This repository has been archived by the owner on Nov 26, 2019. It is now read-only.
forked from ishita27/Printed-Text-recognition-and-conversion
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsegmentation_characters.py
179 lines (124 loc) · 4.82 KB
/
segmentation_characters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import numpy as np
import cv2
from functions_characters import fix_i_j
def get_characters(raw_image,max_line_height,line,word):
# === Find Contours
mo_image = raw_image.copy()
_,contour0,__ = cv2.findContours(mo_image.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#print('segmentation_char, contour0',contour0[0])
contours = [cv2.approxPolyDP(cnt,2,True) for cnt in contour0[0]]
# === Extract Bounding Rectangles
maxArea = 0
rect=[]
for ctr in contours:
maxArea = max(maxArea,cv2.contourArea(ctr))
areaRatio = 0.008
for ctr in contour0:
if cv2.contourArea(ctr) > maxArea * areaRatio:
rect.append(cv2.boundingRect(cv2.approxPolyDP(ctr,1,True)))
#Find max_line_height and width
max_w = 0
for i in rect:
x = i[0]
y = i[1]
w = i[2]
h = i[3]
if(w>max_w):
max_w = w
# Sort rect left to right, top to bottom, plus correct the dots and commas
#sort all rect by their x
rect.sort(key=lambda b: b[0])
#There are two contours detected for the characters such as i and j. So we need to merge two contours of 'dot' and the 'base' of i and j
#Fix i and j
rect = fix_i_j(rect, max_line_height, max_w)
# remove artifacts - usually artifacts found are manipulated as 0 height by the i&j dot fixing functions
minus_count = 0
minus_list = []
for i in rect:
x = i[0]
y = i[1]
w = i[2]
h = i[3]
if h<0:
minus_list.append(minus_count)
minus_count = minus_count + 1
rect = np.delete(rect, minus_list, axis=0)
# ================= end ===============================
rect_segmented_image = mo_image.copy()
symbols=[]
all_letters = []
#count used for filename naming
count = 0
#raw_input('>')
for i in rect:
x = i[0]
y = i[1]
w = i[2]
h = i[3]
p1 = (x,y)
p2 = (x+w,y+h)
letter = mo_image[y:y+h,x:x+w]
#resize letter image to 32x32 ======================================
#resize letter content to 28x28
o_height = letter.shape[0]
o_width = letter.shape[1]
#if errors occurs due to the unwanted artifacts, then the height will somehow become zero.
if (o_height == 0):
letter = np.zeros((30, 30, 1), np.uint8)
o_height = letter.shape[0]
o_width = letter.shape[1]
#resize height to 28 pixels
#we need three different conditions to work well with the aspect ratios
if(o_height>o_width): # height greater than width
aspectRatio = o_width / (o_height*1.0)
height = 26
width = int(height * aspectRatio)
letter = cv2.resize(letter, (width,height))
#add border which results adding of padding
remaining_pixels_w = abs(32 - letter.shape[1])
add_left = remaining_pixels_w // 2
type(add_left)
add_right = remaining_pixels_w - add_left
letter = cv2.copyMakeBorder(letter, 0, 0, add_left, add_right, cv2.BORDER_CONSTANT, value=(0,0,0))
remaining_pixels_h = abs(32 - letter.shape[0])
add_top = remaining_pixels_h // 2
add_bottom = remaining_pixels_h - add_top
letter = cv2.copyMakeBorder(letter, add_top, add_bottom, 0, 0, cv2.BORDER_CONSTANT, value=(0,0,0))
# =================
elif(o_width>o_height): # width greater than height
aspectRatio = o_height / (o_width*1.0)
width = 26
height = int(width * aspectRatio)
letter = cv2.resize(letter, (width,height))
#add border which results adding of padding
remaining_pixels_w = abs(32 - letter.shape[1])
add_left = remaining_pixels_w // 2
add_right = remaining_pixels_w - add_left
letter = cv2.copyMakeBorder(letter, 0, 0, add_left, add_right, cv2.BORDER_CONSTANT, value=(0,0,0))
remaining_pixels_h = abs(32 - letter.shape[0])
add_top = remaining_pixels_h // 2
add_bottom = remaining_pixels_h - add_top
letter = cv2.copyMakeBorder(letter, add_top, add_bottom, 0, 0, cv2.BORDER_CONSTANT, value=(0,0,0))
# =================
else: # both height and width equal
letter = cv2.resize(letter, (26,26))
#add border which results adding of padding
remaining_pixels_w = abs(32 - letter.shape[1])
add_left = remaining_pixels_w // 2
add_right = remaining_pixels_w - add_left
letter = cv2.copyMakeBorder(letter, 0, 0, add_left, add_right, cv2.BORDER_CONSTANT, value=(0,0,0))
remaining_pixels_h = abs(32 - letter.shape[0])
add_top = remaining_pixels_h // 2
add_bottom = remaining_pixels_h - add_top
letter = cv2.copyMakeBorder(letter, add_top, add_bottom, 0, 0, cv2.BORDER_CONSTANT, value=(0,0,0))
# =================
cv2.imwrite('img/'+str(line)+'_'+str(word)+'_'+str(count)+'.png', letter)
count = count + 1
letter = letter / 255.0
letter = np.reshape(letter,(1024,1))
all_letters.append(letter)
#=================================
cv2.rectangle(rect_segmented_image,p1,p2,255,1)
cv2.imwrite('segmented.png', rect_segmented_image)
return all_letters