forked from alexfertel/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb_tree.rs
297 lines (276 loc) · 8.47 KB
/
b_tree.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
use std::convert::TryFrom;
use std::fmt::Debug;
use std::mem;
struct Node<T> {
keys: Vec<T>,
children: Vec<Node<T>>,
}
/// A self-balancing tree data structure.
///
/// A BTree maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time.
/// The B-tree generalizes the binary search tree, allowing for nodes with more than two children.
/// A B-tree of order m is a tree which satisfies the following properties:
/// 1. Every node has at most m children.
/// 2. Every non-leaf node (except the root) has at least m / 2 children.
/// 3. The root has at least two children if it is not a leaf node.
/// 4. A non-leaf node with k children contains k−1 keys.
/// 5. All leaves appear on the same level.
/// 6. A non-leaf node with k children contains k−1 keys.
/// 7. All leaves appear on the same level.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
/// tree.insert(10);
/// tree.insert(20);
/// tree.insert(30);
/// tree.insert(5);
///
/// assert!(tree.search(10));
/// assert_eq!(tree.search(15), false);
/// ```
pub struct BTree<T> {
root: Node<T>,
props: BTreeProps,
}
/// BTree properties
///
/// # Reference
///
/// Check - http://smallcultfollowing.com/babysteps/blog/2018/11/01/after-nll-interprocedural-conflicts/#fnref:improvement
struct BTreeProps {
degree: usize,
max_keys: usize,
mid_key_index: usize,
}
impl<T> Node<T>
where
T: Ord,
{
fn new(degree: usize, _keys: Option<Vec<T>>, _children: Option<Vec<Node<T>>>) -> Self {
Node {
keys: match _keys {
Some(_keys) => _keys,
None => Vec::with_capacity(degree - 1),
},
children: match _children {
Some(_children) => _children,
None => Vec::with_capacity(degree),
},
}
}
fn is_leaf(&self) -> bool {
self.children.is_empty()
}
}
impl BTreeProps {
fn new(degree: usize) -> Self {
BTreeProps {
degree,
max_keys: degree - 1,
mid_key_index: (degree - 1) / 2,
}
}
fn is_maxed_out<T: Ord + Copy>(&self, node: &Node<T>) -> bool {
node.keys.len() == self.max_keys
}
// Split Child expects the Child Node to be full
/// Move the middle_key to parent node and split the child_node's
/// keys/chilren_nodes into half
fn split_child<T: Ord + Copy + Default>(&self, parent: &mut Node<T>, child_index: usize) {
let child = &mut parent.children[child_index];
let middle_key = child.keys[self.mid_key_index];
let right_keys = match child.keys.split_off(self.mid_key_index).split_first() {
Some((_first, _others)) => {
// We don't need _first, as it will move to parent node.
_others.to_vec()
}
None => Vec::with_capacity(self.max_keys),
};
let right_children = if !child.is_leaf() {
Some(child.children.split_off(self.mid_key_index + 1))
} else {
None
};
let new_child_node: Node<T> = Node::new(self.degree, Some(right_keys), right_children);
parent.keys.insert(child_index, middle_key);
parent.children.insert(child_index + 1, new_child_node);
}
fn insert_non_full<T: Ord + Copy + Default>(&mut self, node: &mut Node<T>, key: T) {
let mut index: isize = isize::try_from(node.keys.len()).ok().unwrap() - 1;
while index >= 0 && node.keys[index as usize] >= key {
index -= 1;
}
let mut u_index: usize = usize::try_from(index + 1).ok().unwrap();
if node.is_leaf() {
// Just insert it, as we know this method will be called only when node is not full
node.keys.insert(u_index, key);
} else {
if self.is_maxed_out(&node.children[u_index]) {
self.split_child(node, u_index);
if node.keys[u_index] < key {
u_index += 1;
}
}
self.insert_non_full(&mut node.children[u_index], key);
}
}
fn traverse_node<T: Ord + Debug>(&self, node: &Node<T>, depth: usize) {
if node.is_leaf() {
print!(" {0:{<1$}{2:?}{0:}<1$} ", "", depth, node.keys);
} else {
let _depth = depth + 1;
for (index, key) in node.keys.iter().enumerate() {
self.traverse_node(&node.children[index], _depth);
// Check https://doc.rust-lang.org/std/fmt/index.html
// And https://stackoverflow.com/a/35280799/2849127
print!("{0:{<1$}{2:?}{0:}<1$}", "", depth, key);
}
self.traverse_node(node.children.last().unwrap(), _depth);
}
}
}
/// BTree implementation
///
impl<T> BTree<T>
where
T: Ord + Copy + Debug + Default,
{
/// Create a new BTree with the given branch factor.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
///
/// assert_eq!(tree.search(10), false);
/// assert_eq!(tree.search(15), false);
/// ```
pub fn new(branch_factor: usize) -> Self {
let degree = 2 * branch_factor;
BTree {
root: Node::new(degree, None, None),
props: BTreeProps::new(degree),
}
}
/// Insert a key into the BTree.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
/// tree.insert(1);
/// tree.insert(2);
/// tree.insert(3);
/// tree.insert(5);
///
/// assert!(tree.search(1));
/// assert_eq!(tree.search(4), false);
/// ```
pub fn insert(&mut self, key: T) {
if self.props.is_maxed_out(&self.root) {
// Create an empty root and split the old root...
let mut new_root = Node::new(self.props.degree, None, None);
mem::swap(&mut new_root, &mut self.root);
self.root.children.insert(0, new_root);
self.props.split_child(&mut self.root, 0);
}
self.props.insert_non_full(&mut self.root, key);
}
/// Traverse the BTree.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
/// tree.insert(20);
/// tree.insert(10);
/// tree.insert(30);
/// tree.insert(5);
///
/// tree.traverse();
/// ```
pub fn traverse(&self) {
self.props.traverse_node(&self.root, 0);
println!();
}
/// Check if the BTree is empty.
///
/// # Returns
///
/// `true` if the BTree is empty, `false` otherwise.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
/// assert!(tree.is_empty());
/// tree.insert(1);
/// assert!(!tree.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.root.keys.is_empty()
}
/// Search for a key in the BTree.
///
/// # Examples
///
/// ```rust
/// use rust_algorithms::data_structures::BTree;
///
/// let mut tree = BTree::new(2);
/// tree.insert(1);
/// tree.insert(5);
///
/// assert!(tree.search(1));
/// assert_eq!(tree.search(15), false);
/// ```
pub fn search(&self, key: T) -> bool {
let mut current_node = &self.root;
let mut index: isize;
loop {
index = isize::try_from(current_node.keys.len()).ok().unwrap() - 1;
while index >= 0 && current_node.keys[index as usize] > key {
index -= 1;
}
let u_index: usize = usize::try_from(index + 1).ok().unwrap();
if index >= 0 && current_node.keys[u_index - 1] == key {
break true;
} else if current_node.is_leaf() {
break false;
} else {
current_node = ¤t_node.children[u_index];
}
}
}
}
#[cfg(test)]
mod test {
use super::BTree;
#[test]
fn test_search() {
let mut tree = BTree::new(2);
tree.insert(10);
tree.insert(20);
tree.insert(30);
tree.insert(5);
tree.insert(6);
tree.insert(7);
tree.insert(11);
tree.insert(12);
tree.insert(15);
assert!(tree.search(15));
assert_eq!(tree.search(16), false);
}
}