forked from alexfertel/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfenwick_tree.rs
141 lines (131 loc) · 4.31 KB
/
fenwick_tree.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use std::ops::{Add, AddAssign};
/// A Fenwick Tree (also known as a Binary Indexed Tree) is a data structure
/// that can efficiently update elements and calculate prefix sums in a table of numbers.
///
/// If we have an array arr[0 . . . n-1]. We would like to:
/// 1. Compute the sum of the first i elements.
/// 2. Modify the value of a specified element of the array arr[i] = x
/// where 0 <= i <= n-1.
///
/// A simple solution is to run a loop from 0 to i-1 and calculate the sum of the elements.
/// To update a value, simply do arr[i] = x. The first operation takes O(n) time and the
/// second operation takes O(1) time. Another simple solution is to create an extra array and
/// store the sum of the first i elements at the i-th index in this new array. The sum of a given
/// range can be calculated in O(1) time, but the update operation takes O(n) time now. This works
/// well if the number of query operations is large and the number of update operations is small.
///
/// The Fenwick tree provides a way to represent an array of numbers and perform two operations
/// in O(log n) time.
///
/// The two operations are:
/// 1. Update: Given a number x and an index i, we need to add x to the i-th element.
/// 2. Query: Given an index i, we need to calculate the prefix sum of the first i elements.
///
/// The Fenwick tree is represented as an array of n elements. The tree structure allows us to
/// perform efficient queries and updates. The tree is constructed in such a way that the value
/// of each node is the sum of the values of the nodes in its subtree.
///
pub struct FenwickTree<T: Add + AddAssign + Copy + Default> {
data: Vec<T>,
}
impl<T: Add<Output = T> + AddAssign + Copy + Default> FenwickTree<T> {
/// Create a new FenwickTree with length `len`
///
/// # Arguments
///
/// * `len` - The length of the FenwickTree
///
/// # Example
///
/// ```rust
/// use rust_algorithms::data_structures::FenwickTree;
///
/// let mut ft = FenwickTree::with_len(10);
/// ft.add(0, 1);
/// ft.add(1, 2);
///
/// assert_eq!(ft.prefix_sum(0), 1);
/// assert_eq!(ft.prefix_sum(1), 3);
/// ```
pub fn with_len(len: usize) -> Self {
FenwickTree {
data: vec![T::default(); len + 1],
}
}
/// Add `val` to the `i`-th element
///
/// # Arguments
///
/// * `i` - The index of the element to add `val` to
/// * `val` - The value to add to the `i`-th element
///
/// # Example
///
/// ```rust
/// use rust_algorithms::data_structures::FenwickTree;
///
/// let mut ft = FenwickTree::with_len(10);
/// ft.add(0, 3);
/// ft.add(1, 2);
///
/// assert_eq!(ft.prefix_sum(0), 3);
/// assert_eq!(ft.prefix_sum(1), 5);
/// ```
pub fn add(&mut self, i: usize, val: T) {
assert!(i < self.data.len());
let mut i = i + 1;
while i < self.data.len() {
self.data[i] += val;
i += lowbit(i);
}
}
/// Get the prefix sum of the first `i` elements
///
/// # Arguments
///
/// * `i` - The index of the last element to calculate the prefix sum of
///
/// # Example
///
/// ```rust
/// use rust_algorithms::data_structures::FenwickTree;
///
/// let mut ft = FenwickTree::with_len(10);
/// ft.add(0, 1);
/// ft.add(1, 2);
/// ft.add(2, 3);
/// ft.add(3, 4);
/// ft.add(4, 5);
/// ft.add(5, 6);
/// ft.add(6, 7);
/// ft.add(7, 8);
/// ft.add(8, 9);
/// ft.add(9, 10);
///
/// assert_eq!(ft.prefix_sum(0), 1);
/// assert_eq!(ft.prefix_sum(1), 3);
/// assert_eq!(ft.prefix_sum(2), 6);
/// assert_eq!(ft.prefix_sum(3), 10);
/// assert_eq!(ft.prefix_sum(4), 15);
/// assert_eq!(ft.prefix_sum(5), 21);
/// assert_eq!(ft.prefix_sum(6), 28);
/// assert_eq!(ft.prefix_sum(7), 36);
/// assert_eq!(ft.prefix_sum(8), 45);
/// assert_eq!(ft.prefix_sum(9), 55);
/// ```
pub fn prefix_sum(&self, i: usize) -> T {
assert!(i < self.data.len());
let mut i = i + 1;
let mut res = T::default();
while i > 0 {
res += self.data[i];
i -= lowbit(i);
}
res
}
}
/// get the lowest bit of `i`
const fn lowbit(x: usize) -> usize {
let x = x as isize;
(x & (-x)) as usize
}