forked from alexfertel/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderivative_method.rs
84 lines (75 loc) · 2 KB
/
derivative_method.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
const DERIVATIVE_PRECISION: f64 = 0.0001;
pub fn derivative_method<F>(x: f64, y: f64, f: F) -> f64
where
F: Fn(f64, f64) -> f64,
{
let h = DERIVATIVE_PRECISION;
(f(x + h, y) - f(x, y)) / h
}
#[cfg(test)]
mod tests {
use super::*;
fn test_function(x: f64, y: f64) -> f64 {
x.powi(2) + y.powi(2)
}
#[test]
fn test_derivative() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert_eq!(df_dx, 2.000100000003613);
assert_eq!(df_dy, 4.0001000000078335);
}
#[test]
fn test_error() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert_ne!(df_dx, 2.0);
assert_ne!(df_dy, 4.0);
}
#[test]
fn test_nan() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert!(!df_dx.is_nan());
assert!(!df_dy.is_nan());
}
#[test]
fn test_inf() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert!(!df_dx.is_infinite());
assert!(!df_dy.is_infinite());
}
#[test]
fn test_zero() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert_ne!(df_dx, 0.0);
assert_ne!(df_dy, 0.0);
}
#[test]
fn test_subnormal() {
let x = 1.0;
let y = 2.0;
let f = test_function;
let df_dx = derivative_method(x, y, f);
let df_dy = derivative_method(y, x, f);
assert!(!df_dx.is_subnormal());
assert!(!df_dy.is_subnormal());
}
}