forked from alexfertel/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuffman_encoding.rs
224 lines (211 loc) · 6.92 KB
/
huffman_encoding.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use std::{
cmp::Ordering,
collections::{BTreeMap, BinaryHeap},
};
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Default)]
pub struct HuffmanValue {
// For the `value` to overflow, the sum of frequencies should be bigger
// than u64. So we should be safe here
/// The encoded value
pub value: u64,
/// number of bits used (up to 64)
pub bits: u32,
}
pub struct HuffmanNode<T> {
pub left: Option<Box<HuffmanNode<T>>>,
pub right: Option<Box<HuffmanNode<T>>>,
pub symbol: Option<T>,
pub frequency: u64,
}
impl<T> PartialEq for HuffmanNode<T> {
fn eq(&self, other: &Self) -> bool {
self.frequency == other.frequency
}
}
impl<T> PartialOrd for HuffmanNode<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
impl<T> Eq for HuffmanNode<T> {}
impl<T> Ord for HuffmanNode<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.frequency.cmp(&other.frequency).reverse()
}
}
impl<T: Clone + Copy + Ord> HuffmanNode<T> {
/// Turn the tree into the map that can be used in encoding.
pub fn get_alphabet(
&self,
height: u32,
path: u64,
node: &HuffmanNode<T>,
map: &mut BTreeMap<T, HuffmanValue>,
) {
match node.symbol {
Some(s) => {
map.insert(
s,
HuffmanValue {
value: path,
bits: height,
},
);
}
None => {
self.get_alphabet(height + 1, path, node.left.as_ref().unwrap(), map);
self.get_alphabet(
height + 1,
path | (1 << height),
node.right.as_ref().unwrap(),
map,
);
}
}
}
}
pub struct HuffmanDictionary<T> {
pub alphabet: BTreeMap<T, HuffmanValue>,
pub root: HuffmanNode<T>,
}
impl<T: Clone + Copy + Ord> HuffmanDictionary<T> {
/// The list of alphabet symbols and their respective frequency should
/// be given as input
pub fn new(alphabet: &[(T, u64)]) -> Self {
let mut alph: BTreeMap<T, HuffmanValue> = BTreeMap::new();
let mut queue: BinaryHeap<HuffmanNode<T>> = BinaryHeap::new();
for (symbol, freq) in alphabet.iter() {
queue.push(HuffmanNode {
left: None,
right: None,
symbol: Some(*symbol),
frequency: *freq,
});
}
for _ in 1..alphabet.len() {
let left = queue.pop().unwrap();
let right = queue.pop().unwrap();
let sm_freq = left.frequency + right.frequency;
queue.push(HuffmanNode {
left: Some(Box::new(left)),
right: Some(Box::new(right)),
symbol: None,
frequency: sm_freq,
});
}
let root = queue.pop().unwrap();
root.get_alphabet(0, 0, &root, &mut alph);
HuffmanDictionary {
alphabet: alph,
root,
}
}
pub fn encode(&self, data: &[T]) -> HuffmanEncoding {
let mut result = HuffmanEncoding::new();
data.iter()
.for_each(|value| result.add_data(*self.alphabet.get(value).unwrap()));
result
}
}
pub struct HuffmanEncoding {
pub num_bits: u64,
pub data: Vec<u64>,
}
impl Default for HuffmanEncoding {
fn default() -> Self {
Self::new()
}
}
impl HuffmanEncoding {
pub fn new() -> Self {
HuffmanEncoding {
num_bits: 0,
data: vec![0],
}
}
#[inline]
pub fn add_data(&mut self, data: HuffmanValue) {
let shift = (self.num_bits & 63) as u32;
let val = data.value;
*self.data.last_mut().unwrap() |= val.wrapping_shl(shift);
if (shift + data.bits) >= 64 {
self.data.push(val.wrapping_shr(64 - shift));
}
self.num_bits += data.bits as u64;
}
fn get_bit(&self, pos: u64) -> bool {
(self.data[(pos >> 6) as usize] & (1 << (pos & 63))) != 0
}
/// In case the encoding is invalid, `None` is returned
pub fn decode<T: Clone + Copy + Ord>(&self, dict: &HuffmanDictionary<T>) -> Option<Vec<T>> {
let mut state = &dict.root;
let mut result: Vec<T> = vec![];
for i in 0..self.num_bits {
if state.symbol.is_some() {
result.push(state.symbol.unwrap());
state = &dict.root;
}
match self.get_bit(i) {
false => state = state.left.as_ref().unwrap(),
true => state = state.right.as_ref().unwrap(),
}
}
if self.num_bits > 0 {
result.push(state.symbol?);
}
Some(result)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn get_frequency(bytes: &[u8]) -> Vec<(u8, u64)> {
let mut cnts: Vec<u64> = vec![0; 256];
bytes.iter().for_each(|&b| cnts[b as usize] += 1);
let mut result = vec![];
cnts.iter()
.enumerate()
.filter(|(_, &v)| v > 0)
.for_each(|(b, &cnt)| result.push((b as u8, cnt)));
result
}
#[test]
fn small_text() {
let text = "Hello world";
let bytes = text.as_bytes();
let freq = get_frequency(bytes);
let dict = HuffmanDictionary::new(&freq);
let encoded = dict.encode(bytes);
assert_eq!(encoded.num_bits, 32);
let decoded = encoded.decode(&dict).unwrap();
assert_eq!(decoded, bytes);
}
#[test]
fn lorem_ipsum() {
let text = concat!(
"The quick brown fox jumped over the lazy dog.",
"Lorem ipsum dolor sit amet, consectetur ",
"adipiscing elit, sed do eiusmod tempor incididunt ut labore et ",
"dolore magna aliqua. Facilisis magna etiam tempor orci. Nullam ",
"non nisi est sit amet facilisis magna. Commodo nulla facilisi ",
"nullam vehicula. Interdum posuere lorem ipsum dolor. Elit eget ",
"gravida cum sociis natoque penatibus. Dictum sit amet justo donec ",
"enim. Tempor commodo ullamcorper a lacus vestibulum sed. Nisl ",
"suscipit adipiscing bibendum est ultricies. Sit amet aliquam id ",
"diam maecenas ultricies."
);
let bytes = text.as_bytes();
let freq = get_frequency(bytes);
let dict = HuffmanDictionary::new(&freq);
let encoded = dict.encode(bytes);
assert_eq!(encoded.num_bits, 2372);
let decoded = encoded.decode(&dict).unwrap();
assert_eq!(decoded, bytes);
let text = "The dictionary should work on other texts too";
let bytes = text.as_bytes();
let encoded = dict.encode(bytes);
assert_eq!(encoded.num_bits, 215);
let decoded = encoded.decode(&dict).unwrap();
assert_eq!(decoded, bytes);
}
}