-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest.py
100 lines (95 loc) · 4.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from __future__ import division
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from loader import *
import glob
import numpy as np
import copy
import yaml
from tqdm import tqdm
from networks.attention_swin_unet import SwinAttentionUnet as ViT_seg
from sklearn.metrics import confusion_matrix,f1_score
from matplotlib import pyplot as plt
from scipy.ndimage.morphology import binary_fill_holes, binary_opening
import argparse
from configs import swin_attention_unet as config
from types import SimpleNamespace
from .inference import inference
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='./Synapse/', help='root dir for data')
parser.add_argument('--eval_interval', type=int, default=5, help='eval interval')
parser.add_argument('--volume_path', type=str,
default='./weights/weights_isic17_swin_with_attention_add.model', help='the weight path')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--saved_model', type=str,
default='./weights/weights_isic17.model' , help='output dir')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=150, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=24, help='batch_size per gpu')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--cfg', type=str, default='configs/swin_tiny_patch4_window7_224_lite.yaml', metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--mode', help='Select our contribution',
choices=['swin','cross_contextual_attention'], default='swin')
parser.add_argument('--skip_num', help='Select our contribution',
choices=['0', '1', '2','3'], default='3'),
parser.add_argument('--operationaddatten', help='Select our contribution',
choices=['+', 'mul'], default='+')
parser.add_argument('--attention', help='0 or 1',
choices=['0',"1"], default="0")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
args = parser.parse_args(args=[])
config = config.get_swin_unet_attention_configs().to_dict()
config.update(vars(args))
configs = SimpleNamespace(**config)
config = yaml.load(open('./configs/config_skin.yml'), Loader=yaml.FullLoader)
number_classes = int(config['number_classes'])
input_channels = 3
best_val_loss = np.inf
patience = 0
data_path = config['path_to_data']
test_dataset = isic_loader(path_Data = data_path, train = False, Test = True)
test_loader = DataLoader(test_dataset, batch_size = 1)
Net = ViT_seg(configs,num_classes=args.num_classes).cuda()
Net = Net.to(device)
Net.load_state_dict(torch.load(configs.volume_path, map_location='cpu')['model_weights'])
inference(Net,test_loader)