTZyBwNIQ8xDgSb78G+LvNTDwe4C/8D4aAGpWq8L5dbfeequ2bdvm9v2mT5+uqKgoLVy4UG+88YYMBoPsdrtiY2O1bNkyTZgwoS5heYzJZJLVaq3UbrFYnNY9/74pU6Zo4sSJjp9tNpvatWvnlRgBoCELhk2cAQAAgEATLO+jWToi8PE7Qn3m9lItnjJ+/HidOHFCx48f1759+3T8+HGdPHkyYIrmkpScnFxpLXOr1aqioiIlJydXez+j0ajmzZs73QAAnscmzgAAAID7eB8NADWr04zzugoJCVH79u1rtcGoL2RmZmr+/Pm6cOGCY63z/Px8hYSEKCMjw7/BuYFP93yDcQZ8j02c0dDxFX8AAFAbvI8GgJr5rHD+0ksv6bHHHpPRaHT5Pp9++qnOnTuntLQ0L0ZWvezsbK1YsUJDhgzR1KlTdfr0aU2aNEnZ2dkB87UlAGjIarOJc0lJiUpKShw/s4EzAAAIdnyQCnfV5n20xHtpAA2Lzwrnr7/+uubMmaMRI0bo4Ycf1h133KEmTZpU6vfVV19p69at+sMf/qCDBw/q9ddf91WIlZhMJu3cuVMTJkzQkCFDFBERodGjR+u5557zW0wAgLrx1AbOkm83ow2kjZU9teFvXfsE4thwHt9tgl1TH09tOu3LsQEAINB58r20p16Hpbq/16vYz5NxebKfP87lqfdTrp6rpn7e+F3641yBGn+gPsdq6ufN99luFc6vXLmiVatWKSMjQ126dHHrQgcPHtTGjRu1fPlyvfjii2rSpIkSExMVExMjo9GoCxcuqLCwUGfPnlV0dLQeeeQR/e53v1ObNm3cuo6npaSkaMeOHX6Nob7hP47wJp5fDUttNnFmA2cA8B2z2awJEyZo3759ioiI0M9//nPNmzdPoaGh/g4NABq02ryPlngvDaBhcatwHhYWpunTp6tnz561utjQoUM1dOhQHT9+XDt27NCHH36ooqIiXblyRR06dFBGRob69Omj/v37VzkbHQCAimqzibPRaHRr2TAAQO1YLBalpaXplltu0YYNG3T69GlNnDhRly5d0sqVK/0dHgA0aLV5Hy3xXhpAw+L2Ui3du3fX559/rn79+tX6oh07dtTo0aM1evToWp8DAID6sokzANRHq1evls1m08aNGx2zF69du6axY8dq6tSp7BlUT7C2NoIBz9PKeB8NX/Pk31pD/buF74W4e4fly5dr6dKlWr9+vS5duuSNmAAAcEl2drYiIiI0ZMgQFRQU6LXXXmMTZwAIEFu3btWAAQOcvvKflZWl8vJyFRQU+DEyAADvowGgZm7POE9LS1NpaamGDRsmSbrppptkqPDprcFgqHKdLAAAPI1NnAEgcJnNZj322GNObVFRUYqNja20PAAAwLd4Hw0ANXO7cP7UU085FcoBAPAnNnEGgMBksVgcX/+vyGQyqbi4uMr7lJSUqKSkxPGzzWbzVngA0ODxPhoAbsztwvns2bO9EAYAAACAhm7BggWaM2eOR87lyvqnrqx77Kk+rsTjqZg9dS1XeOpannjsdT3H9fPUtY+nnxe+PE+gPa5AiwcA0LC4XTi/zm636+jRoyouLlZ0dLQSExNdmolut9tlsVgUHh7OTsz1EG8oAPfxdwPUDX9DN8b4wF9MJlOVSzhaLBandc8rmjJliiZOnOj42WazqV27dl6LEQAAAKhOrQrnq1at0ty5c3Xu3DnZ7XYZDAa1atVKM2fO1C9/+csb3vfq1atq1aqV3n33Xd1///21ChoAAABAYEtOTq60lrnValVRUZGSk5OrvI/RaGRyDQAA8BkmmeBG3C6cv/LKKxo/frxGjBihYcOGqXXr1jpz5ozy8vI0fvx4NWnSRKNHj672/qGhoYqPj1dZWVmdAgcAAMGNN6lA/ZaZman58+frwoULjrXO8/PzFRISooyMDP8GBwAAANTA7cL50qVLlZOTo2XLljm1P/jgg4qJidHixYtvWDiXpHHjxmnJkiXKyMhQWFiYuyEAkii4AAAABLLs7GytWLFCQ4YM0dSpU3X69GlNmjRJ2dnZatu2rb/DAwAAAG7I7cJ5YWGhBg0aVOWx+++/X6tXr67xHCdOnNDRo0fVvn179e/fX61bt3ZaH91gMGj58uXuhgYAAAAgQJhMJu3cuVMTJkzQkCFDFBERodGjR+u5557zd2gAAAB+w0TQ4OF24Tw2Nlb79+/XgAEDKh07cOCAYmNjazzH5s2bHesXHjp0qNJxCucAAACoC/5DEhhSUlK0Y8cOf4cBAAAAuM3twvmoUaM0d+5clZSU6KGHHlLr1q119uxZ5efna9GiRZo5c2aN5ygsLKxVsAAAAADgS3wIAwAA0DC5XTifNm2aLBaLFi1apAULFvznRI0ba8KECZo2bZpHAwQAAJ4TbAWgYIsXAAAAAFA/uFQ4t9lsioiIkMFgkMFgUG5urqZOnaqDBw/KYrEoOjpad955p1q0aOHyhU+fPq1ly5Zp7969Ki4uVnR0tPr27atf/epXiouLq/UDAgAAAAAAAACgLkJc6WQymRxrkaelpclsNqtFixa67777NHLkSGVmZrpVNP/ss8902223afXq1YqNjVVaWppiY2O1evVqde3aVYcPH67dowEAAAAAAAAAoI5cmnEeFhamK1euSJJ2794tm81Wp4s+/fTT6tSpkwoKCmQymRztFotFGRkZevrpp7V169Y6XQMA6hOWqwAAAAguvH8DACC4uVQ479q1qyZNmqTMzExJ0po1a7Rt27Yq+xoMBs2YMeOG59u7d69+//vfOxXNpe9mtk+bNk0/+9nPXAkLAAAAAAAAgBfwASAaOpcK56tWrVJOTo5+85vfyGAwaN26dWrUqFGVfV0pnDdu3FglJSVVHispKan23AAAALXhyzf9nroW/1EBAAAAAP9xqXDeo0cP7dmzR5IUEhKiHTt26M4776z1RQcMGKBp06ape/fuSkxMdLT/85//1IwZMzRw4MBanxtAcKJABAAAAAAAgEDhUuG8ol27dqlz5851uuiSJUvUr18/de7cWV26dFHr1q119uxZffrpp2rfvr2WLFlSp/MDAAAAAIDA5crEGSbXwFU8VwB4Q4i7d+jXr5+aNWtWp4u2b99en376qZYsWaLExESVl5crMTFRS5cu1SeffKJ27drV6fwAAAAAAAAAANSW2zPOPaVZs2bKyclRTk6Ov0IAAAAAAAAAAKASvxXOAQCA6/g6MwAAAACgoobyf0B/PU6fFc6bN2+uXbt2qWfPnoqIiJDBYKi2r8FgkNVq9VVoAAAAAAAEJE8VCxpKcQUAAE9xq3B+5coVrVq1ShkZGerSpYtbF3rqqacUGxvr+PeNCucAAAAAAAAAAPiLW4XzsLAwTZ8+XT179nT7QrNmzZIk2e125eTkKDw8XEaj0e3zAP7A7AwEA56nAAAAAAAAnhHi7h26d++uzz//vNYXvHr1qlq1aqUdO3bU+hwAAAAAAAAAAHiL22ucL1++XCNHjlRMTIzuu+8+3XTTTW7dPzQ0VPHx8SorK3P30gAA1Et8WyAw8Hu4McYHAAAAQEPiduE8LS1NpaWlGjZsmCTppptuclqv3JWNPceNG6clS5YoIyNDYWFh7obQYATaf1ADLR4AAAAAAAAA8Aa3C+ee2NjzxIkTOnr0qNq3b6/+/furdevWlYrvy5cvr9M1AAAAAAAAAAQPJm0ikLhdOJ89e3adL7p582YZjUYZjUYdOnSo0nEK5wAAAAgW/AcPAAAAqH/cLpxfZ7fbdfToURUXFys6OlqJiYkuz0QvLCys7WUBAAAAAAAAAPCqkNrcadWqVYqNjVXnzp3Vp08fde7cWW3bttVLL73k6fgAAAAAAAAAAPApt2ecv/LKKxo/frxGjBihYcOGqXXr1jpz5ozy8vI0fvx4NWnSRKNHj67xPF9//bWWLl2qgwcPqqioSLGxsbr77rv1q1/9SjExMbV6MAAAAAAAAAAA1JXbhfOlS5cqJydHy5Ytc2p/8MEHFRMTo8WLF9dYOD948KDuvfdelZeXa8CAAUpMTNSZM2e0YsUKrVixQgUFBbrrrrvcDQ0AAAAAADQg7DMBAPAWtwvnhYWFGjRoUJXH7r//fq1evbrGc4wbN0633nqrtmzZoubNmzvarVarMjMzNX78+Co3DUXDwZsfAAAAAAAAAP7i9hrnsbGx2r9/f5XHDhw4oNjY2BrPcfjwYU2ePNmpaC5JkZGRmjx5sj777DN3wwIAAADgA9u3b9dPf/pTderUSQaDQePHj6+yX2lpqSZNmqQ2bdooPDxcAwcO1D/+8Q8fRwsAAADUjtszzkeNGqW5c+eqpKREDz30kFq3bq2zZ88qPz9fixYt0syZM2s8x80336wLFy5UecxqtSohIcHdsAAAQADhm0NA/bVt2zZ9/PHH6tevn4qLi6vtl5OTo3Xr1mnJkiWKi4vTc889p/T0dB0+fFiRkZE+jBgAAABwn9uF82nTpslisWjRokVasGDBf07UuLEmTJigadOm1XiORYsWady4cWrXrp369evnaN+9e7dmz56tlStXuhsWAHgURT8AAKq2aNEi5ebmSpLee++9KvucOnVKa9as0apVq/TYY49Jku644w61b99eL7/8sp555hmfxQvAs3ifjGDFcxeAu9wqnNvtdlksFj333HOaOnWqDh48KIvFoujoaN15551q0aKFS+eZNGmSrFar0tLSFBkZqZiYGJ07d05Wq1Umk0nPPvusnn32WUmSwWDQxx9/7P4jAwAAAOBxISE1r/ZYUFCg8vJyPfzww4626OhoZWRkaMuWLRTOAQAAEPDcKpxfvXpVrVq10rvvvqv7779f9913X60u2rNnTxkMhlrdFwAAAEBgM5vNatWqlUwmk1N7SkqK1q5d66eoAAAAANe5VTgPDQ1VfHy8ysrK6nTR119/vU73B1AzvoaGYFVWVqbc3Fxt3rxZn3/+ucrLy9WtWzfNnTtXffv2depbWlqqadOm6a233tLFixfVu3dvrVy5UklJSX6KHgAgSRaLRVFRUZXaTSbTDddFLykpUUlJieNnm83mjfAAAACAGrm9xvm4ceO0ZMkSZWRkKCwszBsxAQAasMuXL2vBggV69NFH9eyzz6pRo0Z65ZVXlJqaqoKCAqWlpTn6svEcANSd1WpVUVFRjf0SEhIUGhrq1VgWLFigOXPmePUaFTHRAFXheQEAAKRaFM5PnDiho0ePqn379urfv79at27ttOyKwWDQ8uXLPRokAKDhaNq0qY4dO+b09f6BAweqS5cuWrp0qaNwzsZzAOAZ+fn5GjNmTI39jhw5ouTkZJfOaTKZZLVaK7Vf3x+pOlOmTNHEiRMdP9tsNrVr186lawIAAACe5HbhfNOmTTIajTIajTp06FCl4xTOAQB10ahRo0pr4jZq1Ehdu3bVF1984Whj4zkA8IzRo0dr9OjRHj1ncnKyzpw5I4vF4pTTzWbzDYvv1/+fAQAAAPib24Xz48ePeyEMAACqd+3aNR04cMBpjXM2ngOAwJWRkaGQkBC98847jqK8xWJRQUGBZsyY4efoAAAAgJq5VTi/cuWKWrdurd/97nd64IEHvBUTAABOXnjhBZ0+fVpPPvmko42N5wDAP7788kvHN08vXbqkf/3rX1q/fr0k6aGHHpIkxcfHa/To0Zo0aZIaNWqkuLg4zZ8/X5GRkXriiSf8FjsAAADgKrcK52FhYbrpppvUuLHbE9UBAA1YXTae2759u2bNmqWZM2eqZ8+edY7F1xvPAUB9s2vXLv3iF79w/Lxt2zZt27ZNkmSvsKni8uXL1axZM02ePFkXL15Unz59tGPHDjZvBgAAQFBwuwL+yCOPaM2aNcrMzPRGPACAeqi2G8999NFH+slPfqKf/vSnmjlzplNfNp4DAP949NFH9eijj9bYz2g0avHixVq8eLH3gwIAAPCzWRUmEKB+cLtwbjKZdODAAXXt2lX33nuvWrduLYPB4DhuMBicvkoPAEBtNp774osvlJmZqd69e2vNmjWVjrPxHAAgUPAf5YaH3zkAAPWf24XzKVOmSJKKior02WefVTpO4RwAUFdFRUXKyMhQ+/bttX79ejVp0qRSHzaeAwAAAAAA3uJ24by8vNwbcQAAIEm6fPmyMjMz9fXXX2v58uVOH9IajUb16NFDEhvPAQAAAAAA72mQu3yWlZUpNzdXmzdv1ueff67y8nJ169ZNc+fOVd++fZ36lpaWatq0aXrrrbd08eJF9e7dWytXrlRSUpKfogeA+u3MmTP6+OOPJUkPPvig07EOHTro+PHjjp/ZeA4AAAAAAHhDiCudXnjhBf373/92atu3b58uXbrk1FZYWKjHH3/cc9F5yeXLl7VgwQL17NlTb7zxht5++22ZTCalpqbqvffec+qbk5Oj3/72t5o/f742bNigkpISpaenV7khHQCg7jp27Ci73V7lrWLRXPrPxnNnzpzRpUuXtH379huubw4AAABUZZbdXu0NANAwuVQ4nzJlik6cOOH4uaysTH379pXZbHbqd/bsWa1du9azEXpB06ZNdezYMS1dulT333+/7r33XuXn5+uWW27R0qVLHf1OnTqlNWvW6IUXXtBjjz2mH/3oR/rf//1fXbhwQS+//LIfHwEAAAAAAAAAwFtcKpzbq/iEtaq2YNGoUSOZTKZKbV27dtVXX33laCsoKFB5ebkefvhhR1t0dLQyMjK0ZcsWn8ULAAAAAABQk7KyMr3wwgu655571LJlS0VHRys1NVV79uyp1Le0tFSTJk1SmzZtFB4eroEDB+of//iHH6IGgMDkUuG8Ibh27ZoOHDiglJQUR5vZbFarVq0qFdlTUlIqzbYHAAAAAADwJ5amBQDPaZCbg1blhRde0OnTp/Xkk0862iwWi6Kioir1NZlMKi4urvZcJSUlKikpcfxss9k8GisAAAAANDSsNe19jHHwu740bcUJgAMHDlSXLl20dOlSpaWlSfrP0rSrVq3SY489Jkm644471L59e7388st65pln/BI/AAQSlwvnBoPBpTZ/sVqtKioqqrFfQkKCQkNDndq2b9+uWbNmaebMmerZs2edY1mwYIHmzJlT5/MAAAAAAAC46kZL037xxReOtpqWpqVwDgBuFM5TU1MVEuK8skvfvn2d2srLyz0XmZvy8/M1ZsyYGvsdOXJEycnJjp8/+ugj/eQnP9FPf/pTzZw506mvyWSq8itKFotF0dHR1V5jypQpmjhxouNnm82mdu3aufIwAAAAAAAAPOb60rR9+/Z1tN1oadq1a9f6OkQACEguFc5nzZrl7TjqbPTo0Ro9erRb9/niiy+UmZmp3r17a82aNZWOJycn68yZM7JYLE4vJmaz2an4/n1Go1FGo9GtWAAAAACgJiylAcBdLE0LALVTbwrn7ioqKlJGRobat2+v9evXq0mTJpX6ZGRkKCQkRO+8846jKG+xWFRQUKAZM2b4OmQAAAAAANDAsDQtAPhHg9wc9PLly8rMzNTXX3+t5cuX67PPPnMcMxqN6tGjhyQpPj5eo0eP1qRJk9SoUSPFxcVp/vz5ioyM1BNPPOGv8AEAAAAAQAPB0rQA4B8NsnB+5swZffzxx5KkBx980OlYhw4ddPz4ccfPy5cvV7NmzTR58mRdvHhRffr00Y4dOxQZGenLkAEAAAAAQAPE0rQA4B8Gu51F8rzNZrMpMjJSVqtVzZs393c4AIAKyNEAELjI0QDgvqKiIvXp00ctWrTQrl271KxZs0p9Tp06pY4dO2r16tVOS9O2b99eM2bM0DPPPOPStcjTAOqzBjnjHAAAAAAAoL5haVoA8BwK5wAAAAAAAPUAS9MCgOewVIsP8NUlAAhc5GgACFzkaAAIbORpAPVZiL8DAAAAAAAAAAAgkFA4BwAAAAAAAACgAtY494Hrq+HYbDY/RwIA7ouIiJDBYPB3GF5DjgYQzMjRABDYyNMAELhqytEUzn3g4sWLkqR27dr5ORIAcF99X6+QHA0gmJGjASCwkacBIHDVlKPZHNQHysvL9dVXX9Xpk2abzaZ27drp5MmT9fpF198YZ+9jjL3P02Nc32fJkKODB+PsfYyxb3hynMnRruG57X2MsW8wzt7He2n38F46+DH+/sX4+xczzgNASEiI4uPjPXKu5s2b84fkA4yz9zHG3scYu4YcHXwYZ+9jjH2Dca6ZJ3O0xJj7AmPsG4yz9zHGruG9dP3B+PsX4x+Y2BwUAAAAAAAAAIAKKJwDAAAAAAAAAFABhfMgYTQaNWvWLBmNRn+HUq8xzt7HGHsfY+x7jLlvMM7exxj7BuPse4y59zHGvsE4ex9j7HuMuX8x/v7F+Ac2NgcFAAAAAAAAAKACZpwDAAAAAAAAAFABhXMAAAAAAAAAACqgcB7gzGazBg4cqPDwcLVp00bPPPOMSktL/R1WUPviiy+UnZ2t7t27q3HjxurSpUuV/dauXavExESFhYWpW7du2rx5s48jDU75+fkaPHiw4uPjFR4eru7du+vVV1/V91eFYnzrZsuWLerXr59iYmJkNBqVkJCgiRMnymq1OvXbtGmTunXrprCwMCUmJuq1117zU8T1F3nas8jR3kee9j5ydOAgR3sWOdr7yNG+QZ4OHORp3yB/+w95PbhROA9gFotFaWlpKi0t1YYNGzR//ny98sormjhxor9DC2qHDx/Wn/70J918883q3LlzlX3WrVunMWPGaNiwYdq6dat69eqloUOH6sCBAz6ONvgsWbJEN910k3Jzc7Vp0yZlZmZqzJgxmjt3rqMP41t3xcXFuuuuu7R69Wr9+c9/1sSJE/Xmm2/q4YcfdvTZu3evhg4dql69emnr1q0aNmyYRo0apfXr1/sx8vqFPO155GjvI097Hzk6MJCjPY8c7X3kaN8gTwcG8rTvkL/9h7we5OwIWPPnz7eHh4fbz58/72h7+eWX7Y0aNbKfPn3aj5EFt7KyMse/H3nkEfutt95aqU9iYqJ9xIgRTm29evWyZ2Zmej2+YHfu3LlKbWPGjLE3b97cMfaMr3e88sordkmO/JCRkWHv3bu3U58RI0bYU1JS/BFevUSe9jxytPeRp/2DHO175GjPI0d7Hznaf8jTvkee9h3yt/+Q14MbM84D2NatWzVgwABFR0c72rKyslReXq6CggI/RhbcQkJu/LQ/duyYjh49qqysLKf24cOHa+fOnSopKfFmeEGvZcuWldp69Oghm82mb7/9lvH1ohYtWkiSSktLVVJSol27djnNmpG+G+cjR47o+PHjfoiw/iFPex452vvI0/5BjvY9crTnkaO9jxztP+Rp3yNP+w7523/I68GNwnkAM5vNSk5OdmqLiopSbGyszGazn6Kq/66P7ffHPiUlRaWlpSosLPRHWEFt7969iouLU0REBOPrYWVlZbpy5Yo++ugjzZ07Vw8++KA6duyof/3rX7p69WqV4yyJHOIh5GnfI4d4B3naO8jR/kWO9j3yh3eQo72HPO1f5OnAQW7xLfJ68KBwHsAsFouioqIqtZtMJhUXF/s+oAbCYrFIUqWxN5lMksTYu2nv3r1at26dnn76aUmMr6d16NBBTZs2Vc+ePRUbG6u3335bEuPsK+Rp3+O57Xnkae8hR/sXOdr3eG57Hjnau8jT/kWeDhw8532HvB5cKJwD8JpTp05p2LBhSk1NVU5Ojr/DqZe2bNmiffv26be//a2OHDmiBx54QGVlZf4OC0CQIE97FzkaQF2Qo72PPA3Al8jrwaexvwNA9Uwmk6xWa6V2i8XitAYYPOv6p3pWq1Vt2rRxtF//FJCxd82FCxeUmZmpFi1a6J133nGsqcb4elbXrl0lSb169dIdd9yh7t27a+PGjY6d0r+fQxhnzyJP+x45xHPI095HjvYvcrTvkT88hxztG+Rp/yJPBw5yi/eR14MTM84DWHJycqV1vaxWq4qKiiqtfQTPuT623x97s9ms0NBQJSQk+COsoHL58mUNGjRIVqtVW7duVWRkpOMY4+s9Xbt2VZMmTfTFF1+oU6dOatKkSZXjLFVePw21Q572PXKIZ5CnfY8c7XvkaN8jf3gGOdo/yNO+R54OHOQW7yKvBy8K5wEsMzNTO3bs0IULFxxt+fn5CgkJUUZGhv8Cq+cSEhKUmJio/Px8p/a8vDylp6crNDTUT5EFh2vXrikrK0tHjhzRtm3bFBcX53Sc8fWegwcP6urVq0pISJDRaFRqaqrWr1/v1CcvL08pKSnq2LGjf4KsZ8jTvkcOqTvytH+Qo32PHO175I+6I0f7D3na98jTgYPc4j3k9eDGUi0BLDs7WytWrNCQIUM0depUnT59WpMmTVJ2drbatm3r7/CC1qVLl7RlyxZJ0pdffimbzeZ4Q9SvXz/FxMRo9uzZGjlypDp16qTU1FTl5eXp4MGDev/99/0ZelAYO3asNm/erNzcXNlsNh04cMBxrEePHjIajYyvB/z4xz/WD3/4Q3Xt2lVNmzbVxx9/rEWLFqlr164aMmSIJGnGjBnq37+/xo4dq6ysLO3atUtvv/228vLy/Bt8PUKe9jxytPeRp72PHB0YyNGeR472PnK0b5CnAwN52nfI3/5DXg9ydgS0zz//3J6enm5v2rSpvVWrVvann37aXlJS4u+wglphYaFdUpW3Xbt2OfqtWbPGfvPNN9tDQ0Ptt912m33Tpk3+CzqIdOjQodrxLSwsdPRjfOtmwYIF9u7du9sjIiLs4eHh9ltvvdU+Y8YMu9Vqder37rvv2m+77TZ7aGio/eabb7avXbvWTxHXX+RpzyJHex952vvI0YGDHO1Z5GjvI0f7Bnk6cJCnfYP87T/k9eBmsNvtds+X4wEAAAAAAAAACE6scQ4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA74gcFgqPH2+uuvV7rf8ePHZTAYtH79ereuN3v2bDVr1sxD0QNA/UaOBoDARY4GgMBGnkZ90tjfAQAN0f79+51+7tWrlyZMmKCf/vSnjrZOnTpVul9sbKz279+vxMREr8cIAA0VORoAAhc5GgACG3ka9QmFc8AP7r777kpt7du3r7L9usuXL6tp06Y37AMAqDtyNAAELnI0AAQ28jTqE5ZqAQLQ9a8affDBB+rVq5fCwsL0m9/8psqvLr355pv6r//6L0VHR8tkMql///764IMPbnj+q1evatKkSWrfvr2MRqNiY2P1wAMPyGq1evuhAUDQI0cDQOAiRwNAYCNPI5gw4xwIUKWlpfrpT3+qJ598UvPnz1eLFi2q7Hf8+HH9/Oc/V6dOnVRaWqo//OEPuueee/TJJ59U+xWnBQsWaPXq1Xr++ed166236uuvv1ZBQYFKSkq8+ZAAoN4gRwNA4CJHA0BgI08jWFA4BwLU1atX9dxzz2nYsGGOtuPHj1fqN3PmTMe/y8vLNXDgQH3wwQd6/fXXNX/+/CrP/cEHHygjI0Njx451tP3kJz/xXPAAUM+RowEgcJGjASCwkacRLFiqBQhg999/f419jhw5oqFDh6p169Zq1KiRmjRpon/84x86evRotfe5/fbbtWXLFs2ePVuHDh1SeXm5J8MGgAaBHA0AgYscDQCBjTyNYEDhHAhQN910k5o1a3bDPhcvXlRGRoa+/PJLLVmyRHv27NGhQ4fUrVs3Xblypdr7TZs2Tc8++6zeeOMN3XnnnWrTpo3mzJkju93u6YcBAPUSORoAAhc5GgACG3kawYKlWoAAZTAYauyzf/9+nTp1Sps3b1a3bt0c7VarVfHx8dXez2g0avbs2Zo9e7a++OILvfrqq5o9e7YSEhL0s5/9zCPxA0B9Ro4GgMBFjgaAwEaeRrBgxjkQxC5fvixJCg0NdbTt27evyrXBqnPzzTdr/vz5io6O1pEjRzwdIgA0WORoAAhc5GgACGzkaQQCZpwDQezuu+9Ws2bNNG7cOE2ePFmnT5/WrFmzFBcXd8P7DRkyRD179lSPHj0UHh6uTZs2yWKxKC0tzUeRA0D9R44GgMBFjgaAwEaeRiBgxjkQxFq3bq38/HydPXtWgwcP1rJly/Tyyy/r5ptvvuH9+vTpo//7v//Tf//3f+uBBx7QX/7yF/3+97/XgAEDfBQ5ANR/5GgACFzkaAAIbORpBAKDndXxAQAAAAAAAABwYMY5AAAAAAAAAAAVUDgHAAAAAAAAAKACCucAAAAAAAAAAFRA4RwAAAAAAAAAgAoonAMAAAAAAAAAUAGFcwAAAAAAAAAAKqBwDgAAAAAAAABABRTOAQAAAAAAAACogMI5AAAAAAAAAAAVUDgHAAAAAAAAAKACCucAAAAAAAAAAFRA4RwAAAAAAAAAgAr+f3vYt+8MEVsxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABc4AAAMTCAYAAACYAITqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/pUlEQVR4nOzde1xU5fr///egMigiDIpK4iFNRDMPmZa6PQBKUZa6t4fMXZli8fFU2SbFs6Zieco0M9POu49uPOx2pm7U9JN+S7OzmWSmbg+b1GScsVDwsH5/9HNiBGQGBmaA1/PxmIfOWve617XWDBfDNfe6l8kwDEMAAAAAAAAAAECS5OftAAAAAAAAAAAA8CUUzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzlFhvfnmmzKZTNqxY4e3Q/GooUOH6tZbb9XVq1e9HYrP6t69uxo1auRSW5vNptDQUKWkpJRsUACckKMrLnI04PvI0RUXORooG8jTFRd52rMonKNEnD59WuPHj9dtt92mGjVqKCgoSI0bN1bfvn21cuVKb4fnUzIyMjRp0iTde++9Cg8Pl8lkUo8ePYrU1xdffKE333xTzz33nPz8/vjx/uCDD5SQkKBbb71VQUFBCgsLU8eOHfX666/r8uXLhfb78ssvy2QyyWQy6cSJE07rfvvtN40cOVLh4eGqVauWHn74YZ09ezZPH19++aWqVKmijRs3FunYvCU4OFjPPvusUlJS9PPPP3s7HMAjyNGu++yzz9S/f381bdpUNWrUUGBgoJo3b66xY8fqv//9r1t9kaM9jxyN8ogc7bodO3Y48t/1j1q1arnVFzna88jRKK/I067r3r17gXnaZDKpadOmLvdFnvY88nThTIZhGN4OAuXLsWPH1KFDB/3yyy/q16+fOnXqJH9/fx0+fFi7du3S+fPntW/fPm+HqStXrujSpUvy9/d3SrqlbceOHYqOjla9evXUrl07/etf/1JsbKy2bt3qdl8PPPCA9u/fr0OHDslkMjmW161bV4GBgerTp4+aN28um82mVatW6fPPP9e9996rDRs2OLXP7dixY7r11lslSb/++quOHz+uiIgIx/rRo0frjTfe0Lhx41StWjU9//zz6tixo95//31Hm8uXL6tDhw5q0aKF3n33XbePy9O6d++uo0eP6ujRoy61t9vtqlu3rkaMGKF58+aVbHBACSNHu+fvf/+73nnnHXXo0EHh4eHy8/PTt99+qzfffFNBQUH68ssvddNNN7nUFznaNeRoVGTkaPdc+xz9+OOPq0uXLk7rAgIC1K9fP5f7Ike7hhyNio487Z4tW7bo1KlTeZZv3rxZf//73zV27FjNnz/fpb7I064hT3uYAXjYqFGjDEnGiy++mO/6jIyMUo7It9ntduPUqVOO55KM2NhYt/s5cuSI4efnZ0yfPj3Puq1btxpXr151Wnb58mXjT3/6kyHJ+PDDDwvs95577jHuuOMO469//ashyTh+/LjT+vDwcGPKlCmO5ytXrjQqVapkXLhwwbEsJSXFqFWrlnHmzBm3j6skdOvWzWjYsKFb2wwaNMgIDQ11Oi6gLCJHe8bq1asNSfnm3PyQo11HjkZFRo52z/bt2w1JxhtvvFGsfsjRriNHo6IjT3vGtRx64MABl9qTp11HnvYspmqBx/3444+SpNjY2HzX161bN8+yn376SUOGDNFNN90kf39/RUREaMSIEfrll1+c2lmtViUlJalp06aqWrWqLBaLbrvtNj311FNO7TZv3qyYmBjVrl1bAQEBioiIUHx8vHbu3OloU9CcX+fOndPYsWN18803y2w2q06dOho0aJDjuK45evSoTCaTpk2bpk2bNumuu+5S1apVFRYWpieeeEK//fabS+crKChItWvXdqntjaxZs0ZXr17Vfffdl2ddbGxsnm9YK1WqpP79+0uSvv3223z7fPvtt7VlyxYtX75clSpVyrdNVlaWQkNDHc9r1qypK1eu6OLFi5J+fz9Mnz5dixYtcvuS2Wv+9a9/qUePHrJYLAoICFDjxo2VkJCQ5/3x97//XXfeeacCAwMVGBiou+66S6tWrSqw359//lkPP/ywatasqapVq6pr1676/PPP82173333KTMzU1u2bCnSMQC+ghztXo4uyLV5A8+dO+dSe3I0ORpwBTm66Dk6KytLFy5ccHs7iRwtkaMBV5Gni/9ZOj09Xbt27VKXLl0UFRXl0jbkafK0t1T2dgAof5o0aSJJeuONN/T888+rcuUbv82+/vprde/eXdWqVdPQoUPVsGFD/fjjj3rllVe0bds2ffbZZwoODpYkDRgwQNu3b9fjjz+uNm3aKCcnRz/99JPTtCYff/yxevXqpRYtWigpKUk1a9bUzz//rE8++URfffVVnss4czt//rw6d+6s77//XoMGDdKf/vQn/fTTT1q6dKk2b96s//f//p9atGjhtM2mTZu0ZMkSPfHEExoyZIi2bdum5cuXy2QyadmyZUU9jW7bvn27qlatqtatW7u8zcmTJyVJderUybPu1KlTevrpp/X000+rbdu2BfbRqVMnvfLKK/rTn/6kqlWr6vnnn1eLFi0UEhIiwzA0fPhwxcTE6KGHHnL/oCRNmTJFzz33nJo0aaLRo0crIiJCx44d0wcffKATJ044fjlda3fbbbdp6tSpMgxD7777rgYNGqTDhw9rwoQJTv3+9ttv6tKli9q1a6fnnntOp06d0sKFCxUfH6/Dhw8rKCgoz3FKv5/n+++/v0jHAvgCcnTRcnRWVpajKPP9999r/PjxkpTvh/f8kKPJ0YAryNFFy9FPPvmkHnvsMUlSRESE/vrXv2ry5MmqVq2aS9uTo8nRgKvI08Wvd6xYsUKSNHz4cJe3IU+Tp73Ge4PdUV799NNPRnBwsCHJqF27tvGXv/zFeP75541du3YZV65cydO+TZs2xs0332ycPXvWafmePXuMSpUqGdOmTTMMwzDOnTtnSDISExNvuP+nn37akGT8/PPPN2z3xhtvGJKM7du3O5ZNnjzZkGTMmjXLqe2OHTvyTKFy5MgRQ5JRtWpV46effnJqf/fddxtVqlQxfv311xvGkJ/r9+Oqhg0bGlFRUS63P378uBEcHGxYLJY8594wDKNfv37GzTffbPz222+GYRjGo48+mu+lSwcPHjSioqIMSYYkIyIiwti9e7dhGIbx6quvGkFBQcaxY8fcPh7DMIzPPvvMkGTcdddd+Z7La++ngwcPGn5+fkbr1q0d8RqGYfz6669Gy5YtjUqVKhlHjhxxLO/WrZshyZg9e7ZTf//7v/9rSDJeffXVfOOpXLmy0aNHjyIdC+AryNFFy9FTp0515DlJxs0332y8/fbbLm9PjiZHA64gR7uXo3ft2mXcd999xssvv2z861//MlauXGn06tXLkGTccccdTjnnRsjR5GjAVeTp4tU7srOzjVq1ahkWi8WtaUHI0+Rpb6FwjhJx9OhRY8yYMcbNN9+cp9Dw73//29Fu3759hiQjOTnZOHPmTJ5Hs2bNjI4dOxqG8XuCDQgIMNq2bZsncec2ffp0Q5KxePFiIycnp8B2+f0iadGihVGjRo18E3h0dLRhMpmMzMxMwzD++EXy0EMP5Wk7b948Q5Kxb9++Qs/V9YpaOK9WrZrRuXNnl9qeP3/euP322w2TyWSsW7cuz/p169YZkpxeq4J+kRiGYVy6dMn49ttvjS+//NK4ePGiYRiGcfLkSSM4ONhYsmSJYRiG8c9//tO44447jPDwcKNv37759nO9J598Ms9rlJ8XXnjBkGS89957eda99dZbeeag69atm+Hn55fndf7ll18MScYzzzyT735q165ttGrVqtC4AV9HjnY/R//000/Gli1bjLVr1xoTJkwwbrvtNmPhwoUub0+OJkcDriJHF/1z9DXjxo0zJBkpKSkutSdHk6MBd5Cni56nr90naPTo0W5tR54mT3sLhXOUuFOnThn//Oc/jYceesgwmUxGtWrVjB9//NEwDMP4xz/+4fSLJr9H48aNHX0tX77cMJvNhiQjMjLSGDZsmLF27Vrj8uXLjjZnz5417rjjDkOSERgYaPTo0cOYOXOmcfjwYae48vtFEhAQYLRr1y7f4xgzZowhyfjiiy8Mw/jjF8mkSZPytL3W944dO9w+X8UpnHfq1KnQdufPnze6dOlimEwm4+WXX86z3mq1GuHh4cbgwYOdlt/oF0l++vbta3Tu3Nm4evWq8dlnnxkmk8lYsGCBsXfvXuPuu+82WrVqle838rnFx8cbkgybzXbDdomJiQX+4v7yyy/z/GLu1q2bERERkW9fkowhQ4bkuy4sLMxo3br1DWMByhpydNFcGyXkTlGGHE2OBtxFji6aX3/91fDz83O5yEKOJkcDRUWedk/Pnj0NSca3337r1nbkafK0tzDHOUpc7dq11bt3b/Xu3VsNGjTQnDlztGrVKk2aNElXr16VJI0ePVoPPPBAvttXrVrV8f/hw4frgQce0KZNm/Txxx9r69atWrlypTp06KD/+7//U0BAgEJDQ7Vnzx598skn2rp1q3bu3Knp06dr+vTpeueddzRw4ECPHl9BN5GQJMMwPLqvGwkLC9PZs2dv2Ob8+fOKj4/XJ598oldeeUVPPPFEnjZTp07VuXPnNHLkSB06dMhpW+n3m4RcvHhRTZo0yXMDjmvWrl2rjRs36uuvv5bJZNKKFSvUsWNHPf3005KkxYsXKzIyUnv27FHHjh2LesjFUpTXzWq1qk2bNiUUEeAd5Oii6dChg6KiorRs2TLHfOc3Qo52Dzka+B05umgCAwNVu3ZtnT592qX25Gj3kKOBP5CnXXfkyBFt3bpVd911l2677Ta3tiVPu4c87TkUzlGqrt1w4NpNGiIjIx3revTo4VIfderU0ZAhQzRkyBAZhqEJEyY4fjkNGTJEkuTn56c//elP+tOf/iRJOn78uG6//XaNGzfuhr9ImjRpokOHDik7O1tms9lp3XfffSeTyaSbb77Z5eMtTS1bttS2bdt06dIlValSJc96m82me+65R5999plWrFihoUOH5tvPf/7zH124cMHxWl3v2s1GLly4oICAgDzrz507p1GjRmnSpEmOO2QfP35cDRo0cLSpX7++Y/mNfpFERkZq06ZN+uqrr9StW7cC2127Qcv+/fvVsmVLp3XfffedU5uiOnz4sC5fvuz2L3igLCFHu+fChQuyWq0utSVHk6OB4iJHu85ut+vUqVNq2rSpS+3J0eRowBPI0ze2cuVKxw013UWeJk97i5+3A0D5s2PHDmVlZeW7bv369ZLkuFNzmzZtdNttt2nlypU6cOBAnvaGYejMmTOSpKysrDz9mkwm3X777ZLk+PbxWvvc6tevrzp16hT6DeWf//xn2Ww2LV682Gn5zp079dFHHykmJkYWi+WGfXhL9+7ddfHiRX355Zd51tlsNsXFxWnv3r168803C/wlIknjxo1Tampqnkf37t0lSa+++qpSU1Pl7++f7/bPPPOMwsLCNG7cOMeym266Sd9++63j+bX/16tX74bHNHjwYEnShAkTdOHChTzrr31T2qdPH/n5+WnevHm6ePGiY31WVpbmzp2rSpUqqXfv3jfcV2E+/fRTSVJ0dHSx+gG8jRztnp9//jnf5f/61790+PBhl0eRkKPJ0YAryNHuyS8mwzD07LPPyjAM9enTx6V+yNHkaMBV5OmiuXLlit58803VqFGjSKPiydPkaW9hxDk87sUXX9T27dvVq1cvtWvXThaLRb/88os+/PBD/d///Z9atmzpSGQmk0nvvvuuYmJidPvtt2vIkCG67bbbdOnSJR09elT//Oc/9eijj2ratGk6ePCgunbtqj59+ujWW29VWFiYDh8+rGXLlikoKEh//vOfJUmPP/64jh07pri4ODVq1EiXL1/Whg0btH//fo0aNeqGsSclJWnt2rVKSkrSN998o06dOumnn37S0qVLFRwcrJdeeqlEztnMmTOdnh89etSxrGHDhnr44YcL7aNfv34aN26cNmzYoDvvvNNpXY8ePfT555+rd+/ejnOeW6tWrdSqVStJKrAItGHDBknSvffeq4iIiHzbfPTRR3rrrbf06aefOn0L/Mgjj2jlypV66KGH1LlzZ7300ktq1qxZnjiv1759e02YMEGzZ89Wq1at9NBDD6l+/fo6ceKE3n//fb3xxhtq06aNbrnlFk2cOFHPPfec7rrrLg0ePFiGYejdd9/Vvn37NGvWLDVq1OiG+yrMhg0bFBoa6vJIAcBXkaPdc++998pisahTp05q0KCBfv31V+3Zs0dr1qxRaGio5s2b51I/5GhyNOAKcrR77rnnHtWpU0d33HGHIiIidObMGb3//vvas2ePunbtqpEjR7rUDzmaHA24ijxdNBs3btTJkyeVmJiowMBAt7cnT5OnvaaU5lJHBbJ7924jKSnJ6NChg1GnTh2jcuXKRlBQkNGuXTtjxowZht1uz7PN8ePHjZEjRxqNGzc2/P39jZCQEOO2224znnzySWP//v2GYfx+B+Cnn37aaNu2rWGxWAyz2Ww0bNjQGDJkiHHgwAFHX2vXrjV69+5t1K9f3zCbzYbFYjE6dOhgLFu2zOnmDPndLMMwDCMzM9N46qmnjIYNGxpVqlQxatWqZTz44IPGDz/84NTu2s0ypk6dmud4Cuq7ILrBzUK6devmUh+GYRj333+/0aBBA+Pq1asu91/QMVyvsJtlZGVlGU2aNDGefvrpfNe//fbbRrNmzYygoCCjR48ejhumuGLNmjVG165djaCgICMgIMBo3LixMXz4cOOXX35xavfOO+8YHTp0MKpWrWpUrVrVuPPOO/O983S3bt2Mhg0b5rsvScajjz7qtMxmsxkBAQEF3n0aKEvI0e7l6KVLlxo9evQwwsPDDX9/f6Nq1apG8+bNjaeeeso4ceJEodvnRo4mRwOFIUe7l6PnzJljdO7c2ahdu7ZRpUoVo3r16kb79u2NhQsXGjk5OYVunxs5mhwNuII87X69wzB+z7HKdfPRoiBPk6e9wWQYpXj3QgAl6osvvlD79u21evVq9e/f39vhlBtz5szRrFmz9OOPP6pu3breDgdAGUWOLhnkaACeQI4uGeRoAJ5Cni4Z5Okbo3AOlDNDhw7V7t279d1338nPj9sYFJfNZtPNN9+spKQkJScnezscAGUcOdqzyNEAPIkc7VnkaACeRp72LPJ04SicAwAAAAAAAACQC1/PAAAAAAAAAACQC4VzAAAAAAAAAAByqbCF80OHDikxMVFt2rRR5cqV1bJly3zbrVy5UpGRkQoICFDr1q21YcOGUo4UAAAAAAAAAFCaKmzhfP/+/frwww91yy23qEWLFvm2WbVqlYYPH66BAwdq06ZN6tixo/r27avdu3eXcrQAAAAAAAAAgNJSYW8OevXqVccdeIcMGaLPP/9c3333nVObZs2aqV27dnrvvfccyzp16qSQkBBt3LjR5X0ZhqHz588rKChIJpPJMwcAAPAIcjQA+C5yNAD4NvI0gPKswo44v1Y0L8jhw4d18OBBDRgwwGn5gw8+qG3btik7O9vlfZ0/f17BwcE6f/58kWIFAJQccjQA+C5yNAD4NvI0gPKswhbOC5Oeni5JioqKclrevHlz5eTk6MiRI94ICwAAAAAAAABQwip7OwBfZbVaJUkhISFOyy0WiyQpMzOzwG2zs7OdRqTb7XbPBwgAAAAAAAAAKBGMOC8BKSkpCg4Odjzq16/v7ZAAAAAAAAAAAC6icF6AayPLbTab0/JrI9FDQ0ML3DY5OVk2m83xOH78eMkFCgAAAAAAAADwKArnBbg2t/m1uc6vSU9Pl7+/vxo3blzgtmazWTVq1HB6AAAAAOXFoUOHlJiYqDZt2qhy5cpq2bJlvu1WrlypyMhIBQQEqHXr1tqwYUMpRwoAAAAUDYXzAjRu3FiRkZFKTU11Wr569WrFxsbK39/fS5EBAAAA3rV//359+OGHuuWWW9SiRYt826xatUrDhw/XwIEDtWnTJnXs2FF9+/bV7t27SzlaAAAAwH0V9uagWVlZ2rhxoyTpP//5j+x2u9asWSNJ6tatm8LCwjRt2jQNHjxYTZo0UXR0tFavXq09e/bo448/9mbo8HE7dpjyXd69u1HKkQAoC8gZAMqi+++/X71795YkDRkyRJ9//nmeNlOnTtWDDz6o5557TpIUHR2tb7/9VjNmzHB8DgdQ/hX0WUf6/fNOYes91UdFkpqaqnfffVdffPGFrFarmjZtqjFjxuixxx6TyfTHuVq5cqWef/55HTt2TM2aNdOsWbPUq1cvL0YOeF9++aQi5hH8rsIWzk+fPq3+/fs7Lbv2fPv27erevbsGDRqkrKwszZkzR3PmzFGzZs20fv16dezY0RshAwAAAD7Bz+/GF64ePnxYBw8e1PPPP++0/MEHH1RSUpKys7NlNptLMkQAqLAWLFigRo0aaf78+QoLC9OWLVs0fPhwHT9+XFOnTpX0x1VBEydOVExMjFavXq2+fftq586duuuuu7x8BADgGyps4bxRo0YyjMK/MRo2bJiGDRtWChEBAAAA5cO1+wRdu2/QNc2bN1dOTo6OHDmSZx0AwDM++OAD1apVy/E8JiZGZ8+e1YIFCzR58mT5+flxVRAAuIA5zgEAAAB4lNVqlSSFhIQ4LbdYLJKkzMzMfLfLzs6W3W53egAA3JO7aH5N27ZtZbfb9dtvvzmuChowYIBTmwcffFDbtm1TdnZ2aYUKAD6two44BwAAAOBbUlJSNH36dG+HUSExRzRQvu3atUv16tVTUFCQdu7cKYmrggCgMG4Xzo8dO1bgOj8/PwUHBysoKKhYQQEAAAAou66NLLfZbKpbt65j+bWR6KGhoflul5ycrLFjxzqe2+121a9fvwQjBYDyb9euXVq1apXmz58vqehXBUm/XxmUe0Q6VwYBKM/cLpw3atTI6S7MBbV56qmnNHr06CIHBgAAAKBsujZSMT09Xc2aNXMsT09Pl7+/vxo3bpzvdmazmZuGAoAHnThxQgMHDlR0dLTGjBlT7P64MghAReL2HOfvvvuuIiIiFBMTo0WLFul///d/tWjRInXv3l316tXT4sWL1alTJz399NNavHhxScQMAAAAwIc1btxYkZGRSk1NdVq+evVqxcbGyt/f30uRAUDFce7cOcXHx6tmzZpau3at/Px+LwHlvioot8KuCpJ+vzLIZrM5HsePHy+h6AHA+9wecb5z507dc889evXVV52Wjxo1So8//ri++OILvfPOO6pRo4aWLl3KqHMAAACgnMnKytLGjRslSf/5z39kt9u1Zs0aSVK3bt0UFhamadOmafDgwWrSpImio6O1evVq7dmzRx9//LE3QweACuHChQvq1auXbDabPv30UwUHBzvWFfWqIIkrgwBULG6POF+1apX69euX77r+/ftr3bp1kqRevXrpyJEjxYsOAAAAgM85ffq0+vfvr/79+2vHjh06fvy44/n+/fslSYMGDdJrr72m9957T3fffbf+3//7f1q/fr06duzo5egBoHy7fPmyBgwYoAMHDmjz5s2qV6+e03quCgIA17g94tzPz0/ffPONevbsmWfd119/7bj0p1KlSqpatWrxIwQAAADgUxo1aiTDMAptN2zYMA0bNqwUIgIAXDNixAht2LBB8+fPl91u1+7dux3r2rZtK7PZzFVBAOACtwvngwcP1uTJk5WTk6P7779fYWFhOnPmjN5//33NnDlTTzzxhCTpiy++UIsWLTweMAAAAAAAAPKXlpYmSXrmmWfyrDty5IgaNWqkQYMGKSsrS3PmzNGcOXPUrFkzrgoCgOu4XTifP3++KleurJkzZ2ry5MmO5WazWSNHjtTzzz8vSercubPuvvtuz0UKAAAAAACAGzp69KhL7bgqCABuzO3CeZUqVbRgwQJNnjxZ3377rX7++WeFh4erZcuWTnde7tq1q0cDBQAAAAAAAACgNLhdOL/GYrGoW7dunowFAAAAAAAAAACvK1Lh/JdfftG8efO0d+9enThxQuvWrdOtt96qRYsW6c4779Rdd93l6TgBAACAMm3HDlO+y7t3L/wmmwAAAEBFkN9nZm99XvZzd4Mvv/xSTZs21apVqxQREaFDhw4pOztbknTy5EktXLjQ40ECACqeQ4cOKTExUW3atFHlypXVsmXLfNutXLlSkZGRCggIUOvWrbVhw4ZSjhQAAAAAAJQ3bhfOn376aXXs2FE//vijVq5cKcP4o+J/5513avfu3R4NEABQMe3fv18ffvihbrnlFrVo0SLfNqtWrdLw4cM1cOBAbdq0SR07dlTfvn35XQQAAAAAAIrF7cL53r17NWbMGFWpUkUmk/PQ+bCwMJ0+fdpjwQEAKq77779fx48f15o1a3T77bfn22bq1Kl68MEH9dxzzyk6OlrLli1T+/btNWPGjFKOFgAAAAAAlCduz3EeGBgou92e77pjx46pZs2axQ4KAAA/vxt/t3v48GEdPHhQzz//vNPyBx98UElJScrOzpbZbC7JEAEAKFRBc9tLFW9+e84FAAAoS9wunN99992aOXOmYmNjFRISIkkymUy6cOGCFi1apHvvvdfTMQKlhg/zQNmRnp4uSYqKinJa3rx5c+Xk5OjIkSN51gEAAAAAALjC7cL5888/r86dO6tp06aKjo6WyWTSpEmT9P3338tkMmnmzJklEScAAE6sVqskOb7EvcZisUiSMjMz890uOzvbcVNrSQVeRQUAAAAAnpbfgD0G6gG+ye05zuvVq6evv/5ao0ePVkZGhpo0aaKzZ89q8ODB+vzzz1W7du2SiBMAAI9ISUlRcHCw41G/fn1vhwQAAAAAAHyM2yPOpd9H902fPl3Tp0/3dDwAALjk2shym82munXrOpZfG4keGhqa73bJyckaO3as47ndbqd4DgAoEqb5gzf5yvuvoDj4GQAAlHVFKpyjYvGVD2QAkNu1+cvT09PVrFkzx/L09HT5+/urcePG+W5nNpu5aSgAAAAAALghlwrnN998s0ymgoun1zt8+HChbc6ePavPPvtMGRkZunDhgmrWrKlmzZqpTZs2bu0LAFAxNW7cWJGRkUpNTVXv3r0dy1evXq3Y2Fj5+/t7MToAAAAAAFCWuVQ47927t1Mxe82aNbLb7erRo4fq1KmjU6dOaevWrQoODla/fv0K7Mdms+mtt97SW2+9pa+//lqG4Txa2WQyqXr16urbt6+GDx+uzp07F/GwAABlXVZWljZu3ChJ+s9//iO73a41a9ZIkrp166awsDBNmzZNgwcPVpMmTRQdHa3Vq1drz549+vjjj70ZOgAAAAAAKONcKpy/+OKLjv/PnTtX9evX1+bNm1WjRg3HcpvNpvj4eNWpUyffPmbPnq158+bJYrGof//+mjp1qlq3bq1atWrJbDbr3LlzOnr0qD7//HNt2rRJsbGx+tOf/qSXXnpJLVq0KN5RAgDKnNOnT6t///5Oy6493759u7p3765BgwYpKytLc+bM0Zw5c9SsWTOtX79eHTt29EbIAAAAAACgnHB7jvOXXnpJS5cudSqaS1JwcLDGjx+vESNGaNy4cXm227Fjh9atW6fu3bvn22+tWrVUq1Yt3XHHHUpMTJTVatWSJUu0Y8cOCufFwPzk8CbefyiORo0a5bkyKT/Dhg3TsGHDSiEiAAAAAABQUbhdOM/MzJTNZst3nc1mk9VqzXddWlqaW/uxWCyaPHmyu+EBAAAAAAAAAFAsfu5uEBsbq3Hjxun//u//nJbv2LFD48ePV2xsrMeC8wXp6enq2bOnAgMDVbduXT377LPKycnxdlgAAAAAAAAAgBLi9ojzV199VQ888IBiYmIUHByssLAwnTlzRjabTW3bttWyZcsK7WPGjBkFrvPz81NwcLDatGmjLl26uBueR1mtVsXExKhp06Zat26dTp48qbFjxyorK0tLlizxamwAAAAAAAAAgJLhduE8PDxce/fu1ebNm/XZZ58pIyND4eHh6tChg+655x6X+li4cKFycnJ04cIFSVJAQIAuXrwoSapataouXbqkK1eu6Pbbb9fGjRsVFhbmbpgesWzZMtntdq1fv16hoaGSpMuXL2vEiBGaMGGCbrrpJq/EVR5VpLmwK9Kx4g+87gAAAAAAAGWH24Xza+655x6XC+XX++ijjzRw4EBNnTpVvXv3VvXq1fXrr79q/fr1mjFjht5++21lZWXpr3/9q5KSkvTmm28WNcxi2bRpk3r06OEomkvSgAEDlJiYqLS0NA0ZMsQrcQEA4Gv4cqh0cb4BAAAAoGQVuXBeHCNHjtQzzzyjwYMHO5ZVr15dDz/8sH777Tc99dRT2rNnjyZNmnTDaV1KWnp6uoYOHeq0LCQkROHh4UpPT/dSVAAAAAAAAACAkuT2zUE94auvvlLDhg3zXdeoUSPt27dPktSyZUvZbLbSDM2J1WpVSEhInuUWi0WZmZkFbpednS273e70AAAAAAAAAACUDV4Zcd6wYUOtWLEi36leli9f7iiqnz17VrVq1Srt8IotJSVF06dPL3Y/rlyGXVgbVy7XLqiPa9t64pLv0oizsH24cj4Li8MTfXhiH5441uKeT1f6KMlj9WScpXE+feU9DgBAaUpPT9fo0aP1ySefKCgoSI888ohmzpwpf39/b4cGAAAA3JBXCucpKSkaMGCAmjVrpl69eiksLExnzpzRhg0bdPjwYaWmpkqStm3bpq5du3ojREm/jyzPb8S71Wp1mvf8esnJyRo7dqzjud1uV/369UskRgAAAJQ8vpx0n9VqVUxMjJo2bap169bp5MmTGjt2rLKysrRkyRJvhwcAAIBiutEAwPzWlbXPzV4pnPft21efffaZUlJStH79emVkZCg8PFzt27fX6tWr1aZNG0nSyy+/7I3wHKKiovLMZW6z2ZSRkaGoqKgCtzObzTKbzSUdHgAAAOCzli1bJrvdrvXr1zsGnVy+fFkjRozQhAkTdNNNN3k5wsLxhUnp4nzDm3j/AQCu51bh/Oeff1ZaWprS09Mdc3yHhoYqKipKcXFxqlu3rst9tW3bVv/4xz/ci7aUxcfHa/bs2Tp37pxjrvPU1FT5+fkpLi7Ou8EBAAAAPmzTpk3q0aOH05WaAwYMUGJiotLS0jRkyBDvBQcAAAAUwqXC+aVLl/TMM89o2bJlunLlisLDw2WxWCT9fglmRkaGKlWqpP/5n//R/PnzVbmy6/X448eP6/jx42rdurUCAwOLdhQlJDExUYsXL1afPn00YcIEnTx5UklJSUpMTCwTI2QAAPAVjOICKp709HQNHTrUaVlISIjCw8PzXNUJAAAA+Bo/VxpNmjRJ77zzjl5++WVlZmbqxIkT2rdvn/bt26cTJ07IarVq6dKleueddzRp0iSXdrx8+XLVq1dPDRs2VJcuXfTDDz9I+n0al0WLFhX9iDzIYrFo27Ztqly5svr06aPx48crISFBCxYs8HZoAAAAgE+zWq2OqzZzs1gsjqtXr5ednS273e70AAAAALzBpaHhb7/9thYuXFjg5ZQ1atRQQkKCKlWqpAkTJmjOnDk37O/FF1/UuHHjNHbsWMXGxjpNe9K9e3elpqbqySefdP0oSlDz5s21detWb4cBAAAAlHspKSmaPn26R/py5UqXG93QKve/hfVTnDaeiLOwPlzZR2nE6Ynz6YljLY3zWRpxeuKKrdJ475TGz1Fx3juePJ8AgPLFpRHn58+fV0RERKHtIiIidP78+ULbLV68WJMnT1ZKSoqio6Od1jVr1swx+hwAAABA2WSxWGSz2fIst1qtTvOe55acnCybzeZ4HD9+vKTDBAAAAPLl0ojzjh07avbs2Wrfvr2Cg4PzbWO32zV79mx16tSp0P5OnjxZYLsqVaro119/dSUsAPAZjFABAMBZVFRUnrnMbTabMjIyFBUVle82ZrNZZrO5NMIDAAAAbsilwvmSJUsUExOj+vXrq0ePHoqKinLMV2iz2ZSenq6tW7cqKChI27ZtK7S/hg0b6rPPPlNMTEyedXv27FFkZKR7RwEAAADAp8THx2v27Nk6d+6c42+H1NRU+fn5OU3VCAClgYEuAAB3uVQ4b9asmfbv369XXnlFmzdv1sqVK2W1WiX9fglmVFSUkpOTlZiYmO8NgK43fPhwTZs2TWFhYfrzn/8sSbp06ZI+/PBDzZ07V7NmzSr6EQEAAADwusTERC1evFh9+vTRhAkTdPLkSSUlJSkxMVE33XSTt8MDAPiw/Oak58uP0lPYPQGAisKlwrkkhYSEKDk5WcnJycXe6d/+9jcdO3ZMjz/+uJ544glJUufOnSVJI0aM0IgRI4q9DwAAAADeY7FYtG3bNo0ePVp9+vRRUFCQEhISGCQDAACAMsHlwrmnvfTSS3rqqae0ZcsWnT17VqGhoYqNjVXTpk29FRLKOb4Z9T1l5TUpK3ECAOBrmjdvrq1bt3o7DAAAAMBtHi2cf/HFF3r55Zf1+uuvu9S+cePGjhHnAAAAAAAAAAD4Ao8Wzo8ePaq33nor38L5xx9/7FZfXbt29VRYAAAAAAAAAAC4zKXC+ZdffulSZ4cPHy5wXffu3WUymWQYv095YDL9caMBwzCcnkvSlStXXNonAAAAAAAAAACe5FLh/I477shT2M5PfgXwa7766ivH/0+fPq1hw4YpOjpa/fr1U506dXTq1CmlpqZqx44dWrlypYvhAyjvmF8cAAAAAACg/NixI2/92BfrPy4VzoODg9WzZ0+NHDnyhu127NihGTNm5LuudevWjv/369dPDz74oF544QWnNvfff7+SkpL0yiuvqGfPnq6EBgCo4NLT0zV69Gh98sknCgoK0iOPPKKZM2fK39/f26EBAAAAAIAyyqXCefv27XXmzBl169bthu1++eUXl3b673//W+vWrct3XVxcnP785z+71A8AoGKzWq2KiYlR06ZNtW7dOp08eVJjx45VVlaWlixZ4u3wAAAAAABAGeVS4bxLly5avnx5oe3CwsJcuqln9erVtW3btnxHlW/ZskXVq1d3JSwAQAW3bNky2e12rV+/XqGhoZKky5cva8SIEZowYYJuuukmL0dYNuR3mdw1vni5XEniXAAAAJQ/BX3G4/MdfFVJvGf5OXCfnyuNJk+erOPHjxfarmvXrtq+fXuh7UaOHKkXXnhBjz32mN5//319+umnev/99zVkyBDNnz+/0ClhAACQpE2bNqlHjx6OorkkDRgwQFevXlVaWpoXIwMAAAAAAGWZSyPOPW3SpEkKCQnRnDlz9NZbb8lkMskwDIWHh+vFF1/U6NGjvREWAKCMSU9P19ChQ52WhYSEKDw8XOnp6V6KCgAA17kyyssXRoL5QgzlCecTAADf55XCuSSNGjVKI0aM0IkTJ5SRkaHw8HBFRETIz8+lQfAAAMhqtSokJCTPcovFoszMzHy3yc7OVnZ2tuO53W4vqfAAAAAAAEAZ5bXCuST5+fmpQYMGatCggTfDAABUICkpKZo+fbpH+ipsPmxX5ssubMSZJ/ZRWBtXRr0VNh9eYX0UZx/Xti/OsZbGufBknIXxlThL4/1ZGnG60kdxf1Zd6QMAAACA7yi14d2vvPKK0wg/V+zbt08fffRRCUUEACjrLBaLbDZbnuVWq9Vp3vPckpOTZbPZHA9X7uEBAAAAAAAqllIrnL/55ptq2LChnn76aX3yySe6dOlSvu3++9//auXKlerRo4c6deokq9VaWiECAMqYqKioPHOZ22w2ZWRkKCoqKt9tzGazatSo4fQAAAAAKpr09HT17NlTgYGBqlu3rp599lnl5OR4O6xSt2OHKd9HRVBRjxtwlVtTtVy8eFFLly5VXFycWrZs6daO9uzZo/Xr12vRokV66aWXVKVKFUVGRiosLExms1nnzp3TkSNHdPr0aYWGhurRRx/Vu+++q7p167q1HwBAxREfH6/Zs2fr3LlzjrnOU1NT5efnp7i4OO8G5yFM7eAeT0wZg9LFawIAQOmzWq2KiYlR06ZNtW7dOp08eVJjx45VVlaWlixZ4u3wAMAnuFU4DwgI0KRJk9SuXbsi7axv377q27evjh49qq1bt+rzzz9XRkaGLl68qIYNGyouLk6dO3dW9+7dVaVKlSLtAwBQcSQmJmrx4sXq06ePJkyYoJMnTyopKUmJiYm66aabvB0eAAAA4JOWLVsmu92u9evXO6Y4vHz5skaMGKEJEybwWRoAVISbg7Zp00bff/+9unXrVuSdNmrUSAkJCUpISChyHyhbGE1W9vCaoSywWCzatm2bRo8erT59+igoKEgJCQmaNWuWt0MDAAAAfNamTZvUo0cPp/sCDRgwQImJiUpLS9OQIUO8F1w5UNQbwee3HX+bA97jduF80aJFGjx4sMLCwnTvvfeqWrVqJREXAAAuad68ubZu3ertMAAAAIAyIz09XUOHDnVaFhISovDw8Dz3EAKAisrtwnlMTIxycnI0cOBASVK1atVkMv3xjZjJZJLNZvNchAAAAGVIWRkVVFbi9ISKdKwAALjCarU67hGUm8ViUWZmZoHbZWdnKzs72/HcbreXRHgA4BPcLpw/88wzToVyAAAAAAAAlH8pKSmaPn26R/q60bQkBX3pfaMpUG607kZfot9oXWnvz91YrrUv6rqC9lfUc3IjRT2XnlxXnHNS2HZFWVfU91BRX4Oy8l4v6mtQEtwunE+bNq0EwgDgSYysAwAAQGnjMyhQdlgslnxnC7BarU7znl8vOTlZY8eOdTy32+2qX79+icQIAN7mduH8GsMwdPDgQWVmZio0NFSRkZEujUQ3DENWq1WBgYEym81F3T0AAAAAAACKICoqKs9c5jabTRkZGYqKiipwO7PZTC0HQIXhV5SNli5dqvDwcLVo0UKdO3dWixYtdNNNN+mVV14pdNtLly6pdu3aXr+R25YtW/TQQw+pSZMmMplMGjVqVL7tcnJylJSUpLp16yowMFA9e/bUDz/8UMrRAgAAAAAAeEZ8fLy2bt2qc+fOOZalpqbKz89PcXFx3gvMx1ybiuL6B4CKwe3C+fLlyzVq1CjFxsZq/fr1+vTTT7V+/XrFxMRo1KhRWrFixQ239/f3V0REhK5cuVLkoD1h8+bN+uabb9StW7d8b4hxzZgxY/Taa69p9uzZWrdunbKzsxUbG8sNUAEAAAAAQJmUmJiooKAg9enTR2lpaXrjjTeUlJSkxMRE3XTTTd4ODwB8gttTtSxcuFBjxozRiy++6LT8gQceUFhYmObNm6eEhIQb9jFy5EgtWLBAcXFxCggIcDcEj5g7d67mz58vSfroo4/ybXPixAmtWLFCS5cu1dChQyVJ7du3V4MGDfTqq6/q2WefLbV4AaAwjHwAAADwDXwug6+zWCzatm2bRo8erT59+igoKEgJCQmaNWuWt0MDAJ/hduH8yJEj6tWrV77r7rvvPi1btqzQPo4dO6aDBw+qQYMG6t69u+rUqeM0P7rJZNKiRYvcDc0tfn6FD7ZPS0vT1atX1b9/f8ey0NBQxcXFaePGjRTOAQAAUOFs2bJFb7zxhvbs2aPDhw9r5MiRWrJkSZ52OTk5mjhxot555x2dP39enTp10pIlS9SsWTMvRA0AuF7z5s29Po1uWcYXZED553bhPDw8XJ9++ql69OiRZ93u3bsVHh5eaB8bNmxw3FBi7969edaXRuHcFenp6apdu7YsFovT8ubNm2vlypVeigoAAADwntxTHmZmZhbYbsyYMVq1apUWLFigevXqadasWYqNjdX+/fsVHBxcihEDAAAA7nO7cD5s2DDNmDFD2dnZ6tevn+rUqaPTp08rNTVVc+fO1ZQpUwrt48iRI0UKtrRZrdZ85z+3WCw3/CMhOztb2dnZjud2u70kwgMAAABKHVMeAgAAoCJwu3A+ceJEWa1WzZ07VykpKX90VLmyRo8erYkTJ3o0QFfZbDZlZGQU2q5x48by9/cv0VhSUlI0ffr0Et0HKjYuCQMAAN5SVqY8dOXzUnn5TFVejsMVhR2rJ85FRTqfAACgYC4Vzu12u4KCgmQymWQymTR//nxNmDBBe/bskdVqVWhoqDp06KCaNWu6vOOTJ0/qxRdf1K5du5SZmanQ0FB16dJFTz75pOrVq+f2gaSmpmr48OGFtjtw4ICioqJc6tNischms+VZfu2YC5KcnKyxY8c6ntvtdtWvX9+lfQIAyo6K9Id1RTpWAMXHlIcAAHiWr3we95U4gNJQ+HAR/V5AvjYXeUxMjNLT01WzZk3de++9Gjx4sOLj490qmn/33Xe67bbbtGzZMoWHhysmJkbh4eFatmyZWrVqpf3797t9IAkJCTIMo9CHq0VzSYqKitKpU6dktVqdlqenp9+wH7PZrBo1ajg9AAAAgIqiOFMe2u12pwcAAADgDS6NOA8ICNDFixclSTt27Cj2B9i//e1vatKkidLS0pxGoVitVsXFxelvf/ubNm3aVKx9eEJcXJz8/Py0du1aJSQkSPo9xrS0NE2ePNnL0QEAAADFx5SHAAAAQF4uFc5btWqlpKQkxcfHS5JWrFihzZs359vWZDIVWlTetWuX/v73v+e5dNNisWjixIl6+OGHXQmrWP7zn/84RtFnZWXpp59+0po1ayRJ/fr1kyRFREQoISFBSUlJqlSpkurVq6fZs2crODhYTzzxRInHCPdwuRAAAID7mPIQAOANnv4bnpoAAE9zqXC+dOlSjRkzRi+//LJMJpNWrVqlSpUq5dvWlcJ55cqVlZ2dne+67OzsAvv2pO3bt+uxxx5zPN+8ebPjywDD+CPZLlq0SNWrV9f48eN1/vx5de7cWVu3blVwcHCJxwgAAOBNxf0DtCz9AVuWYvW0hIQEx9WVnpJ7ysPcg2VcmfLQbDZ7NBYAAACgKFya47xt27bauXOnzpw5I8MwtHXrVlmt1nwfN5qz8JoePXpo4sSJOnjwoNPyH3/8UZMnT1bPnj2LdjRuGDJkSIHzoOdmNps1b948nTp1SllZWdqyZYtb86QDAAAAFU3uKQ+vuTbl4b333uvFyAAAAADXuDTiPLft27erRYsWxdrpggUL1K1bN7Vo0UItW7ZUnTp1dPr0ae3bt08NGjTQggULitU/AAAAgJLBlIcAAG+pyFeIFRXnDCg6twvn3bp1K/ZOGzRooH379un111/Xrl27ZLVaFRkZqaFDh+qxxx5T9erVi70PADfmiV+e/AIGAKDiYcpDAAAAVARuF849pXr16hozZozGjBnjrRAAAADKrdL4cpMvUCumIUOGaMiQIYW2uzbl4bx580o+KAAAAMDDvFY4BwAAAAAAAIDSxOAPuKrUCuc1atTQ9u3b1a5dOwUFBclkMhXY1mQyyWazlVZoAAAAAAAAAAA4uFU4v3jxopYuXaq4uDi1bNnSrR0988wzCg8Pd/z/RoVzoCLjm08AAAAAAADAu9wqnAcEBGjSpElq166d2zuaOnWqpN9vGDRmzBgFBgbKbDa73Q8AAAAAAACAsoNBgiiL/NzdoE2bNvr++++LvMNLly6pdu3a2rp1a5H7AACUb1u2bNFDDz2kJk2ayGQyadSoUfm2y8nJUVJSkurWravAwED17NlTP/zwQylHCwAAAAAAyhu3C+eLFi3SwoULtWbNGmVlZbm9Q39/f0VEROjKlStubwsAqBg2b96sb775Rt26dVNISEiB7caMGaPXXntNs2fP1rp165Sdna3Y2FjukwEAAAAAAIrF7ZuDxsTEKCcnRwMHDpQkVatWzWm+cldu7Dly5EgtWLBAcXFxCggIcDeECoPLWABUVHPnztX8+fMlSR999FG+bU6cOKEVK1Zo6dKlGjp0qCSpffv2atCggV599VU9++yzpRYvKhZ+P5cuV863L7wmvhADAABAReJLn79KMxZfOu7yzu3CuSdu7Hns2DEdPHhQDRo0UPfu3VWnTp08xfdFixYVax8AgLLLz6/wC6LS0tJ09epV9e/f37EsNDRUcXFx2rhxI4VzAAAAAABQZG4XzqdNm1bsnW7YsEFms1lms1l79+7Ns57COQCgMOnp6apdu7YsFovT8ubNm2vlypVeigoAAAAAAJQHbhfOrzEMQwcPHlRmZqZCQ0MVGRnp8kj0I0eOFHW3AABIkqxWa77zn1ssFmVmZha4XXZ2trKzsx3P7XZ7SYQHAIDP4JJuZ5wPAOUNec238fqUXUUqnC9dulQzZszQmTNnZBiGTCaTateurSlTpuh//ud/PB0jShg/wCjvCnuP+8rPgK/EURJsNpsyMjIKbde4cWP5+/uXaCwpKSmaPn16ie4DAAAAAACUbW4XzpcvX65Ro0Zp0KBBGjhwoOrUqaNTp05p9erVGjVqlKpUqaKEhIRC+/nll1+0cOFC7dmzRxkZGQoPD9ddd92lJ598UmFhYUU6GACAb0pNTdXw4cMLbXfgwAFFRUW51KfFYsn3ZtRWq1WhoaEFbpecnKyxY8c6ntvtdtWvX9+lfQIAAAAAgIrB7cL5woULNWbMGL344otOyx944AGFhYVp3rx5hRbO9+zZo3vuuUdXr15Vjx49FBkZqVOnTmnx4sVavHix0tLSdOedd7obGgDARyUkJLj0pao7oqKidOrUKVmtVqd5ztPT029YfL92jw0AAAAAAFxVnq8SR/783N3gyJEj6tWrV77r7rvvPh09erTQPkaOHKlbb71Vx48f19q1a7V06VKtXbtWx44d06233qpRo0a5GxYAoIKJi4uTn5+f1q5d61hmtVqVlpame++914uRAQAAAACAss7tEefh4eH69NNP1aNHjzzrdu/erfDw8EL72L9/v1JTU1WjRg2n5cHBwRo/frwGDhzoblgAgHLkP//5j/bu3StJysrK0k8//aQ1a9ZIkvr16ydJioiIUEJCgpKSklSpUiXVq1dPs2fPVnBwsJ544gmvxQ4AAAAAAMo+twvnw4YN04wZM5Sdna1+/fqpTp06On36tFJTUzV37lxNmTKl0D5uueUWnTt3Lt91NptNjRs3djcsAEA5sn37dj322GOO55s3b9bmzZslSYbxx+VxixYtUvXq1TV+/HidP39enTt31tatWxUcHFzqMQMAAAAA4CpfmvrFl2LxJW4XzidOnCir1aq5c+cqJSXlj44qV9bo0aM1ceLEQvuYO3euRo4cqfr166tbt26O5Tt27NC0adO0ZMkSd8MCAJQjQ4YM0ZAhQwptZzabNW/ePM2bN6/kgwIAAAAAABWGW4VzwzBktVo1a9YsTZgwQXv27JHValVoaKg6dOigmjVrutRPUlKSbDabYmJiFBwcrLCwMJ05c0Y2m00Wi0Xjxo3TuHHjJEkmk0nffPON+0cGAICX8a09CsJ7AwAAAAB8m1uF80uXLql27dp6//33dd999xX55mvt2rWTyWQq0rYAAAAAAAAAyj8GnHhfRX4N3Cqc+/v7KyIiQleuXCnWTt98881ibY+KqSL/oAISPwMAAAAAAAClxe05zkeOHKkFCxYoLi5OAQEBJRETAAAAAADwMgZuAAAqMrcL58eOHdPBgwfVoEEDde/eXXXq1HGadsVkMmnRokUeDRIAAAAAAAAAgNLiduH8gw8+kNlsltls1t69e/Osp3AOAAAAAAAAACjL3C6cHz16tATCQFFx6RwAAAAAAAAAeJZbhfOLFy+qTp06evfdd3X//feXVEwAAAAAAAAAUCQMNIUn+LnTOCAgQNWqVVPlym4PVPcpV65c0QsvvKCuXbuqVq1aCg0NVXR0tHbu3JmnbU5OjpKSklS3bl0FBgaqZ8+e+uGHH7wQNQAAAOBdfI4GAABAReFW4VySHn30Ua1YsaIkYik1Fy5cUEpKitq1a6e33npL7733niwWi6Kjo/XRRx85tR0zZoxee+01zZ49W+vWrVN2drZiY2Nls9m8FD0AAADgHXyOBgAAQEXh9tBxi8Wi3bt3q1WrVrrnnntUp04dmUwmx3qTyaSnn37ao0F6WtWqVXX48GFZLBbHsp49e6ply5ZauHChYmJiJEknTpzQihUrtHTpUg0dOlSS1L59ezVo0ECvvvqqnn32Wa/ED+/hUh8AAFCR8TkaAAB4GrUW+Cq3C+fJycmSpIyMDH333Xd51peFwnmlSpWcPuxfW9aqVSsdOnTIsSwtLU1Xr15V//79HctCQ0MVFxenjRs38oEfAFAm8EEUgKfwORooPfz+BgDAu9yequXq1as3fFy5cqUk4ixxly9f1u7du9W8eXPHsvT0dNWuXTvPHwfNmzdXenp6aYcIAAAA+Bw+RwMAAKA8Ktt3+fSgF154QSdPnnQaLW+1WhUSEpKnrcViUWZmZoF9ZWdnKzs72/Hcbrd7NFYAAADAV/A5GgAAAOWRS4XzF154QY888ojq1q3rWPbJJ5+oTZs2qlatmmPZkSNHlJKSouXLl3s+0kLYbDZlZGQU2q5x48by9/d3WrZlyxZNnTpVU6ZMUbt27YodS0pKiqZPn17sfgAAAICSxudoAAAAIC+XCufJycnq3r27o3B+5coVdenSRXv37tXtt9/uaHf69GmtXLnSK4Xz1NRUDR8+vNB2Bw4cUFRUlOP5l19+qb/85S966KGHNGXKFKe2FotFNpstTx9Wq1WhoaEF7iM5OVljx451PLfb7apfv74rhwEAgFuY/xRAcfE5GgAAAMjLpTnODSPvH+X5LfOmhIQEGYZR6CP3h/1Dhw4pPj5enTp10ooVK/L0GRUVpVOnTslqtTotT09Pd+rnemazWTVq1HB6AAAAAL6Iz9EAAABAXm7fHLS8yMjIUFxcnBo0aKA1a9aoSpUqedrExcXJz89Pa9eudSyzWq1KS0vTvffeW5rhAgAAAD6Bz9EAAACoCCrkzUEvXLig+Ph4/fLLL1q0aJG+++47xzqz2ay2bdtKkiIiIpSQkKCkpCRVqlRJ9erV0+zZsxUcHKwnnnjCW+EDAFAuMe0M4Pv4HA0AAICKwuXCuclkcmlZWXDq1Cl98803kqQHHnjAaV3Dhg119OhRx/NFixapevXqGj9+vM6fP6/OnTtr69atCg4OLs2QAQAAAK/jczQAAAAqCpenaomOjnbMM2ixWCRJXbp0cZp/MDY2tsQC9aRGjRoVOHdj7g/70u8jZ+bNm6dTp04pKytLW7ZsueG8jAAAAEB5xedoAPBtV65c0QsvvKCuXbuqVq1aCg0NVXR0tHbu3JmnbU5OjpKSklS3bl0FBgaqZ8+e+uGHH7wQNQD4JpdGnE+dOrWk4wAAAAAAAEAxXLhwQSkpKRoyZIjGjRunSpUqafny5YqOjlZaWppiYmIcbceMGaNVq1ZpwYIFqlevnmbNmqXY2Fjt37+fq4MAQBTOAQAAAACokLi/SPlTtWpVHT582DFTgCT17NlTLVu21MKFCx2F8xMnTmjFihVaunSphg4dKklq3769GjRooFdffVXPPvusV+IHAF/i8lQtAACUBi4vBQAAAIqmUqVKTkXza8tatWql//73v45laWlpunr1qvr37+9YFhoaqri4OG3cuLHU4gUAX0bhHADgU65dXtquXTu99dZbeu+992SxWBQdHa2PPvrIqe2YMWP02muvafbs2Vq3bp2ys7MVGxsrm83mpegBAAAA33L58mXt3r1bzZs3dyxLT09X7dq18xTZmzdvrvT09NIOEQB8kktTtQAAUFq4vBQAAADwnBdeeEEnT57U008/7VhmtVoVEhKSp63FYlFmZmaBfWVnZys7O9vx3G63ezRWAPAlFM4BlGnMy1j+3Ojy0kOHDjmWFXZ5KYXz8oefdwCAL+D3EUqbzWZTRkZGoe0aN24sf39/p2VbtmzR1KlTNWXKFLVr167YsaSkpGj69OnF7gcAiqK0fwdTOAcA+Lxrl5d26dLFsexGl5euXLmytEMEAAAASkRqaqqGDx9eaLsDBw4oKirK8fzLL7/UX/7yFz300EOaMmWKU1uLxZLv9IZWq1WhoaEF7iM5OVljx451PLfb7apfv74rhwEAZQ6FcwCAz+PyUgAAAFRUCQkJSkhIcGubQ4cOKT4+Xp06ddKKFSvyrI+KitKpU6dktVqdBqKkp6c7Fd+vZzabZTab3YoFAMoqCucAgBLH5aUAAABA6cjIyFBcXJwaNGigNWvWqEqVKnnaxMXFyc/PT2vXrnUU5a1Wq9LS0jR58uTSDhkAfBKFcwBAiePyUgAAAKDkXbhwQfHx8frll1+0aNEifffdd451ZrNZbdu2lSRFREQoISFBSUlJqlSpkurVq6fZs2crODhYTzzxhLfCBwCfQuG8FBjG7xPXMx0AgLIoKChIJpOpWH348uWl5GgAZZkncrQvI0cDKOtKO0+fOnVK33zzjSTpgQcecFrXsGFDHT161PF80aJFql69usaPH6/z58+rc+fO2rp1q4KDg13eH3kaQFlWWI42GdeyHErMiRMnGM0IoMyy2WyqUaNGqe4zIyNDnTt3Vs2aNbV9+3ZVr149T5sTJ06oUaNGWrZsmdPlpQ0aNNDkyZP17LPPurQvcjSAsswbObo0kaMBlHXkaQDwXYXlaArnpeDq1av673//W6xvmq9NJXD8+PFy/Uu3tHA+PYvz6Vm+dj5Le5TMhQsX1LFjRx0+fFh///vfFRYW5liX+/JSSUpMTNTq1au1YMECx+Wlhw4d0v79+10eKUOO9j2cT8/ifHqWr53P8j7i3BM5WvK9162s43x6FufTs3ztfJKnb8zXXi9fwXnJi3OSF+ckL3fPSWG5i6laSoGfn58iIiI80leNGjX4YfAgzqdncT49q6Kez9K+vJQc7bs4n57F+fQszmfp8GSOlnjdPI3z6VmcT8/ifJYOT+VpXq/8cV7y4pzkxTnJy1PnhMI5AMCnNGrUSK5eDGU2mzVv3jzNmzevhKMCAAAAAAAViZ+3AwAAAAAAAAAAwJdQOC8jzGazpk6dKrPZ7O1QygXOp2dxPj2L81n28Jp5FufTszifnsX5LJt43TyL8+lZnE/P4nyWLbxe+eO85MU5yYtzkpenzwk3BwUAAAAAAAAAIBdGnAMAAAAAAAAAkAuFcwAAAAAAAAAAcqFwDgAAAAAAAABALhTOfVx6erp69uypwMBA1a1bV88++6xycnK8HVaZcOjQISUmJqpNmzaqXLmyWrZsmW+7lStXKjIyUgEBAWrdurU2bNhQypH6vtTUVPXu3VsREREKDAxUmzZt9Prrr+v6WyRwLl2zceNGdevWTWFhYTKbzWrcuLHGjh0rm83m1O6DDz5Q69atFRAQoMjISL3xxhteihgFIUcXHTnas8jTnkWeLj/I00VHnvYccrRnkaPLj4qeo8mzzsiV+SPn3divv/6qiIgImUwmff75507rPPFeoXDuw6xWq2JiYpSTk6N169Zp9uzZWr58ucaOHevt0MqE/fv368MPP9Qtt9yiFi1a5Ntm1apVGj58uAYOHKhNmzapY8eO6tu3r3bv3l3K0fq2BQsWqFq1apo/f74++OADxcfHa/jw4ZoxY4ajDefSdZmZmbrzzju1bNky/fvf/9bYsWP19ttvq3///o42u3btUt++fdWxY0dt2rRJAwcO1LBhw7RmzRovRo7cyNHFQ472LPK0Z5GnywfydPGQpz2HHO1Z5OjygRxNnr0euTJ/5Lwbe+6553T58uU8yz32XjHgs2bPnm0EBgYaZ8+edSx79dVXjUqVKhknT570YmRlw5UrVxz/f/TRR41bb701T5vIyEhj0KBBTss6duxoxMfHl3h8ZcmZM2fyLBs+fLhRo0YNx3nmXBbP8uXLDUmOn+24uDijU6dOTm0GDRpkNG/e3BvhIR/k6OIhR3sWebrkkafLHvJ08ZCnPYccXfLI0WUPOZo8ez1ypevIeb87cOCAERgYaCxbtsyQZOzdu9exzlPvFUac+7BNmzapR48eCg0NdSwbMGCArl69qrS0NC9GVjb4+d347X348GEdPHhQAwYMcFr+4IMPatu2bcrOzi7J8MqUWrVq5VnWtm1b2e12/fbbb5xLD6hZs6YkKScnR9nZ2dq+fbvTN8jS7+fzwIEDOnr0qBcixPXI0cVDjvYs8nTJI0+XPeTp4iFPew45uuSRo8secjR59nrkSteR8343evRoJSYmqlmzZk7LPfleoXDuw9LT0xUVFeW0LCQkROHh4UpPT/dSVOXHtXN4/Tlu3ry5cnJydOTIEW+EVWbs2rVL9erVU1BQEOeyiK5cuaKLFy/qyy+/1IwZM/TAAw+oUaNG+umnn3Tp0qV8z6ckfv59BDm6ZJFXio88XXzk6bKNPF2yyCvFQ44uPnJ02UaOLhy5gVyZGznP2Zo1a7Rv3z5NmTIlzzpPvlconPswq9WqkJCQPMstFosyMzNLP6Byxmq1SlKec2yxWCSJc3wDu3bt0qpVq/S3v/1NEueyqBo2bKiqVauqXbt2Cg8P13vvvSeJ81lWkKNLFj8HxUOe9gzydNlGni5Z/BwUHTnaM8jRZRs5unAV/b1MrnRGzvtDVlaWxo4dq9mzZ6tGjRp51nvynFA4B+CWEydOaODAgYqOjtaYMWO8HU6ZtnHjRn3yySd67bXXdODAAd1///26cuWKt8MCUMaRpz2HPA3A08jRnkOOBsovcmVe5Lw/zJw5U3Xq1NFjjz1W4vuqXOJ7QJFZLBbZbLY8y61Wq9M8YCiaa9802Ww21a1b17H82jdTnOO8zp07p/j4eNWsWVNr1651zMnGuSyaVq1aSZI6duyo9u3bq02bNlq/fr3jjurX//xzPn0LObpkkVeKhjztWeTpso08XbLIK+4jR3sWObpsI0cXrqLmBnJl/sh5v/vPf/6j+fPna/369Y5j/vXXXx3//vrrrx59rzDi3IdFRUXlmYvIZrMpIyMjzzw9cN+1c3j9OU5PT5e/v78aN27sjbB81oULF9SrVy/ZbDZt2rRJwcHBjnWcy+Jr1aqVqlSpokOHDqlJkyaqUqVKvudTyjtPF7yDHF2yyCvuI0+XLPJ02UOeLlnkFfeQo0sWObrsIUcXriLmBnKlaypyzjty5IhycnJ03333yWKxyGKx6P7775ckRUdHq0ePHh59r1A492Hx8fHaunWrzp0751iWmpoqPz8/xcXFeS+wcqJx48aKjIxUamqq0/LVq1crNjZW/v7+XorM91y+fFkDBgzQgQMHtHnzZtWrV89pPeey+Pbs2aNLly6pcePGMpvNio6O1po1a5zarF69Ws2bN1ejRo28EySckKNLFnnFPeTpkkeeLnvI0yWLvOI6cnTJI0eXPeTowlW03ECudF1Fznlt2rTR9u3bnR4LFy6UJC1btkxLly716HuFqVp8WGJiohYvXqw+ffpowoQJOnnypJKSkpSYmKibbrrJ2+H5vKysLG3cuFHS75dy2O12RyLp1q2bwsLCNG3aNA0ePFhNmjRRdHS0Vq9erT179ujjjz/2Zug+Z8SIEdqwYYPmz58vu92u3bt3O9a1bdtWZrOZc+mGP//5z7rjjjvUqlUrVa1aVd98843mzp2rVq1aqU+fPpKkyZMnq3v37hoxYoQGDBig7du367333tPq1au9GzwcyNHFQ472LPK0Z5GnywfydPGQpz2HHO1Z5OjygRxNnr0euTJ/5DxnISEh6t69e77r2rVrp9tvv12SPPdeMeDTvv/+eyM2NtaoWrWqUbt2beNvf/ubkZ2d7e2wyoQjR44YkvJ9bN++3dFuxYoVxi233GL4+/sbt912m/HBBx94L2gf1bBhwwLP5ZEjRxztOJeuSUlJMdq0aWMEBQUZgYGBxq233mpMnjzZsNlsTu3ef/9947bbbjP8/f2NW265xVi5cqWXIkZByNFFR472LPK0Z5Gnyw/ydNGRpz2HHO1Z5Ojyo6LnaPKsM3Jl/sh5hdu+fbshydi7d6/Tck+8V0yGYRjuldoBAAAAAAAAACi/mOMcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgFwrnAAAAAAAAAADkQuEcAAAAAAAAAIBcKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzkuBYRiy2+0yDMPboQAArkOOBgDfRY4GAN9GngZQnlE4LwXnz59XcHCwzp8/7+1QAADXIUcDgO8iRwOAbyNPAyjPKJwDAAAAAAAAAJALhXMAAAAAAAAAAHKhcA4AAAAAAAAAQC4UzgEAAAAAAAAAyIXCOQAAAAAAAAAAuVA4BwAAAAAAAAAgl8reDgAAUIDlpj/+/7jhvTgAwNPIb0DpyP2zJvHzBgAAyo9rn3NK8PMNI84BAD4nNTVVvXv3VkREhAIDA9WmTRu9/vrrMgznX4grV65UZGSkAgIC1Lp1a23YsMFLEQMAAAAAgPKEwjkAwOcsWLBA1apV0/z58/XBBx8oPj5ew4cP14wZMxxtVq1apeHDh2vgwIHatGmTOnbsqL59+2r37t1ejBwAABTLctMfDwAAAC9iqhYAgM/54IMPVKtWLcfzmJgYnT17VgsWLNDkyZPl5+enqVOn6sEHH9Rzzz0nSYqOjta3336rGTNmaOPGjd4KHQAAAAAAlAOMOAcA+JzcRfNr2rZtK7vdrt9++02HDx/WwYMHNWDAAKc2Dz74oLZt26bs7OzSChUAAAAAkB+uIkIZ5/aI82PHjhW4zs/PT8HBwQoKCipWUAAAXG/Xrl2qV6+egoKCtHPnTklSVFSUU5vmzZsrJydHR44cybMOAABUANx8GAAAeIjbhfNGjRrJZLrxN0WNGjXSU089pdGjRxc5MAAArtm1a5dWrVql+fPnS5KsVqskKSQkxKmdxWKRJGVmZhbYV3Z2ttOIdLvd7uFoAQAAAABAWed24fzdd99VcnKyIiMj1bt3b9WuXVunT5/W+vXr9eOPP2r8+PH69NNP9fTTT0sSxXMAQLGcOHFCAwcOVHR0tMaMGVPs/lJSUjR9+nQPRAYAAFAOXD+FAiP1AQCQVITC+c6dO3XPPffo1VdfdVo+atQoPf744/riiy/0zjvvqEaNGlq6dCmFcwBAkZ07d07x8fGqWbOm1q5dKz+/32/NcW1kuc1mU926dR3tr41EDw0NLbDP5ORkjR071vHcbrerfv36JRE+AAAAAAAoo9y+OeiqVavUr1+/fNf1799f69atkyT16tVLR44cKV50AIAK68KFC+rVq5dsNps2bdqk4OBgx7pr85enp6c7bZOeni5/f381bty4wH7NZrNq1Kjh9AAAAACAMombbwIlxu3CuZ+fn7755pt813399deO0YCVKlVS1apVixcdAKBCunz5sgYMGKADBw5o8+bNqlevntP6xo0bKzIyUqmpqU7LV69erdjYWPn7+5dmuAAAlF/XCjIUZQAAQAXj9lQtgwcP1uTJk5WTk6P7779fYWFhOnPmjN5//33NnDlTTzzxhCTpiy++UIsWLTweMACg/BsxYoQ2bNig+fPny263a/fu3Y51bdu2ldls1rRp0zR48GA1adJE0dHRWr16tfbs2aOPP/7Yi5EDAAAAAIDywO3C+fz581W5cmXNnDlTkydPdiw3m80aOXKknn/+eUlS586ddffdd3suUgBAhZGWliZJeuaZZ/KsO3LkiBo1aqRBgwYpKytLc+bM0Zw5c9SsWTOtX79eHTt2LO1wAQAAAHhK7itcuFktAC9ye6qWKlWqaMGCBTp58qQ++ugjvffee9q+fbtOnDjhKKpLUteuXXX77bd7PGAAQPl39OhRGYaR76NRo0aOdsOGDdOPP/6o7Oxsffvtt+rVq5f3ggaACiQ1NVW9e/dWRESEAgMD1aZNG73++usyDOcCx8qVKxUZGamAgAC1bt1aGzZs8FLEAFBxkKMBwDPcLpxfY7FY1K1bNw0cOFBdu3ZVaGioJ+MCAAAA4KMWLFigatWqaf78+frggw8UHx+v4cOHa8aMGY42q1at0vDhwzVw4EBt2rRJHTt2VN++fZ2m3wIAeB45GhUC9+BAKXB7qhZJ+uWXXzRv3jzt3btXJ06c0Lp163Trrbdq0aJFuvPOO3XXXXd5Ok4AAAAAPuKDDz5QrVq1HM9jYmJ09uxZLViwQJMnT5afn5+mTp2qBx98UM8995wkKTo6Wt9++61mzJihjRs3eit0ACj3yNEA4Blujzj/8ssv1bRpU61atUoRERE6dOiQsrOzJUknT57UwoULPR5khZX72zO+QQMA+AJ+L5W88nCOy+IxlMWYvSh3Qeaatm3bym6367ffftPhw4d18OBBDRgwwKnNgw8+qG3btjn+fgAAeB45GgA8w+3C+dNPP62OHTvqxx9/1MqVK53myLrzzju5rAcAAACogHbt2qV69eopKChI6enpkqSoqCinNs2bN1dOTo6OHDnijRABoMIiRwOA+9yeqmXv3r1at26dqlSpoitXrjitCwsL0+nTpz0WHAAAgMflHlH8uFFwOwAu27Vrl1atWqX58+dLkqxWqyQpJCTEqZ3FYpEkZWZm5ttPdna200hHu91eAtECQMXiqRwtkacBVCxujzgPDAwsMDEeO3ZMNWvWLHZQpYG7TAMAAADFd+LECQ0cOFDR0dEaM2ZMsfpKSUlRcHCw41G/fn0PRemjmCIIQAnzZI6WKmCeBlChuV04v/vuuzVz5kydPXvWscxkMunChQtatGiR7r33Xo8GWFK4yzQAoNzjXhm+gdcA5di5c+cUHx+vmjVrau3atfLz+/3Pi2ujFm02m1P7a6McQ0ND8+0vOTlZNpvN8Th+/HgJRg8A5Zunc7REngZQsbg9Vcvzzz+vzp07q2nTpoqOjpbJZNKkSZP0/fffy2QyaebMmSURp8dxl2kAAACg6C5cuKBevXrJZrPp008/VXBwsGPdtXlz09PT1axZM8fy9PR0+fv7q3Hjxvn2aTabZTabSzZwAKgASiJHSx7O09cGFTB1HgAf5faI83r16unrr7/W6NGjlZGRoSZNmujs2bMaPHiwPv/8c9WuXbsk4vQ47jINAAAAFM3ly5c1YMAAHThwQJs3b1a9evWc1jdu3FiRkZFKTU11Wr569WrFxsbK39+/NMMFgAqFHA0AnuH2iHPp9xtITJ8+XdOnT/d0PF6V+y7TO3fulHTju0xfvw7A/+/66QgYQQAAKG8q+E1mR4wYoQ0bNmj+/Pmy2+1OUxm2bdtWZrNZ06ZN0+DBg9WkSRNFR0dr9erV2rNnjz7++GMvRg4A5R85GgA8o0iF8/KIu0wDAAAArklLS5MkPfPMM3nWHTlyRI0aNdKgQYOUlZWlOXPmaM6cOWrWrJnWr1+vjh07lna4AFC4cvSFKDka5Rb3DEIpc6lwfvPNN8tkcv3Nefjw4ULbnD17Vp999pkyMjJ04cIF1axZU82aNVObNm3c2pcnlMRdpsvbaHwAAIAypRwVQHzR0aNHXWo3bNgwDRs2rGSDAQA4IUcDgGe4VDjv3bu3UzF7zZo1stvt6tGjh+rUqaNTp05p69atCg4OVr9+/Qrsx2az6a233tJbb72lr7/+Wobh/EeMyWRS9erV1bdvXw0fPlydO3cu4mG5zpW7TNetW9fR3tW7TI8dO9bx3G63q379+iURPgAAAAAAAHIr7zceLe/HB/gIlwrnL774ouP/c+fOVf369bV582bVqFHDsdxmsyk+Pl516tTJt4/Zs2dr3rx5slgs6t+/v6ZOnarWrVurVq1aMpvNOnfunI4eParPP/9cmzZtUmxsrP70pz/ppZdeUosWLYp3lAUoE3eZvh6jp8oe5vsGAAAAAAAAyhS35zh/6aWXtHTpUqeiuSQFBwdr/PjxGjFihMaNG5dnux07dmjdunXq3r17vv3WqlVLtWrV0h133KHExERZrVYtWbJEO3bsKJHCee67TO/cufOGd5nu3bu3Y3m5u8s0hXgAAAAAAAC4iloSvMEL7zu3C+eZmZmy2Wz5rrPZbI6pTK537eYUrrJYLJo8ebK74bmMu0wDAAAAqFC4EhIVBe91AIAHuF04j42N1bhx41S/fn1169bNsXzHjh0aP368YmNjPRpgSeEu0wCAYivtb7z5IxC+ilFHAAAAAMoZtwvnr776qh544AHFxMQoODhYYWFhOnPmjGw2m9q2batly5YV2seMGTMKXOfn56fg4GC1adNGXbp0cTc8l3GXaQAAAAAAAAAMBEF+3C6ch4eHa+/evdq8ebM+++wzZWRkKDw8XB06dNA999zjUh8LFy5UTk6OLly4IEkKCAjQxYsXJUlVq1bVpUuXdOXKFd1+++3auHGjwsLC3A0TAEoWv1QBAAAAAADKLbcL59fcc889LhfKr/fRRx9p4MCBmjp1qnr37q3q1avr119/1fr16zVjxgy9/fbbysrK0l//+lclJSXpzTffLGqYAAAAAAAAAFB8DKKrUIpcOC+OkSNH6plnntHgwYMdy6pXr66HH35Yv/32m5566int2bNHkyZNuuG0LigHmK8XAAAUhs8LAOA6ciYAAB7hlcL5V199pSlTpuS7rlGjRtq3b58kqWXLlrLZbKUZGsoDvv0DAAAAAACeQI0BnsT7qUzx88ZOGzZsqBUrVuS7bvny5WrYsKEk6ezZs6pVq1ZphgYAACqa5aY/HgAAAAAAyEsjzlNSUjRgwAA1a9ZMvXr1UlhYmM6cOaMNGzbo8OHDSk1NlSRt27ZNXbt29UaIKCmeKErw7RwAAABQNvFZHq7w9PuE6WsAAEXglcJ537599dlnnyklJUXr169XRkaGwsPD1b59e61evVpt2rSRJL388sveCA8AAAAAAAAA4I5y9gW5W4Xzn3/+WWlpaUpPT1dmZqYkKTQ0VFFRUYqLi1PdunVd7qtt27b6xz/+4V60AACUZWXhQ0RZiBEAAAAAgBLmUuH80qVLeuaZZ7Rs2TJduXJF4eHhslgskiSr1aqMjAxVqlRJ//M//6P58+ercmXX6/HHjx/X8ePH1bp1awUGBhbtKAAAAAAAAABXeWLASGkNOmFwC3K79n7gvVDiXLo56KRJk/TOO+/o5ZdfVmZmpk6cOKF9+/Zp3759OnHihKxWq5YuXap33nlHkyZNcmnHy5cvV7169dSwYUN16dJFP/zwg6Tfp3FZtGhR0Y8IAAAAAAAAAIBicKlw/vbbb2vhwoUaPny4goOD86yvUaOGEhISNH/+fL311luF9vfiiy9q9OjReuSRR5SWlibD+OMbku7duztuDgoAAAAAAAAAQGlzaU6V8+fPKyIiotB2EREROn/+fKHtFi9erMmTJ2vSpEm6cuWK07pmzZo5Rp8DPolLpAB4SlnIJ8WNsSwcIyom3psAAAAoDbk/d6JMcalw3rFjR82ePVvt27fPd8S5JNntds2ePVudOnUqtL+TJ08W2K5KlSr69ddfXQkLAAAAAAC4gwIOAAAucalwvmTJEsXExKh+/frq0aOHoqKiFBISIkmy2WxKT0/X1q1bFRQUpG3bthXaX8OGDfXZZ58pJiYmz7o9e/YoMjLSvaMAAAAAAAAAAMBDXCqcN2vWTPv379crr7yizZs3a+XKlbJarZIki8WiqKgoJScnKzEx0VFQv5Hhw4dr2rRpCgsL05///GdJ0qVLl/Thhx9q7ty5mjVrVtGPCED54O1L6L29f08oD8cAuOv6UXQVYXoZTxyzO/soC+cEAAAAAIrJpcK5JIWEhCg5OVnJycnF3unf/vY3HTt2TI8//rieeOIJSVLnzp0lSSNGjNCIESOKvQ8AQMWQnp6u0aNH65NPPlFQUJAeeeQRzZw5U/7+/t4ODQBQ0fGlE1AySuNni5/f8oPX0ndcey1KcqAHrzE8yOXCuae99NJLeuqpp7RlyxadPXtWoaGhio2NVdOmTb0VEiR+oXhDaYwULI94r0KS1WpVTEyMmjZtqnXr1unkyZMaO3assrKytGTJktIPiPclfAXvRe/jNQAAAADKNJcL51u2bNE//vEPGYahxx9/XB06dNDOnTuVnJysn376SY0aNdKYMWM0aNAgl3feuHFjx4hzAADctWzZMtntdq1fv16hoaGSpMuXL2vEiBGaMGGCbrrpJi9HCAAAvIpBKgAAoIhcKpyvW7dO/fv3V8OGDRUUFKT33ntPq1at0qBBg9S5c2c98sgj+vzzz/XXv/5VkvItnn/88cduBda1a1e32qMAjHYCUI5t2rRJPXr0cBTNJWnAgAFKTExUWlqahgwZ4r3gUH54+3fp9UWf4vbB5wEAAADf54nPgICnVNC/J1wqnM+ZM0cPP/yw3njjDZlMJi1evFgPPfSQhgwZopdfftnRbvjw4VqwYEG+hfPu3bvLZDLJMH4/uSbTHyfcMAyn55J05cqVIh0QAKDiSE9P19ChQ52WhYSEKDw8XOnp6V6KCgAAAAAAlHUuFc7T09OVkpLiKG4/8sgjevLJJ9W/f3+ndgMGDFBqamq+fXz11VeO/58+fVrDhg1TdHS0+vXrpzp16ujUqVNKTU3Vjh07tHLlyqIeDyroN0BlCt8a+8Yls/yslAtWq1UhISF5llssFmVmZua7TXZ2trKzsx3P7XZ7SYUHAIAzPn8UX1k4h2UhxvKGv7GAksfPGSoglwrn1atX17lz5xzPrVarJOn8+fNO7c6fP6+qVavm20fr1q0d/+/Xr58efPBBvfDCC05t7r//fiUlJemVV15Rz549XToAwOfwQRnewnvPJSkpKZo+fbpnOrv+PF///PrXxN32hW1f2IfX/N4H7u6jJGPOr/2NnrvClWN29xiLewzFPWdF+Xku6WMo7v4K66+wL1hdee978+exKK87AAAAAJ/i50qjbt26acqUKdq5c6e++eYbjRo1Snfeeadmz57tKKKfPXtWc+bMUbt27Qrt79///neBhfG4uDht2bLFjUMAAFRUFotFNpstz3Kr1eo073luycnJstlsjsfx48dLOkwAAICiW2764wEAAEqNSyPOn3/+ed19993q1q2bTCaTbr31Vm3btk1/+ctfVK9ePdWrV08nTpxQQECAli9fXmh/1atX17Zt2/Itnm/ZskXVq1d3/0hKSHp6ukaPHq1PPvlEQUFBeuSRRzRz5kz5+/t7O7TSUdhoKEZLlU+8rigjoqKi8sxlbrPZlJGRoaioqHy3MZvNMpvNpREe8lMRckpFOEYAAAAUDX9v3xjnp2SUpfN6LVYfiNOlwnmDBg30zTff6KuvvtKlS5fUsWNHVapUSWlpaVqxYoUOHDighg0b6qGHHlJERESh/Y0cOVJTpkzRqVOn1KdPH9WuXVunT5/W+vXr9c4773juEvpislqtiomJUdOmTbVu3TqdPHlSY8eOVVZWlpYsWeLt8ACgwouPj9fs2bN17tw5x1znqamp8vPzU1xcnHeDAwAAAAAAZZZLhXNJ8vf315133um0LCAgQKNGjXJ7p5MmTVJISIjmzJmjt956SyaTSYZhKDw8XC+++KJGjx7tdp8lYdmyZbLb7Vq/fr3jkv/Lly9rxIgRmjBhgm666SYvRwgAFVtiYqIWL16sPn36aMKECTp58qSSkpKUmJhYNnO0D3yjXmylfQzl4Zx5Q1k/b+7Oee4Lyvo5L4u8MbKqLI3myo8v3MAdAFC6yvrvrvyU1jGVx3Pna7z8Od+lOc5LwqhRo3Ts2DEdPXpUn3zyiY4eParjx4/7TNFckjZt2qQePXo4zZM7YMAAXb16VWlpaV6MDAAg/T7H+bZt21S5cmX16dNH48ePV0JCghYsWODt0AAAAAAAQBnm8ojzkuDn56cGDRqoQYMG3gyjQOnp6Ro6dKjTspCQEIWHh+eZUxclxBdGvfANIuDTmjdvrq1bt3o7DACAr/OFz5UAioa/yeApZeEqNU8p6s+ND80v7REFvebl5fhQokqtcP7KK69o6NChbt2Qbd++fTpz5oxiYmJKMLKCWa1Wx5y5uVksFmVmZha4XXZ2trKzsx3P7XZ7SYQHAAC8oSJ8yC5rx+gL8fpCDAAAuCE9PV2jR4/WJ598oqCgID3yyCOaOXOm/P39vR0aAPiEUiucv/nmm5o+fboGDRqk/v37q3379qpSpUqedv/973+1adMm/e///q/27NmjN998s7RC9JiUlBTP3OA0vz/AbjSn5+NG3vXFbe/u9tevL6z99VwZCeTpmNyNubjntDD5nYPCYrxRH544Zk9un1/M+a0v7ut8PXe39+T7rCg88fNFEQcAAABAPqxWq2JiYtS0aVOtW7dOJ0+e1NixY5WVlaUlS5Z4OzwA8AluFc4vXryopUuXKi4uTi1btnRrR3v27NH69eu1aNEivfTSS6pSpYoiIyMVFhYms9msc+fO6ciRIzp9+rRCQ0P16KOP6t1331XdunXd2o8nWSwW2Wy2PMutVqvTvOfXS05O1tixYx3P7Xa76tevXyIxuo1CWuHKwjkqCzHixsrije3g+8pDbigPxwAARcV0FGVDRXydKuIxl3PLli2T3W7X+vXrHfWNy5cva8SIEZowYYJuuukmL0dYgPI2jQh+x9/DvytLubaC/Cy6dXPQgIAATZo0SWfPni3Szvr27asdO3bop59+0pIlS9SpUydVr15dV65cUcOGDfXEE09o8+bN+u9//6t58+Z5tWguSVFRUXnmMrfZbMrIyFBUVFSB25nNZtWoUcPpAQAAAFQ06enp6tmzpwIDA1W3bl09++yzysnJ8XZYAFDhbdq0ST169HAaFDhgwABdvXpVaWlpXowMAHyH21O1tGnTRt9//726detW5J02atRICQkJSkhIKHIfpSE+Pl6zZ8/WuXPnHHOdp6amys/PT3Fxcd4NDr6jnH+7BqCcKWs5qyxcnVHWzilQSpgGAB5RlkbfAWVIenq6hg4d6rQsJCRE4eHheQYQAihBvjxy2xf/9iplbhfOFy1apMGDByssLEz33nuvqlWrVhJx+YTExEQtXrxYffr00YQJE3Ty5EklJSUpMTHRdy9bAgAAAHxAmZ0GAAAqAKvV6hggmJvFYlFmZmaB22VnZys7O9vx3G63l0R4AOAT3C6cx8TEKCcnRwMHDpQkVatWTSbTH99AmEymfOcFL4ssFou2bdum0aNHq0+fPgoKClJCQoJmzZrl7dAA3+KL34yWNZxDFIUn3jfF7YP3Lsor3tvFVtA0AImJiUpLS9OQIUO8FxwAoEhSUlI0ffp0z3SW+3dtQVeXXL+8oHXX95u7nau/03OP/L3R1S65290o1vz6c2ebG8Vd0PG5GveN2uXXX2HxFKfv/NoV1HdRzsmNePJ1cfW4r+fqa+lKrNf368n36o3idvd9d/375Pp+XX0tS+HzutuF82eeecapUF7eNW/eXFu3bvV2GAAAAECZwjQAwP/P29PNlMSl9gUVXa49h8+zWCz5Dnq0Wq1OX3heLzk5WWPHjnU8t9vtql+/fonECADe5nbhfNq0aSUQBlAMfDCDJ5T0+4j3KQCgginKNABMAQAApSMqKirPl5g2m00ZGRmKiooqcDuz2Syz2VzS4QGAT3C7cH6NYRg6ePCgMjMzFRoaqsjISJdGohuGIavVqsDAQJJtWURxEfAd/LwA8BTyCXxEiU0BkN9zd0fh5jeq9kZTCLgSgzsxurL/wuK53vXnIL/2JR1Tcc+hu9t74nX3ZAyeOGfuvu5F4e7rcr3iHnNx93+jeFzdZzkTHx+v2bNn69y5c44vOVNTU+Xn56e4uDjvBucLSuv1L+fvM3hQUd4rvL+Kza8oGy1dulTh4eFq0aKFOnfurBYtWuimm27SK6+8Uui2ly5dUu3atZn+BAAAACjHijINQHJysmw2m+Nx/Pjxkg4TACqkxMREBQUFqU+fPkpLS9Mbb7yhpKQkJSYmcvNmAPj/uT3ifPny5Ro1apQGDRqkgQMHqk6dOjp16pRWr16tUaNGqUqVKkpISChwe39/f0VEROjKlSvFChyAB/EtJAAA8LCiTAPAFAAAUDosFou2bdum0aNHq0+fPgoKClJCQoJmzZrl7dBQUopy80x4D6+RT3C7cL5w4UKNGTNGL774otPyBx54QGFhYZo3b94NC+eSNHLkSC1YsEBxcXEKCAhwNwQAAAAAPo5pAFBhUNwoe3jNJEnNmzdnNgAAuAG3C+dHjhxRr1698l133333admyZYX2cezYMR08eFANGjRQ9+7dVadOHaf50U0mkxYtWuRuaED++FAEifcB4Kvc/dnkZxkoMxITE7V48WL16dNHEyZM0MmTJ5kGAAAAAGWG24Xz8PBwffrpp+rRo0eedbt371Z4eHihfWzYsMFxGebevXvzrKdwDgAAAJRtTAOAUlEWv1AtizEDgKtczXHkQu/x9Lm/UX9l/HV2u3A+bNgwzZgxQ9nZ2erXr5/q1Kmj06dPKzU1VXPnztWUKVMK7ePIkSNFChaAi8p4YgIAAOUD0wAAAACgrHK7cD5x4kRZrVbNnTtXKSkpf3RUubJGjx6tiRMnejRAAAAAAPC46wcaLDfl386XFXewBIMtUFp4r6Gk8R7zLs4/yimXCud2u11BQUEymUwymUyaP3++JkyYoD179shqtSo0NFQdOnRQzZo1Xd7xyZMn9eKLL2rXrl3KzMxUaGiounTpoieffFL16tUr8gEBAAAAAFBmUHACAMAnuVQ4t1gs+vTTT9WhQwfFxMRo6dKlioqK0r333luknX733Xfq2rWrLl26pJ49e6pNmzY6deqUli1bppUrV+rjjz/WrbfeWqS+AQDwGfwh7Bt87XXwtXgAAABQfHzGgzfkft+VxavnfJxLhfOAgABdvHhRkrRjxw7Z7fZi7fRvf/ubmjRporS0NFksFsdyq9WquLg4/e1vf9OmTZuKtQ8AAAAAQAmjUAQAAMoplwrnrVq1UlJSkuLj4yVJK1as0ObNm/NtazKZNHny5Bv2t2vXLv397393KppLv49snzhxoh5++GFXwgIA38EfjSgJvK8qBl7nvDgnAAAAALzMpcL50qVLNWbMGL388ssymUxatWqVKlWqlG9bVwrnlStXVnZ2dr7rsrOzC+wbAAAAAFCG8EUYXMH7BAC8xxs5uIxMMeNS4bxt27bauXOnJMnPz09bt25Vhw4dirzTHj16aOLEiWrTpo0iIyMdy3/88UdNnjxZPXv2LHLfQKH4UOZ7eE0AAAAAAADgQ1wqnOe2fft2tWjRolg7XbBggbp166YWLVqoZcuWqlOnjk6fPq19+/apQYMGWrBgQbH6BwAAADyKL3kBAEBFw+cfVHBuF867detW7J02aNBA+/bt0+uvv65du3bJarUqMjJSQ4cO1WOPPabq1asXex8AAAAA4LLriwM+fNlwuVLaRZnCXuf84vH1wpGvxwcAQBnlduHcU6pXr64xY8ZozJgx3goBAAAAAAAAAIA8vFY4B4ByjZE/AACguPg8AQC+h9yM/PC+KJdKrXBeo0YNbd++Xe3atVNQUJBMpoIvfTSZTLLZbKUVGgAAAFC6+OMKAAAA8GluFc4vXryopUuXKi4uTi1btnRrR88884zCw8Md/79R4RwAAAAAAAAoNXypDeA6bhXOAwICNGnSJLVr187tHU2dOlWSZBiGxowZo8DAQJnNZrf7AVBBFfYhpqQ/5PAhCgAAXM/bN7ZE8fniOfXFmAAAqID83N2gTZs2+v7774u8w0uXLql27draunVrkfsoritXruiFF15Q165dVatWLYWGhio6Olo7d+7M0zYnJ0dJSUmqW7euAgMD1bNnT/3www9eiBoAAAAAAAAAypHHjT8ePsbtwvmiRYu0cOFCrVmzRllZWW7v0N/fXxEREbpy5Yrb23rKhQsXlJKSonbt2umtt97Se++9J4vFoujoaH300UdObceMGaPXXntNs2fP1rp165Sdna3Y2FjmYHeVD7/5AQAAAHgYn/8BAEA54fbNQWNiYpSTk6OBAwdKkqpVq+Y0X7krN/YcOXKkFixYoLi4OAUEBLgbQrFVrVpVhw8flsVicSzr2bOnWrZsqYULFyomJkaSdOLECa1YsUJLly7V0KFDJUnt27dXgwYN9Oqrr+rZZ58t9dgBAAAAAAAAACXL7cK5J27seezYMR08eFANGjRQ9+7dVadOnTzF90WLFhVrHzdSqVIlp6L5tWWtWrXSoUOHHMvS0tJ09epV9e/f37EsNDRUcXFx2rhxI4VzlF3MxwkfduXKFc2fP18bNmzQ999/r6tXr6p169aaMWOGunTp4tQ2JydHEydO1DvvvKPz58+rU6dOWrJkiZo1a+al6AEAAAAAQHngduF82rRpxd7phg0bZDabZTabtXfv3jzrS7pwnp/Lly9r9+7dTkWZ9PR01a5dO0+RvXnz5lq5cmWpxgcAFcW16bSGDBmicePGqVKlSlq+fLmio6OVlpbmuCpI+n06rVWrVmnBggWqV6+eZs2apdjYWO3fv1/BwcFePAoAAAAAAFCWuV04v8YwDB08eFCZmZkKDQ1VZGSkyyPRjxw5UtTdlpgXXnhBJ0+e1NNPP+1YZrVaFRISkqetxWJRZmZmgX1lZ2crOzvb8dxut3s0VieM5K0YeJ1RgTCdFgAAAAAA8LYiFc6XLl2qGTNm6MyZMzIMQyaTSbVr19aUKVP0P//zP56O0SU2m00ZGRmFtmvcuLH8/f2dlm3ZskVTp07VlClT1K5du2LHkpKSounTpxe7HwCoiJhOCwDgsxjMAAAAUGG4XThfvny5Ro0apUGDBmngwIGqU6eOTp06pdWrV2vUqFGqUqWKEhISCu3nl19+0cKFC7Vnzx5lZGQoPDxcd911l5588kmFhYW5fSCpqakaPnx4oe0OHDigqKgox/Mvv/xSf/nLX/TQQw9pypQpTm0tFku+Nzq1Wq0KDQ0tcB/JyckaO3as47ndblf9+vVdOQwAQD6YTgsAAAAAAJQmtwvnCxcu1JgxY/Tiiy86LX/ggQcUFhamefPmFVo437Nnj+655x5dvXpVPXr0UGRkpE6dOqXFixdr8eLFSktL05133ulWXAkJCS4V7HM7dOiQ4uPj1alTJ61YsSLP+qioKJ06dUpWq9WpMJOenu5UfL/etfnbUUYwcghlRQV+r5bZ6bQAAAAAlIwK/PcRgNLhduH8yJEj6tWrV77r7rvvPi1btqzQPkaOHKlbb71VGzduVI0aNRzLbTab4uPjNWrUqHxvGupJGRkZiouLU4MGDbRmzRpVqVIlT5u4uDj5+flp7dq1jqK81WpVWlqaJk+eXKLxAUB5wnRaQAXHH7YAAAAAyhi3C+fh4eH69NNP1aNHjzzrdu/erfDw8EL72L9/v1JTU52K5pIUHBys8ePHa+DAge6G5ZYLFy4oPj5ev/zyixYtWqTvvvvOsc5sNqtt27aSpIiICCUkJCgpKUmVKlVSvXr1NHv2bAUHB+uJJ54o0RgBn0LBA8XEdFoAAAAAgDKJmkiF5XbhfNiwYZoxY4ays7PVr18/1alTR6dPn1Zqaqrmzp2bp7CRn1tuuUXnzp3Ld53NZlPjxo3dDcstp06d0jfffCPp9ylmcmvYsKGOHj3qeL5o0SJVr15d48eP1/nz59W5c2dt3bpVwcHBJRojAJQnTKcFAAAAAADKErcL5xMnTpTVatXcuXOVkpLyR0eVK2v06NGaOHFioX3MnTtXI0eOVP369dWtWzfH8h07dmjatGlasmSJu2G5pVGjRjIM174tMpvNmjdvnubNm1eiMZUbfAsHwAOYTgsAAAAANQY3lcfz5Y1jKo/nEUXiVuHcMAxZrVbNmjVLEyZM0J49exyXxHfo0EE1a9Z0qZ+kpCTZbDbFxMQoODhYYWFhOnPmjGw2mywWi8aNG6dx48ZJkkwmk2N0OACg/GM6LQAAAAAA4G1uFc4vXbqk2rVr6/3339d9992ne++9t0g7bdeunUwmU5G2BeAD+PYVJYjptAAAKKLS+IzG50AAAFBBuFU49/f3V0REhK5cuVKsnb755pvF2h4AUH4xnRYAAACAMi/3F4186eibeF1QCD93Nxg5cqQWLFigixcvlkQ8AAAAAAAAAAB4lds3Bz127JgOHjyoBg0aqHv37qpTp47TtCsmk0mLFi3yaJAAAAAAAAAAgDKqDI7wd3vE+QcffCCz2azAwEDt3btXGzZs0AcffOD0AAAAAAAAQOm6cuWKXnjhBXXt2lW1atVSaGiooqOjtXPnzjxtc3JylJSUpLp16yowMFA9e/bUDz/84IWoAcA3uT3iPPdN2QCUEWXwWz0AAAAAgHsuXLiglJQUDRkyROPGjVOlSpW0fPlyRUdHKy0tTTExMY62Y8aM0apVq7RgwQLVq1dPs2bNUmxsrPbv36/g4GAvHgUA+Aa3CucXL15UnTp19O677+r+++8vqZgAAAAAAADgpqpVq+rw4cOyWCyOZT179lTLli21cOFCR+H8xIkTWrFihZYuXaqhQ4dKktq3b68GDRro1Vdf1bPPPuuV+AHAl7g1VUtAQICqVaumypXdHqgOAAAAAACAElSpUiWnovm1Za1atdJ///tfx7K0tDRdvXpV/fv3dywLDQ1VXFycNm7cWGrxAoAvc3uO80cffVQrVqwoiVgAAAAAAADgQZcvX9bu3bvVvHlzx7L09HTVrl07T5G9efPmSk9PL+0QAXjC48YfD3iE20PHLRaLdu/erVatWumee+5RnTp1ZDKZHOtNJpOefvppjwYJAAAAwPuuXLmi+fPna8OGDfr+++919epVtW7dWjNmzFCXLl2c2ubk5GjixIl65513dP78eXXq1ElLlixRs2bNvBQ9AFRML7zwgk6ePOlUq7FarQoJCcnT1mKxKDMzs8C+srOzlZ2d7Xhut9s9GisA+BK3C+fJycmSpIyMDH333Xd51lM4BwAAAMqnCnXTOUZrAfARNptNGRkZhbZr3Lix/P39nZZt2bJFU6dO1ZQpU9SuXbtix5KSkqLp06cXux8APorPP07cLpxfvXq1JOIAAAAA4OO46RwAlL7U1FQNHz680HYHDhxQVFSU4/mXX36pv/zlL3rooYc0ZcoUp7YWi0U2my1PH1arVaGhoQXuIzk5WWPHjnU8t9vtql+/viuHAQBljttznAMAAAComLjpHACUvoSEBBmGUegjd9H80KFDio+PV6dOnfK9T11UVJROnTolq9XqtDw9Pd2pn+uZzWbVqFHD6QEA5ZVLhfMXXnhBP//8s9OyTz75RFlZWU7Ljhw5oscff9xz0QEAAADwadx0DgB8S0ZGhuLi4tSgQQOtWbNGVapUydMmLi5Ofn5+Wrt2rWOZ1WpVWlqa7r333tIMFwB8lktTtSQnJ6t79+6qW7eupN9vCtSlSxft3btXt99+u6Pd6dOntXLlSi1fvrxkogUAAADgU7jpHAD4jgsXLig+Pl6//PKLFi1a5HRvOrPZrLZt20qSIiIilJCQoKSkJFWqVEn16tXT7NmzFRwcrCeeeMJb4QOAT3GpcG4YeSeGz28ZAAAAgLKFm84BQPlx6tQpffPNN5KkBx54wGldw4YNdfToUcfzRYsWqXr16ho/frzOnz+vzp07a+vWrd65gTM3JATgg9y+OSgAAACA8oObzgFA+dGoUSOXBzqazWbNmzdP8+bNK+GoAKBs4uagAAAAQAXGTecAAACAvFwunJtMJpeWAQAAACi/uOkcAAAAKgKXp2qJjo6Wn59znb1Lly5Oy65eveq5yAAAAAD4FG46BwAAgIrCpcL51KlTSzoOAAAAAD6uzN50DihPuIkiAAClgsI5AAAAAJdw0zkAAABUFNwcVNIXX3yhSpUqqXr16nnW5eTkKCkpSXXr1lVgYKB69uypH374wQtRAgAAAAAAAABKQ4UvnBuGoVGjRiksLCzf9WPGjNFrr72m2bNna926dcrOzlZsbKxsNlspRwoAAAAAAAAAKA0VvnD+xhtv6JdfftHQoUPzrDtx4oRWrFihF154QUOHDtXdd9+tf/7znzp37pxeffVVL0QLAAAAAAAAAChpLs1xXl6dO3dO48eP1+uvv67PP/88z/q0tDRdvXpV/fv3dywLDQ1VXFycNm7cqGeffbY0w0VFwc1+AADwPH6/AoDvICcD+eNnA/ApFXrE+aRJk9SuXTv16tUr3/Xp6emqXbu2LBaL0/LmzZsrPT29NEIEAAAAAAAAAJSyCjvi/Ouvv9bKlSv11VdfFdjGarUqJCQkz3KLxaLMzMwCt8vOzlZ2drbjud1uL1asAAAAAAAAAIDSU24K5zabTRkZGYW2a9y4sapUqaKRI0dqxIgRioqK8ngsKSkpmj59usf7BQAAAAAAAACUvHJTOE9NTdXw4cMLbXfgwAF9/fXXOnDggN577z2dO3dOknTx4kVJv897HhAQoICAAFksFtlstjx9WK1WhYaGFriP5ORkjR071vHcbrerfv36bh4RAAAAAAAAAMAbyk3hPCEhQQkJCS61XbVqlaxWqxo1apRnncVi0bhx4zRnzhxFRUXp1KlTslqtTvOcp6en33Ckutlsltlsdjw3jN9v7sCULQDKoqCgIJlMJm+HUWLI0QDKMnI0APg28jQA+K7CcnS5KZy7Y8iQIerevbvTsjfffFOrV6/Wpk2b1KBBA0lSXFyc/Pz8tHbtWkdR3mq1Ki0tTZMnT3Z5f+fPn5ckRp0D+P/au/PwqKu7//+vCZAJhpBMIEBIWBo0CyKL1AW4EZJAahQFWg1Q7lYroClLWlGUfbsRUAiLUEQLrq0lDcLtDQUaQKjwYxFr64JMqSXIYgpIhhkUSCCZ3x9+mWZMQmaSWZPn47rmusj5nPl83nMyec/wnjPnBCWr1armzZv7OwyvIUcDCGbkaAAIbORpAAhcNeVog/36x4MN3OzZs7V48WJ98803Tu3Z2dnKy8vTkiVLFBcXp/nz5+uLL77Q4cOHFRkZ6dK5y8vL9dVXX9Xqk+bry7ycPHmyXr/YehNj6BmMY90F6xjW91ky5Gj/YxzrjjGsu2AdQ3L0jQXr7zWQMIZ1xxh6RrCOI3m6esH6O/U0xoExuI5x+I4vx4EZ53W0fPlyNWvWTJMnT9bFixfVp08f7dixw+WiuSSFhIQoPj6+TnE0b968Qf/ReAJj6BmMY90xhoGFHB04GMe6YwzrjjEMLJ7I0RK/V09gDOuOMfQMxjGw8F7acxgHxuA6xuE7gTAOIX69egCZPXt2pdnm0nfrlS9evFhnzpzRpUuXtH379huubw4AAAAAAAAACG4UzgEAAAAAAAAAqIDCeYAzGo2aNWuWjEajv0MJWoyhZzCOdccY1j/8Tj2Dcaw7xrDuGMP6id9r3TGGdccYegbjWP/wO/0O48AYXMc4fCeQxoHNQQEAAAAAAAAAqIAZ5wAAAAAAAAAAVEDhHAAAAAAAAACACiicAwAAAAAAAABQAYXzAGU2mzVw4ECFh4erTZs2euaZZ1RaWurvsAJWfn6+Bg8erPj4eIWHh6t79+569dVX9f0l/NeuXavExESFhYWpW7du2rx5s58iDnzffPON4uPjZTAY9OGHHzodYxxv7I033lCPHj0UFhamli1bKjMzU5cvX3Yc37Rpk7p166awsDAlJibqtdde82O0qC3ytOvI0Z5Hjq4b8nT9R452D3na88jTtUeOrv8aWo4mx1atoefJhp7r/u///k933XWXIiIiFBsbq6ysLB07dqxSP78/F+wIOMXFxfbY2Fj7PffcY9+2bZt97dq19sjISPu4ceP8HVrAuvvuu+3Dhw+3r1u3zr5z50775MmT7SEhIfbZs2c7+vzhD3+wGwwG+/Tp0+3vvfee/YknnrA3btzYvn//fj9GHrieeeYZe+vWre2S7IcOHXK0M443Nm/ePHtERIR9wYIF9t27d9vXr19v/+Uvf2m/ePGi3W632/fs2WNv1KiR/YknnrC/99579unTp9sNBoM9Pz/fz5HDHeRp95CjPY8cXXvk6fqPHO0+8rTnkadrhxxd/zXEHE2OrVpDzpMNPdft2rXLHhISYn/00Uft27dvt69bt86emJho79Spk/3SpUuOfoHwXKBwHoDmz59vDw8Pt58/f97R9vLLL9sbNWpkP336tB8jC1znzp2r1DZmzBh78+bN7WVlZXa73W5PTEy0jxgxwqlPr1697JmZmT6JMZgcOXLEHh4ebl+9enWlFzHGsXpms9neuHFj+5YtW6rtk5GRYe/du7dT24gRI+wpKSneDg8eRJ52Dznas8jRtUeebhjI0e4jT3sWebp2yNENQ0PM0eTYyhpyniTX2e1PPPGE/Qc/+IG9vLzc0fbee+/ZJdnff/99R1sgPBdYqiUAbd26VQMGDFB0dLSjLSsrS+Xl5SooKPBjZIGrZcuWldp69Oghm82mb7/9VseOHdPRo0eVlZXl1Gf48OHauXOnSkpKfBVqUJgwYYKys7OVlJTk1M443thrr72mH/zgB8rMzKzyeElJiXbt2qWHH37YqX348OE6cuSIjh8/7oMo4QnkafeQoz2LHF175OmGgRztPvK0Z5Gna4cc3TA0xBxNjq2sIedJcp109epVRUREyGAwONoiIyMlybGEUaA8FyicByCz2azk5GSntqioKMXGxspsNvspquCzd+9excXFKSIiwjFu3x/XlJQUlZaWqrCw0B8hBqT169fr008/1cyZMysdYxxv7MCBA7rttts0b948tWrVSqGhoerTp48OHjwoSfrXv/6lq1evVjl+kvj7DiLk6bojR9cOObpuyNMNAznaM8jTtUOerj1ydMNAjv5OQ86xDT1PkuukRx99VJ9//rlWrVolq9WqY8eOaerUqerRo4f69OkjKXCeCxTOA5DFYlFUVFSldpPJpOLiYt8HFIT27t2rdevW6emnn5b03ZhKqjSuJpNJkhjX/+fSpUuaOHGi5s+fr+bNm1c6zjje2L///W8VFBTozTff1KpVq/S///u/MhgMysjI0NmzZxm/eoQ8XTfk6NohR9cdebphIEfXHXm6dsjTdUOObhjI0Q07x5InyXWS1LdvX23cuFGTJ09WVFSUOnXqpDNnzmjr1q1q1KiRpMB5LlA4R71z6tQpDRs2TKmpqcrJyfF3OEFl3rx5at26tX7xi1/4O5SgVF5erm+++Ubr16/XQw89pPvuu0//93//J7vdrpUrV/o7PCAgkKNrjxxdd+RpoGbk6dojT9cNORoNQUPPseRJcp0k7du3Tz/72c80ZswYvffee8rPz1d5ebnuv/9+Xb582d/hOaFwHoBMJpOsVmuldovF4rQOGCq7cOGCMjMz1aJFC73zzjsKCfnuKX79E6nvj+v1T7AYV+nLL79Ubm6u5syZI6vVqgsXLuibb76RJH3zzTf65ptvGMcamEwmtWjRQl27dnW0RUdHq0ePHjp8+DDjV4+Qp2uHHF175GjPIE83DOTo2iNP1x55uu7I0Q1DQ87RDT3Hkie/Q66TcnJylJaWptzcXKWmpuqhhx7Sn/70J3300Ud66623JAXO3wWF8wCUnJxcac0iq9WqoqKiSmv74D8uX76sQYMGyWq1auvWrY6NBaT/rIn0/XE1m80KDQ1VQkKCT2MNRIWFhSotLdX9998vk8kkk8mkBx54QJKUmpqqAQMGMI41uPXWW6s9duXKFXXq1ElNmjSpcvykymt3IXCRp91Hjq4bcrRnkKcbBnJ07ZCn64Y8XXfk6IahoeZocix58jpynfT555+re/fuTm3x8fFq2bKl/vWvf0kKnL8LCucBKDMzUzt27NCFCxccbfn5+QoJCVFGRob/Agtg165dU1ZWlo4cOaJt27YpLi7O6XhCQoISExOVn5/v1J6Xl6f09HSFhob6MtyA1L17d+3atcvptnTpUknS6tWrtWrVKsaxBoMGDdL58+f197//3dF2/vx5ffTRR+rZs6eMRqNSU1O1fv16p/vl5eUpJSVFHTt29G3AqDXytHvI0XVHjvYM8nTDQI52H3m67sjTdUeObhgaYo4mx36HPPkdcp3UoUMHffTRR05tX375pb7++mvH4wuY54IdAae4uNgeGxtr79evn/3Pf/6z/dVXX7VHRUXZx40b5+/QAtaYMWPskuy5ubn2/fv3O92uXLlit9vt9rfffttuMBjsM2fOtO/atcuenZ1tb9y4sX3fvn1+jj5w7dq1yy7JfujQIUcb41i9srIy+x133GHv1KmTfd26dfZ3333Xfvfdd9tbtGhhLyoqstvtdvuePXvsjRo1sv/yl7+079q1yz5z5ky7wWCw//GPf/Rz9HAHedo95GjvIEe7jzzdMJCj3Uee9g7ytHvI0Q1DQ8zR5NjqNcQ8Sa6z25ctW2aXZM/JybFv377dvm7dOnuXLl3srVu3tn/99deOfoHwXKBwHqA+//xze3p6ur1p06b2Vq1a2Z9++ml7SUmJv8MKWB06dLBLqvJWWFjo6LdmzRr7zTffbA8NDbXfdttt9k2bNvkv6CBQ1YuY3c443si5c+fs//3f/22PjIy0N23a1J6RkWE/fPiwU593333Xftttt9lDQ0PtN998s33t2rV+ihZ1QZ52HTnaO8jRtUOebhjI0e4hT3sHedp95OiGoaHlaHJs9Rpqnmzoua68vNz+0ksv2bt27WoPDw+3t2nTxj506FD7kSNHKvX193PBYLfb7V6d0g4AAAAAAAAAQBBhjXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA49wG73S6bzSa73e7vUAAA30OOBoDARY4GgMBGngZQn1E494GLFy8qMjJSFy9e9HcoAIDvIUcDQOAiRwNAYCNPA6jPKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAQD2Rn5+vwYMHKz4+XuHh4erevbteffVV2e12p35r165VYmKiwsLC1K1bN23evNlPEQNAYGrs7wAAoEH4oaH6Yx/aqz8GeALPPwBo2HgdABqUJUuWqGPHjsrNzVVMTIy2b9+uMWPG6OTJk5o1a5Ykad26dRozZoymTZumtLQ05eXlaejQodqzZ4/uvvtuPz8CoIIbvYZJvI7Bqwz273/kCI+z2WyKjIyU1WpV8+bN/R0OAH/gP6wBq0HkaJ5/AIJUg8jRvsDrANCgfP3112rZsqVT2+OPP668vDxZLBaFhIQoKSlJPXv21Ntvv+3o07t3b0VFRWnLli0uX4s8Da+jcA4/YqkWAAAAAACAeuL7RXNJ6tGjh2w2m7799lsdO3ZMR48eVVZWllOf4cOHa+fOnSopKfFVqAAQ0FiqBQAAAAAAoB7bu3ev4uLiFBERoT179kiSkpOTnfqkpKSotLRUhYWFlY41OPVllnN9eRyAn1A4BwAAAAAAqKf27t2rdevWKTc3V5JksVgkSVFRUU79TCaTJKm4uLjac5WUlDjNSLfZbB6OFgACB4VzAAACGevSIpDx/AQAIKCdOnVKw4YNU2pqqnJycup8vgULFmjOnDkeiAwAAp/bhfMTJ05UeywkJESRkZGKiIioU1AAAAAAAACovQsXLigzM1MtWrTQO++8o5CQ77a5uz6z3Gq1qk2bNo7+12eiR0dHV3vOKVOmaOLEiY6fbTab2rVr543wAcDv3C6cd+zYUQbDjddI6tixo379619rwoQJtQ4MAAAAAAAA7rt8+bIGDRokq9Wq/fv3KzIy0nHs+vrlZrNZSUlJjnaz2azQ0FAlJCRUe16j0Sij0ei9wAEggLhdOP/d736nKVOmKDExUYMHD1arVq109uxZbdy4Uf/85z81efJk7d+/X08++aQkUTwHAAAAAADwkWvXrikrK0tHjhzRnj17FBcX53Q8ISFBiYmJys/P1+DBgx3teXl5Sk9PV2hoqK9DBoCA5HbhfM+ePbr33nv18ssvO7WPHz9ejz/+uP7617/qrbfeUvPmzbVq1SoK5wAA1AfVrWXNOtYAAAABZezYsdq8ebNyc3Nls9l04MABx7EePXrIaDRq9uzZGjlypDp16qTU1FTl5eXp4MGDev/99/0YOQAEFrcL5+vWrdMf//jHKo89/PDDysrK0tq1azVo0CCtXbu2zgECAAAAAADANQUFBZKkp556qtKxwsJCdezYUSNGjNClS5e0cOFCLVy4UElJSdq4caN69erl63BR0Y02XpeYtAL4WIjbdwgJ0ccff1zlsb///e+OzSYaNWqkpk2b1i06L7r+laT4+HiFh4ere/fuevXVV2W3OyehtWvXKjExUWFhYerWrZs2b97sp4gBAAAAAABu7Pjx47Lb7VXeOnbs6Og3atQo/fOf/1RJSYk++eQTDRo0yH9BA0AAcnvG+ciRIzVjxgyVlpbqgQceUExMjM6dO6d3331X8+bN0xNPPCFJ+utf/6rOnTt7PGBPWbJkiTp27Kjc3FzFxMRo+/btGjNmjE6ePKlZs2ZJ+m52/ZgxYzRt2jSlpaUpLy9PQ4cO1Z49e3T33Xf7+REAkHTjT+T5NB4AAAAAAAC1YLB/f4p1Da5evapnn31Wq1evVklJiaPdaDTql7/8pZ5//nk1btxY77//vpo1a6bbb7/d40F7wtdff62WLVs6tT3++OPKy8uTxWJRSEiIkpKS1LNnT7399tuOPr1791ZUVJS2bNni8rVsNpsiIyNltVrVvHlzjz0GAAqewnmwxNkABXyO9sRzx5vn4PnbsJHb4GUBn6ODBX+rALyk3uZpfy2Z4unr1oelX+rDY0DQcnupliZNmmjJkiU6ffq03nvvPb399tvatWuXTp06pdzcXDVu/N0k9nvuuSdgi+aSKhXNpe82ybDZbPr222917NgxHT16VFlZWU59hg8frp07dzp9aAAAAAAAAAAAqD/cXqrlOpPJpH79+nkyFr/bu3ev4uLiFBERoT179kiSkpOTnfqkpKSotLRUhYWFlY4BAAAAAAAAAIKf2zPOpe+WOZk8ebLS09OVlJSkw4cPS5KWL1+uAwcOeDRAX9m7d6/WrVunp59+WpJksVgkSVFRUU79TCaTJKm4uLjac5WUlMhmszndAAAAAAAAAADBwe3C+UcffaRbbrlF69atU3x8vL744gvHsiWnT5/W0qVLPR6kt506dUrDhg1TamqqcnJy6ny+BQsWKDIy0nFr166dB6IEAAAAAAAAAPiC24XzJ598Ur169dI///lPrV27VhX3Fr3rrruCbsb5hQsXlJmZqRYtWuidd95RSMh3Q3J9ZrnVanXqf30menR0dLXnnDJliqxWq+N28uRJL0UPAAAAAAAAAPA0t9c4P3TokDZs2KAmTZqorKzM6VhMTIzOnj3rseC87fLlyxo0aJCsVqv279+vyMhIx7Hr65ebzWYlJSU52s1ms0JDQ5WQkFDteY1Go4xGo/cCBwAAAAAAAAB4jdszzsPDw6tds/vEiRNq0aJFnYPyhWvXrikrK0tHjhzRtm3bFBcX53Q8ISFBiYmJys/Pd2rPy8tTenq6QkNDfRkuAAAAAAAAAMBH3J5x/qMf/Ujz5s1Tenq6Y+NMg8Ggy5cva/ny5brvvvs8HaNXjB07Vps3b1Zubq5sNpvTEjM9evSQ0WjU7NmzNXLkSHXq1EmpqanKy8vTwYMH9f777/sxcgAAAAAAAACAN7ldOH/++efVp08f3XLLLUpNTZXBYND06dP1+eefy2AwaN68ed6I0+MKCgokSU899VSlY4WFherYsaNGjBihS5cuaeHChVq4cKGSkpK0ceNG9erVy9fhAgAAAAAAAAB8xO2lWuLi4vT3v/9dEyZMUFFRkTp16qTz589r5MiR+vDDD9WqVStvxOlxx48fl91ur/LWsWNHR79Ro0bpn//8p0pKSvTJJ59o0KBB/gsaAFCJ2WzWwIEDFR4erjZt2uiZZ55RaWmpv8MCAAAAAABBzO3CuSRFRUVpzpw52rdvn44ePaoDBw5o3rx5io6O9nR8AABUy2KxKC0tTaWlpdqwYYPmz5+vV155RRMnTvR3aABQr+Xn52vw4MGKj49XeHi4unfvrldffVV2u92p39q1a5WYmKiwsDB169ZNmzdv9lPEAAAAgHvcXqoFAIBAsXr1atlsNm3cuNHx4e21a9c0duxYTZ06VW3btvVzhABQPy1ZskQdO3ZUbm6uYmJitH37do0ZM0YnT57UrFmzJEnr1q3TmDFjNG3aNKWlpSkvL09Dhw7Vnj17dPfdd/v5EQAAAAA3ZrB/f1pIFX7wgx/IYDC4fNJjx47V2Of8+fP64IMPVFRUpMuXL6tFixZKSkpS9+7d3bpWMLDZbIqMjJTValXz5s39HQ5Qv/zwBvniwxrTm+8ES5xB5p577lF0dLT+93//19F24cIFRUdH69VXX9Wjjz5a4zkCPkd74rnjzXPw/G3YyG0N1tdff62WLVs6tT3++OPKy8uTxWJRSEiIkpKS1LNnT7399tuOPr1791ZUVJS2bNni0nUCPkcHC/5WAXhJvc3TN8qbkvdyp6ev66/H4Un14TEgaLk043zw4MFOxez169fLZrNpwIABat26tc6cOaMdO3YoMjJSDz30ULXnsVqteuONN/TGG2/o73//e6WvchoMBjVr1kxDhw7VmDFj1KdPn1o+LABAQ2A2m/XYY485tUVFRSk2NlZms9lPUQFA/ff9orkk9ejRQ7/97W/17bff6ty5czp69Kief/55pz7Dhw/XpEmTVFJSIqPR6KtwAQDwDoq6QL3mUuF82bJljn8vWrRI7dq107Zt25w+TbRarcrMzFTr1q2rPMf8+fO1ePFimUwmPfzww5o1a5a6deumli1bymg06sKFCzp+/Lg+/PBDbd26Venp6fqv//ovvfjii+rcuXPdHiUAoF6yWCyKioqq1G4ymVRcXFzlfUpKSlRSUuL42WazeSs8AGhQ9u7dq7i4OEVERGjPnj2SpOTkZKc+KSkpKi0tVWFhYaVjAAAAQCBxe43zF198UatWrar0FZzIyEhNnjxZY8eO1bPPPlvpfrt379aGDRvUv3//Ks/bsmVLtWzZUj/84Q+VnZ0ti8WilStXavfu3RTOAQAes2DBAs2ZM8czJ6vpq++ufDW+piVQapql4so1PDHTpa5x1GUsPHEOX1wj2OJ0hS+en4Ewnp44hyeuEcT27t2rdevWKTc3V9J3H2xKqvThpslkkiQ+3AQAAEDAc7twXlxcLKvVWuUxq9XqeJP8fQUFBW5dx2QyacaMGe6Gh/qsHv9nE0DtmEymKl+TLBaLY7PQ75syZYomTpzo+Nlms6ldu3ZeixEA6rtTp05p2LBhSk1NVU5OTp3O5dEPN+Ee1kEHAABwEuLuHdLT0/Xss8/qL3/5i1P77t27NXnyZKWnp3ssOAAAbiQ5ObnSWuZWq1VFRUXVLgFgNBrVvHlzpxsAoHYuXLigzMxMtWjRQu+8845CQr7778X1meXf/3Dz+iSbG324abVaHbeTJ096MXoAAACgem7POH/55Zf14IMPKi0tTZGRkYqJidG5c+dktVrVo0cPrV69usZzzJ07t9pjISEhioyMVPfu3dW3b193wwMANCCZmZmaP3++Lly44FgOID8/XyEhIcrIyPBvcABQz12+fFmDBg2S1WrV/v37FRkZ6Th2/cNLs9mspKQkR7vZbFZoaKgSEhKqPKfRaGTTUAAAAAQEtwvnsbGxOnTokLZt26YPPvhARUVFio2N1Z133ql7773XpXMsXbpUpaWlunz5siQpLCxMV65ckSQ1bdpUV69eVVlZmW6//XZt2bJFMTEx7oYJAGgAsrOztWLFCg0ZMkRTp07V6dOnNWnSJGVnZ6tt27b+Ds83+Pq8e3yx3jvQAFy7dk1ZWVk6cuSI9uzZo7i4OKfjCQkJSkxMVH5+vgYPHuxoz8vLU3p6ukJDQ30dMgAAAOAWtwvn1917770uF8q/77333tOwYcM0a9YsDR48WM2aNdM333yjjRs3au7cuXrzzTd16dIl/fd//7cmTZqk119/vbZhAgDqMZPJpJ07d2rChAkaMmSIIiIiNHr0aD333HP+Dg0A6rWxY8dq8+bNys3Nlc1m04EDBxzHevToIaPRqNmzZ2vkyJHq1KmTUlNTlZeXp4MHD+r999/3Y+QAAACAa2pdOK+LcePG6amnntLIkSMdbc2aNdPPfvYzffvtt/r1r3+tgwcPavr06Tdc1gUAgJSUFO3YscPfYQBAg1JQUCBJeuqppyodKywsVMeOHTVixAhdunRJCxcu1MKFC5WUlKSNGzeqV69evg4XAAAAcJtfCud/+9vfNHPmzCqPdezYUZ9++qkkqUuXLpU2FAIAAADgX8ePH3ep36hRozRq1CjvBgMAAAB4gV8K5x06dNCaNWuqXOrllVdeUYcOHSRJ58+fV8uWLX0dHgC474eGqttZCxkNRU3P9WD5WwiWOAEAANBwVff/z+t4Twt4hF8K5wsWLFBWVpaSkpI0aNAgxcTE6Ny5c9q8ebOOHTum/Px8SdLOnTt1zz33+CNEAAAAAAAAAEAD5ZfC+dChQ/XBBx9owYIF2rhxo4qKihQbG6s77rhDeXl56t69uyTpN7/5jT/CAwAAAAAAgDcxaxpAgHOrcP7vf/9bBQUFMpvNKi4uliRFR0crOTlZGRkZatOmjcvn6tGjh/74xz+6Fy0AeMON3rDxZg0AAAAAAKDBcalwfvXqVT311FNavXq1ysrKFBsbK5PJJEmyWCwqKipSo0aN9Mtf/lK5ublq3Nj1evzJkyd18uRJdevWTeHh4bV7FAAAABIfdgUaT/w++J0CAAAA8IMQVzpNnz5db731ln7zm9+ouLhYp06d0qeffqpPP/1Up06dksVi0apVq/TWW29p+vTpLl34lVdeUVxcnDp06KC+ffvqH//4h6TvlnFZvnx57R8RPO+HhupvAAAAAAAAAFDPuFQ4f/PNN7V06VKNGTNGkZGRlY43b95co0ePVm5urt54440az7ds2TJNmDBBP//5z1VQUCC7/T8zifr37+/YHBQAAAAAAAAAAF9zaU2VixcvKj4+vsZ+8fHxunjxYo39VqxYoRkzZmj69OkqKytzOpaUlOSYfY4g4Yn1oVljGt5U3fOL5xYAAAAABD82Gq0bxg88B6rkUuG8V69emj9/vu64444qZ5xLks1m0/z589W7d+8az3f69Olq+zVp0kTffPONK2EBAADUTw30jSkAAAAABAqXCucrV65UWlqa2rVrpwEDBig5OVlRUVGSJKvVKrPZrB07digiIkI7d+6s8XwdOnTQBx98oLS0tErHDh48qMTERPceBQAAAAAAQG3xLWgAwPe4VDhPSkrS4cOH9dJLL2nbtm1au3atLBaLJMlkMik5OVlTpkxRdna2o6B+I2PGjNHs2bMVExOjH//4x5Kkq1ev6k9/+pMWLVqk5557rvaPCAAAAAAAAABqi6VLIBcL55IUFRWlKVOmaMqUKXW+6NNPP60TJ07o8ccf1xNPPCFJ6tOnjyRp7NixGjt2bJ2vAQAAAAAAgKqZzWZNmDBB+/btU0REhH7+859r3rx5Cg0N9XdoABAQXC6ce9qLL76oX//619q+fbvOnz+v6Ohopaen65ZbbvFXSAAAAAhGnpjxw6whAEADYrFYlJaWpltuuUUbNmzQ6dOnNXHiRF26dEkrV670d3gAEBBcLpxfvXpVmzdv1ldffaWUlJQq1yc/ffq01q5dq5kzZ7p0zoSEBMeMcwAAAAAAAHjf6tWrZbPZtHHjRkVHR0uSrl27prFjx2rq1Klq27atnyMEAP9zqXB+/vx53XPPPTpy5IgkyWAw6Pbbb9ebb76plJQUR79Tp05pzpw5VRbO33//fbcCu+eee9zqDwAAAAAAgJpt3bpVAwYMcBTNJSkrK0vZ2dkqKCjQo48+6r/gACBAuFQ4nzFjhr799lv9f//f/6cePXpoz549evrpp9WrVy+tX79eAwYMqPEc/fv3l8FgkN3+3ddgDYb/LLJvt9udfpaksrIydx4HAAAAAAAAXGA2m/XYY485tUVFRSk2NlZms9lPUQFAYHGpcL5t2zb9z//8j3r16iVJGjhwoD744AM98cQTuv/++/Xqq69q5MiRNzzH3/72N8e/z549q1GjRik1NVUPPfSQWrdurTNnzig/P1+7d+/W2rVr6/CQAAAA4BGs+w0AQL1ksVgUFRVVqd1kMqm4uLja+5WUlKikpMTxs81m80Z4ABAQXCqcnzlzRh06dHBqMxqNev311xUfH69HHnlERUVF6tu3b7Xn6Natm+PfDz30kIYPH64XXnjBqc8DDzygSZMm6aWXXtLAgQPdeRwAAAAAAH/6oaHqdj6EA+qNBQsWaM6cOZ45mau5obrcUvEcnjhXbc4X6Nf11+Pw5Lk8HVugX9df/Tz59+ivx+AFIa506tixoz755JMqj82bN09Lly7Vs88+qxkzZrh00T//+c/VFsYzMjK0fft2l84DAAAAAAAA95hMJlmt1krtFovFad3z75syZYqsVqvjdvLkSW+GCQB+5dKM89TUVK1du1bjx4+v8viECRPUsmVLlzePaNasmXbu3Fll8Xz79u1q1qyZS+dBEHHlEykEFn5nAAAAAFAvJScnV1rL3Gq1qqioSMnJydXez2g0ymg0ejs8AAgILhXOc3JylJKSIovFIpPJVGWfESNGqG3bttq9e3eN5xs3bpxmzpypM2fOaMiQIWrVqpXOnj2rjRs36q233vLc1348wGw2a8KECdq3b58iIiL085//XPPmzVNoaKi/QwMABDo+ZEJ1eG4AuI7JCu5hvACPyMzM1Pz583XhwgXHWuf5+fkKCQlRRkaGf4MDgADhUuE8MTFRiYmJNfbr16+f+vXrV2O/6dOnKyoqSgsXLtQbb7whg8Egu92u2NhYLVu2TBMmTHAlLK+zWCxKS0vTLbfcog0bNuj06dOaOHGiLl26pJUrV/o7PM9hLUIAAAAAABqM7OxsrVixQkOGDNHUqVN1+vRpTZo0SdnZ2Wrbtq2/wwOAgOBS4dwbxo8fr7Fjx+rUqVMqKipSbGys4uPjFRLi0rLrPrF69WrZbDZt3LjRscbXtWvXNHbsWE2dOpUXEwAAAAAAEHRMJpN27typCRMmaMiQIYqIiNDo0aP13HPP+Tu0+omJiUBQ8lvhXJJCQkLUvn17tW/f3p9hVGvr1q0aMGCA08YYWVlZys7OVkFBgctrutcaX0NEoOPbCgAAAIB38F7bdfzfuVZSUlK0Y8cOf4cBAAHLZ9O7X3rpJZWUlLh1n08//VTvvfeelyKqmdlsrrQpRlRUlGJjYyttogEAAAAAAAAAqB98Vjh//fXX1aFDBz355JPat2+frl69WmW/r776SmvXrtWAAQPUu3dvWSwWX4VYicVicWySUZHJZFJxcXG19yspKZHNZnO6AQAAAGiAfmio/gZnjBUAAAggbi3VcuXKFa1atUoZGRnq0qWLWxc6ePCgNm7cqOXLl+vFF19UkyZNlJiYqJiYGBmNRl24cEGFhYU6e/asoqOj9cgjj+h3v/ud2rRp49Z1AsGCBQs0Z86cup/Ila+U1fSVNFe+slbTdep63Ffn8MRYePMcrn5FMFDiDPTfiSfjrOvj8MQ1bnQdT/7eg8T27dv12muv6eDBgzp27JjGjRtX5abMpaWlmjZtmt566y1dvHhRvXv31sqVK5WUlOSHqAEAAAAAQH3hVuE8LCxM06dPV8+ePWt1saFDh2ro0KE6fvy4duzYoQ8//FBFRUW6cuWKOnTooIyMDPXp00f9+/dXkyZNanUNTzKZTLJarZXaLRaL07rn3zdlyhRNnDjR8bPNZlO7du28EiMA1Efbtm3Txx9/rH79+t3wGz45OTlat26dlixZori4OD333HNKT0/X4cOHFRkZ6cOIAQAAAACoRpBNZqsTTz9WP46d25uDdu/eXZ9//rn69etX64t27NhRo0eP1ujRo2t9Dl9ITk6utJa51WpVUVFRpbXPKzIajTIajd4OD6heQ0rIqJcWLVqk3NxcSap2r4tTp05pzZo1WrVqlR577DFJ0h133KH27dvr5Zdf1jPPPOOzeOEjwZLbgiVOAAAAAEC13C6cL1++XCNHjlRMTIzuu+8+3XTTTd6IKyBkZmZq/vz5unDhgmOt8/z8fIWEhCgjI8O/wQFAPRYSUvMWHAUFBSovL9fDDz/saIuOjlZGRoa2bNlC4RwAAACAMyY41F8N7Xfb0B6vn7i9OWhaWpq+/PJLDRs2TBEREYqIiFDz5s0dt/r01fjs7GxFRERoyJAhKigo0GuvvaZJkyYpOztbbdu29Xd4ANCgmc1mtWrVSiaTyak9JSWl0reFAAAAAAAA3OH2jPOnnnpKBkPD2NXcZDJp586dmjBhgoYMGaKIiAiNHj1azz33nL9DA4AGz2KxOL4NVJHJZLrhuuglJSUqKSlx/Gyz2bwRHgAAAAAACGJuF85nz57thTACV0pKinbs2OHvMAAgqF3fH6ImCQkJCg0N9WosCxYs0Jw5c7x6DdQSXzcEAAAA4E38nwNucLtwfp3dbtfRo0dVXFys6OhoJSYmujQT3W63y2KxKDw8nA00AaCByM/P15gxY2rsd+TIkRtuvlyRyWSS1Wqt1G6xWBQdHV3t/aZMmaKJEyc6frbZbGrXrp1L1wQAAAHuhzf4PynFEgAA4Aa31ziXpFWrVik2NladO3dWnz591LlzZ7Vt21YvvfRSjfe9evWqWrVqxSxuAGhARo8eLbvdXuPN1aK5JCUnJ+vMmTOyWCxO7Waz+YbnMRqNTntzNG/evNaPCwAAAAAA1E9uzzh/5ZVXNH78eI0YMULDhg1T69atdebMGeXl5Wn8+PFq0qSJRo8eXe39Q0NDFR8fr7KysjoFDngFs1A8i/H0rQY23hkZGQoJCdE777zjeN2xWCwqKCjQjBkz/BwdAAAAAAAIZm4XzpcuXaqcnBwtW7bMqf3BBx9UTEyMFi9efMPCuSSNGzdOS5YsUUZGhsLCwtwNAQBQz3355Zc6dOiQJOnSpUv617/+pfXr10uSHnroIUlSfHy8Ro8erUmTJqlRo0aKi4vT/PnzFRkZqSeeeMJvsQMAADQo1S2P08AmdQAA6h+3C+eFhYUaNGhQlcfuv/9+rV69usZznDhxQkePHlX79u3Vv39/tW7d2ml9dIPBoOXLl7sbGqrCmxUAQWjXrl36xS9+4fh527Zt2rZtm6Tv9sq4bvny5WrWrJkmT56sixcvqk+fPtqxY4ciIyN9HjMAAAAAAKg/3C6cx8bGav/+/RowYEClYwcOHFBsbGyN59i8ebOMRqOMRqNjRmFFFM4BoGF79NFH9eijj9bYz2g0avHixVq8eLH3gwIAAAAAAA2G24XzUaNGae7cuSopKdFDDz2k1q1b6+zZs8rPz9eiRYs0c+bMGs9RWFhYq2ABAAAAAAAAAPA2twvn06ZNk8Vi0aJFi7RgwYL/nKhxY02YMEHTpk3zaIAAAAQslsNCIOP5+R+MBQAAAAA3uVQ4t9lsioiIkMFgkMFgUG5urqZOnaqDBw/KYrEoOjpad955p1q0aOHyhU+fPq1ly5Zp7969Ki4uVnR0tPr27atf/epXiouLq/UDAgAAABAYzGazJkyYoH379ikiIkI///nPNW/ePIWGhvo7NAAAgLpjgka95lLh3GQyaf/+/brzzjuVlpamVatWKTk5Wffdd1+tLvrZZ5/pnnvu0dWrVzVw4EB1795dZ86c0erVq7V27Vq9//77uvXWW2t1bjRgJKvg48rvjN8rAABByWKxKC0tTbfccos2bNig06dPa+LEibp06ZJWrlzp7/AAAACAG3KpcB4WFqYrV65Iknbv3i2bzVaniz799NPq1KmTCgoKZDKZHO0Wi0UZGRl6+umntXXr1jpdAwAAAID/rF69WjabTRs3blR0dLQk6dq1axo7dqymTp2qtm3b+jlCAAAAoHouFc67du2qSZMmKTMzU5K0Zs0abdu2rcq+BoNBM2bMuOH59u7dq9///vdORXPpu5nt06ZN089+9jNXwgIAAAACA9+QqmTr1q0aMGCAo2guSVlZWcrOzlZBQYEeffRR/wUH9/3QUP0xV5//njhHIKgvjwMAAH8KgtdMlwrnq1atUk5Ojn7zm9/IYDBo3bp1atSoUZV9XSmcN27cWCUlJVUeKykpqfbcAAAAAIKD2WzWY4895tQWFRWl2NhYmc1mP0UFAAAAuMalwnmPHj20Z88eSVJISIh27NihO++8s9YXHTBggKZNm6bu3bsrMTHR0f7Pf/5TM2bM0MCBA2t9bgAIWkHwaSsAAK6yWCyKioqq1G4ymVRcXFzlfUpKSpwm2NR1iUgAAACgtlwqnFe0a9cude7cuU4XXbJkifr166fOnTurS5cuat26tc6ePatPP/1U7du315IlS+p0fgAAAADBZ8GCBZozZ45nTubKchrV9anp+PU+rlyjpg/GXfngvK5xemJDdl+cw1dx+mI8ffHc8cQ16kucnvi9M4kFAPA9Ie7eoV+/fmrWrFmdLtq+fXt9+umnWrJkiRITE1VeXq7ExEQtXbpUn3zyidq1a1en8wMAAADwL5PJJKvVWqndYrE4rXte0ZQpU2S1Wh23kydPejtMAAAAoEpuzzj3lGbNmiknJ0c5OTn+CgFwH7MQAAAAXJKcnFxpLXOr1aqioiIlJydXeR+j0Sij0eiL8ADv8sX/G/i/CQDUP4Ge2wM9Pg9ze8Y5AAAAANQkMzNTO3bs0IULFxxt+fn5CgkJUUZGhv8CAwAAAFzgsxnnzZs3165du9SzZ09FRETIYKh+jTKDwVDl1zoBeFAD+5QQAAD4VnZ2tlasWKEhQ4Zo6tSpOn36tCZNmqTs7Gy1bdvW3+EBAAAAN+RW4fzKlStatWqVMjIy1KVLF7cu9NRTTyk2Ntbx7xsVzgEAAAAEN5PJpJ07d2rChAkaMmSIIiIiNHr0aD333HP+Ds11wTLRIFjiBGqL5zgAwA/cKpyHhYVp+vTp6tmzp9sXmjVrliTJbrcrJydH4eHhrF+I+qmub+p4UwgAAOqJlJQU7dixw99hAAAAAG5ze43z7t276/PPP6/1Ba9evapWrVrxBhoAAAAAAAA39qG9+hsAeJHba5wvX75cI0eOVExMjO677z7ddNNNbt0/NDRU8fHxKisrc/fSAAAAAAAAAAB4nduF87S0NJWWlmrYsGGSpJtuuslpvXJXNvYcN26clixZooyMDIWFhbkbAgAAAAAAAABfYpY/Ghi3C+ee2NjzxIkTOnr0qNq3b6/+/furdevWlYrvy5cvr9M1AAAAAAAAAACoDbcL57Nnz67zRTdv3iyj0Sij0ahDhw5VOk7hHF7BJ6MIdjyHAQAAAAAAfMLtwvl1drtdR48eVXFxsaKjo5WYmOjyTPTCwsLaXhYAAAAAAAAAAK8Kqc2dVq1apdjYWHXu3Fl9+vRR586d1bZtW7300kuejg8AgPrtQ3vVNwCBpbq/Vf5e4Qs89wC4qKysTC+88ILuuecetWzZUtHR0UpNTdWePXsq9S0tLdWkSZPUpk0bhYeHa+DAgfrHP/7hh6gBIDC5XTh/5ZVXNH78eKWnp2vjxo3av3+/Nm7cqLS0NI0fP15r1qxx6Txff/21pk2bpgEDBujWW2/VgAEDNH36dJ07d87tBwEAAAAAANDQXb58WQsWLFDPnj31xhtv6O2335bJZFJqaqree+89p745OTn67W9/q/nz52vDhg0qKSlRenq6rFarn6JHg3KjSQl8OIwA4fZSLUuXLlVOTo6WLVvm1P7ggw8qJiZGixcv1ujRo294joMHD+ree+9VeXm5BgwYoMTERJ05c0YrVqzQihUrVFBQoLvuusvd0AAAAAAAABqspk2b6tixYzKZTI62gQMHqkuXLlq6dKnS0tIkSadOndKaNWu0atUqPfbYY5KkO+64Q+3bt9fLL7+sZ555xi/xA0AgcbtwXlhYqEGDBlV57P7779fq1atrPMe4ceN06623asuWLWrevLmj3Wq1KjMzU+PHj69y01AAAAAACBjMiAMQYBo1auRUNL/e1rVrV33xxReOtoKCApWXl+vhhx92tEVHRysjI0NbtmyhcA4AqsVSLbGxsdq/f3+Vxw4cOKDY2Ngaz3H48GFNnjzZqWguSZGRkZo8ebI+++wzd8MCAAAAAADA91y7dk0HDhxQSkqKo81sNqtVq1aViuwpKSkym82+DhEAApLbM85HjRqluXPnqqSkRA899JBat26ts2fPKj8/X4sWLdLMmTNrPMfNN9+sCxcuVHnMarUqISHB3bAAwHuYTQYAAAAgSL3wwgs6ffq0nnzySUebxWJRVFRUpb4mk0nFxcXVnqukpEQlJSWOn202m0djBYBA4vaM82nTpmnChAlatGiRevbsqfj4eN1+++1atGiRJkyYoGnTptV4jkWLFmnWrFn6y1/+4tS+e/duzZ49W4sXL3Y3LLewyzQABC5yNAAA8Co2okOQsVqtMpvNNd5KS0sr3Xf79u2aNWuWZs6cqZ49e9Y5lgULFigyMtJxa9euXZ3PCQCByq3Cud1ul8Vi0XPPPaevvvpKmzZt0ptvvqnNmzfrq6++crngPWnSJFmtVqWlpSk6OlpJSUmKjo527N787LPPqmvXruratau6detWqwd2I+wyjaDHztOox8jRAAAAwH/k5+crJSWlxtuxY8ec7vfRRx/pJz/5iX76059WWh3AZDJV+Z7ZYrEoOjq62limTJkiq9XquJ08edIzDxIAApBbS7VcvXpVrVq10rvvvqv7779f9913X60u2rNnTxkMhlrd1xPYZRoAAhc5Gmhg+NAX3sJzC6gZfydBYfTo0Ro9erRb9/niiy+UmZmp3r17a82aNZWOJycn68yZM7JYLE7vu81ms5KTk6s9r9FolNFodCsWAAhWbhXOQ0NDFR8fr7Kysjpd9PXXX6/T/euKXaYBIHCRowEAAIDaKyoqUkZGhtq3b6/169erSZMmlfpkZGQoJCRE77zzjqMob7FYVFBQoBkzZvg6ZAAISG6vcT5u3DgtWbJEV65c8UY8fsMu0wAQuMjRAAAAQM0uX76szMxMff3115o5c6Y+++wzHThwQAcOHNDf/vY3R7/4+HiNHj1akyZN0muvvaaCggINHTpUkZGReuKJJ/z4CAAgcLg141ySTpw4oaNHj6p9+/bq37+/Wrdu7bTsisFg0PLlyz0apC+wyzQABC5yNAAAAOqkgSxLc+bMGX388ceSpAcffNDpWIcOHXT8+HHHz8uXL1ezZs00efJkXbx4UX369NGOHTsUGRnpy5ABIGC5XTjftGmTY02rQ4cOVTrur8K51WpVUVFRjf0SEhIUGhrq1OaNXabnzJlT5/MAQH1BjgYAAAC8r2PHjrLbXfuQwGg0avHixVq8eLGXowKA4OR24bzip5OBJD8/X2PGjKmx35EjR5w2uvDWLtMTJ050/Gyz2dSuXTtXHgYA1EvkaAAAAAAAEEzcWuP8ypUrioyM1KZNm7wVT62NHj1adru9xlvFgow7u0xX5Mou082bN3e6AUBDRo4GAAAAAADBxK3CeVhYmG666SY1buz2RPWA4+4u09dd32X6vvvu82W4ANCgkKMBAAAAAIA/uV0Bf+SRR7RmzRplZmZ6Ix6fqLjL9PLly/XZZ585jhmNRvXo0UOS8y7TjRo1UlxcnObPn88u0wDgReRowAUNZIMzAICfeeL1htcsAECQcrtwbjKZdODAAXXt2lX33nuvWrduLYPB4DhuMBj05JNPejRIT2OXaQAIXORoAAAAAADgbwa7q9st/z8hITde3cVgMKisrKxOQdU3NptNkZGRslqtnl9L94eG6o/xyT4A1MirORoAKqrufRvv2arl9RzN7wRV8cX/serLNTwhWOJElXgvDQS4G+VYiTxbA7dnnJeXl3sjDgAAAAAA4CnBUgwJljgBAA2OW5uDAgAAAAAAAABQ37lUOH/hhRf073//26lt3759unTpklNbYWGhHn/8cc9FBwAAAAAAAACAj7lUOJ8yZYpOnDjh+LmsrEx9+/aV2Wx26nf27FmtXbvWsxECAAAAAAAAAOBDLhXOq9o/1M09RQEAAAAAAAAACApubw4KAAAAAADqgA0xAQAIeGwOCgAAAAAAAABABS4Xzg0Gg0ttAAAAAAAAAAAEM5eXaklNTVVIiHOdvW/fvk5t5eXlnosMAAAAAAAAAAA/cKlwPmvWLG/HAQAAAAAAAABAQKBwDgAAAAAAAABABS4v1QIAAAAA9cqHdn9HAAAAgADl8uagAAAAAAAAAAA0BMw4D3bMkgEAAAgOvG8DggN/qwCA+oLXtDphxjkAAAAAAAAAABVQOAcAAAAAAAAAoAIK5wAAAAAAAAAAVEDhHAAAAAAAAACACiicAwAAAAAAAABQQWN/B9AQ2O3f7WBrs9n8HAkAuC8iIkIGg8HfYXgNORpAMCNHA0BgI08DQOCqKUdTOPeBixcvSpLatWvn50gAwH1Wq1XNmzf3dxheQ44GEMzI0QAQ2MjTABC4asrRBvv1jwfhNeXl5frqq6/q9EmzzWZTu3btdPLkyXr9ousrjKdnMZ6eFWjjWd9nyZCjAw/j6VmMp2cF2niSo10TaL+3YMd4ehbj6VmBNp7kadcE2u+tIeN3ETj4XXgfM84DQEhIiOLj4z1yrubNm/PH4kGMp2cxnp7FePoGOTpwMZ6exXh6FuPpG57M0RK/N09jPD2L8fQsxtM3yNP1F7+LwMHvwn/YHBQAAAAAAAAAgAoonAMAAAAAAAAAUAGF8yBhNBo1a9YsGY1Gf4dSLzCensV4ehbjGXz4nXkW4+lZjKdnMZ7Bid+bZzGensV4ehbjGZz4vQUOfheBg9+F/7E5KAAAAAAAAAAAFTDjHAAAAAAAAACACiicAwAAAAAAAABQAYVzAAAAAAAAAAAqoHAe4MxmswYOHKjw8HC1adNGzzzzjEpLS/0dVlD44osvlJ2dre7du6tx48bq0qVLlf3Wrl2rxMREhYWFqVu3btq8ebOPIw18+fn5Gjx4sOLj4xUeHq7u3bvr1Vdf1fe3SGAsXbNlyxb169dPMTExMhqNSkhI0MSJE2W1Wp36bdq0Sd26dVNYWJgSExP12muv+SliVIccXXvkaM8iT3sWebr+IE/XHnnac8jRnkWOrl/I0/5Bjg8MvD4EPgrnAcxisSgtLU2lpaXasGGD5s+fr1deeUUTJ070d2hB4fDhw/rTn/6km2++WZ07d66yz7p16zRmzBgNGzZMW7duVa9evTR06FAdOHDAx9EGtiVLluimm25Sbm6uNm3apMzMTI0ZM0Zz58519GEsXVdcXKy77rpLq1ev1p///GdNnDhRb775ph5++GFHn71792ro0KHq1auXtm7dqmHDhmnUqFFav369HyNHReTouiFHexZ52rPI0/UDebpuyNOeQ472LHJ0/UGe9h9yfGDg9SEI2BGw5s+fbw8PD7efP3/e0fbyyy/bGzVqZD99+rQfIwsOZWVljn8/8sgj9ltvvbVSn8TERPuIESOc2nr16mXPzMz0enzB5Ny5c5XaxowZY2/evLljnBnLunnllVfskhx/2xkZGfbevXs79RkxYoQ9JSXFH+GhCuTouiFHexZ52vvI08GHPF035GnPIUd7Hzk6OJGn/YccHxh4fQh8zDgPYFu3btWAAQMUHR3taMvKylJ5ebkKCgr8GFlwCAm58dP72LFjOnr0qLKyspzahw8frp07d6qkpMSb4QWVli1bVmrr0aOHbDabvv32W8bSA1q0aCFJKi0tVUlJiXbt2uU0a0b6bjyPHDmi48eP+yFCfB85um7I0Z5FnvY+8nTwIU/XDXnac8jR3keODk7kaf8hxwcGXh8CH4XzAGY2m5WcnOzUFhUVpdjYWJnNZj9FVX9cH8Pvj3FKSopKS0tVWFjoj7CCxt69exUXF6eIiAjGspbKysp05coVffTRR5o7d64efPBBdezYUf/617909erVKsdTEn//AYIc7V3klbojT9cdeTq4kae9i7xSN+TouiNHBz/ydOAiL/kPrw+BhcJ5ALNYLIqKiqrUbjKZVFxc7PuA6hmLxSJJlcbYZDJJEmN8A3v37tW6dev09NNPS2Isa6tDhw5q2rSpevbsqdjYWL399tuSGM9gQY72Lv4O6oY87Rnk6eBGnvYu/g5qjxztGeTo4EeeDlz8HfkHrw+Bh8I5ALecOnVKw4YNU2pqqnJycvwdTlDbsmWL9u3bp9/+9rc6cuSIHnjgAZWVlfk7LABBjjztOeRpAJ5GjvYccjSA+oTXh8DU2N8BoHomk0lWq7VSu8VicVoDDLVz/RM6q9WqNm3aONqvf6LHGFd24cIFZWZmqkWLFnrnnXcc66IxlrXTtWtXSVKvXr10xx13qHv37tq4caNjV/Pv//0znoGFHO1d5JXaIU97Fnk6uJGnvYu84j5ytGeRo4MfeTpwkZd8i9eHwMWM8wCWnJxcaV0vq9WqoqKiSusbwX3Xx/D7Y2w2mxUaGqqEhAR/hBWwLl++rEGDBslqtWrr1q2KjIx0HGMs665r165q0qSJvvjiC3Xq1ElNmjSpcjylyuubwT/I0d5FXnEfedq7yNPBhzztXeQV95CjvYscHZzI04GLvOQ7vD4ENgrnASwzM1M7duzQhQsXHG35+fkKCQlRRkaG/wKrJxISEpSYmKj8/Hyn9ry8PKWnpys0NNRPkQWea9euKSsrS0eOHNG2bdsUFxfndJyxrLuDBw/q6tWrSkhIkNFoVGpqqtavX+/UJy8vTykpKerYsaN/goQTcrR3kVfcQ572PvJ08CFPexd5xXXkaO8jRwcn8nTgIi/5Bq8PgY+lWgJYdna2VqxYoSFDhmjq1Kk6ffq0Jk2apOzsbLVt29bf4QW8S5cuacuWLZKkL7/8UjabzfHmqV+/foqJidHs2bM1cuRIderUSampqcrLy9PBgwf1/vvv+zP0gDN27Fht3rxZubm5stlsOnDggONYjx49ZDQaGUs3/PjHP9YPf/hDde3aVU2bNtXHH3+sRYsWqWvXrhoyZIgkacaMGerfv7/Gjh2rrKws7dq1S2+//bby8vL8GzwcyNF1Q472LPK0Z5Gn6wfydN2Qpz2HHO1Z5Oj6gzztP+T4wMDrQxCwI6B9/vnn9vT0dHvTpk3trVq1sj/99NP2kpISf4cVFAoLC+2Sqrzt2rXL0W/NmjX2m2++2R4aGmq/7bbb7Js2bfJf0AGqQ4cO1Y5lYWGhox9j6ZoFCxbYu3fvbo+IiLCHh4fbb731VvuMGTPsVqvVqd+7775rv+222+yhoaH2m2++2b527Vo/RYzqkKNrjxztWeRpzyJP1x/k6dojT3sOOdqzyNH1C3naP8jxgYHXh8BnsNvtds+X4wEAAAAAAAAACE6scQ4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAQD2Rn5+vwYMHKz4+XuHh4erevbteffVV2e12p35r165VYmKiwsLC1K1bN23evNlPEQNAYKJwDgAAAAAAUE8sWbJEN910k3Jzc7Vp0yZlZmZqzJgxmjt3rqPPunXrNGbMGA0bNkxbt25Vr169NHToUB04cMCPkQNAYDHYv/+RIzzObrfr4sWLioiIkMFg8Hc4AIAKyNEAELjI0QDgvq+//lotW7Z0anv88ceVl5cni8WikJAQJSUlqWfPnnr77bcdfXr37q2oqCht2bLF5WuRpwHUZ8w494GLFy8qMjJSFy9e9HcoAIDvIUcDQOAiRwOA+75fNJekHj16yGaz6dtvv9WxY8d09OhRZWVlOfUZPny4du7cqZKSEpevRZ4GUJ9ROAcAAAAAAKjH9u7dq7i4OEVERMhsNkuSkpOTnfqkpKSotLRUhYWF/ggRAAJOY38HAAAAAAAAAO/Yu3ev1q1bp9zcXEmSxWKRJEVFRTn1M5lMkqTi4uJqz1VSUuI0I91ms3k4WgAIHMw4BwAAAAAAqIdOnTqlYcOGKTU1VTk5OXU+34IFCxQZGem4tWvXzgNRAkBgonAOAAAAAABQz1y4cEGZmZlq0aKF3nnnHYWEfFcCuj6z3Gq1OvW/PhM9Ojq62nNOmTJFVqvVcTt58qSXogcA/2OpFgAAAAAAgHrk8uXLGjRokKxWq/bv36/IyEjHsetrm5vNZiUlJTnazWazQkNDlZCQUO15jUajjEaj9wIHgABC4RxAncwxGG54fJbd7qNIAHjKjf6u+ZsGAHgDrz2A51y7dk1ZWVk6cuSI9uzZo7i4OKfjCQkJSkxMVH5+vgYPHuxoz8vLU3p6ukJDQ30dcr3F/5eB4EbhHAAAAAAAoJ4YO3asNm/erNzcXNlsNh04cMBxrEePHjIajZo9e7ZGjhypTp06KTU1VXl5eTp48KDef/99P0YOAIGFwjkAAAAAAEA9UVBQIEl66qmnKh0rLCxUx44dNWLECF26dEkLFy7UwoULlZSUpI0bN6pXr16+DhcAAhaFcwAAAAAAgHri+PHjLvUbNWqURo0a5d1gACCIUTgHAAAAAACAT7G3AYBAF+LvAAAAAAAAAAAACCRuzzg/ceJEtcdCQkIUGRmpiIiIOgUFAAAAAAAAAIC/uF0479ixoww3+DrN9T6//vWvNWHChFoHBngCX/0CglN+fr5+97vf6a9//assFotuueUW5eTk6Be/+IXTa9DatWv1/PPP68SJE0pKStJzzz2nQYMG+TFyAAAAAEAgoCaEunJ7qZbf/e53io+PV1pampYvX64//OEPWr58ufr376+4uDitWLFCvXv31pNPPqkVK1Z4I2YAQD23ZMkS3XTTTcrNzdWmTZuUmZmpMWPGaO7cuY4+69at05gxYzRs2DBt3bpVvXr10tChQ3XgwAE/Rg4AAAAAAOoDt2ec79mzR/fee69efvllp/bx48fr8ccf11//+le99dZbat68uVatWsWscwCA2zZt2qSWLVs6fk5LS9P58+e1ZMkSzZgxQyEhIZo1a5aGDx+u//mf/5Ekpaam6pNPPtHcuXO1ZcsWf4UOAAAAAADqAbdnnK9bt04PPfRQlccefvhhbdiwQZI0aNAgFRYW1i06+Mwcg6HaGwD4WsWi+XU9evSQzWbTt99+q2PHjuno0aPKyspy6jN8+HDt3LlTJSUlvgoVAAAAAADUQ24XzkNCQvTxxx9Xeezvf/+7QkK+O2WjRo3UtGnTukUHAMD/s3fvXsXFxSkiIkJms1mSlJyc7NQnJSVFpaWlfHALAAAAAADqxO2lWkaOHKkZM2aotLRUDzzwgGJiYnTu3Dm9++67mjdvnp544glJ0l//+ld17tzZ4wEDABqevXv3at26dcrNzZUkWSwWSVJUVJRTP5PJJEkqLi6u9lwlJSVOM9JtNpuHowUAoDI2KAMAAAgubhfOc3Nz1bhxY82bN08zZsxwtBuNRo0bN07PP/+8JKlPnz760Y9+5LlIAQAN0qlTpzRs2DClpqYqJyenzudbsGCB5syZ44HIAAAAAAAIfHyAXztuF86bNGni2Jztk08+0b///W/FxsaqS5cuio6OdvS75557PBoogP8g4aGhuHDhgjIzM9WiRQu98847juXArs8st1qtatOmjaP/9ZnoFV+Pvm/KlCmaOHGi42ebzaZ27dp5I3wAAAAAABCk3C6cX2cymdSvXz9PxgIAgMPly5c1aNAgWa1W7d+/X5GRkY5j19c2N5vNSkpKcrSbzWaFhoYqISGh2vMajUYZjUbvBQ4AAAAAAIKe25uDStLXX3+tyZMnKz09XUlJSTp8+LAkafny5Tpw4IBHAwQANDzXrl1TVlaWjhw5om3btikuLs7peEJCghITE5Wfn+/UnpeXp/T0dIWGhvoyXAAAAAAAUM+4PeP8o48+Unp6uiIjI9WvXz/t3r3bscna6dOntXTpUuXl5Xk8UABAwzF27Fht3rxZubm5stlsTh/K9ujRQ0ajUbNnz9bIkSPVqVMnpaamKi8vTwcPHtT777/vx8gBAAAAAEB94Hbh/Mknn1SvXr307rvvymAw6K233nIcu+uuuyiaAwDqrKCgQJL01FNPVTpWWFiojh07asSIEbp06ZIWLlyohQsXKikpSRs3blSvXr18HS4AAAAAAKhn3C6cHzp0SBs2bFCTJk1UVlbmdCwmJkZnz571WHAAgIbp+PHjLvUbNWqURo0a5d1gAAAAAABAg+N24Tw8PFw2m63KYydOnFCLFi3qHBRQX80xGKo9Nstu92EkAAAAAAAAAKrj9uagP/rRjzRv3jydP3/e0WYwGHT58mUtX75c9913n0cDBAAAAAAAAADAl9wunD///POy2Wy65ZZblJWVJYPBoOnTp6tz5846f/685s2b5404AQAAAAAAAADwCbeXaomLi9Pf//53LV26VNu3b1enTp10/vx5jRw5UhMnTlR0dLQ34gQAAAAAoFo3WhZRYmlEAADgHrcL55IUFRWlOXPmaM6cOZ6OBwAAAAAAAAAAv3J7qRYAAAAADdsXX3yh7Oxsde/eXY0bN1aXLl2q7Ld27VolJiYqLCxM3bp10+bNm30cKQAAAFA7Ls04/8EPfiBDDV97q+jYsWM19jl//rw++OADFRUV6fLly2rRooWSkpLUvXt3t64FAAAAwLcOHz6sP/3pT7rrrrtUXl6u8vLySn3WrVunMWPGaNq0aUpLS1NeXp6GDh2qPXv26O677/ZD1AAAAIDrXCqcDx482KmYvX79etlsNg0YMECtW7fWmTNntGPHDkVGRuqhhx6q9jxWq1VvvPGG3njjDf3973+X/XtrzBkMBjVr1kxDhw7VmDFj1KdPn1o+LAAAAADe8sADD2jw4MGSpEcffVQffvhhpT6zZs3S8OHD9T//8z+SpNTUVH3yySeaO3eutmzZ4tN4AQAAAHe5VDhftmyZ49+LFi1Su3bttG3bNjVv3tzRbrValZmZqdatW1d5jvnz52vx4sUymUx6+OGHNWvWLHXr1k0tW7aU0WjUhQsXdPz4cX344YfaunWr0tPT9V//9V968cUX1blz57o9SgAAAMCPbrRpYTBuWBgScuMVH48dO6ajR4/q+eefd2ofPny4Jk2apJKSEhmNRm+GCAAAANSJ25uDvvjii1q1apVT0VySIiMjNXnyZI0dO1bPPvtspfvt3r1bGzZsUP/+/as8b8uWLdWyZUv98Ic/VHZ2tiwWi1auXKndu3dTOAcAAACCiNlsliQlJyc7taekpKi0tFSFhYWVjgEAEAhu9GG3FJwfeAOoHbcL58XFxbJarVUes1qtslgsVR4rKChw6zomk0kzZsxwNzwAAAAAfnb9/wRRUVFO7SaTSdJ3/6eoSklJiUpKShw/22w27wQIAAAA1ODG37GsQnp6up599ln95S9/cWrfvXu3Jk+erPT0dI8FBwAAAKDhWLBggSIjIx23du3a+TskAAAANFBuzzh/+eWX9eCDDyotLU2RkZGKiYnRuXPnZLVa1aNHD61evbrGc8ydO7faYyEhIYqMjFT37t3Vt29fd8MDAAAA4GfXZ5ZbrVa1adPG0X59Jnp0dHSV95syZYomTpzo+Nlms1E8BwAAgF+4XTiPjY3VoUOHtG3bNn3wwQcqKipSbGys7rzzTt17770unWPp0qUqLS3V5cuXJUlhYWG6cuWKJKlp06a6evWqysrKdPvtt2vLli2KiYlxN0wAAICAVd82igS+7/r65WazWUlJSY52s9ms0NBQJSQkVHk/o9HIpqEAACDgsPa9e+rLeLm9VMt19957r2bOnKmXXnpJM2fOdLloLknvvfee4uLi9NZbb8lms+nSpUuy2Wx644031LZtW/3lL39RQUGBTp06pUmTJtU2RAAAAAB+kJCQoMTEROXn5zu15+XlKT09XaGhoX6KDAAAAHCN2zPOPWHcuHF66qmnNHLkSEdbs2bN9LOf/Uzffvutfv3rX+vgwYOaPn36DZd1AQAAAOB7ly5d0pYtWyRJX375pWw2m9avXy9J6tevn2JiYjR79myNHDlSnTp1UmpqqvLy8nTw4EG9//77/gwdAAAAcIlfCud/+9vfNHPmzCqPdezYUZ9++qkkqUuXLrJarb4MDQAAAEANzp49q4cfftip7frPu3btUv/+/TVixAhdunRJCxcu1MKFC5WUlKSNGzeqV69e/ggZAICAxTJ+QGDyS+G8Q4cOWrNmTZXLu7zyyivq0KGDJOn8+fNq2bKlr8MDEKCC8c1EMMYMAEBNOnbsKLsLr2OjRo3SqFGjfBARAAAA4Fl+KZwvWLBAWVlZSkpK0qBBgxQTE6Nz585p8+bNOnbsmGMtxJ07d+qee+7xR4gAAAAAAA9gIgEAAAhGfimcDx06VB988IEWLFigjRs3qqioSLGxsbrjjjuUl5en7t27S5J+85vf+CM8AAAAAAAAAEAD5lbh/N///rcKCgpkNptVXFwsSYqOjlZycrIyMjLUpk0bl8/Vo0cP/fGPf3QvWgDwAGY9AYD/eCoHk8sBAAAAeJNLhfOrV6/qqaee0urVq1VWVqbY2FiZTCZJksViUVFRkRo1aqRf/vKXys3NVePGrtfjT548qZMnT6pbt24KDw+v3aMAAAAAAAAAAMBDXKpwT58+XW+99ZZ+85vfKCsrS5GRkU7HbTab/vjHP+qZZ55R06ZNtXDhwhrP+corr2jOnDkqKiqSwWDQoUOHdPvtt2vo0KHq37+/fvWrX9XuEQEAACCo+Wo2+Y2u4+lrAQCA+iPY30MEe/yAr7hUOH/zzTe1dOlSPfroo1Ueb968uUaPHq1GjRpp6tSpNRbOly1bpmeffVYTJ05Uenq6MjIyHMf69++v/Px8CudosHz51XO+5g4AAAAAAABU5lLh/OLFi4qPj6+xX3x8vC5evFhjvxUrVmjGjBmaPn26ysrKnI4lJSXpH//4hythAQAAAAAAAADgcSGudOrVq5fmz58vq9VabR+bzab58+erd+/eNZ7v9OnT1fZr0qSJvvnmG1fCAgAAAAAAAADA41yacb5y5UqlpaWpXbt2GjBggJKTkxUVFSVJslqtMpvN2rFjhyIiIrRz584az9ehQwd98MEHSktLq3Ts4MGDSkxMdO9RAAAAAACAgMCSkACA+sClwnlSUpIOHz6sl156Sdu2bdPatWtlsVgkSSaTScnJyZoyZYqys7MdBfUbGTNmjGbPnq2YmBj9+Mc/liRdvXpVf/rTn7Ro0SI999xztX9EAAAEEP7jCAAAAABA8HGpcC5JUVFRmjJliqZMmVLniz799NM6ceKEHn/8cT3xxBOSpD59+kiSxo4dq7Fjx9b5GgAAAAAAAAAA1IbLhfMbOXr0qNq3b6+wsDCX7/Piiy/q17/+tbZv367z588rOjpa6enpuuWWWzwREgAAAAAAAFAv3OibrNJ/vs3KN14Bz6lz4dxqtSolJUW7d+9W37593bpvQkKCY8Y5gPrL1Rf4YMMbEjRU9fVvGkD90pBfpxvyYwcAAPAUlwrnOTk51R4rLS2V3W7XsmXLlJ+fL4PBoOXLl1fq9/7777sV2D333ONWf28xm82aMGGC9u3bp4iICP385z/XvHnzFBoa6u/QAAAAAAAAAABe4FLhfOXKlYqMjKxy48/y8nIZDAbt27dPYWFh1RbO+/fvL4PBIPv/m+FgqDALwm63O/0sSWVlZe48Dq+wWCxKS0vTLbfcog0bNuj06dOaOHGiLl26pJUrV/o7PAAAAHgZ37AAAACAPwTqN8gCNS5vcHnG+WuvvaZHH31Uzz77rNNa5hcuXFB0dLTy8vJuOEv8b3/7m+PfZ8+e1ahRo5SamqqHHnpIrVu31pkzZ5Sfn6/du3dr7dq1dXhInrN69WrZbDZt3LhR0dHRkqRr165p7Nixmjp1qtq2bevnCPnPHAAAAAAAAAB4WogrnZYtW6a9e/dq165dSk5O1vr16x3Hvj9TvDrdunVz3F5++WUNHz5cb7zxhh544AHdeeedeuCBB/Tmm29q2LBheumll2r3aDxs69atGjBggKNoLklZWVkqLy9XQUGBHyMDAAAAAAAAAHiLy5uD3nbbbdq9e7d+//vf61e/+pVWrlypFStWqH379m5f9M9//rM2bNhQ5bGMjAz9+Mc/dvuc3mA2m/XYY485tUVFRSk2NlZms9lPUQEAAH+pr19LrK+PCwAAAIBrWNWiMpdmnFc0cuRI/eMf/1DPnj111113KScnx+VZ59c1a9ZMO3furPLY9u3b1axZM3fD8gqLxVLluu4mk0nFxcXV3q+kpEQ2m83pBgDwDrPZrIEDByo8PFxt2rTRM888o9LSUn+HBQAAAAQ03kcDwI25POO8ombNmik3N1ePPfaYnnrqKbVv395p3fOajBs3TjNnztSZM2c0ZMgQtWrVSmfPntXGjRv11ltvac6cObUJK2AsWLDAI4/BlU96XPm0xxfnuX7/QOvjqU/DfBmPp/p4Kp6azuOLeN25lq8et6vnCbS/rfqGTZyBwNIQ8xDgSb78G+LvNTDwe4C/8D4aAGpWq8L5dbfeequ2bdvm9v2mT5+uqKgoLVy4UG+88YYMBoPsdrtiY2O1bNkyTZgwoS5heYzJZJLVaq3UbrFYnNY9/74pU6Zo4sSJjp9tNpvatWvnlRgBoCELhk2cAQAAgEATLO+jWToi8PE7Qn3m9lItnjJ+/HidOHFCx48f1759+3T8+HGdPHkyYIrmkpScnFxpLXOr1aqioiIlJydXez+j0ajmzZs73QAAnscmzgAAAID7eB8NADWr04zzugoJCVH79u1rtcGoL2RmZmr+/Pm6cOGCY63z/Px8hYSEKCMjw7/BuYFP93yDcQZ8j02c0dDxFX8AAFAbvI8GgJr5rHD+0ksv6bHHHpPRaHT5Pp9++qnOnTuntLQ0L0ZWvezsbK1YsUJDhgzR1KlTdfr0aU2aNEnZ2dkB87UlAGjIarOJc0lJiUpKShw/s4EzAAAIdnyQCnfV5n20xHtpAA2Lzwrnr7/+uubMmaMRI0bo4Ycf1h133KEmTZpU6vfVV19p69at+sMf/qCDBw/q9ddf91WIlZhMJu3cuVMTJkzQkCFDFBERodGjR+u5557zW0wAgLrx1AbOkm83ow2kjZU9teFvXfsE4thwHt9tgl1TH09tOu3LsQEAINB58r20p16Hpbq/16vYz5NxebKfP87lqfdTrp6rpn7e+F3641yBGn+gPsdq6ufN99luFc6vXLmiVatWKSMjQ126dHHrQgcPHtTGjRu1fPlyvfjii2rSpIkSExMVExMjo9GoCxcuqLCwUGfPnlV0dLQeeeQR/e53v1ObNm3cuo6npaSkaMeOHX6Nob7hP47wJp5fDUttNnFmA2cA8B2z2awJEyZo3759ioiI0M9//nPNmzdPoaGh/g4NABq02ryPlngvDaBhcatwHhYWpunTp6tnz561utjQoUM1dOhQHT9+XDt27NCHH36ooqIiXblyRR06dFBGRob69Omj/v37VzkbHQCAimqzibPRaHRr2TAAQO1YLBalpaXplltu0YYNG3T69GlNnDhRly5d0sqVK/0dHgA0aLV5Hy3xXhpAw+L2Ui3du3fX559/rn79+tX6oh07dtTo0aM1evToWp8DAID6sokzANRHq1evls1m08aNGx2zF69du6axY8dq6tSp7BlUT7C2NoIBz9PKeB8NX/Pk31pD/buF74W4e4fly5dr6dKlWr9+vS5duuSNmAAAcEl2drYiIiI0ZMgQFRQU6LXXXmMTZwAIEFu3btWAAQOcvvKflZWl8vJyFRQU+DEyAADvowGgZm7POE9LS1NpaamGDRsmSbrppptkqPDprcFgqHKdLAAAPI1NnAEgcJnNZj322GNObVFRUYqNja20PAAAwLd4Hw0ANXO7cP7UU085FcoBAPAnNnEGgMBksVgcX/+vyGQyqbi4uMr7lJSUqKSkxPGzzWbzVngA0ODxPhoAbsztwvns2bO9EAYAAACAhm7BggWaM2eOR87lyvqnrqx77Kk+rsTjqZg9dS1XeOpannjsdT3H9fPUtY+nnxe+PE+gPa5AiwcA0LC4XTi/zm636+jRoyouLlZ0dLQSExNdmolut9tlsVgUHh7OTsz1EG8oAPfxdwPUDX9DN8b4wF9MJlOVSzhaLBandc8rmjJliiZOnOj42WazqV27dl6LEQAAAKhOrQrnq1at0ty5c3Xu3DnZ7XYZDAa1atVKM2fO1C9/+csb3vfq1atq1aqV3n33Xd1///21ChoAAABAYEtOTq60lrnValVRUZGSk5OrvI/RaGRyDQAA8BkmmeBG3C6cv/LKKxo/frxGjBihYcOGqXXr1jpz5ozy8vI0fvx4NWnSRKNHj672/qGhoYqPj1dZWVmdAgcAAMGNN6lA/ZaZman58+frwoULjrXO8/PzFRISooyMDP8GBwAAANTA7cL50qVLlZOTo2XLljm1P/jgg4qJidHixYtvWDiXpHHjxmnJkiXKyMhQWFiYuyEAkii4AAAABLLs7GytWLFCQ4YM0dSpU3X69GlNmjRJ2dnZatu2rb/DAwAAAG7I7cJ5YWGhBg0aVOWx+++/X6tXr67xHCdOnNDRo0fVvn179e/fX61bt3ZaH91gMGj58uXuhgYAAAAgQJhMJu3cuVMTJkzQkCFDFBERodGjR+u5557zd2gAAAB+w0TQ4OF24Tw2Nlb79+/XgAEDKh07cOCAYmNjazzH5s2bHesXHjp0qNJxCucAAACoC/5DEhhSUlK0Y8cOf4cBAAAAuM3twvmoUaM0d+5clZSU6KGHHlLr1q119uxZ5efna9GiRZo5c2aN5ygsLKxVsAAAAADgS3wIAwAA0DC5XTifNm2aLBaLFi1apAULFvznRI0ba8KECZo2bZpHAwQAAJ4TbAWgYIsXAAAAAFA/uFQ4t9lsioiIkMFgkMFgUG5urqZOnaqDBw/KYrEoOjpad955p1q0aOHyhU+fPq1ly5Zp7969Ki4uVnR0tPr27atf/epXiouLq/UDAgAAAAAAAACgLkJc6WQymRxrkaelpclsNqtFixa67777NHLkSGVmZrpVNP/ss8902223afXq1YqNjVVaWppiY2O1evVqde3aVYcPH67dowEAAAAAAAAAoI5cmnEeFhamK1euSJJ2794tm81Wp4s+/fTT6tSpkwoKCmQymRztFotFGRkZevrpp7V169Y6XQMA6hOWqwAAAAguvH8DACC4uVQ479q1qyZNmqTMzExJ0po1a7Rt27Yq+xoMBs2YMeOG59u7d69+//vfOxXNpe9mtk+bNk0/+9nPXAkLAAAAAAAAgBfwASAaOpcK56tWrVJOTo5+85vfyGAwaN26dWrUqFGVfV0pnDdu3FglJSVVHispKan23AAAALXhyzf9nroW/1EBAAAAAP9xqXDeo0cP7dmzR5IUEhKiHTt26M4776z1RQcMGKBp06ape/fuSkxMdLT/85//1IwZMzRw4MBanxtAcKJABAAAAAAAgEDhUuG8ol27dqlz5851uuiSJUvUr18/de7cWV26dFHr1q119uxZffrpp2rfvr2WLFlSp/MDAAAAAIDA5crEGSbXwFU8VwB4Q4i7d+jXr5+aNWtWp4u2b99en376qZYsWaLExESVl5crMTFRS5cu1SeffKJ27drV6fwAAAAAAAAAANSW2zPOPaVZs2bKyclRTk6Ov0IAAAAAAAAAAKASvxXOAQCA6/g6MwAAAACgoobyf0B/PU6fFc6bN2+uXbt2qWfPnoqIiJDBYKi2r8FgkNVq9VVoAAAAAAAEJE8VCxpKcQUAAE9xq3B+5coVrVq1ShkZGerSpYtbF3rqqacUGxvr+PeNCucAAAAAAAAAAPiLW4XzsLAwTZ8+XT179nT7QrNmzZIk2e125eTkKDw8XEaj0e3zAP7A7AwEA56nAAAAAAAAnhHi7h26d++uzz//vNYXvHr1qlq1aqUdO3bU+hwAAAAAAAAAAHiL22ucL1++XCNHjlRMTIzuu+8+3XTTTW7dPzQ0VPHx8SorK3P30gAA1Et8WyAw8Hu4McYHAAAAQEPiduE8LS1NpaWlGjZsmCTppptuclqv3JWNPceNG6clS5YoIyNDYWFh7obQYATaf1ADLR4AAAAAAAAA8Aa3C+ee2NjzxIkTOnr0qNq3b6/+/furdevWlYrvy5cvr9M1AAAAAAAAAAQPJm0ikLhdOJ89e3adL7p582YZjUYZjUYdOnSo0nEK5wAAAAgW/AcPAAAAqH/cLpxfZ7fbdfToURUXFys6OlqJiYkuz0QvLCys7WUBAAAAAAAAAPCqkNrcadWqVYqNjVXnzp3Vp08fde7cWW3bttVLL73k6fgAAAAAAAAAAPApt2ecv/LKKxo/frxGjBihYcOGqXXr1jpz5ozy8vI0fvx4NWnSRKNHj67xPF9//bWWLl2qgwcPqqioSLGxsbr77rv1q1/9SjExMbV6MAAAAAAAAAAA1JXbhfOlS5cqJydHy5Ytc2p/8MEHFRMTo8WLF9dYOD948KDuvfdelZeXa8CAAUpMTNSZM2e0YsUKrVixQgUFBbrrrrvcDQ0AAAAAADQg7DMBAPAWtwvnhYWFGjRoUJXH7r//fq1evbrGc4wbN0633nqrtmzZoubNmzvarVarMjMzNX78+Co3DUXDwZsfAAAAAAAAAP7i9hrnsbGx2r9/f5XHDhw4oNjY2BrPcfjwYU2ePNmpaC5JkZGRmjx5sj777DN3wwIAAADgA9u3b9dPf/pTderUSQaDQePHj6+yX2lpqSZNmqQ2bdooPDxcAwcO1D/+8Q8fRwsAAADUjtszzkeNGqW5c+eqpKREDz30kFq3bq2zZ88qPz9fixYt0syZM2s8x80336wLFy5UecxqtSohIcHdsAAAQADhm0NA/bVt2zZ9/PHH6tevn4qLi6vtl5OTo3Xr1mnJkiWKi4vTc889p/T0dB0+fFiRkZE+jBgAAABwn9uF82nTpslisWjRokVasGDBf07UuLEmTJigadOm1XiORYsWady4cWrXrp369evnaN+9e7dmz56tlStXuhsWAHgURT8AAKq2aNEi5ebmSpLee++9KvucOnVKa9as0apVq/TYY49Jku644w61b99eL7/8sp555hmfxQvAs3ifjGDFcxeAu9wqnNvtdlksFj333HOaOnWqDh48KIvFoujoaN15551q0aKFS+eZNGmSrFar0tLSFBkZqZiYGJ07d05Wq1Umk0nPPvusnn32WUmSwWDQxx9/7P4jAwAAAOBxISE1r/ZYUFCg8vJyPfzww4626OhoZWRkaMuWLRTOAQAAEPDcKpxfvXpVrVq10rvvvqv7779f9913X60u2rNnTxkMhlrdFwAAAEBgM5vNatWqlUwmk1N7SkqK1q5d66eoAAAAANe5VTgPDQ1VfHy8ysrK6nTR119/vU73B1AzvoaGYFVWVqbc3Fxt3rxZn3/+ucrLy9WtWzfNnTtXffv2depbWlqqadOm6a233tLFixfVu3dvrVy5UklJSX6KHgAgSRaLRVFRUZXaTSbTDddFLykpUUlJieNnm83mjfAAAACAGrm9xvm4ceO0ZMkSZWRkKCwszBsxAQAasMuXL2vBggV69NFH9eyzz6pRo0Z65ZVXlJqaqoKCAqWlpTn6svEcANSd1WpVUVFRjf0SEhIUGhrq1VgWLFigOXPmePUaFTHRAFXheQEAAKRaFM5PnDiho0ePqn379urfv79at27ttOyKwWDQ8uXLPRokAKDhaNq0qY4dO+b09f6BAweqS5cuWrp0qaNwzsZzAOAZ+fn5GjNmTI39jhw5ouTkZJfOaTKZZLVaK7Vf3x+pOlOmTNHEiRMdP9tsNrVr186lawIAAACe5HbhfNOmTTIajTIajTp06FCl4xTOAQB10ahRo0pr4jZq1Ehdu3bVF1984Whj4zkA8IzRo0dr9OjRHj1ncnKyzpw5I4vF4pTTzWbzDYvv1/+fAQAAAPib24Xz48ePeyEMAACqd+3aNR04cMBpjXM2ngOAwJWRkaGQkBC98847jqK8xWJRQUGBZsyY4efoAAAAgJq5VTi/cuWKWrdurd/97nd64IEHvBUTAABOXnjhBZ0+fVpPPvmko42N5wDAP7788kvHN08vXbqkf/3rX1q/fr0k6aGHHpIkxcfHa/To0Zo0aZIaNWqkuLg4zZ8/X5GRkXriiSf8FjsAAADgKrcK52FhYbrpppvUuLHbE9UBAA1YXTae2759u2bNmqWZM2eqZ8+edY7F1xvPAUB9s2vXLv3iF79w/Lxt2zZt27ZNkmSvsKni8uXL1axZM02ePFkXL15Unz59tGPHDjZvBgAAQFBwuwL+yCOPaM2aNcrMzPRGPACAeqi2G8999NFH+slPfqKf/vSnmjlzplNfNp4DAP949NFH9eijj9bYz2g0avHixVq8eLH3gwIAAPCzWRUmEKB+cLtwbjKZdODAAXXt2lX33nuvWrduLYPB4DhuMBicvkoPAEBtNp774osvlJmZqd69e2vNmjWVjrPxHAAgUPAf5YaH3zkAAPWf24XzKVOmSJKKior02WefVTpO4RwAUFdFRUXKyMhQ+/bttX79ejVp0qRSHzaeAwAAAAAA3uJ24by8vNwbcQAAIEm6fPmyMjMz9fXXX2v58uVOH9IajUb16NFDEhvPAQAAAAAA72mQu3yWlZUpNzdXmzdv1ueff67y8nJ169ZNc+fOVd++fZ36lpaWatq0aXrrrbd08eJF9e7dWytXrlRSUpKfogeA+u3MmTP6+OOPJUkPPvig07EOHTro+PHjjp/ZeA4AAAAAAHhDiCudXnjhBf373/92atu3b58uXbrk1FZYWKjHH3/cc9F5yeXLl7VgwQL17NlTb7zxht5++22ZTCalpqbqvffec+qbk5Oj3/72t5o/f742bNigkpISpaenV7khHQCg7jp27Ci73V7lrWLRXPrPxnNnzpzRpUuXtH379huubw4AAABUZZbdXu0NANAwuVQ4nzJlik6cOOH4uaysTH379pXZbHbqd/bsWa1du9azEXpB06ZNdezYMS1dulT333+/7r33XuXn5+uWW27R0qVLHf1OnTqlNWvW6IUXXtBjjz2mH/3oR/rf//1fXbhwQS+//LIfHwEAAAAAAAAAwFtcKpzbq/iEtaq2YNGoUSOZTKZKbV27dtVXX33laCsoKFB5ebkefvhhR1t0dLQyMjK0ZcsWn8ULAAAAAABQk7KyMr3wwgu655571LJlS0VHRys1NVV79uyp1Le0tFSTJk1SmzZtFB4eroEDB+of//iHH6IGgMDkUuG8Ibh27ZoOHDiglJQUR5vZbFarVq0qFdlTUlIqzbYHAAAAAADwJ5amBQDPaZCbg1blhRde0OnTp/Xkk0862iwWi6Kioir1NZlMKi4urvZcJSUlKikpcfxss9k8GisAAAAANDSsNe19jHHwu740bcUJgAMHDlSXLl20dOlSpaWlSfrP0rSrVq3SY489Jkm644471L59e7388st65pln/BI/AAQSlwvnBoPBpTZ/sVqtKioqqrFfQkKCQkNDndq2b9+uWbNmaebMmerZs2edY1mwYIHmzJlT5/MAAAAAAAC46kZL037xxReOtpqWpqVwDgBuFM5TU1MVEuK8skvfvn2d2srLyz0XmZvy8/M1ZsyYGvsdOXJEycnJjp8/+ugj/eQnP9FPf/pTzZw506mvyWSq8itKFotF0dHR1V5jypQpmjhxouNnm82mdu3aufIwAAAAAAAAPOb60rR9+/Z1tN1oadq1a9f6OkQACEguFc5nzZrl7TjqbPTo0Ro9erRb9/niiy+UmZmp3r17a82aNZWOJycn68yZM7JYLE4vJmaz2an4/n1Go1FGo9GtWAAAAACgJiylAcBdLE0LALVTbwrn7ioqKlJGRobat2+v9evXq0mTJpX6ZGRkKCQkRO+8846jKG+xWFRQUKAZM2b4OmQAAAAAANDAsDQtAPhHg9wc9PLly8rMzNTXX3+t5cuX67PPPnMcMxqN6tGjhyQpPj5eo0eP1qRJk9SoUSPFxcVp/vz5ioyM1BNPPOGv8AEAAAAAQAPB0rQA4B8NsnB+5swZffzxx5KkBx980OlYhw4ddPz4ccfPy5cvV7NmzTR58mRdvHhRffr00Y4dOxQZGenLkAEAAAAAQAPE0rQA4B8Gu51F8rzNZrMpMjJSVqtVzZs393c4AIAKyNEAELjI0QDgvqKiIvXp00ctWrTQrl271KxZs0p9Tp06pY4dO2r16tVOS9O2b99eM2bM0DPPPOPStcjTAOqzBjnjHAAAAAAAoL5haVoA8BwK5wAAAAAAAPUAS9MCgOewVIsP8NUlAAhc5GgACFzkaAAIbORpAPVZiL8DAAAAAAAAAAAgkFA4BwAAAAAAAACgAtY494Hrq+HYbDY/RwIA7ouIiJDBYPB3GF5DjgYQzMjRABDYyNMAELhqytEUzn3g4sWLkqR27dr5ORIAcF99X6+QHA0gmJGjASCwkacBIHDVlKPZHNQHysvL9dVXX9Xpk2abzaZ27drp5MmT9fpF198YZ+9jjL3P02Nc32fJkKODB+PsfYyxb3hynMnRruG57X2MsW8wzt7He2n38F46+DH+/sX4+xczzgNASEiI4uPjPXKu5s2b84fkA4yz9zHG3scYu4YcHXwYZ+9jjH2Dca6ZJ3O0xJj7AmPsG4yz9zHGruG9dP3B+PsX4x+Y2BwUAAAAAAAAAIAKKJwDAAAAAAAAAFABhfMgYTQaNWvWLBmNRn+HUq8xzt7HGHsfY+x7jLlvMM7exxj7BuPse4y59zHGvsE4ex9j7HuMuX8x/v7F+Ac2NgcFAAAAAAAAAKACZpwDAAAAAAAAAFABhXMAAAAAAAAAACqgcB7gzGazBg4cqPDwcLVp00bPPPOMSktL/R1WUPviiy+UnZ2t7t27q3HjxurSpUuV/dauXavExESFhYWpW7du2rx5s48jDU75+fkaPHiw4uPjFR4eru7du+vVV1/V91eFYnzrZsuWLerXr59iYmJkNBqVkJCgiRMnymq1OvXbtGmTunXrprCwMCUmJuq1117zU8T1F3nas8jR3kee9j5ydOAgR3sWOdr7yNG+QZ4OHORp3yB/+w95PbhROA9gFotFaWlpKi0t1YYNGzR//ny98sormjhxor9DC2qHDx/Wn/70J918883q3LlzlX3WrVunMWPGaNiwYdq6dat69eqloUOH6sCBAz6ONvgsWbJEN910k3Jzc7Vp0yZlZmZqzJgxmjt3rqMP41t3xcXFuuuuu7R69Wr9+c9/1sSJE/Xmm2/q4YcfdvTZu3evhg4dql69emnr1q0aNmyYRo0apfXr1/sx8vqFPO155GjvI097Hzk6MJCjPY8c7X3kaN8gTwcG8rTvkL/9h7we5OwIWPPnz7eHh4fbz58/72h7+eWX7Y0aNbKfPn3aj5EFt7KyMse/H3nkEfutt95aqU9iYqJ9xIgRTm29evWyZ2Zmej2+YHfu3LlKbWPGjLE3b97cMfaMr3e88sordkmO/JCRkWHv3bu3U58RI0bYU1JS/BFevUSe9jxytPeRp/2DHO175GjPI0d7Hznaf8jTvkee9h3yt/+Q14MbM84D2NatWzVgwABFR0c72rKyslReXq6CggI/RhbcQkJu/LQ/duyYjh49qqysLKf24cOHa+fOnSopKfFmeEGvZcuWldp69Oghm82mb7/9lvH1ohYtWkiSSktLVVJSol27djnNmpG+G+cjR47o+PHjfoiw/iFPex452vvI0/5BjvY9crTnkaO9jxztP+Rp3yNP+w7523/I68GNwnkAM5vNSk5OdmqLiopSbGyszGazn6Kq/66P7ffHPiUlRaWlpSosLPRHWEFt7969iouLU0REBOPrYWVlZbpy5Yo++ugjzZ07Vw8++KA6duyof/3rX7p69WqV4yyJHOIh5GnfI4d4B3naO8jR/kWO9j3yh3eQo72HPO1f5OnAQW7xLfJ68KBwHsAsFouioqIqtZtMJhUXF/s+oAbCYrFIUqWxN5lMksTYu2nv3r1at26dnn76aUmMr6d16NBBTZs2Vc+ePRUbG6u3335bEuPsK+Rp3+O57Xnkae8hR/sXOdr3eG57Hjnau8jT/kWeDhw8532HvB5cKJwD8JpTp05p2LBhSk1NVU5Ojr/DqZe2bNmiffv26be//a2OHDmiBx54QGVlZf4OC0CQIE97FzkaQF2Qo72PPA3Al8jrwaexvwNA9Uwmk6xWa6V2i8XitAYYPOv6p3pWq1Vt2rRxtF//FJCxd82FCxeUmZmpFi1a6J133nGsqcb4elbXrl0lSb169dIdd9yh7t27a+PGjY6d0r+fQxhnzyJP+x45xHPI095HjvYvcrTvkT88hxztG+Rp/yJPBw5yi/eR14MTM84DWHJycqV1vaxWq4qKiiqtfQTPuT623x97s9ms0NBQJSQk+COsoHL58mUNGjRIVqtVW7duVWRkpOMY4+s9Xbt2VZMmTfTFF1+oU6dOatKkSZXjLFVePw21Q572PXKIZ5CnfY8c7XvkaN8jf3gGOdo/yNO+R54OHOQW7yKvBy8K5wEsMzNTO3bs0IULFxxt+fn5CgkJUUZGhv8Cq+cSEhKUmJio/Px8p/a8vDylp6crNDTUT5EFh2vXrikrK0tHjhzRtm3bFBcX53Sc8fWegwcP6urVq0pISJDRaFRqaqrWr1/v1CcvL08pKSnq2LGjf4KsZ8jTvkcOqTvytH+Qo32PHO175I+6I0f7D3na98jTgYPc4j3k9eDGUi0BLDs7WytWrNCQIUM0depUnT59WpMmTVJ2drbatm3r7/CC1qVLl7RlyxZJ0pdffimbzeZ4Q9SvXz/FxMRo9uzZGjlypDp16qTU1FTl5eXp4MGDev/99/0ZelAYO3asNm/erNzcXNlsNh04cMBxrEePHjIajYyvB/z4xz/WD3/4Q3Xt2lVNmzbVxx9/rEWLFqlr164aMmSIJGnGjBnq37+/xo4dq6ysLO3atUtvv/228vLy/Bt8PUKe9jxytPeRp72PHB0YyNGeR472PnK0b5CnAwN52nfI3/5DXg9ydgS0zz//3J6enm5v2rSpvVWrVvann37aXlJS4u+wglphYaFdUpW3Xbt2OfqtWbPGfvPNN9tDQ0Ptt912m33Tpk3+CzqIdOjQodrxLSwsdPRjfOtmwYIF9u7du9sjIiLs4eHh9ltvvdU+Y8YMu9Vqder37rvv2m+77TZ7aGio/eabb7avXbvWTxHXX+RpzyJHex952vvI0YGDHO1Z5GjvI0f7Bnk6cJCnfYP87T/k9eBmsNvtds+X4wEAAAAAAAAACE6scQ4AAAAAAAAAQAUUzgEAAAAAAAAAqIDCOQAAAAAAAAAAFVA4BwAAAAAAAACgAgrnAAAAAAAAAABUQOEcAAAAAAAAAIAKKJwDAAAAAAAAAFABhXMAAAAAAAAAACqgcA74gcFgqPH2+uuvV7rf8ePHZTAYtH79ereuN3v2bDVr1sxD0QNA/UaOBoDARY4GgMBGnkZ90tjfAQAN0f79+51+7tWrlyZMmKCf/vSnjrZOnTpVul9sbKz279+vxMREr8cIAA0VORoAAhc5GgACG3ka9QmFc8AP7r777kpt7du3r7L9usuXL6tp06Y37AMAqDtyNAAELnI0AAQ28jTqE5ZqAQLQ9a8affDBB+rVq5fCwsL0m9/8psqvLr355pv6r//6L0VHR8tkMql///764IMPbnj+q1evatKkSWrfvr2MRqNiY2P1wAMPyGq1evuhAUDQI0cDQOAiRwNAYCNPI5gw4xwIUKWlpfrpT3+qJ598UvPnz1eLFi2q7Hf8+HH9/Oc/V6dOnVRaWqo//OEPuueee/TJJ59U+xWnBQsWaPXq1Xr++ed166236uuvv1ZBQYFKSkq8+ZAAoN4gRwNA4CJHA0BgI08jWFA4BwLU1atX9dxzz2nYsGGOtuPHj1fqN3PmTMe/y8vLNXDgQH3wwQd6/fXXNX/+/CrP/cEHHygjI0Njx451tP3kJz/xXPAAUM+RowEgcJGjASCwkacRLFiqBQhg999/f419jhw5oqFDh6p169Zq1KiRmjRpon/84x86evRotfe5/fbbtWXLFs2ePVuHDh1SeXm5J8MGgAaBHA0AgYscDQCBjTyNYEDhHAhQN910k5o1a3bDPhcvXlRGRoa+/PJLLVmyRHv27NGhQ4fUrVs3Xblypdr7TZs2Tc8++6zeeOMN3XnnnWrTpo3mzJkju93u6YcBAPUSORoAAhc5GgACG3kawYKlWoAAZTAYauyzf/9+nTp1Sps3b1a3bt0c7VarVfHx8dXez2g0avbs2Zo9e7a++OILvfrqq5o9e7YSEhL0s5/9zCPxA0B9Ro4GgMBFjgaAwEaeRrBgxjkQxC5fvixJCg0NdbTt27evyrXBqnPzzTdr/vz5io6O1pEjRzwdIgA0WORoAAhc5GgACGzkaQQCZpwDQezuu+9Ws2bNNG7cOE2ePFmnT5/WrFmzFBcXd8P7DRkyRD179lSPHj0UHh6uTZs2yWKxKC0tzUeRA0D9R44GgMBFjgaAwEaeRiBgxjkQxFq3bq38/HydPXtWgwcP1rJly/Tyyy/r5ptvvuH9+vTpo//7v//Tf//3f+uBBx7QX/7yF/3+97/XgAEDfBQ5ANR/5GgACFzkaAAIbORpBAKDndXxAQAAAAAAAABwYMY5AAAAAAAAAAAVUDgHAAAAAAAAAKACCucAAAAAAAAAAFRA4RwAAAAAAAAAgAoonAMAAAAAAAAAUAGFcwAAAAAAAAAAKqBwDgAAAAAAAABABRTOAQAAAAAAAACogMI5AAAAAAAAAAAVUDgHAAAAAAAAAKACCucAAAAAAAAAAFRA4RwAAAAAAAAAgAr+f3vYt+8MEVsxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1827,7 +1827,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/projects/behavior/laquitaine_motion_prior_learning.ipynb b/projects/behavior/laquitaine_motion_prior_learning.ipynb index 372b32e6f4..0910769185 100644 --- a/projects/behavior/laquitaine_motion_prior_learning.ipynb +++ b/projects/behavior/laquitaine_motion_prior_learning.ipynb @@ -144,7 +144,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAEfCAYAAAC+iOlAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjB0lEQVR4nO3deXxM1/8/8NfNMpORbZKILEgiyGKJFB/EmhDxo0VsIXyKBt8GpbU3qCSUUKFU7U3phxJCULvS+JRaqv2o1hKKhJSoSCYTZJ85vz/SuTJmJpmJSWaSvJ+PxzyYc889931Hcrzn3HPP5RhjDIQQQgghRIWJoQMghBBCCDFWlCgRQgghhGhAiRIhhBBCiAaUKBFCCCGEaECJEiGEEEKIBpQoEUIIIYRoQIkSIYQQQogGlCgRQgghhGhAiRIhhBBCiAaUKJFaz8PDA4GBgYYOw6hwHIfx48dXef/AwEB4eHjoLR5Cakp6ejo4jkNMTEy1H6s29j30u607SpSMXFFREbZs2YKQkBA4OTlBIBDAxsYG/v7++OCDD3D58mVDh1jtcnNzERMTg7Nnzxo6FEJIDTp79iw4juNfpqamsLW1hbe3N8LCwrBr1y4UFxcbOkxSx5kZOgCiWXp6OgYNGoQ//vgD3bt3x7Rp0+Dq6oqCggLcuHEDhw4dwvr16/HDDz8gKCjI0OFWm9zcXMTGxgKA2m9vt2/fBsdxNRwVIaSmDB8+HIMHDwYAvHjxAmlpaTh+/DjGjBmDTz/9FPv374evry8AwN3dHQUFBTAzo//eiH7QT5KRKiwsxDvvvIPbt29j7969GDFihEqdL774At988w1EIpEBIqyavLw82NjY6LVNoVCo1/YIIcalXbt2+Pe//61UtmLFCmzfvh0TJ05Ev379cP36ddjY2IDjOFhYWBgoUlIX0aU3I/XVV1/hxo0bmD17ttokCQDMzMwwYcIEdOnSRamcMYatW7eiU6dOsLS0hKWlJbp27YqDBw+qtKGYy/Lzzz+jd+/esLKyglgsxqhRo/D06VOV+sXFxfjss8/g5+cHkUgEGxsbBAcH48cff1SqV36ewP79+9GpUyc0aNAAgwYNAgA8fvwYs2fPRvv27WFvbw+hUAgvLy8sWLAABQUFfDvbt29Hs2bNAACxsbH8EHz5a+yvzxPo3r07bG1tldpRyMjIgKmpKd59912l8pSUFPTv3x92dnYQCoXw9fXFihUrIJPJ1H72r1PEcP36dfTr1w82NjZwcHDAxIkT8fLlS8jlcnz22Wdo0aIFhEIhWrdujaNHj6pt69tvv0Xnzp35f7suXbogMTFRbd3vv/8eXbp0gUgkgqOjIyIiIvDs2TONce7fvx+9evWCjY0NRCIR3nrrLXz11VdanSMhxmb8+PGYNWsWMjIysH79egCa5yh9++23CAgIgL29PUQiEdzc3DB06FDcvHlTqT2O45CdnY2IiAg4OjpCJBIhICAAZ86c0SqmU6dOITw8HM2bN+f7yJ49e+Lw4cNK9eLj48FxHI4dO6a2HT8/P7i4uKCkpIQvu3fvHsaPHw9XV1cIBAI0adIEU6ZMUfs7f/fuXQwZMgS2trawtrZGSEgIrl27ptU5kNcwYpR69erFALB79+7pvO+4ceMYx3EsNDSUrVmzhq1Zs4b17NmTAWAbN25UqguA+fv7M3t7e/bRRx+xTZs2sUmTJjGO41i/fv2U6paUlLA+ffowMzMz9u6777L169ezlStXsnbt2jFTU1N2+PBhvm5aWhrftq2tLZs3bx7bsmUL27x5M2OMsePHjzN3d3f24YcfsnXr1rEvvviCDR06lHEcx/r378+3c+/ePfb5558zAGzIkCFsx44dbMeOHezAgQN8HXd3d9arVy/+/datWxkAtnPnTpXPZsmSJQwAO336NF+WkJDAOI5j7du3Z8uXL2ebNm1i7777LuM4jo0cOVKrz9zd3Z21aNGCOTo6ssmTJ7ONGzeysWPHMgBs9OjRbOrUqaxdu3bss88+Y6tWrWJubm5MIBCw9PR0pXY++eQTBoC1bduWrVixgi1fvpy1adOGAWBLly5VqnvkyBFmamrKnJ2dWXR0NFu7di3r1asX69ChAwPAxo0bp1R/0aJFDAALCgpi8fHxbP369WzQoEEMAJs3b55S3V69ejF3d3etzp2Q6pKSksIAsCVLlmisc+/ePQaAde3alTH2qu+Jjo7m6+zcuZMBYN26dWNr1qxhX331FYuNjWW9evViycnJfL1x48YxAKxDhw4sKCiIrV27lkVHRzNnZ2dmZmbGjh8/rnTs1/sexhgLDw9nQUFBbNGiRWzLli1s6dKlzMvLiwFgiYmJfL2srCwmFArZkCFDVM7p0qVLDACLioriy65evcpsbW2Zi4sLW7BgAduyZQubM2cOs7KyYl5eXiw3N5ev+/DhQ+bo6MjMzc3ZtGnT2IYNG9jYsWOZWCxmzZs3p99tHVGiZKQcHByYjY2NSrlcLmdZWVlKr+fPn/PbDx48yACw1atXq+w7cOBAZmNjw/Ly8vgyAIzjOPbTTz8p1X3//fcZAHb79m2+bM2aNQyAUsfCGGPFxcXsrbfeYs2aNePLFJ2VmZkZ++OPP1Riyc/PZzKZTKV8wYIFDAD7+eefVdoq3/GV93pnJZVKWYMGDVhwcLBK3RYtWjB3d3cml8sZY4xlZmYyCwsLFhoaypcpxMfHMwDs7Nmzao/7egwA2O7du5XKBw8ezDiOY/7+/qyoqIgvv3r1qkpHeOfOHWZiYsLatWvHXr58yZe/ePGCtWnThpmamrK0tDTGGGMymYx5eHgwKysr9vDhQ75uaWkpGzBggEqi9L///Y9xHMemT5+uEvsHH3zATExMlJJySpSIMdAmUWKMMWtra+bg4MAYU99fDBkyhFlbW7Pi4uIK21EkSgMHDlTqnx4+fMisrKyYp6enUrm6ROnFixcq7b58+ZK1bNmStWrVSql89OjRzMzMjGVmZiqVT5gwgXEcx+7fv8+X+fv7s2bNmrHs7GylupcvX2ampqYsJiaGL3v33XcZAKUvlIwxFhcXxwDQ77aO6NKbkZJKpWrn8vz9999wdHRUen300Uf89h07dkAkEmHkyJF49uyZ0is0NBR5eXm4ePGiUpsBAQHo2rWrUlnfvn0BAHfu3FFq28PDAz169FBqVyqVYtCgQUhLS1OqDwBvv/022rRpo3IeIpEIJiZlP34lJSXIycnBs2fP+OO+yd18NjY2GDp0KH744QdkZGTw5efPn8fdu3cxduxYfvL3vn37UFhYiIkTJyI7O1vpvN555x0AwMmTJ7U6rqurK0aNGqVU1qtXLzDGMGXKFAgEAr7c398fNjY2Sp/XwYMHIZfLMW/ePDRo0IAvt7S0xJw5cyCTyXDo0CEAwK+//or09HSMHTsWTZs25euamppi/vz5KrF9++23YIxhwoQJKj8XgwYNglwux+nTp7U6T0KMjY2NDaRSqcbtYrEY+fn5OHz4MORyeaXtRUVF8f0TADRt2hTvvvsu7t+/j6tXr1a4r6WlJf/3ly9fIjs7G/n5+ejduzdu3ryJ58+f89sjIyNRWlqK7du382XPnz9HYmIigoOD+WkH169fx2+//YZRo0ZBLpcr/f56enqiRYsWfD8ll8tx8OBBtGrVCqGhoUqxffTRR7Cysqr0/IkymsxtpGxtbZGXl6dSbm9vj++//x5AWdL0+gTHW7duoaCgAI0bN9bY9t9//6303tPTU6WOg4MDACA7O1up7fz8fDg6OlbYtpeXF/++/N/Lk8lkiI+Px/bt23Hnzh2VzisnJ0fjMbTx3nvvYefOnfjPf/6DBQsWACib78RxHMaNG8fXu3XrFgDwSZE6r39emqj7HO3s7CrcVv7zvX//PgCgbdu2KnUVZffu3VP6s1WrVip1W7durVKmOM927dppjF/b8yTE2OTl5cHW1lbj9gULFuD8+fMYNmwY7Ozs0K1bN/Tu3RujR4+Gk5OTSn11v1eKsrt376JDhw4aj5Weno5PPvkEx44dU9uPSSQSWFtbAwB69OiB1q1b46uvvsK8efPAcRx2796Nly9f4v/+7//4fRS/v3FxcYiLi1N7XEUf8/TpUzx//lztOVhYWKB58+bIzc3VGD9RRYmSkWrTpg3++9//4v79+0r/yQoEAgQHBwMo+4V8nVwuh62tLfbt26ex7df/IzU1NdVYlzGm1La3tze+/PLLCuMur/zISHmzZ8/GmjVrMHz4cMybNw+NGjWCQCDAo0ePMH78eK2+9VUkKCgI7u7ufKJUUFCApKQk9OjRA82bN1c6J6Bs8ry7u7vatlxdXbU6ZkWfo6Zt5T/f6qQ4zyNHjmi8S1BdMkeIsbt//z6eP3+uMipeXvPmzXHjxg2cPXsWZ86cwblz5zB79mw+oenZs6deYnnx4gV69uwJqVSKDz/8EH5+frCxsYGJiQm+/vpr7N69W6Vve//99zF9+nSkpKSgd+/e2Lp1K5ycnPjlEIBXv7/Tpk3jb4h5XW26+7m2oUTJSA0fPhz//e9/sXXrVo3fINTx8vJCamoq3nrrLX5USF+8vLyQkZGBwMDAN16j5JtvvkGPHj2QlJSkVH78+HGVulVZI4njOIwdOxZLlizBhQsXkJaWhry8PJXVqhUjXnZ2dnwCaiiKBO7GjRsqCef169eV6ij+LH/HjsKNGzdUyry8vHDixAm4uLigffv2eo2bEEPavHkzAGDgwIEV1jM3N0ffvn35y/u///47OnbsiEWLFqksZnvz5k0EBASolAFAixYtNB5Dcbk/ISEBERERStu2bt2qdp+xY8fi448/xtatW2Fvb49ffvkFH3/8MczNzfk65UfmK+unGjVqBGtra7V9Q2FhIe7du6f3/xvqOpqjZKQmTpyIVq1aIT4+XiWZUFA3GjF27FgAwNy5c9Vuf5PLK2PHjoVEIsHSpUvVbtelbVNTU5X4SkpK1CaFimvqul6OU9zqu337dmzfvh2WlpYqSy2EhYXBwsICMTExePHihUobBQUFSnMKqlNoaChMTEwQHx+PwsJCvjw/Px8rV66Eqakp/y2zffv2/IhZ+XlYcrkcy5YtU2lbsRxCVFSU0u3GClKpFEVFRfo+JUKq1fbt27Fq1Sq4ublh6tSpGutlZWWplPn6+sLS0lLp8rdCXFyc0shPRkYGduzYgWbNmuGtt97SeBzFyPHrfdvvv/+udnkWoGyaxciRI3HgwAEsX74cHMdh0qRJSnX8/f3Rtm1bJCQk8JfhymOM8edoYmKCwYMH4+bNmyrHXLNmjdp+jlSMRpSMlIWFBY4ePYqBAwciLCwM3bt3R79+/eDq6oqXL1/i3r172Lt3LwAorSk0bNgwTJo0CVu3bsW1a9cQGhoKZ2dnPH78GL/++iuOHTum9j9KbXz44Yc4c+YMYmJi8OOPPyIkJAT29vbIyMjAhQsXcP/+fX6eTWVGjBiBjRs3Yvjw4QgJCUFOTg6+/fZbtcPHDg4OaNGiBRITE9G8eXM4OTnB0tKy0m+Qnp6e6NGjB3bv3o38/Hy8++67KhMZGzdujM2bNyMiIgLe3t4YN24cPD09kZOTg9TUVCQnJ+PgwYM18jynFi1aYMGCBViyZAm6dOmCMWPGgDGGnTt34o8//sDSpUv5f2tTU1N88cUXGDJkCDp16oTIyEjY2dkhOTlZbUfYsWNHfPrpp1i4cCHatGmD8PBwNGnSBE+fPsUff/yBQ4cO4ebNm/QMKGKUrl27hp07dwIomyCtWJn7999/h6+vL/bv38/P+1GnX79+sLa2Rs+ePeHm5ob8/HwkJiYiNzcXCxcuVKn/+PFjBAcHY8iQIcjJycGmTZtQUFCAL7/8UmmS9+u6desGFxcXzJo1C/fv34eHhwdu3bqFrVu3om3btvj111/V7hcZGYlt27Zhz549CA4OVrkMznEcdu7cid69e6N9+/YYP3482rZti5KSEqSnp+PgwYMYN24cv3bUp59+ihMnTiAsLAyTJ0+Gj48PLl26hO+++w7NmzdHaWlpZR85Kc9Qt9sR7RQWFrJNmzax4OBg5ujoyMzMzJiVlRXz8/NjU6ZMYZcvX1a7365du1hgYCCztbVlAoGANW3alPXv31/tOkqvr7fD2Kvbcrdt26ZUXlpayjZs2MA6d+7MrKysmIWFBfPw8GBDhw5le/bs4etVdkt/fn4+mzdvHnN3d2cCgYB5eHiwqKgoduvWLbX7Xb58mXXt2pU1aNBA5fZWdbfoKmzbto0BYABYSkqK2jqMla1bMnz4cObk5MTMzc2Zk5MTCwgIYEuWLFG5HVcdTTEojq/u2Jr22bFjB+vUqRMTiURMJBKxzp07s127dqk97okTJ1inTp2YUChkDRs2ZOPHj2dZWVka/11PnDjBBgwYwBwcHJi5uTlzdXVlQUFBbNWqVaygoICvR8sDEGOg6IcUL47jmLW1NWvZsiUbMWIE+/bbb1lhYaHSPur6nq1bt7J+/foxFxcXJhAImKOjI+vZs6dSn8XYq+UBnj17xsaPH88aNmzIhEIh69y5Mzt58qRKfOp+h//44w82YMAAZmdnxxo0aMC6dOnCDh06xKKjoxkAfomP17Vv354BYHv37tX4eWRkZLCpU6cyT09PJhAImFgsZm3btmUffvghu3HjhlLd27dvs8GDBzNra2tmZWXF+vbty65evUq/21XAMVZDs0kJIYQQIzZ+/Hh88803NXaTRXldunRBeno6MjIylOYnEcOjOUqEEEKIAf3888+4fPkyIiIiKEkyQjRHiRBCCDGAH374AWlpaVi5ciWsra0xffp0Q4dE1KBEiRBCCDGAxYsX4/z58/Dy8sLevXvh7Oxs6JCIGjRHiRBCCCFEA5qjRAghhBCiASVKhBBCCCEaUKKkBcYY8vLyDHLLKCHE+Lx48QJNmjQBx3H45ZdflLYlJCTAy8sLFhYWaNeuHY4cOaJz+9TnEGI8KFHSwvPnz2Fra1tjj7IghBi3JUuWqF3dODExEZMmTcLIkSNx/PhxBAQEYMiQIbh06ZJO7VOfQ4jxoMncWsjLy4OtrS2kUilsbGwMHQ4hxIBSU1PRsWNHrFq1CpGRkbhy5Qo6duwIAPD29kaHDh2wa9cuvn7Xrl0hFotx7NgxrY9BfQ4hxoNGlAghRAfTpk1DZGQkvL29lcrv37+PO3fuICwsTKl81KhROHPmDD10mJBayigSpdTUVPTt2xeWlpZwdnbG3LlzUVxcXOl+jDEsX74cbm5uEIlECAgIqHCIWy6Xo0OHDuA4Dvv27dPnKRBC6oF9+/bhjz/+wKJFi1S2paamAgB8fHyUyn19fVFcXIy0tLQaiZEQol8GT5QkEgl69+6N4uJiJCcnY9myZdiyZQtmzpxZ6b4rVqxAdHQ0ZsyYgSNHjsDFxQUhISEan2C/efNmPHr0SN+nQAipB/Lz8zFz5kwsW7ZM7eUwiUQCABCLxUrldnZ2AICcnByNbRcVFSEvL0/pRQgxDgZPlDZt2oS8vDwcOHAA/fr1Q0REBD777DNs2rQJjx8/1rhfYWEh4uLiMGvWLMyYMQN9+vRBYmIi7O3tER8fr1L/2bNnWLhwIeLi4qrzdAghddSnn34KJycnvPfee3pvOy4uDra2tvyradOmej8GIaRqDJ4oHT9+HMHBwbC3t+fLwsLCIJfLcerUKY37XbhwAXl5eUrzAQQCAYYOHap20mRUVBSCgoIQFBSk3xMghNR5Dx48wKpVqxAbGwupVIrc3Fy8ePECQNlSAS9evOBHjqRSqdK+ipGm8n3c66KioiCVSvlXRkZGNZ0JIURXBn/WW2pqKiIiIpTKxGIxXFxc+Gv+mvYD1M8HePjwIQoKCiASiQCUPZl5165duHHjhp6jJ4TUB2lpaSguLsbbb7+tsi0oKAidO3fm73RLTU1VmuidmpoKgUAAT09Pje0LhUIIhUL9B04IeWMGT5QkEonKNX2g7Lp+Rdf0JRIJhEIhLCwsVPZjjEEikUAkEkEul2Pq1KmYNWsWPDw8kJ6eXmlMRUVFSneo0HwBosmLF9fw5Ml2uLktgEDQ0NDhkGri7++PlJQUpbLffvsNM2bMwKZNm/Cvf/0Lnp6e8PLyQlJSEgYPHszX27NnD/r06QOBQFDTYRNC9MDgiVJ1++qrr/DkyRN8/PHHWu8TFxeH2NjYaoyK1AUyWSF+/30Aiosfo7DwAdq0STZ0SKSaiMViBAYGqt3WoUMHtG/fHgAQExODMWPGoHnz5ggKCsKePXtw+fJl/PjjjzUYLSFEnww+R8nOzk7lmj5QNmJU0TV9Ozs7FBUVobCwUGU/juNgZ2eHFy9eYP78+Vi4cCGKi4uRm5vLjw7l5+drHCmi+QJEG1LpjyguLrvh4NmzAygtpZHH+i48PBxbt27Frl270K9fP/z00084cOAAAgICDB0aIaSKDD6i5OPjozIXSSqVIjMzU2X+0ev7AcDt27fRrl07vjw1NZVfVyk9PR3Z2dmIjIxEZGSk0v7jxo2Dk5MTnjx5otI2zRcg2nj+/Mpr7/8HO7tAg8RCal5gYKDaZ7FNmDABEyZMMEBEhJDqYPBEqX///li2bBlyc3P5uUpJSUkwMTFBSEiIxv26du0KGxsbJCUl8YlSSUkJkpOTMWDAAACAs7OzyryCJ0+eIDw8HDExMejbt2/1nBSpF54//+W191coUSKEkDrG4IlSZGQk1q1bh9DQUMyfPx+PHj3CnDlzEBkZCVdXV75enz598ODBA9y9excAYGFhgaioKMTExMDR0RFt27bFhg0bkJ2djdmzZ/N1Xp9XoJjM3bp1a3Tt2rVGzpHUTfn5ZSOhtrY9IJWeQ37+bQNHRAghRN8MnijZ2dnhzJkzmDZtGkJDQ2FtbY2JEydi6dKlSvVkMpnK07rnzZsHxhji4+ORlZUFf39/nDx5ssLbcAnRB8YYCgvTAQBicW9Ipef494QQQuoOjqm7yE6U0JO8yeuKip7g4kUXACZo1+4Url0LhoWFJ7p0uWfo0EgdQH0OIcbD4He9EVIbKUaPhMLGEIm8AABFRQ/BmMyAURFCCNE3SpQIqYKioocAAAsLdwiFruA4MzBWiqKiTANHRgghRJ8oUSKkCoqLy5aVEAhcwXGmMDd3AgCUlPxtyLAIIYToGSVKhFTBq0TJSelPRTkhhJC6gRIlQqrgVaLkrPRncTGNKBFCSF1CiRIhVaA5UaIRJUIIqUsoUSKkCihRIoSQ+oESJUKqoLj4KQDA3LwRAEAgaPRPOV16I4SQuoQSJUKqoLQ0BwBgbu4AADAzc/inXGKwmAghhOgfJUqE6EgmK4RcXgAAMDe3/+dPOwBASUmOweIihBCif5QoEaKjV6NGJjA1tQYAmJnZ/7ONEiVCCKlLKFEiREeKZMjMzA4cV/YrpBhZohElQgipWyhRIkRHimRIkRwBr0aUZDIpPe+NEELqEEqUCNHRqxGl8omSXbntuTUdEiGEkGpCiRIhOlI3omRiYsbPV6LLb4QQUndQokSIjtSNKJV/TxO6CSGk7qBEiRAdlZSU3fVWfkSp/HsaUSKEkLqDEiVCdFT+rrfyaESJEELqHkqUCNGRujlK5d/TiBIhhNQdlCgRoiPNc5TslLYTQgip/cx03SEnJwdnz57F5cuXkZmZiYKCAjg4OMDb2xs9evRAx44dqyNOQoxG5SNK9Lw3QgipK7ROlP773/9i7dq1OHr0KEpLS+Hm5oaGDRtCKBTi1q1b2LVrF168eAEPDw9MmDAB06ZNg42NTXXGTohBKB5hQne9EUJI3afVpbeQkBAMHjwYdnZ2OHToEHJycpCWloYrV67g/PnzuH79OqRSKW7evIkPPvgAhw4dgqenJ44dO1bd8RNS4xSJEM1RIoSQuk+rEaXAwEAkJSXB1tZWYx2O4+Dj4wMfHx/MnDkT586dQ15ent4CJcQYMCZHaakUAGBmJlbaRnOUCCGk7tEqUZo/f77ODffo0UPnfQgxdjLZSwAMAGBqqnxpWfFeJnte02ERQgipJjpP5lZgjOHOnTvIycmBvb09vLy8wHGcPmMjxOjIZGWjpBxnBhMTC6VtZmZlI66KESdCCCG1X5WWB9iwYQNcXFzQqlUrdO/eHa1atYKrqys2btyo7/gIMSqlpWWjRaam1ipfDMzMbP6pQ5ecCSGkrtB5RGnLli344IMPEB4ejpEjR8LJyQl///039uzZgw8++ADm5uaYOHFidcRKiMEpRpRev+xWvkwmywNjcnAcLVNGCCG1nc6J0ueff47p06djzZo1SuWDBg2Co6Mj4uPjKVEidZZi/pGZmbXKNsWlN4BBJnuptg4hhOjL2bMcAgOZocOo83T+ypuWloZ33nlH7ba3334b6enpbxoTIUZLcVnN1FQ1CTIxEQEwBfBq5IkQQkjtpnOi5OLigosXL6rddunSJbi4uLxxUIQYK8WIkrpLbxzHlZunRBO6CSGkLtD50tuECROwePFiFBUVYfjw4XBycsLTp0+RlJSElStXYtGiRdURJyFGQTGipOmympmZLUpLJTShmxBC6gidR5QWLFiAadOmYeXKlejQoQOaNGmC9u3bY+XKlZg2bRoWLFigcxCpqano27cvLC0t4ezsjLlz56K4uLjS/RhjWL58Odzc3CASiRAQEIBLly4p1bly5Qr69u0LZ2dnCIVCuLm5YcKECXj8+LHOcRJS0YhS+XK69Fb3HDt2DL169YKjoyOEQiE8PT0xc+ZMSKXKo4eHDx9Gu3btYGFhAS8vL2zbts1AERNC9EHnESWO47Bq1SrMnz8fly9fhkQigb29PTp16gQHBwedA5BIJOjduzdatmyJ5ORkPHr0CDNnzkR+fj6+/PLLCvddsWIFoqOjsXz5cvj5+WH9+vUICQnBb7/9Bk9PT759Hx8fTJw4EU5OTrh//z4WL16MK1eu4MqVKxAKhTrHTOqvV3e9aR5RAujSW12Uk5ODzp07Y/r06XBwcMD169cRExOD69ev49SpUwCA8+fPY8iQIZg4cSLWrFmDH374ARMmTIC1tTWGDx9u4DMghFQJM7Bly5YxS0tLlp2dzZdt3ryZmZqaskePHmncr6CggNnY2LCoqCi+rKioiLm7u7PJkydXeMxTp04xAOynn37SKkapVMoAMKlUqlV9Unfdvj2VpaSA3b//idrt1669zVJSwB4//qqGIyOGsGXLFgaA76tCQkJY165dleqEh4czX19fndqlPodoIyXF4P+F1wtajSglJyejd+/eEIvFSE5OrrT+0KFDtU7Ujh8/juDgYNjbv3rAaFhYGCIjI3Hq1CmMHz9e7X4XLlxAXl4ewsLC+DKBQIChQ4dWGqNi5Euby3uElFf5iBItOlmflO9LioqKkJKSgs8++0ypzqhRo7B7926kp6fDw8PDAFESQt6EVonS8OHDcenSJXTq1KnS4WOO4yCTybQOIDU1FREREUplYrEYLi4uSE1NrXA/APDx8VEq9/X1xcOHD1FQUACRSMSXy2QyyGQy3L9/H3PnzkX79u3RvXt3reMkBCi/jpL6OUp06a3uk8lkKCkpwc2bN7F48WIMGjQIHh4euHnzJkpKStT2SUBZn0WJEiG1j1aJUlpaGn/bf1paml4DkEgkEIvFKuV2dnbIydH8FHaJRAKhUAgLC+XnbdnZ2YExBolEopQo9erVCz/99BMAoGPHjjh27BjMzNSfflFREYqKivj3eXk0OkDKVLSOUlk5Teau69zd3fHo0SMAwP/7f/8Pu3btAlDWJwFQ6c/s7OwAoML+jPocQoyXVne9ubu7QyAQACgbMXJ1dYW7u7vKq3Hjxkb7YNyEhARcunQJO3fuRFFREYKDgzV2RnFxcbC1teVfTZs2reFoibGq7K43uvRW9x07dgwXLlzA1q1bcevWLQwcOFCnUXR1qM8hxHjpvDxAs2bNcPXqVbXbrl27hmbNmunUnp2dncrttQD4u+kq2q+oqAiFhYUq+3Ecx3+LU/D29kbnzp0xZswYfP/99/jzzz+xZcsWtW1HRUVBKpXyr4yMDJ3OidRdla2jZGpadulNJqNLb3WVn58fAgICMHHiRBw6dAgpKSk4cOAA3+e83p8pRpoq6s+ozyHEeOmcKDGm+bkyRUVFOt9u7+PjozIXSSqVIjMzU+Va/+v7AcDt27eVylNTU/l1lTRxcnJCkyZNcPfuXbXbhUIhbGxslF6EADSiRJT5+fnB3Nwcd+/eRfPmzWFubq7Sn2maT1ke9TmEGC+t5iilpqbi5s2b/PuzZ8/ir7/+UqpTWFiI3bt38+sXaat///5YtmwZcnNz+Wv7SUlJMDExQUhIiMb9unbtChsbGyQlJaFdu3YAgJKSEiQnJ2PAgAEVHjMjIwMPHjzQOVZCKrvrjeYo1S+XL19GSUkJPD09IRQKERQUhH379uHDDz/k6+zZswe+vr40kZuQWkqrRGnPnj2IjY0FUDZH6eOPP1ZbTywWY/v27ToFEBkZiXXr1iE0NBTz58/Ho0ePMGfOHERGRsLV1ZWv16dPHzx48IAfBbKwsEBUVBRiYmLg6OiItm3bYsOGDcjOzsbs2bOV2m/YsCE6duwIW1tb3L59G6tWrYKTkxMmTJigU6ykfmNMDpnsBQC6660+Gjp0KDp27Ag/Pz+IRCJcu3YNK1euhJ+fH0JDQwEAn3zyCQIDAzFlyhSEhYUhJSUFu3btwp49ewwbPCGkyrRKlD766COMHz8ejDF4enoiOTkZb731llIdgUAAZ2dnnSdz29nZ4cyZM5g2bRpCQ0NhbW2NiRMnYunSpUr1ZDIZSktLlcrmzZsHxhji4+ORlZUFf39/nDx5UmmkqFOnTtiyZQvWr1+PoqIiuLm5YcCAAZg/f36VVhIn9ZciSQJoHaX6qFOnTtizZw+WL18OuVwODw8PTJo0CbNnz+ZvdunevTuSk5OxcOFCJCQkwM3NDV999RVGjBhh4OgJIVXFsYomHanx4MEDuLi48B1DfZCXlwdbW1tIpVKaO1CPFRU9wsWLTcBxZujZs1jtl4L8/Dv4+WdvmJraoEcPGlUiVUN9DtHG2bMcAgN1+i+cVIHOz3pzd3fn/56fn69y1xlQ8d0dhNRW5ddQ0jRyqhhpksmegzFmtMtlEEII0Y7OiRJjDJ9++ik2b96MzMxMtXXedE0RQoxRZXe8AeXnLjHIZC9hZmZVA5ERQgipLjovD/D5559j9erVmDp1KhhjWLBgARYtWgQvLy94eHhg69at1REnIQZX2RpKAGBi0gCKXytFYkUIIaT20jlRSkhIQGxsLObOnQsACA0NRXR0NG7cuAFfX1+NaxMRUtu9GlHSnChxHFfu8htN6CaEkNpO50QpPT0d/v7+MDU1hbm5OXJzc8saMjHBlClTdF4egJDa4tUaShVPrlWMOJWW0ogSIYTUdjonSg4ODnjxouw2aTc3N/zvf//jtz179gz5+fn6i44QI6JIfCq69AYoT+gmhBBSu+k8mbtbt264cuUKBgwYgNGjRyMmJgZPnjyBubk5tm7dij59+lRHnIQYnLYjSrQ6NyGE1B06J0oxMTF49OgRAGD+/PnIzc3F7t27UVBQgL59+2LdunV6D5IQY6DNHCWALr0RQkhdolOixBiDo6Mj/8wioVCItWvXYu3atdURGyFG5dWlNxpRIoSQ+kKnOUolJSVo1KgRTp8+XV3xEGK0KnsgrgLNUSKEkLpDp0RJIBCgSZMmtKAkqZcUiU9lI0p06Y0QQuoOne96mzp1KlavXq320SWE1GXlH2FSEbr0RgghdYfOk7kfPnyIO3fuwM3NDYGBgXByclJ6nhXHcTRnidRJ2jzCpGw7XXojhJC6QudE6ciRIxAKhRAKhbhy5YrKdkqUSF2lzSNMyrbbKNUnhBBSe+mcKKWlpVVHHIQYPRpRIoSQ+kfnOUqE1Fd01xshhNQ/WiVKx48f17nhrKwspcebEFKbMSaHTFb26J7K73qjS2+EEFJXaJUovf/++/D398cXX3zBr8qtjkwmw5kzZzBx4kR4enri6tWreguUEENSJEkAjSgRQkh9otUcpT///BMbNmzAmjVrMGPGDDRt2hR+fn5wdHSEUChEbm4u0tLS8Pvvv6O0tBQDBw7E+fPn0a5du+qOn5AaoUh6OM4MJiYWFdZVjChRokQIIbWfViNKQqEQM2bMwP3793HmzBm8++67KC4uxi+//IIzZ84gLS0N3t7eWLNmDTIyMrBv3z5KkkidUn4NpfLLYaijGFEqLc0DY6zaYyOaeXp64tq1a2q3Xb9+HZ6enjUcESGkttH5rrfAwEAEBgZWQyiEGC9t73grq6O4NCeHXF4AU9MG1RgZqUh6ejqKiorUbsvPz0dGRkYNR0QIqW10TpQIqY+0XUMJAExNLQFwABhKS/MoUaphhYWFyM/P50fz8vLykJOTo1Ln4MGDcHV1NUSIhJBahBIlQrTwakSp8kSJ40xgamoFmez5P/s5V3N0pLwVK1Zg8eLFAMoWwO3Xr5/GujExMTUUFSE14+xZDoGBdMlfnyhRIkQLr9ZQqvzSm6Leq0SJ1KTQ0FB4eHiAMYaIiAgsXLgQzZs3V6ojEAjg6+sLf39/wwRJCKk1KFEiRAulpWUJjzaX3hT1iotpLSVDaNeuHX8zCcdxePvtt9GwYUMDR0UIqa0oUSJEC7qPKNFaSsZg3Lhxhg6BEFLL6fwIk02bNiEvj74lk/pFlzlKZfVoLSVjUFBQgPnz58PLywsNGjSAqampyosQQiqi84jSzJkzMWvWLAwbNgwTJkxAr169qiMuQozKq7vetBtRUlyio0tvhjV16lTs2rUL4eHhaNWqFQQCgaFDIqRa0CTu6qNzovT48WN8++232LZtG4KCguDp6YmIiAiMGzcOjRs3ro4YCTE4GlGqnQ4fPoz4+Hh88MEHhg6FEFJL6XzpTSwWY+rUqfjll1/w22+/4Z133sGaNWvg4eGBt99+G/v370dJSUl1xEqIweg6ovRqjhKNKBmSqakpvLy8DB0GIaQW0zlRKs/Pzw9r1qzBb7/9hm7duuH48eMYMWIEGjdujOjoaBQUFOgrTkIMStcRpVeX3mhEyZAmT56MHTt2GDoMQkgtVuW73hhjOHHiBBISEnDkyBGIxWLMmTMHQ4YMwbFjx7Bu3Tpcv34d+/fv12e8hBhEVdZRKtuPEiVDatCgAc6dO4euXbsiODgYYrFYaTvHcZgxY4ZhgiOE1Ao6J0r37t3D119/jf/85z94/Pgx+vbti2+//RaDBw+GmVlZc126dEHHjh0xatQovQdMiCHouo4SXXozDvPmzQMAPHz4EJcuXVLZTokSIaQyOl96a9myJf7zn//gvffew/3793HixAkMGzaMT5IUfHx80LlzZ63aTE1NRd++fWFpaQlnZ2fMnTsXxcXFle7HGMPy5cvh5uYGkUiEgIAAlc7w9OnTGDVqFDw8PNCgQQO0atUKK1eupHlURCe6jigp5jLRpTfDksvlFb5kMpmhQySEGDmdR5S+++47DBgwACYmFedYXl5eSElJqbQ9iUSC3r17o2XLlkhOTsajR48wc+ZM5Ofn48svv6xw3xUrViA6OhrLly+Hn58f1q9fj5CQEPz222/w9PQEAGzevBn5+flYvHgx3NzccOnSJURHR+PmzZvYtm2b9idO6jXd73qjESVCCKkLdE6UkpOT0bp1azRr1kxl24MHDxAbG4uvv/5a6/YUC1geOHAA9vb2AIDS0lJMmTIF8+fP1/h078LCQsTFxWHWrFn80HmPHj3g5eWF+Ph4bNiwAQCwceNGpccXBAYGQi6XY+HChVi5ciU92oBUijE5ZLIXAKpy1xuNKBnSjz/+WGmdnj17atVWUlISdu7ciV9//RUSiQQtW7bE9OnT8d5774HjOL5eQkICVqxYgYcPH8Lb2xtLly7FO++8U+VzIIQYls6X3r755htkZWWp3fbs2TN88803OrV3/PhxBAcH80kSAISFhUEul+PUqVMa97tw4QLy8vIQFhbGlwkEAgwdOhTHjh3jy9QlQm+99RYYY8jMzNQpVlI/KZIkQJe73ujSmzEIDAxEUFAQAgMD+VdQUJDSS1urV69GgwYNsGrVKhw+fBj9+/fHpEmTsHjxYr5OYmIiJk2ahJEjR+L48eMICAjAkCFD1M6PIoTUDjqPKDHGlL49lffnn3/CwcFBp/ZSU1MRERGhVCYWi+Hi4oLU1NQK9wPK5kKV5+vri4cPH6KgoAAikUjtvufPn4dQKFQ7KkbI6xRrKHGcGUxMLLTahy69GYerV6+qlEkkEpw8eRL79+/H5s2btW7r8OHDSl+8evfujezsbKxevRqffPIJTExMEB0djVGjRmHJkiUAgKCgIPz+++9YvHix0hc4QkjtoVWitHHjRmzcuBFA2V0io0ePVklCCgsLkZ6ejhEjRugUgEQiUbllFwDs7OyQk5NT4X5CoRAWFsr/cdnZ2YExBolEojZR+vPPP7F27VpERkbCyspKbdtFRUUoKiri39Oz7eq38vOTNH1JeJ1iREkme17hlwtSvdq1a6e2PDAwEA0aNMDmzZu1HlXSNDq9detWvHz5EllZWbhz5w5WrFihVGfUqFGYM2cOioqKIBQKdT8JQohBaZUoubq6okOHDgCA69evw9vbG46Ojkp1BAIBfH19MWHCBP1HqSd5eXkYOnQomjVrhqVLl2qsFxcXh9jY2BqMjBgzXe94K6tbNqLEWCnk8iKYmmo3EkVqTteuXbFy5co3auP8+fNo3LgxrK2tce7cOQDqR7mLi4uRlpamso0QYvy0SpQGDx6MwYMH8+8/+eQT/q6yN2VnZwepVKpSLpFIlOYtqduvqKgIhYWFSqNKEokEHMfBzs5OqX5xcTGGDBkCiUSCixcvwtLSUmPbUVFRmDlzJv8+Ly8PTZs21eW0SB2i6xpKAGBq+mq0UibLo0TJCB08eLDCPqYy58+fR2JiIlatWgWgrO8BoDJCruiLKhohp1FsQoyXznOU9H1LvY+Pj8pcJKlUiszMzAq/fSm23b59W2l4PTU1lV9XSUEul2PMmDH49ddfce7cuUqTHqFQSEPkhPdqREn7RInjTGBqagWZ7MU/l+4aVVN0pCKDBg1SKSsuLsbt27fx8OFDfPbZZ1Vq96+//sLIkSMRFBSE6dOnv2mYNIpNiBHTKlGaPn06Zs+eDTc3t0o7BY7jsHbtWq0D6N+/P5YtW4bc3Fz+m1hSUhJMTEwQEhKicb+uXbvCxsYGSUlJfKJUUlKC5ORkDBgwQKnu1KlTcfjwYZw8eRJt27bVOjZCgPIPxLXVaT9TU2vIZC/4/UnNy8vLU5kfZmFhgeDgYAwfPhz9+vXTuc3c3Fz0798fDg4O2L9/P7+mnGLkSCqVwtnZma+vGGmqaPSKRrEJMV5aJUqHDx/GhAkT4Obmhu+++67Ciam6JkqRkZFYt24dQkNDMX/+fDx69Ahz5sxBZGSk0hpKffr0wYMHD3D37l0AZZ1dVFQUYmJi4OjoiLZt22LDhg3Izs7G7Nmz+f2WLVuGTZs2Yc6cORAKhUq36bZq1Qo2NtrPOyH1k0xWdmlYlzlKr+pn0lpKBnT27Fm9tldQUIB33nkHUqkUFy9ehK3tq+RZMcqdmpoKb29vvjw1NRUCgaDC6Qo0ik2I8dIqUUpLS+P/np6ertcA7OzscObMGUybNg2hoaGwtrbGxIkTVSZby2QylJaWKpXNmzcPjDHEx8cjKysL/v7+OHnypFKHpFiLaeXKlSoTN1NSUhAYGKjX8yF1T1VHlBRzmihRMg4FBQX8yLWmpUMqUlpairCwMNy6dQvnzp1D48aNlbZ7enrCy8sLSUlJSnM69+zZgz59+kAgELzxORBCap7Oc5Sqg6+vL06fPl1hHXXfDDmOQ1RUFKKionTajxBdVOWut7L6ZYkSXXozrCNHjiA2NhZXr17ll2p46623EBsbq3KZviJTpkzBkSNHsGrVKuTl5SmNTr/11lsQCoWIiYnBmDFj0Lx5cwQFBWHPnj24fPmyViuEE0KMk1aJUnJysk6NDh06tErBEGKMSkvLLr3pPkfp1VpKxDAOHjyIYcOGoUuXLli9ejWcnJzw5MkTJCUlYdCgQdi/f7/S6E9FFKPTs2bNUtmWlpYGDw8PhIeHIz8/H8uXL8fy5cvh7e2NAwcOICAgQK/nRQipOVolSsOHD9e6QY7j6IncpE55delNtxElxaU3GlEynNjYWISHh2Pnzp1K5R9++CH+/e9/IyYmRutESdtpBxMmTDDq9eQIIbrReY4SIfXNq8ncNKJU26SmpqqslK3w7rvvIjQ0tGYDIoTUOlolSu7u7tUdByFGq6ojSq+e90aJkqHY29vj9u3bapcauX379hstOEkIqR+0SpRycnIgFothYmJS4eqyCtT5kLqkqnOU6NKb4Y0cORLz58+HSCTC8OHDIRaLIZVKkZSUhIULF2LSpEmGDpEQYuS0SpQcHR1x8eJFdOrUCQ0bNqz0AZ80R4nUJVW/640uvRlaXFwcHjx4gP/7v//D+++/D3Nzc5SUlIAxhqFDh2LZsmWGDpEQYuS0SpS+/vprNG/enP87PQmd1CdVv+uNLr0ZmlAoxP79+/HHH3/g3Llz/DMku3fvTqv0E0K0olWiNG7cOP7v48ePr65YCDE6jMn5REfXESXFnCa69Faz/vzzT4waNQpLlizh10lq27atUmJ0/PhxjB8/HklJSXp7wDchpG4yqeqOUqkU58+fR1JSEs6fPw+pVKrPuAgxCjLZCwAMAI0o1RarVq2ClZVVhYtJ9u/fHzY2NoiPj6/ByAghtZHOiZJcLsf8+fPRpEkT9OzZEyNHjkTPnj3RpEkTREVF0fwkUqcoRoM4zgwmJhY67fsqUaIRpZp06tQpREREVFovIiICJ0+erIGICCG1mc6J0pw5cxAfH4+ZM2fi2rVrePLkCa5du4YZM2Zg1apVmDt3bnXESYhBlF9DSde5ea8uvdGIUk169OgRP6eyIs2aNcOjR49qICJC3szZszQv2JB0ftbb9u3bsWTJEsybN48va9SoEdq2bQuRSIT4+HisWrVKr0ESYihVXUMJoEtvhmJlZYWsrKxK6z179gyWlpY1EBEhpDbTeURJJpOhffv2ard16NCBLr2ROqWqd7wBrxIlxoohlxfpNS6iWceOHbFnz55K6yUmJqJjx441EBEhpDbTOVEaPnw4EhMT1W5LTEykB+KSOqWqaygBrxacBOjyW02aOnUq9u7di9jYWLVf3ORyORYvXoykpCR88MEHBoiQEFKbaHXpLTk5mf97r169MH/+fAQFBSE0NBSNGjXC06dPceDAAdy7dw9Lly6ttmAJqWmvLr3pPqLEcaYwMWkAuTz/n8tvDfUcHVFn0KBBmDt3LmJjY7F582b06dMHbm5u4DgODx8+xJkzZ/DkyRPMmTMHAwcONHS4hBAjp1WiNHz4cJWyR48e4b///a9K+XvvvYexY8e+eWSEGIFXk7l1H1ECyuY2FRfn85fwSM1Yvnw5evbsiVWrVmHfvn0oKiq79GlhYYFu3brhq6++Qv/+/Q0cJSEVO3uWQ2AgM3QY9Z5WiVJaWlp1x0GIUXqTEaWy/cQoLn7CJ1yk5gwYMAADBgyATCZDdnY2AMDBwQGmpqYGjowQUptolSi5u7tXdxyEGKVXk7mrOqIk/qedXD1FRHRlamqKRo0aGToMQkgtpfPyAOXl5+ejsLBQpdze3v5NmiXEaLyazF31ESWAEiVCCKmtdE6UGGP49NNPsXnzZmRmZqqtQ0sEkLqCRpQIIaR+03l5gM8//xyrV6/G1KlTwRjDggULsGjRInh5ecHDwwNbt26tjjgJMQjFiNKbzFECKFEihJDaSudEKSEhAbGxsfyjSkJDQxEdHY0bN27A19cXd+/e1XuQhBiKYkSp6ne9if9pJ1dPERFCCKlJOidK6enp8Pf3h6mpKczNzZGbm1vWkIkJpkyZgu3bt+s5REIMRx93vZW1k6uniAghhNQknRMlBwcHvHjxAgDg5uaG//3vf/y2Z8+eIT8/X3/REWJgb76OkhgAJUqEEFJb6TyZu1u3brhy5QoGDBiA0aNHIyYmBk+ePIG5uTm2bt2KPn36VEechBjEmzwUt2w/MQCgpESir5AIIYTUIJ0TpZiYGDx69AgAMH/+fOTm5mL37t0oKChA3759sW7dOr0HSYghyOVFkMvLRkjNzOyq1AaNKBFCSO2mc6Lk7e0Nb29vAIBQKMTatWuxdu1avQdGiKG9GgXiaI4SIYTUU2+04ORff/2FzMxMuLq6onHjxvqKiRCjUFpaliiZmdmB43SezsfvW9ZWrr7CIoQQUoOq1Ptv2bIFbm5ucHd3R5cuXeDm5oamTZti8+bN+o6PEIMpLc0BUPXLbmX7igGUrcfEmFwfYRFCCKlBOidKcXFxiIyMRFBQEA4ePIiLFy/i4MGDCAoKwpQpUxAXF1cdcRJS40pKyhIlc/OqP5Ln1SU7xk8MJ4QQUnvofOlt3bp1mDNnDlasWKFUPnDgQDg5OWHdunWIiorSW4CEGEr5S29VZWIihImJCHJ5AUpLc2FuLtZTdIQQQmqCziNKeXl5CA4OVrstJCQEz58/f+OgCDEG+hhRAmhCNyGE1GY6J0r9+vXD6dOn1W77/vvvq7SOUmpqKvr27QtLS0s4Oztj7ty5KC4urnQ/xhiWL18ONzc3iEQiBAQE4NKlS0p1srKy8OGHH6Jz584QCoWwsrLSOT5SP70aUaJEiRBC6iutLr2VX3174sSJeP/99/H06VOEhoaiUaNGePr0KQ4cOIAffvhB5wndEokEvXv3RsuWLZGcnIxHjx5h5syZyM/Px5dfflnhvitWrEB0dDSWL18OPz8/rF+/HiEhIfjtt9/g6ekJAHj06BESExPRqVMndOzYEdeuXdMpPlJ/6WMyd/n9Fe0RQgipPbRKlDp27AiO4/j3jDF88803+Oabb8BxHBhj/LZ33nkHMplM6wA2bdqEvLw8HDhwAPb2Zd/cS0tLMWXKFMyfPx+urq5q9yssLERcXBxmzZqFGTNmAAB69OgBLy8vxMfHY8OGDQAAPz8//P333wDKFsukRIloS1+X3szNHf5pL/uNYyKEEFKztEqUUlJSqi2A48ePIzg4mE+SACAsLAyRkZE4deoUxo8fr3a/CxcuIC8vD2FhYXyZQCDA0KFDkZyczJeZmFRt/RtC9DGZGwDMzRsCAEpKnr1xTIQQQmqWVolSr169qi2A1NRUREREKJWJxWK4uLggNTW1wv0AwMfHR6nc19cXDx8+REFBAUQikf4DJvUGjSgRQgip8srcN27cwPnz55GTkwN7e3t0794drVu31rkdiUQCsVisUm5nZ4ecHM1zOiQSCYRCISwsLFT2Y4xBIpFUOVEqKipCUVER/z4vj9a/qY9ezVF600SJRpQIIaS20vm6VFFREcLCwuDn54fJkydj8eLFmDx5Mvz8/DBy5Eit7lYzdnFxcbC1teVfTZs2NXRIxAD0denNzMzhn/ZoRKk2u3v3LiIjI+Hv7w8zMzO0adNGbb2EhAR4eXnBwsIC7dq1w5EjR2o4UkKIPumcKM2fPx9Hjx7Fpk2bkJubi4KCAuTm5mLTpk04evQo5s+fr1N7dnZ2kEqlKuUSiURp3pK6/YqKilBYWKiyH8dxsLOr+n9uUVFRkEql/CsjI6PKbZHaiTG5Hi+90YhSXXDjxg0cPXoULVq0QKtWrdTWSUxMxKRJkzBy5EgcP34cAQEBGDJkiMqyJYSQ2kPnRCkxMRFxcXGYNGkSbGxsAAA2NjaYNGkSli5dit27d+vUno+Pj8pcJKlUiszMTJX5R6/vBwC3b99WKk9NTeXXVaoqoVAIGxsbpRepX2Sy5wDKns325pO5aY5SXTBw4EBkZGRg3759aN++vdo60dHRGDVqFJYsWYKgoCBs2rQJ//rXv7B48eIajpYQoi86J0o5OTkaExgfH58K5xWp079/f5w+fRq5ubl8WVJSEkxMTBASEqJxv65du8LGxgZJSUl8WUlJCZKTkzFgwACdYiDkdYrRHxMTEUxN3+ymABpRqhsqu4P2/v37uHPnjtKduAAwatQonDlzRmneIyGk9tA5UfLx8cGOHTvUbtu5c2eFo0DqREZGwtraGqGhoTh16hS2bduGOXPmIDIyUmkNpT59+qBFixb8ewsLC0RFRSE+Ph5r167FDz/8gPDwcGRnZ2P27NlKx9i3bx/27duHmzdvQiaT8e8fPHigU6yk/igufgoAEAic3rgtxYhSaWku5PLSN26PGKeK7sQtLi5GWlqaIcIihLwhne96++STTzBixAikp6dj2LBhcHJywtOnT7Fv3z5cvHhRaYRHG3Z2djhz5gymTZuG0NBQWFtbY+LEiVi6dKlSPZlMhtJS5f9k5s2bB8YY4uPjkZWVBX9/f5w8eZJflVthxIgRat9v27ZN4zpNpH4rKSlLlMzNG71xW6/ummMoLZVAIHB84zaJ8ZFIyib/v34Xr2K+ZEWj7XSnLSHGS+dEaejQoThw4ABiY2Mxa9YsMMbAcRz8/f1x4MABDBw4UOcgfH19NT4/TuHs2bMqZRzHISoqClFRURXuW37lcEK08WpE6c0TJRMTM5iZiVFamouSkmxKlIiKuLg4xMbGGjoMQogaOiVKxcXFOHLkCPz9/fHrr7/i5cuXyM3NhVgshqWlZXXFSEiN0+eIUlk7Df9JlGieUl2lGDmSSqVwdnbmyxUjTRXdxRsVFYWZM2fy7/Py8mhZEkKMhE5zlAQCAUaPHo2HDx8CACwtLdG4cWNKkkido88RJYDWUqoPFHOTXr+LNzU1FQKBQGVKQHl0py0hxqtKk7kViRIhdVV1jCgBQHFxll7aI8bH09MTXl5eKvM09+zZgz59+kAgEBgoMkLIm9B5jlJcXBw+/PBDtGrVCh07dqyOmAgxOEVCo68RJcXdcyUlf+ulPVLz8vPzcezYMQDAgwcPkJeXh3379gEoex6mo6MjYmJiMGbMGDRv3hxBQUHYs2cPLl++jB9//NGQoRNC3oDOidLcuXORnZ2Nzp07w8HBAU5OTuA4jt/OcRyuXbum1yAJqWmvRpTefHkAABAIXAAARUWZemmP1LynT59qvIM2JSUFgYGBCA8PR35+PpYvX47ly5fD29sbBw4cQEBAgCFCJoTogc6JUocOHWgkidR5+p6jJBS6/NMuJUq1lYeHh1Z30E6YMAETJkyogYgIITVB50Rp+/bt1RAGIcaj7DlvZZfe9DVHSTGiRIkSIYTULlonSjdv3sSmTZuQlpaGxo0bY/jw4QgODq7O2AgxiLKH4ZY9500xCftNvbr09lgv7RFCCKkZWiVK58+fR3BwMEpKSuDo6IgTJ05g69atWL9+PSIjI6s7RkJqlGLCtZmZPUxMdB50Vav8iJJikVZCCCHGT6vlAaKjo+Hj44P09HQ8efIE2dnZCA0NxcKFC6s7PkJqXFHRIwCAUOhaSU3tCQRlCxAyVozSUone2iWE1C1nz9KXKGOjVaL0xx9/YNGiRfxKsTY2Nli1ahVycnKQkZFRrQESUtOKisp+poVC/a2MbGpqATOzspWbaZ4SIYTUHlolSs+ePUOTJk2UyhRJ07Nn9EgGUrcUFuo/UQJoiQBCCKmNtF6Zm+ZUkPqiOkaUALrzjRBCaiOtZ6oGBQXBxEQ1r+rRo4dSOcdxkEql+omOEAMoKvoLAGBhod9EidZSIoSQ2kerRCk6Orq64yDEaLwaUWpSSU3dKNorLKRnJRJCSG1BiRIh5TDGqu3Sm4VF2dPjCwvT9NouIYSQ6qP1HCVC6oPSUilkshcA9D+iZGHRDABQWHhfr+0SQgipPpQoEVKOYjTJzMwBpqYN9Nq2SKQYUUoHY3K9tk0IIaR6UKJESDlFRWXzh/Q9kRtQXMozhVxeiOLiJ3pvnxBCiP5RokRIOfn5dwAAIlFLvbdtYmLOJ2AFBXT5jRBCagNKlAgpJz8/FQDQoIFPtbRPE7oJIaR2oUSJkHJeJUre1dL+q3lKNKJECCG1ASVKhJRTUyNK+fl/Vkv7hBBC9IsSJUL+UVKSg5KSpwAAkah6RpQsLdsAAF6+/L1a2ieEEHXOnqXHkFUVJUqE/CM//zaAsvWTzMysquUYVlb+/xzrFmSywmo5BiGEEP2hRImQf+Tn3wJQfaNJgCIJswdjpcjPv1ltxyGEEKIflCgR8o/nz/8HALCyaldtx+A4jh9VevHit2o7DiGEEP2gRImQfzx/fgUAYG39r2o9jiIRo0SJEEKMHyVKhACQyQr4xMXGproTpbcAAHl5l6v1OIQQog5N7NYNJUqEAMjLuwTGiiEQuPK38FcXsTgQAPD8+S8oKcmp1mMRQgh5M5QoEQJAIjkDABCLe4HjqvfbloVFUzRo4AtAzh+XEEKIcaJEiRAA2dnfAQDs7fvXyPHs7fsBAHJyTtbI8QghhFQNJUqk3nv5MhUvX/4BwBQODm/XyDHt7f8fgLIEjdZTIoQQ42UUiVJqair69u0LS0tLODs7Y+7cuSguLq50P8YYli9fDjc3N4hEIgQEBODSpUsq9R4/foxhw4bB2toa9vb2mDhxIvLy8qrjVEgtlJm5FQDg4DAA5ub2NXJMsbgPhMImKCnJQlbWnho5JiHEONHkauNm8ERJIpGgd+/eKC4uRnJyMpYtW4YtW7Zg5syZle67YsUKREdHY8aMGThy5AhcXFwQEhKC+/dfPXC0pKQE/fr1w507d7Br1y5s3LgRJ0+exOjRo6vztEgtUVz8Nx4/3gwAcHWNrLHjmpiYwdV1KgAgI2M15PLSGjs2IYQQ7ZkZOoBNmzYhLy8PBw4cgL192bf50tJSTJkyBfPnz4erq6va/QoLCxEXF4dZs2ZhxowZAIAePXrAy8sL8fHx2LBhAwBg3759uHHjBm7dugVv77IVl+3s7NCvXz/8/PPP6NSpUw2cJTFGjMlx584UyOUvYW3dscbmJym4uk7Cw4fL8fLl73j4cBk8PBbV6PEJIYRUzuAjSsePH0dwcDCfJAFAWFgY5HI5Tp06pXG/CxcuIC8vD2FhYXyZQCDA0KFDcezYMaX2/fz8+CQJAPr27Qt7e3uleqR+KS7Ows2bo/DsWTI4zhwtW26s9rvdXmdu7gAvr/UAgPT0aKSnL6b5SoQQYmQMPqKUmpqKiIgIpTKxWAwXFxekpqZWuB8A+Pj4KJX7+vri4cOHKCgogEgkQmpqqkodjuPg4+NTYftVkZm5HYCMf88YU1Pr9bLK69RsO9q1rdpWTbajWqbduclRXPwU+fm3IZX+F3J5ITjOHD4+22Fj01HN/tWvUaPReP78f/jrr9VIT4/GX399AbE4ECKRJ8zNHcBxApiYCMFx5gB0S+R0T/yqN1EUiVpCLO5RrccghBB9M3iiJJFIIBaLVcrt7OyQk6N5MT6JRAKhUAgLCwuV/RhjkEgkEIlEVWq/qKgIRUVF/HttJ37/+edkyOU0IlBbWFl1QIsWayAWdzdYDBzHoUWLVbC0bIv09E9QVPQXnj3bb7B4qpOz83uUKBHyj7NnOQQGqvuCR4yNwRMlYxQXF4fY2Fid97O37w/GSl4rff1burpv7cplqiMBle9TeRu1LRbVffQRi7m5Ayws3GFr2w2Wln41frlNExeX8XByGoO8vIt4/vwKCgszIJNJIZcXQS4vBmOV3wX6Zqq/w67Ohw0TQkh1MXiiZGdnB6lUqlIukUiU5i2p26+oqAiFhYVKo0oSiQQcx8HOzq7S9ps2baq27aioKKW77vLy8jTWLa9Nm+RK6xCiiYmJOcTinhCLexo6FEIIIf8w+GRudXOFpFIpMjMzVeYWvb4fANy+fVupPDU1lV9XSVP7jDHcvn1bY/tCoRA2NjZKL0IIIYTUPwZPlPr374/Tp08jNzeXL0tKSoKJiQlCQkI07te1a1fY2NggKSmJLyspKUFycjIGDBig1P61a9fw559/8mVnzpxBdna2Uj1CCNGHqi6gSwgxTgZPlCIjI2FtbY3Q0FCcOnUK27Ztw5w5cxAZGam0hlKfPn3QokUL/r2FhQWioqIQHx+PtWvX4ocffkB4eDiys7Mxe/Zsvt7w4cPRunVrDBs2DEeOHMHevXsRERGBt99+m9ZQIoTo1ZssoEsIMU5GMUfpzJkzmDZtGkJDQ2FtbY2JEydi6dKlSvVkMhlKS5VXL543bx4YY4iPj0dWVhb8/f1x8uRJeHp68nXMzc1x4sQJTJ8+HeHh4TAzM8PQoUPx+eef18j5EULqj6ouoEsIMV4GT5SAsrWPTp8+XWGds2fPqpRxHIeoqChERUVVuG/jxo2xf3/dvOWaEGI8NC2gGxkZiVOnTmH8+PGGC44QUiUGv/RGCCF1hboFbrVZQJcQYryMYkTJ2ClWfdZ24UlCyJuxtrY2mjWudFHVBXRfX+RWsaQJ9Tl118uXr/59K/t7+bLK2tClLilTWX9DiZIWnj9/DgBaraVECHlzUqm0Xi3LoWmRW+pz6jpbHf5evqyyNnSpSyrrbyhR0oKrqysyMjIqzToVC1NmZGTUuU6ezq32qo3nZ21tbegQqqSqC+i+vsitXC5HTk4OHBwcauXImq5q48/om6JzNp5zrqy/oURJCyYmJmjSpInW9evyIpV0brVXXT8/Y1DVBXSFQiGEQqFSmbpLeHVdffwZpXM2fjSZmxBC9KSqC+gSQowXJUqEEKIn2i6gSwipPShR0iOhUIjo6GiVIfS6gM6t9qrr52dMFAvompmZITQ0FB9//DEmTpyI1atXGzo0o1Yff0bpnGsPjinufSeEEEIIIUpoRIkQQgghRANKlAghhBBCNKBESQ9SU1PRt29fWFpawtnZGXPnzkVxcbGhw6rQ3bt3ERkZCX9/f5iZmaFNmzZq6yUkJMDLywsWFhZo164djhw5olJHKpViwoQJsLe3h7W1NYYPH47MzMzqPgWNkpKSMHjwYDRp0gSWlpbw9/fH119/jdevMtfGcwOAY8eOoVevXnB0dIRQKISnpydmzpypsn7P4cOH0a5dO1hYWMDLywvbtm1Taau4uBhz5syBs7MzLC0t0bdvX9y+fbumToXUUXW5f9Gkrvc76tSbvoiRN5KTk8NcXFxYz5492YkTJ1hCQgKztbVlU6dONXRoFTp48CBr0qQJGzZsGGvbti1r3bq1Sp3du3czjuPYwoUL2Q8//MDef/99ZmZmxi5evKhUr1+/fqxJkyZsz5497NChQ6xNmzasXbt2rKSkpKZOR0mXLl3YqFGjWGJiIjtz5gz7+OOPmYmJCYuJieHr1NZzY4yxHTt2sDlz5rB9+/axlJQUtm7dOubg4MD69u3L1zl37hwzNTVl77//Pvvhhx/YwoULGcdxLCkpSamt999/n9na2rKEhAR24sQJ1qNHD9a4cWOWm5tb06dF6pC63L9oUtf7HXXqS19EidIbWrZsGbO0tGTZ2dl82ebNm5mpqSl79OiRASOrmEwm4/8+btw4tR2Zl5cXCw8PVyoLCAhg/fv3599fuHCBAWAnT57ky1JTUxnHcWzPnj3VEHnlsrKyVMomTZrEbGxs+POureemyZYtWxgA/mcuJCSEde3aValOeHg48/X15d9nZGQwU1NTtnnzZr4sOzubWVpashUrVtRM4KROqsv9iyb1sd9Rpy72RXTp7Q0dP34cwcHBSo8nCAsLg1wux6lTpwwYWcVMTCr+p79//z7u3LmDsLAwpfJRo0bhzJkz/AM8jx8/DrFYjL59+/J1vL294e/vj2PHjuk/cC00bNhQpeytt97654GRL2v1uWni4OAAoGz4uqioCCkpKRgxYoRSnVGjRuHWrVtIT08HAJw6dQpyuVypnr29PUJCQozu/EjtUpf7F03qY7+jTl3siyhRekOpqakqjyYQi8VwcXFReZRBbaKI/fVz8/X1RXFxMdLS0vh63t7eKs+j8vX1NarzP3/+PBo3bgxra+s6c24ymQyFhYX43//+h8WLF2PQoEHw8PDAvXv3UFJSovb8gFf/tqmpqWjUqBHs7OxU6hnD+ZG6q678DlamLvY76tT1vogSpTckkUjUPpPJzs4OOTk5NR+QnkgkEgCqz5tS/CArzq02nP/58+eRmJiI2bNnA6g75+bu7g6RSIQOHTrAxcUFu3btAlB3zo/UXfXhZ7Su9jvq1PW+iBIlUqf99ddfGDlyJIKCgjB9+nRDh6NXx44dw4ULF7B161bcunULAwcOhEwmM3RYhNR7dbnfUaeu90Vmhg6gtrOzs1O5FRIoy5DLz1uqbRQZv1QqhbOzM1+u+IagODc7OztkZGSo7G8M55+bm4v+/fvDwcEB+/fv5+dN1IVzAwA/Pz8AQEBAAP71r3/B398fBw4cQKtWrQBA5edS3fnVxZ9dYvzqyu+gOnW931GnrvdFNKL0hnx8fFSuoUqlUmRmZqpcl61NFLG/fm6pqakQCATw9PTk692+fVtlrRB1c7dqUkFBAd555x1IpVIcP34ctra2/Lbafm7q+Pn5wdzcHHfv3kXz5s1hbm6u9vyAV+fv4+ODv//+m++0ytcztvMjdUtd/B0E6l+/o05d7IsoUXpD/fv3x+nTp5Gbm8uXJSUlwcTEBCEhIYYL7A15enrCy8sLSUlJSuV79uxBnz59IBAIAJSdv0QiwZkzZ/g6d+7cwdWrVzFgwIAajVmhtLQUYWFhuHXrFk6cOIHGjRsrba/N56bJ5cuXUVJSAk9PTwiFQgQFBWHfvn1Kdfbs2QNfX194eHgAAEJCQmBiYoL9+/fzdSQSCU6dOmV050fqlrr4O1gf+x116mRfZNjVCWo/xYKTvXr1YidPnmRff/01E4vFRr/g5MuXL1lSUhJLSkpigYGBrGnTpvz7p0+fMsYY27VrF+M4ji1atIilpKSwyMhIZmZmxi5cuKDUVr9+/VjTpk3Z3r172Xfffcfatm1r0MXRJk2axACwVatWsYsXLyq9CgsLGWO199wYY2zIkCFs6dKl7PDhw+z06dNs1apVzNnZmfn5+bGioiLG2KtF3iZPnsxSUlLYokWLGMdxbO/evUptvf/++0wsFrOvv/6anTx5kvXq1ctoFnkjtVdd7l80qev9jjr1pS+iREkPbt68yfr06cNEIhFr1KgRmz17Nv9DYqzS0tIYALWvlJQUvt5XX33FWrRowQQCAWvbti07fPiwSlu5ubksIiKCicViZmVlxYYOHWrQxTbd3d01nltaWhpfrzaeG2OMxcXFMX9/f2Ztbc0sLS1Z69at2SeffMKkUqlSvUOHDrG2bdsygUDAWrRowRISElTaKiwsZLNmzWKNGjViIpGIBQcHs1u3btXUqZA6qi73L5rU9X5HnfrSF3GMvXYhlBBCCCGEAKA5SoQQQgghGlGiRAghhBCiASVKhBBCCCEaUKJECCGEEKIBJUqEEEIIIRpQokQIIYQQogElSoQQQgghGlCiRAghhBCiASVKBhYTEwOO49C4cWPI5XKV7d26dQPHcRg/frxO7ebm5iImJgY3b95UKk9PTwfHcSrP3qlpa9asAcdx/PuzZ8+C4zj88ssvNRZDTEwMLly4oFLOcRzi4+NrLA5tPH36FNbW1rh+/XqF9V7/XPXp+fPnsLe3x08//VQt7ZPqR/1NGepvKkb9jTJKlIyAubk5nj17hh9//FGp/MGDB7h48SKsrKx0bjM3NxexsbEqHZeLiwsuXryI3r17v1HM+ta+fXtcvHgRvr6+NXbM2NhYtR3XxYsXMWbMmBqLQxtLly5FYGAg2rRpY7AYrK2tMW3aNMyfP99gMZA3R/0N9TeVof5GGSVKRkAgEKB///7YvXu3UnliYiJat26N5s2b6+1YQqEQXbp0gb29vd7a1AcbGxt06dIFlpaWGusUFBTUSCxdunSBi4tLjRxLGy9evEBCQgIiIiIMHQoiIiLw448/4tq1a4YOhVQR9TfU31SE+htVlCgZifDwcOzbtw8lJSV82a5duzB69Gi19X/88Ud07doVIpEIDRs2REREBHJycgCUDXc3a9YMADBixAhwHAeO45Cenq52KFwul+PTTz+Fh4cHhEIhfHx8sHnzZqXjxcTEwMrKCn/88Qe6d++OBg0aoE2bNjh58mSl55aXl4exY8fC2toajo6OmDt3LkpLS5XqqBsK5zgOy5cvx7x58+Ds7IxGjRoBABhjiI+Ph5eXF4RCITw9PfH555+rHPfWrVsYOnQo7O3t0aBBA7Rr147/z0ExXDxnzhz+8zl79iy/7fWh8M2bN8Pb2xtCoRAeHh749NNPlS5dbN++HRzH4erVq+jfvz8sLS3RsmVL/Oc//1Fq56effkLPnj1ha2sLa2trtG3bFt98802Fn5/i36p///46f65A2bf9KVOmwMXFBUKhEB06dMCpU6eU6jDGsHjxYjg7O8PKygojRozA6dOnlT4XAHB3d0enTp2wffv2CmMmxo36G+pvNKH+Rg1DPpGXMBYdHc0sLS3Zy5cvmaWlJTty5AhjjLEbN24wAOz+/fusXbt2bNy4cfw+v/zyCxMIBCwkJIQdPnyYffXVV6xhw4asU6dOrLS0lBUWFrLk5GQGgC1btoxdvHiRXbx4kRUWFvJP9U5KSuLbmzlzJjM1NWXR0dHs5MmTbNq0aQwAW7dunVKciqddb926lZ04cYIFBQUxS0tL9uzZswrPcdiwYczKyop9+eWX7OjRo+ztt99mjRs3ZuV//FJSUhgAduXKFb4MAHN2dmahoaHsyJEj7ODBg4wxxqZNm8ZEIhH79NNP2ffff89iY2OZubk527hxI7/vnTt3mK2tLWvTpg3bsWMH+/7779nnn3/Oli9fzhhj7OLFiwwAmzZtGv/5KJ54DYCtXLmSb+uLL77g6548eZJFR0czU1NTNmvWLL7Otm3bGADm6+vLVq9ezU6dOsVGjBjBOI5jN2/eZIwxJpVKma2tLXv77bfZ0aNH2enTp9kXX3zB1qxZU+HnN2bMGNajR48qfa5FRUWsY8eOrGnTpiwhIYGdOHGC/fvf/2ZmZmbs999/5+utXbuWcRzH5s2bx06ePMnmzZvHPw29/NPeGWPso48+Yq1bt64wZmKcqL8pQ/2NZtTfqKJEycAUHRdjjI0ePZr9+9//ZowxtnDhQhYQEMAYYyod15AhQ5ibmxsrLi7my06ePMkAsO+++44xxtR2UOrKs7KymLm5Ofv444+V6oWHhzNHR0dWWlrKxwmAHT16VKWtHTt2aDy/GzduMI7jWEJCAl9WWlrKmjVrplXH1apVKyaXy/myu3fvMo7j2ObNm5WOM2/ePObs7MxkMhn/WTo6OvKdkTqvd1DqyktLS1nDhg3ZqFGjlOpERUUxgUDAd9qKjmv9+vV8nRcvXrAGDRqwJUuWMMYYu3LlCgOg1GFow8vLi02dOlWpTNvP9euvv2ZmZmbsxo0bSvt37tyZjRgxgt/PxcWFRUREKNWZMGGC2o5r27ZtjOM4lpeXp9N5EMOj/qYM9TeaUX+jii69GZHw8HAcOnQIBQUFSExMRHh4uNp6586dw+DBg2Fubs6XhYSEQCwW4/z58zod8/LlyygpKcGIESOUykeOHImsrCzcuXOHLzMxMUFwcDD/3sPDAyKRCH/99ZfG9q9cuQLGGIYMGcKXmZqaIjQ0VKv4+vfvr3RXxenTpwEAw4YNQ2lpKf8KDg7GkydPkJGRAQA4c+YMhg8fDhsbG62Oo0lqaiqePXum9vMpLi7Gzz//rFQeEhLC/93S0hLu7u7859O8eXPY2Nhg8uTJ2Lt3L7KysrSKITMzE46Ojkpl2n6up06dQtu2beHl5aX0efXt2xdXrlwBAPz111/IzMzEoEGDlPYdPHiw2ngaNmwIxhj+/vtvreInxon6G1XU31B/o46ZwY5MVPTr1w/m5uZYtGgR0tLSEBYWpraeRCKBk5OTSrmTkxM/b0BbEomE3/f1tgAotScSiSAQCJTqCQQCFBYWamw/MzMT5ubmsLOzU9t+ZV6v9+zZMzDG0LBhQ7X1MzIy4O7ujuzsbLi6ump1jIro8vkAgFgsVnpf/vOxs7PD999/j+joaLz77rsoLS1Fjx49sG7dOrRt21ZjDIWFhRAKhUpl2n6uz549w9WrV5X+k1MwNTXl2wKg0jkq5mi8ThFLTU12JdWD+htV1N9Qf6MOJUpGxNzcHMOGDcPq1avRp08fjb/c9vb2ePr0qUr533//rfPdJYr6T58+RePGjZXaKr+9qlxcXFBSUgKJRKL0S6btt4PX1+iwt7cHx3E4f/68SicKAN7e3gAABwcHPH78+A0if3U8ACqfd1U/n06dOuH48eMoKChASkoKZs+ejdDQUNy7d6/CGHJzc5XKtP1c7e3t4efnh4SEBI3tK+64ef0bp7qfMQB8LA4ODhrbJMaP+htV1N9Qf6MOXXozMhMnTsTAgQPx4YcfaqzTvXt3HDx4UOmOg++//x65ubno3r07APC/1BV9+wLKfpHMzc2RlJSkVL537140atQIXl5eVT0VAMC//vUvAMCBAwf4MplMhoMHD1apvT59+gAAsrOz0bFjR5WXtbU1ACA4OBj79u3D8+fPNbZlbm5e6efj7e0NR0dHtZ+PQCBAp06dqnQeIpEIAwYMwOTJk5GWllZhHN7e3khLS1Mq0/ZzDQ4Oxv379+Hq6qr28wKAJk2awNnZGYcOHVLaV9O/UXp6OmxtbeHs7Kzt6RIjRf1Nxai/KVPf+xsaUTIynTp1qvSXesGCBejatSveeecdTJs2DX///Tc+/vhjdOrUCQMGDAAAODs7QywWY/fu3WjWrBmEQiH8/PxU2mrYsCGmTZuGlStXwsLCAl26dMGxY8ewa9curFu3jh8urapWrVphyJAh+Oijj1BYWAgPDw9s2LABxcXFVWrPy8sLU6dOxbvvvos5c+agc+fOKCkpwZ07d5CSksJ/dtHR0Thy5Ai6d++OuXPnwsXFBTdv3kR+fj7mzp0LAPD19cWhQ4fQo0cPWFpawtvbm+/4FExNTfHJJ59g+vTpaNSoEQYMGIBLly5hxYoV+Oijj3T6lnP06FEkJCRgyJAhcHNzw5MnT7Bu3Tp069YNFhYWGvfr1q0b9u7dq1Sm7ec6duxYbN68GYGBgZg9eza8vLyQm5uLq1evori4GHFxcTA1NUVUVBQ++ugjODk5ISgoCCkpKfz8DBMT5e9Tv/zyC7p27apSTmof6m8qRv1NmXrf3xhsGjlhjCnfhaLJ63ehMMbY2bNnWUBAABMKhcze3p6NHz+eZWdnK9U5cOAA8/X1ZUKhkAFgaWlpau9OkclkbPHixczNzY2Zm5uzli1bsk2bNmkVp62tLYuOjq4wfolEwsaMGcMsLS2Zg4MDmzlzJlu5cqVWd6Gou0tELpezdevWsTZt2jCBQMDs7e1ZQEAAW716tVK9GzdusEGDBjEbGxvWoEED5u/vzxITE/nt586dY+3bt2cikUjpbgt1x924cSNr2bIlMzc3Z25ubmzJkiX8HS+MvboLJSsrS2m/8v92qampbNiwYaxp06ZMKBQyV1dXNn78eJaZmVnh5/frr78yAOzOnTs6f66Mld0mPGPGDP7f18XFhQ0YMIC/NVzxmcbExLBGjRqxBg0asEGDBrE9e/YwAOy3337j6xUXFzN7e3ulu19I7UH9TRnqbzSj/kYVxxhjNZmYEUJ016FDBwwePBiLFi2qsWN+8sknWLVqFbKzsyESiQCUfUsdPXo0Hj16VKVHXRBCjB/1N8ooUSKkFjh06BA/v+D1O1L04datW9i5cye6du0KgUCAs2fPIj4+HpMnT8aaNWv4er1790ZgYGCNdqCEkJpF/Y0ymqNESC0wePBg/Pnnn8jIyECLFi303n6DBg1w8eJFbNy4Ec+fP0fjxo0xZ84cxMTE8HVevHiBXr16YcaMGXo/PiHEeFB/o4xGlAghhBBCNKDbVgghhBBCNKBEiRBCCCFEA0qUCCGEEEI0oESJEEIIIUQDSpQIIYQQQjSgRIkQQgghRANKlAghhBBCNKBEiRBCCCFEA0qUCCGEEEI0+P/Jk0LGXehTqwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAEfCAYAAAC+iOlAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjB0lEQVR4nO3deXxM1/8/8NfNMpORbZKILEgiyGKJFB/EmhDxo0VsIXyKBt8GpbU3qCSUUKFU7U3phxJCULvS+JRaqv2o1hKKhJSoSCYTZJ85vz/SuTJmJpmJSWaSvJ+PxzyYc889931Hcrzn3HPP5RhjDIQQQgghRIWJoQMghBBCCDFWlCgRQgghhGhAiRIhhBBCiAaUKBFCCCGEaECJEiGEEEKIBpQoEUIIIYRoQIkSIYQQQogGlCgRQgghhGhAiRIhhBBCiAaUKJFaz8PDA4GBgYYOw6hwHIfx48dXef/AwEB4eHjoLR5Cakp6ejo4jkNMTEy1H6s29j30u607SpSMXFFREbZs2YKQkBA4OTlBIBDAxsYG/v7++OCDD3D58mVDh1jtcnNzERMTg7Nnzxo6FEJIDTp79iw4juNfpqamsLW1hbe3N8LCwrBr1y4UFxcbOkxSx5kZOgCiWXp6OgYNGoQ//vgD3bt3x7Rp0+Dq6oqCggLcuHEDhw4dwvr16/HDDz8gKCjI0OFWm9zcXMTGxgKA2m9vt2/fBsdxNRwVIaSmDB8+HIMHDwYAvHjxAmlpaTh+/DjGjBmDTz/9FPv374evry8AwN3dHQUFBTAzo//eiH7QT5KRKiwsxDvvvIPbt29j7969GDFihEqdL774At988w1EIpEBIqyavLw82NjY6LVNoVCo1/YIIcalXbt2+Pe//61UtmLFCmzfvh0TJ05Ev379cP36ddjY2IDjOFhYWBgoUlIX0aU3I/XVV1/hxo0bmD17ttokCQDMzMwwYcIEdOnSRamcMYatW7eiU6dOsLS0hKWlJbp27YqDBw+qtKGYy/Lzzz+jd+/esLKyglgsxqhRo/D06VOV+sXFxfjss8/g5+cHkUgEGxsbBAcH48cff1SqV36ewP79+9GpUyc0aNAAgwYNAgA8fvwYs2fPRvv27WFvbw+hUAgvLy8sWLAABQUFfDvbt29Hs2bNAACxsbH8EHz5a+yvzxPo3r07bG1tldpRyMjIgKmpKd59912l8pSUFPTv3x92dnYQCoXw9fXFihUrIJPJ1H72r1PEcP36dfTr1w82NjZwcHDAxIkT8fLlS8jlcnz22Wdo0aIFhEIhWrdujaNHj6pt69tvv0Xnzp35f7suXbogMTFRbd3vv/8eXbp0gUgkgqOjIyIiIvDs2TONce7fvx+9evWCjY0NRCIR3nrrLXz11VdanSMhxmb8+PGYNWsWMjIysH79egCa5yh9++23CAgIgL29PUQiEdzc3DB06FDcvHlTqT2O45CdnY2IiAg4OjpCJBIhICAAZ86c0SqmU6dOITw8HM2bN+f7yJ49e+Lw4cNK9eLj48FxHI4dO6a2HT8/P7i4uKCkpIQvu3fvHsaPHw9XV1cIBAI0adIEU6ZMUfs7f/fuXQwZMgS2trawtrZGSEgIrl27ptU5kNcwYpR69erFALB79+7pvO+4ceMYx3EsNDSUrVmzhq1Zs4b17NmTAWAbN25UqguA+fv7M3t7e/bRRx+xTZs2sUmTJjGO41i/fv2U6paUlLA+ffowMzMz9u6777L169ezlStXsnbt2jFTU1N2+PBhvm5aWhrftq2tLZs3bx7bsmUL27x5M2OMsePHjzN3d3f24YcfsnXr1rEvvviCDR06lHEcx/r378+3c+/ePfb5558zAGzIkCFsx44dbMeOHezAgQN8HXd3d9arVy/+/datWxkAtnPnTpXPZsmSJQwAO336NF+WkJDAOI5j7du3Z8uXL2ebNm1i7777LuM4jo0cOVKrz9zd3Z21aNGCOTo6ssmTJ7ONGzeysWPHMgBs9OjRbOrUqaxdu3bss88+Y6tWrWJubm5MIBCw9PR0pXY++eQTBoC1bduWrVixgi1fvpy1adOGAWBLly5VqnvkyBFmamrKnJ2dWXR0NFu7di3r1asX69ChAwPAxo0bp1R/0aJFDAALCgpi8fHxbP369WzQoEEMAJs3b55S3V69ejF3d3etzp2Q6pKSksIAsCVLlmisc+/ePQaAde3alTH2qu+Jjo7m6+zcuZMBYN26dWNr1qxhX331FYuNjWW9evViycnJfL1x48YxAKxDhw4sKCiIrV27lkVHRzNnZ2dmZmbGjh8/rnTs1/sexhgLDw9nQUFBbNGiRWzLli1s6dKlzMvLiwFgiYmJfL2srCwmFArZkCFDVM7p0qVLDACLioriy65evcpsbW2Zi4sLW7BgAduyZQubM2cOs7KyYl5eXiw3N5ev+/DhQ+bo6MjMzc3ZtGnT2IYNG9jYsWOZWCxmzZs3p99tHVGiZKQcHByYjY2NSrlcLmdZWVlKr+fPn/PbDx48yACw1atXq+w7cOBAZmNjw/Ly8vgyAIzjOPbTTz8p1X3//fcZAHb79m2+bM2aNQyAUsfCGGPFxcXsrbfeYs2aNePLFJ2VmZkZ++OPP1Riyc/PZzKZTKV8wYIFDAD7+eefVdoq3/GV93pnJZVKWYMGDVhwcLBK3RYtWjB3d3cml8sZY4xlZmYyCwsLFhoaypcpxMfHMwDs7Nmzao/7egwA2O7du5XKBw8ezDiOY/7+/qyoqIgvv3r1qkpHeOfOHWZiYsLatWvHXr58yZe/ePGCtWnThpmamrK0tDTGGGMymYx5eHgwKysr9vDhQ75uaWkpGzBggEqi9L///Y9xHMemT5+uEvsHH3zATExMlJJySpSIMdAmUWKMMWtra+bg4MAYU99fDBkyhFlbW7Pi4uIK21EkSgMHDlTqnx4+fMisrKyYp6enUrm6ROnFixcq7b58+ZK1bNmStWrVSql89OjRzMzMjGVmZiqVT5gwgXEcx+7fv8+X+fv7s2bNmrHs7GylupcvX2ampqYsJiaGL3v33XcZAKUvlIwxFhcXxwDQ77aO6NKbkZJKpWrn8vz9999wdHRUen300Uf89h07dkAkEmHkyJF49uyZ0is0NBR5eXm4ePGiUpsBAQHo2rWrUlnfvn0BAHfu3FFq28PDAz169FBqVyqVYtCgQUhLS1OqDwBvv/022rRpo3IeIpEIJiZlP34lJSXIycnBs2fP+OO+yd18NjY2GDp0KH744QdkZGTw5efPn8fdu3cxduxYfvL3vn37UFhYiIkTJyI7O1vpvN555x0AwMmTJ7U6rqurK0aNGqVU1qtXLzDGMGXKFAgEAr7c398fNjY2Sp/XwYMHIZfLMW/ePDRo0IAvt7S0xJw5cyCTyXDo0CEAwK+//or09HSMHTsWTZs25euamppi/vz5KrF9++23YIxhwoQJKj8XgwYNglwux+nTp7U6T0KMjY2NDaRSqcbtYrEY+fn5OHz4MORyeaXtRUVF8f0TADRt2hTvvvsu7t+/j6tXr1a4r6WlJf/3ly9fIjs7G/n5+ejduzdu3ryJ58+f89sjIyNRWlqK7du382XPnz9HYmIigoOD+WkH169fx2+//YZRo0ZBLpcr/f56enqiRYsWfD8ll8tx8OBBtGrVCqGhoUqxffTRR7Cysqr0/IkymsxtpGxtbZGXl6dSbm9vj++//x5AWdL0+gTHW7duoaCgAI0bN9bY9t9//6303tPTU6WOg4MDACA7O1up7fz8fDg6OlbYtpeXF/++/N/Lk8lkiI+Px/bt23Hnzh2VzisnJ0fjMbTx3nvvYefOnfjPf/6DBQsWACib78RxHMaNG8fXu3XrFgDwSZE6r39emqj7HO3s7CrcVv7zvX//PgCgbdu2KnUVZffu3VP6s1WrVip1W7durVKmOM927dppjF/b8yTE2OTl5cHW1lbj9gULFuD8+fMYNmwY7Ozs0K1bN/Tu3RujR4+Gk5OTSn11v1eKsrt376JDhw4aj5Weno5PPvkEx44dU9uPSSQSWFtbAwB69OiB1q1b46uvvsK8efPAcRx2796Nly9f4v/+7//4fRS/v3FxcYiLi1N7XEUf8/TpUzx//lztOVhYWKB58+bIzc3VGD9RRYmSkWrTpg3++9//4v79+0r/yQoEAgQHBwMo+4V8nVwuh62tLfbt26ex7df/IzU1NdVYlzGm1La3tze+/PLLCuMur/zISHmzZ8/GmjVrMHz4cMybNw+NGjWCQCDAo0ePMH78eK2+9VUkKCgI7u7ufKJUUFCApKQk9OjRA82bN1c6J6Bs8ry7u7vatlxdXbU6ZkWfo6Zt5T/f6qQ4zyNHjmi8S1BdMkeIsbt//z6eP3+uMipeXvPmzXHjxg2cPXsWZ86cwblz5zB79mw+oenZs6deYnnx4gV69uwJqVSKDz/8EH5+frCxsYGJiQm+/vpr7N69W6Vve//99zF9+nSkpKSgd+/e2Lp1K5ycnPjlEIBXv7/Tpk3jb4h5XW26+7m2oUTJSA0fPhz//e9/sXXrVo3fINTx8vJCamoq3nrrLX5USF+8vLyQkZGBwMDAN16j5JtvvkGPHj2QlJSkVH78+HGVulVZI4njOIwdOxZLlizBhQsXkJaWhry8PJXVqhUjXnZ2dnwCaiiKBO7GjRsqCef169eV6ij+LH/HjsKNGzdUyry8vHDixAm4uLigffv2eo2bEEPavHkzAGDgwIEV1jM3N0ffvn35y/u///47OnbsiEWLFqksZnvz5k0EBASolAFAixYtNB5Dcbk/ISEBERERStu2bt2qdp+xY8fi448/xtatW2Fvb49ffvkFH3/8MczNzfk65UfmK+unGjVqBGtra7V9Q2FhIe7du6f3/xvqOpqjZKQmTpyIVq1aIT4+XiWZUFA3GjF27FgAwNy5c9Vuf5PLK2PHjoVEIsHSpUvVbtelbVNTU5X4SkpK1CaFimvqul6OU9zqu337dmzfvh2WlpYqSy2EhYXBwsICMTExePHihUobBQUFSnMKqlNoaChMTEwQHx+PwsJCvjw/Px8rV66Eqakp/y2zffv2/IhZ+XlYcrkcy5YtU2lbsRxCVFSU0u3GClKpFEVFRfo+JUKq1fbt27Fq1Sq4ublh6tSpGutlZWWplPn6+sLS0lLp8rdCXFyc0shPRkYGduzYgWbNmuGtt97SeBzFyPHrfdvvv/+udnkWoGyaxciRI3HgwAEsX74cHMdh0qRJSnX8/f3Rtm1bJCQk8JfhymOM8edoYmKCwYMH4+bNmyrHXLNmjdp+jlSMRpSMlIWFBY4ePYqBAwciLCwM3bt3R79+/eDq6oqXL1/i3r172Lt3LwAorSk0bNgwTJo0CVu3bsW1a9cQGhoKZ2dnPH78GL/++iuOHTum9j9KbXz44Yc4c+YMYmJi8OOPPyIkJAT29vbIyMjAhQsXcP/+fX6eTWVGjBiBjRs3Yvjw4QgJCUFOTg6+/fZbtcPHDg4OaNGiBRITE9G8eXM4OTnB0tKy0m+Qnp6e6NGjB3bv3o38/Hy8++67KhMZGzdujM2bNyMiIgLe3t4YN24cPD09kZOTg9TUVCQnJ+PgwYM18jynFi1aYMGCBViyZAm6dOmCMWPGgDGGnTt34o8//sDSpUv5f2tTU1N88cUXGDJkCDp16oTIyEjY2dkhOTlZbUfYsWNHfPrpp1i4cCHatGmD8PBwNGnSBE+fPsUff/yBQ4cO4ebNm/QMKGKUrl27hp07dwIomyCtWJn7999/h6+vL/bv38/P+1GnX79+sLa2Rs+ePeHm5ob8/HwkJiYiNzcXCxcuVKn/+PFjBAcHY8iQIcjJycGmTZtQUFCAL7/8UmmS9+u6desGFxcXzJo1C/fv34eHhwdu3bqFrVu3om3btvj111/V7hcZGYlt27Zhz549CA4OVrkMznEcdu7cid69e6N9+/YYP3482rZti5KSEqSnp+PgwYMYN24cv3bUp59+ihMnTiAsLAyTJ0+Gj48PLl26hO+++w7NmzdHaWlpZR85Kc9Qt9sR7RQWFrJNmzax4OBg5ujoyMzMzJiVlRXz8/NjU6ZMYZcvX1a7365du1hgYCCztbVlAoGANW3alPXv31/tOkqvr7fD2Kvbcrdt26ZUXlpayjZs2MA6d+7MrKysmIWFBfPw8GBDhw5le/bs4etVdkt/fn4+mzdvHnN3d2cCgYB5eHiwqKgoduvWLbX7Xb58mXXt2pU1aNBA5fZWdbfoKmzbto0BYABYSkqK2jqMla1bMnz4cObk5MTMzc2Zk5MTCwgIYEuWLFG5HVcdTTEojq/u2Jr22bFjB+vUqRMTiURMJBKxzp07s127dqk97okTJ1inTp2YUChkDRs2ZOPHj2dZWVka/11PnDjBBgwYwBwcHJi5uTlzdXVlQUFBbNWqVaygoICvR8sDEGOg6IcUL47jmLW1NWvZsiUbMWIE+/bbb1lhYaHSPur6nq1bt7J+/foxFxcXJhAImKOjI+vZs6dSn8XYq+UBnj17xsaPH88aNmzIhEIh69y5Mzt58qRKfOp+h//44w82YMAAZmdnxxo0aMC6dOnCDh06xKKjoxkAfomP17Vv354BYHv37tX4eWRkZLCpU6cyT09PJhAImFgsZm3btmUffvghu3HjhlLd27dvs8GDBzNra2tmZWXF+vbty65evUq/21XAMVZDs0kJIYQQIzZ+/Hh88803NXaTRXldunRBeno6MjIylOYnEcOjOUqEEEKIAf3888+4fPkyIiIiKEkyQjRHiRBCCDGAH374AWlpaVi5ciWsra0xffp0Q4dE1KBEiRBCCDGAxYsX4/z58/Dy8sLevXvh7Oxs6JCIGjRHiRBCCCFEA5qjRAghhBCiASVKhBBCCCEaUKKkBcYY8vLyDHLLKCHE+Lx48QJNmjQBx3H45ZdflLYlJCTAy8sLFhYWaNeuHY4cOaJz+9TnEGI8KFHSwvPnz2Fra1tjj7IghBi3JUuWqF3dODExEZMmTcLIkSNx/PhxBAQEYMiQIbh06ZJO7VOfQ4jxoMncWsjLy4OtrS2kUilsbGwMHQ4hxIBSU1PRsWNHrFq1CpGRkbhy5Qo6duwIAPD29kaHDh2wa9cuvn7Xrl0hFotx7NgxrY9BfQ4hxoNGlAghRAfTpk1DZGQkvL29lcrv37+PO3fuICwsTKl81KhROHPmDD10mJBayigSpdTUVPTt2xeWlpZwdnbG3LlzUVxcXOl+jDEsX74cbm5uEIlECAgIqHCIWy6Xo0OHDuA4Dvv27dPnKRBC6oF9+/bhjz/+wKJFi1S2paamAgB8fHyUyn19fVFcXIy0tLQaiZEQol8GT5QkEgl69+6N4uJiJCcnY9myZdiyZQtmzpxZ6b4rVqxAdHQ0ZsyYgSNHjsDFxQUhISEan2C/efNmPHr0SN+nQAipB/Lz8zFz5kwsW7ZM7eUwiUQCABCLxUrldnZ2AICcnByNbRcVFSEvL0/pRQgxDgZPlDZt2oS8vDwcOHAA/fr1Q0REBD777DNs2rQJjx8/1rhfYWEh4uLiMGvWLMyYMQN9+vRBYmIi7O3tER8fr1L/2bNnWLhwIeLi4qrzdAghddSnn34KJycnvPfee3pvOy4uDra2tvyradOmej8GIaRqDJ4oHT9+HMHBwbC3t+fLwsLCIJfLcerUKY37XbhwAXl5eUrzAQQCAYYOHap20mRUVBSCgoIQFBSk3xMghNR5Dx48wKpVqxAbGwupVIrc3Fy8ePECQNlSAS9evOBHjqRSqdK+ipGm8n3c66KioiCVSvlXRkZGNZ0JIURXBn/WW2pqKiIiIpTKxGIxXFxc+Gv+mvYD1M8HePjwIQoKCiASiQCUPZl5165duHHjhp6jJ4TUB2lpaSguLsbbb7+tsi0oKAidO3fm73RLTU1VmuidmpoKgUAAT09Pje0LhUIIhUL9B04IeWMGT5QkEonKNX2g7Lp+Rdf0JRIJhEIhLCwsVPZjjEEikUAkEkEul2Pq1KmYNWsWPDw8kJ6eXmlMRUVFSneo0HwBosmLF9fw5Ml2uLktgEDQ0NDhkGri7++PlJQUpbLffvsNM2bMwKZNm/Cvf/0Lnp6e8PLyQlJSEgYPHszX27NnD/r06QOBQFDTYRNC9MDgiVJ1++qrr/DkyRN8/PHHWu8TFxeH2NjYaoyK1AUyWSF+/30Aiosfo7DwAdq0STZ0SKSaiMViBAYGqt3WoUMHtG/fHgAQExODMWPGoHnz5ggKCsKePXtw+fJl/PjjjzUYLSFEnww+R8nOzk7lmj5QNmJU0TV9Ozs7FBUVobCwUGU/juNgZ2eHFy9eYP78+Vi4cCGKi4uRm5vLjw7l5+drHCmi+QJEG1LpjyguLrvh4NmzAygtpZHH+i48PBxbt27Frl270K9fP/z00084cOAAAgICDB0aIaSKDD6i5OPjozIXSSqVIjMzU2X+0ev7AcDt27fRrl07vjw1NZVfVyk9PR3Z2dmIjIxEZGSk0v7jxo2Dk5MTnjx5otI2zRcg2nj+/Mpr7/8HO7tAg8RCal5gYKDaZ7FNmDABEyZMMEBEhJDqYPBEqX///li2bBlyc3P5uUpJSUkwMTFBSEiIxv26du0KGxsbJCUl8YlSSUkJkpOTMWDAAACAs7OzyryCJ0+eIDw8HDExMejbt2/1nBSpF54//+W191coUSKEkDrG4IlSZGQk1q1bh9DQUMyfPx+PHj3CnDlzEBkZCVdXV75enz598ODBA9y9excAYGFhgaioKMTExMDR0RFt27bFhg0bkJ2djdmzZ/N1Xp9XoJjM3bp1a3Tt2rVGzpHUTfn5ZSOhtrY9IJWeQ37+bQNHRAghRN8MnijZ2dnhzJkzmDZtGkJDQ2FtbY2JEydi6dKlSvVkMpnK07rnzZsHxhji4+ORlZUFf39/nDx5ssLbcAnRB8YYCgvTAQBicW9Ipef494QQQuoOjqm7yE6U0JO8yeuKip7g4kUXACZo1+4Url0LhoWFJ7p0uWfo0EgdQH0OIcbD4He9EVIbKUaPhMLGEIm8AABFRQ/BmMyAURFCCNE3SpQIqYKioocAAAsLdwiFruA4MzBWiqKiTANHRgghRJ8oUSKkCoqLy5aVEAhcwXGmMDd3AgCUlPxtyLAIIYToGSVKhFTBq0TJSelPRTkhhJC6gRIlQqrgVaLkrPRncTGNKBFCSF1CiRIhVaA5UaIRJUIIqUsoUSKkCihRIoSQ+oESJUKqoLj4KQDA3LwRAEAgaPRPOV16I4SQuoQSJUKqoLQ0BwBgbu4AADAzc/inXGKwmAghhOgfJUqE6EgmK4RcXgAAMDe3/+dPOwBASUmOweIihBCif5QoEaKjV6NGJjA1tQYAmJnZ/7ONEiVCCKlLKFEiREeKZMjMzA4cV/YrpBhZohElQgipWyhRIkRHimRIkRwBr0aUZDIpPe+NEELqEEqUCNHRqxGl8omSXbntuTUdEiGEkGpCiRIhOlI3omRiYsbPV6LLb4QQUndQokSIjtSNKJV/TxO6CSGk7qBEiRAdlZSU3fVWfkSp/HsaUSKEkLqDEiVCdFT+rrfyaESJEELqHkqUCNGRujlK5d/TiBIhhNQdlCgRoiPNc5TslLYTQgip/cx03SEnJwdnz57F5cuXkZmZiYKCAjg4OMDb2xs9evRAx44dqyNOQoxG5SNK9Lw3QgipK7ROlP773/9i7dq1OHr0KEpLS+Hm5oaGDRtCKBTi1q1b2LVrF168eAEPDw9MmDAB06ZNg42NTXXGTohBKB5hQne9EUJI3afVpbeQkBAMHjwYdnZ2OHToEHJycpCWloYrV67g/PnzuH79OqRSKW7evIkPPvgAhw4dgqenJ44dO1bd8RNS4xSJEM1RIoSQuk+rEaXAwEAkJSXB1tZWYx2O4+Dj4wMfHx/MnDkT586dQ15ent4CJcQYMCZHaakUAGBmJlbaRnOUCCGk7tEqUZo/f77ODffo0UPnfQgxdjLZSwAMAGBqqnxpWfFeJnte02ERQgipJjpP5lZgjOHOnTvIycmBvb09vLy8wHGcPmMjxOjIZGWjpBxnBhMTC6VtZmZlI66KESdCCCG1X5WWB9iwYQNcXFzQqlUrdO/eHa1atYKrqys2btyo7/gIMSqlpWWjRaam1ipfDMzMbP6pQ5ecCSGkrtB5RGnLli344IMPEB4ejpEjR8LJyQl///039uzZgw8++ADm5uaYOHFidcRKiMEpRpRev+xWvkwmywNjcnAcLVNGCCG1nc6J0ueff47p06djzZo1SuWDBg2Co6Mj4uPjKVEidZZi/pGZmbXKNsWlN4BBJnuptg4hhOjL2bMcAgOZocOo83T+ypuWloZ33nlH7ba3334b6enpbxoTIUZLcVnN1FQ1CTIxEQEwBfBq5IkQQkjtpnOi5OLigosXL6rddunSJbi4uLxxUIQYK8WIkrpLbxzHlZunRBO6CSGkLtD50tuECROwePFiFBUVYfjw4XBycsLTp0+RlJSElStXYtGiRdURJyFGQTGipOmympmZLUpLJTShmxBC6gidR5QWLFiAadOmYeXKlejQoQOaNGmC9u3bY+XKlZg2bRoWLFigcxCpqano27cvLC0t4ezsjLlz56K4uLjS/RhjWL58Odzc3CASiRAQEIBLly4p1bly5Qr69u0LZ2dnCIVCuLm5YcKECXj8+LHOcRJS0YhS+XK69Fb3HDt2DL169YKjoyOEQiE8PT0xc+ZMSKXKo4eHDx9Gu3btYGFhAS8vL2zbts1AERNC9EHnESWO47Bq1SrMnz8fly9fhkQigb29PTp16gQHBwedA5BIJOjduzdatmyJ5ORkPHr0CDNnzkR+fj6+/PLLCvddsWIFoqOjsXz5cvj5+WH9+vUICQnBb7/9Bk9PT759Hx8fTJw4EU5OTrh//z4WL16MK1eu4MqVKxAKhTrHTOqvV3e9aR5RAujSW12Uk5ODzp07Y/r06XBwcMD169cRExOD69ev49SpUwCA8+fPY8iQIZg4cSLWrFmDH374ARMmTIC1tTWGDx9u4DMghFQJM7Bly5YxS0tLlp2dzZdt3ryZmZqaskePHmncr6CggNnY2LCoqCi+rKioiLm7u7PJkydXeMxTp04xAOynn37SKkapVMoAMKlUqlV9Unfdvj2VpaSA3b//idrt1669zVJSwB4//qqGIyOGsGXLFgaA76tCQkJY165dleqEh4czX19fndqlPodoIyXF4P+F1wtajSglJyejd+/eEIvFSE5OrrT+0KFDtU7Ujh8/juDgYNjbv3rAaFhYGCIjI3Hq1CmMHz9e7X4XLlxAXl4ewsLC+DKBQIChQ4dWGqNi5Euby3uElFf5iBItOlmflO9LioqKkJKSgs8++0ypzqhRo7B7926kp6fDw8PDAFESQt6EVonS8OHDcenSJXTq1KnS4WOO4yCTybQOIDU1FREREUplYrEYLi4uSE1NrXA/APDx8VEq9/X1xcOHD1FQUACRSMSXy2QyyGQy3L9/H3PnzkX79u3RvXt3reMkBCi/jpL6OUp06a3uk8lkKCkpwc2bN7F48WIMGjQIHh4euHnzJkpKStT2SUBZn0WJEiG1j1aJUlpaGn/bf1paml4DkEgkEIvFKuV2dnbIydH8FHaJRAKhUAgLC+XnbdnZ2YExBolEopQo9erVCz/99BMAoGPHjjh27BjMzNSfflFREYqKivj3eXk0OkDKVLSOUlk5Teau69zd3fHo0SMAwP/7f/8Pu3btAlDWJwFQ6c/s7OwAoML+jPocQoyXVne9ubu7QyAQACgbMXJ1dYW7u7vKq3Hjxkb7YNyEhARcunQJO3fuRFFREYKDgzV2RnFxcbC1teVfTZs2reFoibGq7K43uvRW9x07dgwXLlzA1q1bcevWLQwcOFCnUXR1qM8hxHjpvDxAs2bNcPXqVbXbrl27hmbNmunUnp2dncrttQD4u+kq2q+oqAiFhYUq+3Ecx3+LU/D29kbnzp0xZswYfP/99/jzzz+xZcsWtW1HRUVBKpXyr4yMDJ3OidRdla2jZGpadulNJqNLb3WVn58fAgICMHHiRBw6dAgpKSk4cOAA3+e83p8pRpoq6s+ozyHEeOmcKDGm+bkyRUVFOt9u7+PjozIXSSqVIjMzU+Va/+v7AcDt27eVylNTU/l1lTRxcnJCkyZNcPfuXbXbhUIhbGxslF6EADSiRJT5+fnB3Nwcd+/eRfPmzWFubq7Sn2maT1ke9TmEGC+t5iilpqbi5s2b/PuzZ8/ir7/+UqpTWFiI3bt38+sXaat///5YtmwZcnNz+Wv7SUlJMDExQUhIiMb9unbtChsbGyQlJaFdu3YAgJKSEiQnJ2PAgAEVHjMjIwMPHjzQOVZCKrvrjeYo1S+XL19GSUkJPD09IRQKERQUhH379uHDDz/k6+zZswe+vr40kZuQWkqrRGnPnj2IjY0FUDZH6eOPP1ZbTywWY/v27ToFEBkZiXXr1iE0NBTz58/Ho0ePMGfOHERGRsLV1ZWv16dPHzx48IAfBbKwsEBUVBRiYmLg6OiItm3bYsOGDcjOzsbs2bOV2m/YsCE6duwIW1tb3L59G6tWrYKTkxMmTJigU6ykfmNMDpnsBQC6660+Gjp0KDp27Ag/Pz+IRCJcu3YNK1euhJ+fH0JDQwEAn3zyCQIDAzFlyhSEhYUhJSUFu3btwp49ewwbPCGkyrRKlD766COMHz8ejDF4enoiOTkZb731llIdgUAAZ2dnnSdz29nZ4cyZM5g2bRpCQ0NhbW2NiRMnYunSpUr1ZDIZSktLlcrmzZsHxhji4+ORlZUFf39/nDx5UmmkqFOnTtiyZQvWr1+PoqIiuLm5YcCAAZg/f36VVhIn9ZciSQJoHaX6qFOnTtizZw+WL18OuVwODw8PTJo0CbNnz+ZvdunevTuSk5OxcOFCJCQkwM3NDV999RVGjBhh4OgJIVXFsYomHanx4MEDuLi48B1DfZCXlwdbW1tIpVKaO1CPFRU9wsWLTcBxZujZs1jtl4L8/Dv4+WdvmJraoEcPGlUiVUN9DtHG2bMcAgN1+i+cVIHOz3pzd3fn/56fn69y1xlQ8d0dhNRW5ddQ0jRyqhhpksmegzFmtMtlEEII0Y7OiRJjDJ9++ik2b96MzMxMtXXedE0RQoxRZXe8AeXnLjHIZC9hZmZVA5ERQgipLjovD/D5559j9erVmDp1KhhjWLBgARYtWgQvLy94eHhg69at1REnIQZX2RpKAGBi0gCKXytFYkUIIaT20jlRSkhIQGxsLObOnQsACA0NRXR0NG7cuAFfX1+NaxMRUtu9GlHSnChxHFfu8htN6CaEkNpO50QpPT0d/v7+MDU1hbm5OXJzc8saMjHBlClTdF4egJDa4tUaShVPrlWMOJWW0ogSIYTUdjonSg4ODnjxouw2aTc3N/zvf//jtz179gz5+fn6i44QI6JIfCq69AYoT+gmhBBSu+k8mbtbt264cuUKBgwYgNGjRyMmJgZPnjyBubk5tm7dij59+lRHnIQYnLYjSrQ6NyGE1B06J0oxMTF49OgRAGD+/PnIzc3F7t27UVBQgL59+2LdunV6D5IQY6DNHCWALr0RQkhdolOixBiDo6Mj/8wioVCItWvXYu3atdURGyFG5dWlNxpRIoSQ+kKnOUolJSVo1KgRTp8+XV3xEGK0KnsgrgLNUSKEkLpDp0RJIBCgSZMmtKAkqZcUiU9lI0p06Y0QQuoOne96mzp1KlavXq320SWE1GXlH2FSEbr0RgghdYfOk7kfPnyIO3fuwM3NDYGBgXByclJ6nhXHcTRnidRJ2jzCpGw7XXojhJC6QudE6ciRIxAKhRAKhbhy5YrKdkqUSF2lzSNMyrbbKNUnhBBSe+mcKKWlpVVHHIQYPRpRIoSQ+kfnOUqE1Fd01xshhNQ/WiVKx48f17nhrKwspcebEFKbMSaHTFb26J7K73qjS2+EEFJXaJUovf/++/D398cXX3zBr8qtjkwmw5kzZzBx4kR4enri6tWreguUEENSJEkAjSgRQkh9otUcpT///BMbNmzAmjVrMGPGDDRt2hR+fn5wdHSEUChEbm4u0tLS8Pvvv6O0tBQDBw7E+fPn0a5du+qOn5AaoUh6OM4MJiYWFdZVjChRokQIIbWfViNKQqEQM2bMwP3793HmzBm8++67KC4uxi+//IIzZ84gLS0N3t7eWLNmDTIyMrBv3z5KkkidUn4NpfLLYaijGFEqLc0DY6zaYyOaeXp64tq1a2q3Xb9+HZ6enjUcESGkttH5rrfAwEAEBgZWQyiEGC9t73grq6O4NCeHXF4AU9MG1RgZqUh6ejqKiorUbsvPz0dGRkYNR0QIqW10TpQIqY+0XUMJAExNLQFwABhKS/MoUaphhYWFyM/P50fz8vLykJOTo1Ln4MGDcHV1NUSIhJBahBIlQrTwakSp8kSJ40xgamoFmez5P/s5V3N0pLwVK1Zg8eLFAMoWwO3Xr5/GujExMTUUFSE14+xZDoGBdMlfnyhRIkQLr9ZQqvzSm6Leq0SJ1KTQ0FB4eHiAMYaIiAgsXLgQzZs3V6ojEAjg6+sLf39/wwRJCKk1KFEiRAulpWUJjzaX3hT1iotpLSVDaNeuHX8zCcdxePvtt9GwYUMDR0UIqa0oUSJEC7qPKNFaSsZg3Lhxhg6BEFLL6fwIk02bNiEvj74lk/pFlzlKZfVoLSVjUFBQgPnz58PLywsNGjSAqampyosQQiqi84jSzJkzMWvWLAwbNgwTJkxAr169qiMuQozKq7vetBtRUlyio0tvhjV16lTs2rUL4eHhaNWqFQQCgaFDIqRa0CTu6qNzovT48WN8++232LZtG4KCguDp6YmIiAiMGzcOjRs3ro4YCTE4GlGqnQ4fPoz4+Hh88MEHhg6FEFJL6XzpTSwWY+rUqfjll1/w22+/4Z133sGaNWvg4eGBt99+G/v370dJSUl1xEqIweg6ovRqjhKNKBmSqakpvLy8DB0GIaQW0zlRKs/Pzw9r1qzBb7/9hm7duuH48eMYMWIEGjdujOjoaBQUFOgrTkIMStcRpVeX3mhEyZAmT56MHTt2GDoMQkgtVuW73hhjOHHiBBISEnDkyBGIxWLMmTMHQ4YMwbFjx7Bu3Tpcv34d+/fv12e8hBhEVdZRKtuPEiVDatCgAc6dO4euXbsiODgYYrFYaTvHcZgxY4ZhgiOE1Ao6J0r37t3D119/jf/85z94/Pgx+vbti2+//RaDBw+GmVlZc126dEHHjh0xatQovQdMiCHouo4SXXozDvPmzQMAPHz4EJcuXVLZTokSIaQyOl96a9myJf7zn//gvffew/3793HixAkMGzaMT5IUfHx80LlzZ63aTE1NRd++fWFpaQlnZ2fMnTsXxcXFle7HGMPy5cvh5uYGkUiEgIAAlc7w9OnTGDVqFDw8PNCgQQO0atUKK1eupHlURCe6jigp5jLRpTfDksvlFb5kMpmhQySEGDmdR5S+++47DBgwACYmFedYXl5eSElJqbQ9iUSC3r17o2XLlkhOTsajR48wc+ZM5Ofn48svv6xw3xUrViA6OhrLly+Hn58f1q9fj5CQEPz222/w9PQEAGzevBn5+flYvHgx3NzccOnSJURHR+PmzZvYtm2b9idO6jXd73qjESVCCKkLdE6UkpOT0bp1azRr1kxl24MHDxAbG4uvv/5a6/YUC1geOHAA9vb2AIDS0lJMmTIF8+fP1/h078LCQsTFxWHWrFn80HmPHj3g5eWF+Ph4bNiwAQCwceNGpccXBAYGQi6XY+HChVi5ciU92oBUijE5ZLIXAKpy1xuNKBnSjz/+WGmdnj17atVWUlISdu7ciV9//RUSiQQtW7bE9OnT8d5774HjOL5eQkICVqxYgYcPH8Lb2xtLly7FO++8U+VzIIQYls6X3r755htkZWWp3fbs2TN88803OrV3/PhxBAcH80kSAISFhUEul+PUqVMa97tw4QLy8vIQFhbGlwkEAgwdOhTHjh3jy9QlQm+99RYYY8jMzNQpVlI/KZIkQJe73ujSmzEIDAxEUFAQAgMD+VdQUJDSS1urV69GgwYNsGrVKhw+fBj9+/fHpEmTsHjxYr5OYmIiJk2ahJEjR+L48eMICAjAkCFD1M6PIoTUDjqPKDHGlL49lffnn3/CwcFBp/ZSU1MRERGhVCYWi+Hi4oLU1NQK9wPK5kKV5+vri4cPH6KgoAAikUjtvufPn4dQKFQ7KkbI6xRrKHGcGUxMLLTahy69GYerV6+qlEkkEpw8eRL79+/H5s2btW7r8OHDSl+8evfujezsbKxevRqffPIJTExMEB0djVGjRmHJkiUAgKCgIPz+++9YvHix0hc4QkjtoVWitHHjRmzcuBFA2V0io0ePVklCCgsLkZ6ejhEjRugUgEQiUbllFwDs7OyQk5NT4X5CoRAWFsr/cdnZ2YExBolEojZR+vPPP7F27VpERkbCyspKbdtFRUUoKiri39Oz7eq38vOTNH1JeJ1iREkme17hlwtSvdq1a6e2PDAwEA0aNMDmzZu1HlXSNDq9detWvHz5EllZWbhz5w5WrFihVGfUqFGYM2cOioqKIBQKdT8JQohBaZUoubq6okOHDgCA69evw9vbG46Ojkp1BAIBfH19MWHCBP1HqSd5eXkYOnQomjVrhqVLl2qsFxcXh9jY2BqMjBgzXe94K6tbNqLEWCnk8iKYmmo3EkVqTteuXbFy5co3auP8+fNo3LgxrK2tce7cOQDqR7mLi4uRlpamso0QYvy0SpQGDx6MwYMH8+8/+eQT/q6yN2VnZwepVKpSLpFIlOYtqduvqKgIhYWFSqNKEokEHMfBzs5OqX5xcTGGDBkCiUSCixcvwtLSUmPbUVFRmDlzJv8+Ly8PTZs21eW0SB2i6xpKAGBq+mq0UibLo0TJCB08eLDCPqYy58+fR2JiIlatWgWgrO8BoDJCruiLKhohp1FsQoyXznOU9H1LvY+Pj8pcJKlUiszMzAq/fSm23b59W2l4PTU1lV9XSUEul2PMmDH49ddfce7cuUqTHqFQSEPkhPdqREn7RInjTGBqagWZ7MU/l+4aVVN0pCKDBg1SKSsuLsbt27fx8OFDfPbZZ1Vq96+//sLIkSMRFBSE6dOnv2mYNIpNiBHTKlGaPn06Zs+eDTc3t0o7BY7jsHbtWq0D6N+/P5YtW4bc3Fz+m1hSUhJMTEwQEhKicb+uXbvCxsYGSUlJfKJUUlKC5ORkDBgwQKnu1KlTcfjwYZw8eRJt27bVOjZCgPIPxLXVaT9TU2vIZC/4/UnNy8vLU5kfZmFhgeDgYAwfPhz9+vXTuc3c3Fz0798fDg4O2L9/P7+mnGLkSCqVwtnZma+vGGmqaPSKRrEJMV5aJUqHDx/GhAkT4Obmhu+++67Ciam6JkqRkZFYt24dQkNDMX/+fDx69Ahz5sxBZGSk0hpKffr0wYMHD3D37l0AZZ1dVFQUYmJi4OjoiLZt22LDhg3Izs7G7Nmz+f2WLVuGTZs2Yc6cORAKhUq36bZq1Qo2NtrPOyH1k0xWdmlYlzlKr+pn0lpKBnT27Fm9tldQUIB33nkHUqkUFy9ehK3tq+RZMcqdmpoKb29vvjw1NRUCgaDC6Qo0ik2I8dIqUUpLS+P/np6ertcA7OzscObMGUybNg2hoaGwtrbGxIkTVSZby2QylJaWKpXNmzcPjDHEx8cjKysL/v7+OHnypFKHpFiLaeXKlSoTN1NSUhAYGKjX8yF1T1VHlBRzmihRMg4FBQX8yLWmpUMqUlpairCwMNy6dQvnzp1D48aNlbZ7enrCy8sLSUlJSnM69+zZgz59+kAgELzxORBCap7Oc5Sqg6+vL06fPl1hHXXfDDmOQ1RUFKKionTajxBdVOWut7L6ZYkSXXozrCNHjiA2NhZXr17ll2p46623EBsbq3KZviJTpkzBkSNHsGrVKuTl5SmNTr/11lsQCoWIiYnBmDFj0Lx5cwQFBWHPnj24fPmyViuEE0KMk1aJUnJysk6NDh06tErBEGKMSkvLLr3pPkfp1VpKxDAOHjyIYcOGoUuXLli9ejWcnJzw5MkTJCUlYdCgQdi/f7/S6E9FFKPTs2bNUtmWlpYGDw8PhIeHIz8/H8uXL8fy5cvh7e2NAwcOICAgQK/nRQipOVolSsOHD9e6QY7j6IncpE55delNtxElxaU3GlEynNjYWISHh2Pnzp1K5R9++CH+/e9/IyYmRutESdtpBxMmTDDq9eQIIbrReY4SIfXNq8ncNKJU26SmpqqslK3w7rvvIjQ0tGYDIoTUOlolSu7u7tUdByFGq6ojSq+e90aJkqHY29vj9u3bapcauX379hstOEkIqR+0SpRycnIgFothYmJS4eqyCtT5kLqkqnOU6NKb4Y0cORLz58+HSCTC8OHDIRaLIZVKkZSUhIULF2LSpEmGDpEQYuS0SpQcHR1x8eJFdOrUCQ0bNqz0AZ80R4nUJVW/640uvRlaXFwcHjx4gP/7v//D+++/D3Nzc5SUlIAxhqFDh2LZsmWGDpEQYuS0SpS+/vprNG/enP87PQmd1CdVv+uNLr0ZmlAoxP79+/HHH3/g3Llz/DMku3fvTqv0E0K0olWiNG7cOP7v48ePr65YCDE6jMn5REfXESXFnCa69Faz/vzzT4waNQpLlizh10lq27atUmJ0/PhxjB8/HklJSXp7wDchpG4yqeqOUqkU58+fR1JSEs6fPw+pVKrPuAgxCjLZCwAMAI0o1RarVq2ClZVVhYtJ9u/fHzY2NoiPj6/ByAghtZHOiZJcLsf8+fPRpEkT9OzZEyNHjkTPnj3RpEkTREVF0fwkUqcoRoM4zgwmJhY67fsqUaIRpZp06tQpREREVFovIiICJ0+erIGICCG1mc6J0pw5cxAfH4+ZM2fi2rVrePLkCa5du4YZM2Zg1apVmDt3bnXESYhBlF9DSde5ea8uvdGIUk169OgRP6eyIs2aNcOjR49qICJC3szZszQv2JB0ftbb9u3bsWTJEsybN48va9SoEdq2bQuRSIT4+HisWrVKr0ESYihVXUMJoEtvhmJlZYWsrKxK6z179gyWlpY1EBEhpDbTeURJJpOhffv2ard16NCBLr2ROqWqd7wBrxIlxoohlxfpNS6iWceOHbFnz55K6yUmJqJjx441EBEhpDbTOVEaPnw4EhMT1W5LTEykB+KSOqWqaygBrxacBOjyW02aOnUq9u7di9jYWLVf3ORyORYvXoykpCR88MEHBoiQEFKbaHXpLTk5mf97r169MH/+fAQFBSE0NBSNGjXC06dPceDAAdy7dw9Lly6ttmAJqWmvLr3pPqLEcaYwMWkAuTz/n8tvDfUcHVFn0KBBmDt3LmJjY7F582b06dMHbm5u4DgODx8+xJkzZ/DkyRPMmTMHAwcONHS4hBAjp1WiNHz4cJWyR48e4b///a9K+XvvvYexY8e+eWSEGIFXk7l1H1ECyuY2FRfn85fwSM1Yvnw5evbsiVWrVmHfvn0oKiq79GlhYYFu3brhq6++Qv/+/Q0cJSEVO3uWQ2AgM3QY9Z5WiVJaWlp1x0GIUXqTEaWy/cQoLn7CJ1yk5gwYMAADBgyATCZDdnY2AMDBwQGmpqYGjowQUptolSi5u7tXdxyEGKVXk7mrOqIk/qedXD1FRHRlamqKRo0aGToMQkgtpfPyAOXl5+ejsLBQpdze3v5NmiXEaLyazF31ESWAEiVCCKmtdE6UGGP49NNPsXnzZmRmZqqtQ0sEkLqCRpQIIaR+03l5gM8//xyrV6/G1KlTwRjDggULsGjRInh5ecHDwwNbt26tjjgJMQjFiNKbzFECKFEihJDaSudEKSEhAbGxsfyjSkJDQxEdHY0bN27A19cXd+/e1XuQhBiKYkSp6ne9if9pJ1dPERFCCKlJOidK6enp8Pf3h6mpKczNzZGbm1vWkIkJpkyZgu3bt+s5REIMRx93vZW1k6uniAghhNQknRMlBwcHvHjxAgDg5uaG//3vf/y2Z8+eIT8/X3/REWJgb76OkhgAJUqEEFJb6TyZu1u3brhy5QoGDBiA0aNHIyYmBk+ePIG5uTm2bt2KPn36VEechBjEmzwUt2w/MQCgpESir5AIIYTUIJ0TpZiYGDx69AgAMH/+fOTm5mL37t0oKChA3759sW7dOr0HSYghyOVFkMvLRkjNzOyq1AaNKBFCSO2mc6Lk7e0Nb29vAIBQKMTatWuxdu1avQdGiKG9GgXiaI4SIYTUU2+04ORff/2FzMxMuLq6onHjxvqKiRCjUFpaliiZmdmB43SezsfvW9ZWrr7CIoQQUoOq1Ptv2bIFbm5ucHd3R5cuXeDm5oamTZti8+bN+o6PEIMpLc0BUPXLbmX7igGUrcfEmFwfYRFCCKlBOidKcXFxiIyMRFBQEA4ePIiLFy/i4MGDCAoKwpQpUxAXF1cdcRJS40pKyhIlc/OqP5Ln1SU7xk8MJ4QQUnvofOlt3bp1mDNnDlasWKFUPnDgQDg5OWHdunWIiorSW4CEGEr5S29VZWIihImJCHJ5AUpLc2FuLtZTdIQQQmqCziNKeXl5CA4OVrstJCQEz58/f+OgCDEG+hhRAmhCNyGE1GY6J0r9+vXD6dOn1W77/vvvq7SOUmpqKvr27QtLS0s4Oztj7ty5KC4urnQ/xhiWL18ONzc3iEQiBAQE4NKlS0p1srKy8OGHH6Jz584QCoWwsrLSOT5SP70aUaJEiRBC6iutLr2VX3174sSJeP/99/H06VOEhoaiUaNGePr0KQ4cOIAffvhB5wndEokEvXv3RsuWLZGcnIxHjx5h5syZyM/Px5dfflnhvitWrEB0dDSWL18OPz8/rF+/HiEhIfjtt9/g6ekJAHj06BESExPRqVMndOzYEdeuXdMpPlJ/6WMyd/n9Fe0RQgipPbRKlDp27AiO4/j3jDF88803+Oabb8BxHBhj/LZ33nkHMplM6wA2bdqEvLw8HDhwAPb2Zd/cS0tLMWXKFMyfPx+urq5q9yssLERcXBxmzZqFGTNmAAB69OgBLy8vxMfHY8OGDQAAPz8//P333wDKFsukRIloS1+X3szNHf5pL/uNYyKEEFKztEqUUlJSqi2A48ePIzg4mE+SACAsLAyRkZE4deoUxo8fr3a/CxcuIC8vD2FhYXyZQCDA0KFDkZyczJeZmFRt/RtC9DGZGwDMzRsCAEpKnr1xTIQQQmqWVolSr169qi2A1NRUREREKJWJxWK4uLggNTW1wv0AwMfHR6nc19cXDx8+REFBAUQikf4DJvUGjSgRQgip8srcN27cwPnz55GTkwN7e3t0794drVu31rkdiUQCsVisUm5nZ4ecHM1zOiQSCYRCISwsLFT2Y4xBIpFUOVEqKipCUVER/z4vj9a/qY9ezVF600SJRpQIIaS20vm6VFFREcLCwuDn54fJkydj8eLFmDx5Mvz8/DBy5Eit7lYzdnFxcbC1teVfTZs2NXRIxAD0denNzMzhn/ZoRKk2u3v3LiIjI+Hv7w8zMzO0adNGbb2EhAR4eXnBwsIC7dq1w5EjR2o4UkKIPumcKM2fPx9Hjx7Fpk2bkJubi4KCAuTm5mLTpk04evQo5s+fr1N7dnZ2kEqlKuUSiURp3pK6/YqKilBYWKiyH8dxsLOr+n9uUVFRkEql/CsjI6PKbZHaiTG5Hi+90YhSXXDjxg0cPXoULVq0QKtWrdTWSUxMxKRJkzBy5EgcP34cAQEBGDJkiMqyJYSQ2kPnRCkxMRFxcXGYNGkSbGxsAAA2NjaYNGkSli5dit27d+vUno+Pj8pcJKlUiszMTJX5R6/vBwC3b99WKk9NTeXXVaoqoVAIGxsbpRepX2Sy5wDKns325pO5aY5SXTBw4EBkZGRg3759aN++vdo60dHRGDVqFJYsWYKgoCBs2rQJ//rXv7B48eIajpYQoi86J0o5OTkaExgfH58K5xWp079/f5w+fRq5ubl8WVJSEkxMTBASEqJxv65du8LGxgZJSUl8WUlJCZKTkzFgwACdYiDkdYrRHxMTEUxN3+ymABpRqhsqu4P2/v37uHPnjtKduAAwatQonDlzRmneIyGk9tA5UfLx8cGOHTvUbtu5c2eFo0DqREZGwtraGqGhoTh16hS2bduGOXPmIDIyUmkNpT59+qBFixb8ewsLC0RFRSE+Ph5r167FDz/8gPDwcGRnZ2P27NlKx9i3bx/27duHmzdvQiaT8e8fPHigU6yk/igufgoAEAic3rgtxYhSaWku5PLSN26PGKeK7sQtLi5GWlqaIcIihLwhne96++STTzBixAikp6dj2LBhcHJywtOnT7Fv3z5cvHhRaYRHG3Z2djhz5gymTZuG0NBQWFtbY+LEiVi6dKlSPZlMhtJS5f9k5s2bB8YY4uPjkZWVBX9/f5w8eZJflVthxIgRat9v27ZN4zpNpH4rKSlLlMzNG71xW6/ummMoLZVAIHB84zaJ8ZFIyib/v34Xr2K+ZEWj7XSnLSHGS+dEaejQoThw4ABiY2Mxa9YsMMbAcRz8/f1x4MABDBw4UOcgfH19NT4/TuHs2bMqZRzHISoqClFRURXuW37lcEK08WpE6c0TJRMTM5iZiVFamouSkmxKlIiKuLg4xMbGGjoMQogaOiVKxcXFOHLkCPz9/fHrr7/i5cuXyM3NhVgshqWlZXXFSEiN0+eIUlk7Df9JlGieUl2lGDmSSqVwdnbmyxUjTRXdxRsVFYWZM2fy7/Py8mhZEkKMhE5zlAQCAUaPHo2HDx8CACwtLdG4cWNKkkido88RJYDWUqoPFHOTXr+LNzU1FQKBQGVKQHl0py0hxqtKk7kViRIhdVV1jCgBQHFxll7aI8bH09MTXl5eKvM09+zZgz59+kAgEBgoMkLIm9B5jlJcXBw+/PBDtGrVCh07dqyOmAgxOEVCo68RJcXdcyUlf+ulPVLz8vPzcezYMQDAgwcPkJeXh3379gEoex6mo6MjYmJiMGbMGDRv3hxBQUHYs2cPLl++jB9//NGQoRNC3oDOidLcuXORnZ2Nzp07w8HBAU5OTuA4jt/OcRyuXbum1yAJqWmvRpTefHkAABAIXAAARUWZemmP1LynT59qvIM2JSUFgYGBCA8PR35+PpYvX47ly5fD29sbBw4cQEBAgCFCJoTogc6JUocOHWgkidR5+p6jJBS6/NMuJUq1lYeHh1Z30E6YMAETJkyogYgIITVB50Rp+/bt1RAGIcaj7DlvZZfe9DVHSTGiRIkSIYTULlonSjdv3sSmTZuQlpaGxo0bY/jw4QgODq7O2AgxiLKH4ZY9500xCftNvbr09lgv7RFCCKkZWiVK58+fR3BwMEpKSuDo6IgTJ05g69atWL9+PSIjI6s7RkJqlGLCtZmZPUxMdB50Vav8iJJikVZCCCHGT6vlAaKjo+Hj44P09HQ8efIE2dnZCA0NxcKFC6s7PkJqXFHRIwCAUOhaSU3tCQRlCxAyVozSUone2iWE1C1nz9KXKGOjVaL0xx9/YNGiRfxKsTY2Nli1ahVycnKQkZFRrQESUtOKisp+poVC/a2MbGpqATOzspWbaZ4SIYTUHlolSs+ePUOTJk2UyhRJ07Nn9EgGUrcUFuo/UQJoiQBCCKmNtF6Zm+ZUkPqiOkaUALrzjRBCaiOtZ6oGBQXBxEQ1r+rRo4dSOcdxkEql+omOEAMoKvoLAGBhod9EidZSIoSQ2kerRCk6Orq64yDEaLwaUWpSSU3dKNorLKRnJRJCSG1BiRIh5TDGqu3Sm4VF2dPjCwvT9NouIYSQ6qP1HCVC6oPSUilkshcA9D+iZGHRDABQWHhfr+0SQgipPpQoEVKOYjTJzMwBpqYN9Nq2SKQYUUoHY3K9tk0IIaR6UKJESDlFRWXzh/Q9kRtQXMozhVxeiOLiJ3pvnxBCiP5RokRIOfn5dwAAIlFLvbdtYmLOJ2AFBXT5jRBCagNKlAgpJz8/FQDQoIFPtbRPE7oJIaR2oUSJkHJeJUre1dL+q3lKNKJECCG1ASVKhJRTUyNK+fl/Vkv7hBBC9IsSJUL+UVKSg5KSpwAAkah6RpQsLdsAAF6+/L1a2ieEEHXOnqXHkFUVJUqE/CM//zaAsvWTzMysquUYVlb+/xzrFmSywmo5BiGEEP2hRImQf+Tn3wJQfaNJgCIJswdjpcjPv1ltxyGEEKIflCgR8o/nz/8HALCyaldtx+A4jh9VevHit2o7DiGEEP2gRImQfzx/fgUAYG39r2o9jiIRo0SJEEKMHyVKhACQyQr4xMXGproTpbcAAHl5l6v1OIQQog5N7NYNJUqEAMjLuwTGiiEQuPK38FcXsTgQAPD8+S8oKcmp1mMRQgh5M5QoEQJAIjkDABCLe4HjqvfbloVFUzRo4AtAzh+XEEKIcaJEiRAA2dnfAQDs7fvXyPHs7fsBAHJyTtbI8QghhFQNJUqk3nv5MhUvX/4BwBQODm/XyDHt7f8fgLIEjdZTIoQQ42UUiVJqair69u0LS0tLODs7Y+7cuSguLq50P8YYli9fDjc3N4hEIgQEBODSpUsq9R4/foxhw4bB2toa9vb2mDhxIvLy8qrjVEgtlJm5FQDg4DAA5ub2NXJMsbgPhMImKCnJQlbWnho5JiHEONHkauNm8ERJIpGgd+/eKC4uRnJyMpYtW4YtW7Zg5syZle67YsUKREdHY8aMGThy5AhcXFwQEhKC+/dfPXC0pKQE/fr1w507d7Br1y5s3LgRJ0+exOjRo6vztEgtUVz8Nx4/3gwAcHWNrLHjmpiYwdV1KgAgI2M15PLSGjs2IYQQ7ZkZOoBNmzYhLy8PBw4cgL192bf50tJSTJkyBfPnz4erq6va/QoLCxEXF4dZs2ZhxowZAIAePXrAy8sL8fHx2LBhAwBg3759uHHjBm7dugVv77IVl+3s7NCvXz/8/PPP6NSpUw2cJTFGjMlx584UyOUvYW3dscbmJym4uk7Cw4fL8fLl73j4cBk8PBbV6PEJIYRUzuAjSsePH0dwcDCfJAFAWFgY5HI5Tp06pXG/CxcuIC8vD2FhYXyZQCDA0KFDcezYMaX2/fz8+CQJAPr27Qt7e3uleqR+KS7Ows2bo/DsWTI4zhwtW26s9rvdXmdu7gAvr/UAgPT0aKSnL6b5SoQQYmQMPqKUmpqKiIgIpTKxWAwXFxekpqZWuB8A+Pj4KJX7+vri4cOHKCgogEgkQmpqqkodjuPg4+NTYftVkZm5HYCMf88YU1Pr9bLK69RsO9q1rdpWTbajWqbduclRXPwU+fm3IZX+F3J5ITjOHD4+22Fj01HN/tWvUaPReP78f/jrr9VIT4/GX399AbE4ECKRJ8zNHcBxApiYCMFx5gB0S+R0T/yqN1EUiVpCLO5RrccghBB9M3iiJJFIIBaLVcrt7OyQk6N5MT6JRAKhUAgLCwuV/RhjkEgkEIlEVWq/qKgIRUVF/HttJ37/+edkyOU0IlBbWFl1QIsWayAWdzdYDBzHoUWLVbC0bIv09E9QVPQXnj3bb7B4qpOz83uUKBHyj7NnOQQGqvuCR4yNwRMlYxQXF4fY2Fid97O37w/GSl4rff1burpv7cplqiMBle9TeRu1LRbVffQRi7m5Ayws3GFr2w2Wln41frlNExeX8XByGoO8vIt4/vwKCgszIJNJIZcXQS4vBmOV3wX6Zqq/w67Ohw0TQkh1MXiiZGdnB6lUqlIukUiU5i2p26+oqAiFhYVKo0oSiQQcx8HOzq7S9ps2baq27aioKKW77vLy8jTWLa9Nm+RK6xCiiYmJOcTinhCLexo6FEIIIf8w+GRudXOFpFIpMjMzVeYWvb4fANy+fVupPDU1lV9XSVP7jDHcvn1bY/tCoRA2NjZKL0IIIYTUPwZPlPr374/Tp08jNzeXL0tKSoKJiQlCQkI07te1a1fY2NggKSmJLyspKUFycjIGDBig1P61a9fw559/8mVnzpxBdna2Uj1CCNGHqi6gSwgxTgZPlCIjI2FtbY3Q0FCcOnUK27Ztw5w5cxAZGam0hlKfPn3QokUL/r2FhQWioqIQHx+PtWvX4ocffkB4eDiys7Mxe/Zsvt7w4cPRunVrDBs2DEeOHMHevXsRERGBt99+m9ZQIoTo1ZssoEsIMU5GMUfpzJkzmDZtGkJDQ2FtbY2JEydi6dKlSvVkMhlKS5VXL543bx4YY4iPj0dWVhb8/f1x8uRJeHp68nXMzc1x4sQJTJ8+HeHh4TAzM8PQoUPx+eef18j5EULqj6ouoEsIMV4GT5SAsrWPTp8+XWGds2fPqpRxHIeoqChERUVVuG/jxo2xf3/dvOWaEGI8NC2gGxkZiVOnTmH8+PGGC44QUiUGv/RGCCF1hboFbrVZQJcQYryMYkTJ2ClWfdZ24UlCyJuxtrY2mjWudFHVBXRfX+RWsaQJ9Tl118uXr/59K/t7+bLK2tClLilTWX9DiZIWnj9/DgBaraVECHlzUqm0Xi3LoWmRW+pz6jpbHf5evqyyNnSpSyrrbyhR0oKrqysyMjIqzToVC1NmZGTUuU6ezq32qo3nZ21tbegQqqSqC+i+vsitXC5HTk4OHBwcauXImq5q48/om6JzNp5zrqy/oURJCyYmJmjSpInW9evyIpV0brVXXT8/Y1DVBXSFQiGEQqFSmbpLeHVdffwZpXM2fjSZmxBC9KSqC+gSQowXJUqEEKIn2i6gSwipPShR0iOhUIjo6GiVIfS6gM6t9qrr52dMFAvompmZITQ0FB9//DEmTpyI1atXGzo0o1Yff0bpnGsPjinufSeEEEIIIUpoRIkQQgghRANKlAghhBBCNKBESQ9SU1PRt29fWFpawtnZGXPnzkVxcbGhw6rQ3bt3ERkZCX9/f5iZmaFNmzZq6yUkJMDLywsWFhZo164djhw5olJHKpViwoQJsLe3h7W1NYYPH47MzMzqPgWNkpKSMHjwYDRp0gSWlpbw9/fH119/jdevMtfGcwOAY8eOoVevXnB0dIRQKISnpydmzpypsn7P4cOH0a5dO1hYWMDLywvbtm1Taau4uBhz5syBs7MzLC0t0bdvX9y+fbumToXUUXW5f9Gkrvc76tSbvoiRN5KTk8NcXFxYz5492YkTJ1hCQgKztbVlU6dONXRoFTp48CBr0qQJGzZsGGvbti1r3bq1Sp3du3czjuPYwoUL2Q8//MDef/99ZmZmxi5evKhUr1+/fqxJkyZsz5497NChQ6xNmzasXbt2rKSkpKZOR0mXLl3YqFGjWGJiIjtz5gz7+OOPmYmJCYuJieHr1NZzY4yxHTt2sDlz5rB9+/axlJQUtm7dOubg4MD69u3L1zl37hwzNTVl77//Pvvhhx/YwoULGcdxLCkpSamt999/n9na2rKEhAR24sQJ1qNHD9a4cWOWm5tb06dF6pC63L9oUtf7HXXqS19EidIbWrZsGbO0tGTZ2dl82ebNm5mpqSl79OiRASOrmEwm4/8+btw4tR2Zl5cXCw8PVyoLCAhg/fv3599fuHCBAWAnT57ky1JTUxnHcWzPnj3VEHnlsrKyVMomTZrEbGxs+POureemyZYtWxgA/mcuJCSEde3aValOeHg48/X15d9nZGQwU1NTtnnzZr4sOzubWVpashUrVtRM4KROqsv9iyb1sd9Rpy72RXTp7Q0dP34cwcHBSo8nCAsLg1wux6lTpwwYWcVMTCr+p79//z7u3LmDsLAwpfJRo0bhzJkz/AM8jx8/DrFYjL59+/J1vL294e/vj2PHjuk/cC00bNhQpeytt97654GRL2v1uWni4OAAoGz4uqioCCkpKRgxYoRSnVGjRuHWrVtIT08HAJw6dQpyuVypnr29PUJCQozu/EjtUpf7F03qY7+jTl3siyhRekOpqakqjyYQi8VwcXFReZRBbaKI/fVz8/X1RXFxMdLS0vh63t7eKs+j8vX1NarzP3/+PBo3bgxra+s6c24ymQyFhYX43//+h8WLF2PQoEHw8PDAvXv3UFJSovb8gFf/tqmpqWjUqBHs7OxU6hnD+ZG6q678DlamLvY76tT1vogSpTckkUjUPpPJzs4OOTk5NR+QnkgkEgCqz5tS/CArzq02nP/58+eRmJiI2bNnA6g75+bu7g6RSIQOHTrAxcUFu3btAlB3zo/UXfXhZ7Su9jvq1PW+iBIlUqf99ddfGDlyJIKCgjB9+nRDh6NXx44dw4ULF7B161bcunULAwcOhEwmM3RYhNR7dbnfUaeu90Vmhg6gtrOzs1O5FRIoy5DLz1uqbRQZv1QqhbOzM1+u+IagODc7OztkZGSo7G8M55+bm4v+/fvDwcEB+/fv5+dN1IVzAwA/Pz8AQEBAAP71r3/B398fBw4cQKtWrQBA5edS3fnVxZ9dYvzqyu+gOnW931GnrvdFNKL0hnx8fFSuoUqlUmRmZqpcl61NFLG/fm6pqakQCATw9PTk692+fVtlrRB1c7dqUkFBAd555x1IpVIcP34ctra2/Lbafm7q+Pn5wdzcHHfv3kXz5s1hbm6u9vyAV+fv4+ODv//+m++0ytcztvMjdUtd/B0E6l+/o05d7IsoUXpD/fv3x+nTp5Gbm8uXJSUlwcTEBCEhIYYL7A15enrCy8sLSUlJSuV79uxBnz59IBAIAJSdv0QiwZkzZ/g6d+7cwdWrVzFgwIAajVmhtLQUYWFhuHXrFk6cOIHGjRsrba/N56bJ5cuXUVJSAk9PTwiFQgQFBWHfvn1Kdfbs2QNfX194eHgAAEJCQmBiYoL9+/fzdSQSCU6dOmV050fqlrr4O1gf+x116mRfZNjVCWo/xYKTvXr1YidPnmRff/01E4vFRr/g5MuXL1lSUhJLSkpigYGBrGnTpvz7p0+fMsYY27VrF+M4ji1atIilpKSwyMhIZmZmxi5cuKDUVr9+/VjTpk3Z3r172Xfffcfatm1r0MXRJk2axACwVatWsYsXLyq9CgsLGWO199wYY2zIkCFs6dKl7PDhw+z06dNs1apVzNnZmfn5+bGioiLG2KtF3iZPnsxSUlLYokWLGMdxbO/evUptvf/++0wsFrOvv/6anTx5kvXq1ctoFnkjtVdd7l80qev9jjr1pS+iREkPbt68yfr06cNEIhFr1KgRmz17Nv9DYqzS0tIYALWvlJQUvt5XX33FWrRowQQCAWvbti07fPiwSlu5ubksIiKCicViZmVlxYYOHWrQxTbd3d01nltaWhpfrzaeG2OMxcXFMX9/f2Ztbc0sLS1Z69at2SeffMKkUqlSvUOHDrG2bdsygUDAWrRowRISElTaKiwsZLNmzWKNGjViIpGIBQcHs1u3btXUqZA6qi73L5rU9X5HnfrSF3GMvXYhlBBCCCGEAKA5SoQQQgghGlGiRAghhBCiASVKhBBCCCEaUKJECCGEEKIBJUqEEEIIIRpQokQIIYQQogElSoQQQgghGlCiRAghhBCiASVKBhYTEwOO49C4cWPI5XKV7d26dQPHcRg/frxO7ebm5iImJgY3b95UKk9PTwfHcSrP3qlpa9asAcdx/PuzZ8+C4zj88ssvNRZDTEwMLly4oFLOcRzi4+NrLA5tPH36FNbW1rh+/XqF9V7/XPXp+fPnsLe3x08//VQt7ZPqR/1NGepvKkb9jTJKlIyAubk5nj17hh9//FGp/MGDB7h48SKsrKx0bjM3NxexsbEqHZeLiwsuXryI3r17v1HM+ta+fXtcvHgRvr6+NXbM2NhYtR3XxYsXMWbMmBqLQxtLly5FYGAg2rRpY7AYrK2tMW3aNMyfP99gMZA3R/0N9TeVof5GGSVKRkAgEKB///7YvXu3UnliYiJat26N5s2b6+1YQqEQXbp0gb29vd7a1AcbGxt06dIFlpaWGusUFBTUSCxdunSBi4tLjRxLGy9evEBCQgIiIiIMHQoiIiLw448/4tq1a4YOhVQR9TfU31SE+htVlCgZifDwcOzbtw8lJSV82a5duzB69Gi19X/88Ud07doVIpEIDRs2REREBHJycgCUDXc3a9YMADBixAhwHAeO45Cenq52KFwul+PTTz+Fh4cHhEIhfHx8sHnzZqXjxcTEwMrKCn/88Qe6d++OBg0aoE2bNjh58mSl55aXl4exY8fC2toajo6OmDt3LkpLS5XqqBsK5zgOy5cvx7x58+Ds7IxGjRoBABhjiI+Ph5eXF4RCITw9PfH555+rHPfWrVsYOnQo7O3t0aBBA7Rr147/z0ExXDxnzhz+8zl79iy/7fWh8M2bN8Pb2xtCoRAeHh749NNPlS5dbN++HRzH4erVq+jfvz8sLS3RsmVL/Oc//1Fq56effkLPnj1ha2sLa2trtG3bFt98802Fn5/i36p///46f65A2bf9KVOmwMXFBUKhEB06dMCpU6eU6jDGsHjxYjg7O8PKygojRozA6dOnlT4XAHB3d0enTp2wffv2CmMmxo36G+pvNKH+Rg1DPpGXMBYdHc0sLS3Zy5cvmaWlJTty5AhjjLEbN24wAOz+/fusXbt2bNy4cfw+v/zyCxMIBCwkJIQdPnyYffXVV6xhw4asU6dOrLS0lBUWFrLk5GQGgC1btoxdvHiRXbx4kRUWFvJP9U5KSuLbmzlzJjM1NWXR0dHs5MmTbNq0aQwAW7dunVKciqddb926lZ04cYIFBQUxS0tL9uzZswrPcdiwYczKyop9+eWX7OjRo+ztt99mjRs3ZuV//FJSUhgAduXKFb4MAHN2dmahoaHsyJEj7ODBg4wxxqZNm8ZEIhH79NNP2ffff89iY2OZubk527hxI7/vnTt3mK2tLWvTpg3bsWMH+/7779nnn3/Oli9fzhhj7OLFiwwAmzZtGv/5KJ54DYCtXLmSb+uLL77g6548eZJFR0czU1NTNmvWLL7Otm3bGADm6+vLVq9ezU6dOsVGjBjBOI5jN2/eZIwxJpVKma2tLXv77bfZ0aNH2enTp9kXX3zB1qxZU+HnN2bMGNajR48qfa5FRUWsY8eOrGnTpiwhIYGdOHGC/fvf/2ZmZmbs999/5+utXbuWcRzH5s2bx06ePMnmzZvHPw29/NPeGWPso48+Yq1bt64wZmKcqL8pQ/2NZtTfqKJEycAUHRdjjI0ePZr9+9//ZowxtnDhQhYQEMAYYyod15AhQ5ibmxsrLi7my06ePMkAsO+++44xxtR2UOrKs7KymLm5Ofv444+V6oWHhzNHR0dWWlrKxwmAHT16VKWtHTt2aDy/GzduMI7jWEJCAl9WWlrKmjVrplXH1apVKyaXy/myu3fvMo7j2ObNm5WOM2/ePObs7MxkMhn/WTo6OvKdkTqvd1DqyktLS1nDhg3ZqFGjlOpERUUxgUDAd9qKjmv9+vV8nRcvXrAGDRqwJUuWMMYYu3LlCgOg1GFow8vLi02dOlWpTNvP9euvv2ZmZmbsxo0bSvt37tyZjRgxgt/PxcWFRUREKNWZMGGC2o5r27ZtjOM4lpeXp9N5EMOj/qYM9TeaUX+jii69GZHw8HAcOnQIBQUFSExMRHh4uNp6586dw+DBg2Fubs6XhYSEQCwW4/z58zod8/LlyygpKcGIESOUykeOHImsrCzcuXOHLzMxMUFwcDD/3sPDAyKRCH/99ZfG9q9cuQLGGIYMGcKXmZqaIjQ0VKv4+vfvr3RXxenTpwEAw4YNQ2lpKf8KDg7GkydPkJGRAQA4c+YMhg8fDhsbG62Oo0lqaiqePXum9vMpLi7Gzz//rFQeEhLC/93S0hLu7u7859O8eXPY2Nhg8uTJ2Lt3L7KysrSKITMzE46Ojkpl2n6up06dQtu2beHl5aX0efXt2xdXrlwBAPz111/IzMzEoEGDlPYdPHiw2ngaNmwIxhj+/vtvreInxon6G1XU31B/o46ZwY5MVPTr1w/m5uZYtGgR0tLSEBYWpraeRCKBk5OTSrmTkxM/b0BbEomE3/f1tgAotScSiSAQCJTqCQQCFBYWamw/MzMT5ubmsLOzU9t+ZV6v9+zZMzDG0LBhQ7X1MzIy4O7ujuzsbLi6ump1jIro8vkAgFgsVnpf/vOxs7PD999/j+joaLz77rsoLS1Fjx49sG7dOrRt21ZjDIWFhRAKhUpl2n6uz549w9WrV5X+k1MwNTXl2wKg0jkq5mi8ThFLTU12JdWD+htV1N9Qf6MOJUpGxNzcHMOGDcPq1avRp08fjb/c9vb2ePr0qUr533//rfPdJYr6T58+RePGjZXaKr+9qlxcXFBSUgKJRKL0S6btt4PX1+iwt7cHx3E4f/68SicKAN7e3gAABwcHPH78+A0if3U8ACqfd1U/n06dOuH48eMoKChASkoKZs+ejdDQUNy7d6/CGHJzc5XKtP1c7e3t4efnh4SEBI3tK+64ef0bp7qfMQB8LA4ODhrbJMaP+htV1N9Qf6MOXXozMhMnTsTAgQPx4YcfaqzTvXt3HDx4UOmOg++//x65ubno3r07APC/1BV9+wLKfpHMzc2RlJSkVL537140atQIXl5eVT0VAMC//vUvAMCBAwf4MplMhoMHD1apvT59+gAAsrOz0bFjR5WXtbU1ACA4OBj79u3D8+fPNbZlbm5e6efj7e0NR0dHtZ+PQCBAp06dqnQeIpEIAwYMwOTJk5GWllZhHN7e3khLS1Mq0/ZzDQ4Oxv379+Hq6qr28wKAJk2awNnZGYcOHVLaV9O/UXp6OmxtbeHs7Kzt6RIjRf1Nxai/KVPf+xsaUTIynTp1qvSXesGCBejatSveeecdTJs2DX///Tc+/vhjdOrUCQMGDAAAODs7QywWY/fu3WjWrBmEQiH8/PxU2mrYsCGmTZuGlStXwsLCAl26dMGxY8ewa9curFu3jh8urapWrVphyJAh+Oijj1BYWAgPDw9s2LABxcXFVWrPy8sLU6dOxbvvvos5c+agc+fOKCkpwZ07d5CSksJ/dtHR0Thy5Ai6d++OuXPnwsXFBTdv3kR+fj7mzp0LAPD19cWhQ4fQo0cPWFpawtvbm+/4FExNTfHJJ59g+vTpaNSoEQYMGIBLly5hxYoV+Oijj3T6lnP06FEkJCRgyJAhcHNzw5MnT7Bu3Tp069YNFhYWGvfr1q0b9u7dq1Sm7ec6duxYbN68GYGBgZg9eza8vLyQm5uLq1evori4GHFxcTA1NUVUVBQ++ugjODk5ISgoCCkpKfz8DBMT5e9Tv/zyC7p27apSTmof6m8qRv1NmXrf3xhsGjlhjCnfhaLJ63ehMMbY2bNnWUBAABMKhcze3p6NHz+eZWdnK9U5cOAA8/X1ZUKhkAFgaWlpau9OkclkbPHixczNzY2Zm5uzli1bsk2bNmkVp62tLYuOjq4wfolEwsaMGcMsLS2Zg4MDmzlzJlu5cqVWd6Gou0tELpezdevWsTZt2jCBQMDs7e1ZQEAAW716tVK9GzdusEGDBjEbGxvWoEED5u/vzxITE/nt586dY+3bt2cikUjpbgt1x924cSNr2bIlMzc3Z25ubmzJkiX8HS+MvboLJSsrS2m/8v92qampbNiwYaxp06ZMKBQyV1dXNn78eJaZmVnh5/frr78yAOzOnTs6f66Mld0mPGPGDP7f18XFhQ0YMIC/NVzxmcbExLBGjRqxBg0asEGDBrE9e/YwAOy3337j6xUXFzN7e3ulu19I7UH9TRnqbzSj/kYVxxhjNZmYEUJ016FDBwwePBiLFi2qsWN+8sknWLVqFbKzsyESiQCUfUsdPXo0Hj16VKVHXRBCjB/1N8ooUSKkFjh06BA/v+D1O1L04datW9i5cye6du0KgUCAs2fPIj4+HpMnT8aaNWv4er1790ZgYGCNdqCEkJpF/Y0ymqNESC0wePBg/Pnnn8jIyECLFi303n6DBg1w8eJFbNy4Ec+fP0fjxo0xZ84cxMTE8HVevHiBXr16YcaMGXo/PiHEeFB/o4xGlAghhBBCNKDbVgghhBBCNKBEiRBCCCFEA0qUCCGEEEI0oESJEEIIIUQDSpQIIYQQQjSgRIkQQgghRANKlAghhBBCNKBEiRBCCCFEA0qUCCGEEEI0+P/Jk0LGXehTqwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -196,7 +196,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAEfCAYAAAC+iOlAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfeklEQVR4nO3deVhT1/Y38O8BScDILJMDIFoGFaFqVZwQQfyhVXGerkNRb7HWtlqH4gROqNehtt6qaFFvnVAcq3WqFlu9DrW9trVqtCqodagKIaiMwnr/yMspMQkmCCTA+jxPHmFnn511AixXztlnH4GICIwxxhhjTIOZsQNgjDHGGDNVXCgxxhhjjOnAhRJjjDHGmA5cKDHGGGOM6cCFEmOMMcaYDlwoMcYYY4zpwIUSY4wxxpgOXCgxxhhjjOnAhRJjjDHGmA5cKLEqz9PTE126dDF2GCZFEASMHj26zNt36dIFnp6e5RYPY5UlLS0NgiAgLi6uwl+rKuYe/ts2HBdKJi4vLw/r1q1DeHg4XFxcIJFIYGNjg8DAQLz//vs4f/68sUOscJmZmYiLi8PJkyeNHQpjrBKdPHkSgiCID3Nzc9ja2sLHxweDBg3Ctm3bkJ+fb+wwWTVXy9gBMN3S0tLQu3dvXLp0CR07dsTEiRNRr1495OTk4PLly9i/fz+++OILfPfddwgJCTF2uBUmMzMTc+fOBQCtn96uXbsGQRAqOSrGWGUZMGAA+vTpAwB49uwZUlNTcfjwYQwfPhwLFizA7t274efnBwDw8PBATk4OatXi/95Y+eDfJBOVm5uLt99+G9euXcPOnTsxcOBAjT6ff/45/vOf/8DKysoIEZZNVlYWbGxsynVMqVRaruMxxkxLQEAA/vGPf6i1LVmyBJs2bcLYsWPRvXt3/P7777CxsYEgCLC0tDRSpKw64lNvJurLL7/E5cuXMWXKFK1FEgDUqlULY8aMQbt27dTaiQjr169HmzZtIJPJIJPJ0L59e+zbt09jjOK5LD/++CO6du2KOnXqwM7ODkOGDMGjR480+ufn5+Nf//oXWrRoASsrK9jY2CAsLAw//PCDWr+S8wR2796NNm3aoHbt2ujduzcA4P79+5gyZQpatmwJBwcHSKVSeHt7Y+bMmcjJyRHH2bRpExo1agQAmDt3rngIvuQ59pfnCXTs2BG2trZq4xS7e/cuzM3NMWLECLX2lJQUREREwN7eHlKpFH5+fliyZAkKCwu1vvcvK47h999/R/fu3WFjYwNHR0eMHTsWz58/R1FREf71r3+hSZMmkEqlaNasGb755hutY23duhVt27YVf3bt2rVDUlKS1r7ffvst2rVrBysrKzg5OSEqKgpPnjzRGefu3bsRHBwMGxsbWFlZ4c0338SXX36p1z4yZmpGjx6Njz/+GHfv3sUXX3wBQPccpa1btyIoKAgODg6wsrKCu7s7+vXrhytXrqiNJwgC0tPTERUVBScnJ1hZWSEoKAgnTpzQK6Zjx45h6NChaNy4sZgjO3fujAMHDqj1W7ZsGQRBwKFDh7SO06JFC7i5uaGgoEBsu3nzJkaPHo169epBIpGgQYMGeO+997T+zd+4cQN9+/aFra0trK2tER4ejl9//VWvfWAvIWaSgoODCQDdvHnT4G1HjRpFgiBQZGQkrVy5klauXEmdO3cmALRmzRq1vgAoMDCQHBwc6KOPPqK1a9fSuHHjSBAE6t69u1rfgoICCg0NpVq1atGIESPoiy++oKVLl1JAQACZm5vTgQMHxL6pqani2La2tjR9+nRat24dJSQkEBHR4cOHycPDgz788ENatWoVff7559SvXz8SBIEiIiLEcW7evEmffvopAaC+ffvS5s2bafPmzbR3716xj4eHBwUHB4vfr1+/ngDQli1bNN6b+fPnEwA6fvy42JaYmEiCIFDLli1p8eLFtHbtWhoxYgQJgkCDBw/W6z338PCgJk2akJOTE40fP57WrFlDI0eOJAA0bNgwmjBhAgUEBNC//vUvWr58Obm7u5NEIqG0tDS1cWbPnk0AyN/fn5YsWUKLFy+m5s2bEwBauHChWt+DBw+Subk5ubq6UmxsLH322WcUHBxMrVq1IgA0atQotf5z5swhABQSEkLLli2jL774gnr37k0AaPr06Wp9g4ODycPDQ699Z6yipKSkEACaP3++zj43b94kANS+fXsi+jv3xMbGin22bNlCAKhDhw60cuVK+vLLL2nu3LkUHBxMe/bsEfuNGjWKAFCrVq0oJCSEPvvsM4qNjSVXV1eqVasWHT58WO21X849RERDhw6lkJAQmjNnDq1bt44WLlxI3t7eBICSkpLEfo8fPyapVEp9+/bV2Kdz584RAIqJiRHbLl68SLa2tuTm5kYzZ86kdevW0dSpU6lOnTrk7e1NmZmZYt87d+6Qk5MTWVhY0MSJE2n16tU0cuRIsrOzo8aNG/PftoG4UDJRjo6OZGNjo9FeVFREjx8/Vns8ffpUfH7fvn0EgFasWKGxba9evcjGxoaysrLENgAkCAL997//Vev77rvvEgC6du2a2LZy5UoCoJZYiIjy8/PpzTffpEaNGoltxcmqVq1adOnSJY1YsrOzqbCwUKN95syZBIB+/PFHjbFKJr6SXk5WSqWSateuTWFhYRp9mzRpQh4eHlRUVERERA8ePCBLS0uKjIwU24otW7aMANDJkye1vu7LMQCg7du3q7X36dOHBEGgwMBAysvLE9svXryokQivX79OZmZmFBAQQM+fPxfbnz17Rs2bNydzc3NKTU0lIqLCwkLy9PSkOnXq0J07d8S+L168oB49emgUSv/73/9IEAT64IMPNGJ///33yczMTK0o50KJmQJ9CiUiImtra3J0dCQi7fmib9++ZG1tTfn5+aWOU1wo9erVSy0/3blzh+rUqUNeXl5q7doKpWfPnmmM+/z5c3rjjTeoadOmau3Dhg2jWrVq0YMHD9Tax4wZQ4Ig0K1bt8S2wMBAatSoEaWnp6v1PX/+PJmbm1NcXJzYNmLECAKg9oGSiGjRokUEgP+2DcSn3kyUUqnUOpfnr7/+gpOTk9rjo48+Ep/fvHkzrKysMHjwYDx58kTtERkZiaysLJw9e1ZtzKCgILRv316trVu3bgCA69evq43t6emJTp06qY2rVCrRu3dvpKamqvUHgJ49e6J58+Ya+2FlZQUzM9WvX0FBATIyMvDkyRPxdV/naj4bGxv069cP3333He7evSu2nz59Gjdu3MDIkSPFyd+7du1Cbm4uxo4di/T0dLX9evvttwEAR48e1et169WrhyFDhqi1BQcHg4jw3nvvQSKRiO2BgYGwsbFRe7/27duHoqIiTJ8+HbVr1xbbZTIZpk6disLCQuzfvx8A8PPPPyMtLQ0jR45Ew4YNxb7m5uaYMWOGRmxbt24FEWHMmDEavxe9e/dGUVERjh8/rtd+MmZqbGxsoFQqdT5vZ2eH7OxsHDhwAEVFRa8cLyYmRsxPANCwYUOMGDECt27dwsWLF0vdViaTiV8/f/4c6enpyM7ORteuXXHlyhU8ffpUfD46OhovXrzApk2bxLanT58iKSkJYWFh4rSD33//Hb/88guGDBmCoqIitb9fLy8vNGnSRMxTRUVF2LdvH5o2bYrIyEi12D766CPUqVPnlfvP1PFkbhNla2uLrKwsjXYHBwd8++23AFRF08sTHK9evYqcnBzUr19f59h//fWX2vdeXl4afRwdHQEA6enpamNnZ2fDycmp1LG9vb3F70t+XVJhYSGWLVuGTZs24fr16xrJKyMjQ+dr6OOdd97Bli1b8NVXX2HmzJkAVPOdBEHAqFGjxH5Xr14FALEo0ubl90sXbe+jvb19qc+VfH9v3boFAPD399foW9x28+ZNtX+bNm2q0bdZs2YabcX7GRAQoDN+ffeTMVOTlZUFW1tbnc/PnDkTp0+fRv/+/WFvb48OHTqga9euGDZsGFxcXDT6a/u7Km67ceMGWrVqpfO10tLSMHv2bBw6dEhrHlMoFLC2tgYAdOrUCc2aNcOXX36J6dOnQxAEbN++Hc+fP8c///lPcZviv99FixZh0aJFWl+3OMc8evQIT58+1boPlpaWaNy4MTIzM3XGzzRxoWSimjdvju+//x63bt1S+09WIpEgLCwMgOoP8mVFRUWwtbXFrl27dI798n+k5ubmOvsSkdrYPj4++Pe//11q3CWVPDJS0pQpU7By5UoMGDAA06dPh7OzMyQSCe7du4fRo0fr9amvNCEhIfDw8BALpZycHCQnJ6NTp05o3Lix2j4BqsnzHh4eWseqV6+eXq9Z2vuo67mS729FKt7PgwcP6rxKUFsxx5ipu3XrFp4+fapxVLykxo0b4/Llyzh58iROnDiBU6dOYcqUKWJB07lz53KJ5dmzZ+jcuTOUSiU+/PBDtGjRAjY2NjAzM8OGDRuwfft2jdz27rvv4oMPPkBKSgq6du2K9evXw8XFRVwOAfj773fixIniBTEvq0pXP1c1XCiZqAEDBuD777/H+vXrdX6C0Mbb2xtyuRxvvvmmeFSovHh7e+Pu3bvo0qXLa69R8p///AedOnVCcnKyWvvhw4c1+pZljSRBEDBy5EjMnz8fZ86cQWpqKrKysjRWqy4+4mVvby8WoMZSXMBdvnxZo+D8/fff1foU/1vyip1ily9f1mjz9vbGkSNH4ObmhpYtW5Zr3IwZU0JCAgCgV69epfazsLBAt27dxNP7v/32G1q3bo05c+ZoLGZ75coVBAUFabQBQJMmTXS+RvHp/sTERERFRak9t379eq3bjBw5Ep988gnWr18PBwcH/PTTT/jkk09gYWEh9il5ZP5VecrZ2RnW1tZac0Nubi5u3rxZ7v83VHc8R8lEjR07Fk2bNsWyZcs0ioli2o5GjBw5EgAwbdo0rc+/zumVkSNHQqFQYOHChVqfN2Rsc3NzjfgKCgq0FoXF59QNPR1XfKnvpk2bsGnTJshkMo2lFgYNGgRLS0vExcXh2bNnGmPk5OSozSmoSJGRkTAzM8OyZcuQm5srtmdnZ2Pp0qUwNzcXP2W2bNlSPGJWch5WUVER4uPjNcYuXg4hJiZG7XLjYkqlEnl5eeW9S4xVqE2bNmH58uVwd3fHhAkTdPZ7/PixRpufnx9kMpna6e9iixYtUjvyc/fuXWzevBmNGjXCm2++qfN1io8cv5zbfvvtN63LswCqaRaDBw/G3r17sXjxYgiCgHHjxqn1CQwMhL+/PxITE8XTcCURkbiPZmZm6NOnD65cuaLxmitXrtSa51jp+IiSibK0tMQ333yDXr16YdCgQejYsSO6d++OevXq4fnz57h58yZ27twJAGprCvXv3x/jxo3D+vXr8euvvyIyMhKurq64f/8+fv75Zxw6dEjrf5T6+PDDD3HixAnExcXhhx9+QHh4OBwcHHD37l2cOXMGt27dEufZvMrAgQOxZs0aDBgwAOHh4cjIyMDWrVu1Hj52dHREkyZNkJSUhMaNG8PFxQUymeyVnyC9vLzQqVMnbN++HdnZ2RgxYoTGRMb69esjISEBUVFR8PHxwahRo+Dl5YWMjAzI5XLs2bMH+/btq5T7OTVp0gQzZ87E/Pnz0a5dOwwfPhxEhC1btuDSpUtYuHCh+LM2NzfH559/jr59+6JNmzaIjo6Gvb099uzZozURtm7dGgsWLMCsWbPQvHlzDB06FA0aNMCjR49w6dIl7N+/H1euXOF7QDGT9Ouvv2LLli0AVBOki1fm/u233+Dn54fdu3eL83606d69O6ytrdG5c2e4u7sjOzsbSUlJyMzMxKxZszT6379/H2FhYejbty8yMjKwdu1a5OTk4N///rfaJO+XdejQAW5ubvj4449x69YteHp64urVq1i/fj38/f3x888/a90uOjoaGzduxI4dOxAWFqZxGlwQBGzZsgVdu3ZFy5YtMXr0aPj7+6OgoABpaWnYt28fRo0aJa4dtWDBAhw5cgSDBg3C+PHj4evri3PnzuHrr79G48aN8eLFi1e95awkY11ux/STm5tLa9eupbCwMHJycqJatWpRnTp1qEWLFvTee+/R+fPntW63bds26tKlC9na2pJEIqGGDRtSRESE1nWUXl5vh+jvy3I3btyo1v7ixQtavXo1tW3blurUqUOWlpbk6elJ/fr1ox07doj9XnVJf3Z2Nk2fPp08PDxIIpGQp6cnxcTE0NWrV7Vud/78eWrfvj3Vrl1b4/JWbZfoFtu4cSMBIACUkpKitQ+Rat2SAQMGkIuLC1lYWJCLiwsFBQXR/PnzNS7H1UZXDMWvr+21dW2zefNmatOmDVlZWZGVlRW1bduWtm3bpvV1jxw5Qm3atCGpVEp169al0aNH0+PHj3X+XI8cOUI9evQgR0dHsrCwoHr16lFISAgtX76ccnJyxH68PAAzBcV5qPghCAJZW1vTG2+8QQMHDqStW7dSbm6u2jbacs/69eupe/fu5ObmRhKJhJycnKhz585qOYvo7+UBnjx5QqNHj6a6deuSVCqltm3b0tGjRzXi0/Y3fOnSJerRowfZ29tT7dq1qV27drR//36KjY0lAOISHy9r2bIlAaCdO3fqfD/u3r1LEyZMIC8vL5JIJGRnZ0f+/v704Ycf0uXLl9X6Xrt2jfr06UPW1tZUp04d6tatG128eJH/tstAIKqk2aSMMcaYCRs9ejT+85//VNpFFiW1a9cOaWlpuHv3rtr8JGZ8PEeJMcYYM6Iff/wR58+fR1RUFBdJJsgkCiW5XI5u3bpBJpPB1dUV06ZNQ35+/iu3IyIsXrwY7u7u4v14zp07p7N/UVERWrVqBUEQSr18njHGSvPs2TM0aNAAgiDgp59+UnsuMTER3t7esLS0REBAAA4ePGikKJmp++6775CYmIiRI0fC2toaH3zwgbFDYloYvVBSKBTo2rUr8vPzsWfPHsTHx2PdunWYPHnyK7ddsmQJYmNjMWnSJBw8eBBubm4IDw/XOaE4ISEB9+7dK+9dYIzVMPPnz9c6ITYpKQnjxo3D4MGDcfjwYQQFBaFv376lfoBjNde8efPw7rvvwszMDDt37oSrq6uxQ2LaGHeKFFF8fDzJZDK1CbMJCQlkbm5O9+7d07ldTk4O2djYqN0rKy8vjzw8PGj8+PEa/R8/fkwODg60YcMGAkDJycnluyOMsRrh6tWrJJPJaO3atQSALly4ID7n7e1NQ4cOVesfFBSkdqNnxljVYvQjSocPH0ZYWBgcHBzEtkGDBqGoqAjHjh3Tud2ZM2eQlZWFQYMGiW0SiQT9+vXDoUOHNPrHxMQgJCQEISEh5bsDjLEaZeLEiYiOjoaPj49a+61bt3D9+nW1nAQAQ4YMwYkTJ3idKsaqKKMXSnK5HL6+vmptdnZ2cHNzg1wuL3U7ABrb+vn54c6dO8jJyRHbfvzxR2zbtg3Lli0rx8gZYzXNrl27cOnSJcyZM0fjudJyUn5+PlJTUyslRsZY+TL6gpMKhQJ2dnYa7fb29qWuxKxQKCCVSmFpaamxHRFBoVDAysoKRUVFmDBhAj7++GN4enpqvT/ay/Ly8tQ+/RER8vPzUbdu3TLdToMxVvVlZ2dj8uTJiI+Ph42NjcbzCoUCADTyWfGNkUvLZ5xzGDNdRj+iVNG+/PJLPHz4EJ988one2yxatAi2trbiw87ODs7OzpV2KwvGmOlZsGABXFxc8M4775T72JxzGDNdRi+U7O3toVQqNdoVCoXavCVt2+Xl5andE6t4O0EQYG9vj2fPnmHGjBmYNWsW8vPzkZmZiaysLACqT4fFX78sJiYGSqVSfJS8lxZjrOa5ffs2li9fjrlz50KpVCIzM1O8VcyzZ8/w7Nkz8cjRy/ms+EhTafmMcw5jpsvop958fX015iIplUo8ePBA41z/y9sBwLVr1xAQECC2y+VycV2ltLQ0pKenIzo6GtHR0Wrbjxo1Ci4uLnj48KHG2FKpFFKp9HV2izFWjaSmpiI/Px89e/bUeC4kJARt27bFtm3bAKhyUMmJ3nK5HBKJROP+XSVxzmHMdBm9UIqIiEB8fDwyMzPFc/vJyckwMzNDeHi4zu3at28PGxsbJCcni4VSQUEB9uzZgx49egAAXF1dkZKSorbdw4cPMXToUMTFxaFbt24Vs1OMsWolMDBQI5f88ssvmDRpEtauXYu33noLXl5e8Pb2RnJyMvr06SP227FjB0JDQyGRSCo7bMZYOTB6oRQdHY1Vq1YhMjISM2bMwL179zB16lRER0ejXr16Yr/Q0FDcvn0bN27cAABYWloiJiYGcXFxcHJygr+/P1avXo309HRMmTJF7PPyXd+LJ3M3a9YM7du3r5R9ZIxVbXZ2dhq5pFirVq3QsmVLAEBcXByGDx+Oxo0bIyQkBDt27MD58+fxww8/VGK0jLHyZPRCyd7eHidOnMDEiRMRGRkJa2trjB07FgsXLlTrV1hYqLES7vTp00FEWLZsGR4/fozAwEAcPXq01EPcjDFWUYYOHYrs7GwsXrwYixcvho+PD/bu3YugoCBjh8YYKyOByAi3Sa5isrKyYGtrC6VSqfWyYMYYK0+ccxgzHUa/6o0xxhhjzFRxocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM61DJ0g4yMDJw8eRLnz5/HgwcPkJOTA0dHR/j4+KBTp05o3bp1RcTJGGOMMVbp9C6Uvv/+e3z22Wf45ptv8OLFC7i7u6Nu3bqQSqW4evUqtm3bhmfPnsHT0xNjxozBxIkTYWNjU5GxM8YYY4xVKL1OvYWHh6NPnz6wt7fH/v37kZGRgdTUVFy4cAGnT5/G77//DqVSiStXruD999/H/v374eXlhUOHDlV0/IwxxhhjFUavI0pdunRBcnIybG1tdfYRBAG+vr7w9fXF5MmTcerUKWRlZZVboIwxxhhjlU0gIjJ2EKYuKysLtra2UCqVfDqRMVbhOOcwZjoMnsxdjIhw/fp1ZGRkwMHBAd7e3hAEoTxjY4wxxhgzqjItD7B69Wq4ubmhadOm6NixI5o2bYp69ephzZo15R0fY4wxxpjRGHxEad26dXj//fcxdOhQDB48GC4uLvjrr7+wY8cOvP/++7CwsMDYsWMrIlbGGGOMsUpl8BGlTz/9FB988AG2bt2K3r17o23btujduze2bt2KiRMnYtmyZQYHIZfL0a1bN8hkMri6umLatGnIz89/5XZEhMWLF8Pd3R1WVlYICgrCuXPn1PpcuHAB3bp1g6urK6RSKdzd3TFmzBjcv3/f4DgZYzXXoUOHEBwcDCcnJ0ilUnh5eWHy5MlQKpVq/Q4cOICAgABYWlrC29sbGzduNFLEjLHyYHChlJqairffflvrcz179kRaWppB4ykUCnTt2hX5+fnYs2cP4uPjsW7dOkyePPmV2y5ZsgSxsbGYNGkSDh48CDc3N4SHh+PWrVtq4/v6+uKzzz7D0aNHERcXhxMnTuD//u//kJeXZ1CsjLGaKyMjA23btsXatWtx9OhRTJ48GV999RUGDhwo9jl9+jT69u2LoKAgHD58GIMHD8aYMWOwa9cuI0bOGHstZCBPT0+aN2+e1ufmzZtHnp6eBo0XHx9PMpmM0tPTxbaEhAQyNzene/fu6dwuJyeHbGxsKCYmRmzLy8sjDw8PGj9+fKmveezYMQJA//3vf/WKUalUEgBSKpV69WeM1Qzr1q0jAGKuCg8Pp/bt26v1GTp0KPn5+Rk0LuccxkyHwUeUxowZg/nz52PWrFn45Zdf8ODBA/z666+YNWsWFixYYPD8pMOHDyMsLAwODg5i26BBg1BUVIRjx47p3O7MmTPIysrCoEGDxDaJRIJ+/fq9cqFLR0dHANDr9B5jjOlSMpfk5eUhJSVF7QgTAAwZMgRXr141+Gg7Y8w0GDyZe+bMmVAoFFi6dCkWLVr090C1amHixImYOXOmQePJ5XJERUWptdnZ2cHNzQ1yubzU7QDA19dXrd3Pzw937txBTk4OrKysxPbCwkIUFhbi1q1bmDZtGlq2bImOHTsaFCtjjBUWFqKgoABXrlzBvHnz0Lt3b3h6euLKlSsoKCjQmpMAVc7y9PQ0QsSMsddhcKEkCAKWL1+OGTNm4Pz581AoFHBwcECbNm3ET1eGUCgUsLOz02i3t7dHRkZGqdtJpVJYWlpqbEdEUCgUaoVScHAw/vvf/wIAWrdujUOHDqFWLe27n5eXpzZ/iVcYZ4wV8/DwwL179wAA//d//4dt27YBUOUkABr5zN7eHgBKzWeccxgzXWVaRwlQHXLu0aMHhg8fjoiIiDIVSZUpMTER586dw5YtW5CXl4ewsDCdyWjRokWwtbUVHw0bNqzkaBljpurQoUM4c+YM1q9fj6tXr6JXr14oLCx8rTE55zBmuvQ6orRnzx507doVdnZ22LNnzyv79+vXT+8A7O3tNS6vBSAeqSptu7y8POTm5qodVVIoFBAEQfwUV8zHxwcA0LZtW4SFhcHDwwPr1q3DlClTNMaOiYlRu+ouKyuLExdjDADQokULAEBQUBDeeustBAYGYu/evWjatCkAaOSz4iNNpeUzzjmMmS69CqUBAwbg3LlzaNOmDQYMGFBqX0EQDPp05evrqzEXSalU4sGDBxrn+l/eDgCuXbuGgIAAsV0ul4vrKuni4uKCBg0a4MaNG1qfl0qlkEqleu8DY6xmatGiBSwsLHDjxg306tULFhYWkMvl6N69u9hH13zKkjjnMGa69CqUUlNT4ebmJn5dniIiIhAfH4/MzEzx3H5ycjLMzMwQHh6uc7v27dvDxsYGycnJYqFUUFCAPXv2oEePHqW+5t27d3H79m14eXmV234wxmqe8+fPo6CgAF5eXpBKpQgJCcGuXbvw4Ycfin127NgBPz8/nsjNWBWlV6Hk4eEhfi0IAtzc3GBhYaHR78WLFwaveB0dHY1Vq1YhMjISM2bMwL179zB16lRER0ejXr16Yr/Q0FDcvn1bPApkaWmJmJgYxMXFwcnJCf7+/li9ejXS09PVTqdFR0ejbt26aN26NWxtbXHt2jUsX74cLi4uGDNmjEGxMsZqrn79+qF169Zo0aIFrKys8Ouvv2Lp0qVo0aIFIiMjAQCzZ89Gly5d8N5772HQoEFISUnBtm3bsGPHDuMGzxgrO4MXXjIzo/Pnz2t97qeffiIzMzODF3O6cuUKhYaGkpWVFTk7O9OUKVMoLy9PrU9wcDB5eHiotRUVFVF8fDw1aNCApFIptW3bls6cOaPWJzExkdq2bUt2dnZkZWVFPj4+9MEHH9DDhw/1jo8Xf2OMLVq0iAIDA8na2ppkMhk1a9aMZs+erZEX9u/fT/7+/iSRSKhJkyaUmJho8GtxzmHMdAhERIYUVmZmZuJ8pZedOXMGYWFhyM7OLqcyzjRkZWXB1tYWSqUSNjY2xg6HMVbNcc5hzHTodepNLpfjypUr4vcnT57En3/+qdYnNzcX27dv53k/jDHGGKs29CqUduzYgblz5wJQzVH65JNPtPazs7PDpk2byi04xhhjjDFj0uvUm1KpRGZmJogIXl5e2LNnD9588021PhKJBK6urhAEocKCNRY+DM4Yq0yccxgzHXodUSpeLRb4e6kAiURSoYExxhhjjBmbwfd6K7lUQHZ2NnJzczX6lLYCLWOMMcZYVWFwoUREWLBgARISEvDgwQOtfV73vkeMMcYYY6bA4Jvifvrpp1ixYgUmTJgAIsLMmTMxZ84ceHt7w9PTE+vXr6+IOBljjDHGKp3BhVJiYiLmzp2LadOmAQAiIyMRGxuLy5cvw8/PT+f90xhjjDHGqhqDC6W0tDQEBgbC3NwcFhYWyMzMVA1kZob33nuPlwdgjDHGWLVhcKHk6OiIZ8+eAQDc3d3xv//9T3zuyZMn1W5VbsYYY4zVXAZP5u7QoQMuXLiAHj16YNiwYYiLi8PDhw9hYWGB9evXIzQ0tCLiZIwxxhirdAYXSnFxcbh37x4AYMaMGcjMzMT27duRk5ODbt26YdWqVeUeJGOMMcaYMRh0U1wigkKhgEwmg1Qqrci4TAqvkssYq0yccxgzHQbNUSooKICzszOOHz9eUfEwxhhjjJkMgwoliUSCBg0a8IKSjDHGGKsRDL7qbcKECVixYoXWW5cwxhhjjFUnBk/mvnPnDq5fvw53d3d06dIFLi4uEARBfF4QBHz22WflGiRjjDHGmDEYNJkbABo1alT6gIKAW7duvVZQpoYnVjLGKhPnHMZMh8FHlFJTUysiDsYYY4wxk2PwHCXGGGOMsZpCr0Lp8OHDBg/8+PFjtdubMMYYY4xVNXoVSu+++y4CAwPx+eefi6tya1NYWIgTJ05g7Nix8PLywsWLF8stUMYYY4yxyqbXHKU//vgDq1evxsqVKzFp0iQ0bNgQLVq0gJOTE6RSKTIzM5GamorffvsNL168QK9evXD69GkEBARUdPyMMcYYYxXG4KveTp48iRMnTuDChQt48OABcnNz4eDgAB8fH3To0AF9+vSBs7NzRcVrFHwFCmNVk5eXF/bu3av1Q9vvv/+O3r17m+RVupxzGDMdBl/11qVLF3Tp0qUCQmGMsfKVlpaGvLw8rc9lZ2fj7t27lRwRY6yqMbhQYowxU5abm4vs7GwUHyzPyspCRkaGRp99+/ahXr16xgiRMVaFcKHEGKtWlixZgnnz5gFQLYDbvXt3nX3j4uIqKSrGWFXFhRJjrFqJjIyEp6cniAhRUVGYNWsWGjdurNZHIpHAz88PgYGBxgmSMVZlcKHEGKtWAgICxMnbgiCgZ8+eqFu3rpGjYoxVVVwoMcaqrVGjRhk7BMZYFWfwLUzWrl2LrKysioiFMcbKVU5ODmbMmAFvb2/Url0b5ubmGg/GGCuNwUeUJk+ejI8//hj9+/fHmDFjEBwcXBFxMcbYa5swYQK2bduGoUOHomnTppBIJMYOiTFWxRhcKN2/fx9bt27Fxo0bERISAi8vL0RFRWHUqFGoX79+RcTIGGNlcuDAASxbtgzvv/++sUNhjFVRBp96s7Ozw4QJE/DTTz/hl19+wdtvv42VK1fC09MTPXv2xO7du1FQUFARsTLGmEHMzc3h7e1t7DAYY1WYwYVSSS1atMDKlSvxyy+/oEOHDjh8+DAGDhyI+vXrIzY2Fjk5OeUVJ2OMGWz8+PHYvHmzscNgjFVhZb7qjYhw5MgRJCYm4uDBg7Czs8PUqVPRt29fHDp0CKtWrcLvv/+O3bt3l2e8jDGmt9q1a+PUqVNo3749wsLCYGdnp/a8IAiYNGmScYJjjFUJBt8U9+bNm9iwYQO++uor3L9/H926dcO4cePQp08f1Kr1d9319ddfY8iQIcjOzi73oCsb36CSsarJzKz0g+aCIKCwsLCSotEf5xzGTIfBp97eeOMNfPXVV3jnnXdw69YtHDlyBP3791crkgDA19cXbdu21WtMuVyObt26QSaTwdXVFdOmTUN+fv4rtyMiLF68GO7u7rCyskJQUBDOnTun1uf48eMYMmQIPD09Ubt2bTRt2hRLly7leVSM1QBFRUWlPgwpkpKTk9GnTx80aNAAMpkMgYGB2LBhA17+rJmYmAhvb29YWloiICAABw8eLO/dYoxVIoMLpa+//hq3b9/GvHnz4OHhobOft7c3UlJSXjmeQqFA165dkZ+fjz179iA+Ph7r1q3D5MmTX7ntkiVLEBsbi0mTJuHgwYNwc3NDeHg4bt26JfZJSEjA06dPMW/ePBw6dAgjR45EbGws/vnPf+q3w4wxBmDFihWoXbs2li9fjgMHDiAiIgLjxo0T7ysHAElJSRg3bhwGDx6Mw4cPIygoCH379tX4AMcYqzoMPvUWFRWF2bNno1GjRhrP3b59G3PnzsWGDRv0Hm/RokVYuHAh7ty5AwcHBwDAunXr8N577+HOnTs67+6dm5sLFxcXTJgwAfHx8QCA/Px8eHt7o0ePHli9ejUA4MmTJxq3L4iPj8esWbPw6NEjvW5twIfBGauafvjhh1f26dy5s15jacsl//znP7Fjxw4oFAqYmZnBx8cHrVq1wrZt28Q+7du3h52dHQ4dOqR33JxzGDMhZCAzMzM6f/681ud++uknMjMzM2i8Tp06UZ8+fdTaFAoFCYJAGzdu1LndiRMnCABdvHhRrX3SpEnk4eFR6mseOnSIANBvv/2mV4xKpZIAkFKp1Ks/Y8w0CIJAZmZmJAiC+DAzM1N7vI7Vq1cTAMrKyqKbN28SANq7d69an88++4wkEgnl5ubqPS7nHMZMh8FXvRERBEHQ+twff/wBR0dHg8aTy+WIiopSa7Ozs4Obmxvkcnmp2wGquVAl+fn54c6dO8jJyYGVlZXWbU+fPg2pVKr1qBhjrPq4ePGiRptCocDRo0exe/duJCQkvNb4p0+fRv369WFtbY1Tp04B0J6T8vPzkZqaqvEcY8z06VUorVmzBmvWrAGgukpk2LBhGkVIbm4u0tLSMHDgQIMCUCgUGpfsAoC9vT0yMjJK3U4qlcLS0lJjOyKCQqHQWij98ccf+OyzzxAdHY06depoHTsvLw95eXni93xvO8aqpoCAAK3tXbp0Qe3atZGQkICQkJAyjX369GkkJSVh+fLlAFQ5CYBGPrO3tweAUvMZ5xzGTJdehVK9evXQqlUrAMDvv/8OHx8fODk5qfWRSCTw8/PDmDFjyj/KcpKVlYV+/fqhUaNGWLhwoc5+ixYtwty5cysxMsZYZWvfvj2WLl1apm3//PNPDB48GCEhIfjggw9eOxbOOYyZLr0KpT59+qBPnz7i97Nnz4aXl1e5BGBvbw+lUqnRrlAoxMndurbLy8tDbm6u2lElhUIBQRDET3HF8vPz0bdvXygUCpw9exYymUzn2DExMWpX3WVlZaFhw4aG7BZjzMTt27ev1ByjS2ZmJiIiIuDo6Ijdu3eLazUV5xylUglXV1exf/GRptJei3MOY6bL4DlKGzduLNcAfH19NeYiKZVKPHjwoNTz+cXPXbt2Te3wulwuF9dVKlZUVIThw4fj559/xqlTp16ZgKRSKaRSaVl2hzFmQnr37q3Rlp+fj2vXruHOnTv417/+ZdB4OTk5ePvtt6FUKnH27FnY2tqKzxXnJLlcDh8fH7FdLpdDIpGU+uGScw5jpkuvQumDDz7AlClT4O7u/srDzIIg4LPPPtM7gIiICMTHxyMzM1M8t5+cnAwzMzOEh4fr3K59+/awsbFBcnKyWCgVFBRgz5496NGjh1rfCRMm4MCBAzh69Cj8/f31jo0xVrVlZWVpXHxiaWmJsLAwDBgwAN27d9d7rBcvXmDQoEG4evUqTp06hfr166s97+XlBW9vb3FhymI7duxAaGgoJBLJ6+0MY8wo9CqUDhw4gDFjxsDd3R1ff/21zqveAMMLpejoaKxatQqRkZGYMWMG7t27h6lTpyI6OlptDaXQ0FDcvn0bN27cAKBKdjExMYiLi4OTkxP8/f2xevVqpKenY8qUKeJ28fHxWLt2LaZOnQqpVKq28FvTpk15jRLGqrGTJ0+W21jvvfceDh48iOXLlyMrK0stl7z55puQSqWIi4vD8OHD0bhxY4SEhGDHjh04f/68Xus5McZMlLHXJyAiunLlCoWGhpKVlRU5OzvTlClTKC8vT61PcHCwxvpIRUVFFB8fTw0aNCCpVEpt27alM2fOaGwHQOsjJSVFr/h4TRPGqr7s7Gy6f/8+ZWdnl2l7Dw8PnbkkNTVV7Pfll19SkyZNSCKRkL+/Px04cMDg1+Kcw5jpMHhl7pqIV8llrOo6ePAg5s6di4sXL4rrwL355puYO3euxml6U8E5hzHTodeptz179hg0aL9+/coUDGOMlad9+/ahf//+aNeuHVasWAEXFxc8fPgQycnJ6N27N3bv3q02n4gxxl6m1xGl4stf9RpQEAy6I3dVwJ/uGKua3nzzTTRr1gxbtmzReO4f//gHLl++rHX1bmPjnMOY6dDriFJqampFx8EYY+VOLpdjyZIlWp8bMWIEIiMjKzcgxliVo1eh5OHhUdFxMMZYuXNwcMC1a9e0LjVy7dq1Mi04yViVIwgAT0cuM70KpYyMDNjZ2cHMzKzU+xUV4+TDGDMFgwcPxowZM2BlZYUBAwbAzs4OSqUSycnJmDVrFsaNG2fsEBljJk6vOUrm5uY4e/Ys2rRpAzMzs1LXUQLAc5QYYyYhLy8Pw4YNw969eyEIAiwsLFBQUAAiQr9+/bB161aTXBGbcw4rV3xE6bXodURpw4YNaNy4sfj1qwolxhgzBVKpFLt378alS5dw6tQp8R6SHTt25FX6GWN64XWU9MCf7hirOv744w8MGTIE8+fP17lO0uHDhzFr1iwkJyeX2w2+yxPnHFau+IjSa9H/uv+XKJVKnD59GsnJyTh9+jSUSmV5xsUYY2WyfPly1KlTp9TFJCMiImBjY4Nly5ZVYmSMlYEhZ3D4bE+FMLhQKioqwowZM9CgQQN07twZgwcPRufOndGgQQPExMRUu/lJjLGq5dixY4iKinplv6ioKBw9erQSImKMVWV6zVEqaerUqVi1ahViYmIwYMAAuLi44K+//kJycjIWL16M/Px8LF++vCJiZYyxV7p37544p7I0jRo1wr179yohIsZYVWZwobRp0ybMnz8f06dPF9ucnZ3h7+8PKysrLFu2jAslxpjR1KlTB48fP35lvydPnkAmk1VCRIyxqszgU2+FhYVo2bKl1udatWrFp94YY0bVunVr7Nix45X9kpKS0Lp160qIiDFWlRlcKA0YMABJSUlan0tKSuIb4jLGjGrChAnYuXMn5s6dq/WDW1FREebNm4fk5GS8//77RoiQMVaV6HXqbc+ePeLXwcHBmDFjBkJCQhAZGQlnZ2c8evQIe/fuxc2bN7Fw4cIKC5Yxxl6ld+/emDZtGubOnYuEhASEhobC3d0dgiDgzp07OHHiBB4+fIipU6eiV69exg6XMWbi9FpHycxM/wNPgiBUu9NvvKYJY1XPoUOHsHz5cpw5cwZ5eXkAAEtLS3To0AGTJ09GRESEkSPUjXMOExmyBpKuvryO0mvR64hSampqRcfBGGPlqkePHujRowcKCwuRnp4OAHB0dIS5ubmRI2OMVSV6FUoeHh4VHQdjjFUIc3NzODs7GzsMxlgVZfDyACVlZ2cjNzdXo93BweF1hmWMMcZqNj5dZjIMLpSICAsWLEBCQgIePHigtU91m6PEGGOMsZrJ4OUBPv30U6xYsQITJkwAEWHmzJmYM2cOvL294enpifXr11dEnIwxxhhjlc7gQikxMRFz587FtGnTAACRkZGIjY3F5cuX4efnhxs3bpR7kIwxxhhjxmBwoZSWlobAwECYm5vDwsICmZmZqoHMzPDee+9h06ZN5RwiY4wxxphxGFwoOTo64tmzZwAAd3d3/O9//xOfe/LkCbKzs8svOsYYY4wZThCMHUG1YfBk7g4dOuDChQvo0aMHhg0bhri4ODx8+BAWFhZYv349QkNDKyJOxhhjjLFKZ3ChFBcXh3v37gEAZsyYgczMTGzfvh05OTno1q0bVq1aVe5BMsYYY4wZg163MKnp+HYCjLHKxDmHiesolfUWJrq+ZgZ7rQUn//zzTzx48AD16tVD/fr1yysmxhhjjDGTYPBkbgBYt24d3N3d4eHhgXbt2sHd3R0NGzZEQkJCecfHGGOM1Sw8EdukGHxEadGiRZg5cyZGjBiBAQMGwMXFBX/99ReSk5Px3nvvISMjAzExMRURK2OMMcZYpTJ4jlK9evUwYsQILFmyROO5qVOnYuvWrbh//365BWgKeL4AY6wycc6p4YqPKPEcJZNg8Km3rKwshIWFaX0uPDwcT58+fe2gGGOMMcZMgcGFUvfu3XH8+HGtz3377be8jhJjjDHGqg295iiVXH177NixePfdd/Ho0SNERkbC2dkZjx49wt69e/Hdd9/xhG7GGGOsNKWdCtNnIndFnkrj03Qa9JqjZGZmBqHED6/kJoIgaHxfWFhYzmEaF88XYIxVJs451Zy+hZKuOUq6ti+POUpcKGnQ64hSSkpKRcfBGGOMMWZy9CqUgoODKzoOxhhjjDGTU6YFJwHg8uXLSEhIwKJFi5CQkIDLly+XOQi5XI5u3bpBJpPB1dUV06ZNQ35+/iu3IyIsXrwY7u7usLKyQlBQEM6dO6fW5/Hjx/jwww/Rtm1bSKVS1KlTp8xxMsZqrhs3biA6OhqBgYGoVasWmjdvrrVfYmIivL29YWlpiYCAABw8eLCSI2WMlSeDC6W8vDwMGjQILVq0wPjx4zFv3jyMHz8eLVq0wODBg/UqcEpSKBTo2rUr8vPzsWfPHsTHx2PdunWYPHnyK7ddsmQJYmNjMWnSJBw8eBBubm4IDw/HrVu3xD737t1DUlISnJ2d0bp1a0N3lzHGAKg+HH7zzTdo0qQJmjZtqrVPUlISxo0bh8GDB+Pw4cMICgpC3759NT7AMVYmgsCrdhsDGWjy5MlUu3ZtWrduHSmVSiIiUiqVtG7dOpLJZPTxxx8bNF58fDzJZDJKT08X2xISEsjc3Jzu3bunc7ucnByysbGhmJgYsS0vL488PDxo/PjxYlthYaH4dWxsLMlkMoPiI1LtHwBxfxljNU/JXDJq1Chq1qyZRh9vb28aOnSoWltQUBBFREQY9Fqcc6q50v7rVU2l/rtPyb4vP1fauLq+fp3YaiiDjyglJSVh0aJFGDdunHg1ho2NDcaNG4eFCxdi+/btBo13+PBhhIWFwcHBQWwbNGgQioqKcOzYMZ3bnTlzBllZWRg0aJDYJpFI0K9fPxw6dEhsMzMr89lFxhgTvSqX3Lp1C9evX1fLSQAwZMgQnDhxAnl5eRUZHmOsghhcRWRkZMDX11frc76+vsjIyDBoPLlcrjGenZ0d3NzcIJfLS92u+DVL8vPzw507d5CTk2NQHIyVSUEBkJfHl9OyUnNSfn4+UlNTjREWY+w1GVwo+fr6YvPmzVqf27Jli84iSheFQgE7OzuNdnt7+1KLLoVCAalUCktLS43tiAgKhcKgOErKy8tDVlaW2oMxAEBODrBtGzBkCNCoEWBpqXpYWAAtWgD//Cfw3XdANVtLjL1acc55OZ/Z29sDQKn5jHMOY6ZLr+UBSpo9ezYGDhyItLQ09O/fHy4uLnj06BF27dqFs2fPIjk5uSLirFSLFi3C3LlzjR0GMyW5ucDKlcCnnwKPHmk+X1gIXLqkeqxfD/j4AHPnAgMHAnz6l70C55waSNdCkhXxOrpe71XxMABlOKLUr18/7N27F9nZ2fj4448xfPhwTJ48GdnZ2di7dy/69u1r0Hj29vZQKpUa7QqFQm3ekrbt8vLykJubq7GdIAjip7iyiImJgVKpFB93794t81isGjh5EvD3B2JiVEWSu7vq6+++A+7dAzIzgdRUYN8+YNw4wNYWuHZNddQpLEz1HKv2inPOy/ms+EhTafmMcw5jpsugI0r5+fk4ePAgAgMD8fPPP+P58+fIzMyEnZ0dZDJZmQLw9fXVmIukVCrx4MGDUk/jFT937do1BAQEiO1yuVxcV6mspFIppFJpmbdn1URREbBgARAXp/qk5eYGLF4MDB2qOtVWkq0t4OkJ9OkDLFumOvq0ZAmQkqI6JffVV4CBHyJY1VKck+RyOXx8fMR2uVwOiUQCLy8vndtyzmHMdBl0REkikWDYsGG4c+cOAEAmk6F+/fplLpIAICIiAsePH0dmZqbYlpycDDMzM4SHh+vcrn379rCxsVE71VdQUIA9e/agR48eZY6HMQCqCdqDBwOxsaoiKSoKkMuBkSM1i6SX2dgAc+YAv/0GdOwIPHsG9OsHzJ/Ph7arMS8vL3h7e2tMP9ixYwdCQ0MhkUiMFBlj7HUYPEfJ19dXLJTKQ3R0NFatWoXIyEjMmDED9+7dw9SpUxEdHY169eqJ/UJDQ3H79m3cuHEDAGBpaYmYmBjExcXByckJ/v7+WL16NdLT0zFlyhS119i1axcA4MqVKygsLBS/f+utt+Dh4VFu+8KqiawsIDJSdTRIIgHWrQNGjTJ8nMaNVWNMnao6wjRnDqBQAMuX86JxVVB2dra49Mjt27eRlZUl5pLg4GA4OTkhLi4Ow4cPR+PGjRESEoIdO3bg/Pnz+OGHH4wZOmPsdRi68NKhQ4fojTfeoAsXLpTbYk5Xrlyh0NBQsrKyImdnZ5oyZQrl5eWp9QkODiYPDw+1tqKiIoqPj6cGDRqQVCqltm3b0pkzZzTGB6D1sXHjRr3i48XfapCsLKK2bVWLrllbE504UT7jrlr190Jx//wnUYnFC1nVkJqaqjOXpKSkiP2+/PJLatKkCUkkEvL396cDBw4Y/Fqcc6oJbYtGFn+v7b/fkgtKvmrBydK219ZXV/9XxVqaGrI4pUBk2LkAf39/3L9/H5mZmXB0dISLiwuEEp+OBUHAr7/+Wg4lnOnIysqCra0tlEqluMgmq4Zyc4EePVRHgRwcgG+/BVq2LL/xN24Exo5VzX36+GNg6VI+ssS04pxTTRRfSfbyFWXFf/evuurt5W21Pa9t++LtXqatf8mxtcVamhpypZzBp95atWrF90xj1U9hoWpOUkoKYG0NHDlSvkUSALzzjmqpgNGjVaffnJ2BadPK9zUYY4yVK4MLpU2bNlVAGIwZ2dSpwNdfqxaPPHgQeOutinmdUaOAJ0+AKVOA6dOBhg1VV9ExxhgzSXoXSleuXMHatWuRmpqK+vXrY8CAAQgLC6vI2BirHOvXqxaSBFSX8XfuXLGv9/HHwIMHqqNKUVHAG28AfJSWMcZMkl5zlE6fPo2wsDAUFBTAyckJ6enpKCoqwhdffIHo6OjKiNOoeL5ANZaSAoSHAy9eAPPmAbNnV87rFhaq1lz65hugfn3gwgXVOk2MgXNOtfGqOUqA7vbi5/SZo1TydUpu9zJD5ijpM/+ohsxR0msdpdjYWPj6+iItLQ0PHz5Eeno6IiMjMWvWrIqOj7GKc/++al7SixfAsGFAZf4+m5ur7hnn56da3btvX9XaTYwxxkyKXoXSpUuXMGfOHDRs2BAAYGNjg+XLlyMjI4OX2mdVU3Fx9PgxEBAAfPll5V+BZmOjmhdlbw+cP6+aJ8UYY8yk6FUoPXnyBA0aNFBrKy6anjx5Uv5RMVbR5s4Fvv8eqFMHSE4GXuOWN6+lSRNg82bV16tWqWJhjDFmMvS+hYnA672w6uLYMWDhQtXX69erJlMbU8+ewCefqL4eMwb44w/jxsMYY0yk12RuMzMz1K5dG2Zm6nXVs2fPNNoFQdC4e3ZVxxMrq5H794HAQNUpt+hoYM0aY0ek8uIF0LUrcOqU6ia6584Z7ygXMzrOOSZG26Tn0r5+ebuKnMytbQL3qyZza5u4Xdrr6lJDJnPrtTxAbGxsRcfBWMV78UK1ZlHxvKTiJQFMQa1aQFKSqoj77Tdg4kTVvCnGGGNGZfAtTGoi/nRXTcyapTrlVqcO8L//Gf+UmzbHj6uWKyBSzV36xz+MHREzAs45JoaPKGlXQ44o6T1HibEq7ehRID5e9bUpzEvSJSwMmDNH9XV0NCCXGzcexhir4bhQYtXfvXuqIzNEquJjyBBjR1S62bOBkBDg+XNg0CAgJ8fYETHGWI3FhRKr3orXS3ryRDX/x5TmJelSvBiliwtw6RLw4YfGjoixmsnQq7219S9uE4TSny+L14mvZFz6bKNt2xqCCyVWvcXFAT/8AFhbAzt3qm56WxW4ugJbt6oS0vr1qq8ZY4xVOi6UWPV15IhprZdkqNDQv+899+67wLVrxo2HMcZqIC6UWPV09+7fV4yNH6+6p1tVNGcO0KWLar7SwIE8X4kxxioZF0qs+snPV02CTk8HWrWqGvOSdCmer+TsrJqv9NFHxo6IMcZqFC6UWPUzfbpqZWs7O9W906RSY0f0etzc/p6vtG6dqnBijBlXaROayzLJ+lXj6TvpujxU9GTtKjYZnAslVr3s3g2sXKn6+j//ARo1Mmo45SYsTLVgJsDzlRhjrBJxocSqj8uXgXfeUX09dSrQu7dx4ylvsbGq+UrPngH9+gFZWcaOiDHGqj0ulFj1kJ6uKoyePlUVE8VXu1UnxfOV6tUDrlwBhg8HCguNHRVjjFVrXCixqq+gABgwALh1S3WqLTkZsLAwdlQVw80N2LdPNe/q4MG/T8cxxhirEFwosarvo4+AkydVN7v9+mugbl1jR1Sx3noL2LBB9fXixTy5m7HyUpZJxi9v86oVrytjInN5TTQvj/ejGuBCiVVtK1YAq1er/ji3bgWaNzd2RJVj2DDgk09UX0dFAd9/b9x4GGOsmuJCiVVdW7YAH3+s+nrJkuo3eftVFi4E+vYF8vJU+/7rr8aOiDHGqh0ulFjVdOTI31e4TZoETJli3HiMwcxMddqtc2fVFXD/939Aaqqxo2KMsWqFCyVW9Xz3HdC/P/DiheoU1LJl1fK8uF4sLYH9+wF/f+DhQ9X94W7fNnZUjDFWbXChxKqWb78FevYEsrOBiAhg40bVkZWazM5OdYStcWPVEaXgYD6yxNir6Pvh6lWTs2uSsq4Ors/K4iashv8Pw6qUI0eAXr2A3FxVsbR3LyCRGDsq01CvnurKvzfeUB1RCg4GbtwwdlSMMVblcaHEqoYvvwTefls1cblPH9WtSqr6PdzKW4MGqmLJxwe4excICgLOnDF2VIwxVqVxocRMW1EREBMDjBunWoV6+HBg504uknQpPrLUqhXw5AnQtSuwY4exo2KMsSqLCyVmup48UV32vnix6vvYWGDzZj7d9iqurqp1lXr3Vh2BGzIEmDZNtYI5Y4wxg3ChxEzT998DAQHAN9+ojh599RUQF1elJwRWKpkM2LNHtXQCACxdCnTqxJO8WfVRMhfoWh3bkDFebivtucpiKvlO23td2nuuz6RubeMYczXzUnChxExLVhbw4YeqU0b37wO+vsCPPwIjRhg7sqrH3Fy1cvnu3aor486fVxWfq1bxzXQZY0xPXCgx00Ckmnvk5wd8/rlqbtI77wA//QS0aGHs6Kq2fv2AX34BOnQAnj4FPvgAaNtWVYAyxhgrFRdKzLiIgAMHVJOPBw9WHUVq0gQ4dkx141eZzNgRVg8eHqrTmWvWALa2wM8/q4qlPn1URRRjjDGtTKJQksvl6NatG2QyGVxdXTFt2jTk5+e/cjsiwuLFi+Hu7g4rKysEBQXh3LlzGv3u37+P/v37w9raGg4ODhg7diyysrIqYleYvp49AxISgMBA1aTjixcBa2tg7lzg0iWgWzdjR1j9mJsD0dGAXA6MGqVaqPPrr4E331Td/mT/ftVq5+y1lDWfMcZMFBlZRkYGubm5UefOnenIkSOUmJhItra2NGHChFduu2jRIpJIJLRixQo6fvw49e3bl6ytrenmzZtin/z8fGrevDk1b96cvv76a0pKSqIGDRpQz5499Y5RqVQSAFIqlWXaR/b/5eQQff010ahRRNbWRKrjSUS1axNNn0705ImxI6xZ5HKioUOJBOHvn0WDBkSTJxOdOUNUWGjsCKuc18lnJdX4nKPrv6bi39OX+7zcv7hfaX1L9uFH+T+0/Sy09dH28zDkZ10JjF4oxcfHk0wmo/T0dLEtISGBzM3N6d69ezq3y8nJIRsbG4qJiRHb8vLyyMPDg8aPHy+2bdu2jQRBILlcLrYdPXqUAND58+f1irHGJ62yys0lOnuWaPFioogIojp11P8YvL2JVqwgKvGzZ0Zw4wbR1KlEjo7qPx8XF6LBg4lWrya6fJnoxQtjR2ryyprPXlbjcw4XSlX/oe1nUUULJUH1usbTuXNnODg4YN++fWJbZmYmHBwcsGHDBowePVrrdt999x1CQ0Nx8eJFBAYGiu2TJ0/Gnj17kJaWBgAYOXIkfvvtN/xSYh4GEaFu3bqYOHEi4uLiXhljVlYWbG1toVQqYWNjY/hOVmd5ecCDB0BamurWGbdvA1evAr/9Bly7pnl1Vb16qhvaDhigulzdVC5/Zapbwxw6pLpK7sAB1cTvkqysgObNVZPr33hDNe+p+OHsDNSqZZy4TUhZ89nLanzOEQTVf5Pa2gHVcyX7vNy/ZF7R1ZdzT8Uq+X6X1kfbz6Pk96/6WVcCo2c2uVyOqKgotTY7Ozu4ublBLpeXuh0A+Pr6qrX7+fnhzp07yMnJgZWVFeRyuUYfQRDg6+tb6vhlUnKOR/EPsrguNpW2V/XPz1cVP7m5mo+cHEChANLTgYwM1SM7u/T3xMFBVRAFB6segYF8E1tTZWmpukKuXz/Vz/vcOdUE8O+/V32dkwNcuKB6aGNrCzg6qh4ODqo5ZzLZ3482bVQFcjVW1nzGGDNdRi+UFAoF7OzsNNrt7e2RkZFR6nZSqRSWlpYa2xERFAoFrKysyjR+Xl4e8vLyxO+VSiUAvHoC+ODBqiKjprGwABo2/PvRuLHqyEOzZqojSCU/KTx7Zrw4mWFatlQ9Jk1SHRm8dQu4fFn1SEsD7txR3VPu/n1Vka1Uqh63bmkfb/hwIDxcr5e2traGUAU/8Zc1n5U551Rnpe178XMl++jqb0hfVn70eY+1/Wxe/r4Sfn6vyjdGL5RM0aJFizB37lyN9oYNGxohmiqgoED1n6Ou/yAZA4CtW1UPPdS0U06cc7SwtX31cyX76OpvSF9WfvR5j7X9bF7+vhJ+fq/KN0YvlOzt7cVPTyUpFAo4ODiUul1eXh5yc3PVjiopFAoIggB7e/tXjq8rCcXExGDy5Mni90VFRcjIyICjo2OpVWdWVhYaNmyIu3fvVrskz/tWdVXF/bO2tjZ2CGVS1nxW1pxTXVTF39HXxftsOvv8qnxj9EJJ21whpVKJBw8eaMwtenk7ALh27RoCAgLEdrlcLq6rVNzv0qVLatsSEa5du4ZuOtbqkUqlkL50d3pth9N1sbGxMalfgvLE+1Z1Vff9MwVlzWevm3Oqi5r4O8r7bPqMPqs2IiICx48fR2ZmptiWnJwMMzMzhJcyn6F9+/awsbFBcnKy2FZQUIA9e/agR48eauP/+uuv+OOPP8S2EydOID09Xa0fY4y9rrLmM8aY6TJ6oRQdHQ1ra2tERkbi2LFj2LhxI6ZOnYro6GjUq1dP7BcaGoomTZqI31taWiImJgbLli3DZ599hu+++w5Dhw5Feno6pkyZIvYbMGAAmjVrhv79++PgwYPYuXMnoqKi0LNnT7Rp06ZS95UxVr3pm88YY1VIpa/cpMWVK1coNDSUrKysyNnZmaZMmUJ5eXlqfYKDg8nDw0OtraioiOLj46lBgwYklUqpbdu2dObMGY3x//zzT+rXrx/VqVOH7OzsKCoqqkIWcsvNzaXY2FjKzc0t97GNjfet6qru+2dq9MlnTF1N/B3lfa46jL7gJGOMMcaYqTL6qTfGGGOMMVPFhRJjjDHGmA5cKJUDuVyObt26QSaTwdXVFdOmTUN+fr6xwyrVjRs3EB0djcDAQNSqVQvNmzfX2i8xMRHe3t6wtLREQEAADh48qNFHqVRizJgxcHBwgLW1NQYMGIAHDx5U9C7olJycjD59+qBBgwaQyWQIDAzEhg0b8PJZ5qq4bwBw6NAhBAcHw8nJCVKpFF5eXpg8ebLG+j0HDhxAQEAALC0t4e3tjY0bN2qMlZ+fj6lTp8LV1RUymQzdunXDtWvXKmtXWDVVnfOLLtU972hTY3KRcadIVX0ZGRnk5uZGnTt3piNHjlBiYiLZ2trShAkTjB1aqfbt20cNGjSg/v37k7+/PzVr1kyjz/bt20kQBJo1axZ999139O6771KtWrXo7Nmzav26d+9ODRo0oB07dtD+/fupefPmFBAQQAUFBZW1O2ratWtHQ4YMoaSkJDpx4gR98sknZGZmRnFxcWKfqrpvRESbN2+mqVOn0q5duyglJYVWrVpFjo6O1K1bN7HPqVOnyNzcnN5991367rvvaNasWSQIAiUnJ6uN9e6775KtrS0lJibSkSNHqFOnTlS/fn3KzMys7N1i1Uh1zi+6VPe8o01NyUVcKL2m+Ph4kslklJ6eLrYlJCSQubk53bt3z4iRla6wsFD8etSoUVoTmbe3Nw0dOlStLSgoiCIiIsTvz5w5QwDo6NGjYptcLidBEGjHjh0VEPmrPX78WKNt3LhxZGNjI+53Vd03XdatW0cAxN+58PBwat++vVqfoUOHkp+fn/j93bt3ydzcnBISEsS29PR0kslktGTJksoJnFVL1Tm/6FIT84421TEX8am313T48GGEhYWp3Z5g0KBBKCoqwrFjx4wYWenMzEr/0d+6dQvXr1/HoEGD1NqHDBmCEydOiDfwPHz4MOzs7NRWOffx8UFgYCAOHTpU/oHroW7duhptb775JrKysvD8+fMqvW+6ODo6AlAdvs7Ly0NKSgoGDhyo1mfIkCG4evUq0tLSAADHjh1DUVGRWj8HBweEh4eb3P6xqqU65xddamLe0aY65iIulF6TXC7XuDWBnZ0d3NzcNG5lUJUUx/7yvvn5+SE/Px+pqaliPx8fH437Ufn5+ZnU/p8+fRr169eHtbV1tdm3wsJC5Obm4n//+x/mzZuH3r17w9PTEzdv3kRBQYHW/QP+/tnK5XI4OzuL90Us2c8U9o9VX9Xlb/BVqmPe0aa65yIulF6TQqHQek8me3t7ZGRkVH5A5UShUADQvN9U8S9y8b5Vhf0/ffo0kpKSxBXbq8u+eXh4wMrKCq1atYKbmxu2bdsGoPrsH6u+asLvaHXNO9pU91zEhRKr1v78808MHjwYISEh+OCDD4wdTrk6dOgQzpw5g/Xr1+Pq1avo1asXCgsLjR0WYzVedc472lT3XFTL2AFUdfb29hqXQgKqCrnkvKWqprjiVyqVcHV1FduLPyEU75u9vT3u3r2rsb0p7H9mZiYiIiLg6OiI3bt3i/MmqsO+AUCLFi0AAEFBQXjrrbcQGBiIvXv3omnTpgCg8Xupbf+q4+8uM33V5W9Qm+qed7Sp7rmIjyi9Jl9fX41zqEqlEg8ePNA4L1uVFMf+8r7J5XJIJBJ4eXmJ/a5du6axVoi2uVuVKScnB2+//TaUSiUOHz4MW1tb8bmqvm/atGjRAhYWFrhx4wYaN24MCwsLrfsH/L3/vr6++Ouvv8SkVbKfqe0fq16q498gUPPyjjbVMRdxofSaIiIicPz4cWRmZoptycnJMDMzQ3h4uPECe01eXl7w9vZGcnKyWvuOHTsQGhoKiUQCQLX/CoUCJ06cEPtcv34dFy9eRI8ePSo15mIvXrzAoEGDcPXqVRw5cgT169dXe74q75su58+fR0FBAby8vCCVShESEoJdu3ap9dmxYwf8/Pzg6ekJAAgPD4eZmRl2794t9lEoFDh27JjJ7R+rXqrj32BNzDvaVMtcZNzVCaq+4gUng4OD6ejRo7Rhwways7Mz+QUnnz9/TsnJyZScnExdunShhg0bit8/evSIiIi2bdtGgiDQnDlzKCUlhaKjo6lWrVp05swZtbG6d+9ODRs2pJ07d9LXX39N/v7+Rl0cbdy4cQSAli9fTmfPnlV7FN+1uqruGxFR3759aeHChXTgwAE6fvw4LV++nFxdXalFixbiXeqLF3kbP348paSk0Jw5c0gQBNq5c6faWO+++y7Z2dnRhg0b6OjRoxQcHGwyi7yxqqs65xddqnve0aam5CIulMrBlStXKDQ0lKysrMjZ2ZmmTJki/pKYqtTUVAKg9ZGSkiL2+/LLL6lJkyYkkUjI39+fDhw4oDFWZmYmRUVFkZ2dHdWpU4f69etn1MU2PTw8dO5bamqq2K8q7hsR0aJFiygwMJCsra1JJpNRs2bNaPbs2aRUKtX67d+/n/z9/UkikVCTJk0oMTFRY6zc3Fz6+OOPydnZmaysrCgsLIyuXr1aWbvCqqnqnF90qe55R5uakosEopdOhDLGGGOMMQA8R4kxxhhjTCculBhjjDHGdOBCiTHGGGNMBy6UGGOMMcZ04EKJMcYYY0wHLpQYY4wxxnTgQokxxhhjTAculBhjjDHGdOBCycji4uIgCALq16+PoqIijec7dOgAQRAwevRog8bNzMxEXFwcrly5otaelpYGQRA07r1T2VauXAlBEMTvT548CUEQ8NNPP1VaDHFxcThz5oxGuyAIWLZsWaXFoY9Hjx7B2toav//+e6n9Xn5fy9PTp0/h4OCA//73vxUyPqt4nG9UON+UjvONOi6UTICFhQWePHmCH374Qa399u3bOHv2LOrUqWPwmJmZmZg7d65G4nJzc8PZs2fRtWvX14q5vLVs2RJnz56Fn59fpb3m3LlztSaus2fPYvjw4ZUWhz4WLlyILl26oHnz5kaLwdraGhMnTsSMGTOMFgN7fZxvON+8CucbdVwomQCJRIKIiAhs375drT0pKQnNmjVD48aNy+21pFIp2rVrBwcHh3IbszzY2NigXbt2kMlkOvvk5ORUSizt2rWDm5tbpbyWPp49e4bExERERUUZOxRERUXhhx9+wK+//mrsUFgZcb7hfFMazjeauFAyEUOHDsWuXbtQUFAgtm3btg3Dhg3T2v+HH35A+/btYWVlhbp16yIqKgoZGRkAVIe7GzVqBAAYOHAgBEGAIAhIS0vTeii8qKgICxYsgKenJ6RSKXx9fZGQkKD2enFxcahTpw4uXbqEjh07onbt2mjevDmOHj36yn3LysrCyJEjYW1tDScnJ0ybNg0vXrxQ66PtULggCFi8eDGmT58OV1dXODs7AwCICMuWLYO3tzekUim8vLzw6aefarzu1atX0a9fPzg4OKB27doICAgQ/3MoPlw8depU8f05efKk+NzLh8ITEhLg4+MDqVQKT09PLFiwQO3UxaZNmyAIAi5evIiIiAjIZDK88cYb+Oqrr9TG+e9//4vOnTvD1tYW1tbW8Pf3x3/+859S37/in1VERITB7yug+rT/3nvvwc3NDVKpFK1atcKxY8fU+hAR5s2bB1dXV9SpUwcDBw7E8ePH1d4XAPDw8ECbNm2wadOmUmNmpo3zDecbXTjfaGHMO/IyotjYWJLJZPT8+XOSyWR08OBBIiK6fPkyAaBbt25RQEAAjRo1Stzmp59+IolEQuHh4XTgwAH68ssvqW7dutSmTRt68eIF5ebm0p49ewgAxcfH09mzZ+ns2bOUm5sr3tU7OTlZHG/y5Mlkbm5OsbGxdPToUZo4cSIBoFWrVqnFWXy36/Xr19ORI0coJCSEZDIZPXnypNR97N+/P9WpU4f+/e9/0zfffEM9e/ak+vXrU8lfv5SUFAJAFy5cENsAkKurK0VGRtLBgwdp3759REQ0ceJEsrKyogULFtC3335Lc+fOJQsLC1qzZo247fXr18nW1paaN29Omzdvpm+//ZY+/fRTWrx4MRERnT17lgDQxIkTxfen+I7XAGjp0qXiWJ9//rnY9+jRoxQbG0vm5ub08ccfi302btxIAMjPz49WrFhBx44do4EDB5IgCHTlyhUiIlIqlWRra0s9e/akb775ho4fP06ff/45rVy5stT3b/jw4dSpU6cyva95eXnUunVratiwISUmJtKRI0foH//4B9WqVYt+++03sd9nn31GgiDQ9OnT6ejRozR9+nTxbugl7/ZORPTRRx9Rs2bNSo2ZmSbONyqcb3TjfKOJCyUjK05cRETDhg2jf/zjH0RENGvWLAoKCiIi0khcffv2JXd3d8rPzxfbjh49SgDo66+/JiLSmqC0tT9+/JgsLCzok08+Ues3dOhQcnJyohcvXohxAqBvvvlGY6zNmzfr3L/Lly+TIAiUmJgotr148YIaNWqkV+Jq2rQpFRUViW03btwgQRAoISFB7XWmT59Orq6uVFhYKL6XTk5OYjLS5uUEpa39xYsXVLduXRoyZIhan5iYGJJIJGLSLk5cX3zxhdjn2bNnVLt2bZo/fz4REV24cIEAqCUMfXh7e9OECRPU2vR9Xzds2EC1atWiy5cvq23ftm1bGjhwoLidm5sbRUVFqfUZM2aM1sS1ceNGEgSBsrKyDNoPZnycb1Q43+jG+UYTn3ozIUOHDsX+/fuRk5ODpKQkDB06VGu/U6dOoU+fPrCwsBDbwsPDYWdnh9OnTxv0mufPn0dBQQEGDhyo1j548GA8fvwY169fF9vMzMwQFhYmfu/p6QkrKyv8+eefOse/cOECiAh9+/YV28zNzREZGalXfBEREWpXVRw/fhwA0L9/f7x48UJ8hIWF4eHDh7h79y4A4MSJExgwYABsbGz0eh1d5HI5njx5ovX9yc/Px48//qjWHh4eLn4tk8ng4eEhvj+NGzeGjY0Nxo8fj507d+Lx48d6xfDgwQM4OTmpten7vh47dgz+/v7w9vZWe7+6deuGCxcuAAD+/PNPPHjwAL1791bbtk+fPlrjqVu3LogIf/31l17xM9PE+UYT5xvON9rUMtorMw3du3eHhYUF5syZg9TUVAwaNEhrP4VCARcXF412FxcXcd6AvhQKhbjty2MBUBvPysoKEolErZ9EIkFubq7O8R88eAALCwvY29trHf9VXu735MkTEBHq1q2rtf/du3fh4eGB9PR01KtXT6/XKI0h7w8A2NnZqX1f8v2xt7fHt99+i9jYWIwYMQIvXrxAp06dsGrVKvj7++uMITc3F1KpVK1N3/f1yZMnuHjxotp/csXMzc3FsQBoJMfiORovK46lsia7sorB+UYT5xvON9pwoWRCLCws0L9/f6xYsQKhoaE6/7gdHBzw6NEjjfa//vrL4KtLivs/evQI9evXVxur5PNl5ebmhoKCAigUCrU/Mn0/Hby8RoeDgwMEQcDp06c1kigA+Pj4AAAcHR1x//7914j879cDoPF+l/X9adOmDQ4fPoycnBykpKRgypQpiIyMxM2bN0uNITMzU61N3/fVwcEBLVq0QGJios7xi6+4efkTp7bfMQBiLI6OjjrHZKaP840mzjecb7ThU28mZuzYsejVqxc+/PBDnX06duyIffv2qV1x8O233yIzMxMdO3YEAPGPurRPX4DqD8nCwgLJyclq7Tt37oSzszO8vb3LuisAgLfeegsAsHfvXrGtsLAQ+/btK9N4oaGhAID09HS0bt1a42FtbQ0ACAsLw65du/D06VOdY1lYWLzy/fHx8YGTk5PW90cikaBNmzZl2g8rKyv06NED48ePR2pqaqlx+Pj4IDU1Va1N3/c1LCwMt27dQr169bS+XwDQoEEDuLq6Yv/+/Wrb6voZpaWlwdbWFq6urvruLjNRnG9Kx/lGpabnGz6iZGLatGnzyj/qmTNnon379nj77bcxceJE/PXXX/jkk0/Qpk0b9OjRAwDg6uoKOzs7bN++HY0aNYJUKkWLFi00xqpbty4mTpyIpUuXwtLSEu3atcOhQ4ewbds2rFq1SjxcWlZNmzZF37598dFHHyE3Nxeenp5YvXo18vPzyzSet7c3JkyYgBEjRmDq1Klo27YtCgoKcP36daSkpIjvXWxsLA4ePIiOHTti2rRpcHNzw5UrV5CdnY1p06YBAPz8/LB//3506tQJMpkMPj4+YuIrZm5ujtmzZ+ODDz6As7MzevTogXPnzmHJkiX46KOPDPqU88033yAxMRF9+/aFu7s7Hj58iFWrVqFDhw6wtLTUuV2HDh2wc+dOtTZ939eRI0ciISEBXbp0wZQpU+Dt7Y3MzExcvHgR+fn5WLRoEczNzRETE4OPPvoILi4uCAkJQUpKijg/w8xM/fPUTz/9hPbt22u0s6qH803pON+o1Ph8Y7Rp5IyI1K9C0eXlq1CIiE6ePElBQUEklUrJwcGBRo8eTenp6Wp99u7dS35+fiSVSgkApaamar06pbCwkObNm0fu7u5kYWFBb7zxBq1du1avOG1tbSk2NrbU+BUKBQ0fPpxkMhk5OjrS5MmTaenSpXpdhaLtKpGioiJatWoVNW/enCQSCTk4OFBQUBCtWLFCrd/ly5epd+/eZGNjQ7Vr16bAwEBKSkoSnz916hS1bNmSrKys1K620Pa6a9asoTfeeIMsLCzI3d2d5s+fL17xQvT3VSiPHz9W267kz04ul1P//v2pYcOGJJVKqV69ejR69Gh68OBBqe/fzz//TADo+vXrBr+vRKrLhCdNmiT+fN3c3KhHjx7ipeHF72lcXBw5OztT7dq1qXfv3rRjxw4CQL/88ovYLz8/nxwcHNSufmFVB+cbFc43unG+0SQQEVVmYcYYM1yrVq3Qp08fzJkzp9Jec/bs2Vi+fDnS09NhZWUFQPUpddiwYbh3716ZbnXBGDN9nG/UcaHEWBWwf/9+cX7By1eklIerV69iy5YtaN++PSQSCU6ePIlly5Zh/PjxWLlypdiva9eu6NKlS6UmUMZY5eJ8o47nKDFWBfTp0wd//PEH7t69iyZNmpT7+LVr18bZs2exZs0aPH36FPXr18fUqVMRFxcn9nn27BmCg4MxadKkcn99xpjp4Hyjjo8oMcYYY4zpwJetMMYYY4zpwIUSY4wxxpgOXCgxxhhjjOnAhRJjjDHGmA5cKDHGGGOM6cCFEmOMMcaYDlwoMcYYY4zpwIUSY4wxxpgOXCgxxhhjjOnw/wCj+ZTs9hwz2wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAEfCAYAAAC+iOlAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfeklEQVR4nO3deVhT1/Y38O8BScDILJMDIFoGFaFqVZwQQfyhVXGerkNRb7HWtlqH4gROqNehtt6qaFFvnVAcq3WqFlu9DrW9trVqtCqodagKIaiMwnr/yMspMQkmCCTA+jxPHmFnn511AixXztlnH4GICIwxxhhjTIOZsQNgjDHGGDNVXCgxxhhjjOnAhRJjjDHGmA5cKDHGGGOM6cCFEmOMMcaYDlwoMcYYY4zpwIUSY4wxxpgOXCgxxhhjjOnAhRJjjDHGmA5cKLEqz9PTE126dDF2GCZFEASMHj26zNt36dIFnp6e5RYPY5UlLS0NgiAgLi6uwl+rKuYe/ts2HBdKJi4vLw/r1q1DeHg4XFxcIJFIYGNjg8DAQLz//vs4f/68sUOscJmZmYiLi8PJkyeNHQpjrBKdPHkSgiCID3Nzc9ja2sLHxweDBg3Ctm3bkJ+fb+wwWTVXy9gBMN3S0tLQu3dvXLp0CR07dsTEiRNRr1495OTk4PLly9i/fz+++OILfPfddwgJCTF2uBUmMzMTc+fOBQCtn96uXbsGQRAqOSrGWGUZMGAA+vTpAwB49uwZUlNTcfjwYQwfPhwLFizA7t274efnBwDw8PBATk4OatXi/95Y+eDfJBOVm5uLt99+G9euXcPOnTsxcOBAjT6ff/45/vOf/8DKysoIEZZNVlYWbGxsynVMqVRaruMxxkxLQEAA/vGPf6i1LVmyBJs2bcLYsWPRvXt3/P7777CxsYEgCLC0tDRSpKw64lNvJurLL7/E5cuXMWXKFK1FEgDUqlULY8aMQbt27dTaiQjr169HmzZtIJPJIJPJ0L59e+zbt09jjOK5LD/++CO6du2KOnXqwM7ODkOGDMGjR480+ufn5+Nf//oXWrRoASsrK9jY2CAsLAw//PCDWr+S8wR2796NNm3aoHbt2ujduzcA4P79+5gyZQpatmwJBwcHSKVSeHt7Y+bMmcjJyRHH2bRpExo1agQAmDt3rngIvuQ59pfnCXTs2BG2trZq4xS7e/cuzM3NMWLECLX2lJQUREREwN7eHlKpFH5+fliyZAkKCwu1vvcvK47h999/R/fu3WFjYwNHR0eMHTsWz58/R1FREf71r3+hSZMmkEqlaNasGb755hutY23duhVt27YVf3bt2rVDUlKS1r7ffvst2rVrBysrKzg5OSEqKgpPnjzRGefu3bsRHBwMGxsbWFlZ4c0338SXX36p1z4yZmpGjx6Njz/+GHfv3sUXX3wBQPccpa1btyIoKAgODg6wsrKCu7s7+vXrhytXrqiNJwgC0tPTERUVBScnJ1hZWSEoKAgnTpzQK6Zjx45h6NChaNy4sZgjO3fujAMHDqj1W7ZsGQRBwKFDh7SO06JFC7i5uaGgoEBsu3nzJkaPHo169epBIpGgQYMGeO+997T+zd+4cQN9+/aFra0trK2tER4ejl9//VWvfWAvIWaSgoODCQDdvHnT4G1HjRpFgiBQZGQkrVy5klauXEmdO3cmALRmzRq1vgAoMDCQHBwc6KOPPqK1a9fSuHHjSBAE6t69u1rfgoICCg0NpVq1atGIESPoiy++oKVLl1JAQACZm5vTgQMHxL6pqani2La2tjR9+nRat24dJSQkEBHR4cOHycPDgz788ENatWoVff7559SvXz8SBIEiIiLEcW7evEmffvopAaC+ffvS5s2bafPmzbR3716xj4eHBwUHB4vfr1+/ngDQli1bNN6b+fPnEwA6fvy42JaYmEiCIFDLli1p8eLFtHbtWhoxYgQJgkCDBw/W6z338PCgJk2akJOTE40fP57WrFlDI0eOJAA0bNgwmjBhAgUEBNC//vUvWr58Obm7u5NEIqG0tDS1cWbPnk0AyN/fn5YsWUKLFy+m5s2bEwBauHChWt+DBw+Subk5ubq6UmxsLH322WcUHBxMrVq1IgA0atQotf5z5swhABQSEkLLli2jL774gnr37k0AaPr06Wp9g4ODycPDQ699Z6yipKSkEACaP3++zj43b94kANS+fXsi+jv3xMbGin22bNlCAKhDhw60cuVK+vLLL2nu3LkUHBxMe/bsEfuNGjWKAFCrVq0oJCSEPvvsM4qNjSVXV1eqVasWHT58WO21X849RERDhw6lkJAQmjNnDq1bt44WLlxI3t7eBICSkpLEfo8fPyapVEp9+/bV2Kdz584RAIqJiRHbLl68SLa2tuTm5kYzZ86kdevW0dSpU6lOnTrk7e1NmZmZYt87d+6Qk5MTWVhY0MSJE2n16tU0cuRIsrOzo8aNG/PftoG4UDJRjo6OZGNjo9FeVFREjx8/Vns8ffpUfH7fvn0EgFasWKGxba9evcjGxoaysrLENgAkCAL997//Vev77rvvEgC6du2a2LZy5UoCoJZYiIjy8/PpzTffpEaNGoltxcmqVq1adOnSJY1YsrOzqbCwUKN95syZBIB+/PFHjbFKJr6SXk5WSqWSateuTWFhYRp9mzRpQh4eHlRUVERERA8ePCBLS0uKjIwU24otW7aMANDJkye1vu7LMQCg7du3q7X36dOHBEGgwMBAysvLE9svXryokQivX79OZmZmFBAQQM+fPxfbnz17Rs2bNydzc3NKTU0lIqLCwkLy9PSkOnXq0J07d8S+L168oB49emgUSv/73/9IEAT64IMPNGJ///33yczMTK0o50KJmQJ9CiUiImtra3J0dCQi7fmib9++ZG1tTfn5+aWOU1wo9erVSy0/3blzh+rUqUNeXl5q7doKpWfPnmmM+/z5c3rjjTeoadOmau3Dhg2jWrVq0YMHD9Tax4wZQ4Ig0K1bt8S2wMBAatSoEaWnp6v1PX/+PJmbm1NcXJzYNmLECAKg9oGSiGjRokUEgP+2DcSn3kyUUqnUOpfnr7/+gpOTk9rjo48+Ep/fvHkzrKysMHjwYDx58kTtERkZiaysLJw9e1ZtzKCgILRv316trVu3bgCA69evq43t6emJTp06qY2rVCrRu3dvpKamqvUHgJ49e6J58+Ya+2FlZQUzM9WvX0FBATIyMvDkyRPxdV/naj4bGxv069cP3333He7evSu2nz59Gjdu3MDIkSPFyd+7du1Cbm4uxo4di/T0dLX9evvttwEAR48e1et169WrhyFDhqi1BQcHg4jw3nvvQSKRiO2BgYGwsbFRe7/27duHoqIiTJ8+HbVr1xbbZTIZpk6disLCQuzfvx8A8PPPPyMtLQ0jR45Ew4YNxb7m5uaYMWOGRmxbt24FEWHMmDEavxe9e/dGUVERjh8/rtd+MmZqbGxsoFQqdT5vZ2eH7OxsHDhwAEVFRa8cLyYmRsxPANCwYUOMGDECt27dwsWLF0vdViaTiV8/f/4c6enpyM7ORteuXXHlyhU8ffpUfD46OhovXrzApk2bxLanT58iKSkJYWFh4rSD33//Hb/88guGDBmCoqIitb9fLy8vNGnSRMxTRUVF2LdvH5o2bYrIyEi12D766CPUqVPnlfvP1PFkbhNla2uLrKwsjXYHBwd8++23AFRF08sTHK9evYqcnBzUr19f59h//fWX2vdeXl4afRwdHQEA6enpamNnZ2fDycmp1LG9vb3F70t+XVJhYSGWLVuGTZs24fr16xrJKyMjQ+dr6OOdd97Bli1b8NVXX2HmzJkAVPOdBEHAqFGjxH5Xr14FALEo0ubl90sXbe+jvb19qc+VfH9v3boFAPD399foW9x28+ZNtX+bNm2q0bdZs2YabcX7GRAQoDN+ffeTMVOTlZUFW1tbnc/PnDkTp0+fRv/+/WFvb48OHTqga9euGDZsGFxcXDT6a/u7Km67ceMGWrVqpfO10tLSMHv2bBw6dEhrHlMoFLC2tgYAdOrUCc2aNcOXX36J6dOnQxAEbN++Hc+fP8c///lPcZviv99FixZh0aJFWl+3OMc8evQIT58+1boPlpaWaNy4MTIzM3XGzzRxoWSimjdvju+//x63bt1S+09WIpEgLCwMgOoP8mVFRUWwtbXFrl27dI798n+k5ubmOvsSkdrYPj4++Pe//11q3CWVPDJS0pQpU7By5UoMGDAA06dPh7OzMyQSCe7du4fRo0fr9amvNCEhIfDw8BALpZycHCQnJ6NTp05o3Lix2j4BqsnzHh4eWseqV6+eXq9Z2vuo67mS729FKt7PgwcP6rxKUFsxx5ipu3XrFp4+fapxVLykxo0b4/Llyzh58iROnDiBU6dOYcqUKWJB07lz53KJ5dmzZ+jcuTOUSiU+/PBDtGjRAjY2NjAzM8OGDRuwfft2jdz27rvv4oMPPkBKSgq6du2K9evXw8XFRVwOAfj773fixIniBTEvq0pXP1c1XCiZqAEDBuD777/H+vXrdX6C0Mbb2xtyuRxvvvmmeFSovHh7e+Pu3bvo0qXLa69R8p///AedOnVCcnKyWvvhw4c1+pZljSRBEDBy5EjMnz8fZ86cQWpqKrKysjRWqy4+4mVvby8WoMZSXMBdvnxZo+D8/fff1foU/1vyip1ily9f1mjz9vbGkSNH4ObmhpYtW5Zr3IwZU0JCAgCgV69epfazsLBAt27dxNP7v/32G1q3bo05c+ZoLGZ75coVBAUFabQBQJMmTXS+RvHp/sTERERFRak9t379eq3bjBw5Ep988gnWr18PBwcH/PTTT/jkk09gYWEh9il5ZP5VecrZ2RnW1tZac0Nubi5u3rxZ7v83VHc8R8lEjR07Fk2bNsWyZcs0ioli2o5GjBw5EgAwbdo0rc+/zumVkSNHQqFQYOHChVqfN2Rsc3NzjfgKCgq0FoXF59QNPR1XfKnvpk2bsGnTJshkMo2lFgYNGgRLS0vExcXh2bNnGmPk5OSozSmoSJGRkTAzM8OyZcuQm5srtmdnZ2Pp0qUwNzcXP2W2bNlSPGJWch5WUVER4uPjNcYuXg4hJiZG7XLjYkqlEnl5eeW9S4xVqE2bNmH58uVwd3fHhAkTdPZ7/PixRpufnx9kMpna6e9iixYtUjvyc/fuXWzevBmNGjXCm2++qfN1io8cv5zbfvvtN63LswCqaRaDBw/G3r17sXjxYgiCgHHjxqn1CQwMhL+/PxITE8XTcCURkbiPZmZm6NOnD65cuaLxmitXrtSa51jp+IiSibK0tMQ333yDXr16YdCgQejYsSO6d++OevXq4fnz57h58yZ27twJAGprCvXv3x/jxo3D+vXr8euvvyIyMhKurq64f/8+fv75Zxw6dEjrf5T6+PDDD3HixAnExcXhhx9+QHh4OBwcHHD37l2cOXMGt27dEufZvMrAgQOxZs0aDBgwAOHh4cjIyMDWrVu1Hj52dHREkyZNkJSUhMaNG8PFxQUymeyVnyC9vLzQqVMnbN++HdnZ2RgxYoTGRMb69esjISEBUVFR8PHxwahRo+Dl5YWMjAzI5XLs2bMH+/btq5T7OTVp0gQzZ87E/Pnz0a5dOwwfPhxEhC1btuDSpUtYuHCh+LM2NzfH559/jr59+6JNmzaIjo6Gvb099uzZozURtm7dGgsWLMCsWbPQvHlzDB06FA0aNMCjR49w6dIl7N+/H1euXOF7QDGT9Ouvv2LLli0AVBOki1fm/u233+Dn54fdu3eL83606d69O6ytrdG5c2e4u7sjOzsbSUlJyMzMxKxZszT6379/H2FhYejbty8yMjKwdu1a5OTk4N///rfaJO+XdejQAW5ubvj4449x69YteHp64urVq1i/fj38/f3x888/a90uOjoaGzduxI4dOxAWFqZxGlwQBGzZsgVdu3ZFy5YtMXr0aPj7+6OgoABpaWnYt28fRo0aJa4dtWDBAhw5cgSDBg3C+PHj4evri3PnzuHrr79G48aN8eLFi1e95awkY11ux/STm5tLa9eupbCwMHJycqJatWpRnTp1qEWLFvTee+/R+fPntW63bds26tKlC9na2pJEIqGGDRtSRESE1nWUXl5vh+jvy3I3btyo1v7ixQtavXo1tW3blurUqUOWlpbk6elJ/fr1ox07doj9XnVJf3Z2Nk2fPp08PDxIIpGQp6cnxcTE0NWrV7Vud/78eWrfvj3Vrl1b4/JWbZfoFtu4cSMBIACUkpKitQ+Rat2SAQMGkIuLC1lYWJCLiwsFBQXR/PnzNS7H1UZXDMWvr+21dW2zefNmatOmDVlZWZGVlRW1bduWtm3bpvV1jxw5Qm3atCGpVEp169al0aNH0+PHj3X+XI8cOUI9evQgR0dHsrCwoHr16lFISAgtX76ccnJyxH68PAAzBcV5qPghCAJZW1vTG2+8QQMHDqStW7dSbm6u2jbacs/69eupe/fu5ObmRhKJhJycnKhz585qOYvo7+UBnjx5QqNHj6a6deuSVCqltm3b0tGjRzXi0/Y3fOnSJerRowfZ29tT7dq1qV27drR//36KjY0lAOISHy9r2bIlAaCdO3fqfD/u3r1LEyZMIC8vL5JIJGRnZ0f+/v704Ycf0uXLl9X6Xrt2jfr06UPW1tZUp04d6tatG128eJH/tstAIKqk2aSMMcaYCRs9ejT+85//VNpFFiW1a9cOaWlpuHv3rtr8JGZ8PEeJMcYYM6Iff/wR58+fR1RUFBdJJsgkCiW5XI5u3bpBJpPB1dUV06ZNQ35+/iu3IyIsXrwY7u7u4v14zp07p7N/UVERWrVqBUEQSr18njHGSvPs2TM0aNAAgiDgp59+UnsuMTER3t7esLS0REBAAA4ePGikKJmp++6775CYmIiRI0fC2toaH3zwgbFDYloYvVBSKBTo2rUr8vPzsWfPHsTHx2PdunWYPHnyK7ddsmQJYmNjMWnSJBw8eBBubm4IDw/XOaE4ISEB9+7dK+9dYIzVMPPnz9c6ITYpKQnjxo3D4MGDcfjwYQQFBaFv376lfoBjNde8efPw7rvvwszMDDt37oSrq6uxQ2LaGHeKFFF8fDzJZDK1CbMJCQlkbm5O9+7d07ldTk4O2djYqN0rKy8vjzw8PGj8+PEa/R8/fkwODg60YcMGAkDJycnluyOMsRrh6tWrJJPJaO3atQSALly4ID7n7e1NQ4cOVesfFBSkdqNnxljVYvQjSocPH0ZYWBgcHBzEtkGDBqGoqAjHjh3Tud2ZM2eQlZWFQYMGiW0SiQT9+vXDoUOHNPrHxMQgJCQEISEh5bsDjLEaZeLEiYiOjoaPj49a+61bt3D9+nW1nAQAQ4YMwYkTJ3idKsaqKKMXSnK5HL6+vmptdnZ2cHNzg1wuL3U7ABrb+vn54c6dO8jJyRHbfvzxR2zbtg3Lli0rx8gZYzXNrl27cOnSJcyZM0fjudJyUn5+PlJTUyslRsZY+TL6gpMKhQJ2dnYa7fb29qWuxKxQKCCVSmFpaamxHRFBoVDAysoKRUVFmDBhAj7++GN4enpqvT/ay/Ly8tQ+/RER8vPzUbdu3TLdToMxVvVlZ2dj8uTJiI+Ph42NjcbzCoUCADTyWfGNkUvLZ5xzGDNdRj+iVNG+/PJLPHz4EJ988one2yxatAi2trbiw87ODs7OzpV2KwvGmOlZsGABXFxc8M4775T72JxzGDNdRi+U7O3toVQqNdoVCoXavCVt2+Xl5andE6t4O0EQYG9vj2fPnmHGjBmYNWsW8vPzkZmZiaysLACqT4fFX78sJiYGSqVSfJS8lxZjrOa5ffs2li9fjrlz50KpVCIzM1O8VcyzZ8/w7Nkz8cjRy/ms+EhTafmMcw5jpsvop958fX015iIplUo8ePBA41z/y9sBwLVr1xAQECC2y+VycV2ltLQ0pKenIzo6GtHR0Wrbjxo1Ci4uLnj48KHG2FKpFFKp9HV2izFWjaSmpiI/Px89e/bUeC4kJARt27bFtm3bAKhyUMmJ3nK5HBKJROP+XSVxzmHMdBm9UIqIiEB8fDwyMzPFc/vJyckwMzNDeHi4zu3at28PGxsbJCcni4VSQUEB9uzZgx49egAAXF1dkZKSorbdw4cPMXToUMTFxaFbt24Vs1OMsWolMDBQI5f88ssvmDRpEtauXYu33noLXl5e8Pb2RnJyMvr06SP227FjB0JDQyGRSCo7bMZYOTB6oRQdHY1Vq1YhMjISM2bMwL179zB16lRER0ejXr16Yr/Q0FDcvn0bN27cAABYWloiJiYGcXFxcHJygr+/P1avXo309HRMmTJF7PPyXd+LJ3M3a9YM7du3r5R9ZIxVbXZ2dhq5pFirVq3QsmVLAEBcXByGDx+Oxo0bIyQkBDt27MD58+fxww8/VGK0jLHyZPRCyd7eHidOnMDEiRMRGRkJa2trjB07FgsXLlTrV1hYqLES7vTp00FEWLZsGR4/fozAwEAcPXq01EPcjDFWUYYOHYrs7GwsXrwYixcvho+PD/bu3YugoCBjh8YYKyOByAi3Sa5isrKyYGtrC6VSqfWyYMYYK0+ccxgzHUa/6o0xxhhjzFRxocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM6cKHEGGOMMaYDF0qMMcYYYzpwocQYY4wxpgMXSowxxhhjOnChxBhjjDGmAxdKjDHGGGM61DJ0g4yMDJw8eRLnz5/HgwcPkJOTA0dHR/j4+KBTp05o3bp1RcTJGGOMMVbp9C6Uvv/+e3z22Wf45ptv8OLFC7i7u6Nu3bqQSqW4evUqtm3bhmfPnsHT0xNjxozBxIkTYWNjU5GxM8YYY4xVKL1OvYWHh6NPnz6wt7fH/v37kZGRgdTUVFy4cAGnT5/G77//DqVSiStXruD999/H/v374eXlhUOHDlV0/IwxxhhjFUavI0pdunRBcnIybG1tdfYRBAG+vr7w9fXF5MmTcerUKWRlZZVboIwxxhhjlU0gIjJ2EKYuKysLtra2UCqVfDqRMVbhOOcwZjoMnsxdjIhw/fp1ZGRkwMHBAd7e3hAEoTxjY4wxxhgzqjItD7B69Wq4ubmhadOm6NixI5o2bYp69ephzZo15R0fY4wxxpjRGHxEad26dXj//fcxdOhQDB48GC4uLvjrr7+wY8cOvP/++7CwsMDYsWMrIlbGGGOMsUpl8BGlTz/9FB988AG2bt2K3r17o23btujduze2bt2KiRMnYtmyZQYHIZfL0a1bN8hkMri6umLatGnIz89/5XZEhMWLF8Pd3R1WVlYICgrCuXPn1PpcuHAB3bp1g6urK6RSKdzd3TFmzBjcv3/f4DgZYzXXoUOHEBwcDCcnJ0ilUnh5eWHy5MlQKpVq/Q4cOICAgABYWlrC29sbGzduNFLEjLHyYHChlJqairffflvrcz179kRaWppB4ykUCnTt2hX5+fnYs2cP4uPjsW7dOkyePPmV2y5ZsgSxsbGYNGkSDh48CDc3N4SHh+PWrVtq4/v6+uKzzz7D0aNHERcXhxMnTuD//u//kJeXZ1CsjLGaKyMjA23btsXatWtx9OhRTJ48GV999RUGDhwo9jl9+jT69u2LoKAgHD58GIMHD8aYMWOwa9cuI0bOGHstZCBPT0+aN2+e1ufmzZtHnp6eBo0XHx9PMpmM0tPTxbaEhAQyNzene/fu6dwuJyeHbGxsKCYmRmzLy8sjDw8PGj9+fKmveezYMQJA//3vf/WKUalUEgBSKpV69WeM1Qzr1q0jAGKuCg8Pp/bt26v1GTp0KPn5+Rk0LuccxkyHwUeUxowZg/nz52PWrFn45Zdf8ODBA/z666+YNWsWFixYYPD8pMOHDyMsLAwODg5i26BBg1BUVIRjx47p3O7MmTPIysrCoEGDxDaJRIJ+/fq9cqFLR0dHANDr9B5jjOlSMpfk5eUhJSVF7QgTAAwZMgRXr141+Gg7Y8w0GDyZe+bMmVAoFFi6dCkWLVr090C1amHixImYOXOmQePJ5XJERUWptdnZ2cHNzQ1yubzU7QDA19dXrd3Pzw937txBTk4OrKysxPbCwkIUFhbi1q1bmDZtGlq2bImOHTsaFCtjjBUWFqKgoABXrlzBvHnz0Lt3b3h6euLKlSsoKCjQmpMAVc7y9PQ0QsSMsddhcKEkCAKWL1+OGTNm4Pz581AoFHBwcECbNm3ET1eGUCgUsLOz02i3t7dHRkZGqdtJpVJYWlpqbEdEUCgUaoVScHAw/vvf/wIAWrdujUOHDqFWLe27n5eXpzZ/iVcYZ4wV8/DwwL179wAA//d//4dt27YBUOUkABr5zN7eHgBKzWeccxgzXWVaRwlQHXLu0aMHhg8fjoiIiDIVSZUpMTER586dw5YtW5CXl4ewsDCdyWjRokWwtbUVHw0bNqzkaBljpurQoUM4c+YM1q9fj6tXr6JXr14oLCx8rTE55zBmuvQ6orRnzx507doVdnZ22LNnzyv79+vXT+8A7O3tNS6vBSAeqSptu7y8POTm5qodVVIoFBAEQfwUV8zHxwcA0LZtW4SFhcHDwwPr1q3DlClTNMaOiYlRu+ouKyuLExdjDADQokULAEBQUBDeeustBAYGYu/evWjatCkAaOSz4iNNpeUzzjmMmS69CqUBAwbg3LlzaNOmDQYMGFBqX0EQDPp05evrqzEXSalU4sGDBxrn+l/eDgCuXbuGgIAAsV0ul4vrKuni4uKCBg0a4MaNG1qfl0qlkEqleu8DY6xmatGiBSwsLHDjxg306tULFhYWkMvl6N69u9hH13zKkjjnMGa69CqUUlNT4ebmJn5dniIiIhAfH4/MzEzx3H5ycjLMzMwQHh6uc7v27dvDxsYGycnJYqFUUFCAPXv2oEePHqW+5t27d3H79m14eXmV234wxmqe8+fPo6CgAF5eXpBKpQgJCcGuXbvw4Ycfin127NgBPz8/nsjNWBWlV6Hk4eEhfi0IAtzc3GBhYaHR78WLFwaveB0dHY1Vq1YhMjISM2bMwL179zB16lRER0ejXr16Yr/Q0FDcvn1bPApkaWmJmJgYxMXFwcnJCf7+/li9ejXS09PVTqdFR0ejbt26aN26NWxtbXHt2jUsX74cLi4uGDNmjEGxMsZqrn79+qF169Zo0aIFrKys8Ouvv2Lp0qVo0aIFIiMjAQCzZ89Gly5d8N5772HQoEFISUnBtm3bsGPHDuMGzxgrO4MXXjIzo/Pnz2t97qeffiIzMzODF3O6cuUKhYaGkpWVFTk7O9OUKVMoLy9PrU9wcDB5eHiotRUVFVF8fDw1aNCApFIptW3bls6cOaPWJzExkdq2bUt2dnZkZWVFPj4+9MEHH9DDhw/1jo8Xf2OMLVq0iAIDA8na2ppkMhk1a9aMZs+erZEX9u/fT/7+/iSRSKhJkyaUmJho8GtxzmHMdAhERIYUVmZmZuJ8pZedOXMGYWFhyM7OLqcyzjRkZWXB1tYWSqUSNjY2xg6HMVbNcc5hzHTodepNLpfjypUr4vcnT57En3/+qdYnNzcX27dv53k/jDHGGKs29CqUduzYgblz5wJQzVH65JNPtPazs7PDpk2byi04xhhjjDFj0uvUm1KpRGZmJogIXl5e2LNnD9588021PhKJBK6urhAEocKCNRY+DM4Yq0yccxgzHXodUSpeLRb4e6kAiURSoYExxhhjjBmbwfd6K7lUQHZ2NnJzczX6lLYCLWOMMcZYVWFwoUREWLBgARISEvDgwQOtfV73vkeMMcYYY6bA4Jvifvrpp1ixYgUmTJgAIsLMmTMxZ84ceHt7w9PTE+vXr6+IOBljjDHGKp3BhVJiYiLmzp2LadOmAQAiIyMRGxuLy5cvw8/PT+f90xhjjDHGqhqDC6W0tDQEBgbC3NwcFhYWyMzMVA1kZob33nuPlwdgjDHGWLVhcKHk6OiIZ8+eAQDc3d3xv//9T3zuyZMn1W5VbsYYY4zVXAZP5u7QoQMuXLiAHj16YNiwYYiLi8PDhw9hYWGB9evXIzQ0tCLiZIwxxhirdAYXSnFxcbh37x4AYMaMGcjMzMT27duRk5ODbt26YdWqVeUeJGOMMcaYMRh0U1wigkKhgEwmg1Qqrci4TAqvkssYq0yccxgzHQbNUSooKICzszOOHz9eUfEwxhhjjJkMgwoliUSCBg0a8IKSjDHGGKsRDL7qbcKECVixYoXWW5cwxhhjjFUnBk/mvnPnDq5fvw53d3d06dIFLi4uEARBfF4QBHz22WflGiRjjDHGmDEYNJkbABo1alT6gIKAW7duvVZQpoYnVjLGKhPnHMZMh8FHlFJTUysiDsYYY4wxk2PwHCXGGGOMsZpCr0Lp8OHDBg/8+PFjtdubMMYYY4xVNXoVSu+++y4CAwPx+eefi6tya1NYWIgTJ05g7Nix8PLywsWLF8stUMYYY4yxyqbXHKU//vgDq1evxsqVKzFp0iQ0bNgQLVq0gJOTE6RSKTIzM5GamorffvsNL168QK9evXD69GkEBARUdPyMMcYYYxXG4KveTp48iRMnTuDChQt48OABcnNz4eDgAB8fH3To0AF9+vSBs7NzRcVrFHwFCmNVk5eXF/bu3av1Q9vvv/+O3r17m+RVupxzGDMdBl/11qVLF3Tp0qUCQmGMsfKVlpaGvLw8rc9lZ2fj7t27lRwRY6yqMbhQYowxU5abm4vs7GwUHyzPyspCRkaGRp99+/ahXr16xgiRMVaFcKHEGKtWlixZgnnz5gFQLYDbvXt3nX3j4uIqKSrGWFXFhRJjrFqJjIyEp6cniAhRUVGYNWsWGjdurNZHIpHAz88PgYGBxgmSMVZlcKHEGKtWAgICxMnbgiCgZ8+eqFu3rpGjYoxVVVwoMcaqrVGjRhk7BMZYFWfwLUzWrl2LrKysioiFMcbKVU5ODmbMmAFvb2/Url0b5ubmGg/GGCuNwUeUJk+ejI8//hj9+/fHmDFjEBwcXBFxMcbYa5swYQK2bduGoUOHomnTppBIJMYOiTFWxRhcKN2/fx9bt27Fxo0bERISAi8vL0RFRWHUqFGoX79+RcTIGGNlcuDAASxbtgzvv/++sUNhjFVRBp96s7Ozw4QJE/DTTz/hl19+wdtvv42VK1fC09MTPXv2xO7du1FQUFARsTLGmEHMzc3h7e1t7DAYY1WYwYVSSS1atMDKlSvxyy+/oEOHDjh8+DAGDhyI+vXrIzY2Fjk5OeUVJ2OMGWz8+PHYvHmzscNgjFVhZb7qjYhw5MgRJCYm4uDBg7Czs8PUqVPRt29fHDp0CKtWrcLvv/+O3bt3l2e8jDGmt9q1a+PUqVNo3749wsLCYGdnp/a8IAiYNGmScYJjjFUJBt8U9+bNm9iwYQO++uor3L9/H926dcO4cePQp08f1Kr1d9319ddfY8iQIcjOzi73oCsb36CSsarJzKz0g+aCIKCwsLCSotEf5xzGTIfBp97eeOMNfPXVV3jnnXdw69YtHDlyBP3791crkgDA19cXbdu21WtMuVyObt26QSaTwdXVFdOmTUN+fv4rtyMiLF68GO7u7rCyskJQUBDOnTun1uf48eMYMmQIPD09Ubt2bTRt2hRLly7leVSM1QBFRUWlPgwpkpKTk9GnTx80aNAAMpkMgYGB2LBhA17+rJmYmAhvb29YWloiICAABw8eLO/dYoxVIoMLpa+//hq3b9/GvHnz4OHhobOft7c3UlJSXjmeQqFA165dkZ+fjz179iA+Ph7r1q3D5MmTX7ntkiVLEBsbi0mTJuHgwYNwc3NDeHg4bt26JfZJSEjA06dPMW/ePBw6dAgjR45EbGws/vnPf+q3w4wxBmDFihWoXbs2li9fjgMHDiAiIgLjxo0T7ysHAElJSRg3bhwGDx6Mw4cPIygoCH379tX4AMcYqzoMPvUWFRWF2bNno1GjRhrP3b59G3PnzsWGDRv0Hm/RokVYuHAh7ty5AwcHBwDAunXr8N577+HOnTs67+6dm5sLFxcXTJgwAfHx8QCA/Px8eHt7o0ePHli9ejUA4MmTJxq3L4iPj8esWbPw6NEjvW5twIfBGauafvjhh1f26dy5s15jacsl//znP7Fjxw4oFAqYmZnBx8cHrVq1wrZt28Q+7du3h52dHQ4dOqR33JxzGDMhZCAzMzM6f/681ud++uknMjMzM2i8Tp06UZ8+fdTaFAoFCYJAGzdu1LndiRMnCABdvHhRrX3SpEnk4eFR6mseOnSIANBvv/2mV4xKpZIAkFKp1Ks/Y8w0CIJAZmZmJAiC+DAzM1N7vI7Vq1cTAMrKyqKbN28SANq7d69an88++4wkEgnl5ubqPS7nHMZMh8FXvRERBEHQ+twff/wBR0dHg8aTy+WIiopSa7Ozs4Obmxvkcnmp2wGquVAl+fn54c6dO8jJyYGVlZXWbU+fPg2pVKr1qBhjrPq4ePGiRptCocDRo0exe/duJCQkvNb4p0+fRv369WFtbY1Tp04B0J6T8vPzkZqaqvEcY8z06VUorVmzBmvWrAGgukpk2LBhGkVIbm4u0tLSMHDgQIMCUCgUGpfsAoC9vT0yMjJK3U4qlcLS0lJjOyKCQqHQWij98ccf+OyzzxAdHY06depoHTsvLw95eXni93xvO8aqpoCAAK3tXbp0Qe3atZGQkICQkJAyjX369GkkJSVh+fLlAFQ5CYBGPrO3tweAUvMZ5xzGTJdehVK9evXQqlUrAMDvv/8OHx8fODk5qfWRSCTw8/PDmDFjyj/KcpKVlYV+/fqhUaNGWLhwoc5+ixYtwty5cysxMsZYZWvfvj2WLl1apm3//PNPDB48GCEhIfjggw9eOxbOOYyZLr0KpT59+qBPnz7i97Nnz4aXl1e5BGBvbw+lUqnRrlAoxMndurbLy8tDbm6u2lElhUIBQRDET3HF8vPz0bdvXygUCpw9exYymUzn2DExMWpX3WVlZaFhw4aG7BZjzMTt27ev1ByjS2ZmJiIiIuDo6Ijdu3eLazUV5xylUglXV1exf/GRptJei3MOY6bL4DlKGzduLNcAfH19NeYiKZVKPHjwoNTz+cXPXbt2Te3wulwuF9dVKlZUVIThw4fj559/xqlTp16ZgKRSKaRSaVl2hzFmQnr37q3Rlp+fj2vXruHOnTv417/+ZdB4OTk5ePvtt6FUKnH27FnY2tqKzxXnJLlcDh8fH7FdLpdDIpGU+uGScw5jpkuvQumDDz7AlClT4O7u/srDzIIg4LPPPtM7gIiICMTHxyMzM1M8t5+cnAwzMzOEh4fr3K59+/awsbFBcnKyWCgVFBRgz5496NGjh1rfCRMm4MCBAzh69Cj8/f31jo0xVrVlZWVpXHxiaWmJsLAwDBgwAN27d9d7rBcvXmDQoEG4evUqTp06hfr166s97+XlBW9vb3FhymI7duxAaGgoJBLJ6+0MY8wo9CqUDhw4gDFjxsDd3R1ff/21zqveAMMLpejoaKxatQqRkZGYMWMG7t27h6lTpyI6OlptDaXQ0FDcvn0bN27cAKBKdjExMYiLi4OTkxP8/f2xevVqpKenY8qUKeJ28fHxWLt2LaZOnQqpVKq28FvTpk15jRLGqrGTJ0+W21jvvfceDh48iOXLlyMrK0stl7z55puQSqWIi4vD8OHD0bhxY4SEhGDHjh04f/68Xus5McZMlLHXJyAiunLlCoWGhpKVlRU5OzvTlClTKC8vT61PcHCwxvpIRUVFFB8fTw0aNCCpVEpt27alM2fOaGwHQOsjJSVFr/h4TRPGqr7s7Gy6f/8+ZWdnl2l7Dw8PnbkkNTVV7Pfll19SkyZNSCKRkL+/Px04cMDg1+Kcw5jpMHhl7pqIV8llrOo6ePAg5s6di4sXL4rrwL355puYO3euxml6U8E5hzHTodeptz179hg0aL9+/coUDGOMlad9+/ahf//+aNeuHVasWAEXFxc8fPgQycnJ6N27N3bv3q02n4gxxl6m1xGl4stf9RpQEAy6I3dVwJ/uGKua3nzzTTRr1gxbtmzReO4f//gHLl++rHX1bmPjnMOY6dDriFJqampFx8EYY+VOLpdjyZIlWp8bMWIEIiMjKzcgxliVo1eh5OHhUdFxMMZYuXNwcMC1a9e0LjVy7dq1Mi04yViVIwgAT0cuM70KpYyMDNjZ2cHMzKzU+xUV4+TDGDMFgwcPxowZM2BlZYUBAwbAzs4OSqUSycnJmDVrFsaNG2fsEBljJk6vOUrm5uY4e/Ys2rRpAzMzs1LXUQLAc5QYYyYhLy8Pw4YNw969eyEIAiwsLFBQUAAiQr9+/bB161aTXBGbcw4rV3xE6bXodURpw4YNaNy4sfj1qwolxhgzBVKpFLt378alS5dw6tQp8R6SHTt25FX6GWN64XWU9MCf7hirOv744w8MGTIE8+fP17lO0uHDhzFr1iwkJyeX2w2+yxPnHFau+IjSa9H/uv+XKJVKnD59GsnJyTh9+jSUSmV5xsUYY2WyfPly1KlTp9TFJCMiImBjY4Nly5ZVYmSMlYEhZ3D4bE+FMLhQKioqwowZM9CgQQN07twZgwcPRufOndGgQQPExMRUu/lJjLGq5dixY4iKinplv6ioKBw9erQSImKMVWV6zVEqaerUqVi1ahViYmIwYMAAuLi44K+//kJycjIWL16M/Px8LF++vCJiZYyxV7p37544p7I0jRo1wr179yohIsZYVWZwobRp0ybMnz8f06dPF9ucnZ3h7+8PKysrLFu2jAslxpjR1KlTB48fP35lvydPnkAmk1VCRIyxqszgU2+FhYVo2bKl1udatWrFp94YY0bVunVr7Nix45X9kpKS0Lp160qIiDFWlRlcKA0YMABJSUlan0tKSuIb4jLGjGrChAnYuXMn5s6dq/WDW1FREebNm4fk5GS8//77RoiQMVaV6HXqbc+ePeLXwcHBmDFjBkJCQhAZGQlnZ2c8evQIe/fuxc2bN7Fw4cIKC5Yxxl6ld+/emDZtGubOnYuEhASEhobC3d0dgiDgzp07OHHiBB4+fIipU6eiV69exg6XMWbi9FpHycxM/wNPgiBUu9NvvKYJY1XPoUOHsHz5cpw5cwZ5eXkAAEtLS3To0AGTJ09GRESEkSPUjXMOExmyBpKuvryO0mvR64hSampqRcfBGGPlqkePHujRowcKCwuRnp4OAHB0dIS5ubmRI2OMVSV6FUoeHh4VHQdjjFUIc3NzODs7GzsMxlgVZfDyACVlZ2cjNzdXo93BweF1hmWMMcZqNj5dZjIMLpSICAsWLEBCQgIePHigtU91m6PEGGOMsZrJ4OUBPv30U6xYsQITJkwAEWHmzJmYM2cOvL294enpifXr11dEnIwxxhhjlc7gQikxMRFz587FtGnTAACRkZGIjY3F5cuX4efnhxs3bpR7kIwxxhhjxmBwoZSWlobAwECYm5vDwsICmZmZqoHMzPDee+9h06ZN5RwiY4wxxphxGFwoOTo64tmzZwAAd3d3/O9//xOfe/LkCbKzs8svOsYYY4wZThCMHUG1YfBk7g4dOuDChQvo0aMHhg0bhri4ODx8+BAWFhZYv349QkNDKyJOxhhjjLFKZ3ChFBcXh3v37gEAZsyYgczMTGzfvh05OTno1q0bVq1aVe5BMsYYY4wZg163MKnp+HYCjLHKxDmHiesolfUWJrq+ZgZ7rQUn//zzTzx48AD16tVD/fr1yysmxhhjjDGTYPBkbgBYt24d3N3d4eHhgXbt2sHd3R0NGzZEQkJCecfHGGOM1Sw8EdukGHxEadGiRZg5cyZGjBiBAQMGwMXFBX/99ReSk5Px3nvvISMjAzExMRURK2OMMcZYpTJ4jlK9evUwYsQILFmyROO5qVOnYuvWrbh//365BWgKeL4AY6wycc6p4YqPKPEcJZNg8Km3rKwshIWFaX0uPDwcT58+fe2gGGOMMcZMgcGFUvfu3XH8+HGtz3377be8jhJjjDHGqg295iiVXH177NixePfdd/Ho0SNERkbC2dkZjx49wt69e/Hdd9/xhG7GGGOsNKWdCtNnIndFnkrj03Qa9JqjZGZmBqHED6/kJoIgaHxfWFhYzmEaF88XYIxVJs451Zy+hZKuOUq6ti+POUpcKGnQ64hSSkpKRcfBGGOMMWZy9CqUgoODKzoOxhhjjDGTU6YFJwHg8uXLSEhIwKJFi5CQkIDLly+XOQi5XI5u3bpBJpPB1dUV06ZNQ35+/iu3IyIsXrwY7u7usLKyQlBQEM6dO6fW5/Hjx/jwww/Rtm1bSKVS1KlTp8xxMsZqrhs3biA6OhqBgYGoVasWmjdvrrVfYmIivL29YWlpiYCAABw8eLCSI2WMlSeDC6W8vDwMGjQILVq0wPjx4zFv3jyMHz8eLVq0wODBg/UqcEpSKBTo2rUr8vPzsWfPHsTHx2PdunWYPHnyK7ddsmQJYmNjMWnSJBw8eBBubm4IDw/HrVu3xD737t1DUlISnJ2d0bp1a0N3lzHGAKg+HH7zzTdo0qQJmjZtqrVPUlISxo0bh8GDB+Pw4cMICgpC3759NT7AMVYmgsCrdhsDGWjy5MlUu3ZtWrduHSmVSiIiUiqVtG7dOpLJZPTxxx8bNF58fDzJZDJKT08X2xISEsjc3Jzu3bunc7ucnByysbGhmJgYsS0vL488PDxo/PjxYlthYaH4dWxsLMlkMoPiI1LtHwBxfxljNU/JXDJq1Chq1qyZRh9vb28aOnSoWltQUBBFREQY9Fqcc6q50v7rVU2l/rtPyb4vP1fauLq+fp3YaiiDjyglJSVh0aJFGDdunHg1ho2NDcaNG4eFCxdi+/btBo13+PBhhIWFwcHBQWwbNGgQioqKcOzYMZ3bnTlzBllZWRg0aJDYJpFI0K9fPxw6dEhsMzMr89lFxhgTvSqX3Lp1C9evX1fLSQAwZMgQnDhxAnl5eRUZHmOsghhcRWRkZMDX11frc76+vsjIyDBoPLlcrjGenZ0d3NzcIJfLS92u+DVL8vPzw507d5CTk2NQHIyVSUEBkJfHl9OyUnNSfn4+UlNTjREWY+w1GVwo+fr6YvPmzVqf27Jli84iSheFQgE7OzuNdnt7+1KLLoVCAalUCktLS43tiAgKhcKgOErKy8tDVlaW2oMxAEBODrBtGzBkCNCoEWBpqXpYWAAtWgD//Cfw3XdANVtLjL1acc55OZ/Z29sDQKn5jHMOY6ZLr+UBSpo9ezYGDhyItLQ09O/fHy4uLnj06BF27dqFs2fPIjk5uSLirFSLFi3C3LlzjR0GMyW5ucDKlcCnnwKPHmk+X1gIXLqkeqxfD/j4AHPnAgMHAnz6l70C55waSNdCkhXxOrpe71XxMABlOKLUr18/7N27F9nZ2fj4448xfPhwTJ48GdnZ2di7dy/69u1r0Hj29vZQKpUa7QqFQm3ekrbt8vLykJubq7GdIAjip7iyiImJgVKpFB93794t81isGjh5EvD3B2JiVEWSu7vq6+++A+7dAzIzgdRUYN8+YNw4wNYWuHZNddQpLEz1HKv2inPOy/ms+EhTafmMcw5jpsugI0r5+fk4ePAgAgMD8fPPP+P58+fIzMyEnZ0dZDJZmQLw9fXVmIukVCrx4MGDUk/jFT937do1BAQEiO1yuVxcV6mspFIppFJpmbdn1URREbBgARAXp/qk5eYGLF4MDB2qOtVWkq0t4OkJ9OkDLFumOvq0ZAmQkqI6JffVV4CBHyJY1VKck+RyOXx8fMR2uVwOiUQCLy8vndtyzmHMdBl0REkikWDYsGG4c+cOAEAmk6F+/fplLpIAICIiAsePH0dmZqbYlpycDDMzM4SHh+vcrn379rCxsVE71VdQUIA9e/agR48eZY6HMQCqCdqDBwOxsaoiKSoKkMuBkSM1i6SX2dgAc+YAv/0GdOwIPHsG9OsHzJ/Ph7arMS8vL3h7e2tMP9ixYwdCQ0MhkUiMFBlj7HUYPEfJ19dXLJTKQ3R0NFatWoXIyEjMmDED9+7dw9SpUxEdHY169eqJ/UJDQ3H79m3cuHEDAGBpaYmYmBjExcXByckJ/v7+WL16NdLT0zFlyhS119i1axcA4MqVKygsLBS/f+utt+Dh4VFu+8KqiawsIDJSdTRIIgHWrQNGjTJ8nMaNVWNMnao6wjRnDqBQAMuX86JxVVB2dra49Mjt27eRlZUl5pLg4GA4OTkhLi4Ow4cPR+PGjRESEoIdO3bg/Pnz+OGHH4wZOmPsdRi68NKhQ4fojTfeoAsXLpTbYk5Xrlyh0NBQsrKyImdnZ5oyZQrl5eWp9QkODiYPDw+1tqKiIoqPj6cGDRqQVCqltm3b0pkzZzTGB6D1sXHjRr3i48XfapCsLKK2bVWLrllbE504UT7jrlr190Jx//wnUYnFC1nVkJqaqjOXpKSkiP2+/PJLatKkCUkkEvL396cDBw4Y/Fqcc6oJbYtGFn+v7b/fkgtKvmrBydK219ZXV/9XxVqaGrI4pUBk2LkAf39/3L9/H5mZmXB0dISLiwuEEp+OBUHAr7/+Wg4lnOnIysqCra0tlEqluMgmq4Zyc4EePVRHgRwcgG+/BVq2LL/xN24Exo5VzX36+GNg6VI+ssS04pxTTRRfSfbyFWXFf/evuurt5W21Pa9t++LtXqatf8mxtcVamhpypZzBp95atWrF90xj1U9hoWpOUkoKYG0NHDlSvkUSALzzjmqpgNGjVaffnJ2BadPK9zUYY4yVK4MLpU2bNlVAGIwZ2dSpwNdfqxaPPHgQeOutinmdUaOAJ0+AKVOA6dOBhg1VV9ExxhgzSXoXSleuXMHatWuRmpqK+vXrY8CAAQgLC6vI2BirHOvXqxaSBFSX8XfuXLGv9/HHwIMHqqNKUVHAG28AfJSWMcZMkl5zlE6fPo2wsDAUFBTAyckJ6enpKCoqwhdffIHo6OjKiNOoeL5ANZaSAoSHAy9eAPPmAbNnV87rFhaq1lz65hugfn3gwgXVOk2MgXNOtfGqOUqA7vbi5/SZo1TydUpu9zJD5ijpM/+ohsxR0msdpdjYWPj6+iItLQ0PHz5Eeno6IiMjMWvWrIqOj7GKc/++al7SixfAsGFAZf4+m5ur7hnn56da3btvX9XaTYwxxkyKXoXSpUuXMGfOHDRs2BAAYGNjg+XLlyMjI4OX2mdVU3Fx9PgxEBAAfPll5V+BZmOjmhdlbw+cP6+aJ8UYY8yk6FUoPXnyBA0aNFBrKy6anjx5Uv5RMVbR5s4Fvv8eqFMHSE4GXuOWN6+lSRNg82bV16tWqWJhjDFmMvS+hYnA672w6uLYMWDhQtXX69erJlMbU8+ewCefqL4eMwb44w/jxsMYY0yk12RuMzMz1K5dG2Zm6nXVs2fPNNoFQdC4e3ZVxxMrq5H794HAQNUpt+hoYM0aY0ek8uIF0LUrcOqU6ia6584Z7ygXMzrOOSZG26Tn0r5+ebuKnMytbQL3qyZza5u4Xdrr6lJDJnPrtTxAbGxsRcfBWMV78UK1ZlHxvKTiJQFMQa1aQFKSqoj77Tdg4kTVvCnGGGNGZfAtTGoi/nRXTcyapTrlVqcO8L//Gf+UmzbHj6uWKyBSzV36xz+MHREzAs45JoaPKGlXQ44o6T1HibEq7ehRID5e9bUpzEvSJSwMmDNH9XV0NCCXGzcexhir4bhQYtXfvXuqIzNEquJjyBBjR1S62bOBkBDg+XNg0CAgJ8fYETHGWI3FhRKr3orXS3ryRDX/x5TmJelSvBiliwtw6RLw4YfGjoixmsnQq7219S9uE4TSny+L14mvZFz6bKNt2xqCCyVWvcXFAT/8AFhbAzt3qm56WxW4ugJbt6oS0vr1qq8ZY4xVOi6UWPV15IhprZdkqNDQv+899+67wLVrxo2HMcZqIC6UWPV09+7fV4yNH6+6p1tVNGcO0KWLar7SwIE8X4kxxioZF0qs+snPV02CTk8HWrWqGvOSdCmer+TsrJqv9NFHxo6IMcZqFC6UWPUzfbpqZWs7O9W906RSY0f0etzc/p6vtG6dqnBijBlXaROayzLJ+lXj6TvpujxU9GTtKjYZnAslVr3s3g2sXKn6+j//ARo1Mmo45SYsTLVgJsDzlRhjrBJxocSqj8uXgXfeUX09dSrQu7dx4ylvsbGq+UrPngH9+gFZWcaOiDHGqj0ulFj1kJ6uKoyePlUVE8VXu1UnxfOV6tUDrlwBhg8HCguNHRVjjFVrXCixqq+gABgwALh1S3WqLTkZsLAwdlQVw80N2LdPNe/q4MG/T8cxxhirEFwosarvo4+AkydVN7v9+mugbl1jR1Sx3noL2LBB9fXixTy5m7HyUpZJxi9v86oVrytjInN5TTQvj/ejGuBCiVVtK1YAq1er/ji3bgWaNzd2RJVj2DDgk09UX0dFAd9/b9x4GGOsmuJCiVVdW7YAH3+s+nrJkuo3eftVFi4E+vYF8vJU+/7rr8aOiDHGqh0ulFjVdOTI31e4TZoETJli3HiMwcxMddqtc2fVFXD/939Aaqqxo2KMsWqFCyVW9Xz3HdC/P/DiheoU1LJl1fK8uF4sLYH9+wF/f+DhQ9X94W7fNnZUjDFWbXChxKqWb78FevYEsrOBiAhg40bVkZWazM5OdYStcWPVEaXgYD6yxNir6Pvh6lWTs2uSsq4Ors/K4iashv8Pw6qUI0eAXr2A3FxVsbR3LyCRGDsq01CvnurKvzfeUB1RCg4GbtwwdlSMMVblcaHEqoYvvwTefls1cblPH9WtSqr6PdzKW4MGqmLJxwe4excICgLOnDF2VIwxVqVxocRMW1EREBMDjBunWoV6+HBg504uknQpPrLUqhXw5AnQtSuwY4exo2KMsSqLCyVmup48UV32vnix6vvYWGDzZj7d9iqurqp1lXr3Vh2BGzIEmDZNtYI5Y4wxg3ChxEzT998DAQHAN9+ojh599RUQF1elJwRWKpkM2LNHtXQCACxdCnTqxJO8WfVRMhfoWh3bkDFebivtucpiKvlO23td2nuuz6RubeMYczXzUnChxExLVhbw4YeqU0b37wO+vsCPPwIjRhg7sqrH3Fy1cvnu3aor486fVxWfq1bxzXQZY0xPXCgx00Ckmnvk5wd8/rlqbtI77wA//QS0aGHs6Kq2fv2AX34BOnQAnj4FPvgAaNtWVYAyxhgrFRdKzLiIgAMHVJOPBw9WHUVq0gQ4dkx141eZzNgRVg8eHqrTmWvWALa2wM8/q4qlPn1URRRjjDGtTKJQksvl6NatG2QyGVxdXTFt2jTk5+e/cjsiwuLFi+Hu7g4rKysEBQXh3LlzGv3u37+P/v37w9raGg4ODhg7diyysrIqYleYvp49AxISgMBA1aTjixcBa2tg7lzg0iWgWzdjR1j9mJsD0dGAXA6MGqVaqPPrr4E331Td/mT/ftVq5+y1lDWfMcZMFBlZRkYGubm5UefOnenIkSOUmJhItra2NGHChFduu2jRIpJIJLRixQo6fvw49e3bl6ytrenmzZtin/z8fGrevDk1b96cvv76a0pKSqIGDRpQz5499Y5RqVQSAFIqlWXaR/b/5eQQff010ahRRNbWRKrjSUS1axNNn0705ImxI6xZ5HKioUOJBOHvn0WDBkSTJxOdOUNUWGjsCKuc18lnJdX4nKPrv6bi39OX+7zcv7hfaX1L9uFH+T+0/Sy09dH28zDkZ10JjF4oxcfHk0wmo/T0dLEtISGBzM3N6d69ezq3y8nJIRsbG4qJiRHb8vLyyMPDg8aPHy+2bdu2jQRBILlcLrYdPXqUAND58+f1irHGJ62yys0lOnuWaPFioogIojp11P8YvL2JVqwgKvGzZ0Zw4wbR1KlEjo7qPx8XF6LBg4lWrya6fJnoxQtjR2ryyprPXlbjcw4XSlX/oe1nUUULJUH1usbTuXNnODg4YN++fWJbZmYmHBwcsGHDBowePVrrdt999x1CQ0Nx8eJFBAYGiu2TJ0/Gnj17kJaWBgAYOXIkfvvtN/xSYh4GEaFu3bqYOHEi4uLiXhljVlYWbG1toVQqYWNjY/hOVmd5ecCDB0BamurWGbdvA1evAr/9Bly7pnl1Vb16qhvaDhigulzdVC5/Zapbwxw6pLpK7sAB1cTvkqysgObNVZPr33hDNe+p+OHsDNSqZZy4TUhZ89nLanzOEQTVf5Pa2gHVcyX7vNy/ZF7R1ZdzT8Uq+X6X1kfbz6Pk96/6WVcCo2c2uVyOqKgotTY7Ozu4ublBLpeXuh0A+Pr6qrX7+fnhzp07yMnJgZWVFeRyuUYfQRDg6+tb6vhlUnKOR/EPsrguNpW2V/XPz1cVP7m5mo+cHEChANLTgYwM1SM7u/T3xMFBVRAFB6segYF8E1tTZWmpukKuXz/Vz/vcOdUE8O+/V32dkwNcuKB6aGNrCzg6qh4ODqo5ZzLZ3482bVQFcjVW1nzGGDNdRi+UFAoF7OzsNNrt7e2RkZFR6nZSqRSWlpYa2xERFAoFrKysyjR+Xl4e8vLyxO+VSiUAvHoC+ODBqiKjprGwABo2/PvRuLHqyEOzZqojSCU/KTx7Zrw4mWFatlQ9Jk1SHRm8dQu4fFn1SEsD7txR3VPu/n1Vka1Uqh63bmkfb/hwIDxcr5e2traGUAU/8Zc1n5U551Rnpe178XMl++jqb0hfVn70eY+1/Wxe/r4Sfn6vyjdGL5RM0aJFizB37lyN9oYNGxohmiqgoED1n6Ou/yAZA4CtW1UPPdS0U06cc7SwtX31cyX76OpvSF9WfvR5j7X9bF7+vhJ+fq/KN0YvlOzt7cVPTyUpFAo4ODiUul1eXh5yc3PVjiopFAoIggB7e/tXjq8rCcXExGDy5Mni90VFRcjIyICjo2OpVWdWVhYaNmyIu3fvVrskz/tWdVXF/bO2tjZ2CGVS1nxW1pxTXVTF39HXxftsOvv8qnxj9EJJ21whpVKJBw8eaMwtenk7ALh27RoCAgLEdrlcLq6rVNzv0qVLatsSEa5du4ZuOtbqkUqlkL50d3pth9N1sbGxMalfgvLE+1Z1Vff9MwVlzWevm3Oqi5r4O8r7bPqMPqs2IiICx48fR2ZmptiWnJwMMzMzhJcyn6F9+/awsbFBcnKy2FZQUIA9e/agR48eauP/+uuv+OOPP8S2EydOID09Xa0fY4y9rrLmM8aY6TJ6oRQdHQ1ra2tERkbi2LFj2LhxI6ZOnYro6GjUq1dP7BcaGoomTZqI31taWiImJgbLli3DZ599hu+++w5Dhw5Feno6pkyZIvYbMGAAmjVrhv79++PgwYPYuXMnoqKi0LNnT7Rp06ZS95UxVr3pm88YY1VIpa/cpMWVK1coNDSUrKysyNnZmaZMmUJ5eXlqfYKDg8nDw0OtraioiOLj46lBgwYklUqpbdu2dObMGY3x//zzT+rXrx/VqVOH7OzsKCoqqkIWcsvNzaXY2FjKzc0t97GNjfet6qru+2dq9MlnTF1N/B3lfa46jL7gJGOMMcaYqTL6qTfGGGOMMVPFhRJjjDHGmA5cKJUDuVyObt26QSaTwdXVFdOmTUN+fr6xwyrVjRs3EB0djcDAQNSqVQvNmzfX2i8xMRHe3t6wtLREQEAADh48qNFHqVRizJgxcHBwgLW1NQYMGIAHDx5U9C7olJycjD59+qBBgwaQyWQIDAzEhg0b8PJZ5qq4bwBw6NAhBAcHw8nJCVKpFF5eXpg8ebLG+j0HDhxAQEAALC0t4e3tjY0bN2qMlZ+fj6lTp8LV1RUymQzdunXDtWvXKmtXWDVVnfOLLtU972hTY3KRcadIVX0ZGRnk5uZGnTt3piNHjlBiYiLZ2trShAkTjB1aqfbt20cNGjSg/v37k7+/PzVr1kyjz/bt20kQBJo1axZ999139O6771KtWrXo7Nmzav26d+9ODRo0oB07dtD+/fupefPmFBAQQAUFBZW1O2ratWtHQ4YMoaSkJDpx4gR98sknZGZmRnFxcWKfqrpvRESbN2+mqVOn0q5duyglJYVWrVpFjo6O1K1bN7HPqVOnyNzcnN5991367rvvaNasWSQIAiUnJ6uN9e6775KtrS0lJibSkSNHqFOnTlS/fn3KzMys7N1i1Uh1zi+6VPe8o01NyUVcKL2m+Ph4kslklJ6eLrYlJCSQubk53bt3z4iRla6wsFD8etSoUVoTmbe3Nw0dOlStLSgoiCIiIsTvz5w5QwDo6NGjYptcLidBEGjHjh0VEPmrPX78WKNt3LhxZGNjI+53Vd03XdatW0cAxN+58PBwat++vVqfoUOHkp+fn/j93bt3ydzcnBISEsS29PR0kslktGTJksoJnFVL1Tm/6FIT84421TEX8am313T48GGEhYWp3Z5g0KBBKCoqwrFjx4wYWenMzEr/0d+6dQvXr1/HoEGD1NqHDBmCEydOiDfwPHz4MOzs7NRWOffx8UFgYCAOHTpU/oHroW7duhptb775JrKysvD8+fMqvW+6ODo6AlAdvs7Ly0NKSgoGDhyo1mfIkCG4evUq0tLSAADHjh1DUVGRWj8HBweEh4eb3P6xqqU65xddamLe0aY65iIulF6TXC7XuDWBnZ0d3NzcNG5lUJUUx/7yvvn5+SE/Px+pqaliPx8fH437Ufn5+ZnU/p8+fRr169eHtbV1tdm3wsJC5Obm4n//+x/mzZuH3r17w9PTEzdv3kRBQYHW/QP+/tnK5XI4OzuL90Us2c8U9o9VX9Xlb/BVqmPe0aa65yIulF6TQqHQek8me3t7ZGRkVH5A5UShUADQvN9U8S9y8b5Vhf0/ffo0kpKSxBXbq8u+eXh4wMrKCq1atYKbmxu2bdsGoPrsH6u+asLvaHXNO9pU91zEhRKr1v78808MHjwYISEh+OCDD4wdTrk6dOgQzpw5g/Xr1+Pq1avo1asXCgsLjR0WYzVedc472lT3XFTL2AFUdfb29hqXQgKqCrnkvKWqprjiVyqVcHV1FduLPyEU75u9vT3u3r2rsb0p7H9mZiYiIiLg6OiI3bt3i/MmqsO+AUCLFi0AAEFBQXjrrbcQGBiIvXv3omnTpgCg8Xupbf+q4+8uM33V5W9Qm+qed7Sp7rmIjyi9Jl9fX41zqEqlEg8ePNA4L1uVFMf+8r7J5XJIJBJ4eXmJ/a5du6axVoi2uVuVKScnB2+//TaUSiUOHz4MW1tb8bmqvm/atGjRAhYWFrhx4wYaN24MCwsLrfsH/L3/vr6++Ouvv8SkVbKfqe0fq16q498gUPPyjjbVMRdxofSaIiIicPz4cWRmZoptycnJMDMzQ3h4uPECe01eXl7w9vZGcnKyWvuOHTsQGhoKiUQCQLX/CoUCJ06cEPtcv34dFy9eRI8ePSo15mIvXrzAoEGDcPXqVRw5cgT169dXe74q75su58+fR0FBAby8vCCVShESEoJdu3ap9dmxYwf8/Pzg6ekJAAgPD4eZmRl2794t9lEoFDh27JjJ7R+rXqrj32BNzDvaVMtcZNzVCaq+4gUng4OD6ejRo7Rhwways7Mz+QUnnz9/TsnJyZScnExdunShhg0bit8/evSIiIi2bdtGgiDQnDlzKCUlhaKjo6lWrVp05swZtbG6d+9ODRs2pJ07d9LXX39N/v7+Rl0cbdy4cQSAli9fTmfPnlV7FN+1uqruGxFR3759aeHChXTgwAE6fvw4LV++nFxdXalFixbiXeqLF3kbP348paSk0Jw5c0gQBNq5c6faWO+++y7Z2dnRhg0b6OjRoxQcHGwyi7yxqqs65xddqnve0aam5CIulMrBlStXKDQ0lKysrMjZ2ZmmTJki/pKYqtTUVAKg9ZGSkiL2+/LLL6lJkyYkkUjI39+fDhw4oDFWZmYmRUVFkZ2dHdWpU4f69etn1MU2PTw8dO5bamqq2K8q7hsR0aJFiygwMJCsra1JJpNRs2bNaPbs2aRUKtX67d+/n/z9/UkikVCTJk0oMTFRY6zc3Fz6+OOPydnZmaysrCgsLIyuXr1aWbvCqqnqnF90qe55R5uakosEopdOhDLGGGOMMQA8R4kxxhhjTCculBhjjDHGdOBCiTHGGGNMBy6UGGOMMcZ04EKJMcYYY0wHLpQYY4wxxnTgQokxxhhjTAculBhjjDHGdOBCycji4uIgCALq16+PoqIijec7dOgAQRAwevRog8bNzMxEXFwcrly5otaelpYGQRA07r1T2VauXAlBEMTvT548CUEQ8NNPP1VaDHFxcThz5oxGuyAIWLZsWaXFoY9Hjx7B2toav//+e6n9Xn5fy9PTp0/h4OCA//73vxUyPqt4nG9UON+UjvONOi6UTICFhQWePHmCH374Qa399u3bOHv2LOrUqWPwmJmZmZg7d65G4nJzc8PZs2fRtWvX14q5vLVs2RJnz56Fn59fpb3m3LlztSaus2fPYvjw4ZUWhz4WLlyILl26oHnz5kaLwdraGhMnTsSMGTOMFgN7fZxvON+8CucbdVwomQCJRIKIiAhs375drT0pKQnNmjVD48aNy+21pFIp2rVrBwcHh3IbszzY2NigXbt2kMlkOvvk5ORUSizt2rWDm5tbpbyWPp49e4bExERERUUZOxRERUXhhx9+wK+//mrsUFgZcb7hfFMazjeauFAyEUOHDsWuXbtQUFAgtm3btg3Dhg3T2v+HH35A+/btYWVlhbp16yIqKgoZGRkAVIe7GzVqBAAYOHAgBEGAIAhIS0vTeii8qKgICxYsgKenJ6RSKXx9fZGQkKD2enFxcahTpw4uXbqEjh07onbt2mjevDmOHj36yn3LysrCyJEjYW1tDScnJ0ybNg0vXrxQ66PtULggCFi8eDGmT58OV1dXODs7AwCICMuWLYO3tzekUim8vLzw6aefarzu1atX0a9fPzg4OKB27doICAgQ/3MoPlw8depU8f05efKk+NzLh8ITEhLg4+MDqVQKT09PLFiwQO3UxaZNmyAIAi5evIiIiAjIZDK88cYb+Oqrr9TG+e9//4vOnTvD1tYW1tbW8Pf3x3/+859S37/in1VERITB7yug+rT/3nvvwc3NDVKpFK1atcKxY8fU+hAR5s2bB1dXV9SpUwcDBw7E8ePH1d4XAPDw8ECbNm2wadOmUmNmpo3zDecbXTjfaGHMO/IyotjYWJLJZPT8+XOSyWR08OBBIiK6fPkyAaBbt25RQEAAjRo1Stzmp59+IolEQuHh4XTgwAH68ssvqW7dutSmTRt68eIF5ebm0p49ewgAxcfH09mzZ+ns2bOUm5sr3tU7OTlZHG/y5Mlkbm5OsbGxdPToUZo4cSIBoFWrVqnFWXy36/Xr19ORI0coJCSEZDIZPXnypNR97N+/P9WpU4f+/e9/0zfffEM9e/ak+vXrU8lfv5SUFAJAFy5cENsAkKurK0VGRtLBgwdp3759REQ0ceJEsrKyogULFtC3335Lc+fOJQsLC1qzZo247fXr18nW1paaN29Omzdvpm+//ZY+/fRTWrx4MRERnT17lgDQxIkTxfen+I7XAGjp0qXiWJ9//rnY9+jRoxQbG0vm5ub08ccfi302btxIAMjPz49WrFhBx44do4EDB5IgCHTlyhUiIlIqlWRra0s9e/akb775ho4fP06ff/45rVy5stT3b/jw4dSpU6cyva95eXnUunVratiwISUmJtKRI0foH//4B9WqVYt+++03sd9nn31GgiDQ9OnT6ejRozR9+nTxbugl7/ZORPTRRx9Rs2bNSo2ZmSbONyqcb3TjfKOJCyUjK05cRETDhg2jf/zjH0RENGvWLAoKCiIi0khcffv2JXd3d8rPzxfbjh49SgDo66+/JiLSmqC0tT9+/JgsLCzok08+Ues3dOhQcnJyohcvXohxAqBvvvlGY6zNmzfr3L/Lly+TIAiUmJgotr148YIaNWqkV+Jq2rQpFRUViW03btwgQRAoISFB7XWmT59Orq6uVFhYKL6XTk5OYjLS5uUEpa39xYsXVLduXRoyZIhan5iYGJJIJGLSLk5cX3zxhdjn2bNnVLt2bZo/fz4REV24cIEAqCUMfXh7e9OECRPU2vR9Xzds2EC1atWiy5cvq23ftm1bGjhwoLidm5sbRUVFqfUZM2aM1sS1ceNGEgSBsrKyDNoPZnycb1Q43+jG+UYTn3ozIUOHDsX+/fuRk5ODpKQkDB06VGu/U6dOoU+fPrCwsBDbwsPDYWdnh9OnTxv0mufPn0dBQQEGDhyo1j548GA8fvwY169fF9vMzMwQFhYmfu/p6QkrKyv8+eefOse/cOECiAh9+/YV28zNzREZGalXfBEREWpXVRw/fhwA0L9/f7x48UJ8hIWF4eHDh7h79y4A4MSJExgwYABsbGz0eh1d5HI5njx5ovX9yc/Px48//qjWHh4eLn4tk8ng4eEhvj+NGzeGjY0Nxo8fj507d+Lx48d6xfDgwQM4OTmpten7vh47dgz+/v7w9vZWe7+6deuGCxcuAAD+/PNPPHjwAL1791bbtk+fPlrjqVu3LogIf/31l17xM9PE+UYT5xvON9rUMtorMw3du3eHhYUF5syZg9TUVAwaNEhrP4VCARcXF412FxcXcd6AvhQKhbjty2MBUBvPysoKEolErZ9EIkFubq7O8R88eAALCwvY29trHf9VXu735MkTEBHq1q2rtf/du3fh4eGB9PR01KtXT6/XKI0h7w8A2NnZqX1f8v2xt7fHt99+i9jYWIwYMQIvXrxAp06dsGrVKvj7++uMITc3F1KpVK1N3/f1yZMnuHjxotp/csXMzc3FsQBoJMfiORovK46lsia7sorB+UYT5xvON9pwoWRCLCws0L9/f6xYsQKhoaE6/7gdHBzw6NEjjfa//vrL4KtLivs/evQI9evXVxur5PNl5ebmhoKCAigUCrU/Mn0/Hby8RoeDgwMEQcDp06c1kigA+Pj4AAAcHR1x//7914j879cDoPF+l/X9adOmDQ4fPoycnBykpKRgypQpiIyMxM2bN0uNITMzU61N3/fVwcEBLVq0QGJios7xi6+4efkTp7bfMQBiLI6OjjrHZKaP840mzjecb7ThU28mZuzYsejVqxc+/PBDnX06duyIffv2qV1x8O233yIzMxMdO3YEAPGPurRPX4DqD8nCwgLJyclq7Tt37oSzszO8vb3LuisAgLfeegsAsHfvXrGtsLAQ+/btK9N4oaGhAID09HS0bt1a42FtbQ0ACAsLw65du/D06VOdY1lYWLzy/fHx8YGTk5PW90cikaBNmzZl2g8rKyv06NED48ePR2pqaqlx+Pj4IDU1Va1N3/c1LCwMt27dQr169bS+XwDQoEEDuLq6Yv/+/Wrb6voZpaWlwdbWFq6urvruLjNRnG9Kx/lGpabnGz6iZGLatGnzyj/qmTNnon379nj77bcxceJE/PXXX/jkk0/Qpk0b9OjRAwDg6uoKOzs7bN++HY0aNYJUKkWLFi00xqpbty4mTpyIpUuXwtLSEu3atcOhQ4ewbds2rFq1SjxcWlZNmzZF37598dFHHyE3Nxeenp5YvXo18vPzyzSet7c3JkyYgBEjRmDq1Klo27YtCgoKcP36daSkpIjvXWxsLA4ePIiOHTti2rRpcHNzw5UrV5CdnY1p06YBAPz8/LB//3506tQJMpkMPj4+YuIrZm5ujtmzZ+ODDz6As7MzevTogXPnzmHJkiX46KOPDPqU88033yAxMRF9+/aFu7s7Hj58iFWrVqFDhw6wtLTUuV2HDh2wc+dOtTZ939eRI0ciISEBXbp0wZQpU+Dt7Y3MzExcvHgR+fn5WLRoEczNzRETE4OPPvoILi4uCAkJQUpKijg/w8xM/fPUTz/9hPbt22u0s6qH803pON+o1Ph8Y7Rp5IyI1K9C0eXlq1CIiE6ePElBQUEklUrJwcGBRo8eTenp6Wp99u7dS35+fiSVSgkApaamar06pbCwkObNm0fu7u5kYWFBb7zxBq1du1avOG1tbSk2NrbU+BUKBQ0fPpxkMhk5OjrS5MmTaenSpXpdhaLtKpGioiJatWoVNW/enCQSCTk4OFBQUBCtWLFCrd/ly5epd+/eZGNjQ7Vr16bAwEBKSkoSnz916hS1bNmSrKys1K620Pa6a9asoTfeeIMsLCzI3d2d5s+fL17xQvT3VSiPHz9W267kz04ul1P//v2pYcOGJJVKqV69ejR69Gh68OBBqe/fzz//TADo+vXrBr+vRKrLhCdNmiT+fN3c3KhHjx7ipeHF72lcXBw5OztT7dq1qXfv3rRjxw4CQL/88ovYLz8/nxwcHNSufmFVB+cbFc43unG+0SQQEVVmYcYYM1yrVq3Qp08fzJkzp9Jec/bs2Vi+fDnS09NhZWUFQPUpddiwYbh3716ZbnXBGDN9nG/UcaHEWBWwf/9+cX7By1eklIerV69iy5YtaN++PSQSCU6ePIlly5Zh/PjxWLlypdiva9eu6NKlS6UmUMZY5eJ8o47nKDFWBfTp0wd//PEH7t69iyZNmpT7+LVr18bZs2exZs0aPH36FPXr18fUqVMRFxcn9nn27BmCg4MxadKkcn99xpjp4Hyjjo8oMcYYY4zpwJetMMYYY4zpwIUSY4wxxpgOXCgxxhhjjOnAhRJjjDHGmA5cKDHGGGOM6cCFEmOMMcaYDlwoMcYYY4zpwIUSY4wxxpgOXCgxxhhjjOnw/wCj+ZTs9hwz2wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -250,7 +250,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAGCCAYAAADwl9DKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRF0lEQVR4nOzdeXxMZ/s/8M9JJJOI7LYoEtESaolSamktRR9aDyK0tNTSPqWqStGiGqqEh1oebVGl1K+Lpo3WroQulrbU0pbG1igiimSSIHty/f4430wyZhIzMZPZPu/Xa15m7nOfM9eZXJfknnPOfRQRERARERERERGRxbjZOgAiIiIiIiIiZ8PBNhEREREREZGFcbBNREREREREZGEcbBMRERERERFZGAfbRERERERERBbGwTYRERERERGRhXGwTURERERERGRhHGwTERERERERWRgH20REREREREQWxsG2DYWFhWHJkiU2ee+ZM2ciMjLSJu/taBRFwddff21y/+HDh6Nfv35Wi4eIiIiIiOyf0w+27Xngc+jQIfznP/+x+vuYO1i8G/Hx8ejZsyeCg4OhKAqOHTtm1vq2/AKCiIiIiIjIUpx+sG0L+fn5JvWrUaMGqlatauVoKtetW7fQqVMnzJ8/39ahEBERERER2YzLD7b/+OMP9OrVC9WqVUOtWrUwdOhQXL9+Xbd8x44d6NSpEwICAhAcHIwnnngC586d0y0/f/48FEXBhg0b0LlzZ3h5eeGTTz7RHVFfuHAhQkJCEBwcjLFjx+oNxG8/iqsoCj788EP0798fVatWxX333YdNmzbpxbtp0ybcd9998PLyQteuXbFu3TooioL09HSj+xcWFgYA6N+/PxRF0b0utn79eoSFhcHf3x9PPfUUbty4oVtWVFSE2NhYNGjQAN7e3mjZsiW+/PLLcj/PoUOH4s0330T37t2NLhcRzJw5E/Xr14dGo0GdOnXw8ssvAwC6dOmCv//+GxMmTICiKFAUpcz3URQFK1euxBNPPIGqVauiSZMmOHjwIM6ePYsuXbrAx8cHHTp00PtZAcDy5cvRsGFDeHp6onHjxli/fr3e8jNnzuCRRx6Bl5cXmjZtil27dhm898WLFzFo0CAEBAQgKCgIffv2xfnz58v9XIiIiIiIyLW49GA7PT0d3bp1Q6tWrXD48GHs2LED//zzDwYNGqTrc+vWLUycOBGHDx9GQkIC3Nzc0L9/fxQVFelt6/XXX8f48ePx559/4rHHHgMA7N27F+fOncPevXuxbt06rF27FmvXri03plmzZmHQoEH47bff0Lt3bzz99NNIS0sDACQlJSE6Ohr9+vXD8ePH8cILL2D69Onlbu/QoUMAgI8++ggpKSm61wBw7tw5fP3119iyZQu2bNmC77//HvPmzdMtj42Nxccff4wVK1bgxIkTmDBhAp555hl8//33d/5wy/DVV19h8eLFWLlyJc6cOYOvv/4azZs3B6Cegl63bl289dZbSElJQUpKSrnbmj17NoYNG4Zjx44hIiICQ4YMwQsvvICpU6fi8OHDEBG89NJLuv4bN27E+PHj8eqrr+KPP/7ACy+8gBEjRmDv3r0A1C8XoqKi4OnpiZ9//hkrVqzAa6+9pvee+fn5eOyxx+Dr64sff/wR+/fvR7Vq1fCvf/0LeXl5Ff5ciIiIiIjIyYiTe/bZZ6Vv375Gl82ePVt69uyp13bx4kUBIKdOnTK6zrVr1wSA/P777yIikpSUJABkyZIlBu8bGhoqBQUFuraBAwfKk08+qXsdGhoqixcv1r0GIG+88Ybu9c2bNwWAbN++XUREXnvtNWnWrJne+0yfPl0AiFarNf4B/N92N27cqNcWExMjVatWlczMTF3b5MmTpV27diIikpOTI1WrVpUDBw7orTdq1CgZPHhwme9VrPhzOXr0qF77O++8I40aNZK8vDyj693+mZS3T6U/q4MHDwoAWb16ta7ts88+Ey8vL93rDh06yPPPP6+3nYEDB0rv3r1FRGTnzp1SpUoVSU5O1i3fvn273ue3fv16ady4sRQVFen65Obmire3t+zcuVNEys85IiIiIiJyDS59ZPv48ePYu3cvqlWrpntEREQAgO704zNnzmDw4MEIDw+Hn5+f7jTsCxcu6G2rTZs2Btu///774e7urnsdEhKCq1evlhtTixYtdM99fHzg5+enW+fUqVN48MEH9fq3bdvWxL01FBYWBl9fX6PxnT17FllZWejRo4fe5/Pxxx8bnJptjoEDByI7Oxvh4eF4/vnnsXHjRhQUFFRoW6U/q1q1agGA7ih5cVtOTg4yMzMBAH/++Sc6duyot42OHTvizz//1C2vV68e6tSpo1vevn17vf7Hjx/H2bNn4evrq/tMgoKCkJOTc1efCxEREREROZcqtg7Alm7evIk+ffoYncwrJCQEANCnTx+EhoZi1apVqFOnDoqKitCsWTODU4Z9fHwMtuHh4aH3WlEUg9PPLbFORZX3Xjdv3gQAbN26Fffcc49eP41GU+H3rFevHk6dOoXdu3dj165dePHFF7FgwQJ8//33BvGYE3/x9d3G2iz5+d28eROtW7fGJ598YrCsRo0aFnsfIiIiIiJybC492H7ggQfw1VdfISwsDFWqGH4UqampOHXqFFatWoWHH34YALBv377KDlOncePG2LZtm15b6Wuwy+Lh4YHCwkKz3qtp06bQaDS4cOECOnfubNa6d+Lt7Y0+ffqgT58+GDt2LCIiIvD777/jgQcegKenp9mxmqpJkybYv38/nn32WV3b/v370bRpU93yixcvIiUlRfdly08//aS3jQceeAAbNmxAzZo14efnZ5U4iYiIiIjI8bnEaeQZGRk4duyY3uPixYsYO3Ys0tLSMHjwYBw6dAjnzp3Dzp07MWLECBQWFiIwMBDBwcH44IMPcPbsWezZswcTJ0602X688MILSExMxGuvvYbTp0/jiy++0E24Vt7M3WFhYUhISMCVK1eg1WpNei9fX19MmjQJEyZMwLp163Du3DkcOXIEy5Ytw7p168pcLy0tDceOHcPJkycBqKe+Hzt2DFeuXAEArF27FqtXr8Yff/yBv/76C//v//0/eHt7IzQ0VBfrDz/8gOTkZL1Z4S1h8uTJWLt2LZYvX44zZ85g0aJFiI+Px6RJkwAA3bt3R6NGjfDss8/i+PHj+PHHHw0moHv66adRvXp19O3bFz/++COSkpLw3Xff4eWXX8alS5csGi8RERERETkulxhsf/fdd2jVqpXeY9asWahTpw7279+PwsJC9OzZE82bN8crr7yCgIAAuLm5wc3NDZ9//jl+/fVXNGvWDBMmTMCCBQtsth8NGjTAl19+ifj4eLRo0QLLly/XDQbLO7X7nXfewa5du1CvXj20atXK5PebPXs2ZsyYgdjYWDRp0gT/+te/sHXrVjRo0KDMdTZt2oRWrVrh8ccfBwA89dRTaNWqFVasWAEACAgIwKpVq9CxY0e0aNECu3fvxubNmxEcHAwAeOutt3D+/Hk0bNjQ4qdl9+vXD0uXLsXChQtx//33Y+XKlfjoo4/QpUsXAICbmxs2btyI7OxstG3bFs899xzmzJmjt42qVavihx9+QP369REVFYUmTZpg1KhRyMnJ4ZFuIiIiIiLSUUREbB0EVdycOXOwYsUKXLx40dahEBERERER0f9x6Wu2HdH777+PBx98EMHBwdi/fz8WLFigdy9pIiIiIiIisj27OI08MTERPXr0gI+PD2rXro0pU6YYzPZtjIhg3rx5qF+/Pry9vdG+fXuDCa1KKyoqQuvWraEoCr788ktL7kKlOXPmDPr27YumTZti9uzZePXVVzFz5kxbh0V3gflPro41QK6M+U+ujjVAzszmg22tVotu3bohLy8P8fHxmDt3Lj744AOTJiKbP38+YmJiMGHCBGzZsgUhISHo2bMn/vrrL6P9V65cieTkZEvvQqVavHgxLl++jJycHJw+fRozZswwOpM6OQbmP7k61gC5MuY/uTrWADk9MVNqaqp89dVXMmXKFBk6dKhER0fLCy+8IIsWLZJDhw6ZuzmZO3eu+Pj4SGpqqq5t5cqV4u7uLsnJyWWul52dLX5+fjJ16lRdW25uroSGhsqYMWMM+l+7dk2CgoJkzZo1AkDi4uLMjpXI0pj/5OpYA+TKmP/k6lgD5OxMPrL9/fffIyoqCiEhIRg4cCC++OIL/Pnnn0hJScG+ffsQExODtm3bIjw8HHPmzEFmZqZJ292+fTu6d++OoKAgXdugQYNQVFSEb7/9tsz1Dhw4gMzMTAwaNEjX5unpiaioKIN7UQPA1KlT0bVrV3Tt2tXUXSayOuY/uTrWALky5j+5OtYAOTuTzj/u2bMnfvnlFwwYMADffPMN2rdvD39/f70+IoJTp05h27Zt+Pzzz7F48WJ8/PHH6N27d7nbTkxMxMiRI/XaAgICEBISgsTExHLXA4CIiAi99iZNmuDChQvIzs6Gt7c3AOCXX37Bp59+ihMnTpiyu8jNzUVubq7evuXl5aF69erl3s+ayFz2mP8Aa4Aqjz3WAPOfKos95j/AGqDKY481wPwnSzLpyHaXLl3w999/Y/Xq1fjXv/5lMNAGAEVREBERgYkTJ+KXX37Bxo0bISbcVUyr1SIgIMCgPTAwEGlpaeWup9Fo4OXlZbCeiECr1QJQJ0MYO3YsXn31VYSFhd0xHgCIjY2Fv7+/7hEQEICaNWvixo0bJq1PZCp7zH+ANUCVxx5rgPlPlcUe8x9gDVDlsccaYP6TJZk02J42bZrRAXZ5Hn74YTz++OMVCsqSPvzwQ1y5cgWvv/66yetMnToVGRkZugfvYU2OqiL5D7AGyHnwdwC5Mv4OIFfH3wFkaxWexlpEcPr0aaSlpSEoKAiNGjWq0KkVgYGByMjIMGjXarV6128YWy83Nxc5OTl632pptVooioLAwEDcvHkT06ZNw5w5c5CXl4e8vDzdteRZWVnIzMyEn5+fwbY1Gg00Go3Z+0JkLnvMf4A1QJXHHmuA+U+VxR7zH2ANUOWxxxpg/pMlVejWX++//z5CQkLQtGlTdOrUCU2bNkWdOnWwfPlys7cVERFhcE1GRkYGUlJSDK7DuH09ADh16pRee2Jiou5+e9evX0dqaipGjx6NwMBABAYGomXLlgCAZ599Fo0aNTI7XiJLYv6Tq2MNkCtj/pOrYw2QszP7yPYHH3yAl156CYMHD8aTTz6JWrVq4Z9//sGGDRvw0ksvwcPDA88995zJ2+vVqxfmzp2L9PR03TUbcXFxcHNzQ8+ePctcr0OHDvDz80NcXJyucPLz8xEfH6+blK127drYu3ev3npXrlzB4MGDMXPmTPTo0cPMvSeyLOY/uTrWALky5j+5OtYAOT1z7xUWEREh48ePN7ps/Pjx0rhxY7O2l5aWJiEhIdK5c2fZuXOnrFmzRgICAmTs2LF6/bp16yYNGzbUa4uNjRWNRiNLliyRhIQEGTBggPj6+sq5c+fKfL+kpCSz76+XkZEhACQjI8OsfSO6E0fIfxHWAFmPI9QA85+sxRHyX4Q1QNbjCDXA/Ke7YfaR7aSkJDzxxBNGlz3++ONYsWKFWdsLDAxEQkICxo0bh379+sHX1xfPPfcc5syZo9evsLAQBQUFem2vvfYaRAQLFy7EtWvXEBkZiZ07dyI8PNy8nSKyEeY/uTrWALky5j+5OtYAOTtFxIT7c5XSoEEDjBw5EjNmzDBYNnv2bKxZswZJSUkWC9AeZGZmwt/fHxkZGWVOJkLkzFgD5MqY/+TqWAPkypj/dDfMPrI9atQovPXWW8jNzUV0dDRq1aqFq1evIi4uDgsWLMCbb75pjTiJiIiIiIiIHIbZg+3p06dDq9ViwYIFiI2NLdlQlSoYN24cpk+fbtEAiYiIiIiIiByN2YNtRVHwzjvvYNq0afj5559198Fr27YtgoODrREjERERERERkUMxe7BdLDg4WDe1PhERERERERGVMGmwHR8fj27duiEgIADx8fF37B8VFXXXgRERERERERE5KpMG29HR0fjpp5/Qtm1bREdHl9tXURQUFhZaJDgiIiIiIiIiR2TSYDspKQkhISG650RERERERERUNpMG26GhobrniqIgJCQEHh4eBv0KCgpw+fJly0VHRERERERE5IDczF2hQYMGOHr0qNFlx48fR4MGDe46KCIiIiIiIiJHZvZgW0TKXJabmwuNRnNXARERERERERE5OpNOI09MTMTJkyd1r7/77jtcunRJr09OTg4+++wzhIeHWzZCIiIiIiIiIgdj0mB7w4YNmDVrFgD1mu3XX3/daL+AgACsXbvWYsEREREREREROSKTBtuvvPIKhg8fDhFBeHg44uPj0apVK70+np6eqF27NhRFsUqgRERERERERI7CpMG2v78//P39AZTcBszT09OqgRERERERERE5KpMG26WVvg1YVlYWcnJyDPoEBQXdXVREREREREREDszswbaI4O2338bKlSuRkpJitE9hYeFdB0ZERERERETkqMy+9dfixYuxaNEijB07FiKC6dOn480330SjRo0QFhaGVatWWSNOIiIiIiIiIodh9mB79erVmDVrFqZMmQIA6NevH2JiYnDixAk0adIEZ8+etXiQRERERERERI7E7MH2+fPnERkZCXd3d3h4eCA9PV3dkJsbXnzxRd76i4iIiIiIiFye2YPt4OBg3Lx5EwBQv359HDlyRLfs+vXryMrKslx0RERERERERA7I7AnSOnbsiEOHDqF3794YMmQIZs6ciStXrsDDwwOrVq3Co48+ao04iYiIiIiIiByG2YPtmTNnIjk5GQAwbdo0pKen47PPPkN2djZ69OiBZcuWWTxIIiIiIiIiIkdi1mBbRFCjRg2EhYUBADQaDZYuXYqlS5daIzYiIiIiIiIih2TWNdv5+fmoWbMmdu/eba14iIiIiIiIiByeWYNtT09P1K1bF4WFhdaKh4iIiIiIiMjhmT0b+dixY7Fo0SLk5ORYIx4iIiIiIiIih2f2BGkXLlzA6dOnUb9+fXTp0gW1atWCoii65Yqi8BpuIiIiIiIicmlmD7a3bNkCjUYDjUaDQ4cOGSznYJuIiIiIiIhcndmD7aSkJGvEQURERERERE5ARAAIFMXsq5adimvvPREREREREVmMiODYsS749dfWEHHtibVNGmxv377d7A1fu3YNR44cMXs9IiIiIiIickwi+cjI+AE3bx5DdvZftg7HpkwabL/wwguIjIzE//73PyQnJ5fZr7CwEAkJCXjuuecQHh6Oo0ePWixQIiIiIiIism8iRbrnrn4auUnXbJ85cwbvv/8+lixZggkTJqBevXpo0aIFatSoAY1Gg/T0dCQlJeG3335DQUEB+vTpg3379qFly5bWjp+IiIiIiIjshEhBqVdKmf1cgUmDbY1GgwkTJmDChAn47rvvkJCQgEOHDuHw4cPIyclBUFAQGjdujJEjR6Jv376oWbOmteMmIiIiIiIiu1P6Om0Ots3SpUsXdOnSxQqhEBERERERkSPjke0Srn0SPREREREREVmMq89AXhoH20RERERERGQR+ke2i8rs5wo42CYiIiIiIqK7kp+fiosXFyM3t+TuVaVnJndFZl+zTURERERERFTayZNPQ6vdCQ+P6qVaXfuUch7ZJiIiIiIiorui1e4EAOTnX9e1ufqRbbMH2ytWrEBmZqY1YiEiIiIiIiKnwcG2WSZOnIiQkBAMGzYM33//vTViIiIiIiIiIgfn6jOTmz3Yvnz5Mv773//i5MmT6Nq1K+69917MnTsXycnJd16ZiIiIiIiIXAJPIzdTQEAAxo4di8OHD+PYsWN44oknsGTJEoSFheHxxx/HV199hfz8fGvESkRERERERA6Dg+0Ka9GiBZYsWYJjx46hY8eO2L59OwYOHIh77rkHMTExyM7OtlScREREREREZIcKCjKMtvM08goSEWzfvh3R0dEIDw9HYmIiJk+ejAMHDmD06NFYtmwZnnnmGUvGSkRERERERHbmzJmXylji2ke2zb7P9rlz57BmzRp8/PHHuHz5Mnr06IFPPvkEffv2RZUq6uYeeughtGnTBk899ZTFAyYiIiIiIiL7kZb2rdF2V79m2+zB9n333Yd77rkHI0aMwKhRoxAaGmq0X0REBNq1a3fXARIREREREZE9U4y28jRyM23atAl///033nrrrTIH2gDQqFEj7N2716RtJiYmokePHvDx8UHt2rUxZcoU5OXl3XE9EcG8efNQv359eHt7o3379vjpp5/0+uzevRtPPfUUwsLCULVqVTRt2hQLFizgJG5kN5j/5OpYA+TKmP/k6lgDzkFRyhpWuvaRbYiZRowYIX/99ZfRZefPn5cRI0aYtb20tDQJCQmRRx55RHbs2CGrV68Wf39/GTt27B3XjY2NFU9PT1m0aJHs3r1b+vfvL76+vnLu3Dldn+joaOndu7esW7dO9u7dK7GxseLt7S3Dhw83OcaMjAwBIBkZGWbtG9GdOEL+i7AGyHocoQaY/2QtjpD/IqwBUxQVFcnvv/eX33+PkqKiIluH4zAcoQaY/6bZv/8e2bsXBo+0tD22Ds2mzB5su7m5yc8//2x02eHDh8XNzc2s7c2dO1d8fHwkNTVV17Zy5Upxd3eX5OTkMtfLzs4WPz8/mTp1qq4tNzdXQkNDZcyYMbq2a9euGaw7Z84cURTF6DJjWGRkLY6Q/yKsAbIeR6gB5j9ZiyPkvwhrwBS5uf/oBhd5eddtHY7DcIQaYP6b5sCBukYH23v3Qi5fXmPr8GzG7NPIRQSKYvyc/DNnziA4ONis7W3fvh3du3dHUFCQrm3QoEEoKirCt98av9AeAA4cOIDMzEwMGjRI1+bp6YmoqChs27ZN11a9enWDdVu1agURQUpKilmxElka859cHWuAXBnz35mIrQNwSKwBZ2J8fAgAp06NrMQ47ItJE6QtX74cy5cvBwAoioIhQ4bA29tbr09OTg7Onz+PgQMHmhVAYmIiRo7U/wEEBAQgJCQEiYmJ5a4HqBOxldakSRNcuHAB2dnZBjEW27dvHzQaDRo0aGB0eW5uLnJzc3WvMzMzTdoXInPZY/4DrAGqPPZYA8x/qiz2mP8Aa4Aqjz3WAPO/osoebLsyk45s16lTB61bt0br1q0hImjcuLHudfGja9eu+O9//4sVK1aYFYBWq0VAQIBBe2BgINLS0spdT6PRwMvLy2A9EYFWqzW63pkzZ7B06VKMHj0a1apVM9onNjYW/v7+uke9evVM3yEiM9hj/gOsAao89lgDzH+qLPaY/wBroCJESo5sX7iwACKC3NzLNozIMdhjDTD/K6bsCdJcm0lHtvv27Yu+ffvqXs+YMQPh4eFWC8paMjMzERUVhQYNGmDOnDll9ps6dSomTpyotx4LjRydqfkPsAbIOfF3ALky/g6oPBcvzodIHi5dWozGjdcgJGSErUMi8HeA9XGwbYzZ99n+6KOPLBpAYGAgMjIyDNq1Wq3e9RvG1svNzUVOTo7et1parRaKoiAwMFCvf15eHvr37w+tVouDBw/Cx8enzG1rNBpoNJoK7A2Reewx/wHWAFUee6wB5j9VFnvMf4A1UDH6tze6dGkxAODs2QkcbJfDHmuA+V9RPI3cGJMG2y+//DImTZqE+vXr4+WXXy63r6IoWLp0qckBREREGFyTkZGRgZSUFIPrMG5fDwBOnTqFli1b6toTExN199srVlRUhKeffhq//vorfvzxR347RXaD+U+ujjVAroz57zxEjN9LuEoV30qOxLGwBpxHWRNouzqTjvdv3rxZd+3Dpk2bsHnz5nIf5ujVqxd2796N9PR0XVtcXBzc3NzQs2fPMtfr0KED/Pz8EBcXp2vLz89HfHw8evfurdd37Nix2Lx5M7755hs0b97crPiIrIn5T66ONUCujPnvTAqNtrq7c7BdHtaAM+Fg2yhb3G+stOKb2Xfu3Fl27twpa9askYCAAIOb2Xfr1k0aNmyo1xYbGysajUaWLFkiCQkJMmDAAIOb2c+ZM0cAyOTJk+XgwYN6D1Pvl8f765G1OEL+i7AGyHocoQaY/2QtjpD/IqwBU2RlnTN6f+HDhx+0dWh2zRFqgPlvmp9+alzmfbb37rX5kNNm7GLPT548KY8++qh4e3tLzZo1ZdKkSZKbm6vXp3PnzhIaGqrXVlRUJHPnzpW6deuKRqORdu3ayYEDBwzWg3rzQ4PH3r17TYqPRUbWZO/5L8IaIOuy9xpg/pM12Xv+i7AGTHHr1pkyBxm//dZXioqKbB2i3bL3GmD+m+bnnyM42DZCESl1r4IyxMfHm3W0PCoqyqz+9i4zMxP+/v7IyMiAn5+frcMhqnSsAXJlzH9ydayBO8vKOoVffin7GuMOHa7B07N6JUZElsL8N80PP1RFUVF2mcu7dLnjkNMpmTRBWnR0tMkbVBQFhYXGr1shIiIiInI2ZU2QVkxRzL4BEJHDKCi4oTfQvvfeJTh79hXbBWRHTKr8pKQka8dBREREROSQRO50oIkHosh55eT8rfc6JOQFpKXtQFraDhtFZD9MGmyHhoZaOw4iIiIiIgdV/pHtOx35JnJs+vnt5uYBE2965fRMGmynpaUhICAAbm5uSEtLu2P/8m5CT0RERETkTO50ZPvOR76JHJn+9diK4g5F8bBRLPbFpMF2jRo1cPDgQbRt2xbVq1e/403Lec02EREREbmKOw+meWSbnJex+barVNG/x3x29jl4ezesrJDshkmD7TVr1qBhw4a653cabBMRERERuY47nUbOA1HkzAzz291df7CdkvIhwsNjKysgu2HSYPvZZ5/VPR8+fLi1YiEiIiIicjg8sk2urKgoT/fcx6cFAMDd/fbbpLnmwdoK34cgIyMDv//+O1JSUhASEoLmzZvD39/fkrERERERETkAHtkm1yVSMtgOCvoXAMPTyF11wjSzB9tFRUV44403sGzZMty6dUvX7uPjg5deeglvv/023N3dLRokEREREZG9+v33J8pdztnIyZmVPrJd/MXT7aeRu+plyGYPtidPnoxly5Zh6tSpiI6ORq1atfDPP/8gLi4O8+bNQ15eHt555x1rxEpEREQOQqQQisIv38n5iQgKCtLv0ItHtsl5lT6yXXwWB08jV5k92F67di1mz56N1157TddWs2ZNNG/eHN7e3li4cCEH20RERC6soOAGDh1qCn//zmja9P/ZOhwiqyo90Ci7D49sk/MqfWS7eLBteBq5aw62zT55vrCwEA888IDRZa1bt+Ztv4iIiFzctWtxyM29hKtXP7F1KERWp38KLeDv38mgD6/ZJmdWUJBR6lXxaeQ8sg1UYLAdHR2Nzz//3Oiyzz//HFFRUXcdFBERETkuHsUjV3L7kW13d1/ce++S23qxJsg5iRTh1KkReq8BwN3dR68fr9kuR3x8vO55586dMW3aNHTt2hX9+vVDzZo1cfXqVWzcuBHnzp3DnDlzrBYsERER2aeiolzcvPkbfH1bgwMLciVFRbkGbYWFN/Ve88g2OauCAu1tLer//25uXre1c7BdpujoaIO25ORkfP/99wbtI0aMwLBhw+4+MiIiInIYJ08+hevXvwYANGgQa9tgiCrR7aeRA4aDbX4BRc4qP19/sF38xZKbm+a2nhxslykpKcnacRAREZEDKx5oA0BS0lTbBUJUyURuP7KtwNMz5LY+PLJNzun2I9vFue7l1eC2nhxslyk0NNTacRARERERORytNsGgLSTkP8jKOo3Ll98DwHkMyHkVFKTd1lJ8zXZVNG++RXcPekUxe6owp3BXe52VlYW0tDSDBxER8Y8rIiJXcObMWIM2d3cvNGr0LtzcvAEAWu3Oyg6LqFLoz0QOaDQlB2mrVAkutcQ1j2ybPdgWEcyePRt169aFr68vatSoYfAgInJ1f/01Hfv310ROzt+2DoWIiGykqCgbAHD+/EzbBkJkJUVFOXqv69efUuqVlHrOwbZJFi9ejEWLFmHs2LEQEUyfPh1vvvkmGjVqhLCwMKxatcoacRIROZQLF+aioCAV58+/ZetQiGwqMXEUcnOTbR0GUSUyPqhITn6vkuMgsr7Sg+127f6Cu3tV3evScxW46q2/zB5sr169GrNmzcKUKeq3Fv369UNMTAxOnDiBJk2a4OzZsxYPkoiIiBzTlStrkJg44s4diZxEWYOKM2dequRIiKyv+NZ3NWoMgrf37ZOilb6cjoNtk5w/fx6RkZFwd3eHh4cH0tPT1Q25ueHFF1/E2rVrLRwiEZEjc81fLkSl3br1u61DIKo03t732joEokpTPNg2vK82oH8auRhZ7vzMHmwHBwfj5k313oH169fHkSNHdMuuX7+OrKwsy0VHROTgXPW0KaLSFKUKCgtzcO3a1ygoyLR1OEQW5e/fWe91WNgsG0VCVPmKTyM3vK+2/kSxSUlvIDf3SqXFZS9MuvVXaR07dsShQ4fQu3dvDBkyBDNnzsSVK1fg4eGBVatW4dFHH7VGnEREDiMr65StQyCyK4pSBefOTcTly8sRGPgYWrbcYeuQiCxGJA8AoCgaPPRQEqpU8bNxRESVo7DwFs6fnwHA+GC7eDZ+ABApwMmTg9Cq1Q+VFp89MHuwPXPmTCQnqxOdTJs2Denp6fjss8+QnZ2NHj16YNmyZRYPkojIkfzyS0SpVzyyTaQoVXD58koAvAUSOZ/i02ibNdsIjSbExtEQVZ7k5Hd1zxXFcLDt59dO73VGxo9Wj8nemD3Ybty4MRo3bgwA0Gg0WLp0KZYuXWrxwIiInAMH20SKUgX6E+UQOY/iI9tubp42joSocuXlXdM9N3bNtqIouOeecUhOdt2DsWZfs13apUuXcOjQId2RbiIiV1ZYmINTp16wdRhEle7WrZPlLs/KSqykSIgqX/GRbWNH9m5X+hpWIkenKCVDSWOnkat93Es9N/s4r8Or0GD7gw8+QP369REaGoqHHnoI9evXR7169bBy5UpLx0dE5DAuX34PKSkf3NbKI9vk/H77rbetQyCymaKi4iPbpgy2C6wdDlGl0R9Ie5TRq3Qf1zv7w+yvF2JjYzF9+nQMHToU0dHRqFWrFv755x/ExcXhxRdfRFpaGqZOnWqNWImI7Fpu7iWDNs5GTs4uJ+cicnP/tnUYRDYjUnzrozsPJEQKrR0OUSW68984pQfkrvhlk9mD7WXLlmHy5MmYP3++XnufPn1Qq1YtLFu2jINtInI5169/g0uXlhhdJlKIf/75FP7+neDt3aByAyOyMt5Dm1xZfn4a8vOvAwDc3e88C7l6fbf3HfsROQKRfN1zf/+ORvvk5PxVqn8eCgoyXWrGfrNPI8/MzET37t2NLuvZsydu3Lhx10ERETmaP/7oV8YSBZcvf4DExGH4+efwygyJqFLk5FywdQhENnPkSAeIFMDDozq8vMLu2H/fvgAUFPBvZXIOBQUZANQvmgICHjba5/Y5PTIy9ls9Lnti9mD7sccew+7du40u27VrF++zTUSkR0F6+h5bB0FkNXl5nCSVXFd29ikAgIdHTaOXDQUF/cug7fr1jVaPi6gy5Oaq//83bLiwzD4REesqKxy7ZNJp5EeOHNE9f+655/DCCy/g6tWr6NevH2rWrImrV69i48aN2LNnDydJIyIqJT//Gq5d+9LWYRBZTWHhLVuHQGRz991n/NZGERHrceBADb02zkhOziI39yIAwMurfpl9/PzaVFY4dsmkwXabNm30vq0TEaxbtw7r1q2DoigQEd2yJ554AoWFnPyBiAgArl2Ls3UIRFZ16dJiW4dAZBOFhdm6576+xgcUHh7BRlrFSBuRY0lN3a6bs8PTM6TcvqGhb+Lvv98CABQV5Vg9Nnti0mB779691o6DnEx29l/47bd/oV69V1GnDu87TM7NnNlli4oK4ObmeveZJOeUmXnI1iEQ2UxBQdr/PXOHu7uv0T7G70jBwTY5vt9/L7nlY1n5X6xKlUDd8xMnotCli+vUgEl/8XXu3NnacZCTOX16NLKzz+D06dEcbJPT++OP/ib3PXKkLVq3/pW3BCOnkJ19Vvfcyysc99zzEi5eXIjq1fuhQYM5uHXrdxw79ogNIySynvx8dbDt4RFo5v/prjPQINfg7l7tDj1c99KJCh9eOXHiBPbt24e0tDQEBQWhU6dOuP/++y0ZGzkoEUFOjuE9V0WEAwxySqmpm03ue/PmURQV5cDdnbd+IcdXWFgyq/I997yIevUmoF69Cbq2gICH0aDBXCQlTbNFeERWVXxku0qVILPW4722ydncabDtyvMUmD3Yzs3NxdChQ/HVV19BRKDRaJCbmwtFURAdHY3169fD09PTGrGSA8jPT8WBA7X1blr/008NkZ+fCo0mBK1bH+Egg5xKXt51s9cpLMxkHZBTyMu7qnteVJRvtM+dj3gQOZbs7PPQaOqUOrJt3mD79OkX4OPTDP7+HawRHlGlc3PzukMP/cG2Kx2AM/vWX9OmTcPWrVuxYsUKpKenIzs7G+np6VixYgW2bt2KadP47bUru3LlY72BNqDezL6wMANZWYlIS9tuo8iILO/GjSM4cKC22esVFGRaIRqiypebe0n3XCTPaB8OtsmZZGTsx88/N8Dx4911+V/6elRT/fnnMEuHRmQzdxo4335ku/RZUc7O7MH2559/jtjYWDz//PPw8/MDAPj5+eH555/HnDlz8Nlnn1k8SLI/xk4HESmEoniYvR6Ro7px4wgA808HdKVfMuTcSg+23d19jPYxNti+fJm3CSXHdPnyBwCAjIwfcfbsywDMP40cAERyLRoXUWUqKjI3f/X/Vrp6dYPlgrFzZg+209LSEBERYXRZREQE0tLSjC4j5/HXX29g//7qyM4+p2v7++85+OEHb/zzz8flrnvy5EB8952CrKwz1g6TyGry89NQVJSLrKwTFVo/O/svC0dEZBv5+SWnkYeEGJ8M09hg+/Tp0VaLici6DCc3q1LF3/ytCCdJI8d09WocfvjhTqeN67v9YNvp0//BzZvHLRmW3TJ7sB0REYH169cbXfb//t//K3MgTs7jwoU5KCjQ4u+/39a1JSW9AZF83Lhh2m1g/vprqrXCI7KqvLxrOHCgFn78sRouXVpSoW2cPDkQ2dlJlg2MqJKICLKyzuDs2Ym6//MjI39AlSrGTxfnaeTkXAwHyYpypz+njZ1iyzP9yDGdPDlI73VExDoT1jLM95s3f7NQRPbN7AnSZsyYgYEDB+L8+fMYMGAAatWqhatXr+LLL7/EwYMHERcXZ4047U5hYR4KCzNsHYZN5edrkZd3rYLrXqvwupalwMMj2GUmaaC7l5a23WBegmLe3vfh3nuX4q+/psLDIxjp6XvK3M6NG4fg7d3AWmESWc2FC/ORlKT/hWl5R/bc3asabc/OPgdv74YWjY3I2owfkS7/bwhF8TAypwGPbJPjqfgZGYZfSBUW3rq7YByE2YPtqKgobNy4EbNmzcKrr76qm00uMjISGzduRJ8+fawRp91JSVmOs2dfsXUYNpWa+g0OHPimQutmZPyAAwdqWjiiinn44ZtlXmtIZbt6NQ75+am2DqPSZWb+ZNAWFjYbYWFv6F4HB/fCtWtflTvYvnbtK91MtrYUEPAIfHya2joMciC3D7QBoEqVgDL7K4rGaHt29lkOtskBGTsifafBdhWDwXZe3hX888+nqFVriAVjI7KuggLDA41FRcYnxyztnnvG4vz5N29bj4NtA3l5ediyZQsiIyPx66+/4tatW0hPT0dAQAB8fDhYIXIlf//9Nm7dco1TgO7E2Gmynp4h5a5z7doXuHbtC2uFZLJGjVZysF0Bt279ycthSinvyHZZt4T566/pSE5ebq2QTKIobmjWLN6mMZBjMTbRq0ZzT7nrBAc/YfT/+z//fJqDbXIoWu0uvddublVRq9bgO67n4RGEzp2LcPx4N6SnfwcASElZg7p1Jzr92aVmDbY9PT0xZMgQ7NixA+Hh4fDx8XHZQXZIyBjUrPmUrcOwGUXxNPiW1s3NG0VF2VAUD92s5EVFuXBz80BRUe7/tSkApMxbxFQ+N7i5GT/FkcoXGPgovL3vtXUYNqHV7oJGUx9ZWScQHPwEatceatDHz689wsLegrf3vRApQGLiMPj7dwLghsLCm/DyCqv0uI3x8uKp7BVRUJCG1NSKndnjjNzdfctc5ulp/PZ4N2/+ips3f7VWSCYye+oacnH5+fqXwNWo8STuueelctdp1Ggl3N2rwdv7XqSl7UBGxg/WDJHIam6/XrtNm2Mmnx2qKAruv/8r7N8fDADIyjqJ1NRNqF69r8XjtCdmn0YeERGBCxcuWCMWh+Lu7gl391q2DsMO+d32uuw/wMix3XvvIluHYNcURUFY2Azda2MDcnJcXl4N0aiR696+KicnCYAbRApQq9bQcieIqlKlGh544BdotbsRHNwbOTl/o6AgA0VF2ZUXcJmc+4iKNZ0+PQbXrn1p6zAqXX6+VvdcUTxw//2f33EdD48ARESsBgDUqfOCbrABAPv317B8kGaoXXsUGjacZ9MYyHGZOxO/h0cQQkPfxN9/vwUA0Gp3c7B9u9jYWIwfPx5NmzZFmzZtLBJEYmIixo0bhwMHDsDX1xfDhg3D22+/DU9Pz3LXExHMnz8f77//Pq5du4bIyEgsXrwYDz30kF6/y5cvY9y4cfj222/h4eGBqKgoLFq0SHefcCJbYv6Tq3PEGtBoaqNOnf9UeH1X4+f3IPz8HgQAVKvW0sbR2BdHzH8AKCi4gfz863e1DUdXt+54s9epUiUAGk0ocnP/BgCbf4aFhTdt+v6AY9ZAQcEN7NvHv6Mqctu70pKT30Vy8rsWiqZiHnzwD/j43G+17Zs92J4yZQpSU1PRrl07BAcHo1atWnrn2iuKguPHTb9vmlarRbdu3XDfffchPj4eycnJmDhxIrKysvDuu+V/+PPnz0dMTAzmzZuHFi1a4L333kPPnj1x7NgxhIeHAwDy8/Px2GOPAQA+/fRTZGVlYdKkSRgyZAi2bNli7u4TWRTzn1wda4BcmSPnf3j4PISGuua8BRpNXeTna+HlFWr2uorihrZt/0Re3mUUFeVYITrzVKkSZNP3d+QacHX+/p3g5mZ8AszyBAb20B3ZdglipmeffVaGDx9e7sMcc+fOFR8fH0lNTdW1rVy5Utzd3SU5ObnM9bKzs8XPz0+mTp2qa8vNzZXQ0FAZM2aMru3TTz8VRVEkMTFR17Zz504BID///LNJMWZkZAgAycjIMGfXiO7IEfJfhDVA1uMINcD8J2txhPwXYQ2Q9ThCDRjL/6KiQsnNveqSj4KCLCkszJeiokKTPj9jCgpuSn5+ps33JTf3qhQW5ld4P0xh9mDb0h5++GHp27evXptWqxVFUeSjjz4qc72EhAQBIEePHtVrnzBhgoSGhupeDx06VFq2bKnXp6ioSIKCgiQmJsakGPlLhqzFEfJfhDVA1uMINcD8J2txhPwXYQ2Q9ThCDTD/6W6YfBr5yZMnsWLFCiQlJeGee+5BdHQ0unfvftdH1hMTEzFy5Ei9toCAAISEhCAxMbHc9QB1wrbSmjRpggsXLiA7Oxve3t5ITEw06KMoCiIiIsrcfm5uLnJzc3WvMzLUe8plZmaavmPk0Hx9fSvlVgT2mP8Aa4BcuwaY/wRUTg3YY/4DrAHi7wDmP1mqBkwabO/btw/du3dHfn4+atSogR07dmDVqlV47733MHr06LsKQKvVIiAgwKA9MDAQaWlp5a6n0Wjg5aV//87AwECICLRaLby9vSu0/djYWMyaNcugvV69euXvDDmNjIyMSplAzB7zH2ANkGvXAPOfgMqpAXvMf4A1QPwdwPwnS9WASYPtmJgYREREYPPmzahXrx4yMzMxYsQIvPHGG3c92LZHU6dOxcSJE3Wvi4qKkJaWhuDgYN03HJmZmahXrx4uXrzotLM6O/s+lrd/vr6ufcsy1oDz7x/AGigL81/l7Pt4p/1jDbh2DTj7/gH8HVAWU/IfcP4ccfX9s1QNmDTY/v3337FixQrdNzp+fn545513EB4ejosXL97VNz2BgYG60zNK02q1CAoqe4bEwMBA5ObmIicnR+9bLa1WC0VREBgYeMftlxW3RqOBRqM/u56xb8UA9bNwxgQszdn30Zb7Z4/5D7AGSnP2/QNYA7dj/utz9n1k/htiDZRw9v0DWAO3Myf/AefPEe7f3XEzpdP169dRt25dvbbiBL1+/e7uD2jsmomMjAykpKQYXGNx+3oAcOrUKb32xMRE1K9fH97e3mVuX0Rw6tSpcrdPVBmY/+TqWAPkypj/5OpYA+TsTBpsA7DaJAm9evXC7t27kZ6ermuLi4uDm5sbevbsWeZ6HTp0gJ+fH+Li4nRt+fn5iI+PR+/evfW2f/z4cZw5c0bXlpCQgNTUVL1+RLbA/CdXxxogV8b8J1fHGiCnZ8qU5YqiiI+Pj/j6+uo9jLX7+fmZNR16WlqahISESOfOnWXnzp2yZs0aCQgIkLFjx+r169atmzRs2FCvLTY2VjQajSxZskQSEhJkwIAB4uvrK+fOndP1ycvLk2bNmknz5s1l8+bNsmHDBqlXr548/vjjZsV5u5ycHImJiZGcnJy72o49c/Z9tIf9c9T8F7GPz8+anH3/ROxjHx21Buzhs7M2Z99He9g/R81/Efv4/KzJ2fdPxD72kTVgv7h/lmHSYHvmzJlmPcx18uRJefTRR8Xb21tq1qwpkyZNktzcXL0+nTt31rtvnoh6n7y5c+dK3bp1RaPRSLt27eTAgQMG27906ZJERUVJtWrVJCAgQEaOHMl75ZHdYP6Tq2MNkCtj/pOrYw2QM1NERGx9dJ2IiIiIiIjImZh8zTYRERERERERmYaDbSIiIiIiIiIL42CbiIiIiIiIyMI42K6AxMRE9OjRAz4+PqhduzamTJmCvLw8W4d1R2fPnsXo0aMRGRmJKlWqoFmzZgZ9srKyMHXqVISHh6Nq1apo1KgR5s6di4KCAr1+GRkZGDVqFIKCguDr64vo6GikpKRU1q4YtW3bNnTu3Bk1atSARqNBeHg4Jk6ciIyMDL1+OTk5ePPNN9GgQQNoNBrUr18fkydP1usjIpg3b57uXo3t27fHTz/9VJm7Y7ccNf8B564B5n/lcdQacOb8B1gDlcVR8x9w7hpg/lceR60BZ85/wI5rwIaTszmk4lsUPPLII7Jjxw5ZvXq1+Pv7G9yiwB59/fXXUrduXRkwYIA0b95c7r//foM+I0aMED8/P3n33Xdlz549MmfOHHF3d5dp06bp9Xvsscekbt26smHDBvnmm2+kWbNm0rJlS8nPz6+s3TGwfv16mTx5snz55Zeyd+9eWbZsmQQHB0uPHj10fQoLC6Vnz55y7733ykcffSTfffedrFu3zmD/YmNjxdPTUxYtWiS7d++W/v37G9xOwhU5cv6LOHcNMP8rhyPXgDPnvwhroDI4cv6LOHcNMP8rhyPXgDPnv4j91gAH22aaO3eu+Pj4SGpqqq5t5cqV4u7uLsnJyTaM7M4KCwt1z5999lmDIissLJSqVatKTEyMXvuwYcMkPDxc9/rAgQMCQHbu3KlrS0xMFEVRZMOGDdYJvoI++OADAaD72Xz44Yfi7+8vly9fLnOd7Oxs8fPzk6lTp+racnNzJTQ0VMaMGWP1mO2ZI+e/iOvVAPPf8hy5Blwt/0VYA5bmyPkv4no1wPy3PEeuAVfLfxH7qAGeRm6m7du3o3v37ggKCtK1DRo0CEVFRfj2229tGNmdubmV/+MWERQUFMDf31+v3d/fH1LqDnHbt29HQEAAevTooWtr3LgxIiMjsW3bNssGfZeCg4MBQHd6z6pVqzBw4ECEhISUuc6BAweQmZmJQYMG6do8PT0RFRVld/tX2Rw5/wHXqwHmv+U5cg24Wv4DrAFLc+T8B1yvBpj/lufINeBq+Q/YRw1wsG2mxMRERERE6LUFBAQgJCQEiYmJNorKMtzd3TF8+HC8++67OHToEG7evIndu3dj/fr1eOmll3T9EhMT0bhxYyiKord+kyZN7OIzKCwsRE5ODo4cOYK33noL//73vxEWFob8/HwcOXIEoaGhGDZsGHx8fODr64tBgwbhypUruvWL9+H2n3OTJk1w4cIFZGdnV+r+2BNnzn/AOWqA+W9dzlwDzpD/AGvAmpw5/wHnqAHmv3U5cw04Q/4D9lcDHGybSavVIiAgwKA9MDAQaWlplR+Qhb3//vvo1q0b2rZtC19fX/To0QNjxozBxIkTdX3s/TMIDQ2Ft7c3WrdujZCQEHz66acAgNTUVOTn52P+/PlITU3Fxo0bsWLFCuzfvx9RUVG69bVaLTQaDby8vPS2GxgYCBGBVqut1P2xJ/b+s7cER68B5r912fPP3hIcPf8B1oA12fvP3hIcvQaY/9Zlzz97S3D0/Afsrwaq3P0ukTN5/fXXsXXrVnz44Ye477778NNPP2HWrFkIDAw0mKnPXm3btg23bt3CiRMn8Pbbb6NPnz7YtWsXioqKAAC+vr6Ij4+HRqMBANSqVQs9evTAnj170K1bN1uGTnbA0WuA+U93w9HzH2AN0N1x9Bpg/tPdcPT8B+yvBjjYNlNgYKDBFPKA+i1I6es3HNEff/yBhQsXYtOmTejTpw8A4JFHHkF+fj5mzJiB0aNHw9fXF4GBgbh48aLB+vbyGbRo0QIA0L59ezz44IOIjIzExo0b0bt3byiKgg4dOugKDAC6dOkCd3d3nDhxAt26dUNgYCByc3ORk5Oj962WVquFoigIDAys9H2yF86c/4Bz1ADz37qcuQacIf8B1oA1OXP+A85RA8x/63LmGnCG/AfsrwZ4GrmZIiIiDK5HyMjIQEpKisG5/Y7m5MmTAIDIyEi99latWiE3NxeXLl0CoH4Gp06d0pssATB+HYuttWjRAh4eHjh79iyqVq2KsLCwMvvm5OQAKLlG49SpU3rLExMTdffbc1XOnP+A89UA89/ynLkGnC3/AdaApTlz/gPOVwPMf8tz5hpwtvwH7KMGONg2U69evbB7926kp6fr2uLi4uDm5oaePXvaLjALCA0NBQAcOXJEr/3XX3+Foii65b169YJWq0VCQoKuz+nTp3H06FH07t278gI2wc8//4z8/HyEh4cDAJ544gns379fV1AAsGfPHhQWFqJ169YAgA4dOsDPzw9xcXG6Pvn5+YiPj7e7/atszpz/gPPVAPPf8py5Bpwt/wHWgKU5c/4DzlcDzH/Lc+YacLb8B+ykBsy+WZiLK76ZfefOnWXnzp2yZs0aCQgIcIib2d+6dUvi4uIkLi5OunTpIvXq1dO9vnr1qhQUFEibNm2kVq1asnLlSklISJC5c+eKt7e3jBo1Sm9bjz32mNSrV0+++OIL2bRpkzRv3tzmN7Pv37+/zJkzRzZv3iy7d++Wd955R2rXri0tWrSQ3NxcERG5cOGCBAQESM+ePWXr1q2ydu1aqV27tnTq1EmKiop024qNjRWNRiNLliyRhIQEGTBgQIVvZu9MHDn/RZy7Bpj/lcORa8CZ81+ENVAZHDn/RZy7Bpj/lcORa8CZ81/EfmuAg+0KOHnypDz66KPi7e0tNWvWlEmTJul+iPYsKSlJABh97N27V0REUlJS5LnnnpPQ0FDx9vaWRo0aSUxMjGRlZeltKz09XUaOHCkBAQFSrVo1iYqK0t0w3lZiY2MlMjJSfH19xcfHR+6//36ZMWOGZGRk6PU7evSodO7cWby8vCQoKEhGjhwpWq1Wr09RUZHMnTtX6tatKxqNRtq1aycHDhyoxL2xX46a/yLOXQPM/8rjqDXgzPkvwhqoLI6a/yLOXQPM/8rjqDXgzPkvYr81oIjcdsI9EREREREREd0VXrNNREREREREZGEcbBMRERERERFZGAfbRERERERERBbGwTYRERERERGRhXGwTURERERERGRhHGwTERERERERWRgH20REREREREQWxsE2ERERERERkYVxsE1ERERERERkYRxsExEREREREVkYB9tEREREREREFsbBNhEREREREZGFcbBNREREREREZGEcbBMRERERERFZGAfbRERERERERBbGwTYRERERERGRhXGwTURERERERGRhHGwTERERERERWRgH2zYQFhaGJUuW2OS9Z86cicjISJu8d0WsXbsWAQEBtg4DAHD+/HkoioJjx46ZvE6XLl3wyiuvWC0mIiIiIiKyT0472B4+fDj69etn6zCMOnToEP7zn/9Y/X0URcHXX39t9ffJz8/Ha6+9hubNm8PHxwd16tTBsGHDcPnyZau/NxERERERkT1y2sG2LeTn55vUr0aNGqhataqVo6k8WVlZOHLkCGbMmIEjR44gPj4ep06dwr///W9bh0ZERERERGQTLjvY/uOPP9CrVy9Uq1YNtWrVwtChQ3H9+nXd8h07dqBTp04ICAhAcHAwnnjiCZw7d063vPiU4g0bNqBz587w8vLCJ598ojuivnDhQoSEhCA4OBhjx47VG4jffhq5oij48MMP0b9/f1StWhX33XcfNm3apBfvpk2bcN9998HLywtdu3bFunXroCgK0tPTje5fWFgYAKB///5QFEX3utj69esRFhYGf39/PPXUU7hx44ZuWVFREWJjY9GgQQN4e3ujZcuW+PLLL8v8LP39/bFr1y4MGjQIjRs3xkMPPYR3330Xv/76Ky5cuKD3ecXHx6Nr166oWrUqWrZsiYMHD+pta+3atahfvz6qVq2K/v37IzU1tcz3Lb3dL774Ag8//DC8vb3x4IMP4vTp0zh06BDatGmDatWqoVevXrh27ZrePr711luoW7cuNBoNIiMjsWPHDr1t//LLL2jVqhW8vLzQpk0bHD161OD975RHRERERETkmlxysJ2eno5u3bqhVatWOHz4MHbs2IF//vkHgwYN0vW5desWJk6ciMOHDyMhIQFubm7o378/ioqK9Lb1+uuvY/z48fjzzz/x2GOPAQD27t2Lc+fOYe/evVi3bh3Wrl2LtWvXlhvTrFmzMGjQIPz222/o3bs3nn76aaSlpQEAkpKSEB0djX79+uH48eN44YUXMH369HK3d+jQIQDARx99hJSUFN1rADh37hy+/vprbNmyBVu2bMH333+PefPm6ZbHxsbi448/xooVK3DixAlMmDABzzzzDL7//vs7f7j/JyMjA4qiGFxvPX36dEyaNAnHjh1Do0aNMHjwYBQUFAAAfv75Z4waNQovvfQSjh07hq5du+Ltt9826f1iYmLwxhtv4MiRI6hSpQqGDBmCKVOmYOnSpfjxxx9x9uxZvPnmm7r+S5cuxTvvvIOFCxfit99+w2OPPYZ///vfOHPmDADg5s2beOKJJ9C0aVP8+uuvmDlzJiZNmqT3nqbkERERERERuShxUs8++6z07dvX6LLZs2dLz5499douXrwoAOTUqVNG17l27ZoAkN9//11ERJKSkgSALFmyxOB9Q0NDpaCgQNc2cOBAefLJJ3WvQ0NDZfHixbrXAOSNN97Qvb5586YAkO3bt4uIyGuvvSbNmjXTe5/p06cLANFqtcY/gP/b7saNG/XaYmJipGrVqpKZmalrmzx5srRr105ERHJycqRq1apy4MABvfVGjRolgwcPLvO9SsvOzpYHHnhAhgwZomsr/rw+/PBDXduJEycEgPz5558iIjJ48GDp3bu33raefPJJ8ff3L/O9jG33s88+EwCSkJCga4uNjZXGjRvrXtepU0fmzJmjt60HH3xQXnzxRRERWblypQQHB0t2drZu+fLlywWAHD16VERMy6POnTvL+PHjy4yfiIiIiIick0se2T5+/Dj27t2LatWq6R4REREAoDtV/MyZMxg8eDDCw8Ph5+enOw27+LToYm3atDHY/v333w93d3fd65CQEFy9erXcmFq0aKF77uPjAz8/P906p06dwoMPPqjXv23btiburaGwsDD4+voaje/s2bPIyspCjx499D6fjz/+WO80+rLk5+dj0KBBEBEsX77cYHnp/QwJCQEA3Xv/+eefaNeunV7/9u3bm7RPpbdbq1YtAEDz5s312orfJzMzE5cvX0bHjh31ttGxY0f8+eefulhatGgBLy+vMmMxJY+IiIiIiMg1VbF1ALZw8+ZN9OnTB/PnzzdYVjwA7NOnD0JDQ7Fq1SrUqVMHRUVFaNasGfLy8vT6+/j4GGzDw8ND77WiKAann1tinYoq771u3rwJANi6dSvuuecevX4ajabc7RYPtP/++2/s2bMHfn5+5b63oigAYJH9NLbd29ss/XmakkdEREREROSaXHKw/cADD+Crr75CWFgYqlQx/AhSU1Nx6tQprFq1Cg8//DAAYN++fZUdpk7jxo2xbds2vbbS12CXxcPDA4WFhWa9V9OmTaHRaHDhwgV07tzZ5PWKB9pnzpzB3r17ERwcbNb7AkCTJk3w888/67X99NNPZm/nTvz8/FCnTh3s379fbx/379+vO2OgSZMmWL9+PXJycnRHt2+P5U55RERERERErsupTyPPyMjAsWPH9B4XL17E2LFjkZaWhsGDB+PQoUM4d+4cdu7ciREjRqCwsBCBgYEIDg7GBx98gLNnz2LPnj2YOHGizfbjhRdeQGJiIl577TWcPn0aX3zxhW7CteKjuMaEhYUhISEBV65cgVarNem9fH19MWnSJEyYMAHr1q3DuXPncOTIESxbtgzr1q0zuk5+fj6io6Nx+PBhfPLJJygsLMSVK1dw5coVgzMByvPyyy9jx44dWLhwIc6cOYN3333XYIZwS5k8eTLmz5+PDRs24NSpU3j99ddx7NgxjB8/HgAwZMgQKIqC559/HidPnsS2bduwcOFCvW3cKY+IiIiIiMh1OfVg+7vvvkOrVq30HrNmzdId1SwsLETPnj3RvHlzvPLKKwgICICbmxvc3Nzw+eef49dff0WzZs0wYcIELFiwwGb70aBBA3z55ZeIj49HixYtsHz5ct1s5OWd2v3OO+9g165dqFevHlq1amXy+82ePRszZsxAbGwsmjRpgn/961/YunUrGjRoYLR/cnIyNm3ahEuXLiEyMhIhISG6x4EDB0x+34ceegirVq3C0qVL0bJlS3z77bd44403TF7fHC+//DImTpyIV199Fc2bN8eOHTt0t1cDgGrVqmHz5s34/fff0apVK0yfPt3gdPE75REREREREbkuRUTE1kGQ+ebMmYMVK1bg4sWLtg6FiIiIiIiIbsMLTR3E+++/jwcffBDBwcHYv38/FixYgJdeesnWYREREREREZERHGw7iDNnzuDtt99GWloa6tevj1dffRVTp061dVhERERERERkhF1cWJqYmIgePXrAx8cHtWvXxpQpU0yaWEtEMG/ePNSvXx/e3t5o3759ubNXFxUVoXXr1lAUBV9++aUld8HqFi9ejMuXLyMnJwenT5/GjBkzOAO2k2D+k6tjDZArY/6Tq2MNkDOz+WBbq9WiW7duyMvLQ3x8PObOnYsPPvjApNm/58+fj5iYGEyYMAFbtmxBSEgIevbsib/++sto/5UrVyI5OdnSu0BUYcx/cnWsAXJlzH9ydawBcnpiptTUVPnqq69kypQpMnToUImOjpYXXnhBFi1aJIcOHTJ3czJ37lzx8fGR1NRUXdvKlSvF3d1dkpOTy1wvOztb/Pz8ZOrUqbq23NxcCQ0NlTFjxhj0v3btmgQFBcmaNWsEgMTFxZkdK5GlMf/J1bEGyJUx/8nVsQbI2Zl8ZPv7779HVFQUQkJCMHDgQHzxxRf4888/kZKSgn379iEmJgZt27ZFeHg45syZg8zMTJO2u337dnTv3h1BQUG6tkGDBqGoqAjffvttmesdOHAAmZmZGDRokK7N09MTUVFR2LZtm0H/qVOnomvXrujataupu0xkdcx/cnWsAXJlzH9ydawBcnYmXfTbs2dP/PLLLxgwYAC++eYbtG/fHv7+/np9RASnTp3Ctm3b8Pnnn2Px4sX4+OOP0bt373K3nZiYiJEjR+q1BQQEICQkBImJieWuBwARERF67U2aNMGFCxeQnZ0Nb29vAMAvv/yCTz/9FCdOnDBld5Gbm4vc3Fy9fcvLy0P16tWhKIpJ2yAyhT3mP8AaoMpjjzXA/KfKYo/5D7AGqPLYYw0w/8mSTDqy3aVLF/z9999YvXo1/vWvfxkMtAFAURRERERg4sSJ+OWXX7Bx40aICbfw1mq1CAgIMGgPDAxEWlpauetpNBp4eXkZrCci0Gq1ANTJEMaOHYtXX30VYWFhd4wHAGJjY+Hv7697BAQEoGbNmrhx44ZJ6xOZyh7zH2ANUOWxxxpg/lNlscf8B1gDVHnssQaY/2RJJg22p02bZnSAXZ6HH34Yjz/+eIWCsqQPP/wQV65cweuvv27yOlOnTkVGRobucfHiRStGSGQ9Fcl/gDVAzoO/A8iV8XcAuTr+DiBbq/C9o0QEp0+fRlpaGoKCgtCoUaMKnVoRGBiIjIwMg3atVqt3/Yax9XJzc5GTk6P3rZZWq4WiKAgMDMTNmzcxbdo0zJkzB3l5ecjLy9NdS56VlYXMzEz4+fkZbFuj0UCj0Zi9L0Tmssf8B1gDVHnssQaY/1RZ7DH/AdYAVR57rAHmP1lShW799f777yMkJARNmzZFp06d0LRpU9SpUwfLly83e1sREREG12RkZGQgJSXF4DqM29cDgFOnTum1JyYm6u63d/36daSmpmL06NEIDAxEYGAgWrZsCQB49tln0ahRI7PjJbIk5j+5OtYAuTLmP7k61gA5O7OPbH/wwQd46aWXMHjwYDz55JOoVasW/vnnH2zYsAEvvfQSPDw88Nxzz5m8vV69emHu3LlIT0/XXbMRFxcHNzc39OzZs8z1OnToAD8/P8TFxekKJz8/H/Hx8bpJ2WrXro29e/fqrXflyhUMHjwYM2fORI8ePczceyLLYv6Tq2MNkCtj/pOrYw2Q0zP3XmEREREyfvx4o8vGjx8vjRs3Nmt7aWlpEhISIp07d5adO3fKmjVrJCAgQMaOHavXr1u3btKwYUO9ttjYWNFoNLJkyRJJSEiQAQMGiK+vr5w7d67M90tKSjL7/noZGRkCQDIyMszaN6I7cYT8F2ENkPU4Qg0w/8laHCH/RVgDZD2OUAPMf7obZh/ZTkpKwhNPPGF02eOPP44VK1aYtb3AwEAkJCRg3Lhx6NevH3x9ffHcc89hzpw5ev0KCwtRUFCg1/baa69BRLBw4UJcu3YNkZGR2LlzJ8LDw83bKSIbYf6Tq2MNkCtj/pOrYw2Qs1NETLg/VykNGjTAyJEjMWPGDINls2fPxpo1a5CUlGSxAO1BZmYm/P39kZGRUeZkIkTOjDVAroz5T66ONUCujPlPd8PsI9ujRo3CW2+9hdzcXERHR6NWrVq4evUq4uLisGDBArz55pvWiJOIiIiIiIjIYZg92J4+fTq0Wi0WLFiA2NjYkg1VqYJx48Zh+vTpFg2QiIiIiIiIyNGYPdhWFAXvvPMOpk2bhp9//ll3H7y2bdsiODjYGjESERERERERORSzB9vFgoODdVPrExEREREREVEJkwbb8fHx6NatGwICAhAfH3/H/lFRUXcdGBEREREREZGjMmmwHR0djZ9++glt27ZFdHR0uX0VRUFhYaFFgiMiIiIiIiJyRCYNtpOSkhASEqJ7TkRERERERERlM2mwHRoaqnuuKApCQkLg4eFh0K+goACXL1+2XHREREREREREDsjN3BUaNGiAo0ePGl12/PhxNGjQ4K6DIiIiIiIiInJkZg+2RaTMZbm5udBoNHcVEBEREREREZGjM+k08sTERJw8eVL3+rvvvsOlS5f0+uTk5OCzzz5DeHi4ZSMkIiIiIiIicjAmDbY3bNiAWbNmAVCv2X799deN9gsICMDatWstFhwRERERERGRIzJpsP3KK69g+PDhEBGEh4cjPj4erVq10uvj6emJ2rVrQ1EUqwRKRERERERE5ChMGmz7+/vD398fQMltwDw9Pa0aGBEREREREZGjMmmwXVrp24BlZWUhJyfHoE9QUNDdRUVERERERETkwMwebIsI3n77baxcuRIpKSlG+xQWFt51YERERERERESOyuxbfy1evBiLFi3C2LFjISKYPn063nzzTTRq1AhhYWFYtWqVNeIkIiIiIiIichhmD7ZXr16NWbNmYcqUKQCAfv36ISYmBidOnECTJk1w9uxZiwdJRERERERE5EjMHmyfP38ekZGRcHd3h4eHB9LT09UNubnhxRdf5K2/iIiIiIiIyOWZPdgODg7GzZs3AQD169fHkSNHdMuuX7+OrKwsy0VHRERERERE5IDMniCtY8eOOHToEHr37o0hQ4Zg5syZuHLlCjw8PLBq1So8+uij1oiTiIiIiIiIyGGYPdieOXMmkpOTAQDTpk1Deno6PvvsM2RnZ6NHjx5YtmyZxYMkIiIiIiIiciRmDbZFBDVq1EBYWBgAQKPRYOnSpVi6dKk1YiMiIiIiIiJySGZds52fn4+aNWti9+7d1oqHiIiIiIiIyOGZNdj29PRE3bp1UVhYaK14iIiIiIiIiBye2bORjx07FosWLUJOTo414iEiIiIiIiJyeGZPkHbhwgWcPn0a9evXR5cuXVCrVi0oiqJbrigKr+EmIiIiIiIil2b2YHvLli3QaDTQaDQ4dOiQwXIOtomIiIiIiMjVmT3YTkpKskYcRERERERERE7D7Gu2iYiIiIiIiKh8Jg22t2/fbvaGr127hiNHjpi9HhEREREREZGjM2mw/cILLyAyMhL/+9//kJycXGa/wsJCJCQk4LnnnkN4eDiOHj1qsUCJiIiIiIiIHIVJ12yfOXMG77//PpYsWYIJEyagXr16aNGiBWrUqAGNRoP09HQkJSXht99+Q0FBAfr06YN9+/ahZcuW1o6fiIiIiIiIyO4oIiLmrPDdd98hISEBhw4dQkpKCnJychAUFITGjRujY8eO6Nu3L2rWrGmteG0iMzMT/v7+yMjIgJ+fn63DIap0rAFyZcx/cnWsAXJlzH+6G2bPRt6lSxd06dLFCqEQEREREREROQfORk5ERERERERkYRxsExEREREREVkYB9tEREREREREFsbBNhEREREREZGFcbBNREREREREZGFmD7ZXrFiBzMxMa8RCRERERERE5BTMHmxPnDgRISEhGDZsGL7//ntrxERERERERETk0MwebF++fBn//e9/cfLkSXTt2hX33nsv5s6di+TkZGvER0RERERERORwzB5sBwQEYOzYsTh8+DCOHTuGJ554AkuWLEFYWBgef/xxfPXVV8jPz7dGrEREREREREQO4a4mSGvRogWWLFmCY8eOoWPHjti+fTsGDhyIe+65BzExMcjOzrZUnEREREREREQOo8KDbRHB9u3bER0djfDwcCQmJmLy5Mk4cOAARo8ejWXLluGZZ56xZKxEREREREREDqGKuSucO3cOa9aswccff4zLly+jR48e+OSTT9C3b19UqaJu7qGHHkKbNm3w1FNPWTxgIiIiIiIiIntn9pHt++67Dx9//DFGjBiBv/76Czt27MCAAQN0A+1iERERaNeunUnbTExMRI8ePeDj44PatWtjypQpyMvLu+N6IoJ58+ahfv368Pb2Rvv27fHTTz/p9dm9ezeeeuophIWFoWrVqmjatCkWLFjA68rJbjD/ydWxBsiVMf/J1bEGyKmJmTZv3iyFhYXmrlamtLQ0CQkJkUceeUR27Nghq1evFn9/fxk7duwd142NjRVPT09ZtGiR7N69W/r37y++vr5y7tw5XZ/o6Gjp3bu3rFu3Tvbu3SuxsbHi7e0tw4cPNznGjIwMASAZGRkV2keisjhC/ouwBsh6HKEGmP9kLY6Q/yKsAbIeR6gB5j/dDbMH2yNGjJC//vrL6LLz58/LiBEjzNre3LlzxcfHR1JTU3VtK1euFHd3d0lOTi5zvezsbPHz85OpU6fq2nJzcyU0NFTGjBmja7t27ZrBunPmzBFFUYwuM4ZFRtbiCPkvwhog63GEGmD+k7U4Qv6LsAbIehyhBpj/dDfMPo183bp1uHbtmtFl169fx7p168za3vbt29G9e3cEBQXp2gYNGoSioiJ8++23Za534MABZGZmYtCgQbo2T09PREVFYdu2bbq26tWrG6zbqlUriAhSUlLMipXI0pj/5OpYA+TKmP/k6lgD5OzMHmyLCBRFMbrszJkzCA4ONmt7iYmJiIiI0GsLCAhASEgIEhMTy10PgMG6TZo0wYULF8q97di+ffug0WjQoEEDo8tzc3ORmZmp9yCyBnvMf4A1QJXHHmuA+U+VxR7zH2ANUOWxxxpg/pMlmTTYXr58OVq0aIEWLVpAURQMGTJE97r40ahRIwwbNgw9evQwKwCtVouAgACD9sDAQKSlpZW7nkajgZeXl8F6IgKtVmt0vTNnzmDp0qUYPXo0qlWrZrRPbGws/P39dY969eqZvkNEZrDH/AdYA1R57LEGmP9UWewx/wHWAFUee6wB5j9ZkkmD7Tp16qB169Zo3bo1RASNGzfWvS5+dO3aFf/973+xYsUKa8dcYZmZmYiKikKDBg0wZ86cMvtNnToVGRkZusfFixcrMUoi6zA1/wHWADkn/g4gV8bfAeTq+DuAbMGk+2z37dsXffv21b2eMWMGwsPDLRJAYGAgMjIyDNq1Wq3e9RvG1svNzUVOTo7et1parRaKoiAwMFCvf15eHvr37w+tVouDBw/Cx8enzG1rNBpoNJoK7A2Reewx/wHWAFUee6wB5j9VFnvMf4A1QJXHHmuA+U+WZPY12x999JHFBtqAeq3F7ddkZGRkICUlxeA6jNvXA4BTp07ptScmJurut1esqKgITz/9NH799Vds376dp4OQ3WD+k6tjDZArY/6Tq2MNkLMz6cj2yy+/jEmTJqF+/fp4+eWXy+2rKAqWLl1qcgC9evXC3LlzkZ6errtmIy4uDm5ubujZs2eZ63Xo0AF+fn6Ii4tDy5YtAQD5+fmIj49H79699fqOHTsWmzdvxs6dO9G8eXOTYyOyNuY/uTrWALky5j+5OtYAOT1T7g8WFhYmx44dExGR0NBQCQsLK/PRoEEDs+49Vnwz+86dO8vOnTtlzZo1EhAQYHAz+27duknDhg312mJjY0Wj0ciSJUskISFBBgwYYHAz+zlz5ggAmTx5shw8eFDvYer98nh/PbIWR8h/EdYAWY8j1ADzn6zFEfJfhDVA1uMINcD8p7th0mDb2k6ePCmPPvqoeHt7S82aNWXSpEmSm5ur16dz584SGhqq11ZUVCRz586VunXrikajkXbt2smBAwcM1gNg9LF3716T4mORkTXZe/6LsAbIuuy9Bpj/ZE32nv8irAGyLnuvAeY/3Q1FRMQqh8ydSGZmJvz9/ZGRkQE/Pz9bh0NU6VgD5MqY/+TqWAPkypj/dDdMumY7Pj7erI1GRUVVKBgiIiIiIiIiZ2DSYDs6OtrkDSqKgsLCwgoHREREREREROToTBpsJyUlWTsOIiIiIiIiIqdh0mA7NDTU2nEQEREREREROQ2TBttpaWkICAiAm5sb0tLS7tg/KCjorgMjIiIiIiIiclQmDbZr1KiBgwcPom3btqhevToURSm3P6/ZJiIiIiIiIldm0mB7zZo1aNiwoe75nQbbRERERERERK7MpMH2s88+q3s+fPhwa8VCRERERERE5BRMGmwbk5GRgd9//x0pKSkICQlB8+bN4e/vb8nYiIiIiIiIiByS2YPtoqIivPHGG1i2bBlu3bqla/fx8cFLL72Et99+G+7u7hYNkoiIiIiIiMiRmD3Ynjx5MpYtW4apU6ciOjoatWrVwj///IO4uDjMmzcPeXl5eOedd6wRKxEREREREZFDMHuwvXbtWsyePRuvvfaarq1mzZpo3rw5vL29sXDhQg62iYiIiIiIyKW5mbtCYWEhHnjgAaPLWrduzdt+ERERERERkcsze7AdHR2Nzz//3Oiyzz//HFFRUXcdFBEREREREZEjM+k08vj4eN3zzp07Y9q0aejatSv69euHmjVr4urVq9i4cSPOnTuHOXPmWC1YIiIiIiIiIkegiIjcqZObm+kHwBVFcbpTyTMzM+Hv74+MjAz4+fnZOhyiSscaIFfG/CdXxxogV8b8p7th0pHtpKQka8dBRERERERE5DRMGmyHhoZaOw4iIiIiIiIip2H2rb9Ky8rKQk5OjkF7UFDQ3WyWiIiIiIiIyKGZPRu5iGD27NmoW7cufH19UaNGDYMHERERERERObnZs4FRo4A7TQPmZHN6mcrswfbixYuxaNEijB07FiKC6dOn480330SjRo0QFhaGVatWWSNOIiIiIiIisidvvgmsWQP8+mvZfa5eBUJCgJdeqry47ITZg+3Vq1dj1qxZmDJlCgCgX79+iImJwYkTJ9CkSROcPXvW4kESERERERGRHSl9NNvIpcU6S5YA164B771n9ZDsjdmD7fPnzyMyMhLu7u7w8PBAenq6uiE3N7z44otYu3athUMkIiIiIiIiu5KXZ1q/7GzrxmHHzB5sBwcH4+bNmwCA+vXr48iRI7pl169fR1ZWluWiIyIiIiIiIvvzfwddAQCKUna/8o56OzmzZyPv2LEjDh06hN69e2PIkCGYOXMmrly5Ag8PD6xatQqPPvqoNeIkIiIiIiIie1G3rv7rmzeBy5eBRo302134yLbZg+2ZM2ciOTkZADBt2jSkp6fjs88+Q3Z2Nnr06IFly5ZZPEgiIiIiIiKyEyJAQUHJ659+Ajp1Up8fOgS0aaM+//ZbYN26yo/PTph9Gnnjxo3RrVs3AIBGo8HSpUuRnJyMtLQ0bNiwATVr1rR4kEREREREDufUKaBpU+DTT20dCZFlpKcDkyYB+/frt0+aVPJ8/fqS5489pt+vvFnLnZDZg+3SLl26hEOHDumOdBMRERERuYSiIuD774Hff1eP6hm7j/CoUcCffwJPPw0cO1bpIRJZ3PjxwDvvAA8/XHafTz4pe9nAgZaPyY5VaLD9wQcfoH79+ggNDcVDDz2E+vXro169eli5cqWl4yMiIiJnkJFh6wiILGvWLKBLF6BFC6B9e2DOHPV6Va1WXf7JJ/pH/1q1skmYRBZ1+xFtY1JTyz6CfeOG+u/Zs8DYsUBSkuVis0NmD7ZjY2MxevRodO3aFV9//TUOHjyIr7/+Gl27dsWLL76I2NhYa8RJREREjmrLFiAgAJg+3daREN2do0eBESOAS5eAt97SXxYTA9xzDxAUBMybBzzzjOH6pb90+u034MIF68ZLZGmmTnb288/69+EuVlSk/tujB/D++8Djj1suNjukiBj7FMpWp04dDB06FPPnzzdYNnnyZHzyySe4fPmyxQK0B5mZmfD390dGRgb8/PxsHQ5RpWMNkCtj/ltAWBjw99/qc/P+7CA7wBooRaNR7y38yCPADz+Yv/7Ro0BkpDpYr1dPbWNN2DXm/22CgkrO3riTDh2AAwf02wIDgbQ0/VuF3boFVK1quRjtiNlHtjMzM9G9e3ejy3r27IkbxacGEBEREQH6M9YSObK8PPXfn36q2Pppaeq/f/xhmXiIKkNhYcn/41lZpq93+0AbMP7lko8PMHlyxWKzc2YPth977DHs3r3b6LJdu3bxPttERMacO6fOSkvkijjYJmdTPOg2V06Oehrtf/9b0lZ8Wi2RvRo8GKhZU52TIDf37raVn2+8feFC45MMOjiT7rN95MgR3fPnnnsOL7zwAq5evYp+/fqhZs2auHr1KjZu3Ig9e/ZwkjQiotsVFAD33qs+v3lT/QaXyN6lpqq56uVV0paWpk5mc++9gL8/sGsX4O1dcm/V0kRKThMs748zESA5Wb3WtfRphUT2YssW9fRxSxxQyslRbwO2d29Jm6enev3qli2Au/vdvweRJf3zDxAXpz7fsOHut5efr/7uMKZ6deD4caB+/bt/Hzth0jXbbm5uUEr9Aiy9iqIoBq8LnexbCV6rQa6ONXCXtFr1GidAvW7ViX6JuAKXzP9r19SjGHXrAhcvlrQHBJRM8HTypHr/YED9Qqn0IOH119UBxeHD6h9qLVqULLv9z45ly4CXXwYWLNC/TyvZDZesgWJpaUBwsPp83Trg2WfvbnudO6u3CzPmwAF1VnOyKy6d/4B6yURxXgYHq1/EWpsTzWNg0pHtvaW/fSMicjWFhcCHH6r3lCweXJTnxg1gxgx1kDJrFuDrW7KMp9OSI/jxR/XfS5f020vPpPzppyXPb90CSv8RWjyJ6nvv3XkSqZdfVv+dPJmDbbIvubnql0XFxo+/+22WNdAGeFSb7NO1ayXPK2Og7WRMGmx37tzZ2nEQEdmvtWuB0aPV56Z82zp9unq0DgDi49XbuxQz9ZYZRLbkVmpKl1WrgOefN+xT+tTw7duB7t2BnTuBPn1K2gsLDU8hLz5K0rcv8PXX5seWl6c+qlUzf10iU61fDwwfrn89dXq6dd8zP199eHiUtCUlqV9+DRkCVDHpz3aiu3f6tHpG0pAh6ozitvTnn+oM5rVr2zaOCqpw1Z44cQL79u1DWloagoKC0KlTJ9x///2WjI2cxT//qEc5goKAV17hH0jkeH7+2bz+t8++WfpooDmzeBLZSunB9n/+ow6YFy7U77NgQcnzp54COnYE9u8HevYsaZ8zR70etbTi0xG/+QZITFSXmzPZVKdO6kzOKSnqdeNEd+vCBfX02NLzaUyaVPkTl40bp06k+euvQESE2nbvvWocOTlqLRJZmoh6Jl7pS9weflj9f/+jjyo+8/7dyM9Xz/S4dKnkjEIHPbXc7NnIc3NzMWjQILRo0QJjxozBW2+9hTFjxqBFixZ48sknkVfR2RnJeUVHA4sXq6fVWuIULCJLSksDXngBOHhQv33rVuDpp9WBcumjDOfOAYMGqb98pk4FWrZUJ5Bq3x4YMwb48kv9/gCweXPJc2OnySYkANOmqaeY//ADMHQocPWqelRw6lRg2za13969wMCB6lHGv/6yzP4TGXP76azjxpXcJ7ss+/er/377rX57eX8X3LqlP7AvzdgfViLAoUPqGSJ79pQfD5Epzp4FQkNLBrfFatas/FiOHlW/kJ02raSteMC/dataLw464CA79uqrag2sWqVOgPbRR+rfIMX+/LPyY3rkEaBZM8O/zRyRmGnixIlStWpV+eCDDyQjI0NERDIyMuSDDz4QHx8fefXVV83dpN3LyMgQALr9JTOpvxrUh4+PraOhCnDqGhg1qiQ/SytumzRJZPz4ktcPPKCf08YeDz9c/vLcXOPv9dFHJc+HDxf59FP92Epvo2HDyvh0SJw8/0VEkpJENm4UKSoqaXv22TvnuTUeNWqo/7ZoIRIWJrJ9u8jatSJ5eWpcmzeX9G3ZsvI/Kxfl1DWwZElJTq1YITJnjkh+vshDD9mmBgCRzp1FJk8W2brVcNnTTxvfj/z8Sv3YXInT5n9ursiOHRXPUy8v69fChAklz7Ozbf2JVYjZR7Y///xzxMbG4vnnn9fNyOfn54fnn38ec+bMwWeffWbJ7wKoIpKTgbff1v9W6m4cOQKsWAEsWgT88kvZ/ZYsUU/pmz1bLYv4eP37SALqt7KAunz5cvUbqzNn1HWSkvT7ZmaqRxBffVXtn5sLvP8+MG+e/i0zbt0C/vc/9TQwInP98Uf5y8+f1z9SfezYnbd5p9sX3bhhvL30ZFRJSeoRl2Ii+n3PnbtzHESmuP9+oH9//eun162zTSzFE/H89ptae716qdfNrlql1l7p68GPH9e/RIOoIkr/3zp6tDrnxvLlFT919quv7j6m779XL9N4/HHDZZ98or5Hjx4lk60tXar+/eUMRwGp8rz5JvCvf1Vs3bFjjc9Bs3o1sGMH8Nhj6utu3SoeH6CeGVvMUf+/N3d07uXlJTt37jS6bMeOHeLl5XXX3wDYG4f7RqttW/UboF69LLO9279lMiYxUb/Pxo1lf0uVlKQerSh+XXwUsEcP/W0+/3xJnw0bRN5+W387xUdhJk5UX4eHW2Z/yYDD1cB774m8+abxZd98IzJ0qMiNGyK7dxvm53PP6R89s8Zj8mT134gIkYAA43369BF55JGS11evGvY5fVrdp02bRAYPVuuQLM7h8t+Ya9dECguNLyvOp+ho9f/VS5esf7TC3MeoUSLvv2/YfvasSEqKSFaWui8FBZX3mboQh6mBoiKRJ54QiYrSP1OjWF6eetbGRx+VtC1aZJhXxX9HlfU4f954+4svqtuszNoo/X6NGln7E3ZJDpP/5rh1S8Tbu+J59/PP6naM5WOxv/5Sj56XXh4Wdnf5Hhqq1p8DMek+26W1atUKzZo1w/r16w2WDR06FH/88QeOHj1qie8B7IbR++uJ2O9ER6UnILt507LbK2ube/YA//53yevhw9UZnI3ZtUudcOqNNwyXld52aGjJLQZefRXYt09/oqoLF9RJ1+6/v+Raworsb9Wqdz4S6eIc6h6T+fklEzKdPAk0aaK/vPhnPXOmOkGTvf5/NXy4eu3r5cvq619/BVq31u/Tpo16/WrxPj31FMCziyzOofIfAK5fV//PHDVKve7t+HEgMhIYNgxYswZ48UU1l55/Xp208n//s3XEFbd5c8nR7ipVAI0G+O47tTbIYhymBpKT1XvDA4BWq94XvrSPPy65T7aIemSualXz3sPHR/1bo1499WykTz9VZ2wG1Hx84omy/6bQatVZlUurUUPN29tvs2cqkZL3Cw1Vzwghi3KY/C9WOic+/FCdXK9HD3WyPXd39Yj2vHnq30sVlZKizg7u5qa+X+n3vl3pekhNVeeuKSxU67EiGjZUz8bKyVHPuq1SBejdW7395Lx5QFiYff1db+7o/KuvvhI3Nzfp1KmTLF68WD799FNZsmSJdOrUSdzd3SU+Pt7yXwnYmNFvtHbtsv03/XxY5nHzpu2Sy0E41Le6pY847N1ruLx42bBhIopSeXl2pyMltz+GDBFxcyt5HRdnvF9hYcnz5s0r/eN2BQ6V/yIiI0eW5ISIyFNPlbzetKnk+eXLtv//924fgwcbtrVvb9vP3wk5TA3s2VOSBxcvqm2ZmSIJCSL794uMG1eyvKhI5LPPzM+5Bx9Ut3v5ssjXX+v/H/zNN+qy4cPV12PG6K9bVKSeOfXBByVtDRuKPPNMxWsgJ6fkedWqIocOlXwev/wicuBA5f4MnJDD5L+IyPffi/j7q2c5fPONfq688ELFz9z74ouS59Onl7zf4cP6/Ywxtrz0fATffVfx/P/sM5Fz5/TbZsyw6kdsLrNv/RUVFYWNGzdi1qxZePXVVyEiUBQFkZGR2LhxI/qUvp7KmZ04YesIiGyrUyf7rIOCgpLnjz9ueNuhYhX9RrWi2rZVYztyxLT+Gzbo33Zm2DDj/YKCSp7//rvhUZM7WbxYPYpO5rlxwzYztJqi9Gzgv/yiHoEoVvo61G++sV4Ma9cCDz6oPorPAnvnHfWIe7FJk4DBg9X5Obp2rdj7XLxo2HbhQvnzi9yubduKvTfZl6++Uu9+UuyHH9QjzlFRwO7dhv3LmgW/tDZtgOeeU6/lLlY8n0FIiHqv+NKK/89evlw906hzZ/U5oB5xVxT1yDdQchuvOnWARo3uHEtZvLxKnmdlqTX3yy/qnTKKczsjQz3qR87nwgX1LIuUFPVa6UmT1J93RoZhfq5cqT7MsXKlet11WlpJW48eJc9bt1bPbN20qeL70LJlxdc9e1Y986+02bOBt96q+DYtzKzBdl5eHrZs2YLIyEj8+uuvuHXrFtLT0xEQEACf0vcmdAXt2hm/hY+92L9fveepJaSnq6dmiaj34CvrP+xz59SJyzp2VE/dLShQT7UKCFDjuXpVPZWxQQO1/59/ArVqqYOF69eB6tUNt7ljh/qLqEUL9fXhw+opX8HB6rrFfvpJ/QVz++1q7qRWLfNPISPVjRtqbtizrCz7udzjkUfU06ZMHWwXFuq/NjYRCWA4YYi5PxPerrFifvtN/cLJ3rVrp/967tyS52PGmL+94OCSy3vK07Gjesriffepp7EDhgOKxx8HHnjA/BhK27fPsC052XC/y+LmZlhr5JjGjtV//fTTQHi48YG2qZo0UW8NeeQI8MEH6umpt1+aVFrx5QteXiUTRO3ZA6xfr37ZZEynTsDEieqpvZayZ496enqx5GQOtp3R+vXqF/ExMeptR61xAKR+ffX/8tIHMm7/v/xOX1zNmKEOgJ9/vqQtJ6fkeencbNLEvC+yZ8woe9nRo+qXbbNnA888Y/o2LcyswbanpyeGDBmCHTt2IDw8HD4+Pq43yC720EPqg6xrwQJbR0Bl+eYb+x2ouburj7Li8/YuGbzWqKF+KVRYqB4FLypSB+jF7VWrqq89PdXZXq9dU49OeHqqM+R7eKi/KNLS1OuX0tPVbWg0JdcM3bqlHgWJji65Vik4WL327/Jl9Qun7Gw13qAg9ZdQ8bfI4eHqN9bF8Xp7q+vduqU/AK9eXf3Syly2uJesM9Bo1D+87ZGIOo+Fm5v6hxJQch1nWJjx56VFRal/vD3wgJqr8fHqdXH/+Y96L+Lx49UB9+nTav/p04E5c9Tn7durA+yGDdXX8+erOT9+vDr4eOIJYMsW9Trrhx8uec9Zs9T39PBQj37Pm6e2t2ihzkgeH6/euaLY1Knqkcy8PMN9CA01/Xo9U45uknE7dgCnTtk6ihL//GPYVvqP+/LMmKGeJVF6rplhw0rud/3OOyWz9htz/bp6PXbx9eKlde1q/MyNhARg40b1vb291YMJn3+uDpRN/VK2LD/8oH9HmuXLS2rydi1aVPzMErKt4vyeNcuy242OVgfvQMmXkVWqqEfR09LUv2dKa9FC/24Wt5s5U62d5s1L2kRKnru5qXMprFsH/L//Zzg/TUWIqGelnD8PDB1q08G22ROkRUZGYuLEiRhW1imNTsjhJkYgsjDWALky5j+5OqM18Mwz6m2oHF3btiWTr770EvDee+pz8/48tpxjx4BWrSrv/caOBd59t/LezwEZzf/c3JIvGW1l9mzLbevoUfWyi+LJNUeMUL8AOnRI/1IFY7Kz1Vj69jX9rKKcHPUL1w4d1FvXiahfWAUF6X9Zau6R7mKvvaZ+2VusvCPgL71k1QMPZl+zHRsbi/Hjx6Np06ZoY6HZPhMTEzFu3DgcOHAAvr6+GDZsGN5++214lnWt5f8REcyfPx/vv/8+rl27hsjISCxevBgP3XbE+fLlyxg3bhy+/fZbeHh4ICoqCosWLeIfTWQXmP/k6lgD5MocNv/bt7e/U/CPHVNjunpVPe21Tx/1LKDt24EBA9Qj0AkJJf3vv1//GtY5c9SjzMWzi9tCy5bqkcD169XL85YsUWeNXrRIPZ03JET97AFgwgR1IJSTo85/cPOmevZV8Vk3x46pn0N5f69b4ijiXXLIGsjLs+xg15Y2bFAv8zx5sqTto4/UAbApZwl5e+tfomQKLy91IF9MUUrmoGnRQr1Uq29f9aymWbPMvwa79EAbKP9n9eST9jXYnjJlClJTU9GuXTsEBwejVq1aUEr9IBRFwfHi67NMoNVq0a1bN9x3332Ij49HcnIyJk6ciKysLLx7h2/a5s+fj5iYGMybNw8tWrTAe++9h549e+LYsWMIDw8HAOTn5+Ox/7tu5tNPP0VWVhYmTZqEIUOGYMuWLebuPpFFMf/J1bEGyJU5dP6PHWt4nbSj8/e3/eVriqJeUhETo99ubJ6gV16plJCsyWFrwMNDPSJqa1u3Av/6l/qlys6d6vxFx46pk6WGhanz61y8CDz6qHr5U2Ii0K+feoncb7+pl8yVnliwNFvdPmvzZvV08tGj1VPMX3xR/cLpxAn1UiZFUef8+Owz9bKkixfVz6BZM/XSlvr1S2Lfvl3d9/K+uCk90aw1mDt9+bPPPivDhw8v92GOuXPnio+Pj6SmpuraVq5cKe7u7pKcnFzmetnZ2eLn5ydTp07VteXm5kpoaKiMGTNG1/bpp5+KoiiSmJioa9u5c6cAkJ+Lb8h+Bw415T85FEfIfxHWAFmPI9QA85+sxRHyX4Q1QNbjCDXA/Ke7YfZg29Iefvhh6du3r16bVqsVRVHko48+KnO9hIQEASBHjx7Va58wYYKEhobqXg8dOlRatmyp16eoqEiCgoIkJibGpBhZZGQtjpD/IqwBsh5HqAHmP1mLI+S/CGuArMcRaoD5T3fD5NPIT548iRUrViApKQn33HMPoqOj0b1797s+sp6YmIiRI0fqtQUEBCAkJASJiYnlrgcAEREReu1NmjTBhQsXkJ2dDW9vbyQmJhr0URQFERERZW4/NzcXubm5utcZ/3drnczMTNN3jByar6+v3uUR1mKP+Q+wBsi1a4D5T0Dl1IA95j/AGiD+DmD+k6VqwKTB9r59+9C9e3fk5+ejRo0a2LFjB1atWoX33nsPo0ePvqsAtFotAgICDNoDAwORVvoG6kbW02g08LpthrzAwECICLRaLby9vSu0/djYWMwyMo1+vXr1yt8ZchqVNeuwPeY/wBog164B5j8BlVMD9pj/AGuA+DuA+U+WqgGTBtsxMTGIiIjA5s2bUa9ePWRmZmLEiBF444037nqwbY+mTp2KiRMn6l4XFRUhLS0NwcHBum84MjMzUa9ePVy8eNFpZ7R19n0sb/98fX1tFJV9YA04//4BrIGyMP9Vzr6Pd9o/1oBr14Cz7x/A3wFlMSX/AefPEVffP0vVgEmD7d9//x0rVqzQfaPj5+eHd955B+Hh4bh48eJdfdMTGBioOz2jNK1Wi6ByZocLDAxEbm4ucnJy9L7V0mq1UBQFgYGBd9x+WXFrNBpoNBq9NmPfigHqZ+GMCVias++jLffPHvMfYA2U5uz7B7AGbsf81+fs+8j8N8QaKOHs+wewBm5nTv4Dzp8j3L+742ZKp+vXr6Nu3bp6bcUJev369bsKwNg1ExkZGUhJSTG4xuL29QDg1KlTeu2JiYmoX78+vL29y9y+iODUqVPlbp+oMjD/ydWxBsiVMf/J1bEGyNmZNNgGYLVJEnr16oXdu3cjPT1d1xYXFwc3Nzf07NmzzPU6dOgAPz8/xMXF6dry8/MRHx+P3r17623/+PHjOHPmjK4tISEBqampev2IbIH5T66ONUCujPlPro41QE7PlCnLFUURHx8f8fX11XsYa/fz8zNrOvS0tDQJCQmRzp07y86dO2XNmjUSEBAgY8eO1evXrVs3adiwoV5bbGysaDQaWbJkiSQkJMiAAQPE19dXzp07p+uTl5cnzZo1k+bNm8vmzZtlw4YNUq9ePXn88cfNivN2OTk5EhMTIzk5OXe1HXvm7PtoD/vnqPkvYh+fnzU5+/6J2Mc+OmoN2MNnZ23Ovo/2sH+Omv8i9vH5WZOz75+Ifewja8B+cf8sw6TB9syZM816mOvkyZPy6KOPire3t9SsWVMmTZokubm5en06d+6sd988EfU+eXPnzpW6deuKRqORdu3ayYEDBwy2f+nSJYmKipJq1apJQECAjBw5kvfKI7vB/CdXxxogV8b8J1fHGiBnpoiI2ProOhEREREREZEzMfmabSIiIiIiIiIyDQfbRERERERERBbGwXYFJCYmokePHvDx8UHt2rUxZcoU5OXl2TqsOzp79ixGjx6NyMhIVKlSBc2aNTPok5WVhalTpyI8PBxVq1ZFo0aNMHfuXBQUFOj1y8jIwKhRoxAUFARfX19ER0cjJSWlsnbFqG3btqFz586oUaMGNBoNwsPDMXHiRIP7K+bk5ODNN99EgwYNoNFoUL9+fUyePFmvj4hg3rx5uttHtG/fHj/99FNl7o7dctT8B5y7Bpj/lcdRa8CZ8x9gDVQWR81/wLlrgPlfeRy1Bpw5/wE7rgEbXi/ukIpnTXzkkUdkx44dsnr1avH39zeYNdEeff3111K3bl0ZMGCANG/eXO6//36DPiNGjBA/Pz959913Zc+ePTJnzhxxd3eXadOm6fV77LHHpG7durJhwwb55ptvpFmzZtKyZUvJz8+vrN0xsH79epk8ebJ8+eWXsnfvXlm2bJkEBwdLjx49dH0KCwulZ8+ecu+998pHH30k3333naxbt85g/2JjY8XT01MWLVoku3fvlv79+xvMcOmKHDn/RZy7Bpj/lcORa8CZ81+ENVAZHDn/RZy7Bpj/lcORa8CZ81/EfmuAg20zzZ07V3x8fCQ1NVXXtnLlSnF3d5fk5GQbRnZnhYWFuufPPvusQZEVFhZK1apVJSYmRq992LBhEh4ernt94MABASA7d+7UtSUmJoqiKLJhwwbrBF9BH3zwgQDQ/Ww+/PBD8ff3l8uXL5e5TnZ2tvj5+cnUqVN1bbm5uRIaGipjxoyxesz2zJHzX8T1aoD5b3mOXAOulv8irAFLc+T8F3G9GmD+W54j14Cr5b+IfdQATyM30/bt29G9e3cEBQXp2gYNGoSioiJ8++23Nozsztzcyv9xiwgKCgrg7++v1+7v7w8pNWn99u3bERAQgB49eujaGjdujMjISGzbts2yQd+l4OBgANCd3rNq1SoMHDgQISEhZa5z4MABZGZmYtCgQbo2T09PREVF2d3+VTZHzn/A9WqA+W95jlwDrpb/AGvA0hw5/wHXqwHmv+U5cg24Wv4D9lEDHGybKTExEREREXptAQEBCAkJQWJioo2isgx3d3cMHz4c7777Lg4dOoSbN29i9+7dWL9+PV566SVdv8TERDRu3BiKouit36RJE7v4DAoLC5GTk4MjR47grbfewr///W+EhYUhPz8fR44cQWhoKIYNGwYfHx/4+vpi0KBBuHLlim794n24/efcpEkTXLhwAdnZ2ZW6P/bEmfMfcI4aYP5blzPXgDPkP8AasCZnzn/AOWqA+W9dzlwDzpD/gP3VAAfbZtJqtQgICDBoDwwMRFpaWuUHZGHvv/8+unXrhrZt28LX1xc9evTAmDFjMHHiRF0fe/8MQkND4e3tjdatWyMkJASffvopACA1NRX5+fmYP38+UlNTsXHjRqxYsQL79+9HVFSUbn2tVguNRgMvLy+97QYGBkJEoNVqK3V/7Im9/+wtwdFrgPlvXfb8s7cER89/gDVgTfb+s7cER68B5r912fPP3hIcPf8B+6uBKne/S+RMXn/9dWzduhUffvgh7rvvPvz000+YNWsWAgMDDWbqs1fbtm3DrVu3cOLECbz99tvo06cPdu3ahaKiIgCAr68v4uPjodFoAAC1atVCjx49sGfPHnTr1s2WoZMdcPQaYP7T3XD0/AdYA3R3HL0GmP90Nxw9/wH7qwEOts0UGBhoMIU8oH4LUvr6DUf0xx9/YOHChdi0aRP69OkDAHjkkUeQn5+PGTNmYPTo0fD19UVgYCAuXrxosL69fAYtWrQAALRv3x4PPvggIiMjsXHjRvTu3RuKoqBDhw66AgOALl26wN3dHSdOnEC3bt0QGBiI3Nxc5OTk6H2rpdVqoSgKAgMDK32f7IUz5z/gHDXA/LcuZ64BZ8h/gDVgTc6c/4Bz1ADz37qcuQacIf8B+6sBnkZupoiICIPrETIyMpCSkmJwbr+jOXnyJAAgMjJSr71Vq1bIzc3FpUuXAKifwalTp/QmSwCMX8diay1atICHhwfOnj2LqlWrIiwsrMy+OTk5AEqu0Th16pTe8sTERN399lyVM+c/4Hw1wPy3PGeuAWfLf4A1YGnOnP+A89UA89/ynLkGnC3/AfuoAQ62zdSrVy/s3r0b6enpura4uDi4ubmhZ8+etgvMAkJDQwEAR44c0Wv/9ddfoSiKbnmvXr2g1WqRkJCg63P69GkcPXoUvXv3rryATfDzzz8jPz8f4eHhAIAnnngC+/fv1xUUAOzZsweFhYVo3bo1AKBDhw7w8/NDXFycrk9+fj7i4+Ptbv8qmzPnP+B8NcD8tzxnrgFny3+ANWBpzpz/gPPVAPPf8py5Bpwt/wE7qQGzbxbm4opvZt+5c2fZuXOnrFmzRgICAhziZva3bt2SuLg4iYuLky5duki9evV0r69evSoFBQXSpk0bqVWrlqxcuVISEhJk7ty54u3tLaNGjdLb1mOPPSb16tWTL774QjZt2iTNmze3+c3s+/fvL3PmzJHNmzfL7t275Z133pHatWtLixYtJDc3V0RELly4IAEBAdKzZ0/ZunWrrF27VmrXri2dOnWSoqIi3bZiY2NFo9HIkiVLJCEhQQYMGFDhm9k7E0fOfxHnrgHmf+Vw5Bpw5vwXYQ1UBkfOfxHnrgHmf+Vw5Bpw5vwXsd8a4GC7Ak6ePCmPPvqoeHt7S82aNWXSpEm6H6I9S0pKEgBGH3v37hURkZSUFHnuueckNDRUvL29pVGjRhITEyNZWVl620pPT5eRI0dKQECAVKtWTaKionQ3jLeV2NhYiYyMFF9fX/Hx8ZH7779fZsyYIRkZGXr9jh49Kp07dxYvLy8JCgqSkSNHilar1etTVFQkc+fOlbp164pGo5F27drJgQMHKnFv7Jej5r+Ic9cA87/yOGoNOHP+i7AGKouj5r+Ic9cA87/yOGoNOHP+i9hvDSgit51wT0RERERERER3hddsExEREREREVkYB9tEREREREREFsbBNhEREREREZGFcbBNREREREREZGEcbBMRERERERFZGAfbRERERERERBbGwTYRERERERGRhXGwTURERERERGRhDj/YnjlzJhRFwT333IOioiKD5R07doSiKBg+fLhZ201PT8fMmTNx8uRJvfbz589DURR8+eWXdxP2XVuyZAkURdG9/u6776AoCg4fPlxpMcycORMHDhwwaFcUBQsXLqy0OExx9epV+Pr64o8//ii33+2fqyXduHEDQUFB2L9/v0W3yxpQsQbK56w1wPxXMf/L56z5D7AGirEGyuesNcD8VzH/y2fL/Hf4wTYAeHh44Pr16/jhhx/02v/++28cPHgQ1apVM3ub6enpmDVrlkGRhYSE4ODBg+jWrdtdxWxpDzzwAA4ePIgmTZpU2nvOmjXLaJEdPHgQTz/9dKXFYYo5c+agS5cuaNasmc1i8PX1xbhx4zBt2jSLb5s1wBq4E2euAeY/8/9OnDn/AdYAwBq4E2euAeY/8/9ObJn/TjHY9vT0RK9evfDZZ5/ptX/++ee4//770bBhQ4u9l0ajwUMPPYSgoCCLbdMS/Pz88NBDD8HHx6fMPtnZ2ZUSy0MPPYSQkJBKeS9T3Lx5E6tXr8bIkSNtHQpGjhyJH374AcePH7fodlkDrIHyOHsNMP+Z/+Vx9vwHWAMAa6A8zl4DzH/mf3lsnf9OMdgGgMGDB+PLL79Efn6+ru3TTz/FkCFDjPb/4Ycf0KFDB3h7e6N69eoYOXIk0tLSAKiniDRo0AAAMHDgQCiKAkVRcP78eaOnjxQVFeHtt99GWFgYNBoNIiIisHLlSr33mzlzJqpVq4bff/8dnTp1QtWqVdGsWTPs3LnzjvuWmZmJYcOGwdfXFzVq1MCUKVNQUFCg18fY6SOKomDevHl47bXXULt2bdSsWRMAICJYuHAhGjVqBI1Gg/DwcCxevNjgff/8809ERUUhKCgIVatWRcuWLXX/kRWfYjF58mTd5/Pdd9/plt1++sjKlSvRuHFjaDQahIWF4e2339Y73Wft2rVQFAVHjx5Fr1694OPjg/vuuw8ff/yx3nb279+PRx55BP7+/vD19UXz5s2xbt26cj+/4p9Vr169zP5cAfXbzRdffBEhISHQaDRo3bo1vv32W70+IoK33noLtWvXRrVq1TBw4EDs3r1b73MBgNDQULRt2xZr164tN+aKYA2wBsriCjXA/Gf+l8UV8h9gDbAGyuYKNcD8Z/6Xxdb5D3FwMTEx4uPjI7du3RIfHx/ZsmWLiIicOHFCAMhff/0lLVu2lGeffVa3zuHDh8XT01N69uwpmzdvlg8//FCqV68ubdu2lYKCAsnJyZH4+HgBIHPnzpWDBw/KwYMHJScnR5KSkgSAxMXF6bY3ceJEcXd3l5iYGNm5c6eMGzdOAMiyZcv04vT09JTmzZvLqlWrZMeOHdK1a1fx8fGR69evl7uPAwYMkGrVqsm7774rW7dulccff1zuueceQakf3969ewWAHDp0SNcGQGrXri39+vWTLVu2yNdffy0iIuPGjRNvb295++23ZdeuXTJr1izx8PCQ5cuX69Y9ffq0+Pv7S7NmzWT9+vWya9cuWbx4scybN09ERA4ePCgAZNy4cbrPJyMjQ/e+CxYs0G3rf//7n67vzp07JSYmRtzd3eXVV1/V9fnoo48EgDRp0kQWLVok3377rQwcOFAURZGTJ0+KiEhGRob4+/vL448/Llu3bpXdu3fL//73P1myZEm5n9/TTz8tDz/8cIU+19zcXGnTpo3Uq1dPVq9eLTt27JBnnnlGqlSpIr/99puu39KlS0VRFHnttddk586d8tprr0loaKgAkL179+q97yuvvCL3339/uTGbgzWgYg2UzZlrgPmvYv6XzZnzX4Q1UIw1UDZnrgHmv4r5XzZb57/TDLZFRIYMGSLPPPOMiIi88cYb0r59exERgyLr37+/1K9fX/Ly8nRtO3fuFACyadMmERGjxWSs/dq1a+Lh4SGvv/66Xr/BgwdLjRo1pKCgQBcnANm6davBttavX1/m/p04cUIURZHVq1fr2goKCqRBgwYmFVnTpk2lqKhI13b27FlRFEVWrlyp9z6vvfaa1K5dWwoLC3WfZY0aNXSFY8ztxWSsvaCgQKpXry5PPfWUXp+pU6eKp6en7j+Y4iJ77733dH1u3rwpVatWldmzZ4uIyKFDhwSAXnKbolGjRjJ27Fi9NlM/1zVr1kiVKlXkxIkTeuu3a9dOBg4cqFsvJCRERo4cqddn1KhRRn/JfPTRR6IoimRmZpq1H2VhDahYA2Vz5hpg/quY/2Vz5vwXYQ0UYw2UzZlrgPmvYv6Xzdb57zSnkQPqKSTffPMNsrOz8fnnn2Pw4MFG+/3444/o27cvPDw8dG09e/ZEQEAA9u3bZ9Z7/vzzz8jPz8fAgQP12p988klcu3YNp0+f1rW5ubmhe/fuutdhYWHw9vbGpUuXytz+oUOHICLo37+/rs3d3R39+vUzKb5evXrpzaq3e/duAMCAAQNQUFCge3Tv3h1XrlzBxYsXAQAJCQmIjo6Gn5+fSe9TlsTERFy/ft3o55OXl4dffvlFr71nz5665z4+PggNDdV9Pg0bNoSfnx/GjBmDL774AteuXTMphpSUFNSoUUOvzdTP9dtvv0Xz5s3RqFEjvc+rR48eOHToEADg0qVLSElJwb///W+9dfv27Ws0nurVq0NE8M8//5gUvzlYA4ZYA65TA8x/Q8x/18l/gDVgDGvAdWqA+W+I+W/7/K9iUpQO4rHHHoOHhwfefPNNJCUlYdCgQUb7abVa1KpVy6C9Vq1auus1TKXVanXr3r4tAHrb8/b2hqenp14/T09P5OTklLn9lJQUeHh4IDAw0Oj27+T2ftevX4eIoHr16kb7X7x4EaGhoUhNTUWdOnVMeo/ymPP5AEBAQIDe69KfT2BgIHbt2oWYmBgMHToUBQUFePjhh7Fs2TI0b968zBhycnKg0Wj02kz9XK9fv46jR4/q/YdczN3dXbctAAaFXHxtzO2KY7HGRBWsAUOsAdepAea/Iea/6+Q/wBowhjXgOjXA/DfE/Ld9/jvVYNvDwwMDBgzAokWL8Oijj5aZiEFBQbh69apB+z///GP27ILF/a9evYp77rlHb1ull1dUSEgI8vPzodVq9RLC1G8Db79XXFBQEBRFwb59+wwKHgAaN24MAAgODsbly5fvIvKS9wNg8HlX9PNp27Yttm/fjuzsbOzduxeTJk1Cv379cO7cuXJjSE9P12sz9XMNCgpCixYtsHr16jK3Xzzj4u3fsBnLMQC6WIKDg8vcZkWxBgyxBlynBpj/hpj/rpP/AGvAGNaA69QA898Q89/2+e9Up5EDwHPPPYc+ffpg/PjxZfbp1KkTvv76a70Z53bt2oX09HR06tQJAHQJWN63TYD6Q/fw8EBcXJxe+xdffIGaNWuiUaNGFd0VAMCDDz4IANi4caOurbCwEF9//XWFtvfoo48CAFJTU9GmTRuDh6+vLwCge/fu+PLLL3Hjxo0yt+Xh4XHHz6dx48aoUaOG0c/H09MTbdu2rdB+eHt7o3fv3hgzZgySkpLKjaNx48ZISkrSazP1c+3evTv++usv1KlTx+jnBQB169ZF7dq18c033+itW9bP6Pz58/D390ft2rVN3V2zsAbKxxpQOWsNMP/Lx/xXOWv+A6yBO2ENqJy1Bpj/5WP+qyoz/53qyDagJv2dEnD69Ono0KEDnnjiCYwbNw7//PMPXn/9dbRt2xa9e/cGANSuXRsBAQH47LPP0KBBA2g0GrRo0cJgW9WrV8e4ceOwYMECeHl54aGHHsK2bdvw6aefYtmyZbpTDCqqadOm6N+/P1555RXk5OQgLCwM77//PvLy8iq0vUaNGmHs2LEYOnQoJk+ejHbt2iE/Px+nT5/G3r17dZ9dTEwMtmzZgk6dOmHKlCkICQnByZMnkZWVhSlTpgAAmjRpgm+++QYPP/wwfHx80LhxY12RFnN3d8eMGTPw8ssvo2bNmujduzd++uknzJ8/H6+88opZ32pu3boVq1evRv/+/VG/fn1cuXIFy5YtQ8eOHeHl5VXmeh07dsQXX3yh12bq5zps2DCsXLkSXbp0waRJk9CoUSOkp6fj6NGjyMvLQ2xsLNzd3TF16lS88sorqFWrFrp27Yq9e/fqrotxc9P/Tuvw4cPo0KGDQbulsAbKxxpQOWsNMP/Lx/xXOWv+A6yBO2ENqJy1Bpj/5WP+qyoz/51qNvKy3D4LoYjId999J+3btxeNRiNBQUEyfPhwSU1N1euzceNGadKkiWg0GgEgSUlJRmcnLCwslLfeekvq168vHh4ect9998mKFStMitPf319iYmLKjV+r1crTTz8tPj4+EhwcLBMnTpQFCxaYNAuhsVkCi4qKZNmyZdKsWTPx9PSUoKAgad++vSxatEiv34kTJ+Tf//63+Pn5SdWqVSXy/7d3x76GRFEcx88WyCgUCglCRf8ypYYoFRT+Aa1yCp3IiFahm39AQSnxB0gUKomOUCoUyhGF5mwhb3Ztnre72cmTnfl+Si53cud3ipPJ3Pv2ppPJxPt+uVyqaZpqGMbDbpMfzes4jhaLRY1EIprP53UwGHg7Hqr+2IXwfD4//O7ne7fb7bTZbGoul9NYLKaZTEZbrZaeTqdP12+9XquI6H6//+t1Vb0fNWBZlnd/0+m01mo173iJ9zW1bVtTqZTG43Gt1+s6nU5VRHSz2XjjbrebJpPJh90P/xU1cEcNPBfkGiD/d+T/uSDnX5UaeEcNPBfkGiD/d+T/uVfn/79vtoE/YZqm9vv9L52z2+2qYRh6vV69z+bzuSYSCXVd90uvBaAGEGbkH2FHDSDMXpn/b6qqzx/YA8Ewm8289zp+3ZHQD9vtVsbjsZRKJYlGo7JYLGQ4HEq73ZbRaOSNq1arUqlUpNfr+X4NwGeoAYQZ+UfYUQMIs1fmP3DvbAMfaTQacjgc5Hg8SqFQ8P3/4/G4rFYrcRxHXNeVbDYrnU5HbNv2xlwuFymXy2JZlu/zA79DDSDMyD/CjhpAmL0y/zzZBgAAAADAZ4E7+gsAAAAAgFej2QYAAAAAwGc02wAAAAAA+IxmGwAAAAAAn9FsAwAAAADgM5ptAAAAAAB8RrMNAAAAAIDPaLYBAAAAAPDZd9rOAdCDWMRwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAGCCAYAAADwl9DKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQh0lEQVR4nOzdd3gU5doG8HsTkk0hnRZKEsIBAlKCKEhRihAOKNJRUAFBDyI2kCIgBkQIHJBy8AiIIMhRwWhAOlJVmtJVINTQQhBIBdKT5/tjvmyy2U3YTXaz7f5d117svvPO7DOb5yF5d2beUYmIgIiIiIiIiIhMxsnSARARERERERHZGw62iYiIiIiIiEyMg20iIiIiIiIiE+Ngm4iIiIiIiMjEONgmIiIiIiIiMjEOtomIiIiIiIhMjINtIiIiIiIiIhPjYJuIiIiIiIjIxDjYJiIiIiIiIjIxDrYtKCQkBAsXLrTIe0+bNg3h4eEWeW9bo1KpsGHDBoP7Dxs2DL179zZbPEREREREZP3sfrBtzQOfI0eO4F//+pfZ38fYwWJ5xMTEICIiAgEBAVCpVDh58qRR61vyCwgiIiIiIiJTsfvBtiXk5OQY1K9q1arw8PAwczQV68GDB2jfvj3mzJlj6VCIiIiIiIgsxuEH23/99Re6d++OypUro3r16nj55Zdx9+5dzfLt27ejffv28PX1RUBAAJ599llcunRJs/zKlStQqVRYt24dOnToADc3N3z99deaI+rz5s1DYGAgAgICMHr0aK2BePGjuCqVCl988QX69OkDDw8P1K9fHxs3btSKd+PGjahfvz7c3NzQqVMnrF69GiqVCikpKXr3LyQkBADQp08fqFQqzesCa9asQUhICHx8fPDCCy/g3r17mmX5+fmIiopC3bp14e7ujubNm+P7778v9fN8+eWX8eGHH6JLly56l4sIpk2bhqCgIKjVatSsWRNvv/02AKBjx464evUqxowZA5VKBZVKVeL7qFQqLFu2DM8++yw8PDzQqFEjHDp0CBcvXkTHjh3h6emJtm3bav2sAGDJkiWoV68eXF1d0bBhQ6xZs0Zr+YULF/DUU0/Bzc0NjRs3xs6dO3Xe+/r16xg4cCB8fX3h7++PXr164cqVK6V+LkRERERE5FgcerCdkpKCzp07o0WLFjh69Ci2b9+Ov//+GwMHDtT0efDgAcaOHYujR49i9+7dcHJyQp8+fZCfn6+1rffffx/vvPMOzp49i27dugEA9u7di0uXLmHv3r1YvXo1Vq1ahVWrVpUa0/Tp0zFw4ED88ccf6NGjB1588UUkJSUBAOLi4tC/f3/07t0bp06dwsiRIzFlypRSt3fkyBEAwJdffomEhATNawC4dOkSNmzYgM2bN2Pz5s34+eefMXv2bM3yqKgofPXVV1i6dClOnz6NMWPG4KWXXsLPP//88A+3BD/88AMWLFiAZcuW4cKFC9iwYQOaNm0KQDkFvXbt2vjoo4+QkJCAhISEUrc1Y8YMDBkyBCdPnkRYWBgGDx6MkSNHYtKkSTh69ChEBG+++aam//r16/HOO+/gvffew19//YWRI0filVdewd69ewEoXy707dsXrq6u+O2337B06VJMnDhR6z1zcnLQrVs3eHl54ddff8WBAwdQuXJl/POf/0R2dnaZPxciIiIiIrIzYueGDh0qvXr10rtsxowZEhERodV2/fp1ASDnzp3Tu86dO3cEgPz5558iIhIXFycAZOHChTrvGxwcLLm5uZq2AQMGyPPPP695HRwcLAsWLNC8BiAffPCB5vX9+/cFgGzbtk1ERCZOnChNmjTRep8pU6YIAElOTtb/Afz/dtevX6/VFhkZKR4eHpKWlqZpGz9+vLRu3VpERDIzM8XDw0MOHjyotd6IESNk0KBBJb5XgYLP5cSJE1rtn3zyiTRo0ECys7P1rlf8Myltn4p+VocOHRIAsmLFCk3bt99+K25ubprXbdu2lddee01rOwMGDJAePXqIiMiOHTukUqVKEh8fr1m+bds2rc9vzZo10rBhQ8nPz9f0ycrKEnd3d9mxY4eIlJ5zRERERETkGBz6yPapU6ewd+9eVK5cWfMICwsDAM3pxxcuXMCgQYMQGhoKb29vzWnY165d09rWY489prP9Rx55BM7OzprXgYGBuH37dqkxNWvWTPPc09MT3t7emnXOnTuHxx9/XKt/q1atDNxbXSEhIfDy8tIb38WLF5Geno6uXbtqfT5fffWVzqnZxhgwYAAyMjIQGhqK1157DevXr0dubm6ZtlX0s6pevToAaI6SF7RlZmYiLS0NAHD27Fm0a9dOaxvt2rXD2bNnNcvr1KmDmjVrapa3adNGq/+pU6dw8eJFeHl5aT4Tf39/ZGZmlutzISIiIiIi+1LJ0gFY0v3799GzZ0+9k3kFBgYCAHr27Ing4GAsX74cNWvWRH5+Ppo0aaJzyrCnp6fONlxcXLReq1QqndPPTbFOWZX2Xvfv3wcAbNmyBbVq1dLqp1ary/yederUwblz57Br1y7s3LkTb7zxBubOnYuff/5ZJx5j4i+4vltfmyk/v/v376Nly5b4+uuvdZZVrVrVZO9DRERERES2zaEH248++ih++OEHhISEoFIl3Y8iMTER586dw/Lly/Hkk08CAPbv31/RYWo0bNgQW7du1Woreg12SVxcXJCXl2fUezVu3BhqtRrXrl1Dhw4djFr3Ydzd3dGzZ0/07NkTo0ePRlhYGP788088+uijcHV1NTpWQzVq1AgHDhzA0KFDNW0HDhxA48aNNcuvX7+OhIQEzZcthw8f1trGo48+inXr1qFatWrw9vY2S5xERERERGT7HOI08tTUVJw8eVLrcf36dYwePRpJSUkYNGgQjhw5gkuXLmHHjh145ZVXkJeXBz8/PwQEBODzzz/HxYsXsWfPHowdO9Zi+zFy5EjExsZi4sSJOH/+PL777jvNhGulzdwdEhKC3bt349atW0hOTjbovby8vDBu3DiMGTMGq1evxqVLl3D8+HEsXrwYq1evLnG9pKQknDx5EmfOnAGgnPp+8uRJ3Lp1CwCwatUqrFixAn/99RcuX76M//3vf3B3d0dwcLAm1l9++QXx8fFas8Kbwvjx47Fq1SosWbIEFy5cwPz58xETE4Nx48YBALp06YIGDRpg6NChOHXqFH799VedCehefPFFVKlSBb169cKvv/6KuLg47Nu3D2+//TZu3Lhh0niJiIiIiMh2OcRge9++fWjRooXWY/r06ahZsyYOHDiAvLw8REREoGnTpnj33Xfh6+sLJycnODk5Ye3atTh27BiaNGmCMWPGYO7cuRbbj7p16+L7779HTEwMmjVrhiVLlmgGg6Wd2v3JJ59g586dqFOnDlq0aGHw+82YMQNTp05FVFQUGjVqhH/+85/YsmUL6tatW+I6GzduRIsWLfDMM88AAF544QW0aNECS5cuBQD4+vpi+fLlaNeuHZo1a4Zdu3Zh06ZNCAgIAAB89NFHuHLlCurVq2fy07J79+6NRYsWYd68eXjkkUewbNkyfPnll+jYsSMAwMnJCevXr0dGRgZatWqFV199FTNnztTahoeHB3755RcEBQWhb9++aNSoEUaMGIHMzEwe6SYiIiIiIg2ViIilg6CymzlzJpYuXYrr169bOhQiIiIiIiL6fw59zbYt+uyzz/D4448jICAABw4cwNy5c7XuJU1ERERERESWZxWnkcfGxqJr167w9PREjRo1MGHCBJ3ZvvUREcyePRtBQUFwd3dHmzZtdCa0Kio/Px8tW7aESqXC999/b8pdqDAXLlxAr1690LhxY8yYMQPvvfcepk2bZumwqByY/+ToWAPkyJj/5OhYA2TPLD7YTk5ORufOnZGdnY2YmBjMmjULn3/+uUETkc2ZMweRkZEYM2YMNm/ejMDAQERERODy5ct6+y9btgzx8fGm3oUKtWDBAty8eROZmZk4f/48pk6dqncmdbINzH9ydKwBcmTMf3J0rAGye2KkxMRE+eGHH2TChAny8ssvS//+/WXkyJEyf/58OXLkiLGbk1mzZomnp6ckJiZq2pYtWybOzs4SHx9f4noZGRni7e0tkyZN0rRlZWVJcHCwjBo1Sqf/nTt3xN/fX1auXCkAJDo62uhYiUyN+U+OjjVAjoz5T46ONUD2zuAj2z///DP69u2LwMBADBgwAN999x3Onj2LhIQE7N+/H5GRkWjVqhVCQ0Mxc+ZMpKWlGbTdbdu2oUuXLvD399e0DRw4EPn5+fjpp59KXO/gwYNIS0vDwIEDNW2urq7o27evzr2oAWDSpEno1KkTOnXqZOguE5kd858cHWuAHBnznxwda4DsnUHnH0dEROD3339Hv3798OOPP6JNmzbw8fHR6iMiOHfuHLZu3Yq1a9diwYIF+Oqrr9CjR49Stx0bG4vhw4drtfn6+iIwMBCxsbGlrgcAYWFhWu2NGjXCtWvXkJGRAXd3dwDA77//jm+++QanT582ZHeRlZWFrKwsrX3Lzs5GlSpVSr2fNZGxrDH/AdYAVRxrrAHmP1UUa8x/gDVAFccaa4D5T6Zk0JHtjh074urVq1ixYgX++c9/6gy0AUClUiEsLAxjx47F77//jvXr10MMuKtYcnIyfH19ddr9/PyQlJRU6npqtRpubm4664kIkpOTASiTIYwePRrvvfceQkJCHhoPAERFRcHHx0fz8PX1RbVq1XDv3j2D1icylDXmP8AaoIpjjTXA/KeKYo35D7AGqOJYYw0w/8mUDBpsT548We8AuzRPPvkknnnmmTIFZUpffPEFbt26hffff9/gdSZNmoTU1FTNg/ewJltVlvwHWANkP/g7gBwZfweQo+PvALK0Mk9jLSI4f/48kpKS4O/vjwYNGpTp1Ao/Pz+kpqbqtCcnJ2tdv6FvvaysLGRmZmp9q5WcnAyVSgU/Pz/cv38fkydPxsyZM5GdnY3s7GzNteTp6elIS0uDt7e3zrbVajXUarXR+0JkLGvMf4A1QBXHGmuA+U8VxRrzH2ANUMWxxhpg/pMplenWX5999hkCAwPRuHFjtG/fHo0bN0bNmjWxZMkSo7cVFhamc01GamoqEhISdK7DKL4eAJw7d06rPTY2VnO/vbt37yIxMRGvv/46/Pz84Ofnh+bNmwMAhg4digYNGhgdL5EpMf/J0bEGyJEx/8nRsQbI3hl9ZPvzzz/Hm2++iUGDBuH5559H9erV8ffff2PdunV488034eLigldffdXg7XXv3h2zZs1CSkqK5pqN6OhoODk5ISIiosT12rZtC29vb0RHR2sKJycnBzExMZpJ2WrUqIG9e/dqrXfr1i0MGjQI06ZNQ9euXY3ceyLTYv6To2MNkCNj/pOjYw2Q3TP2XmFhYWHyzjvv6F32zjvvSMOGDY3aXlJSkgQGBkqHDh1kx44dsnLlSvH19ZXRo0dr9evcubPUq1dPqy0qKkrUarUsXLhQdu/eLf369RMvLy+5dOlSie8XFxdn9P31UlNTBYCkpqYatW9ED2ML+S/CGiDzsYUaYP6TudhC/ouwBsh8bKEGmP9UHkYf2Y6Li8Ozzz6rd9kzzzyDpUuXGrU9Pz8/7N69G2+99RZ69+4NLy8vvPrqq5g5c6ZWv7y8POTm5mq1TZw4ESKCefPm4c6dOwgPD8eOHTsQGhpq3E4RWQjznxwda4AcGfOfHB1rgOydSsSA+3MVUbduXQwfPhxTp07VWTZjxgysXLkScXFxJgvQGqSlpcHHxwepqaklTiZCZM9YA+TImP/k6FgD5MiY/1QeRh/ZHjFiBD766CNkZWWhf//+qF69Om7fvo3o6GjMnTsXH374oTniJCIiIiIiIrIZRg+2p0yZguTkZMydOxdRUVGFG6pUCW+99RamTJli0gCJiIiIiIiIbI3Rg22VSoVPPvkEkydPxm+//aa5D16rVq0QEBBgjhiJiIiIiIiIbIrRg+0CAQEBmqn1iYiIiIiIiKiQQYPtmJgYdO7cGb6+voiJiXlo/759+5Y7MCIiIiIiIiJbZdBgu3///jh8+DBatWqF/v37l9pXpVIhLy/PJMERERERERER2SKDBttxcXEIDAzUPCciIiIiIiKikhk02A4ODtY8V6lUCAwMhIuLi06/3Nxc3Lx503TREREREREREdkgJ2NXqFu3Lk6cOKF32alTp1C3bt1yB0VERERERERky4webItIicuysrKgVqvLFRARERERERGRrTPoNPLY2FicOXNG83rfvn24ceOGVp/MzEx8++23CA0NNW2ERERERERERDbGoMH2unXrMH36dADKNdvvv/++3n6+vr5YtWqVyYIjIiIiIiIiskUGDbbfffddDBs2DCKC0NBQxMTEoEWLFlp9XF1dUaNGDahUKrMESkRERERERGQrDBps+/j4wMfHB0DhbcBcXV3NGhgRERERERGRrTJosF1U0duApaenIzMzU6ePv79/+aIiIiIiIiIismFGD7ZFBB9//DGWLVuGhIQEvX3y8vLKHRgRERERERGRrTL61l8LFizA/PnzMXr0aIgIpkyZgg8//BANGjRASEgIli9fbo44iYiIiIiIiGyG0YPtFStWYPr06ZgwYQIAoHfv3oiMjMTp06fRqFEjXLx40eRBEhEREREREdkSowfbV65cQXh4OJydneHi4oKUlBRlQ05OeOONN3jrLyIiIiIiInJ4Rg+2AwICcP/+fQBAUFAQjh8/rll29+5dpKenmy46IiIiIiIiIhtk9ARp7dq1w5EjR9CjRw8MHjwY06ZNw61bt+Di4oLly5fj6aefNkecRERERERERDbD6MH2tGnTEB8fDwCYPHkyUlJS8O233yIjIwNdu3bF4sWLTR4kERERERERkS0xarAtIqhatSpCQkIAAGq1GosWLcKiRYvMERsRERERERGRTTLqmu2cnBxUq1YNu3btMlc8RERERERERDbPqMG2q6srateujby8PHPFQ0RERERERGTzjJ6NfPTo0Zg/fz4yMzPNEQ8RERERERGRzTN6grRr167h/PnzCAoKQseOHVG9enWoVCrNcpVKxWu4iYiIiIiIyKEZPdjevHkz1Go11Go1jhw5orOcg20iIiIiIiJydEYPtuPi4swRBxEREREREdkJkXyoVEZftWxXHHvviYiIiIiIyKQuXhyLAweqISsrwdKhWJRBg+1t27YZveE7d+7g+PHjRq9HREREREREtuvGjQXIzU3EjRvzLR2KRRk02B45ciTCw8Pxn//8B/Hx8SX2y8vLw+7du/Hqq68iNDQUJ06cMFmgREREREREZEsc+0Rqg67ZvnDhAj777DMsXLgQY8aMQZ06ddCsWTNUrVoVarUaKSkpiIuLwx9//IHc3Fz07NkT+/fvR/Pmzc0dPxEREREREVkl1cO72DGDBttqtRpjxozBmDFjsG/fPuzevRtHjhzB0aNHkZmZCX9/fzRs2BDDhw9Hr169UK1aNXPHTURERERERFas6C2iHZHRs5F37NgRHTt2NEMoREREREREZD8ce7Dt2CfRExERERERkZlwsE1ERERERERkYhxsExEREREREZVZfn4ubtz4FA8enNG0qVSOPdw0+pptIiIiIiIioqLi4z/FpUtjirXyyDYRERERERFRmaWlHdTTysG2UZYuXYq0tDRzxEJEREREREQ2SXRaHP00cqP3fuzYsQgMDMSQIUPw888/myMmIiIiIiIisiEi+XpaeWTbKDdv3sS///1vnDlzBp06dcI//vEPzJo1C/Hx8eaIj4iIiIiIiKweB9vFGT3Y9vX1xejRo3H06FGcPHkSzz77LBYuXIiQkBA888wz+OGHH5CTk2OOWImIiIiIiMgKieg7jZyD7TJr1qwZFi5ciJMnT6Jdu3bYtm0bBgwYgFq1aiEyMhIZGRmmipOIiIiIiIiskEg+EhN/1LOEg+0yERFs27YN/fv3R2hoKGJjYzF+/HgcPHgQr7/+OhYvXoyXXnrJlLESERERERGRlbl9e20JSxx7gjSj77N96dIlrFy5El999RVu3ryJrl274uuvv0avXr1QqZKyuSeeeAKPPfYYXnjhBZMHTERERERERNbj/v0/9LY7+mnkRg+269evj1q1auGVV17BiBEjEBwcrLdfWFgYWrduXe4AiYiIiIiIyHqVPKh27MG20cf1N27ciKtXr+Kjjz4qcaANAA0aNMDevXsN2mZsbCy6du0KT09P1KhRAxMmTEB2dvZD1xMRzJ49G0FBQXB3d0ebNm1w+PBhrT67du3CCy+8gJCQEHh4eKBx48aYO3cuJ3Ejq8H8J0fHGiBHxvwnR8casBclDSs52DZKTEwMrl69qnfZ1atXMXz4cKO2l5ycjM6dOyM7OxsxMTGYNWsWPv/8c4wdO/ah686ZMweRkZEYM2YMNm/ejMDAQERERODy5cuaPsuWLcO9e/fw0UcfYevWrRgyZAgiIyPxr3/9y6g4icyB+U+OjjVAjoz5b1/i4j7E0aOPIjf3vqVDsRmsAfuhUnGwrZcYycnJSX777Te9y44ePSpOTk5GbW/WrFni6ekpiYmJmrZly5aJs7OzxMfHl7heRkaGeHt7y6RJkzRtWVlZEhwcLKNGjdK03blzR2fdmTNnikql0rtMn9TUVAEgqampBvUnMpQt5L8Ia4DMxxZqgPlP5mIL+S/CGjDU3r2QvXsh164tsHQoNsMWaoD5b5jLl6dqaqD448KFdy0dnsUYfWRbREo8J//ChQsICAgwanvbtm1Dly5d4O/vr2kbOHAg8vPz8dNPP5W43sGDB5GWloaBAwdq2lxdXdG3b19s3bpV01alShWddVu0aAERQUJCglGxEpka858cHWuAHBnz3z6J8BRlQ7EG7EnJR7Bv3FhYcWFYGYMmSFuyZAmWLFkCQLn4ffDgwXB3d9fqk5mZiStXrmDAgAFGBRAbG6tz6rmvry8CAwMRGxtb6nqAMhFbUY0aNcK1a9eQkZGhE2OB/fv3Q61Wo27dunqXZ2VlISsrS/M6LS3NoH0hMpY15j/AGqCKY401wPynimKN+Q+wBqjiWGMNMP/LysFPFy+BQUe2a9asiZYtW6Jly5YQETRs2FDzuuDRqVMn/Pvf/8bSpUuNCiA5ORm+vr467X5+fkhKSip1PbVaDTc3N531RATJycl617tw4QIWLVqE119/HZUrV9bbJyoqCj4+PppHnTp1DN8hIiNYY/4DrAGqONZYA8x/qijWmP8Aa6C8Ll+eAADIykqAiFg4GutmjTXA/C+bkq/ZdmwGHdnu1asXevXqpXk9depUhIaGmi0oc0lLS0Pfvn1Rt25dzJw5s8R+kyZN0pqYIS0tjYVGNs/Q/AdYA2Sf+DuAHBl/B1SsGzcW4eLFdxEY+C80bLjM0uEQ+DvA/DjY1sfo+2x/+eWXJg3Az88PqampOu3Jycla12/oWy8rKwuZmZla32olJydDpVLBz89Pq392djb69OmD5ORkHDp0CJ6eniVuW61WQ61Wl2FviIxjjfkPsAao4lhjDTD/qaJYY/4DrAFTuHjxXQBAQsLnHGyXwhprgPlfNiXfZ9uxGTTYfvvttzFu3DgEBQXh7bffLrWvSqXCokWLDA4gLCxM55qM1NRUJCQk6FyHUXw9ADh37hyaN2+uaY+NjdXcb69Afn4+XnzxRRw7dgy//vorv50iq8H8J0fHGiBHxvwnR8casCccbOtj0PH+TZs2aa592LhxIzZt2lTqwxjdu3fHrl27kJKSommLjo6Gk5MTIiIiSlyvbdu28Pb2RnR0tKYtJycHMTEx6NGjh1bf0aNHY9OmTfjxxx/RtGlTo+IjMifmPzk61gA5MuY/OTrWgD3hYFsvi9xwrIikpCQJDAyUDh06yI4dO2TlypXi6+sro0eP1urXuXNnqVevnlZbVFSUqNVqWbhwoezevVv69esnXl5ecunSJU2fmTNnCgAZP368HDp0SOth6P3yeH89MhdbyH8R1gCZjy3UAPOfzMUW8l+ENWCoku4xTCWzhRpg/hvm6tXZJdaAI9eBVez5mTNn5OmnnxZ3d3epVq2ajBs3TrKysrT6dOjQQYKDg7Xa8vPzZdasWVK7dm1Rq9XSunVrOXjwoM56APQ+9u7da1B8LDIyJ2vPfxHWAJmXtdcA85/MydrzX4Q1YKiSBhm//95ccnJSLB2e1bL2GmD+G+bq1TkcbOuhEnn4PQliYmKMOlret29fo/pbu7S0NPj4+CA1NRXe3t6WDoeowrEGyJEx/8nRsQYMs29fyafRhobORVDQuAqMhkyF+W+Yy5cn49q1qBKXd+zomLfBM2iCtP79+xu8QZVKhby8vDIHRERERERkT1QqZ0uHQGRWRQfatWu/ixs3FlouGCti0GA7Li7O3HEQEREREdklZ+fKlg6BqML4+XWBk5Mnrl0r+X7mjsKgwXZwcLC54yAiIiIiskscbJNjcYJKZdBNr+yeQYPtpKQk+Pr6wsnJCUlJSQ/tX9pN6ImIiIiI7MnDpkBydvaooEiIrIEKKpWLpYOwCgYNtqtWrYpDhw6hVatWqFKlClSq0u+jxmu2iYiIiMhRiDzsb1/eg5gch0rlBGdnL622O3d+QNWq/SwUkeUYNNheuXIl6tWrp3n+sME2EREREZHjyC916cMH40S2q3h+u7rWRFbWda22c+de5WC7JEOHDtU8HzZsmLliISIiIiKyOQ8fTJc+GCeyZfn52VqvK1dugvT0s8V6OebBWoMG2/qkpqbizz//REJCAgIDA9G0aVP4+PiYMjYiIiIiIhvAI9vkuEQKB9vOzt7//69XsV4cbBskPz8fH3zwARYvXowHDx5o2j09PfHmm2/i448/hrMz7yVIRERERI7h8uXJpS4X4ZFtsl9Fj2wX3FO+UiXvYr1Kn0TQXhk92B4/fjwWL16MSZMmoX///qhevTr+/vtvREdHY/bs2cjOzsYnn3xijliJiIjIRiizMwtv/0IOIT7+Pw/pwSPbZL+KHtkuoHtkm4Ntg6xatQozZszAxIkTNW3VqlVD06ZN4e7ujnnz5nGwTURE5OBOneqCnJzbaNnyBJycynzVGpFd4JFtsmdFj2wXXDJR/Mi2o9aA0V835+Xl4dFHH9W7rGXLlrztFxERkYMTEaSk7MGDB38hPf20pcMhqnDu7g21XvOabbJn+fkZRV8B0Hdkm4Ntg/Tv3x9r167Vu2zt2rXo27dvuYMiIiIi2yWSU+QVTyMnx9Os2dZiLY450CDHcOrU05rnBUewiw+2lUuLHI9B53XFxMRonnfo0AGTJ09Gp06d0Lt3b1SrVg23b9/G+vXrcenSJcycOdNswRIREZF1EsnHvXvHULlyM4jkatp5zTY5ooJJogrwyDbZs+zsW0VeKYNtJyeXYr042C5R//79ddri4+Px888/67S/8sorGDJkSPkjIyIiIptx48ZCXLr0HgDg0Ud/K7KEg21yPLrXp/LINjmGkr9Y4mC7RHFxceaOg4iIiGzYjRsLNM+PH29TZIlj3luVHJtKpf0nNo9sk73Kz8/Sel00111dA5GdnfD/7Y75hZNBg+3g4GBzx0FERER2o+gfVRxkkH3LyLii0+bmVgd1636MuLgPADjuQIPsX05OcrGWwlxv3foifv3Vs2IDsjLlOrcrPT0dSUlJOg8iIuIfV0QAtK7fJrJH58+P1NseHDwFVasOAADEx39akSERVZi8vFSt156ezTXPnZ09iixxzNPIjR5siwhmzJiB2rVrw8vLC1WrVtV5EBE5utu312H/fl8kJe2wdChEFsXTZ8neZWVdL3HZnTs/AAAyMs5VVDhEFSo/P1PrdZMmG0rqafZYrJHRg+0FCxZg/vz5GD16NEQEU6ZMwYcffogGDRogJCQEy5cvN0ecREQ25cyZF5CXdw9//PFPS4dCVCFKuq3LuXMjkJZ2pIKjIao4Tk7qUpYWDjAuXHjbYW9/RPar6GC7efPdcHcP0dvPUc/2M3qwvWLFCkyfPh0TJkwAAPTu3RuRkZE4ffo0GjVqhIsXL5o8SCIiIrJN9++fxPHjrSwdBpHZqFSuBvWLj1+MtLTfHt6RyIYUTJDm7t4Afn6dS+npmF80GT3YvnLlCsLDw+Hs7AwXFxekpKQoG3JywhtvvIFVq1aZOEQiIiIiIuvk7l5f67VaXfLEwnl598wdDlGFKhhsOzm5PaQnB9sGCQgIwP379wEAQUFBOH78uGbZ3bt3kZ6ebrroiIiIyC6ICBITtyMz84alQyEyKReXAK3XzZvvKqW3Yw44yH4VnEZe+uUUinv3Tpo5Gutj0K2/imrXrh2OHDmCHj16YPDgwZg2bRpu3boFFxcXLF++HE8//bQ54iQishnZ2XctHQKR1UlM3Iy//noOANCxIwccZD9EsjXPW7Y8Cg+Pf1gwGqKKIyI4d+41AIYNto8da+Fw//8bPdieNm0a4uPjAQCTJ09GSkoKvv32W2RkZKBr165YvHixyYMkIrIlZ8++VOSVymJxEFmT5OTSjvYR2a6C02jr1p0FL6+WD+nN3wlkPzIyziMn528AgEqlf1jp7t4AGRnnKzIsq2L0YLthw4Zo2LAhAECtVmPRokVYtGiRyQMjIrJVycm83Rc5ntzc5FKX5+WlVVAkRBUrP185sm3IkT2eRk72pOhM5AV1UFxw8BTExg6tqJCsjtGD7aJu3LiBhIQE1KxZE7Vq1TJVTERENisublqxFh7FIPuXl5eJ/PzS52y5dWtVxQRDVMFECiaI0jfYVoEDbLJXRQfYBWd4FKdSOVdUOFbJ6AnSAODzzz9HUFAQgoOD8cQTTyAoKAh16tTBsmXLTB0fEZHNyMi4hKtXp1s6DKIKd/v2N5YOgchiCgYc+m8BVvwLV34BS/aj6Oz6RY9ya3PswbbRR7ajoqIwZcoUvPzyy+jfvz+qV6+Ov//+G9HR0XjjjTeQlJSESZMmmSNWIiKrlpfHuzGQ4xHJx7lzIywdBpHFFN76SN+R7fxir3mUm+yH9q3siue6wtGPbBs92F68eDHGjx+POXPmaLX37NkT1atXx+LFiznYJiKHc+/eMVy8OFbPEuUoRmLiVri4BMDbu3XFBkZkZtnZtywdApHFiAgyMi4AAJydvQ3or39AQmSLcnMLB9tVqvQpoZf2F0xpab/D27uVGaOyLkafRp6WloYuXbroXRYREYF79+7pXUZEZM+OHXsMqam/6LSrVCpkZMThzz+fwfHjT1ggMiLzysy8ZukQiCzmypVIZGZeBgD4+en/+7ioP//sjnv3Tpg7LKIKkZeXqnkeEhKpt09uborW6ytXHOtyO6MH2926dcOuXfpv37Fz507eZ5uIqJjMzCuWDoHIbLKz4y0dApHFXL06Q/O8UqXKOssbNlyh03b+/EizxkRUUbKylP//a9V6E05O+uYsAKpW7VeRIVkdg04jP378uOb5q6++ipEjR+L27dvo3bs3qlWrhtu3b2P9+vXYs2cPJ0kjIipCRHDqVGet1yoVJ8gh+5GX98DSIRBZjJtbPWRmXkKdOuP0Lg8MHK4zpwFPJSd7UXBmk1odVGIfF5cAVKrkj9zcpIoKy6oYNNh+7LHHtP44FBGsXr0aq1evhkqlgkjhufjPPvss8vLyTB8pEZFN0v7/UCSnhBlriWzTrVurLR0CkcUU/H0cENCrxD7u7vU113UrOEka2b709Au4fftrAICra2CpfZs23YgTJ9oDAHJzk80emzUxaLC9d+9ec8dBdiYvLxMnT3aEt/fjqF9/saXDIbIaublpcHWtYukwiExCRJCSssfSYRBZTE6OcrTOxcW/xD5ubiEcbJPduXy5cELsSpW8Su3r7Fy4PC3tkNliskYGDbY7dOhg7jjIzty9+wPu3fsN9+79xsE22b1r1+Y8vNP/O3iwKtq2vQ1X16pmjIioYuTk3NV63bDhSly7NhtqdU00afIjMjIu4dixR3XW4+UUZA9E8jWTP1Wq5FdiPycn9+Jrmi8oogpTmMfOzrrzFRSlUmkPOfPy0uHs7GGWqKyN0bf+KnD69Gns378fSUlJ8Pf3R/v27fHII4+YMjayUSKi91Yw/OOK7NXly+8b1f/u3RjUrMkJcsj2ZWXd0Dz39GyGwMBXEBj4iqbNy6sFmjXbiT/+6Kq1nkiezh9fRLYmNzcNBfcWLu3ItkrlovVahJdbku0rmtfGDrZzchI52C5JVlYWXn75Zfzwww8QEajVamRlZUGlUqF///5Ys2YNXF15PaKjEsnHiRNPIi3toKbt998bIScnEYAK4eH74OnZyHIBEplY0XtMGuphv5SIbEVW1nXNc5EcvX305btILsrxfT+RRWVlJcDZ2VMz4ZOTkwecnNQl9ndy0h5sP3jwJ+Ljl6BWrVFmjZPInIrmtZOTZ6l9dQfbd+HmVscscVkbo2/9NXnyZGzZsgVLly5FSkoKMjIykJKSgqVLl2LLli2YPHmyOeIkG5GdfVtroA0A6emxyMm5g5yc27h4cYyFIiMyvZycFBw+XPIMnET2ruiR7fz8bL199A+29Q/MiaxddvZdHDpUEwcPBiI7+zaA0k8hB3QHGgBw4cIbZomPqKKU98i2ozB6sL127VpERUXhtddeg7e3NwDA29sbr732GmbOnIlvv/3W5EGS9dF32wqRPOTnpz9kPf1/jBHZooyM85rr9YxRlqPhRNao6GDb1bWa3j76/gg7e/Yls8VEZE737h0FAOTnp+PEiTYAdI9cF1f8NHIiWyciuHt3o+a1k5Nbqf2LD7bj4//jMLfAM3qwnZSUhLCwML3LwsLCkJTkmPdQcyR///019u/3QVLSDk3bnTvr8euvlREbO6zUdVNS9mLfPhXu3v3RzFESmU9eXjpyc9OQkXGpTOunp5/WumUika0qOLIHAGFhq/T20TfYTkzcqKcnkS3Q/b87M/NKqWtwsE32JC3td/z8sxNycwuPTru4GHd2R2LiJly/Ptcs8VkbowfbYWFhWLNmjd5l//vf/0ociJP9OHv2JeTl3cdff/XTtF2//m/k52ciNfVXg7bx11+9zRQdkXmJCH7/vTH27/fF2bODy7SN+PhPcffuBtMGRlSBsrLicfXqLNy6tQIAUL/+p/DwaKC3b0mnF+bnZ5ktPiLz0T0aV6mSb6lrcDJAsienTnXReu3nF1HqnAUK3QmSix60s2dGV//UqVMxYMAAXLlyBf369UP16tVx+/ZtfP/99zh06BCio6PNEafVyc/PKdPpo/YkP/8BsrPvAABycoy/QX3BupZWqZI/nJycLR0G2YicnLvIyrqqd5mzc2U0avQ/3LixCGp1Hfz991clbufu3Q2oWrWPucIkMpvExK34889ntNqcnX1K7F/SH2G3b3+HGjVeNmlsROaWl/dAT2vpd1rhkW2yJ3l5xS+FM+RMPd0+Dx+g2wejB9t9+/bF+vXrMX36dLz33nua2zmFh4dj/fr16NmzpznitDo3by7DxYtvWToMizt4UP81euZe15RatYqFh0dDS4dhc27f/l7nHruOIDv7pk6bp2dTPP74H5rXVar0Qn5+bqmD7fT0M4iPX2qWGI3h5haMgIDulg6DbMilS+/ptJV2ZK+kWz5mZl42VUhEFUZ3oAE8bLBd0jXdFy+OwT/+scAEURFZjiGDZheXqjptKhUH2zqys7OxefNmhIeH49ixY3jw4AFSUlLg6+sLT8/Sp3wnIvty7dos3L9/wtJhWAV393/otDk5lf7f6717RzUT7VhSQMCzHGyXQXr6eVy6NMHSYVhEenqsTlulSiUf2S7JrVurce+e5f8PCQmZCi+vlpYOg2xEbm6qTpunZ+NS16lcuYXe9hs3FnKwTTYlM/OaTlu9evMfup5KpUKHDvm4eXMZLlxQbnmXmPgj8vIewNnZvseQRg22XV1dMXjwYGzfvh2hoaHw9PR02EF2YOC/UK3aAEuHYTEqlavOzOJOTu7Iz88A4Kz5lis/PwtOTmrk56dDpXKFSuUMkTyrmpW8UqUqlg7BJvn6doabW11Lh2ER9++fQH5+BkRy4epaC3XrztLbLyxsDbKyrsLH5ymcOfM8XFyqQq2uifT086hcObxigy6Bl9djlg7BJuXmJiMxkRM9FnBzM/4WeJmZccjMjDNDNMapWfNflg6BbEjxwUaVKr0fOtioVu0FpKefRW5uGpyc1FoTQ+XmpqFSJW+zxEpkamfOaM9V88gj38PDo75B66pUKtSs+S9cvTpDc5bgpUvj0aDBZyaP05oYfRp5WFgYrl3T/VbD0Tg7u8LZubqlw7BCxX9heBX7l+zFP/4xz9IhWL0aNQpvb9S2re7p52S73NzqokGDZZYOw2IyM6/AyckDOTl/o2rV/nBzCy61/xNPXEVCwgpUrdoXmZlXkZ+faTXznnh6NrF0CDbpwoW3cPv2WkuHUeFyc9O0Xjdpsv6h66hUTqhbd4bmddHB9uHDIVCpLDdvjFpdG489ZvkzTMg2pKUdKNZiXO6qVE5o2HC5Zt6PmzeXcLBdXFRUFN555x00btwYjz1mmiMisbGxeOutt3Dw4EF4eXlhyJAh+Pjjj+Hq6lrqeiKCOXPm4LPPPsOdO3cQHh6OBQsW4IknntDqd/PmTbz11lv46aef4OLigr59+2L+/Pma+4QTWRLznxydLdaAq2s1HhE1gptbEOrWnQ4AqFy5uYWjsS62mP8AkJt7zyHn7SjKzy+iTOtVq/Yibt/+GoBylowlOTl5WPT9Adusgby8dPz6q2Oe3astz+g1ip82vm9f6XMemFvdulEIDn7fbNs3erA9YcIEJCYmonXr1ggICED16tW1Jj9RqVQ4deqUwdtLTk5G586dUb9+fcTExCA+Ph5jx45Feno6Pv3001LXnTNnDiIjIzF79mw0a9YM//3vfxEREYGTJ08iNDQUAJCTk4Nu3boBAL755hukp6dj3LhxGDx4MDZv3mzs7hOZFPOfHB1rgByZLed/aOhMBAWNL9c2bJWLS1Xk52fB1TWwTOs3avQV6tb9CPn5mTBsJmfzsfRM6bZcA47O1bUW/Py6Gb2ew51NJEYaOnSoDBs2rNSHMWbNmiWenp6SmJioaVu2bJk4OztLfHx8ietlZGSIt7e3TJo0SdOWlZUlwcHBMmrUKE3bN998IyqVSmJjYzVtO3bsEADy22+/GRRjamqqAJDU1FRjdo3ooWwh/0VYA2Q+tlADzH8yF1vIfxHWAJmPLdSAvvzPz8+XrKzbDvnIybkn+fn5kpeXbdDnp09eXpbk5KRZfF+ysm5Lbu6DMu+HIYwebJvak08+Kb169dJqS05OFpVKJV9++WWJ6+3evVsAyIkTJ7Tax4wZI8HBwZrXL7/8sjRv3lyrT35+vvj7+0tkZKRBMfKXDJmLLeS/CGuAzMcWaoD5T+ZiC/kvwhog87GFGmD+U3kYfBr5mTNnsHTpUsTFxaFWrVro378/unTpUu4j67GxsRg+fLhWm6+vLwIDAxEbq3t7kaLrAcqEbUU1atQI165dQ0ZGBtzd3REbG6vTR6VSISwsrMTtZ2VlISsrS/M6NVW5zUNaWpre/mSfvLy8Srw/rKlYY/4DrAGqmPwHrLMGmP8E8HcAa8Cx8XcA89/RmaoGDBps79+/H126dEFOTg6qVq2K7du3Y/ny5fjvf/+L119/vVwBJCcnw9fXV6fdz88PSUlJpa6nVqvh5uams56IIDk5Ge7u7mXaflRUFKZPn67TXqdOndJ3huxKamqq2ScRs8b8B1gDVDH5D1hnDTD/CeDvANaAY+PvAOa/ozNVDRg02I6MjERYWBg2bdqEOnXqIC0tDa+88go++OCDcg+2rdGkSZMwduxYzev8/HwkJSUhICBA8w1HWloa6tSpg+vXr9vtrM72vo8P2z8vL8e9XRlrwP73Dyh9H5n/pec/YP85Yu/7B7AGSsLfAQp730fmv378HaCw9/0DKqYGDBps//nnn1i6dKnmGx1vb2988sknCA0NxfXr18v1TY+fn5/m9IyikpOT4e/vX+p6WVlZyMzM1PpWKzk5GSqVCn5+fg/dfklxq9VqqNVqrTZ934oBymdhrwlYwN730ZL7Z435D7AGirL3/QNYA8UZk/+A/eeIve8fYLl9tMb8B/g7oDh730f+DtDG3wHa7H3/APPuo5Mhne7evYvatWtrtRUk6N275bvHor5rJlJTU5GQkKBzjUXx9QDg3LlzWu2xsbEICgqCu7t7idsXEZw7d67U7RNVBOY/OTrWADky5j85OtYA2TuDBtsAzDZJQvfu3bFr1y6kpKRo2qKjo+Hk5ISIiIgS12vbti28vb0RHR2tacvJyUFMTAx69Oihtf1Tp07hwoULmrbdu3cjMTFRqx+RJTD/ydGxBsiRMf/J0bEGyO4ZMmW5SqUST09P8fLy0nroa/f29jZqOvSkpCQJDAyUDh06yI4dO2TlypXi6+sro0eP1urXuXNnqVevnlZbVFSUqNVqWbhwoezevVv69esnXl5ecunSJU2f7OxsadKkiTRt2lQ2bdok69atkzp16sgzzzxjVJzFZWZmSmRkpGRmZpZrO9bM3vfRGvbPVvNfxDo+P3Oy9/0TsY59ZA1YL3vfPxHL7yPz37rZ+z5aw/6xBqyXve+fSMXso0GD7WnTphn1MNaZM2fk6aefFnd3d6lWrZqMGzdOsrKytPp06NBB6755Isp98mbNmiW1a9cWtVotrVu3loMHD+ps/8aNG9K3b1+pXLmy+Pr6yvDhw3mvPLIazH9ydKwBcmTMf3J0rAGyZyoREUsfXSciIiIiIiKyJwZfs01EREREREREhuFgm4iIiIiIiMjEONgmIiIiIiIiMjEOtssgNjYWXbt2haenJ2rUqIEJEyYgOzvb0mE91MWLF/H6668jPDwclSpVQpMmTXT6pKenY9KkSQgNDYWHhwcaNGiAWbNmITc3V6tfamoqRowYAX9/f3h5eaF///5ISEioqF3Ra+vWrejQoQOqVq0KtVqN0NBQjB07FqmpqVr9MjMz8eGHH6Ju3bpQq9UICgrC+PHjtfqICGbPnq25V2ObNm1w+PDhitwdq2Wr+Q+wBgqwBsrHVmuA+a9g/pePreY/wBoowBooH1utAea/osLz34KTs9mkglsUPPXUU7J9+3ZZsWKF+Pj46NyiwBpt2LBBateuLf369ZOmTZvKI488otPnlVdeEW9vb/n0009lz549MnPmTHF2dpbJkydr9evWrZvUrl1b1q1bJz/++KM0adJEmjdvLjk5ORW1OzrWrFkj48ePl++//1727t0rixcvloCAAOnataumT15enkRERMg//vEP+fLLL2Xfvn2yevVqnf2LiooSV1dXmT9/vuzatUv69OmjczsJR2TL+S/CGhBhDZSXLdcA85/5X162nP8irAER1kB52XINMP8tk/8cbBtp1qxZ4unpKYmJiZq2ZcuWibOzs8THx1swsofLy8vTPB86dKhOkeXl5YmHh4dERkZqtQ8ZMkRCQ0M1rw8ePCgAZMeOHZq22NhYUalUsm7dOvMEX0aff/65AND8bL744gvx8fGRmzdvlrhORkaGeHt7y6RJkzRtWVlZEhwcLKNGjTJ7zNbMlvNfhDUgwhooL1uuAeY/87+8bDn/RVgDIqyB8rLlGmD+Wyb/eRq5kbZt24YuXbrA399f0zZw4EDk5+fjp59+smBkD+fkVPqPW0SQm5sLHx8frXYfHx9IkTvEbdu2Db6+vujataumrWHDhggPD8fWrVtNG3Q5BQQEAIDm9J7ly5djwIABCAwMLHGdgwcPIi0tDQMHDtS0ubq6om/fvla3fxXNlvMfYA0ArIHysuUaYP4z/8vLlvMfYA0ArIHysuUaYP5bJv852DZSbGwswsLCtNp8fX0RGBiI2NhYC0VlGs7Ozhg2bBg+/fRTHDlyBPfv38euXbuwZs0avPnmm5p+sbGxaNiwIVQqldb6jRo1sorPIC8vD5mZmTh+/Dg++ugjPPfccwgJCUFOTg6OHz+O4OBgDBkyBJ6envDy8sLAgQNx69YtzfoF+1D859yoUSNcu3YNGRkZFbo/1sSe8x9gDRRgDZTMnmuA+a9g/pfMnvMfYA0UYA2UzJ5rgPmvMHX+c7BtpOTkZPj6+uq0+/n5ISkpqeIDMrHPPvsMnTt3RqtWreDl5YWuXbti1KhRGDt2rKaPtX8GwcHBcHd3R8uWLREYGIhvvvkGAJCYmIicnBzMmTMHiYmJWL9+PZYuXYoDBw6gb9++mvWTk5OhVqvh5uamtV0/Pz+ICJKTkyt0f6yJtf/sTYE1wBoojbX/7MuL+c/8L421/+xNgTXAGiiNtf/sy4v5b/r8r1T+XSJ78v7772PLli344osvUL9+fRw+fBjTp0+Hn5+fzkx91mrr1q148OABTp8+jY8//hg9e/bEzp07kZ+fDwDw8vJCTEwM1Go1AKB69ero2rUr9uzZg86dO1sydLICrAHWgCNj/jP/HR1rgDXgyJj/ps9/DraN5OfnpzOFPKB8C1L0+g1b9Ndff2HevHnYuHEjevbsCQB46qmnkJOTg6lTp+L111+Hl5cX/Pz8cP36dZ31reUzaNasGQCgTZs2ePzxxxEeHo7169ejR48eUKlUaNu2rabAAKBjx45wdnbG6dOn0blzZ/j5+SErKwuZmZla32olJydDpVLBz8+vwvfJWthz/gOsAdbAw9lzDTD/mf8PY8/5D7AGWAMPZ881wPw3T/7zNHIjhYWF6VyPkJqaioSEBJ1z+23NmTNnAADh4eFa7S1atEBWVhZu3LgBQPkMzp07pzVZAqD/OhZLa9asGVxcXHDx4kV4eHggJCSkxL6ZmZkACq/ROHfunNby2NhYzf32HJU95z/AGmANPJw91wDzn/n/MPac/wBrgDXwcPZcA8x/8+Q/B9tG6t69O3bt2oWUlBRNW3R0NJycnBAREWG5wEwgODgYAHD8+HGt9mPHjkGlUmmWd+/eHcnJydi9e7emz/nz53HixAn06NGj4gI2wG+//YacnByEhoYCAJ599lkcOHBAU1AAsGfPHuTl5aFly5YAgLZt28Lb2xvR0dGaPjk5OYiJibG6/ato9pz/AGuANfBw9lwDzH/m/8PYc/4DrAHWwMPZcw0w/82U/0bfLMzBFdzMvkOHDrJjxw5ZuXKl+Pr62sTN7B88eCDR0dESHR0tHTt2lDp16mhe3759W3Jzc+Wxxx6T6tWry7Jly2T37t0ya9YscXd3lxEjRmhtq1u3blKnTh357rvvZOPGjdK0aVOL38y+T58+MnPmTNm0aZPs2rVLPvnkE6lRo4Y0a9ZMsrKyRETk2rVr4uvrKxEREbJlyxZZtWqV1KhRQ9q3by/5+fmabUVFRYlarZaFCxfK7t27pV+/fmW+mb09seX8F2ENiLAGysuWa4D5z/wvL1vOfxHWgAhroLxsuQaY/5bJfw62y+DMmTPy9NNPi7u7u1SrVk3GjRun+SFas7i4OAGg97F3714REUlISJBXX31VgoODxd3dXRo0aCCRkZGSnp6uta2UlBQZPny4+Pr6SuXKlaVv376aG8ZbSlRUlISHh4uXl5d4enrKI488IlOnTpXU1FStfidOnJAOHTqIm5ub+Pv7y/DhwyU5OVmrT35+vsyaNUtq164tarVaWrduLQcPHqzAvbFetpr/IqyBAqyB8rHVGmD+K5j/5WOr+S/CGijAGigfW60B5r+iovNfJVLshHsiIiIiIiIiKhdes01ERERERERkYhxsExEREREREZkYB9tEREREREREJsbBNhEREREREZGJcbBNREREREREZGIcbBMRERERERGZGAfbRERERERERCbGwTYRERERERGRiXGwTURERERERGRiHGwTERERERERmRgH20REREREREQmxsE2ERERERERkYlxsE1ERERERERkYhxsExEREREREZkYB9tEREREREREJsbBNhEREREREZGJcbBNREREREREZGIcbBMRERERERGZGAfbFhASEoKFCxda5L2nTZuG8PBwi7x3WaxatQq+vr6WDgMAcOXKFahUKpw8edLgdTp27Ih3333XbDEREREREZF1stvB9rBhw9C7d29Lh6HXkSNH8K9//cvs76NSqbBhwwazv09OTg4mTpyIpk2bwtPTEzVr1sSQIUNw8+ZNs783ERERERGRNbLbwbYl5OTkGNSvatWq8PDwMHM0FSc9PR3Hjx/H1KlTcfz4ccTExODcuXN47rnnLB0aERERERGRRTjsYPuvv/5C9+7dUblyZVSvXh0vv/wy7t69q1m+fft2tG/fHr6+vggICMCzzz6LS5cuaZYXnFK8bt06dOjQAW5ubvj66681R9TnzZuHwMBABAQEYPTo0VoD8eKnkatUKnzxxRfo06cPPDw8UL9+fWzcuFEr3o0bN6J+/fpwc3NDp06dsHr1aqhUKqSkpOjdv5CQEABAnz59oFKpNK8LrFmzBiEhIfDx8cELL7yAe/fuaZbl5+cjKioKdevWhbu7O5o3b47vv/++xM/Sx8cHO3fuxMCBA9GwYUM88cQT+PTTT3Hs2DFcu3ZN6/OKiYlBp06d4OHhgebNm+PQoUNa21q1ahWCgoLg4eGBPn36IDExscT3Lbrd7777Dk8++STc3d3x+OOP4/z58zhy5Agee+wxVK5cGd27d8edO3e09vGjjz5C7dq1oVarER4eju3bt2tt+/fff0eLFi3g5uaGxx57DCdOnNB5/4flEREREREROSaHHGynpKSgc+fOaNGiBY4ePYrt27fj77//xsCBAzV9Hjx4gLFjx+Lo0aPYvXs3nJyc0KdPH+Tn52tt6/3338c777yDs2fPolu3bgCAvXv34tKlS9i7dy9Wr16NVatWYdWqVaXGNH36dAwcOBB//PEHevTogRdffBFJSUkAgLi4OPTv3x+9e/fGqVOnMHLkSEyZMqXU7R05cgQA8OWXXyIhIUHzGgAuXbqEDRs2YPPmzdi8eTN+/vlnzJ49W7M8KioKX331FZYuXYrTp09jzJgxeOmll/Dzzz8//MP9f6mpqVCpVDrXW0+ZMgXjxo3DyZMn0aBBAwwaNAi5ubkAgN9++w0jRozAm2++iZMnT6JTp074+OOPDXq/yMhIfPDBBzh+/DgqVaqEwYMHY8KECVi0aBF+/fVXXLx4ER9++KGm/6JFi/DJJ59g3rx5+OOPP9CtWzc899xzuHDhAgDg/v37ePbZZ9G4cWMcO3YM06ZNw7hx47Te05A8IiIiIiIiByV2aujQodKrVy+9y2bMmCERERFabdevXxcAcu7cOb3r3LlzRwDIn3/+KSIicXFxAkAWLlyo877BwcGSm5uraRswYIA8//zzmtfBwcGyYMECzWsA8sEHH2he379/XwDItm3bRERk4sSJ0qRJE633mTJligCQ5ORk/R/A/293/fr1Wm2RkZHi4eEhaWlpmrbx48dL69atRUQkMzNTPDw85ODBg1rrjRgxQgYNGlTiexWVkZEhjz76qAwePFjTVvB5ffHFF5q206dPCwA5e/asiIgMGjRIevToobWt559/Xnx8fEp8L33b/fbbbwWA7N69W9MWFRUlDRs21LyuWbOmzJw5U2tbjz/+uLzxxhsiIrJs2TIJCAiQjIwMzfIlS5YIADlx4oSIGJZHHTp0kHfeeafE+ImIiIiIyD455JHtU6dOYe/evahcubLmERYWBgCaU8UvXLiAQYMGITQ0FN7e3prTsAtOiy7w2GOP6Wz/kUcegbOzs+Z1YGAgbt++XWpMzZo10zz39PSEt7e3Zp1z587h8ccf1+rfqlUrA/dWV0hICLy8vPTGd/HiRaSnp6Nr165an89XX32ldRp9SXJycjBw4ECICJYsWaKzvOh+BgYGAoDmvc+ePYvWrVtr9W/Tpo1B+1R0u9WrVwcANG3aVKut4H3S0tJw8+ZNtGvXTmsb7dq1w9mzZzWxNGvWDG5ubiXGYkgeERERERGRY6pk6QAs4f79++jZsyfmzJmjs6xgANizZ08EBwdj+fLlqFmzJvLz89GkSRNkZ2dr9ff09NTZhouLi9ZrlUqlc/q5KdYpq9Le6/79+wCALVu2oFatWlr91Gp1qdstGGhfvXoVe/bsgbe3d6nvrVKpAMAk+6lvu8XbTP15GpJHRERERETkmBxysP3oo4/ihx9+QEhICCpV0v0IEhMTce7cOSxfvhxPPvkkAGD//v0VHaZGw4YNsXXrVq22otdgl8TFxQV5eXlGvVfjxo2hVqtx7do1dOjQweD1CgbaFy5cwN69exEQEGDU+wJAo0aN8Ntvv2m1HT582OjtPIy3tzdq1qyJAwcOaO3jgQMHNGcMNGrUCGvWrEFmZqbm6HbxWB6WR0RERERE5Ljs+jTy1NRUnDx5Uutx/fp1jB49GklJSRg0aBCOHDmCS5cuYceOHXjllVeQl5cHPz8/BAQE4PPPP8fFixexZ88ejB071mL7MXLkSMTGxmLixIk4f/48vvvuO82EawVHcfUJCQnB7t27cevWLSQnJxv0Xl5eXhg3bhzGjBmD1atX49KlSzh+/DgWL16M1atX610nJycH/fv3x9GjR/H1118jLy8Pt27dwq1bt3TOBCjN22+/je3bt2PevHm4cOECPv30U50Zwk1l/PjxmDNnDtatW4dz587h/fffx8mTJ/HOO+8AAAYPHgyVSoXXXnsNZ86cwdatWzFv3jytbTwsj4iIiIiIyHHZ9WB73759aNGihdZj+vTpmqOaeXl5iIiIQNOmTfHuu+/C19cXTk5OcHJywtq1a3Hs2DE0adIEY8aMwdy5cy22H3Xr1sX333+PmJgYNGvWDEuWLNHMRl7aqd2ffPIJdu7ciTp16qBFixYGv9+MGTMwdepUREVFoVGjRvjnP/+JLVu2oG7dunr7x8fHY+PGjbhx4wbCw8MRGBioeRw8eNDg933iiSewfPlyLFq0CM2bN8dPP/2EDz74wOD1jfH2229j7NixeO+999C0aVNs375dc3s1AKhcuTI2bdqEP//8Ey1atMCUKVN0Thd/WB4REREREZHjUomIWDoIMt7MmTOxdOlSXL9+3dKhEBERERERUTG80NRGfPbZZ3j88ccREBCAAwcOYO7cuXjzzTctHRYRERERERHpwcG2jbhw4QI+/vhjJCUlISgoCO+99x4mTZpk6bCIiIiIiIhID6u4sDQ2NhZdu3aFp6cnatSogQkTJhg0sZaIYPbs2QgKCoK7uzvatGlT6uzV+fn5aNmyJVQqFb7//ntT7oLZLViwADdv3kRmZibOnz+PqVOncgZsO8H8J0fHGiBHxvwnR8caIHtm8cF2cnIyOnfujOzsbMTExGDWrFn4/PPPDZr9e86cOYiMjMSYMWOwefNmBAYGIiIiApcvX9bbf9myZYiPjzf1LhCVGfOfHB1rgBwZ858cHWuA7J4YKTExUX744QeZMGGCvPzyy9K/f38ZOXKkzJ8/X44cOWLs5mTWrFni6ekpiYmJmrZly5aJs7OzxMfHl7heRkaGeHt7y6RJkzRtWVlZEhwcLKNGjdLpf+fOHfH395eVK1cKAImOjjY6ViJTY/6To2MNkCNj/pOjYw2QvTP4yPbPP/+Mvn37IjAwEAMGDMB3332Hs2fPIiEhAfv370dkZCRatWqF0NBQzJw5E2lpaQZtd9u2bejSpQv8/f01bQMHDkR+fj5++umnEtc7ePAg0tLSMHDgQE2bq6sr+vbti61bt+r0nzRpEjp16oROnToZustEZsf8J0fHGiBHxvwnR8caIHtn0EW/ERER+P3339GvXz/8+OOPaNOmDXx8fLT6iAjOnTuHrVu3Yu3atViwYAG++uor9OjRo9Rtx8bGYvjw4Vptvr6+CAwMRGxsbKnrAUBYWJhWe6NGjXDt2jVkZGTA3d0dAPD777/jm2++wenTpw3ZXWRlZSErK0tr37Kzs1GlShWoVCqDtkFkCGvMf4A1QBXHGmuA+U8VxRrzH2ANUMWxxhpg/pMpGXRku2PHjrh69SpWrFiBf/7znzoDbQBQqVQICwvD2LFj8fvvv2P9+vUQA27hnZycDF9fX512Pz8/JCUllbqeWq2Gm5ubznoiguTkZADKZAijR4/Ge++9h5CQkIfGAwBRUVHw8fHRPHx9fVGtWjXcu3fPoPWJDGWN+Q+wBqjiWGMNMP+polhj/gOsAao41lgDzH8yJYMG25MnT9Y7wC7Nk08+iWeeeaZMQZnSF198gVu3buH99983eJ1JkyYhNTVV87h+/boZIyQyn7LkP8AaIPvB3wHkyPg7gBwdfweQpZX53lEigvPnzyMpKQn+/v5o0KBBmU6t8PPzQ2pqqk57cnKy1vUb+tbLyspCZmam1rdaycnJUKlU8PPzw/379zF58mTMnDkT2dnZyM7O1lxLnp6ejrS0NHh7e+tsW61WQ61WG70vRMayxvwHWANUcayxBpj/VFGsMf8B1gBVHGusAeY/mVKZbv312WefITAwEI0bN0b79u3RuHFj1KxZE0uWLDF6W2FhYTrXZKSmpiIhIUHnOozi6wHAuXPntNpjY2M199u7e/cuEhMT8frrr8PPzw9+fn5o3rw5AGDo0KFo0KCB0fESmRLznxwda4AcGfOfHB1rgOyd0Ue2P//8c7z55psYNGgQnn/+eVSvXh1///031q1bhzfffBMuLi549dVXDd5e9+7dMWvWLKSkpGiu2YiOjoaTkxMiIiJKXK9t27bw9vZGdHS0pnBycnIQExOjmZStRo0a2Lt3r9Z6t27dwqBBgzBt2jR07drVyL0nMi3mPzk61gA5MuY/OTrWANk9Y+8VFhYWJu+8847eZe+88440bNjQqO0lJSVJYGCgdOjQQXbs2CErV64UX19fGT16tFa/zp07S7169bTaoqKiRK1Wy8KFC2X37t3Sr18/8fLykkuXLpX4fnFxcUbfXy81NVUASGpqqlH7RvQwtpD/IqwBMh9bqAHmP5mLLeS/CGuAzMcWaoD5T+Vh9JHtuLg4PPvss3qXPfPMM1i6dKlR2/Pz88Pu3bvx1ltvoXfv3vDy8sKrr76KmTNnavXLy8tDbm6uVtvEiRMhIpg3bx7u3LmD8PBw7NixA6GhocbtFJGFMP/J0bEGyJEx/8nRsQbI3qlEDLg/VxF169bF8OHDMXXqVJ1lM2bMwMqVKxEXF2eyAK1BWloafHx8kJqaWuJkIkT2jDVAjoz5T46ONUCOjPlP5WH0ke0RI0bgo48+QlZWFvr374/q1avj9u3biI6Oxty5c/Hhhx+aI04iIiIiIiIim2H0YHvKlClITk7G3LlzERUVVbihSpXw1ltvYcqUKSYNkIiIiIiIiMjWGD3YVqlU+OSTTzB58mT89ttvmvvgtWrVCgEBAeaIkYiIiIiIiMimGD3YLhAQEKCZWp+IiIiIiIiIChk02I6JiUHnzp3h6+uLmJiYh/bv27dvuQMjIiIiIiIislUGDbb79++Pw4cPo1WrVujfv3+pfVUqFfLy8kwSHBEREREREZEtMmiwHRcXh8DAQM1zIiIiIiIiIiqZQYPt4OBgzXOVSoXAwEC4uLjo9MvNzcXNmzdNFx0RERERERGRDXIydoW6devixIkTepedOnUKdevWLXdQRERERERERLbM6MG2iJS4LCsrC2q1ulwBEREREREREdk6g04jj42NxZkzZzSv9+3bhxs3bmj1yczMxLfffovQ0FDTRkhERERERERkYwwabK9btw7Tp08HoFyz/f777+vt5+vri1WrVpksOCIiIiIiIiJbZNBg+91338WwYcMgIggNDUVMTAxatGih1cfV1RU1atSASqUyS6BEREREREREtsKgwbaPjw98fHwAFN4GzNXV1ayBEREREREREdkqgwbbRRW9DVh6ejoyMzN1+vj7+5cvKiIiIiIiIiIbZvRgW0Tw8ccfY9myZUhISNDbJy8vr9yBEREREREREdkqo2/9tWDBAsyfPx+jR4+GiGDKlCn48MMP0aBBA4SEhGD58uXmiJOIiIiIiIjIZhg92F6xYgWmT5+OCRMmAAB69+6NyMhInD59Go0aNcLFixdNHiQRERERERGRLTF6sH3lyhWEh4fD2dkZLi4uSElJUTbk5IQ33niDt/4iIiIiIiIih2f0YDsgIAD3798HAAQFBeH48eOaZXfv3kV6errpoiMiIiIiIiKyQUZPkNauXTscOXIEPXr0wODBgzFt2jTcunULLi4uWL58OZ5++mlzxElERERERERkM4webE+bNg3x8fEAgMmTJyMlJQXffvstMjIy0LVrVyxevNjkQRIRERERERHZEqMG2yKCqlWrIiQkBACgVquxaNEiLFq0yByxEREREREREdkko67ZzsnJQbVq1bBr1y5zxUNERERERERk84wabLu6uqJ27drIy8szVzxERERERERENs/o2chHjx6N+fPnIzMz0xzxEBEREREREdk8oydIu3btGs6fP4+goCB07NgR1atXh0ql0ixXqVS8hpuIiIiIiIgcmtGD7c2bN0OtVkOtVuPIkSM6yznYJiIiIiIiIkdn9GA7Li7OHHEQERERERER2Q2jr9kmIiIiIiIiotIZNNjetm2b0Ru+c+cOjh8/bvR6RERERERERLbOoMH2yJEjER4ejv/85z+Ij48vsV9eXh52796NV199FaGhoThx4oTJAiUiIiIiIiKyFQZds33hwgV89tlnWLhwIcaMGYM6deqgWbNmqFq1KtRqNVJSUhAXF4c//vgDubm56NmzJ/bv34/mzZubO34iIiIiIiIiq6MSETFmhX379mH37t04cuQIEhISkJmZCX9/fzRs2BDt2rVDr169UK1aNXPFaxFpaWnw8fFBamoqvL29LR0OUYVjDZAjY/6To2MNkCNj/lN5GD0beceOHdGxY0czhEJERERERERkHzgbOREREREREZGJcbBNREREREREZGIcbBMRERERERGZGAfbRERERERERCbGwTYRERERERGRiRk92F66dCnS0tLMEQsRERERERGRXTB6sD127FgEBgZiyJAh+Pnnn80RExEREREREZFNM3qwffPmTfz73//GmTNn0KlTJ/zjH//ArFmzEB8fb474iIiIiIiIiGyO0YNtX19fjB49GkePHsXJkyfx7LPPYuHChQgJCcEzzzyDH374ATk5OeaIlYiIiIiIiMgmlGuCtGbNmmHhwoU4efIk2rVrh23btmHAgAGoVasWIiMjkZGRYao4iYiIiIiIiGxGmQfbIoJt27ahf//+CA0NRWxsLMaPH4+DBw/i9ddfx+LFi/HSSy+ZMlYiIiIiIiIim1DJ2BUuXbqElStX4quvvsLNmzfRtWtXfP311+jVqxcqVVI298QTT+Cxxx7DCy+8YPKAiYiIiIiIiKyd0Ue269evj6+++gqvvPIKLl++jO3bt6Nfv36agXaBsLAwtG7d2qBtxsbGomvXrvD09ESNGjUwYcIEZGdnP3Q9EcHs2bMRFBQEd3d3tGnTBocPH9bqs2vXLrzwwgsICQmBh4cHGjdujLlz5/K6crIazH9ydKwBcmTMf3J0rAGya2KkTZs2SV5enrGrlSgpKUkCAwPlqaeeku3bt8uKFSvEx8dHRo8e/dB1o6KixNXVVebPny+7du2SPn36iJeXl1y6dEnTp3///tKjRw9ZvXq17N27V6KiosTd3V2GDRtmcIypqakCQFJTU8u0j0QlsYX8F2ENkPnYQg0w/8lcbCH/RVgDZD62UAPMfyoPowfbr7zyily+fFnvsitXrsgrr7xi1PZmzZolnp6ekpiYqGlbtmyZODs7S3x8fInrZWRkiLe3t0yaNEnTlpWVJcHBwTJq1ChN2507d3TWnTlzpqhUKr3L9GGRkbnYQv6LsAbIfGyhBpj/ZC62kP8irAEyH1uoAeY/lYfRp5GvXr0ad+7c0bvs7t27WL16tVHb27ZtG7p06QJ/f39N28CBA5Gfn4+ffvqpxPUOHjyItLQ0DBw4UNPm6uqKvn37YuvWrZq2KlWq6KzbokULiAgSEhKMipXI1Jj/5OhYA+TImP/k6FgDZO+MHmyLCFQqld5lFy5cQEBAgFHbi42NRVhYmFabr68vAgMDERsbW+p6AHTWbdSoEa5du1bqbcf2798PtVqNunXr6l2elZWFtLQ0rQeROVhj/gOsAao41lgDzH+qKNaY/wBrgCqONdYA859MyaDB9pIlS9CsWTM0a9YMKpUKgwcP1rwueDRo0ABDhgxB165djQogOTkZvr6+Ou1+fn5ISkoqdT21Wg03Nzed9UQEycnJete7cOECFi1ahNdffx2VK1fW2ycqKgo+Pj6aR506dQzfISIjWGP+A6wBqjjWWAPMf6oo1pj/AGuAKo411gDzn0zJoMF2zZo10bJlS7Rs2RIigoYNG2peFzw6deqEf//731i6dKm5Yy6ztLQ09O3bF3Xr1sXMmTNL7Ddp0iSkpqZqHtevX6/AKInMw9D8B1gDZJ/4O4AcGX8HkKPj7wCyBIPus92rVy/06tVL83rq1KkIDQ01SQB+fn5ITU3VaU9OTta6fkPfellZWcjMzNT6Vis5ORkqlQp+fn5a/bOzs9GnTx8kJyfj0KFD8PT0LHHbarUaarW6DHtDZBxrzH+ANUAVxxprgPlPFcUa8x9gDVDFscYaYP6TKRl9zfaXX35psoE2oFxrUfyajNTUVCQkJOhch1F8PQA4d+6cVntsbKzmfnsF8vPz8eKLL+LYsWPYtm0bTwchq8H8J0fHGiBHxvwnR8caIHtn0JHtt99+G+PGjUNQUBDefvvtUvuqVCosWrTI4AC6d++OWbNmISUlRXPNRnR0NJycnBAREVHiem3btoW3tzeio6PRvHlzAEBOTg5iYmLQo0cPrb6jR4/Gpk2bsGPHDjRt2tTg2IjMjflPjo41QI6M+U+OjjVAds+Q+4OFhITIyZMnRUQkODhYQkJCSnzUrVvXqHuPFdzMvkOHDrJjxw5ZuXKl+Pr66tzMvnPnzlKvXj2ttqioKFGr1bJw4ULZvXu39OvXT+dm9jNnzhQAMn78eDl06JDWw9D75fH+emQutpD/IqwBMh9bqAHmP5mLLeS/CGuAzMcWaoD5T+Vh0GDb3M6cOSNPP/20uLu7S7Vq1WTcuHGSlZWl1adDhw4SHBys1Zafny+zZs2S2rVri1qtltatW8vBgwd11gOg97F3716D4mORkTlZe/6LsAbIvKy9Bpj/ZE7Wnv8irAEyL2uvAeY/lYdKRMQsh8ztSFpaGnx8fJCamgpvb29Lh0NU4VgD5MiY/+ToWAPkyJj/VB4GXbMdExNj1Eb79u1bpmCIiIiIiIiI7IFBg+3+/fsbvEGVSoW8vLwyB0RERERERERk6wwabMfFxZk7DiIiIiIiIiK7YdBgOzg42NxxEBEREREREdkNgwbbSUlJ8PX1hZOTE5KSkh7a39/fv9yBEREREREREdkqgwbbVatWxaFDh9CqVStUqVIFKpWq1P68ZpuIiIiIiIgcmUGD7ZUrV6JevXqa5w8bbBMRERERERE5MoMG20OHDtU8HzZsmLliISIiIiIiIrILBg229UlNTcWff/6JhIQEBAYGomnTpvDx8TFlbEREREREREQ2yejBdn5+Pj744AMsXrwYDx480LR7enrizTffxMcffwxnZ2eTBklERERERERkS4webI8fPx6LFy/GpEmT0L9/f1SvXh1///03oqOjMXv2bGRnZ+OTTz4xR6xERERERERENsHowfaqVaswY8YMTJw4UdNWrVo1NG3aFO7u7pg3bx4H20REREREROTQnIxdIS8vD48++qjeZS1btuRtv4iIiIiIiMjhGT3Y7t+/P9auXat32dq1a9G3b99yB0VERERERERkyww6jTwmJkbzvEOHDpg8eTI6deqE3r17o1q1arh9+zbWr1+PS5cuYebMmWYLloiIiIiIiMgWqEREHtbJycnwA+AqlcruTiVPS0uDj48PUlNT4e3tbelwiCoca4AcGfOfHB1rgBwZ85/Kw6Aj23FxceaOg4iIiIiIiMhuGDTYDg4ONnccRERERERERHbD6Ft/FZWeno7MzEyddn9///JsloiIiIiIiMimGT0buYhgxowZqF27Nry8vFC1alWdBxEREREREdm5b74BevYEUlNL7ycC5OdXTExWxOjB9oIFCzB//nyMHj0aIoIpU6bgww8/RIMGDRASEoLly5ebI04iIiIiIiKyJi++CGzeDMyZU3Kf/HygdWugbVtl0O1AjB5sr1ixAtOnT8eECRMAAL1790ZkZCROnz6NRo0a4eLFiyYPkoiIiIiIiKzU3bslL7t5EzhyBPjtt4cfAbczRg+2r1y5gvDwcDg7O8PFxQUpKSnKhpyc8MYbb2DVqlUmDpGIiIiIiIhsUkaGpSOwGKMH2wEBAbh//z4AICgoCMePH9csu3v3LtLT000XHREREREREVmf3NzC5ypVyf2KDraLruMAjJ6NvF27djhy5Ah69OiBwYMHY9q0abh16xZcXFywfPlyPP300+aIk4iIiIiIiKxFv36Fz1UqZSB99izQpIn24PvBg8LnHGyXbtq0aYiPjwcATJ48GSkpKfj222+RkZGBrl27YvHixSYPkoiIiIiIiKzIxo2Fz69cAR55BDh/Hli8GHjzTaX9zBlgxIjCfg422FaJONiUcGWQlpYGHx8fpKamwtvb29LhEFU41gA5MuY/OTrWQDlkZAAdOwJPPw3MmmXpaKgMmP/F5OcD06YpM4t3766/T+XKwL17ynM3NyArq3DZRx8BU6eaPUxrYfSR7aJu3LiBhIQE1KxZE7Vq1TJVTERERERE1u/4cSAnR3nerBng7q69/Ntvgd9/Vx4dOgDdulV8jESmtHYtMGNG6X3u31eOYFeqpD3QBoAPP3SowbbRE6QBwOeff46goCAEBwfjiSeeQFBQEOrUqYNly5aZOj4iIiKyB/fuAXl5lo6CyHQ2bwZatgSeeEJ59O4N3Lmj3AIpPx/49VdgzJjC/v/8J3DhgsXCJTKJ2FjD+i1aVPryBw+Ad94Bfvml/DFZMaMH21FRUXj99dfRqVMnbNiwAYcOHcKGDRvQqVMnvPHGG4iKijJHnERERGSrbtwAvL2BLl0sHQlR+dy8CQwfDhw7pgwUivrpJ6BaNaBqVWDgQOCpp4C0NO0+f/5Z+PzGDeDkSbOHTGRSht7G65tvgNKuVp41C/jPf5QzPuyY0aeRL168GOPHj8ecOXO02nv27Inq1atj8eLFmDRpkskCJCIiIhu3dq3y7759Fg2DqNxGjlSOaH/5pfIFUkl++EF/e2Ji4fM6dZR/L18G6tY1XYxE5mToYPv4cSA4uOTl584VPs/MBFxcAGfn8sVmhYw+sp2WloYuJXwzHRERgXsFF8MTERERAQ43+yzZsaKn0Ba9nZGhkpJ0244fL3s8RBVBBMjOVp6npxu+3vXrJS8remswd3egffuyxWbljB5sd+vWDbt27dK7bOfOnbzPNhGRPomJygQ5RI6Ig22yF5UrFz4vyxwEmZnKv+vWlW87RBVp+nTAwwM4fBhITTXNNoufYn74sF3WgkGnkR8v8o3bq6++ipEjR+L27dvo3bs3qlWrhtu3b2P9+vXYs2cPJ0kjItKnQQPliMa+fXZ/fRLZiQcPlEGyj09hW0YG8McfQL16QJUqyvWmcXFAnz6664sUHrkoPhttcbduKdurVK6bpBCZx+HDyqnegweX/xrrzEzlWu0XXihse/55ZTCzfXvhqeVE1kJEyU9AmUn87t3yb/PcOf2XWnh7KzP4P/dc+d/DShh0n20nJyeoihzqL7qKSqXSeZ1nZ99K8P565OhYAyZQ8H/ohAlAsTkvyLo5ZP6LAGq1ckuj9PTC2xlFRAA7dyrPf/0VePJJ5fnvvwOPP164/tdfA+++C2zYAISHax8NLP5nx/HjyozOPXsCGzeaaYeoPByyBooq+P97/Xr9XywZ44knlMG7PkOHAqtWlW/7ZHIOn/9paYVfunp4GHcaeUnq1QMuXSp5eUaGcn9uO2DQV8h79+41dxxERNbtu++AwMDCwUVpRIAFC4AtW4CJE5UBSgEXF/PFSGQq2dmF9w6+cgVo1Eh5XjDQBoCPPip8fvKk9mD7pZeUfwcNAubN09520SPeAPDZZ8q/mzaZInIi08nK0j7borwDbaDkgTZg+MRTRBXpzp3C56YYaAOlD7QB4MABwE4uTTZosN2BpzwSkSM7d045zQ8o/TYWBXbuBN57T3m+Z4/2hDgcbJMtKHra9+TJyhG94oqexbZhgzLA3rgRaNeusD0zs3BSnQI3bigz1Pr7K6ege3oaF5sIkJysrE9kLr/9BrRtq9wvu6JUrqx8yVX098S9e0B0NNCrFxAQUHGxkGO7exdo3Vq5rOGDDyr+/dXqwud//63Me9O4ccXHYQJGT5BW4PTp01i2bBmioqKwbNkynD592pRxkT3JzgZmzgTGjCl9VkIia1U0bw35wysuTvt10W9weU0q2YKig+0NG5TJnIpfS7pnT+HzrVuBTp2U61BbtChsv3NHuddqUW+8oQyYExOBqCjtwfb9+w+PbfJkZdBR9P2JyuP2be1bcgHAkiUVO9AGlC9qK1fWrpmRI4ERI7Sv8SYytWvXtA8mvPGGMk/Bzz9bJvfy8grrr0YN4JFHdP+2shFGD7azsrIwcOBANGvWDKNGjcJHH32EUaNGoVmzZnj++eeRXfwbbKIFC5RvxRYuBFq1snQ0RNpyc4F33gF+/FG7/fhx5Wj2pUvaRxkSEoAXX1SO4M2fD7Rpo/wiqF0bGDtWOWW2+NHrX34pfP7BB4Wn5xa4cEH5MurmTeWo34svFs5cvnKlUkOAcjrvG28AffsCP/1kkt0n0qtgxuQCL7yg5GZpfvtN+bf45Dnbtmm/vnix8Pn169ozlRed5baks0hmz1b+feed0uMhMkRGBlC9ujJBX9HBdWBgxcdy/bpygOLFFwvbvv1W+XfXLqU+iv/+ICqv5cuVs40mTVLOYlq3TjmbokDxL6IqwvvvK2cvFb3VXsHvGFsjRho7dqx4eHjI559/LqmpqSIikpqaKp9//rl4enrKe++9Z+wmrV5qaqoA0OwvGem550SUP5uUB9kcu66BFSv056aLi9LWooXInj2FfYYO1c5nfY9PPil9+bffar9XtWpKe7duIp06FfbLyip8fvmySNOmrCULsOv8FxG5c0dk3Tol3wp89dXD89wcj1q1lH87dlTqYs0akSVLlBhFRGJjtftnZ1vmM3Mwdl0D588X5tOaNSITJ4qkpoqMGmWZGih4LFsmMn++bruvr3atFsjJqfjPzkHYbf7n5Yns3Fn2HHV2Nqxf69Zlf49u3Qqff/ONpT+xMjH6yPbatWsRFRWF1157TTMjn7e3N1577TXMnDkT3xZ8A0eWk5KinLZtqtMtrlwBFi0Cli0rfQKb7dsBX1/ldKf0dGUSkGnTlNOziio4irFlizLpVEqKcirhwYPa/USAyEhl+v+Cb9W+/145crhypXbfb74B9u8v+z6S47p2TX97wdGDP//UnrTmzz8fvs2bN0tfXnwSnIIaOXxYuw6KbufWLcPem8hYzz2nnMUxc2Zh25AhloklPl75d98+pS5efhkYNQoYNkxpDwvT7r9jR0VGR/ao6JkVL7+s3C1iyhTlNPKyePdd5Wyn8ho5UjlbqriUFOVod/fuwKefKm3Hjil/f/373+V/X3IcX38NdO1a9vVzc4HHHtNuW78eWLFCGTMUKHppkbGK/h8vUvbtWJKxo3M3NzfZsWOH3mXbt28XNze3cn8DYG1s7hutgiNvISGm2V7BkYaCR26u/n5F+7z/fuHRuuKPzz5TjkYUvH7tNeVfDw/t7e3aVdinTx/tb58Bkd27lX7Hjxe2kVnYXA2sWyfy9tv6c/XgQZEXXhC5fl3kr79087NfP5F9+8x7xOLtt5V/vbyUOi2p35Ilhc+jo3WXFxwhP3dOZPBgkQ0bKvZzdhA2l//6JCeXfBS4IJ88PETy80Vu3TJv/pf1kZur2/b55yL374v8/beyLyX9fqJysaka+Ne/RNq3Lznf33tPJCqq8PVvv+nmVbt2pefi2bMlL8vKEnnkkYqrCxGRNm34d5AZ2VT+G+rBA5Fevcqed2PGKNtp0UK7vegZFgkJylkir79euPxf/yp/zm/fbpGPrKyMPrIdFhaGNWvW6F32v//9D2HFv3W2VyLAgwfW+Sg4+nzlimm2V3CkoYC+7d66pd1n0ybdI9oFfv1Ve8Koguv50tOVWZsLtnnsWGGf9euBs2e1t3P0qNLvjz8K2+7eNX7/RAz9qZOteP554D//AX74QXdZ27bA2rXA668r11wX98MPQMeO5o3vP/9R/r13T6mnkvz8c+FzfdfLDhqk/DthgnJ2R8HtlsixZWYCr72mTGwGKDO5VqsGdOmivJ46FZg+XXle9EhYejrg5GSao3LmMHq0bltqqnIf7+rVlfvAVqqkzA9Cjuvzz5Uz3YrOlVHg/Hngk0+Ua1Pz8pTf/23a6PY7cKD09wgLAwYMUJ4XnTtgwADA1bXkWcMXLdLfPnJk6e9XGhHtW+kRFf27dv165f/7S5cKJ7788kvAy6t8ZwYVHBEPDtZud3YufF6jBuDtrR3P0qXKGRtTp5b9vf/5T+WWkS+9VHgWb1QU0KSJcgZg8TlHLM3Y0fkPP/wgTk5O0r59e1mwYIF88803snDhQmnfvr04OztLTEyMOb4UsCi932gVPerKh20/rl+3XHLZCJv6VrfoWRPz5ukuL1hWq5ZI9+4Vl2ceHiKBgYb3r1tXOTpT8Pq99/T3ExFp2LDwdX5+xX7eDsCm8l9EZMEC7fxYurTw9c2bhc8TEy3//295H++/X3JdkMnYTA1cvlyYAwVHvzIzlb/ZDhwQWb++cHlSksjVq2XLOxGRtDSR779XjhAWtPfrpyxbvVp53bix9npbtypn482cKRIQUNi+f3/Za+D6dZGnnip8/euvIhkZShzx8SI//KBcm0tlZjP5L6KcdREQIFKnjnL2W9FcefppkSNHypZnRWunc+fCvzXi4x/+f2/Ro9kFiv7+mTGj7PnfpYuyvaJtLVqY9SM2ltH3oOnbty/Wr1+P6dOn47333oOIQKVSITw8HOvXr0fPnj1N/HWAlSp+lJVs14MHlo7ANnXooH1WgbUoOpvslCnAxx/r7xcfr3tGhjk1agQ8/rjyra4h4uKAq1cLXxccDS/Oz0+5hq/oa2OOcnTrphzpJ+Pcvw+cOWPpKPQrekbE779rz99R9H7ZRWebNdRTT+k/Ylhc+/ZKrn/yiXIUBVDOeCr6N4Jarcyq7+qq/+iiIY4e1d9eMJu/IRo0UK53Jdt24ICSdwV+/x2IiADGjwcWL9btb+h92teuVa7jPnFCeb1rl/KvlxfQr59234LfPy+/DNSsqVyr+uijhXOD/POfyv/PLVoov58KVK9uWCz6FL8l35NPArNmKUfvW7dWzor68svCeQ/Ivty4ocycn5YGxMQAa9Yo8xwlJhae/VZg927gX/8ybvv9+ytHoUNDC9vatSv8O6NmTeWMwOK1UJSIbpubW+HzRo2Mi6moQ4cKf8cUOHFCeU8rOePDqMF2dnY2Nm/ejPDwcBw7dgwPHjxASkoKfH194Vn0PpmOoFUrYNw4S0dRskOHlP9kncp8K/VCubnKbZCqVlWKo6TbYdy+rRRyjRrK/VYB5bTuKlWAkyeVWyZVrVo4mcLNm8otLkJCCvsVd/ascpuYgj/QLl1S1lGptCfKOX9eGWRUrWr8/lWrZvw6pJwCXXSQZ42ysrTvF1xcXl7FxdKli5Kzhg62Ae0vDkq63Uvxn0HRWycZgl82lc3p08ATT1g6iodr3Vr7ddFTsV9/3fjt1atn2GC7WzflvqhBQYVtBaexFxg0SBm8A0DdumWb1LNg4FNc8f0uzZYtQI8exr83WZfik4N9+KHyRYq+gbahWrZULkvKyVEG0ADw9NP6+x07BgwdqrxWqQrzfc8e5TTeiRO1//hv0UIZFISEAP/4R9lj1GfqVGWwXXD50fr1HGzbo127lNO5X3tN+Ru8+C1M9Sn40shQVaoAzZopzwv+ny4+qVrRU8f1eeEF5fZiRfNcrS587u6u3f/xx4EjRwyL78EDYPhw3fa7d5UvxDp0UOJfvtyw7ZmBUYNtV1dXDB48GNu3b0doaCg8PT0db5BdoFUr3jOaHNv69aUPZC3Nza3k63bc3QtnBA8IUJ5nZytH2FxclAFrlSrKNawuLsofWk5OytGHghnCXVyUL6KcnZUjJHfuKP9mZyvrFfzf6OamrBMSovyh1bWr8svBy0vZ3pUryhdFIkq7mxvg4VE4V0LNmsp+JCUVxu7iosRTdKBdpYru/Y0N4aj/h5eXWq38TK1VwVwABTEWfV30eWoqkJysvW7z5sofbZ07A5cvA//7nzL7catWyh91BffJ/vVX5d/Ro4HNm5UzMTp0UGqi4DrWl15Slj31lJLb48cDc+cqR0Y++qjwPT/5RLl/PKDci371auWew3XrKoOd7duV1wV3pnj/feWoeFKS7rwHrq5K3Riq+B96ZJiffrKus/wuXNBte+EFw9Z95x3l/+6iM5APGaLcXQUABg9WzmYp6QyMX35RDgY0aaK7rF494KuvdNu/+065u8qECcrrW7eUI+geHtp3BigLlUr7+vCTJ0u+XtzLS/9ghazfhx8q/5p6INmjB7B1q/K86BdEx48Df/2lfQYJ8PD/bzt3VtYren130QG6p6cyg/mIEcq12IcPGz7YLsnly8rfRL//rjyWLn34lwJmohLRd2y/ZOHh4Rg7diyGWOq2IBaQlpYGHx8fpKamam53RuRIWAPkyJj/5Oj01sCwYcqXIrbOx6fwi8tvv1UG1oD+U18rgohpzko0VFCQ9iVLpENv/mdnl3yZWkWZM0eJwxROnVK+dOneHZgxQ7kUYelS5XaktWs/fP1585RTzQu+NDXEK68oX1Lt2aNMbpmUpBy06N278Cj9sGHAqlXG78+AAcrZgQUT5Y4ZA1SurL9v167K5RdmYvQ121FRUXjnnXfQuHFjPFb83mplFBsbi7feegsHDx6El5cXhgwZgo8//hiurq6lricimDNnDj777DPcuXMH4eHhWLBgAZ4odmrfzZs38dZbb+Gnn36Ci4sL+vbti/nz5/OPJrIKzH9ydKwBcmQ2m/+tW1vf2U1//KGc+XP1qjKAfuEF5Q/u775TBtH37hXesQVQLosreoedgQOVuRjM+If3Q6lUyqB/0SLlCN+IEcq13nPmKEfq2rVTzsjq2FFZlpysnM3RqZNyKd2xY8rZKYByJsgvvwB9+pT8fvou4atgNlkDubnKoNQeTJyonGpddA6MyZOVSxEMve65LJfWFr/WumAehccfLxxsf/kl8OKLxt8PvPicJAsWlNzXw8O6BtsTJkxAYmIiWrdujYCAAFSvXh2qIj8IlUqFU6dOGby95ORkdO7cGfXr10dMTAzi4+MxduxYpKen49NPPy113Tlz5iAyMhKzZ89Gs2bN8N///hcRERE4efIkQv//Qv6cnBx069YNAPDNN98gPT0d48aNw+DBg7F582Zjd5/IpJj/5OhYA+TIbDr/R41SHrZg3TrD+jk7W8cA6oUXdE+B799ft19pg2gbYbM1UKkS8OabZV/fVHbtUm5p6u6uXLLTrJlyCrWHh/Lli1qtfIHUubPS59IlpX+zZso8SwEBJe+HpSYYGztW+XwL5mvq1En5sunYMWWeJXd3pe3PP5VLNE6fVi45euEF5XIjJyfllmOAcglFQIDuRIJFtWxp3v0xdvryoUOHyrBhw0p9GGPWrFni6ekpiYmJmrZly5aJs7OzxMfHl7heRkaGeHt7y6RJkzRtWVlZEhwcLKNGjdK0ffPNN6JSqSQ2NlbTtmPHDgEgv/32m0Ex2tSU/2RTbCH/RVgDZD62UAPMfzIXW8h/EdYAmY8t1ADzn8rD4jejfPLJJ6VXr15abcnJyaJSqeTLL78scb3du3cLADlx4oRW+5gxYyQ4OFjz+uWXX5bmzZtr9cnPzxd/f3+JjIw0KEYWGZmLLeS/CGuAzMcWaoD5T+ZiC/kvwhog87GFGmD+U3kYfBr5mTNnsHTpUsTFxaFWrVro378/uhS/jUcZxMbGYnixWRB9fX0RGBiI2NjYUtcDgLCit38C0KhRI1y7dg0ZGRlwd3dHbGysTh+VSoWwsLASt5+VlYWsItchpf7/rXTS0tIM3zGyeV5eXlqXSJiDNeY/wBqgisl/wDprgPlPAH8HsAYcG38HMP8dnalqwKDB9v79+9GlSxfk5OSgatWq2L59O5YvX47//ve/eL0s9+ksIjk5Gb6+vjrtfn5+SCq41U0J66nVargVvSn6/68nIkhOToa7u3uZth8VFYXp06frtNcp7Xx/sjsVMfOwNeY/wBqgisl/wDprgPlPAH8HsAYcG38HMP8dnalqwKDBdmRkJMLCwrBp0ybUqVMHaWlpeOWVV/DBBx+Ue7BtjSZNmoSxY8dqXufn5yMpKQkBAQGabzjS0tJQp04dXL9+3W5ntLX3fXzY/nl5eVkgKuvAGrD//QNK30fmf+n5D9h/jtj7/gGsgZLwd4DC3veR+a8ffwco7H3/gIqpAYMG23/++SeWLl2q+UbH29sbn3zyCUJDQ3H9+vVyfdPj5+enOT2jqOTkZPgXTAFfwnpZWVnIzMzU+lYrOTkZKpUKfn5+D91+SXGr1Wqo1WqtNn3figHKZ2GvCVjA3vfRkvtnjfkPsAaKsvf9A1gDxRmT/4D954i97x9guX20xvwH+DugOHvfR/4O0MbfAdrsff8A8+6jkyGd7t69i9rFbmhekKB3794tVwD6rplITU1FQkKCzjUWxdcDgHPnzmm1x8bGIigoCO7u7iVuX0Rw7ty5UrdPVBGY/+ToWAPkyJj/5OhYA2TvDBpsAzDbJAndu3fHrl27kJKSommLjo6Gk5MTIiIiSlyvbdu28Pb2RnSRm5bn5OQgJiYGPXr00Nr+qVOncOHCBU3b7t27kZiYqNWPyBKY/+ToWAPkyJj/5OhYA2T3DJmyXKVSiaenp3h5eWk99LV7e3sbNR16UlKSBAYGSocOHWTHjh2ycuVK8fX1ldGjR2v169y5s9SrV0+rLSoqStRqtSxcuFB2794t/fr1Ey8vL7l06ZKmT3Z2tjRp0kSaNm0qmzZtknXr1kmdOnXkmWeeMSrO4jIzMyUyMlIyMzPLtR1rZu/7aA37Z6v5L2Idn5852fv+iVjHPrIGrJe975+I5feR+W/d7H0frWH/WAPWy973T6Ri9tGgwfa0adOMehjrzJkz8vTTT4u7u7tUq1ZNxo0bJ1lZWVp9OnTooHXfPBHlPnmzZs2S2rVri1qtltatW8vBgwd1tn/jxg3p27evVK5cWXx9fWX48OG8Vx5ZDeY/OTrWADky5j85OtYA2TOViIilj64TERERERER2RODr9kmIiIiIiIiIsNwsE1ERERERERkYhxsl0FsbCy6du0KT09P1KhRAxMmTEB2dralw3qoixcv4vXXX0d4eDgqVaqEJk2a6PRJT0/HpEmTEBoaCg8PDzRo0ACzZs1Cbm6uVr/U1FSMGDEC/v7+8PLyQv/+/ZGQkFBRu6LX1q1b0aFDB1StWhVqtRqhoaEYO3aszv0VMzMz8eGHH6Ju3bpQq9UICgrC+PHjtfqICGbPnq25fUSbNm1w+PDhitwdq2Wr+Q+wBgqwBsrHVmuA+a9g/pePreY/wBoowBooH1utAea/osLz34LXi9ukglkTn3rqKdm+fbusWLFCfHx8dGZNtEYbNmyQ2rVrS79+/aRp06byyCOP6PR55ZVXxNvbWz799FPZs2ePzJw5U5ydnWXy5Mla/bp16ya1a9eWdevWyY8//ihNmjSR5s2bS05OTkXtjo41a9bI+PHj5fvvv5e9e/fK4sWLJSAgQLp27arpk5eXJxEREfKPf/xDvvzyS9m3b5+sXr1aZ/+ioqLE1dVV5s+fL7t27ZI+ffrozHDpiGw5/0VYAyKsgfKy5Rpg/jP/y8uW81+ENSDCGigvW64B5r9l8p+DbSPNmjVLPD09JTExUdO2bNkycXZ2lvj4eAtG9nB5eXma50OHDtUpsry8PPHw8JDIyEit9iFDhkhoaKjm9cGDBwWA7NixQ9MWGxsrKpVK1q1bZ57gy+jzzz8XAJqfzRdffCE+Pj5y8+bNEtfJyMgQb29vmTRpkqYtKytLgoODZdSoUWaP2ZrZcv6LsAZEWAPlZcs1wPxn/peXLee/CGtAhDVQXrZcA8x/y+Q/TyM30rZt29ClSxf4+/tr2gYOHIj8/Hz89NNPFozs4ZycSv9xiwhyc3Ph4+Oj1e7j4wMpMmn9tm3b4Ovri65du2raGjZsiPDwcGzdutW0QZdTQEAAAGhO71m+fDkGDBiAwMDAEtc5ePAg0tLSMHDgQE2bq6sr+vbta3X7V9FsOf8B1gDAGigvW64B5j/zv7xsOf8B1gDAGigvW64B5r9l8p+DbSPFxsYiLCxMq83X1xeBgYGIjY21UFSm4ezsjGHDhuHTTz/FkSNHcP/+fezatQtr1qzBm2++qekXGxuLhg0bQqVSaa3fqFEjq/gM8vLykJmZiePHj+Ojjz7Cc889h5CQEOTk5OD48eMIDg7GkCFD4OnpCS8vLwwcOBC3bt3SrF+wD8V/zo0aNcK1a9eQkZFRoftjTew5/wHWQAHWQMnsuQaY/wrmf8nsOf8B1kAB1kDJ7LkGmP8KU+c/B9tGSk5Ohq+vr067n58fkpKSKj4gE/vss8/QuXNntGrVCl5eXujatStGjRqFsWPHavpY+2cQHBwMd3d3tGzZEoGBgfjmm28AAImJicjJycGcOXOQmJiI9evXY+nSpThw4AD69u2rWT85ORlqtRpubm5a2/Xz84OIIDk5uUL3x5pY+8/eFFgDrIHSWPvPvryY/8z/0lj7z94UWAOsgdJY+8++vJj/ps//SuXfJbIn77//PrZs2YIvvvgC9evXx+HDhzF9+nT4+fnpzNRnrbZu3YoHDx7g9OnT+Pjjj9GzZ0/s3LkT+fn5AAAvLy/ExMRArVYDAKpXr46uXbtiz5496Ny5syVDJyvAGmANODLmP/Pf0bEGWAOOjPlv+vznYNtIfn5+OlPIA8q3IEWv37BFf/31F+bNm4eNGzeiZ8+eAICnnnoKOTk5mDp1Kl5//XV4eXnBz88P169f11nfWj6DZs2aAQDatGmDxx9/HOHh4Vi/fj169OgBlUqFtm3bagoMADp27AhnZ2ecPn0anTt3hp+fH7KyspCZman1rVZycjJUKhX8/PwqfJ+shT3nP8AaYA08nD3XAPOf+f8w9pz/AGuANfBw9lwDzH/z5D9PIzdSWFiYzvUIqampSEhI0Dm339acOXMGABAeHq7V3qJFC2RlZeHGjRsAlM/g3LlzWpMlAPqvY7G0Zs2awcXFBRcvXoSHhwdCQkJK7JuZmQmg8BqNc+fOaS2PjY3V3G/PUdlz/gOsAdbAw9lzDTD/mf8PY8/5D7AGWAMPZ881wPw3T/5zsG2k7t27Y9euXUhJSdG0RUdHw8nJCREREZYLzASCg4MBAMePH9dqP3bsGFQqlWZ59+7dkZycjN27d2v6nD9/HidOnECPHj0qLmAD/Pbbb8jJyUFoaCgA4Nlnn8WBAwc0BQUAe/bsQV5eHlq2bAkAaNu2Lby9vREdHa3pk5OTg5iYGKvbv4pmz/kPsAZYAw9nzzXA/Gf+P4w95z/AGmANPJw91wDz30z5b/TNwhxcwc3sO3ToIDt27JCVK1eKr6+vTdzM/sGDBxIdHS3R0dHSsWNHqVOnjub17du3JTc3Vx577DGpXr26LFu2THbv3i2zZs0Sd3d3GTFihNa2unXrJnXq1JHvvvtONm7cKE2bNrX4zez79OkjM2fOlE2bNsmuXbvkk08+kRo1akizZs0kKytLRESuXbsmvr6+EhERIVu2bJFVq1ZJjRo1pH379pKfn6/ZVlRUlKjValm4cKHs3r1b+vXrV+ab2dsTW85/EdaACGugvGy5Bpj/zP/ysuX8F2ENiLAGysuWa4D5b5n852C7DM6cOSNPP/20uLu7S7Vq1WTcuHGaH6I1i4uLEwB6H3v37hURkYSEBHn11VclODhY3N3dpUGDBhIZGSnp6ela20pJSZHhw4eLr6+vVK5cWfr27au5YbylREVFSXh4uHh5eYmnp6c88sgjMnXqVElNTdXqd+LECenQoYO4ubmJv7+/DB8+XJKTk7X65Ofny6xZs6R27dqiVquldevWcvDgwQrcG+tlq/kvwhoowBooH1utAea/gvlfPraa/yKsgQKsgfKx1Rpg/isqOv9VIsVOuCciIiIiIiKicuE120REREREREQmxsE2ERERERERkYlxsE1ERERERERkYhxsExEREREREZkYB9tEREREREREJsbBNhEREREREZGJcbBNREREREREZGIcbBMRERERERGZmM0PtqdNmwaVSoVatWohPz9fZ3m7du2gUqkwbNgwo7abkpKCadOm4cyZM1rtV65cgUqlwvfff1+esMtt4cKFUKlUmtf79u2DSqXC0aNHKyyGadOm4eDBgzrtKpUK8+bNq7A4DHH79m14eXnhr7/+KrVf8c/VlO7duwd/f38cOHDApNtlDShYA6Wz1xpg/iuY/6Wz1/wHWAMFWAOls9caYP4rmP+ls2T+2/xgGwBcXFxw9+5d/PLLL1rtV69exaFDh1C5cmWjt5mSkoLp06frFFlgYCAOHTqEzp07lytmU3v00Udx6NAhNGrUqMLec/r06XqL7NChQ3jxxRcrLA5DzJw5Ex07dkSTJk0sFoOXlxfeeustTJ482eTbZg2wBh7GnmuA+c/8fxh7zn+ANQCwBh7GnmuA+c/8fxhL5r9dDLZdXV3RvXt3fPvtt1rta9euxSOPPIJ69eqZ7L3UajWeeOIJ+Pv7m2ybpuDt7Y0nnngCnp6eJfbJyMiokFieeOIJBAYGVsh7GeL+/ftYsWIFhg8fbulQMHz4cPzyyy84deqUSbfLGmANlMbea4D5z/wvjb3nP8AaAFgDpbH3GmD+M/9LY+n8t4vBNgAMGjQI33//PXJycjRt33zzDQYPHqy3/y+//IK2bdvC3d0dVapUwfDhw5GUlARAOUWkbt26AIABAwZApVJBpVLhypUrek8fyc/Px8cff4yQkBCo1WqEhYVh2bJlWu83bdo0VK5cGX/++Sfat28PDw8PNGnSBDt27HjovqWlpWHIkCHw8vJC1apVMWHCBOTm5mr10Xf6iEqlwuzZszFx4kTUqFED1apVAwCICObNm4cGDRpArVYjNDQUCxYs0Hnfs2fPom/fvvD394eHhweaN2+u+Y+s4BSL8ePHaz6fffv2aZYVP31k2bJlaNiwIdRqNUJCQvDxxx9rne6zatUqqFQqnDhxAt27d4enpyfq16+Pr776Sms7Bw4cwFNPPQUfHx94eXmhadOmWL16damfX8HPqnv37kZ/roDy7eYbb7yBwMBAqNVqtGzZEj/99JNWHxHBRx99hBo1aqBy5coYMGAAdu3apfW5AEBwcDBatWqFVatWlRpzWbAGWAMlcYQaYP4z/0viCPkPsAZYAyVzhBpg/jP/S2Lp/IfYuMjISPH09JQHDx6Ip6enbN68WURETp8+LQDk8uXL0rx5cxk6dKhmnaNHj4qrq6tERETIpk2b5IsvvpAqVapIq1atJDc3VzIzMyUmJkYAyKxZs+TQoUNy6NAhyczMlLi4OAEg0dHRmu2NHTtWnJ2dJTIyUnbs2CFvvfWWAJDFixdrxenq6ipNmzaV5cuXy/bt26VTp07i6ekpd+/eLXUf+/XrJ5UrV5ZPP/1UtmzZIs8884zUqlVLUOTHt3fvXgEgR44c0bQBkBo1akjv3r1l8+bNsmHDBhEReeutt8Td3V0+/vhj2blzp0yfPl1cXFxkyZIlmnXPnz8vPj4+0qRJE1mzZo3s3LlTFixYILNnzxYRkUOHDgkAeeuttzSfT2pqquZ9586dq9nWf/7zH03fHTt2SGRkpDg7O8t7772n6fPll18KAGnUqJHMnz9ffvrpJxkwYICoVCo5c+aMiIikpqaKj4+PPPPMM7JlyxbZtWuX/Oc//5GFCxeW+vm9+OKL8uSTT5bpc83KypLHHntM6tSpIytWrJDt27fLSy+9JJUqVZI//vhD02/RokWiUqlk4sSJsmPHDpk4caIEBwcLANm7d6/W+7777rvyyCOPlBqzMVgDCtZAyey5Bpj/CuZ/yew5/0VYAwVYAyWz5xpg/iuY/yWzdP7bzWBbRGTw4MHy0ksviYjIBx98IG3atBER0SmyPn36SFBQkGRnZ2vaduzYIQBk48aNIiJ6i0lf+507d8TFxUXef/99rX6DBg2SqlWrSm5uriZOALJlyxadba1Zs6bE/Tt9+rSoVCpZsWKFpi03N1fq1q1rUJE1btxY8vPzNW0XL14UlUoly5Yt03qfiRMnSo0aNSQvL0/zWVatWlVTOPoULyZ97bm5uVKlShV54YUXtPpMmjRJXF1dNf/BFBTZf//7X02f+/fvi4eHh8yYMUNERI4cOSIAtJLbEA0aNJDRo0drtRn6ua5cuVIqVaokp0+f1lq/devWMmDAAM16gYGBMnz4cK0+I0aM0PtL5ssvvxSVSiVpaWlG7UdJWAMK1kDJ7LkGmP8K5n/J7Dn/RVgDBVgDJbPnGmD+K5j/JbN0/tvNaeSAcgrJjz/+iIyMDKxduxaDBg3S2+/XX39Fr1694OLiommLiIiAr68v9u/fb9R7/vbbb8jJycGAAQO02p9//nncuXMH58+f17Q5OTmhS5cumtchISFwd3fHjRs3Stz+kSNHICLo06ePps3Z2Rm9e/c2KL7u3btrzaq3a9cuAEC/fv2Qm5ureXTp0gW3bt3C9evXAQC7d+9G//794e3tbdD7lCQ2NhZ3797V+/lkZ2fj999/12qPiIjQPPf09ERwcLDm86lXrx68vb0xatQofPfdd7hz545BMSQkJKBq1apabYZ+rj/99BOaNm2KBg0aaH1eXbt2xZEjRwAAN27cQEJCAp577jmtdXv16qU3nipVqkBE8PfffxsUvzFYA7pYA45TA8x/Xcx/x8l/gDWgD2vAcWqA+a+L+W/5/K9kUJQ2olu3bnBxccGHH36IuLg4DBw4UG+/5ORkVK9eXae9evXqmus1DJWcnKxZt/i2AGhtz93dHa6urlr9XF1dkZmZWeL2ExIS4OLiAj8/P73bf5ji/e7evQsRQZUqVfT2v379OoKDg5GYmIiaNWsa9B6lMebzAQBfX1+t10U/Hz8/P+zcuRORkZF4+eWXkZubiyeffBKLFy9G06ZNS4whMzMTarVaq83Qz/Xu3bs4ceKE1n/IBZydnTXbAqBTyAXXxhRXEIs5JqpgDehiDThODTD/dTH/HSf/AdaAPqwBx6kB5r8u5r/l89+uBtsuLi7o168f5s+fj6effrrERPT398ft27d12v/++2+jZxcs6H/79m3UqlVLa1tFl5dVYGAgcnJykJycrJUQhn4bWPxecf7+/lCpVNi/f79OwQNAw4YNAQABAQG4efNmOSIvfD8AOp93WT+fVq1aYdu2bcjIyMDevXsxbtw49O7dG5cuXSo1hpSUFK02Qz9Xf39/NGvWDCtWrChx+wUzLhb/hk1fjgHQxBIQEFDiNsuKNaCLNeA4NcD818X8d5z8B1gD+rAGHKcGmP+6mP+Wz3+7Oo0cAF599VX07NkT77zzTol92rdvjw0bNmjNOLdz506kpKSgffv2AKBJwNK+bQKUH7qLiwuio6O12r/77jtUq1YNDRo0KOuuAAAef/xxAMD69es1bXl5ediwYUOZtvf0008DABITE/HYY4/pPLy8vAAAXbp0wffff4979+6VuC0XF5eHfj4NGzZE1apV9X4+rq6uaNWqVZn2w93dHT169MCoUaMQFxdXahwNGzZEXFycVpuhn2uXLl1w+fJl1KxZU+/nBQC1a9dGjRo18OOPP2qtW9LP6MqVK/Dx8UGNGjUM3V2jsAZKxxpQ2GsNMP9Lx/xX2Gv+A6yBh2ENKOy1Bpj/pWP+Kyoy/+3qyDagJP3DEnDKlClo27Ytnn32Wbz11lv4+++/8f7776NVq1bo0aMHAKBGjRrw9fXFt99+i7p160KtVqNZs2Y626pSpQreeustzJ07F25ubnjiiSewdetWfPPNN1i8eLHmFIOyaty4Mfr06YN3330XmZmZCAkJwWeffYbs7Owyba9BgwYYPXo0Xn75ZYwfPx6tW7dGTk4Ozp8/j71792o+u8jISGzevBnt27fHhAkTEBgYiDNnziA9PR0TJkwAADRq1Ag//vgjnnzySXh6eqJhw4aaIi3g7OyMqVOn4u2330a1atXQo0cPHD58GHPmzMG7775r1LeaW7ZswYoVK9CnTx8EBQXh1q1bWLx4Mdq1awc3N7cS12vXrh2+++47rTZDP9chQ4Zg2bJl6NixI8aNG4cGDRogJSUFJ06cQHZ2NqKiouDs7IxJkybh3XffRfXq1dGpUyfs3btXc12Mk5P2d1pHjx5F27ZtddpNhTVQOtaAwl5rgPlfOua/wl7zH2ANPAxrQGGvNcD8Lx3zX1GR+W9Xs5GXpPgshCIi+/btkzZt2oharRZ/f38ZNmyYJCYmavVZv369NGrUSNRqtQCQuLg4vbMT5uXlyUcffSRBQUHi4uIi9evXl6VLlxoUp4+Pj0RGRpYaf3Jysrz44ovi6ekpAQEBMnbsWJk7d65BsxDqmyUwPz9fFi9eLE2aNBFXV1fx9/eXNm3ayPz587X6nT59Wp577jnx9vYWDw8PCQ8Pl7Vr12qW//rrr/Loo4+Ku7u71myT+t53yZIlUr9+fXFxcZGgoCCZMWOGZsZDkcJZCO/cuaO1XtGfXWxsrPT7v/buUDdhKArj+JmhoQKBIAGC4wmQGAgSAYIXwCIrcIQUj8DxAhgkCQ+AQ5HgSEAieIASBOZMNDTZsrItu6FZ7/8nSUOb2+8TJ017ez2tVCrqOI6WSiXt9/t6uVyert9ut1MR0ePx+Ot1VQ23GvA8L7q/xWJR2+12tL3EY01939dCoaCu62qn09Hlcqkiovv9Pjrufr9rPp//8PXDv6IDIToQL80dIP8h8h8vzflXpQMPdCBemjtA/kPkP17S+f/3wzbwE7VaTSeTyUvPORqNNJvN6u12i35br9eay+U0CIKXXgtAB2Az8g/b0QHYLMn8v6mqxj+wB9JhtVpF73V8/iKhCYfDQRaLhdTrdclkMrLZbGQ6ncpgMJDZbBYd12q1pNlsyng8Nn4NwDN0ADYj/7AdHYDNksx/6t7ZBr7S7XbldDrJ+XyWarVq/P9d15Xtdivz+VyCIJByuSzD4VB834+OuV6v0mg0xPM84+cHvkMHYDPyD9vRAdgsyfzzZBsAAAAAAMNSt/UXAAAAAABJY9gGAAAAAMAwhm0AAAAAAAxj2AYAAAAAwDCGbQAAAAAADGPYBgAAAADAMIZtAAAAAAAMY9gGAAAAAMCwd5TXbI0W0jaOAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -329,7 +329,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/projects/docs/project_guidance.md b/projects/docs/project_guidance.md index 8188f83ff6..489efefab6 100644 --- a/projects/docs/project_guidance.md +++ b/projects/docs/project_guidance.md @@ -79,7 +79,7 @@ We have designed tutorials to help launch your projects. Once you're done with t (2h) Complete the intro/tutorial/outro for this day * You will need to use your group's project for some of this content. If you don’t have concrete ideas yet, or you haven’t done a research project before, use one of the provided project templates to walk through the four steps. * If you are using a project template, your goal is to translate the information from the slide and colab notebook into a 4-step format. Some information might not be readily available in the slide or notebook, and you might have to find it in your literature review later this day. -* Try to write down a few sentences for each of the four steps applied to your project. You will re-use these in your proposal later today. +* Try to write down a few sentences for each of the four steps applied to your project. You will reuse these in your proposal later today. (2.5h) Literature review: identify interesting papers The goal of this literature review is to situate your question in context and help you acquire some keywords that you will use in your proposal today. @@ -90,7 +90,7 @@ The goal of this literature review is to situate your question in context and he Project block task: (3h) Project proposal -* Try to write a proposal for this project based on the way you understand it now. This should re-use some of the text you wrote down for the four steps, and should include keywords and concepts that you identified in your literature review. Don’t worry too much about the structure of this paragraph! The goal is to get as many words (200-300) on paper as possible. You have the entire day 10 to learn how to write a properly structured scientific abstract. +* Try to write a proposal for this project based on the way you understand it now. This should reuse some of the text you wrote down for the four steps, and should include keywords and concepts that you identified in your literature review. Don’t worry too much about the structure of this paragraph! The goal is to get as many words (200-300) on paper as possible. You have the entire day 10 to learn how to write a properly structured scientific abstract. * It is important to include the concepts which you identified as relevant, and the keywords that go with them. * When you are ready, please submit your proposal [here](https://airtable.com/shrcYuFYMPh4jGIng). This is not mandatory and can be submitted at any time. We won't evaluate this, but we will use it to keep track of the overall progress of the groups. diff --git a/projects/fMRI/load_bonner_navigational_affordances.ipynb b/projects/fMRI/load_bonner_navigational_affordances.ipynb index f8aebb518c..d82ac97550 100644 --- a/projects/fMRI/load_bonner_navigational_affordances.ipynb +++ b/projects/fMRI/load_bonner_navigational_affordances.ipynb @@ -352,7 +352,7 @@ "execution": {} }, "source": [ - "`Trajs.mat` contain data on the trajectories drawn by subjects during the evaluation phase before main experiment. The data is organised like `[n_images, heigth, width, n_evaluators]` There is a data on 173 images, of which 50 were presented to the participants. The filenames are stored as `dtype`.\n" + "`Trajs.mat` contain data on the trajectories drawn by subjects during the evaluation phase before main experiment. The data is organised like `[n_images, height, width, n_evaluators]` There is a data on 173 images, of which 50 were presented to the participants. The filenames are stored as `dtype`.\n" ] }, { @@ -376,7 +376,7 @@ ], "source": [ "trajs = loadmat('affordances/Trajs.mat')['Trajs']\n", - "fnames = trajs.dtype.names # filenames get loaded as custom dtypes due and type of array is initialy np.void due to peculiarites of how it was saved in Matlab.\n", + "fnames = trajs.dtype.names # filenames get loaded as custom dtypes due and type of array is initially np.void due to peculiarites of how it was saved in Matlab.\n", "trajs = np.asarray(trajs[0][0].tolist()) # turn np.void into float32\n", "trajs.shape" ] diff --git a/projects/fMRI/load_cichy_fMRI_MEG.ipynb b/projects/fMRI/load_cichy_fMRI_MEG.ipynb index 5d834bdeb3..a6cc4485a4 100644 --- a/projects/fMRI/load_cichy_fMRI_MEG.ipynb +++ b/projects/fMRI/load_cichy_fMRI_MEG.ipynb @@ -151,7 +151,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Downlading data...\n", + "Downloading data...\n", "Download completed!\n" ] } @@ -173,7 +173,7 @@ " if r.status_code != requests.codes.ok:\n", " print(\"!!! Failed to download data !!!\")\n", " else:\n", - " print(\"Downlading data...\")\n", + " print(\"Downloading data...\")\n", " with open(fname, \"wb\") as fid:\n", " fid.write(r.content)\n", " with zipfile.ZipFile(fname, 'r') as zip_ref:\n", diff --git a/projects/fMRI/load_fslcourse.ipynb b/projects/fMRI/load_fslcourse.ipynb index bafc0cbc54..4d62b0156e 100644 --- a/projects/fMRI/load_fslcourse.ipynb +++ b/projects/fMRI/load_fslcourse.ipynb @@ -371,7 +371,7 @@ "execution": {} }, "source": [ - "Next we will convolve ouur regressors with the HRF. This is because the FMRI signal is a sluggish blood signal that lags behind neural signal. " + "Next we will convolve our regressors with the HRF. This is because the FMRI signal is a sluggish blood signal that lags behind neural signal. " ] }, { diff --git a/projects/fMRI/load_hcp.ipynb b/projects/fMRI/load_hcp.ipynb index 26bc4fb678..b7bf134609 100644 --- a/projects/fMRI/load_hcp.ipynb +++ b/projects/fMRI/load_hcp.ipynb @@ -105,7 +105,7 @@ "N_RUNS_TASK = 2\n", "\n", "# Time series data are organized by experiment, with each experiment\n", - "# having an LR and RL (phase-encode direction) acquistion\n", + "# having an LR and RL (phase-encode direction) acquisition\n", "BOLD_NAMES = [\n", " \"rfMRI_REST1_LR\", \"rfMRI_REST1_RL\",\n", " \"rfMRI_REST2_LR\", \"rfMRI_REST2_RL\",\n", @@ -1287,7 +1287,7 @@ "outputs": [], "source": [ "task = \"motor\"\n", - "conditions = [\"lf\", \"rf\"] # Run a substraction analysis between two conditions\n", + "conditions = [\"lf\", \"rf\"] # Run a subtraction analysis between two conditions\n", "\n", "contrast = []\n", "for subject in subjects:\n", diff --git a/projects/fMRI/load_hcp_retino.ipynb b/projects/fMRI/load_hcp_retino.ipynb index 490b0dbdb4..fe5127a041 100644 --- a/projects/fMRI/load_hcp_retino.ipynb +++ b/projects/fMRI/load_hcp_retino.ipynb @@ -25,7 +25,7 @@ "\n", "In order to use this dataset, please electronically sign the HCP data use terms at [ConnectomeDB](https://db.humanconnectome.org). Instructions for this are on pp. 24-25 of the [HCP Reference Manual](https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf).\n", "\n", - "The data and experiment are decribed in detail in [Benson et al.](https://jov.arvojournals.org/article.aspx?articleid=2719988#207329261)" + "The data and experiment are described in detail in [Benson et al.](https://jov.arvojournals.org/article.aspx?articleid=2719988#207329261)" ] }, { @@ -102,7 +102,7 @@ "TR = 1 # Time resolution, in sec\n", "\n", "# Time series data are organized by experiment, with each experiment\n", - "# having an LR and RL (phase-encode direction) acquistion\n", + "# having an LR and RL (phase-encode direction) acquisition\n", "RUN_NAMES = [\n", " \"BAR1\", # Sweeping Bars repeat 1\n", " \"BAR2\", # Sweeping Bars repeat 2\n", @@ -292,7 +292,7 @@ "source": [ "The design matrrix above is made of three columns. One for a cosine wave, one for a sine wave, and one constant columns. \n", "\n", - "The first two columns together can fit a sinusoid of aritrary phase. The last column will help fit the mean of the data.\n", + "The first two columns together can fit a sinusoid of arbitrary phase. The last column will help fit the mean of the data.\n", "\n", "This is a linear model of the form $y = M\\beta$ which we can invert using $\\hat{\\beta}=M^+y$ where $M^+$ is the pseudoinverse of $M$.\n" ] diff --git a/projects/fMRI/load_hcp_task.ipynb b/projects/fMRI/load_hcp_task.ipynb index e44164c939..e90e61bda5 100644 --- a/projects/fMRI/load_hcp_task.ipynb +++ b/projects/fMRI/load_hcp_task.ipynb @@ -638,7 +638,7 @@ "source": [ "# Visualising the results on a brain\n", "\n", - "Finally, we will visualise these resuts on the cortical surface of an average brain." + "Finally, we will visualise these results on the cortical surface of an average brain." ] }, { diff --git a/projects/fMRI/load_hcp_task_with_behaviour.ipynb b/projects/fMRI/load_hcp_task_with_behaviour.ipynb index 419749afdd..e18d5d1f7f 100644 --- a/projects/fMRI/load_hcp_task_with_behaviour.ipynb +++ b/projects/fMRI/load_hcp_task_with_behaviour.ipynb @@ -569,7 +569,7 @@ "source": [ "# Visualising the results on a brain\n", "\n", - "Finally, we will visualise these resuts on the cortical surface of an average brain." + "Finally, we will visualise these results on the cortical surface of an average brain." ] }, { diff --git a/projects/modelingsteps/ModelingSteps_1through4.ipynb b/projects/modelingsteps/ModelingSteps_1through4.ipynb index 1c42311c91..60f8ebc026 100644 --- a/projects/modelingsteps/ModelingSteps_1through4.ipynb +++ b/projects/modelingsteps/ModelingSteps_1through4.ipynb @@ -1170,7 +1170,7 @@ "
\n", "\n", "where *S* is the illusion strength and *N* is the noise level, and *k* is a free parameter.\n", - ">we could simply use the frequency of occurance across repetitions as the \"strength of the illusion\"\n", + ">we could simply use the frequency of occurrence across repetitions as the \"strength of the illusion\"\n", "\n", "We would get the noise as the standard deviation of *v(t)*, i.e.\n", "\n", diff --git a/projects/modelingsteps/ModelingSteps_5through10.ipynb b/projects/modelingsteps/ModelingSteps_5through10.ipynb index 83212e31f7..c3c3ce5e21 100644 --- a/projects/modelingsteps/ModelingSteps_5through10.ipynb +++ b/projects/modelingsteps/ModelingSteps_5through10.ipynb @@ -289,7 +289,7 @@ "* **outputs**: these are the predictions our model will make that you could portentially measure (e.g., in your idealized experiment)\n", "* **model functions**: A set of functions that perform the hypothesized computations.\n", "\n", - "You will thus need to define a set of functions that take your data and some parameters as input, can run your model, and output a prediction for a hypothetical measurment.\n", + "You will thus need to define a set of functions that take your data and some parameters as input, can run your model, and output a prediction for a hypothetical measurement.\n", "\n", "**Guiding principles**:\n", "* Keep it as simple as possible!\n", @@ -458,7 +458,7 @@ " - e.g., our intuition is really bad when it comes to dynamical systems\n", "\n", "4. Not using standard model testing tools\n", - " - each field has developped specific mathematical tools to test model behaviors. You'll be expected to show such evaluations. Make use of them early on!" + " - each field has developed specific mathematical tools to test model behaviors. You'll be expected to show such evaluations. Make use of them early on!" ] }, { @@ -548,7 +548,7 @@ "execution": {} }, "source": [ - "Determing what you're done modeling is a hard question. Referring back to your original goals will be crucial. This is also where a precise question and specific hypotheses expressed in mathematical relationships come in handy.\n", + "Determining what you're done modeling is a hard question. Referring back to your original goals will be crucial. This is also where a precise question and specific hypotheses expressed in mathematical relationships come in handy.\n", "\n", "**Note**: you can always keep improving our model, but at some point you need to decide that it is finished. Once you have a model that displays the properties of a system you are interested in, it should be possible to say something about your hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question.\n", "\n", @@ -844,7 +844,7 @@ "\n", "3. Thinking you don't need figures to explain your model\n", " - your model draft is a great starting point!\n", - " - make figures that provide intuition about model behavior (just like you would create figures to provide intuition about expeimental data)\n", + " - make figures that provide intuition about model behavior (just like you would create figures to provide intuition about experimental data)\n", "\n", "4. My code is too mesy to be published\n", " - not an option (many journal now rightfully require it)\n", diff --git a/projects/modelingsteps/TrainIllusionModel.ipynb b/projects/modelingsteps/TrainIllusionModel.ipynb index 0227b6c0f3..37a4f8f4d4 100644 --- a/projects/modelingsteps/TrainIllusionModel.ipynb +++ b/projects/modelingsteps/TrainIllusionModel.ipynb @@ -99,7 +99,7 @@ "Our main hypothesis is that the strength of the illusion has a linear relationship to the amplitude of vestibular noise.\n", "\n", "Mathematically, this would write as $S = k \\cdot N$, where $S$ is the illusion strength and $N$ is the noise level, and $k$ is a free parameter.\n", - ">we could simply use the frequency of occurance across repetitions as the \"strength of the illusion\"\n", + ">we could simply use the frequency of occurrence across repetitions as the \"strength of the illusion\"\n", "\n", "We would get the noise as the standard deviation of $v(t)$, i.e. $N=\\mathbf{E}[v(t)^2]$, where $\\mathbf{E}$ stands for the expected value.\n", "\n", @@ -480,7 +480,7 @@ "\n", "So the model seems to work. Running different parameters gives us different results. Are we done?\n", "* **can we answer our question**: yes, in our model the illusion arises because integrating very noisy vestibular signals representing motion evidence sometimes accumulate to a decision threshold and sometimes do not reach that threshold.\n", - "* **can we speak to our hypothesis**: yes, we can now simulate different trials with different noise levels (and leakage and thrshold parameters) and evaluate the hypothesized linear relationship between vestibular noise and how often our perceptual system is fooled...\n", + "* **can we speak to our hypothesis**: yes, we can now simulate different trials with different noise levels (and leakage and threshold parameters) and evaluate the hypothesized linear relationship between vestibular noise and how often our perceptual system is fooled...\n", "* **does the model reach our goals**: yes, we wanted to generate a mechanistic model to be able to make some specific predictions that can then be tested experimentally later...\n", "\n" ] @@ -496,7 +496,7 @@ "\n", "*Part of step 9*\n", "\n", - "Ok, so we still need to actually evaluate and test our model performance. Since this is a conceptual model and we don't have actual data (yet), we will evaluate how our model behaves as a function of the 3 parameters. If we had data with different conditions, we could try to fit the model to the data and evaluate the goodness of fit, etc... If other alterative models existed, we could evaluate our model against those alternatives too.\n", + "Ok, so we still need to actually evaluate and test our model performance. Since this is a conceptual model and we don't have actual data (yet), we will evaluate how our model behaves as a function of the 3 parameters. If we had data with different conditions, we could try to fit the model to the data and evaluate the goodness of fit, etc... If other alternative models existed, we could evaluate our model against those alternatives too.\n", "\n", "So let's run out model in different parameter regimes and analyze the result to get some insight into the model performance" ] @@ -509,7 +509,7 @@ }, "outputs": [], "source": [ - "import itertools # to automatically generat possible combinations of parameters\n", + "import itertools # to automatically generate possible combinations of parameters\n", "\n", "# define parameter list\n", "params = {\n", diff --git a/projects/neurons/load_Allen_Visual_Behavior_from_SDK.ipynb b/projects/neurons/load_Allen_Visual_Behavior_from_SDK.ipynb index 124d2a7ee2..aa4b1b8fc4 100644 --- a/projects/neurons/load_Allen_Visual_Behavior_from_SDK.ipynb +++ b/projects/neurons/load_Allen_Visual_Behavior_from_SDK.ipynb @@ -43,7 +43,7 @@ "execution": {} }, "source": [ - "We have built a package called `brain_observatory_utilities` which contains some useful convenience functions. The `allenSDK` is a dependency of this package and will be automatically installed when you install `brain_observatory_utilities` per the instrutions below.\n", + "We have built a package called `brain_observatory_utilities` which contains some useful convenience functions. The `allenSDK` is a dependency of this package and will be automatically installed when you install `brain_observatory_utilities` per the instructions below.\n", "\n", "We will first install `brain_observatory_utilities` into our colab environment by running the commands below. When this cell is complete, click on the `RESTART RUNTIME` button that appears at the end of the output. Note that running this cell will produce a long list of outputs and some error messages. Clicking `RESTART RUNTIME` at the end will resolve these issues.\n", "\n", @@ -102,7 +102,7 @@ "\n", "pd.set_option('display.max_columns', 500)\n", "# this line may be needed if you run into Error in pandas query function\n", - "# Otherwise set the engine to python in queries made throught the book\n", + "# Otherwise set the engine to python in queries made throughout the book\n", "# pd.DataFrame.query = lambda self, expr, **kwargs: self.query(expr, engine='python', **kwargs)" ] }, @@ -4614,7 +4614,7 @@ "\n", "It will also include a subset of metadata from `ophys_experiment_table` to facilitate splitting by depth, structure (aka cortical area), cre line (aka cell class), etc.\n", "\n", - "Note that 'tidy' data means that each row represents only one observation. Observations are stacked vertically. Thus, the `timestamps` colums will repeat for every cell in the dataset." + "Note that 'tidy' data means that each row represents only one observation. Observations are stacked vertically. Thus, the `timestamps` columns will repeat for every cell in the dataset." ] }, { @@ -5609,7 +5609,7 @@ "execution": {} }, "source": [ - "This table provides helpful information like image name, start, duration and stop of image presentation, and whether the image was omitted. `stimulus_block` and `stimulus_block_name` indicate the type of stimulus mice were presented at a given point in a session. To select active change detection behavior, first we need to filter the table for `change_detection_behavior` or `1` block. Note that sessions may have different number of stimulus blocks, thus `change_detection_behavior` may be assosiated with either 0 or 1 in `stimulus_block` column." + "This table provides helpful information like image name, start, duration and stop of image presentation, and whether the image was omitted. `stimulus_block` and `stimulus_block_name` indicate the type of stimulus mice were presented at a given point in a session. To select active change detection behavior, first we need to filter the table for `change_detection_behavior` or `1` block. Note that sessions may have different number of stimulus blocks, thus `change_detection_behavior` may be associated with either 0 or 1 in `stimulus_block` column." ] }, { @@ -6696,7 +6696,7 @@ "execution": {} }, "source": [ - "We can see that the output has colums for\n", + "We can see that the output has columns for\n", "* `time` - this is our new timebase relative to the events. In this case, it ranges from -3 to 3\n", "* `dff` - this is the deltaF/F value surrounding each event, interpolated onto the new timebase. If, when calling the `event_triggered_response` function we had passed `y = 'events'`, this column would be events instead of dff.\n", "* `event_number` - this is an integer representing the count of each event. In this example, there were 185 omissions, so they are numbered from 0 to 184\n", @@ -6911,7 +6911,7 @@ "execution": {} }, "source": [ - "Note that the regular, image-driven responses with a 750 ms inter-stimulus interval are visible everywhere except at t=0, which is when the unexpectedly omitted stimulus occured." + "Note that the regular, image-driven responses with a 750 ms inter-stimulus interval are visible everywhere except at t=0, which is when the unexpectedly omitted stimulus occurred." ] }, { diff --git a/projects/neurons/load_Allen_Visual_Behavior_from_pre_processed_file.ipynb b/projects/neurons/load_Allen_Visual_Behavior_from_pre_processed_file.ipynb index 2d8a67665e..837c0be76a 100644 --- a/projects/neurons/load_Allen_Visual_Behavior_from_pre_processed_file.ipynb +++ b/projects/neurons/load_Allen_Visual_Behavior_from_pre_processed_file.ipynb @@ -57,7 +57,7 @@ "execution": {} }, "source": [ - "##### Multiple cortical areas and depths were measured concurently in each session, at a sample rate of 11Hz.\n", + "##### Multiple cortical areas and depths were measured concurrently in each session, at a sample rate of 11Hz.\n", "##### Data was collected from excitatory and inhibitory neural populations. " ] }, diff --git a/projects/neurons/load_steinmetz_extra.ipynb b/projects/neurons/load_steinmetz_extra.ipynb index 8e0645bdc0..44f1643cd5 100644 --- a/projects/neurons/load_steinmetz_extra.ipynb +++ b/projects/neurons/load_steinmetz_extra.ipynb @@ -127,7 +127,7 @@ "execution": {} }, "source": [ - "`dat_LFP`, `dat_WAV`, `dat_ST` contain 39 sessions from 10 mice, data from Steinmetz et al, 2019, supplemental to the main data provided for NMA. Time bins for all measurements are 10ms, starting 500ms before stimulus onset (same as the main data). The followin fields are available across the three supplemental files. \n", + "`dat_LFP`, `dat_WAV`, `dat_ST` contain 39 sessions from 10 mice, data from Steinmetz et al, 2019, supplemental to the main data provided for NMA. Time bins for all measurements are 10ms, starting 500ms before stimulus onset (same as the main data). The following fields are available across the three supplemental files. \n", "\n", "* `dat['lfp']`: recording of the local field potential in each brain area from this experiment, binned at `10ms`.\n", "* `dat['brain_area_lfp']`: brain area names for the LFP channels. \n", diff --git a/projects/neurons/load_stringer_orientations.ipynb b/projects/neurons/load_stringer_orientations.ipynb index 6e385b967d..a645535529 100644 --- a/projects/neurons/load_stringer_orientations.ipynb +++ b/projects/neurons/load_stringer_orientations.ipynb @@ -42,7 +42,7 @@ } ], "source": [ - "# @title Install depedencies\n", + "# @title Install dependencies\n", "!pip install umap-learn --quiet" ] }, diff --git a/projects/theory/motor_RNNs.ipynb b/projects/theory/motor_RNNs.ipynb index cbc0d67c7d..f6c7d1cf07 100644 --- a/projects/theory/motor_RNNs.ipynb +++ b/projects/theory/motor_RNNs.ipynb @@ -567,7 +567,7 @@ "def plot_reaching_task_stimuli(stimulus, n_targets:int, tsteps:int, T:int):\n", "\n", " # plot target cue with \"pulse_steps\" duration\n", - " # at the beginnning of each trial\n", + " # at the beginning of each trial\n", " stimulus_set = np.arange(0, n_targets,1)\n", "\n", " fig, axes = plt.subplots(n_targets, 1, figsize=(30,9))\n", @@ -645,7 +645,7 @@ "def plot_force_stimuli(stimulus, n_targets:int, tsteps:int, T:int):\n", "\n", " # plot target cue with \"pulse_steps\" duration\n", - " # at the beginnning of each trial\n", + " # at the beginning of each trial\n", " stimulus_set = np.arange(0, n_targets, 1)\n", " fig, axes = plt.subplots(n_targets, 1, figsize=(30,9))\n", " for target in stimulus_set:\n", diff --git a/requirements.txt b/requirements.txt index 36beae4a7a..48728db902 100644 --- a/requirements.txt +++ b/requirements.txt @@ -13,3 +13,4 @@ decorator==5.0.9 h5py opencv-python torchvision +natsort diff --git a/tutorials/Bonus_Autoencoders/Bonus_Tutorial1.ipynb b/tutorials/Bonus_Autoencoders/Bonus_Tutorial1.ipynb index 83b60022b4..171d022f3c 100644 --- a/tutorials/Bonus_Autoencoders/Bonus_Tutorial1.ipynb +++ b/tutorials/Bonus_Autoencoders/Bonus_Tutorial1.ipynb @@ -561,7 +561,7 @@ " plot title\n", "\n", " xy_labels (list)\n", - " optional lsit with [xlabel, ylabel]\n", + " optional list with [xlabel, ylabel]\n", "\n", " Returns:\n", " Nothing.\n", @@ -1955,7 +1955,7 @@ "```python\n", "model.apply(init_weights_kaiming_uniform)\n", "```\n", - "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for reseting all but the two last autoencoder layers to Kaiming normal:\n", + "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for resetting all but the two last autoencoder layers to Kaiming normal:\n", "\n", "```python\n", "model[:-2].apply(init_weights_kaiming_normal)\n", @@ -2307,7 +2307,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/Bonus_Tutorial2.ipynb b/tutorials/Bonus_Autoencoders/Bonus_Tutorial2.ipynb index 8d85902da7..2659f6d8f9 100644 --- a/tutorials/Bonus_Autoencoders/Bonus_Tutorial2.ipynb +++ b/tutorials/Bonus_Autoencoders/Bonus_Tutorial2.ipynb @@ -78,7 +78,7 @@ }, "outputs": [], "source": [ - "# @title Install dependecies\n", + "# @title Install dependencies\n", "!pip install plotly --quiet" ] }, @@ -390,7 +390,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1730,7 +1730,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/Bonus_Tutorial3.ipynb b/tutorials/Bonus_Autoencoders/Bonus_Tutorial3.ipynb index 2e8d7ce7ca..17600acac6 100644 --- a/tutorials/Bonus_Autoencoders/Bonus_Tutorial3.ipynb +++ b/tutorials/Bonus_Autoencoders/Bonus_Tutorial3.ipynb @@ -348,7 +348,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1154,7 +1154,7 @@ "\n", "We provide the functions `save_checkpoint`, `load_checkpoint`, and `reset_checkpoint` to implement the steps above and download pre-trained weights from the GitHub repo.\n", "\n", - "If downloading from GitHub fails, please uncomment the 3rd cell bellow to train the model for `n_epochs=10` and save it locally.\n", + "If downloading from GitHub fails, please uncomment the 3rd cell below to train the model for `n_epochs=10` and save it locally.\n", "\n", "**Instructions:**\n", "* Please execute the cell(s) below" @@ -2260,7 +2260,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial1.ipynb b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial1.ipynb index 02ff356af6..8a47b87054 100644 --- a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial1.ipynb +++ b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial1.ipynb @@ -561,7 +561,7 @@ " plot title\n", "\n", " xy_labels (list)\n", - " optional lsit with [xlabel, ylabel]\n", + " optional list with [xlabel, ylabel]\n", "\n", " Returns:\n", " Nothing.\n", @@ -1959,7 +1959,7 @@ "```python\n", "model.apply(init_weights_kaiming_uniform)\n", "```\n", - "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for reseting all but the two last autoencoder layers to Kaiming normal:\n", + "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for resetting all but the two last autoencoder layers to Kaiming normal:\n", "\n", "```python\n", "model[:-2].apply(init_weights_kaiming_normal)\n", @@ -2313,7 +2313,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial2.ipynb b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial2.ipynb index b572d0b615..881db8f390 100644 --- a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial2.ipynb +++ b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial2.ipynb @@ -78,7 +78,7 @@ }, "outputs": [], "source": [ - "# @title Install dependecies\n", + "# @title Install dependencies\n", "!pip install plotly --quiet" ] }, @@ -390,7 +390,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1734,7 +1734,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial3.ipynb b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial3.ipynb index 6ea2287dae..25124f44c5 100644 --- a/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial3.ipynb +++ b/tutorials/Bonus_Autoencoders/instructor/Bonus_Tutorial3.ipynb @@ -348,7 +348,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1154,7 +1154,7 @@ "\n", "We provide the functions `save_checkpoint`, `load_checkpoint`, and `reset_checkpoint` to implement the steps above and download pre-trained weights from the GitHub repo.\n", "\n", - "If downloading from GitHub fails, please uncomment the 3rd cell bellow to train the model for `n_epochs=10` and save it locally.\n", + "If downloading from GitHub fails, please uncomment the 3rd cell below to train the model for `n_epochs=10` and save it locally.\n", "\n", "**Instructions:**\n", "* Please execute the cell(s) below" @@ -2262,7 +2262,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_9d6c1017_11.png b/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_9d6c1017_11.png index 1ee5e945b1..52f63be0da 100644 Binary files a/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_9d6c1017_11.png and b/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_9d6c1017_11.png differ diff --git a/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_c05ddd88_1.png b/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_c05ddd88_1.png new file mode 100644 index 0000000000..d1ec79cef7 Binary files /dev/null and b/tutorials/Bonus_Autoencoders/static/Bonus_Tutorial1_Solution_c05ddd88_1.png differ diff --git a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial1.ipynb b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial1.ipynb index 418329550e..1cebb6fb4b 100644 --- a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial1.ipynb +++ b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial1.ipynb @@ -561,7 +561,7 @@ " plot title\n", "\n", " xy_labels (list)\n", - " optional lsit with [xlabel, ylabel]\n", + " optional list with [xlabel, ylabel]\n", "\n", " Returns:\n", " Nothing.\n", @@ -1173,7 +1173,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1937,7 +1937,7 @@ "```python\n", "model.apply(init_weights_kaiming_uniform)\n", "```\n", - "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for reseting all but the two last autoencoder layers to Kaiming normal:\n", + "An alternative is to sample from a gaussian distribution $\\mathcal{N}(\\mu, \\sigma^2)$ with $\\mu=0$ and $\\sigma=1/\\sqrt{fan\\_in}$. Example for resetting all but the two last autoencoder layers to Kaiming normal:\n", "\n", "```python\n", "model[:-2].apply(init_weights_kaiming_normal)\n", @@ -2254,7 +2254,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial2.ipynb b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial2.ipynb index ee99b81f04..d5969974fb 100644 --- a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial2.ipynb +++ b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial2.ipynb @@ -78,7 +78,7 @@ }, "outputs": [], "source": [ - "# @title Install dependecies\n", + "# @title Install dependencies\n", "!pip install plotly --quiet" ] }, @@ -390,7 +390,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1661,7 +1661,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial3.ipynb b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial3.ipynb index 24cf175af6..48833d83e3 100644 --- a/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial3.ipynb +++ b/tutorials/Bonus_Autoencoders/student/Bonus_Tutorial3.ipynb @@ -348,7 +348,7 @@ " 3D coordinates\n", "\n", " Returns:\n", - " Sperical coordinates (theta, phi) on surface of unit sphere S2.\n", + " Spherical coordinates (theta, phi) on surface of unit sphere S2.\n", " \"\"\"\n", "\n", " x, y, z = (u[:, 0], u[:, 1], u[:, 2])\n", @@ -1154,7 +1154,7 @@ "\n", "We provide the functions `save_checkpoint`, `load_checkpoint`, and `reset_checkpoint` to implement the steps above and download pre-trained weights from the GitHub repo.\n", "\n", - "If downloading from GitHub fails, please uncomment the 3rd cell bellow to train the model for `n_epochs=10` and save it locally.\n", + "If downloading from GitHub fails, please uncomment the 3rd cell below to train the model for `n_epochs=10` and save it locally.\n", "\n", "**Instructions:**\n", "* Please execute the cell(s) below" @@ -2247,7 +2247,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/W1D1_Tutorial1.ipynb b/tutorials/W1D1_ModelTypes/W1D1_Tutorial1.ipynb index cf85c87834..f155059989 100644 --- a/tutorials/W1D1_ModelTypes/W1D1_Tutorial1.ipynb +++ b/tutorials/W1D1_ModelTypes/W1D1_Tutorial1.ipynb @@ -1632,7 +1632,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/W1D1_Tutorial2.ipynb b/tutorials/W1D1_ModelTypes/W1D1_Tutorial2.ipynb index 8d54fda92c..5e8e9baf75 100644 --- a/tutorials/W1D1_ModelTypes/W1D1_Tutorial2.ipynb +++ b/tutorials/W1D1_ModelTypes/W1D1_Tutorial2.ipynb @@ -1111,7 +1111,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/W1D1_Tutorial3.ipynb b/tutorials/W1D1_ModelTypes/W1D1_Tutorial3.ipynb index 12387c5398..d69d41ebdf 100644 --- a/tutorials/W1D1_ModelTypes/W1D1_Tutorial3.ipynb +++ b/tutorials/W1D1_ModelTypes/W1D1_Tutorial3.ipynb @@ -1385,7 +1385,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/W1D1_Tutorial4.ipynb b/tutorials/W1D1_ModelTypes/W1D1_Tutorial4.ipynb index bec2772dd0..49c0838caf 100644 --- a/tutorials/W1D1_ModelTypes/W1D1_Tutorial4.ipynb +++ b/tutorials/W1D1_ModelTypes/W1D1_Tutorial4.ipynb @@ -172,7 +172,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial1.ipynb b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial1.ipynb index ee3d4ec602..bbe3b6e445 100644 --- a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial1.ipynb +++ b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial1.ipynb @@ -1636,7 +1636,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial2.ipynb b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial2.ipynb index 07f43be8e9..36351ca70d 100644 --- a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial2.ipynb +++ b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial2.ipynb @@ -1115,7 +1115,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial3.ipynb b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial3.ipynb index ac54f3781d..46bc4959b6 100644 --- a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial3.ipynb +++ b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial3.ipynb @@ -1389,7 +1389,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial4.ipynb b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial4.ipynb index cca06dda80..70b1ee0aa9 100644 --- a/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial4.ipynb +++ b/tutorials/W1D1_ModelTypes/instructor/W1D1_Tutorial4.ipynb @@ -172,7 +172,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_2972c168_0.png b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_2972c168_0.png index 55cdb10186..cf17cedf22 100644 Binary files a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_2972c168_0.png and b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_2972c168_0.png differ diff --git a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_9af91fe0_0.png b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_9af91fe0_0.png index 6e626c9660..325bf0dc81 100644 Binary files a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_9af91fe0_0.png and b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_9af91fe0_0.png differ diff --git a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_6bd84e18_0.png b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_6bd84e18_0.png index 9d06d5c81f..ad92f75bbc 100644 Binary files a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_6bd84e18_0.png and b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_6bd84e18_0.png differ diff --git a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_9e5a4843_0.png b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_9e5a4843_0.png index 4743390fca..5a47d7ed65 100644 Binary files a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_9e5a4843_0.png and b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial2_Solution_9e5a4843_0.png differ diff --git a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial3_Solution_960d622a_0.png b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial3_Solution_960d622a_0.png index d18c0fb08d..0d81e49bdc 100644 Binary files a/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial3_Solution_960d622a_0.png and b/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial3_Solution_960d622a_0.png differ diff --git a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial1.ipynb b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial1.ipynb index 325c501e21..e21a1518dd 100644 --- a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial1.ipynb +++ b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial1.ipynb @@ -1592,7 +1592,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial2.ipynb b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial2.ipynb index 091bcd2bd5..9d306dbba0 100644 --- a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial2.ipynb +++ b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial2.ipynb @@ -424,7 +424,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -699,7 +699,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1021,7 +1021,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial3.ipynb b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial3.ipynb index 16bb64cb18..177bee1022 100644 --- a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial3.ipynb +++ b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial3.ipynb @@ -927,7 +927,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1341,7 +1341,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial4.ipynb b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial4.ipynb index e0561a3f9b..c411a11df1 100644 --- a/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial4.ipynb +++ b/tutorials/W1D1_ModelTypes/student/W1D1_Tutorial4.ipynb @@ -172,7 +172,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial1.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial1.ipynb index 01e7faa9d3..0546d79e16 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial1.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial1.ipynb @@ -870,7 +870,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial2.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial2.ipynb index e65d7071d3..d4bd821a12 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial2.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial2.ipynb @@ -838,7 +838,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial3.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial3.ipynb index 53bc3095f6..eb3f779c48 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial3.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial3.ipynb @@ -765,7 +765,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial4.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial4.ipynb index a2f689a9c3..4355d2922d 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial4.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial4.ipynb @@ -236,7 +236,7 @@ "\n", "This matrix $\\mathbf{X}$ is often referred to as the \"[design matrix](https://en.wikipedia.org/wiki/Design_matrix)\".\n", "\n", - "We want to find an optimal vector of paramters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", + "We want to find an optimal vector of parameters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", "\n", "\\begin{equation}\n", "\\hat\\theta = \\frac{\\sum_{i=1}^N x_i y_i}{\\sum_{i=1}^N x_i^2}.\n", @@ -1105,7 +1105,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial5.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial5.ipynb index 3b5ab11b87..90757e606b 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial5.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial5.ipynb @@ -725,7 +725,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D2_ModelFitting/W1D2_Tutorial6.ipynb b/tutorials/W1D2_ModelFitting/W1D2_Tutorial6.ipynb index 703191a7b3..02324aa1da 100644 --- a/tutorials/W1D2_ModelFitting/W1D2_Tutorial6.ipynb +++ b/tutorials/W1D2_ModelFitting/W1D2_Tutorial6.ipynb @@ -858,7 +858,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial1.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial1.ipynb index 47b6184272..43108b5472 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial1.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial1.ipynb @@ -874,7 +874,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial2.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial2.ipynb index 54f4c99aae..f571da40e9 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial2.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial2.ipynb @@ -840,7 +840,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial3.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial3.ipynb index 3289151f0b..5b86eafa25 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial3.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial3.ipynb @@ -769,7 +769,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial4.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial4.ipynb index 6ce9139552..ae5c054b83 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial4.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial4.ipynb @@ -236,7 +236,7 @@ "\n", "This matrix $\\mathbf{X}$ is often referred to as the \"[design matrix](https://en.wikipedia.org/wiki/Design_matrix)\".\n", "\n", - "We want to find an optimal vector of paramters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", + "We want to find an optimal vector of parameters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", "\n", "\\begin{equation}\n", "\\hat\\theta = \\frac{\\sum_{i=1}^N x_i y_i}{\\sum_{i=1}^N x_i^2}.\n", @@ -1113,7 +1113,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial5.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial5.ipynb index 9c63aa007c..c05f277bee 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial5.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial5.ipynb @@ -727,7 +727,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial6.ipynb b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial6.ipynb index d3cd23aeca..ed050c3313 100644 --- a/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial6.ipynb +++ b/tutorials/W1D2_ModelFitting/instructor/W1D2_Tutorial6.ipynb @@ -862,7 +862,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial1_Solution_7a89ba24_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial1_Solution_7a89ba24_0.png index 5226f8094a..8349a6bb19 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial1_Solution_7a89ba24_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial1_Solution_7a89ba24_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial3_Solution_81af3bd6_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial3_Solution_81af3bd6_0.png index 5474a27c1c..7c67c9839a 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial3_Solution_81af3bd6_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial3_Solution_81af3bd6_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_89324713_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_89324713_0.png index 5e31f4e91f..d11c48caa2 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_89324713_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_89324713_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_f5217dbd_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_f5217dbd_0.png index 477c10ed83..81ed9a83a0 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_f5217dbd_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial4_Solution_f5217dbd_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial5_Solution_bb5f169f_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial5_Solution_bb5f169f_0.png index 4cc24fe3fd..0cfa0745e3 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial5_Solution_bb5f169f_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial5_Solution_bb5f169f_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_16748857_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_16748857_0.png index 7d6f565e98..09a8b52883 100644 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_16748857_0.png and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_16748857_0.png differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_0.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_0.png deleted file mode 100644 index 8ba521cae3..0000000000 Binary files a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_0.png and /dev/null differ diff --git a/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_1.png b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_1.png new file mode 100644 index 0000000000..c50b9d152a Binary files /dev/null and b/tutorials/W1D2_ModelFitting/static/W1D2_Tutorial6_Solution_ddce210a_1.png differ diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial1.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial1.ipynb index c5d96b5d63..1b9b3c9f68 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial1.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial1.ipynb @@ -675,7 +675,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -820,7 +820,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.ipynb index cf79df04e5..bbef40db22 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.ipynb @@ -810,7 +810,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.ipynb index 2d6257c81d..24b8985528 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.ipynb @@ -372,7 +372,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -710,7 +710,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.ipynb index 8a6ad1e4f5..a95ae6805f 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.ipynb @@ -236,7 +236,7 @@ "\n", "This matrix $\\mathbf{X}$ is often referred to as the \"[design matrix](https://en.wikipedia.org/wiki/Design_matrix)\".\n", "\n", - "We want to find an optimal vector of paramters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", + "We want to find an optimal vector of parameters $\\boldsymbol{\\hat\\theta}$. Recall our analytic solution to minimizing MSE for a single regressor:\n", "\n", "\\begin{equation}\n", "\\hat\\theta = \\frac{\\sum_{i=1}^N x_i y_i}{\\sum_{i=1}^N x_i^2}.\n", @@ -820,7 +820,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -907,7 +907,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1002,7 +1002,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.ipynb index 5a25c60e9f..841503eddd 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.ipynb @@ -701,7 +701,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial6.ipynb b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial6.ipynb index c63a7a3ee4..92e58b63a8 100644 --- a/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial6.ipynb +++ b/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial6.ipynb @@ -553,7 +553,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -790,7 +790,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial1.ipynb b/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial1.ipynb index 63aa8ce524..f4fbec03e3 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial1.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial1.ipynb @@ -1107,7 +1107,7 @@ " # Use a random vector of weights to start (mean 0, sd .2)\n", " x0 = np.random.normal(0, .2, d + 1)\n", "\n", - " # Find parameters that minmize the negative log likelihood function\n", + " # Find parameters that minimize the negative log likelihood function\n", " res = minimize(..., args=(X, y))\n", "\n", " return ...\n", @@ -1172,7 +1172,7 @@ " # Use a random vector of weights to start (mean 0, sd .2)\n", " x0 = np.random.normal(0, .2, d + 1)\n", "\n", - " # Find parameters that minmize the negative log likelihood function\n", + " # Find parameters that minimize the negative log likelihood function\n", " res = minimize(neg_log_lik_lnp, x0, args=(X, y))\n", "\n", " return res[\"x\"]\n", @@ -1400,7 +1400,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial2.ipynb b/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial2.ipynb index 024bcb70d8..5f03cdaee4 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial2.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/W1D3_Tutorial2.ipynb @@ -963,7 +963,7 @@ "
\n", " Click here for text recap of video \n", "\n", - "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncracies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", + "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncrasies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", "\n", "In a GLM, a common form of regularization is to *shrink* the classifier weights. In a linear model, you can see its effect by plotting the weights. We've defined a helper function, `plot_weights`, that we'll use extensively in this section.\n", "\n", @@ -1661,7 +1661,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial1.ipynb b/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial1.ipynb index b407008f0e..337d3a72e4 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial1.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial1.ipynb @@ -1111,7 +1111,7 @@ " # Use a random vector of weights to start (mean 0, sd .2)\n", " x0 = np.random.normal(0, .2, d + 1)\n", "\n", - " # Find parameters that minmize the negative log likelihood function\n", + " # Find parameters that minimize the negative log likelihood function\n", " res = minimize(..., args=(X, y))\n", "\n", " return ...\n", @@ -1178,7 +1178,7 @@ " # Use a random vector of weights to start (mean 0, sd .2)\n", " x0 = np.random.normal(0, .2, d + 1)\n", "\n", - " # Find parameters that minmize the negative log likelihood function\n", + " # Find parameters that minimize the negative log likelihood function\n", " res = minimize(neg_log_lik_lnp, x0, args=(X, y))\n", "\n", " return res[\"x\"]\n", @@ -1408,7 +1408,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial2.ipynb b/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial2.ipynb index d233ac77e1..a8fb7adf58 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial2.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/instructor/W1D3_Tutorial2.ipynb @@ -967,7 +967,7 @@ "
\n", " Click here for text recap of video \n", "\n", - "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncracies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", + "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncrasies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", "\n", "In a GLM, a common form of regularization is to *shrink* the classifier weights. In a linear model, you can see its effect by plotting the weights. We've defined a helper function, `plot_weights`, that we'll use extensively in this section.\n", "\n", @@ -1669,7 +1669,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_0d56b394.py b/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_a988a95b.py similarity index 94% rename from tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_0d56b394.py rename to tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_a988a95b.py index 29fa7d7586..82353d108d 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_0d56b394.py +++ b/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_a988a95b.py @@ -38,7 +38,7 @@ def fit_lnp(stim, spikes, d=25): # Use a random vector of weights to start (mean 0, sd .2) x0 = np.random.normal(0, .2, d + 1) - # Find parameters that minmize the negative log likelihood function + # Find parameters that minimize the negative log likelihood function res = minimize(neg_log_lik_lnp, x0, args=(X, y)) return res["x"] diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_03ed3adf_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_03ed3adf_0.png index 916a82102f..f5bd9d84dc 100644 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_03ed3adf_0.png and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_03ed3adf_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_0d56b394_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_0d56b394_0.png deleted file mode 100644 index a22caf17de..0000000000 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_0d56b394_0.png and /dev/null differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_823fa455_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_823fa455_0.png index 32e41e3f82..ddbb039194 100644 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_823fa455_0.png and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_823fa455_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_a988a95b_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_a988a95b_0.png new file mode 100644 index 0000000000..c342e56852 Binary files /dev/null and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_a988a95b_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_ae48f475_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_ae48f475_0.png index 2a9279cfc4..af5c56d427 100644 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_ae48f475_0.png and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial1_Solution_ae48f475_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_0.png new file mode 100644 index 0000000000..3dfef25a41 Binary files /dev/null and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_16.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_16.png deleted file mode 100644 index 3d2660a5aa..0000000000 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_19d58990_16.png and /dev/null differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_0.png new file mode 100644 index 0000000000..a9a03a5188 Binary files /dev/null and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_32.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_32.png deleted file mode 100644 index cdf7b235d2..0000000000 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_6bf38e57_32.png and /dev/null differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_89590c8d_0.png b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_89590c8d_0.png index c6d9d8e90b..c440f774c3 100644 Binary files a/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_89590c8d_0.png and b/tutorials/W1D3_GeneralizedLinearModels/static/W1D3_Tutorial2_Solution_89590c8d_0.png differ diff --git a/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial1.ipynb b/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial1.ipynb index 6390e06943..e672028cd4 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial1.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial1.ipynb @@ -550,7 +550,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -699,7 +699,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1051,7 +1051,7 @@ " # Use a random vector of weights to start (mean 0, sd .2)\n", " x0 = np.random.normal(0, .2, d + 1)\n", "\n", - " # Find parameters that minmize the negative log likelihood function\n", + " # Find parameters that minimize the negative log likelihood function\n", " res = minimize(..., args=(X, y))\n", "\n", " return ...\n", @@ -1074,11 +1074,11 @@ "execution": {} }, "source": [ - "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_0d56b394.py)\n", + "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W1D3_GeneralizedLinearModels/solutions/W1D3_Tutorial1_Solution_a988a95b.py)\n", "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1267,7 +1267,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc-autonumbering": true }, diff --git a/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial2.ipynb b/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial2.ipynb index d33683786d..cf9890bf31 100644 --- a/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial2.ipynb +++ b/tutorials/W1D3_GeneralizedLinearModels/student/W1D3_Tutorial2.ipynb @@ -430,7 +430,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -933,7 +933,7 @@ "
\n", " Click here for text recap of video \n", "\n", - "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncracies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", + "Regularization forces a model to learn a set solutions you *a priori* believe to be more correct, which reduces overfitting because it doesn't have as much flexibility to fit idiosyncrasies in the training data. This adds model bias, but it's a good bias because you know (maybe) that parameters should be small or mostly 0.\n", "\n", "In a GLM, a common form of regularization is to *shrink* the classifier weights. In a linear model, you can see its effect by plotting the weights. We've defined a helper function, `plot_weights`, that we'll use extensively in this section.\n", "\n", @@ -1258,7 +1258,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1376,7 +1376,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1561,7 +1561,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial1.ipynb b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial1.ipynb index 15edb958ba..72e0f778e1 100644 --- a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial1.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial1.ipynb @@ -1319,7 +1319,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial2.ipynb b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial2.ipynb index 39640ca0b0..10ae84ae75 100644 --- a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial2.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial2.ipynb @@ -1163,7 +1163,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial3.ipynb b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial3.ipynb index 032940107b..d093d2d98a 100644 --- a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial3.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial3.ipynb @@ -1412,7 +1412,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial4.ipynb b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial4.ipynb index 0d139d91f8..54227a134c 100644 --- a/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial4.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/W1D4_Tutorial4.ipynb @@ -815,7 +815,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial1.ipynb b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial1.ipynb index 9e66cb2d25..d754b6e8a6 100644 --- a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial1.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial1.ipynb @@ -1325,7 +1325,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial2.ipynb b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial2.ipynb index 440824fd57..2a409b5b2c 100644 --- a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial2.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial2.ipynb @@ -1169,7 +1169,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial3.ipynb b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial3.ipynb index fa0d20e93a..c02c9792ea 100644 --- a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial3.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial3.ipynb @@ -1424,7 +1424,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial4.ipynb b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial4.ipynb index 2ab609eba7..820ddcc0a3 100644 --- a/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial4.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/instructor/W1D4_Tutorial4.ipynb @@ -821,7 +821,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_590fa120_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_590fa120_0.png index 4812cda8f6..a1042b724e 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_590fa120_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_590fa120_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_80a5f41b_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_80a5f41b_0.png index 9a2e73642a..51cc1a0b42 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_80a5f41b_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_80a5f41b_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_85104841_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_85104841_0.png index 99ef30b5e9..e85525d575 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_85104841_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial1_Solution_85104841_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_3fc5faa0_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_3fc5faa0_0.png index fb4b3bb7d8..d36bf9589d 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_3fc5faa0_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_3fc5faa0_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_97bca56d_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_97bca56d_0.png index 6a67004409..bda4d02bed 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_97bca56d_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial2_Solution_97bca56d_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_0.png new file mode 100644 index 0000000000..1014ca6a30 Binary files /dev/null and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_1.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_1.png deleted file mode 100644 index 70e956f0d2..0000000000 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_1ea6324a_1.png and /dev/null differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_734c7b03_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_734c7b03_0.png index 0273dadb5b..f39ab06612 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_734c7b03_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_734c7b03_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_0.png new file mode 100644 index 0000000000..19d3bb01ca Binary files /dev/null and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_1.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_1.png index 19d3bb01ca..cd0b468a48 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_1.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_1.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_2.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_2.png deleted file mode 100644 index a160e32f63..0000000000 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_9615a6cd_2.png and /dev/null differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_a4ac4c9c_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_a4ac4c9c_0.png index 28beb08d66..0296c0932b 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_a4ac4c9c_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_a4ac4c9c_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_b083f0cf_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_b083f0cf_0.png index ca2f0d0766..99021f64b6 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_b083f0cf_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_b083f0cf_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_d27990ad_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_d27990ad_0.png index 9c6a6ac356..dc21c479ff 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_d27990ad_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial3_Solution_d27990ad_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_0.png index 09854ce593..c3b4540179 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_1.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_1.png index 1b2ef4facf..56c3fa0ef3 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_1.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_1.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_2.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_2.png index ed8b82071e..911cb9e605 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_2.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_2e8ff78c_2.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_4e6f6604_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_4e6f6604_0.png index 428530ad77..90261228b1 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_4e6f6604_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_4e6f6604_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_58cf80ab_0.png b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_58cf80ab_0.png index f487f53457..be029f0718 100644 Binary files a/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_58cf80ab_0.png and b/tutorials/W1D4_DimensionalityReduction/static/W1D4_Tutorial4_Solution_58cf80ab_0.png differ diff --git a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial1.ipynb b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial1.ipynb index 155ddf3ad0..d924efacd2 100644 --- a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial1.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial1.ipynb @@ -558,7 +558,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -869,7 +869,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1201,7 +1201,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial2.ipynb b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial2.ipynb index 45e0e14661..4a1332ee46 100644 --- a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial2.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial2.ipynb @@ -691,7 +691,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1078,7 +1078,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial3.ipynb b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial3.ipynb index 7fda1d9321..17a2bf200e 100644 --- a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial3.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial3.ipynb @@ -606,7 +606,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -915,7 +915,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1057,7 +1057,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1198,9 +1198,9 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1278,7 +1278,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1327,7 +1327,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial4.ipynb b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial4.ipynb index fee0ad8b79..e079a6ad15 100644 --- a/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial4.ipynb +++ b/tutorials/W1D4_DimensionalityReduction/student/W1D4_Tutorial4.ipynb @@ -380,7 +380,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -592,7 +592,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -679,11 +679,11 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -777,7 +777,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/W1D5_Tutorial1.ipynb b/tutorials/W1D5_DeepLearning/W1D5_Tutorial1.ipynb index 4b12cecea6..753545fbb8 100644 --- a/tutorials/W1D5_DeepLearning/W1D5_Tutorial1.ipynb +++ b/tutorials/W1D5_DeepLearning/W1D5_Tutorial1.ipynb @@ -414,7 +414,7 @@ "
\n", " Click here for text recap of relevant part of video \n", "\n", - "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultanously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", + "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultaneously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", "\n", "
\n", "\n", @@ -1552,7 +1552,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/W1D5_Tutorial2.ipynb b/tutorials/W1D5_DeepLearning/W1D5_Tutorial2.ipynb index 9ea16fe6e1..b57665a19f 100644 --- a/tutorials/W1D5_DeepLearning/W1D5_Tutorial2.ipynb +++ b/tutorials/W1D5_DeepLearning/W1D5_Tutorial2.ipynb @@ -238,7 +238,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -1122,7 +1122,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/W1D5_Tutorial3.ipynb b/tutorials/W1D5_DeepLearning/W1D5_Tutorial3.ipynb index 6f92431110..df22b111d1 100644 --- a/tutorials/W1D5_DeepLearning/W1D5_Tutorial3.ipynb +++ b/tutorials/W1D5_DeepLearning/W1D5_Tutorial3.ipynb @@ -272,7 +272,7 @@ " These data comprise time-averaged responses of ~20,000 neurons\n", " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", - " spontanous levels of activity and then z-scored over stimuli, so\n", + " spontaneous levels of activity and then z-scored over stimuli, so\n", " expect negative numbers. They have also been binned and averaged\n", " to each degree of orientation.\n", "\n", @@ -1859,7 +1859,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/W1D5_Tutorial4.ipynb b/tutorials/W1D5_DeepLearning/W1D5_Tutorial4.ipynb index 7160a0099f..16a308a223 100644 --- a/tutorials/W1D5_DeepLearning/W1D5_Tutorial4.ipynb +++ b/tutorials/W1D5_DeepLearning/W1D5_Tutorial4.ipynb @@ -395,7 +395,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -471,7 +471,7 @@ "\n", " \"\"\"\n", " bins = np.linspace(0, 360, n_classes + 1)\n", - " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accomodate Python indexing\n", + " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accommodate Python indexing\n", "\n", "def grating(angle, sf=1 / 28, res=0.1, patch=False):\n", " \"\"\"Generate oriented grating stimulus\n", @@ -781,7 +781,7 @@ "\n", "def train(net, loss_fn, train_data, train_labels,\n", " n_epochs=50, learning_rate=1e-4):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -1432,7 +1432,7 @@ " n_iter=50, learning_rate=1e-4,\n", " test_data=None, test_labels=None,\n", " L2_penalty=0, L1_penalty=0):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -2597,7 +2597,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial1.ipynb b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial1.ipynb index 5828da35b5..da90b9606c 100644 --- a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial1.ipynb +++ b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial1.ipynb @@ -414,7 +414,7 @@ "
\n", " Click here for text recap of relevant part of video \n", "\n", - "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultanously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", + "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultaneously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", "\n", "
\n", "\n", @@ -1556,7 +1556,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial2.ipynb b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial2.ipynb index 81ff22ad6e..32546c8b02 100644 --- a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial2.ipynb +++ b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial2.ipynb @@ -238,7 +238,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -1126,7 +1126,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial3.ipynb b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial3.ipynb index 3301251948..29253a8310 100644 --- a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial3.ipynb +++ b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial3.ipynb @@ -272,7 +272,7 @@ " These data comprise time-averaged responses of ~20,000 neurons\n", " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", - " spontanous levels of activity and then z-scored over stimuli, so\n", + " spontaneous levels of activity and then z-scored over stimuli, so\n", " expect negative numbers. They have also been binned and averaged\n", " to each degree of orientation.\n", "\n", @@ -1863,7 +1863,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial4.ipynb b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial4.ipynb index 479750c94c..ee831a4ecc 100644 --- a/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial4.ipynb +++ b/tutorials/W1D5_DeepLearning/instructor/W1D5_Tutorial4.ipynb @@ -395,7 +395,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -471,7 +471,7 @@ "\n", " \"\"\"\n", " bins = np.linspace(0, 360, n_classes + 1)\n", - " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accomodate Python indexing\n", + " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accommodate Python indexing\n", "\n", "def grating(angle, sf=1 / 28, res=0.1, patch=False):\n", " \"\"\"Generate oriented grating stimulus\n", @@ -781,7 +781,7 @@ "\n", "def train(net, loss_fn, train_data, train_labels,\n", " n_epochs=50, learning_rate=1e-4):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -1434,7 +1434,7 @@ " n_iter=50, learning_rate=1e-4,\n", " test_data=None, test_labels=None,\n", " L2_penalty=0, L1_penalty=0):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -2605,7 +2605,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_1.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_1.png new file mode 100644 index 0000000000..fa297192f2 Binary files /dev/null and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_1.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_3.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_3.png deleted file mode 100644 index e5f7c9d01b..0000000000 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial1_Solution_1ca16188_3.png and /dev/null differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_41665ca7_1.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_41665ca7_1.png index 339e68bdda..df24498a55 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_41665ca7_1.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_41665ca7_1.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_8bc67a81_2.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_8bc67a81_2.png index 64ec2c49ab..eb18e9706d 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_8bc67a81_2.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial2_Solution_8bc67a81_2.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ce2f98e6_0.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ce2f98e6_0.png index 4a8dd7d4fa..1f69974a90 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ce2f98e6_0.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ce2f98e6_0.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ed074d46_1.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ed074d46_1.png index 7b5c382aba..46d0535640 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ed074d46_1.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial3_Solution_ed074d46_1.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_5dffefa9_11.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_5dffefa9_11.png index 43be87c954..7a0f6c8de5 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_5dffefa9_11.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_5dffefa9_11.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_9e7e87e5_5.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_9e7e87e5_5.png index ea6f7ceb04..b6ce5216d8 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_9e7e87e5_5.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_9e7e87e5_5.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_e924146b_5.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_e924146b_5.png index a2a4516b48..0b6f09ae8b 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_e924146b_5.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_e924146b_5.png differ diff --git a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_f0b29255_0.png b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_f0b29255_0.png index e8409154ce..a510a2cdcf 100644 Binary files a/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_f0b29255_0.png and b/tutorials/W1D5_DeepLearning/static/W1D5_Tutorial4_Solution_f0b29255_0.png differ diff --git a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial1.ipynb b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial1.ipynb index fe4d0a634e..fad8071c29 100644 --- a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial1.ipynb +++ b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial1.ipynb @@ -414,7 +414,7 @@ "
\n", " Click here for text recap of relevant part of video \n", "\n", - "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultanously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", + "We will be exploring neural activity in mice while the mice is viewing oriented grating stimuli on a screen in front of it. We record neural activity using a technique called two-photon calcium imaging, which allows us to record many thousands of neurons simultaneously. The neurons light up when they fire. We then convert this imaging data to a matrix of neural responses by stimuli presented. For the purposes of this tutorial we are going to bin the neural responses and compute each neuron’s tuning curve. We used bins of 1 degree. We will use the response of all neurons in a single bin to try to predict which stimulus was shown. So we are going to be using the responses of 24000 neurons to try to predict 360 different possible stimulus conditions corresponding to each degree of orientation - which means we're in the regime of big data!\n", "\n", "
\n", "\n", @@ -1217,7 +1217,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1453,7 +1453,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial2.ipynb b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial2.ipynb index f6fc09a512..14f1bc7824 100644 --- a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial2.ipynb +++ b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial2.ipynb @@ -238,7 +238,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -801,7 +801,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -969,7 +969,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1063,7 +1063,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial3.ipynb b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial3.ipynb index 9ce483e260..14182b600c 100644 --- a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial3.ipynb +++ b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial3.ipynb @@ -272,7 +272,7 @@ " These data comprise time-averaged responses of ~20,000 neurons\n", " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", - " spontanous levels of activity and then z-scored over stimuli, so\n", + " spontaneous levels of activity and then z-scored over stimuli, so\n", " expect negative numbers. They have also been binned and averaged\n", " to each degree of orientation.\n", "\n", @@ -1015,7 +1015,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1786,7 +1786,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial4.ipynb b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial4.ipynb index ecb3d607ff..6643fb0777 100644 --- a/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial4.ipynb +++ b/tutorials/W1D5_DeepLearning/student/W1D5_Tutorial4.ipynb @@ -395,7 +395,7 @@ " to ~4,000 stimulus gratings of different orientations, recorded\n", " through Calcium imaginge. The responses have been normalized by\n", " spontaneous levels of activity and then z-scored over stimuli, so\n", - " expect negative numbers. The repsonses were split into train and\n", + " expect negative numbers. The responses were split into train and\n", " test and then each set were averaged in bins of 6 degrees.\n", "\n", " This function returns the relevant data (neural responses and\n", @@ -471,7 +471,7 @@ "\n", " \"\"\"\n", " bins = np.linspace(0, 360, n_classes + 1)\n", - " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accomodate Python indexing\n", + " return torch.tensor(np.digitize(ori.squeeze(), bins)) - 1 # minus 1 to accommodate Python indexing\n", "\n", "def grating(angle, sf=1 / 28, res=0.1, patch=False):\n", " \"\"\"Generate oriented grating stimulus\n", @@ -781,7 +781,7 @@ "\n", "def train(net, loss_fn, train_data, train_labels,\n", " n_epochs=50, learning_rate=1e-4):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -1385,7 +1385,7 @@ " n_iter=50, learning_rate=1e-4,\n", " test_data=None, test_labels=None,\n", " L2_penalty=0, L1_penalty=0):\n", - " \"\"\"Run gradient descent to opimize parameters of a given network\n", + " \"\"\"Run gradient descent to optimize parameters of a given network\n", "\n", " Args:\n", " net (nn.Module): PyTorch network whose parameters to optimize\n", @@ -1564,7 +1564,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1798,7 +1798,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2256,7 +2256,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2365,7 +2365,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D1_ModelingPractice/W2D1_Tutorial1.ipynb b/tutorials/W2D1_ModelingPractice/W2D1_Tutorial1.ipynb index 6f153a4866..ae44cc43e6 100644 --- a/tutorials/W2D1_ModelingPractice/W2D1_Tutorial1.ipynb +++ b/tutorials/W2D1_ModelingPractice/W2D1_Tutorial1.ipynb @@ -1184,7 +1184,7 @@ "
\n", "\n", "where *S* is the illusion strength and *N* is the noise level, and *k* is a free parameter.\n", - ">we could simply use the frequency of occurance across repetitions as the \"strength of the illusion\"\n", + ">we could simply use the frequency of occurrence across repetitions as the \"strength of the illusion\"\n", "\n", "We would get the noise as the standard deviation of *v(t)*, i.e.\n", "\n", @@ -1380,7 +1380,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D1_ModelingPractice/instructor/W2D1_Tutorial1.ipynb b/tutorials/W2D1_ModelingPractice/instructor/W2D1_Tutorial1.ipynb index 4e74f50c8f..90da137e62 100644 --- a/tutorials/W2D1_ModelingPractice/instructor/W2D1_Tutorial1.ipynb +++ b/tutorials/W2D1_ModelingPractice/instructor/W2D1_Tutorial1.ipynb @@ -1184,7 +1184,7 @@ "\n", "\n", "where *S* is the illusion strength and *N* is the noise level, and *k* is a free parameter.\n", - ">we could simply use the frequency of occurance across repetitions as the \"strength of the illusion\"\n", + ">we could simply use the frequency of occurrence across repetitions as the \"strength of the illusion\"\n", "\n", "We would get the noise as the standard deviation of *v(t)*, i.e.\n", "\n", @@ -1380,7 +1380,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D1_ModelingPractice/student/W2D1_Tutorial1.ipynb b/tutorials/W2D1_ModelingPractice/student/W2D1_Tutorial1.ipynb index 7dba6fa9ab..9ef28c39e2 100644 --- a/tutorials/W2D1_ModelingPractice/student/W2D1_Tutorial1.ipynb +++ b/tutorials/W2D1_ModelingPractice/student/W2D1_Tutorial1.ipynb @@ -1184,7 +1184,7 @@ "\n", "\n", "where *S* is the illusion strength and *N* is the noise level, and *k* is a free parameter.\n", - ">we could simply use the frequency of occurance across repetitions as the \"strength of the illusion\"\n", + ">we could simply use the frequency of occurrence across repetitions as the \"strength of the illusion\"\n", "\n", "We would get the noise as the standard deviation of *v(t)*, i.e.\n", "\n", @@ -1380,7 +1380,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/W2D2_Tutorial1.ipynb b/tutorials/W2D2_LinearSystems/W2D2_Tutorial1.ipynb index 55a64573df..8fd55b2be1 100644 --- a/tutorials/W2D2_LinearSystems/W2D2_Tutorial1.ipynb +++ b/tutorials/W2D2_LinearSystems/W2D2_Tutorial1.ipynb @@ -1373,7 +1373,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/W2D2_Tutorial2.ipynb b/tutorials/W2D2_LinearSystems/W2D2_Tutorial2.ipynb index 9fc250fcbd..b2f05887e5 100644 --- a/tutorials/W2D2_LinearSystems/W2D2_Tutorial2.ipynb +++ b/tutorials/W2D2_LinearSystems/W2D2_Tutorial2.ipynb @@ -1063,7 +1063,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/W2D2_Tutorial3.ipynb b/tutorials/W2D2_LinearSystems/W2D2_Tutorial3.ipynb index 85f8fc45c1..da3d35a6ec 100644 --- a/tutorials/W2D2_LinearSystems/W2D2_Tutorial3.ipynb +++ b/tutorials/W2D2_LinearSystems/W2D2_Tutorial3.ipynb @@ -1360,7 +1360,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/W2D2_Tutorial4.ipynb b/tutorials/W2D2_LinearSystems/W2D2_Tutorial4.ipynb index bccd32aebb..68490e291a 100644 --- a/tutorials/W2D2_LinearSystems/W2D2_Tutorial4.ipynb +++ b/tutorials/W2D2_LinearSystems/W2D2_Tutorial4.ipynb @@ -1094,7 +1094,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial1.ipynb b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial1.ipynb index d5277a1675..f7beba629b 100644 --- a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial1.ipynb +++ b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial1.ipynb @@ -1377,7 +1377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial2.ipynb b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial2.ipynb index 1079a4b301..f0dec6600e 100644 --- a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial2.ipynb +++ b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial2.ipynb @@ -1067,7 +1067,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial3.ipynb b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial3.ipynb index 9897f3b6d3..b95f844a14 100644 --- a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial3.ipynb +++ b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial3.ipynb @@ -1368,7 +1368,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial4.ipynb b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial4.ipynb index 5e714aee21..763844bd93 100644 --- a/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial4.ipynb +++ b/tutorials/W2D2_LinearSystems/instructor/W2D2_Tutorial4.ipynb @@ -1098,7 +1098,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_4de3f1d3_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_4de3f1d3_0.png index 52249b1949..6d1902fabd 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_4de3f1d3_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_4de3f1d3_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_acf4095a_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_acf4095a_0.png index 2176bf2d6c..dc5905b30f 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_acf4095a_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial1_Solution_acf4095a_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_15275c81_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_15275c81_0.png index 19bbb76f9a..f0ae63b7ee 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_15275c81_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_15275c81_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_41ec6e01_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_41ec6e01_0.png index 3d248b943b..ba20d7d820 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_41ec6e01_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial2_Solution_41ec6e01_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_39e8cb46_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_39e8cb46_0.png index 02b7c1398b..c8e67a5c6b 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_39e8cb46_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_39e8cb46_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_796a6346_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_796a6346_0.png index 78e53f3e5b..2696c6bfb6 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_796a6346_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_796a6346_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_d35fe99c_1.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_d35fe99c_1.png index 180ab336eb..79daaad967 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_d35fe99c_1.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_d35fe99c_1.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_efebd1e4_1.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_efebd1e4_1.png index 8ed6c49bd0..bac4d356b7 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_efebd1e4_1.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial3_Solution_efebd1e4_1.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_4d89c578_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_4d89c578_0.png index 8c5775de3c..bb55d3c30b 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_4d89c578_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_4d89c578_0.png differ diff --git a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_6439815f_0.png b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_6439815f_0.png index 896928ab35..308ffcca8c 100644 Binary files a/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_6439815f_0.png and b/tutorials/W2D2_LinearSystems/static/W2D2_Tutorial4_Solution_6439815f_0.png differ diff --git a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial1.ipynb b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial1.ipynb index 6f7a10ffd3..6cddfa199f 100644 --- a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial1.ipynb +++ b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial1.ipynb @@ -1242,7 +1242,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial2.ipynb b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial2.ipynb index fccf6d62a3..f363b6b022 100644 --- a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial2.ipynb +++ b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial2.ipynb @@ -398,7 +398,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -749,7 +749,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -991,7 +991,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial3.ipynb b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial3.ipynb index 6b102bb8e7..fc11c1fec1 100644 --- a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial3.ipynb +++ b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial3.ipynb @@ -428,7 +428,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -561,7 +561,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -932,7 +932,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1173,7 +1173,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1234,7 +1234,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial4.ipynb b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial4.ipynb index 6e24488ce8..641b4cce17 100644 --- a/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial4.ipynb +++ b/tutorials/W2D2_LinearSystems/student/W2D2_Tutorial4.ipynb @@ -927,7 +927,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1080,7 +1080,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial1.ipynb b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial1.ipynb index c54d4a6fc9..5015bbf3b9 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial1.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial1.ipynb @@ -1633,7 +1633,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial2.ipynb b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial2.ipynb index c26afeab5a..234295a293 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial2.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial2.ipynb @@ -1477,7 +1477,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial3.ipynb b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial3.ipynb index 64b030f619..17dc046c6a 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial3.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial3.ipynb @@ -1677,7 +1677,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial4.ipynb b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial4.ipynb index 99f5f5ccfb..f452585b95 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial4.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/W2D3_Tutorial4.ipynb @@ -1396,7 +1396,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial1.ipynb b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial1.ipynb index 74e240ea6d..3e04579c5e 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial1.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial1.ipynb @@ -1637,7 +1637,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial2.ipynb b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial2.ipynb index 2d957874f7..3f05a337a8 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial2.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial2.ipynb @@ -1481,7 +1481,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial3.ipynb b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial3.ipynb index ff3d153ec2..3ff8202a1d 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial3.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial3.ipynb @@ -1679,7 +1679,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial4.ipynb b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial4.ipynb index 48b6642df6..f5ac466157 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial4.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/instructor/W2D3_Tutorial4.ipynb @@ -1400,7 +1400,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_27d69c89_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_27d69c89_0.png index 4352c38572..09e46f5f40 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_27d69c89_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_27d69c89_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_60a1e954_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_60a1e954_0.png index 5499570a36..7bb3bf4ead 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_60a1e954_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial1_Solution_60a1e954_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial2_Solution_313f41e4_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial2_Solution_313f41e4_0.png index 602d6a4536..ca0a82e958 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial2_Solution_313f41e4_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial2_Solution_313f41e4_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial3_Solution_1248eed5_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial3_Solution_1248eed5_0.png index cce433c049..40c6d2d0a6 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial3_Solution_1248eed5_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial3_Solution_1248eed5_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_4e3afedb_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_4e3afedb_0.png index 4bfad8e8db..35eac952e4 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_4e3afedb_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_4e3afedb_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_54b83ed8_0.png b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_54b83ed8_0.png index fad385529f..63785e3d03 100644 Binary files a/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_54b83ed8_0.png and b/tutorials/W2D3_BiologicalNeuronModels/static/W2D3_Tutorial4_Solution_54b83ed8_0.png differ diff --git a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial1.ipynb b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial1.ipynb index 35994d5e04..4cebdb9589 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial1.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial1.ipynb @@ -1058,7 +1058,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1468,7 +1468,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial2.ipynb b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial2.ipynb index 15ef9d031d..8eea501774 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial2.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial2.ipynb @@ -1368,7 +1368,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial3.ipynb b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial3.ipynb index 1f960bddd9..d9ca25939a 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial3.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial3.ipynb @@ -731,7 +731,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1603,7 +1603,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial4.ipynb b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial4.ipynb index 6b1557259e..227b513cc1 100644 --- a/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial4.ipynb +++ b/tutorials/W2D3_BiologicalNeuronModels/student/W2D3_Tutorial4.ipynb @@ -638,7 +638,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1295,7 +1295,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial1.ipynb b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial1.ipynb index 56f96908ce..1094cfa5fd 100644 --- a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial1.ipynb +++ b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial1.ipynb @@ -2119,7 +2119,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial2.ipynb b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial2.ipynb index a512256521..9093957a6e 100644 --- a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial2.ipynb +++ b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial2.ipynb @@ -1605,7 +1605,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial3.ipynb b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial3.ipynb index 07d52fa71f..b9b7fb3ae8 100644 --- a/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial3.ipynb +++ b/tutorials/W2D4_DynamicNetworks/W2D4_Tutorial3.ipynb @@ -2061,7 +2061,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial1.ipynb b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial1.ipynb index 737d7488be..ff95db89d0 100644 --- a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial1.ipynb +++ b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial1.ipynb @@ -2127,7 +2127,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial2.ipynb b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial2.ipynb index 6dbaa3458b..bf13ca7c4d 100644 --- a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial2.ipynb +++ b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial2.ipynb @@ -1615,7 +1615,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial3.ipynb b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial3.ipynb index 2ff1879682..f15f3578c1 100644 --- a/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial3.ipynb +++ b/tutorials/W2D4_DynamicNetworks/instructor/W2D4_Tutorial3.ipynb @@ -2067,7 +2067,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_04e84428_0.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_04e84428_0.png index b38d0363ca..9be0c30488 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_04e84428_0.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_04e84428_0.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_1c599fac_0.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_1c599fac_0.png index a94c30363c..37b016fa0c 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_1c599fac_0.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_1c599fac_0.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_c4108be6_0.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_c4108be6_0.png index 0dfdeea41a..ac50b55d66 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_c4108be6_0.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial1_Solution_c4108be6_0.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_043dd600_1.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_043dd600_1.png index 6704d838b7..128acc3d7c 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_043dd600_1.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_043dd600_1.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_15eff812_0.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_15eff812_0.png index 513552799f..8aeb6fa282 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_15eff812_0.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_15eff812_0.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_92ba9d03_1.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_92ba9d03_1.png index 0cc20d14a0..deaa349cd3 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_92ba9d03_1.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_92ba9d03_1.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_1.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_1.png index 7a1162c866..0534ec15ce 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_1.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_1.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_2.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_2.png index 49daacf24e..505f5c2a80 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_2.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial2_Solution_db10856b_2.png differ diff --git a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial3_Solution_0dd7ba5a_0.png b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial3_Solution_0dd7ba5a_0.png index 335c0f6d7d..c9ad03cc03 100644 Binary files a/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial3_Solution_0dd7ba5a_0.png and b/tutorials/W2D4_DynamicNetworks/static/W2D4_Tutorial3_Solution_0dd7ba5a_0.png differ diff --git a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial1.ipynb b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial1.ipynb index c044b0fd49..d93be3844f 100644 --- a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial1.ipynb +++ b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial1.ipynb @@ -455,7 +455,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1973,7 +1973,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial2.ipynb b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial2.ipynb index 3b7aeb1d6c..8d021a01b5 100644 --- a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial2.ipynb +++ b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial2.ipynb @@ -718,7 +718,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1206,7 +1206,7 @@ "\n", "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", "Solution hint\n", "\n" @@ -1449,7 +1449,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial3.ipynb b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial3.ipynb index 148041bbb0..360dcf58b1 100644 --- a/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial3.ipynb +++ b/tutorials/W2D4_DynamicNetworks/student/W2D4_Tutorial3.ipynb @@ -752,7 +752,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1932,7 +1932,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb index 00009ae7b1..7eed2fe2c3 100644 --- a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb +++ b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb @@ -902,7 +902,7 @@ "| s = Left | +2 | -3 |\n", "| s = right | -2 | +1 |\n", "\n", - "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occuring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", + "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occurring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", "\n", "\\begin{equation}\n", "\\text{Expected utility of action a} = \\sum_{s}U(s,a)P(s)\n", @@ -1490,7 +1490,7 @@ "\n", "We will think of this in two different ways.\n", "\n", - "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occuring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", + "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occurring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", "\n", "| P(X, Y) | Y = silver | Y = gold |\n", "| -------------- |-------------|-----------|\n", @@ -2602,7 +2602,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial2.ipynb b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial2.ipynb index bf18d1467a..9482de5ebd 100644 --- a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial2.ipynb +++ b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial2.ipynb @@ -1413,7 +1413,7 @@ "\n", "One distribution we will use throughout this tutorial is the **Gaussian distribution**, which is also sometimes called the normal distribution.\n", "\n", - "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continous distribution to understand and use.\n", + "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continuous distribution to understand and use.\n", "\n", "Gaussians have two parameters. The **mean** $\\mu$, which sets the location of its center. Its \"scale\" or spread is controlled by its **standard deviation** $\\sigma$ or its square, the **variance** $\\sigma^2$. These can be a bit easy to mix up: make sure you are careful about whether you are referring to/using standard deviation or variance.\n", "" @@ -1618,7 +1618,7 @@ "a &= \\frac{\\sigma_{1}^{-2}}{\\sigma_{1}^{-2} + \\sigma_{2}^{-2}}\n", "\\end{align}\n", "\n", - "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of informations of the original two. We'll dive into this in the next demo.\n", + "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of information of the original two. We'll dive into this in the next demo.\n", "" ] }, @@ -2484,7 +2484,7 @@ "\n", "2) The means control only the location! The variances determine the spread in X and Y. The\n", " correlation is the only factor that controls the degree of the 'rotation', where we can think\n", - " about the correlation as forcing the distribution to be more along one of the diagonals or ther\n", + " about the correlation as forcing the distribution to be more along one of the diagonals or the\n", " other.\n", "\n", "3) We would need to marginalize! We will do this next.\n", @@ -2752,7 +2752,7 @@ "&\\propto \\mathcal{N}(\\mu_{likelihood},\\sigma_{likelihood}^2) \\times \\mathcal{N}(\\mu_{prior},\\sigma_{prior}^2)\n", "\\end{align}\n", "\n", - "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Secton 2.2." + "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Section 2.2." ] }, { @@ -2850,7 +2850,7 @@ "source": [ "### Interactive Demo 5.2: Prior exploration\n", "\n", - "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Guassian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", + "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Gaussian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", "\n", "Consider the following questions:\n", "\n", @@ -3279,7 +3279,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial3.ipynb b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial3.ipynb index 1610239821..5b01253f46 100644 --- a/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial3.ipynb +++ b/tutorials/W3D1_BayesianDecisions/W3D1_Tutorial3.ipynb @@ -1903,7 +1903,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial1.ipynb b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial1.ipynb index 6029a9669a..926740e965 100644 --- a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial1.ipynb +++ b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial1.ipynb @@ -902,7 +902,7 @@ "| s = Left | +2 | -3 |\n", "| s = right | -2 | +1 |\n", "\n", - "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occuring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", + "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occurring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", "\n", "\\begin{equation}\n", "\\text{Expected utility of action a} = \\sum_{s}U(s,a)P(s)\n", @@ -1490,7 +1490,7 @@ "\n", "We will think of this in two different ways.\n", "\n", - "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occuring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", + "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occurring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", "\n", "| P(X, Y) | Y = silver | Y = gold |\n", "| -------------- |-------------|-----------|\n", @@ -2604,7 +2604,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial2.ipynb b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial2.ipynb index 9b90de25e7..a34a937d30 100644 --- a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial2.ipynb +++ b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial2.ipynb @@ -1413,7 +1413,7 @@ "\n", "One distribution we will use throughout this tutorial is the **Gaussian distribution**, which is also sometimes called the normal distribution.\n", "\n", - "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continous distribution to understand and use.\n", + "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continuous distribution to understand and use.\n", "\n", "Gaussians have two parameters. The **mean** $\\mu$, which sets the location of its center. Its \"scale\" or spread is controlled by its **standard deviation** $\\sigma$ or its square, the **variance** $\\sigma^2$. These can be a bit easy to mix up: make sure you are careful about whether you are referring to/using standard deviation or variance.\n", "" @@ -1618,7 +1618,7 @@ "a &= \\frac{\\sigma_{1}^{-2}}{\\sigma_{1}^{-2} + \\sigma_{2}^{-2}}\n", "\\end{align}\n", "\n", - "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of informations of the original two. We'll dive into this in the next demo.\n", + "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of information of the original two. We'll dive into this in the next demo.\n", "" ] }, @@ -2484,7 +2484,7 @@ "\n", "2) The means control only the location! The variances determine the spread in X and Y. The\n", " correlation is the only factor that controls the degree of the 'rotation', where we can think\n", - " about the correlation as forcing the distribution to be more along one of the diagonals or ther\n", + " about the correlation as forcing the distribution to be more along one of the diagonals or the\n", " other.\n", "\n", "3) We would need to marginalize! We will do this next.\n", @@ -2752,7 +2752,7 @@ "&\\propto \\mathcal{N}(\\mu_{likelihood},\\sigma_{likelihood}^2) \\times \\mathcal{N}(\\mu_{prior},\\sigma_{prior}^2)\n", "\\end{align}\n", "\n", - "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Secton 2.2." + "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Section 2.2." ] }, { @@ -2850,7 +2850,7 @@ "source": [ "### Interactive Demo 5.2: Prior exploration\n", "\n", - "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Guassian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", + "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Gaussian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", "\n", "Consider the following questions:\n", "\n", @@ -3279,7 +3279,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial3.ipynb b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial3.ipynb index 7823da4950..aa17ce974d 100644 --- a/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial3.ipynb +++ b/tutorials/W3D1_BayesianDecisions/instructor/W3D1_Tutorial3.ipynb @@ -1917,7 +1917,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_d3ebaeed.py b/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_6ef35771.py similarity index 93% rename from tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_d3ebaeed.py rename to tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_6ef35771.py index 86c186ce6f..2b38931b2f 100644 --- a/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_d3ebaeed.py +++ b/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_6ef35771.py @@ -5,7 +5,7 @@ 2) The means control only the location! The variances determine the spread in X and Y. The correlation is the only factor that controls the degree of the 'rotation', where we can think - about the correlation as forcing the distribution to be more along one of the diagonals or ther + about the correlation as forcing the distribution to be more along one of the diagonals or the other. 3) We would need to marginalize! We will do this next. diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial1_Solution_1a2cc907_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial1_Solution_1a2cc907_0.png index 26e8443e51..99e3a9566d 100644 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial1_Solution_1a2cc907_0.png and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial1_Solution_1a2cc907_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_0.png new file mode 100644 index 0000000000..8e9022fd3b Binary files /dev/null and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_2.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_2.png deleted file mode 100644 index ebdfa4b7bb..0000000000 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_06f6683a_2.png and /dev/null differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_0.png index 3c251f7c9e..3d184d6e60 100644 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_0.png and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_1.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_1.png index f05dcc2026..82e2b611c5 100644 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_1.png and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_2d90e38d_1.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_0.png new file mode 100644 index 0000000000..d4d39e1cb8 Binary files /dev/null and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_2.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_2.png deleted file mode 100644 index ec414c2427..0000000000 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_4c9fe42b_2.png and /dev/null differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_87fb5dcf_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_87fb5dcf_0.png index 1ecde820b0..94b66d4b61 100644 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_87fb5dcf_0.png and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_87fb5dcf_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_0.png new file mode 100644 index 0000000000..001a136d7f Binary files /dev/null and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_2.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_2.png deleted file mode 100644 index 3264f946fc..0000000000 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_aa2afc9a_2.png and /dev/null differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_0.png new file mode 100644 index 0000000000..6e5fe7d7cf Binary files /dev/null and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_2.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_2.png deleted file mode 100644 index 1d2f00d891..0000000000 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_e37eb6db_2.png and /dev/null differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_0.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_0.png new file mode 100644 index 0000000000..bcbde69647 Binary files /dev/null and b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_0.png differ diff --git a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_2.png b/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_2.png deleted file mode 100644 index 7aa6f63ebd..0000000000 Binary files a/tutorials/W3D1_BayesianDecisions/static/W3D1_Tutorial3_Solution_fc2e7c22_2.png and /dev/null differ diff --git a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial1.ipynb b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial1.ipynb index d76aa34b54..27338aeb9c 100644 --- a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial1.ipynb +++ b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial1.ipynb @@ -902,7 +902,7 @@ "| s = Left | +2 | -3 |\n", "| s = right | -2 | +1 |\n", "\n", - "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occuring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", + "To use possible gains and losses to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occurring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:\n", "\n", "\\begin{equation}\n", "\\text{Expected utility of action a} = \\sum_{s}U(s,a)P(s)\n", @@ -1436,7 +1436,7 @@ "\n", "We will think of this in two different ways.\n", "\n", - "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occuring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", + "In the first math exercise, you will think about the case where you know the joint probabilities of two variables and want to figure out the probability of just one variable. To make this explicit, let's assume that a fish has a color that is either gold or silver (our first variable) and a size that is either small or large (our second). We could write out the the **joint probabilities**: the probability of both specific attributes occurring together. For example, the probability of a fish being small and silver, $P(X = \\textrm{small}, Y = \\textrm{silver})$, is 0.4. The following table summarizes our joint probabilities:\n", "\n", "| P(X, Y) | Y = silver | Y = gold |\n", "| -------------- |-------------|-----------|\n", @@ -1898,7 +1898,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2401,7 +2401,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial2.ipynb b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial2.ipynb index e37f482ac3..e6a7a10fc8 100644 --- a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial2.ipynb +++ b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial2.ipynb @@ -1413,7 +1413,7 @@ "\n", "One distribution we will use throughout this tutorial is the **Gaussian distribution**, which is also sometimes called the normal distribution.\n", "\n", - "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continous distribution to understand and use.\n", + "This is a special, and commonly used, distribution for a couple reasons. It is actually the focus of one of the most important theorems in statistics: the Central Limit Theorem. This theorem tells us that if you sum a large number of samples of a variable, that sum is normally distributed *no matter what* the original distribution over a variable was. This is a bit too in-depth for us to get into now but check out links in the Bonus for more information. Additionally, Gaussians have some really nice mathematical properties that permit simple closed-form solutions to several important problems. As we will see later in this tutorial, we can extend Gaussians to be even more flexible and well approximate other distributions using mixtures of Gaussians. In short, the Gaussian is probably the most important continuous distribution to understand and use.\n", "\n", "Gaussians have two parameters. The **mean** $\\mu$, which sets the location of its center. Its \"scale\" or spread is controlled by its **standard deviation** $\\sigma$ or its square, the **variance** $\\sigma^2$. These can be a bit easy to mix up: make sure you are careful about whether you are referring to/using standard deviation or variance.\n", "" @@ -1605,7 +1605,7 @@ "a &= \\frac{\\sigma_{1}^{-2}}{\\sigma_{1}^{-2} + \\sigma_{2}^{-2}}\n", "\\end{align}\n", "\n", - "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of informations of the original two. We'll dive into this in the next demo.\n", + "This may look confusing but keep in mind that the information in a Gaussian is the inverse of its variance: $\\frac{1}{\\sigma^2}$. Basically, when multiplying Gaussians, the mean of the resulting Gaussian is a weighted average of the original means, where the weights are proportional to the amount of information of that Gaussian. The information in the resulting Gaussian is equal to the sum of information of the original two. We'll dive into this in the next demo.\n", "" ] }, @@ -2395,7 +2395,7 @@ "execution": {} }, "source": [ - "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_d3ebaeed.py)\n", + "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W3D1_BayesianDecisions/solutions/W3D1_Tutorial2_Solution_6ef35771.py)\n", "\n" ] }, @@ -2642,7 +2642,7 @@ "&\\propto \\mathcal{N}(\\mu_{likelihood},\\sigma_{likelihood}^2) \\times \\mathcal{N}(\\mu_{prior},\\sigma_{prior}^2)\n", "\\end{align}\n", "\n", - "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Secton 2.2." + "We get the parameters of the posterior from multiplying the Gaussians, just as we did in Section 2.2." ] }, { @@ -2721,7 +2721,7 @@ "source": [ "### Interactive Demo 5.2: Prior exploration\n", "\n", - "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Guassian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", + "What would happen if we had a different prior distribution for Astrocat's location? Bayes' Rule works exactly the same way if our prior is not a Gaussian (though the analytical solution may be far more complex or impossible). Let's look at how the posterior behaves if we have a different prior over Astrocat's location.\n", "\n", "Consider the following questions:\n", "\n", @@ -3089,7 +3089,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial3.ipynb b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial3.ipynb index 5b5511ec4b..2223c97f71 100644 --- a/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial3.ipynb +++ b/tutorials/W3D1_BayesianDecisions/student/W3D1_Tutorial3.ipynb @@ -474,7 +474,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -651,7 +651,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -822,7 +822,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -994,7 +994,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1162,7 +1162,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1347,9 +1347,9 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1632,7 +1632,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1771,7 +1771,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial1.ipynb b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial1.ipynb index 685977bcc1..04f7fd10d1 100644 --- a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial1.ipynb +++ b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial1.ipynb @@ -505,7 +505,7 @@ "\n", "**Sequential Probability Ratio Test**\n", "\n", - "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identially distributed (iid) data. iid means that the data comes from the same distribution.\n", + "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identically distributed (iid) data. iid means that the data comes from the same distribution.\n", "\n", "Let's return to what we learned yesterday. We had probabilities of our measurement ($m$) given a state of the world ($s$). For example, we knew the probability of seeing someone catch a fish while fishing on the left side given that the fish were on the left side $P(m = \\textrm{catch fish} | s = \\textrm{left})$.\n", "\n", @@ -548,7 +548,7 @@ "\n", "$$\\Delta_t=b+c\\epsilon_t$$\n", "\n", - "The first term, $b$, is a consistant value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", + "The first term, $b$, is a consistent value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", "\n", "The accumulation of evidence will thus \"drift\" toward one outcome, while \"diffusing\" in random directions, hence the term \"drift-diffusion model\" (DDM). The process is most likely (but not guaranteed) to reach the correct outcome eventually.\n", "\n", @@ -2263,7 +2263,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial2.ipynb b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial2.ipynb index 4ac1bfe9b0..118cdd1789 100644 --- a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial2.ipynb +++ b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial2.ipynb @@ -1474,7 +1474,7 @@ " predictive_probs = np.zeros((T,2))\n", " likelihoods = np.zeros((T,2))\n", " posterior_probs = np.zeros((T, 2))\n", - " # Generate an measurement trajectory condtioned on that latent state x is always 1\n", + " # Generate an measurement trajectory conditioned on that latent state x is always 1\n", " if data is not None:\n", " M = data\n", " else:\n", @@ -1886,7 +1886,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial3.ipynb b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial3.ipynb index 805c208d7a..2df8a1116c 100644 --- a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial3.ipynb +++ b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial3.ipynb @@ -1857,7 +1857,7 @@ " # (i.e., multiply gaussians from today's prior and likelihood)\n", " likelihood = ...\n", "\n", - " # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood\n", + " # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood\n", " info_prior = 1/todays_prior.cov\n", " info_likelihood = 1/likelihood.cov\n", " info_posterior = ...\n", @@ -1937,7 +1937,7 @@ " # (i.e., multiply gaussians from today's prior and likelihood)\n", " likelihood = gaussian(m[i], measurement_noise_cov)\n", "\n", - " # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood\n", + " # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood\n", " info_prior = 1/todays_prior.cov\n", " info_likelihood = 1/likelihood.cov\n", " info_posterior = info_prior + info_likelihood\n", @@ -2652,7 +2652,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial4.ipynb b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial4.ipynb index f3384bd0b7..4c62a0eee6 100644 --- a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial4.ipynb +++ b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial4.ipynb @@ -388,7 +388,7 @@ "m_t = Hs_{t}+\\eta_t\n", "\\end{equation}\n", "\n", - "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantites have means and covariances:\n", + "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantities have means and covariances:\n", "\n", "\\begin{eqnarray}\n", "w_t & \\sim & \\mathcal{N}(0, Q) \\\\\n", @@ -1015,7 +1015,7 @@ "source": [ "## Interactive Demo 2: Tracking Eye Gaze\n", "\n", - "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlayed gaze trace.\n", + "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlaid gaze trace.\n", "\n", "Note that the images are rescaled below for display purposes, they were in their original aspect ratio during the task itself." ] @@ -1163,7 +1163,7 @@ "\n", "We can now use this model to smooth the observed data from the subject. In addition to the source image, we can also see how this model will work with the gaze recorded by the same subject on the other images as well, or even with different subjects.\n", "\n", - "Below are the three stimulus images overlayed with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." + "Below are the three stimulus images overlaid with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." ] }, { @@ -1689,7 +1689,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial5.ipynb b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial5.ipynb index 2bf6897af9..1f94562862 100644 --- a/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial5.ipynb +++ b/tutorials/W3D2_HiddenDynamics/W3D2_Tutorial5.ipynb @@ -1246,7 +1246,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial1.ipynb b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial1.ipynb index 1ab4ecdf55..1aac56a93d 100644 --- a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial1.ipynb +++ b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial1.ipynb @@ -505,7 +505,7 @@ "\n", "**Sequential Probability Ratio Test**\n", "\n", - "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identially distributed (iid) data. iid means that the data comes from the same distribution.\n", + "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identically distributed (iid) data. iid means that the data comes from the same distribution.\n", "\n", "Let's return to what we learned yesterday. We had probabilities of our measurement ($m$) given a state of the world ($s$). For example, we knew the probability of seeing someone catch a fish while fishing on the left side given that the fish were on the left side $P(m = \\textrm{catch fish} | s = \\textrm{left})$.\n", "\n", @@ -548,7 +548,7 @@ "\n", "$$\\Delta_t=b+c\\epsilon_t$$\n", "\n", - "The first term, $b$, is a consistant value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", + "The first term, $b$, is a consistent value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", "\n", "The accumulation of evidence will thus \"drift\" toward one outcome, while \"diffusing\" in random directions, hence the term \"drift-diffusion model\" (DDM). The process is most likely (but not guaranteed) to reach the correct outcome eventually.\n", "\n", @@ -2271,7 +2271,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial2.ipynb b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial2.ipynb index d5c01048bd..97ece25ae3 100644 --- a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial2.ipynb +++ b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial2.ipynb @@ -1476,7 +1476,7 @@ " predictive_probs = np.zeros((T,2))\n", " likelihoods = np.zeros((T,2))\n", " posterior_probs = np.zeros((T, 2))\n", - " # Generate an measurement trajectory condtioned on that latent state x is always 1\n", + " # Generate an measurement trajectory conditioned on that latent state x is always 1\n", " if data is not None:\n", " M = data\n", " else:\n", @@ -1890,7 +1890,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial3.ipynb b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial3.ipynb index f18174ffff..4810ef1119 100644 --- a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial3.ipynb +++ b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial3.ipynb @@ -1863,7 +1863,7 @@ " # (i.e., multiply gaussians from today's prior and likelihood)\n", " likelihood = ...\n", "\n", - " # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood\n", + " # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood\n", " info_prior = 1/todays_prior.cov\n", " info_likelihood = 1/likelihood.cov\n", " info_posterior = ...\n", @@ -1945,7 +1945,7 @@ " # (i.e., multiply gaussians from today's prior and likelihood)\n", " likelihood = gaussian(m[i], measurement_noise_cov)\n", "\n", - " # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood\n", + " # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood\n", " info_prior = 1/todays_prior.cov\n", " info_likelihood = 1/likelihood.cov\n", " info_posterior = info_prior + info_likelihood\n", @@ -2660,7 +2660,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial4.ipynb b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial4.ipynb index 9faef7e1ed..5503f40848 100644 --- a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial4.ipynb +++ b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial4.ipynb @@ -388,7 +388,7 @@ "m_t = Hs_{t}+\\eta_t\n", "\\end{equation}\n", "\n", - "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantites have means and covariances:\n", + "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantities have means and covariances:\n", "\n", "\\begin{eqnarray}\n", "w_t & \\sim & \\mathcal{N}(0, Q) \\\\\n", @@ -1019,7 +1019,7 @@ "source": [ "## Interactive Demo 2: Tracking Eye Gaze\n", "\n", - "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlayed gaze trace.\n", + "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlaid gaze trace.\n", "\n", "Note that the images are rescaled below for display purposes, they were in their original aspect ratio during the task itself." ] @@ -1167,7 +1167,7 @@ "\n", "We can now use this model to smooth the observed data from the subject. In addition to the source image, we can also see how this model will work with the gaze recorded by the same subject on the other images as well, or even with different subjects.\n", "\n", - "Below are the three stimulus images overlayed with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." + "Below are the three stimulus images overlaid with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." ] }, { @@ -1695,7 +1695,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial5.ipynb b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial5.ipynb index f67c5d0618..3cf2462ffe 100644 --- a/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial5.ipynb +++ b/tutorials/W3D2_HiddenDynamics/instructor/W3D2_Tutorial5.ipynb @@ -1248,7 +1248,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_6c26b2f4.py b/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_8c82f6d1.py similarity index 96% rename from tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_6c26b2f4.py rename to tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_8c82f6d1.py index 0d74c78370..e7607a967e 100644 --- a/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_6c26b2f4.py +++ b/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_8c82f6d1.py @@ -47,7 +47,7 @@ # (i.e., multiply gaussians from today's prior and likelihood) likelihood = gaussian(m[i], measurement_noise_cov) - # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood + # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood info_prior = 1/todays_prior.cov info_likelihood = 1/likelihood.cov info_posterior = info_prior + info_likelihood diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_3559a6a0_1.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_3559a6a0_1.png index 2ab139c6ad..59c729e39c 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_3559a6a0_1.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_3559a6a0_1.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_59bd207a_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_59bd207a_0.png index 9e0622a834..9eda514d70 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_59bd207a_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_59bd207a_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_87825db1_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_87825db1_0.png index f363b94857..848b07c4bf 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_87825db1_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_87825db1_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_985833af_1.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_985833af_1.png index a8685f6c79..d487802679 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_985833af_1.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial1_Solution_985833af_1.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_0.png new file mode 100644 index 0000000000..160257f775 Binary files /dev/null and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_1.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_1.png deleted file mode 100644 index 77abb7f424..0000000000 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial2_Solution_69ce2879_1.png and /dev/null differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_34768073_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_34768073_0.png index 9b867500e5..7ae21a1846 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_34768073_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_34768073_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_51a25fff_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_51a25fff_0.png index 9429d4b2f4..145be16632 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_51a25fff_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_51a25fff_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_6c26b2f4_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_6c26b2f4_0.png deleted file mode 100644 index 7ba153edcc..0000000000 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_6c26b2f4_0.png and /dev/null differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_8c82f6d1_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_8c82f6d1_0.png new file mode 100644 index 0000000000..234a1e16d2 Binary files /dev/null and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_8c82f6d1_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_95010058_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_95010058_0.png index be115370b2..e39283d492 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_95010058_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial3_Solution_95010058_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_3549ecf3_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_3549ecf3_0.png index b33fd8aabc..020bdddec9 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_3549ecf3_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_3549ecf3_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_82cbb57a_1.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_82cbb57a_1.png index 05aa66ecd1..4c9225e864 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_82cbb57a_1.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_82cbb57a_1.png differ diff --git a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_a7cea8e4_0.png b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_a7cea8e4_0.png index a232bdae16..bbff5c0024 100644 Binary files a/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_a7cea8e4_0.png and b/tutorials/W3D2_HiddenDynamics/static/W3D2_Tutorial4_Solution_a7cea8e4_0.png differ diff --git a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial1.ipynb b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial1.ipynb index 623fd5e81a..88a79316a7 100644 --- a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial1.ipynb +++ b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial1.ipynb @@ -505,7 +505,7 @@ "\n", "**Sequential Probability Ratio Test**\n", "\n", - "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identially distributed (iid) data. iid means that the data comes from the same distribution.\n", + "The Sequential Probability Ratio Test is a likelihood ratio test for determining which of two hypotheses is more likely. It is appropriate for sequential independent and identically distributed (iid) data. iid means that the data comes from the same distribution.\n", "\n", "Let's return to what we learned yesterday. We had probabilities of our measurement ($m$) given a state of the world ($s$). For example, we knew the probability of seeing someone catch a fish while fishing on the left side given that the fish were on the left side $P(m = \\textrm{catch fish} | s = \\textrm{left})$.\n", "\n", @@ -548,7 +548,7 @@ "\n", "$$\\Delta_t=b+c\\epsilon_t$$\n", "\n", - "The first term, $b$, is a consistant value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", + "The first term, $b$, is a consistent value and equals $b=2\\mu^2/\\sigma^2$. This term favors the actual hidden state. The second term, $c\\epsilon_t$ where $\\epsilon_t\\sim\\mathcal{N}(0,1)$, is a standard random variable which is scaled by the diffusion $c=2\\mu/\\sigma$. You can work through proving this in the bonus exercise 0 below if you wish!\n", "\n", "The accumulation of evidence will thus \"drift\" toward one outcome, while \"diffusing\" in random directions, hence the term \"drift-diffusion model\" (DDM). The process is most likely (but not guaranteed) to reach the correct outcome eventually.\n", "\n", @@ -754,7 +754,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1153,7 +1153,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1653,7 +1653,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2005,7 +2005,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial2.ipynb b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial2.ipynb index 4b734820e4..5344bc3cbc 100644 --- a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial2.ipynb +++ b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial2.ipynb @@ -1359,7 +1359,7 @@ " predictive_probs = np.zeros((T,2))\n", " likelihoods = np.zeros((T,2))\n", " posterior_probs = np.zeros((T, 2))\n", - " # Generate an measurement trajectory condtioned on that latent state x is always 1\n", + " # Generate an measurement trajectory conditioned on that latent state x is always 1\n", " if data is not None:\n", " M = data\n", " else:\n", @@ -1491,7 +1491,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1707,7 +1707,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial3.ipynb b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial3.ipynb index 60670d697c..82599d57a3 100644 --- a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial3.ipynb +++ b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial3.ipynb @@ -550,7 +550,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -870,7 +870,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1109,7 +1109,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1730,7 +1730,7 @@ " # (i.e., multiply gaussians from today's prior and likelihood)\n", " likelihood = ...\n", "\n", - " # Step 2a: To find the posterior variance, add informations (inverse variances) of prior and likelihood\n", + " # Step 2a: To find the posterior variance, add information (inverse variances) of prior and likelihood\n", " info_prior = 1/todays_prior.cov\n", " info_likelihood = 1/likelihood.cov\n", " info_posterior = ...\n", @@ -1759,11 +1759,11 @@ "execution": {} }, "source": [ - "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_6c26b2f4.py)\n", + "[*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/main/tutorials/W3D2_HiddenDynamics/solutions/W3D2_Tutorial3_Solution_8c82f6d1.py)\n", "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2459,7 +2459,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial4.ipynb b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial4.ipynb index 73e3268d38..d8fa6fa3e9 100644 --- a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial4.ipynb +++ b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial4.ipynb @@ -388,7 +388,7 @@ "m_t = Hs_{t}+\\eta_t\n", "\\end{equation}\n", "\n", - "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantites have means and covariances:\n", + "Both states and measurements have Gaussian variability, often called noise: 'process noise' $w_t$ for the states, and 'measurement' or 'observation noise' $\\eta_t$ for the measurements. The initial state is also Gaussian distributed. These quantities have means and covariances:\n", "\n", "\\begin{eqnarray}\n", "w_t & \\sim & \\mathcal{N}(0, Q) \\\\\n", @@ -526,7 +526,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -929,7 +929,7 @@ "source": [ "## Interactive Demo 2: Tracking Eye Gaze\n", "\n", - "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlayed gaze trace.\n", + "We have three stimulus images and five different subjects' gaze data. Each subject fixated in the center of the screen before the image appeared, then had a few seconds to freely look around. You can use the widget below to see how different subjects visually scanned the presented image. A subject ID of -1 will show the stimulus images without any overlaid gaze trace.\n", "\n", "Note that the images are rescaled below for display purposes, they were in their original aspect ratio during the task itself." ] @@ -1077,7 +1077,7 @@ "\n", "We can now use this model to smooth the observed data from the subject. In addition to the source image, we can also see how this model will work with the gaze recorded by the same subject on the other images as well, or even with different subjects.\n", "\n", - "Below are the three stimulus images overlayed with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." + "Below are the three stimulus images overlaid with recorded gaze in magenta and smoothed state from the filter in green, with gaze begin (orange triangle) and gaze end (orange square) markers." ] }, { @@ -1558,7 +1558,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { diff --git a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial5.ipynb b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial5.ipynb index d779521061..e47282e50a 100644 --- a/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial5.ipynb +++ b/tutorials/W3D2_HiddenDynamics/student/W3D2_Tutorial5.ipynb @@ -1222,7 +1222,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "toc": { "base_numbering": 1, diff --git a/tutorials/W3D3_OptimalControl/W3D3_Tutorial1.ipynb b/tutorials/W3D3_OptimalControl/W3D3_Tutorial1.ipynb index b3e732d7db..809ddbd313 100644 --- a/tutorials/W3D3_OptimalControl/W3D3_Tutorial1.ipynb +++ b/tutorials/W3D3_OptimalControl/W3D3_Tutorial1.ipynb @@ -481,7 +481,7 @@ " Returns:\n", " fish_state (numpy array of int): locations of the fish\n", " loc (numpy array of int): left or right site, 0 for left, and 1 for right\n", - " rwd (numpy array of binary): whether a fish was catched or not\n", + " rwd (numpy array of binary): whether a fish was caught or not\n", " \"\"\"\n", "\n", " _, p_low_rwd, p_high_rwd, _ = self.params\n", @@ -2268,7 +2268,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { @@ -2298,7 +2298,7 @@ "\n", "## Task Description\n", "\n", - "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probabilty $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probabilty $q_{low}$.\n", + "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probability $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probability $q_{low}$.\n", "\n", "The states of the two boxes are latent. At a certain time, only one of the sites can be in high-rewarding state, and the other box will be the opposite. The states of the two boxes switches with a certain probability $p_{sw}$. \n", "\n", @@ -2322,7 +2322,7 @@ "we would like to see the relation between the threshold and the value function. \n", "\n", "### Exercise 1: Control for binary HMM\n", - "In this excercise, we generate the dynamics for the binary HMM task as described above. \n", + "In this exercise, we generate the dynamics for the binary HMM task as described above. \n", "\n", "# This function is the policy based on threshold\n", "\n", @@ -2374,7 +2374,7 @@ "\n", " if act[t - 1] == 0:\n", " loc[t] = loc[t - 1]\n", - " else: # after weitching, open the new box, deplete if any; then wait a usualy time\n", + " else: # after weitching, open the new box, deplete if any; then wait a usually time\n", " loc[t] = 1 - loc[t - 1]\n", "\n", " # new observation\n", @@ -2481,7 +2481,7 @@ " plt.show()\n", "\n", "T = 5000\n", - "p_sw = .95 # state transiton probability\n", + "p_sw = .95 # state transition probability\n", "q_high = .7\n", "q_low = 0 #.2\n", "cost_sw = 1 #int(1/(1-p_sw)) - 5\n", diff --git a/tutorials/W3D3_OptimalControl/W3D3_Tutorial2.ipynb b/tutorials/W3D3_OptimalControl/W3D3_Tutorial2.ipynb index d38fb74753..f56f7f191b 100644 --- a/tutorials/W3D3_OptimalControl/W3D3_Tutorial2.ipynb +++ b/tutorials/W3D3_OptimalControl/W3D3_Tutorial2.ipynb @@ -386,7 +386,7 @@ "\n", "In *open-loop control*, $a_t$ is not a function of $s_t$. In *closed-loop linear control*, $a_t$ is a linear function of the state $s_t$. Specifically, $a_t$ is the control gain, $L_t$, multiplied by $s_t$, i.e., $a_t=L_t s_t$.\n", "\n", - "In the next excercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." + "In the next exercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." ] }, { @@ -1412,12 +1412,12 @@ "\n", " def dynamics_tracking(self, D, B, L):\n", "\n", - " s = np.zeros(self.T) # states intialization\n", + " s = np.zeros(self.T) # states initialization\n", " s[0] = self.ini_state\n", "\n", " noise = np.sqrt(self.noise_var) * standard_normal_noise\n", "\n", - " a = np.zeros(self.T) # control intialization\n", + " a = np.zeros(self.T) # control initialization\n", " a_bar = np.zeros(self.T)\n", " for t in range(self.T - 1):\n", " a_bar[t] = ( - D * s[t] + self.goal[t + 1]) / B\n", @@ -1845,7 +1845,7 @@ "\n", "1. Visualize the system dynamics $s_t$ in closed-loop control with an arbitrary constant control gain. Vary this control gain.\n", "\n", - "2. Play arround with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" + "2. Play around with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" ] }, { @@ -2361,7 +2361,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial1.ipynb b/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial1.ipynb index d712409d3e..7b86d948c0 100644 --- a/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial1.ipynb +++ b/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial1.ipynb @@ -481,7 +481,7 @@ " Returns:\n", " fish_state (numpy array of int): locations of the fish\n", " loc (numpy array of int): left or right site, 0 for left, and 1 for right\n", - " rwd (numpy array of binary): whether a fish was catched or not\n", + " rwd (numpy array of binary): whether a fish was caught or not\n", " \"\"\"\n", "\n", " _, p_low_rwd, p_high_rwd, _ = self.params\n", @@ -2274,7 +2274,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { @@ -2304,7 +2304,7 @@ "\n", "## Task Description\n", "\n", - "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probabilty $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probabilty $q_{low}$.\n", + "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probability $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probability $q_{low}$.\n", "\n", "The states of the two boxes are latent. At a certain time, only one of the sites can be in high-rewarding state, and the other box will be the opposite. The states of the two boxes switches with a certain probability $p_{sw}$. \n", "\n", @@ -2328,7 +2328,7 @@ "we would like to see the relation between the threshold and the value function. \n", "\n", "### Exercise 1: Control for binary HMM\n", - "In this excercise, we generate the dynamics for the binary HMM task as described above. \n", + "In this exercise, we generate the dynamics for the binary HMM task as described above. \n", "\n", "# This function is the policy based on threshold\n", "\n", @@ -2380,7 +2380,7 @@ "\n", " if act[t - 1] == 0:\n", " loc[t] = loc[t - 1]\n", - " else: # after weitching, open the new box, deplete if any; then wait a usualy time\n", + " else: # after weitching, open the new box, deplete if any; then wait a usually time\n", " loc[t] = 1 - loc[t - 1]\n", "\n", " # new observation\n", @@ -2487,7 +2487,7 @@ " plt.show()\n", "\n", "T = 5000\n", - "p_sw = .95 # state transiton probability\n", + "p_sw = .95 # state transition probability\n", "q_high = .7\n", "q_low = 0 #.2\n", "cost_sw = 1 #int(1/(1-p_sw)) - 5\n", diff --git a/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial2.ipynb b/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial2.ipynb index 7c710fe05a..25a9177bf4 100644 --- a/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial2.ipynb +++ b/tutorials/W3D3_OptimalControl/instructor/W3D3_Tutorial2.ipynb @@ -386,7 +386,7 @@ "\n", "In *open-loop control*, $a_t$ is not a function of $s_t$. In *closed-loop linear control*, $a_t$ is a linear function of the state $s_t$. Specifically, $a_t$ is the control gain, $L_t$, multiplied by $s_t$, i.e., $a_t=L_t s_t$.\n", "\n", - "In the next excercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." + "In the next exercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." ] }, { @@ -1416,12 +1416,12 @@ "\n", " def dynamics_tracking(self, D, B, L):\n", "\n", - " s = np.zeros(self.T) # states intialization\n", + " s = np.zeros(self.T) # states initialization\n", " s[0] = self.ini_state\n", "\n", " noise = np.sqrt(self.noise_var) * standard_normal_noise\n", "\n", - " a = np.zeros(self.T) # control intialization\n", + " a = np.zeros(self.T) # control initialization\n", " a_bar = np.zeros(self.T)\n", " for t in range(self.T - 1):\n", " a_bar[t] = ( - D * s[t] + self.goal[t + 1]) / B\n", @@ -1849,7 +1849,7 @@ "\n", "1. Visualize the system dynamics $s_t$ in closed-loop control with an arbitrary constant control gain. Vary this control gain.\n", "\n", - "2. Play arround with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" + "2. Play around with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" ] }, { @@ -2365,7 +2365,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D3_OptimalControl/static/W3D3_Tutorial1_Solution_9ad49178_0.png b/tutorials/W3D3_OptimalControl/static/W3D3_Tutorial1_Solution_9ad49178_0.png index d981435bc9..810726c141 100644 Binary files a/tutorials/W3D3_OptimalControl/static/W3D3_Tutorial1_Solution_9ad49178_0.png and b/tutorials/W3D3_OptimalControl/static/W3D3_Tutorial1_Solution_9ad49178_0.png differ diff --git a/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial1.ipynb b/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial1.ipynb index 6f77232a2d..ef745a9d09 100644 --- a/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial1.ipynb +++ b/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial1.ipynb @@ -481,7 +481,7 @@ " Returns:\n", " fish_state (numpy array of int): locations of the fish\n", " loc (numpy array of int): left or right site, 0 for left, and 1 for right\n", - " rwd (numpy array of binary): whether a fish was catched or not\n", + " rwd (numpy array of binary): whether a fish was caught or not\n", " \"\"\"\n", "\n", " _, p_low_rwd, p_high_rwd, _ = self.params\n", @@ -1751,7 +1751,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2060,7 +2060,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" }, "pycharm": { "stem_cell": { @@ -2090,7 +2090,7 @@ "\n", "## Task Description\n", "\n", - "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probabilty $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probabilty $q_{low}$.\n", + "There are two boxes. The box can be in a high-rewarding state ($s=1$), which means that a reward will be delivered with high probability $q_{high}$; or the box can be in low-rewarding state ($s=0$), then the reward will be delivered with low probability $q_{low}$.\n", "\n", "The states of the two boxes are latent. At a certain time, only one of the sites can be in high-rewarding state, and the other box will be the opposite. The states of the two boxes switches with a certain probability $p_{sw}$. \n", "\n", @@ -2114,7 +2114,7 @@ "we would like to see the relation between the threshold and the value function. \n", "\n", "### Exercise 1: Control for binary HMM\n", - "In this excercise, we generate the dynamics for the binary HMM task as described above. \n", + "In this exercise, we generate the dynamics for the binary HMM task as described above. \n", "\n", "# This function is the policy based on threshold\n", "\n", @@ -2166,7 +2166,7 @@ "\n", " if act[t - 1] == 0:\n", " loc[t] = loc[t - 1]\n", - " else: # after weitching, open the new box, deplete if any; then wait a usualy time\n", + " else: # after weitching, open the new box, deplete if any; then wait a usually time\n", " loc[t] = 1 - loc[t - 1]\n", "\n", " # new observation\n", @@ -2273,7 +2273,7 @@ " plt.show()\n", "\n", "T = 5000\n", - "p_sw = .95 # state transiton probability\n", + "p_sw = .95 # state transition probability\n", "q_high = .7\n", "q_low = 0 #.2\n", "cost_sw = 1 #int(1/(1-p_sw)) - 5\n", diff --git a/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial2.ipynb b/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial2.ipynb index 1f1f3e3e4e..0aa4abcfc1 100644 --- a/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial2.ipynb +++ b/tutorials/W3D3_OptimalControl/student/W3D3_Tutorial2.ipynb @@ -386,7 +386,7 @@ "\n", "In *open-loop control*, $a_t$ is not a function of $s_t$. In *closed-loop linear control*, $a_t$ is a linear function of the state $s_t$. Specifically, $a_t$ is the control gain, $L_t$, multiplied by $s_t$, i.e., $a_t=L_t s_t$.\n", "\n", - "In the next excercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." + "In the next exercise, you will explore what happens when nothing is controlling the system, when the system is being controlled following an open-loop control policy, and when the system is under closed-loop linear control." ] }, { @@ -1276,12 +1276,12 @@ "\n", " def dynamics_tracking(self, D, B, L):\n", "\n", - " s = np.zeros(self.T) # states intialization\n", + " s = np.zeros(self.T) # states initialization\n", " s[0] = self.ini_state\n", "\n", " noise = np.sqrt(self.noise_var) * standard_normal_noise\n", "\n", - " a = np.zeros(self.T) # control intialization\n", + " a = np.zeros(self.T) # control initialization\n", " a_bar = np.zeros(self.T)\n", " for t in range(self.T - 1):\n", " a_bar[t] = ( - D * s[t] + self.goal[t + 1]) / B\n", @@ -1695,7 +1695,7 @@ "\n", "1. Visualize the system dynamics $s_t$ in closed-loop control with an arbitrary constant control gain. Vary this control gain.\n", "\n", - "2. Play arround with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" + "2. Play around with the remaining sliders. What happens when the process noise is high (low)? How about the measurement noise?\n" ] }, { @@ -2185,7 +2185,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial1.ipynb b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial1.ipynb index 0741113c37..79c7b8a8ad 100644 --- a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial1.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial1.ipynb @@ -185,8 +185,8 @@ " if not ax:\n", " fig, ax = plt.subplots()\n", "\n", - " indx = np.arange(0, TDE.shape[1], skip)\n", - " im = ax.imshow(TDE[:,indx])\n", + " index = np.arange(0, TDE.shape[1], skip)\n", + " im = ax.imshow(TDE[:,index])\n", " positions = ax.get_xticks()\n", " # Avoid warning when setting string tick labels\n", " ax.xaxis.set_major_locator(ticker.FixedLocator(positions))\n", @@ -744,7 +744,7 @@ "\n", "Before enabling the interactive demo below, take a moment to think about the functions of these two parameters. $\\alpha$ controls the size of the Value function updates produced by each TD-error. In our simple, deterministic world, will this affect the final model we learn? Is a larger $\\alpha$ necessarily better in more complex, realistic environments?\n", "\n", - "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occuring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", + "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occurring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", "\n", "Use the widget to test your hypotheses.\n", "\n", @@ -1161,7 +1161,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial2.ipynb b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial2.ipynb index 43aa649718..eb20c6dbaf 100644 --- a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial2.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial2.ipynb @@ -1035,7 +1035,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial3.ipynb b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial3.ipynb index 940574add0..88531e89b1 100644 --- a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial3.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial3.ipynb @@ -415,7 +415,7 @@ "# @markdown Execute to get helper functions `epsilon_greedy`, `CliffWorld`, and `learn_environment`\n", "\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -1039,7 +1039,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial4.ipynb b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial4.ipynb index b7281dc80b..6a53d3816a 100644 --- a/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial4.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/W3D4_Tutorial4.ipynb @@ -257,7 +257,7 @@ "source": [ "#@title Helper Functions\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -1135,7 +1135,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial1.ipynb b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial1.ipynb index b493fe2a7e..b08488f2e6 100644 --- a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial1.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial1.ipynb @@ -185,8 +185,8 @@ " if not ax:\n", " fig, ax = plt.subplots()\n", "\n", - " indx = np.arange(0, TDE.shape[1], skip)\n", - " im = ax.imshow(TDE[:,indx])\n", + " index = np.arange(0, TDE.shape[1], skip)\n", + " im = ax.imshow(TDE[:,index])\n", " positions = ax.get_xticks()\n", " # Avoid warning when setting string tick labels\n", " ax.xaxis.set_major_locator(ticker.FixedLocator(positions))\n", @@ -746,7 +746,7 @@ "\n", "Before enabling the interactive demo below, take a moment to think about the functions of these two parameters. $\\alpha$ controls the size of the Value function updates produced by each TD-error. In our simple, deterministic world, will this affect the final model we learn? Is a larger $\\alpha$ necessarily better in more complex, realistic environments?\n", "\n", - "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occuring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", + "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occurring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", "\n", "Use the widget to test your hypotheses.\n", "\n", @@ -1163,7 +1163,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial2.ipynb b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial2.ipynb index 45e3d526f1..e6fae38424 100644 --- a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial2.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial2.ipynb @@ -1039,7 +1039,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial3.ipynb b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial3.ipynb index f08dd5abcf..7c9f1f9556 100644 --- a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial3.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial3.ipynb @@ -415,7 +415,7 @@ "# @markdown Execute to get helper functions `epsilon_greedy`, `CliffWorld`, and `learn_environment`\n", "\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -1041,7 +1041,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial4.ipynb b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial4.ipynb index 47bf012dc8..44bee37485 100644 --- a/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial4.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/instructor/W3D4_Tutorial4.ipynb @@ -257,7 +257,7 @@ "source": [ "#@title Helper Functions\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -1139,7 +1139,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial1_Solution_adeb004b_0.png b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial1_Solution_adeb004b_0.png index efe9b0c7aa..8bafe3b7ed 100644 Binary files a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial1_Solution_adeb004b_0.png and b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial1_Solution_adeb004b_0.png differ diff --git a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial2_Solution_8cb39bba_0.png b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial2_Solution_8cb39bba_0.png index 3e1c131217..bf3445e8f7 100644 Binary files a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial2_Solution_8cb39bba_0.png and b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial2_Solution_8cb39bba_0.png differ diff --git a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_0.png b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_0.png new file mode 100644 index 0000000000..3ab2b6f5d2 Binary files /dev/null and b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_0.png differ diff --git a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_1.png b/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_1.png deleted file mode 100644 index ae66028f28..0000000000 Binary files a/tutorials/W3D4_ReinforcementLearning/static/W3D4_Tutorial4_Solution_b99be074_1.png and /dev/null differ diff --git a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial1.ipynb b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial1.ipynb index 38cdd2453c..289e49157d 100644 --- a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial1.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial1.ipynb @@ -185,8 +185,8 @@ " if not ax:\n", " fig, ax = plt.subplots()\n", "\n", - " indx = np.arange(0, TDE.shape[1], skip)\n", - " im = ax.imshow(TDE[:,indx])\n", + " index = np.arange(0, TDE.shape[1], skip)\n", + " im = ax.imshow(TDE[:,index])\n", " positions = ax.get_xticks()\n", " # Avoid warning when setting string tick labels\n", " ax.xaxis.set_major_locator(ticker.FixedLocator(positions))\n", @@ -599,7 +599,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -701,7 +701,7 @@ "\n", "Before enabling the interactive demo below, take a moment to think about the functions of these two parameters. $\\alpha$ controls the size of the Value function updates produced by each TD-error. In our simple, deterministic world, will this affect the final model we learn? Is a larger $\\alpha$ necessarily better in more complex, realistic environments?\n", "\n", - "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occuring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", + "The discount rate $\\gamma$ applies an exponentially-decaying weight to returns occurring in the future, rather than the present timestep. How does this affect the model we learn? What happens when $\\gamma=0$ or $\\gamma \\geq 1$?\n", "\n", "Use the widget to test your hypotheses.\n", "\n", @@ -1073,7 +1073,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial2.ipynb b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial2.ipynb index 761a18d093..7ae3153957 100644 --- a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial2.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial2.ipynb @@ -972,7 +972,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial3.ipynb b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial3.ipynb index 6208dcc117..f8e8b03161 100644 --- a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial3.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial3.ipynb @@ -415,7 +415,7 @@ "# @markdown Execute to get helper functions `epsilon_greedy`, `CliffWorld`, and `learn_environment`\n", "\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -989,7 +989,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial4.ipynb b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial4.ipynb index 86d27d8d73..b66ec928f4 100644 --- a/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial4.ipynb +++ b/tutorials/W3D4_ReinforcementLearning/student/W3D4_Tutorial4.ipynb @@ -257,7 +257,7 @@ "source": [ "#@title Helper Functions\n", "def epsilon_greedy(q, epsilon):\n", - " \"\"\"Epsilon-greedy policy: selects the maximum value action with probabilty\n", + " \"\"\"Epsilon-greedy policy: selects the maximum value action with probability\n", " (1-epsilon) and selects randomly with epsilon probability.\n", "\n", " Args:\n", @@ -820,7 +820,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1057,7 +1057,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial1.ipynb b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial1.ipynb index 2ec65f9079..dfdba2efd6 100644 --- a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial1.ipynb +++ b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial1.ipynb @@ -1621,7 +1621,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial2.ipynb b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial2.ipynb index 34d5547d7b..d6edf9abdc 100644 --- a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial2.ipynb +++ b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial2.ipynb @@ -1516,7 +1516,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial3.ipynb b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial3.ipynb index ede4b46981..ed57bcf76c 100644 --- a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial3.ipynb +++ b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial3.ipynb @@ -985,7 +985,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -1248,7 +1248,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial4.ipynb b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial4.ipynb index 859528368e..8265bc26f0 100644 --- a/tutorials/W3D5_NetworkCausality/W3D5_Tutorial4.ipynb +++ b/tutorials/W3D5_NetworkCausality/W3D5_Tutorial4.ipynb @@ -432,7 +432,7 @@ " n_neurons (int): the number of neurons in our system.\n", " timesteps (int): the number of timesteps to simulate our system.\n", " random_state (int): seed for reproducibility\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", " neuron_idx (int): optionally provide a neuron idx to compute connectivity for\n", "\n", @@ -496,7 +496,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -2511,7 +2511,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial1.ipynb b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial1.ipynb index 40b1d6cad9..ee315e489b 100644 --- a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial1.ipynb +++ b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial1.ipynb @@ -1627,7 +1627,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial2.ipynb b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial2.ipynb index 0724e48b96..156912f56a 100644 --- a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial2.ipynb +++ b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial2.ipynb @@ -1520,7 +1520,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial3.ipynb b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial3.ipynb index 1c87f43adf..4bbf662300 100644 --- a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial3.ipynb +++ b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial3.ipynb @@ -987,7 +987,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -1250,7 +1250,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial4.ipynb b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial4.ipynb index 7ec846585f..d198bc22ed 100644 --- a/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial4.ipynb +++ b/tutorials/W3D5_NetworkCausality/instructor/W3D5_Tutorial4.ipynb @@ -432,7 +432,7 @@ " n_neurons (int): the number of neurons in our system.\n", " timesteps (int): the number of timesteps to simulate our system.\n", " random_state (int): seed for reproducibility\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", " neuron_idx (int): optionally provide a neuron idx to compute connectivity for\n", "\n", @@ -496,7 +496,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -2519,7 +2519,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_4eb489b5_0.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_4eb489b5_0.png index c1d7d75053..a6ce263363 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_4eb489b5_0.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_4eb489b5_0.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_fb7d91ed_0.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_fb7d91ed_0.png index 5d855c467f..d69cb7eb11 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_fb7d91ed_0.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial1_Solution_fb7d91ed_0.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_12df1439_0.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_12df1439_0.png index 75c4bdacbb..58cc06fa61 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_12df1439_0.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_12df1439_0.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_3d6bc00e_0.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_3d6bc00e_0.png index cca15024a8..e19d079276 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_3d6bc00e_0.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial2_Solution_3d6bc00e_0.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_21f5cd72_0.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_21f5cd72_0.png index 11932d1a18..6b358abd24 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_21f5cd72_0.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_21f5cd72_0.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_2e17e047_1.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_2e17e047_1.png index 3bf15084af..a2480f2677 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_2e17e047_1.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_2e17e047_1.png differ diff --git a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_b686d55b_3.png b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_b686d55b_3.png index c2731c5f80..3995c12249 100644 Binary files a/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_b686d55b_3.png and b/tutorials/W3D5_NetworkCausality/static/W3D5_Tutorial4_Solution_b686d55b_3.png differ diff --git a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial1.ipynb b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial1.ipynb index 67524967ad..da91ef5855 100644 --- a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial1.ipynb +++ b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial1.ipynb @@ -785,7 +785,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1165,7 +1165,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1514,7 +1514,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial2.ipynb b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial2.ipynb index 5a6f6ff00d..bb4e27d114 100644 --- a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial2.ipynb +++ b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial2.ipynb @@ -568,7 +568,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1319,7 +1319,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -1431,7 +1431,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial3.ipynb b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial3.ipynb index a17d559672..5b1e35c326 100644 --- a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial3.ipynb +++ b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial3.ipynb @@ -950,7 +950,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -1213,7 +1213,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4, diff --git a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial4.ipynb b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial4.ipynb index 71589b52cf..e2753cd288 100644 --- a/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial4.ipynb +++ b/tutorials/W3D5_NetworkCausality/student/W3D5_Tutorial4.ipynb @@ -432,7 +432,7 @@ " n_neurons (int): the number of neurons in our system.\n", " timesteps (int): the number of timesteps to simulate our system.\n", " random_state (int): seed for reproducibility\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", " neuron_idx (int): optionally provide a neuron idx to compute connectivity for\n", "\n", @@ -496,7 +496,7 @@ " n_neurons (int): number of neurons\n", " A (np.ndarray): connectivity matrix\n", " X (np.ndarray): dynamical system\n", - " observed_ratio (float): the proportion of n_neurons observed, must be betweem 0 and 1.\n", + " observed_ratio (float): the proportion of n_neurons observed, must be between 0 and 1.\n", " regression_args (dict): dictionary of lasso regression arguments and hyperparameters\n", "\n", " Returns:\n", @@ -1374,7 +1374,7 @@ "\n", "*Example output:*\n", "\n", - "Solution hint\n", + "Solution hint\n", "\n" ] }, @@ -2320,7 +2320,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.21" } }, "nbformat": 4,