-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface.cpp
304 lines (262 loc) · 7.12 KB
/
face.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#include "opencv.hpp"
#include "objdetect/objdetect.hpp"
#include "highgui/highgui.hpp"
#include "imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#define IMGTHRESHOLD 50
using namespace std;
using namespace cv;
/** Function Headers */
void detectAndSave( Mat frame );
void sharpen(
cv::Mat &input,
int size,
cv::Mat &out);
/** Global variables */
String logo_cascade_name = "darts_o/original/dartcascade.xml";// haarcascade_frontalface_default.xml";
CascadeClassifier logo_cascade;
string window_name = "Capture - Face detection";
/** @function main */
int main( int argc, const char** argv )
{
CvCapture* capture;
Mat frame = imread(argv[1], CV_LOAD_IMAGE_COLOR);
//-- 1. Load the cascades
//logo_cascade.load(logo_cascade_name);
if( !logo_cascade.load( logo_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
detectAndSave( frame );
return 0;
}
void sharpen(cv::Mat &input, int size, cv::Mat &out)
{
cv::Mat blurredOutput ;
// intialise the output using the input
blurredOutput.create(input.size(), CV_64F) ; //input.type());
// create the Gaussian kernel in 1D
//cv::Mat kX = cv::getGaussianKernel(size, -1);
//cv::Mat kY = cv::getGaussianKernel(size, -1);
// make it 2D multiply one by the transpose of the other
//cv::Mat kernel = kX * kY.t();
//CREATING A DIFFERENT IMAGE kernel WILL BE NEEDED
//TO PERFORM OPERATIONS OTHER THAN GUASSIAN BLUR!!!
//was CV_64FC1
cv::Mat kernel = cv::Mat(size, size, CV_64F, cv::Scalar::all(-1));
kernel.at<double>(size/2, size/2) = size*size;
// we need to create a padded version of the input
// or there will be border effects
int kernelRadiusX = ( kernel.size[0] - 1 ) / 2;
int kernelRadiusY = ( kernel.size[1] - 1 ) / 2;
cv::Mat paddedInput;
cv::copyMakeBorder( input, paddedInput,
kernelRadiusX, kernelRadiusX, kernelRadiusY, kernelRadiusY,
cv::BORDER_REPLICATE );
// now we can do the convoltion
for ( int i = 0; i < input.rows; i++ )
{
for( int j = 0; j < input.cols; j++ )
{
double sum = 0.0;
for( int m = -kernelRadiusX; m <= kernelRadiusX; m++ )
{
for( int n = -kernelRadiusY; n <= kernelRadiusY; n++ )
{
// find the correct indices we are using
int imagex = i + kernelRadiusX + m;
int imagey = j + kernelRadiusY + n;
int kernelx = m + kernelRadiusX;
int kernely = n + kernelRadiusY;
// get the values from the padded image and the kernel
// int - int - uchar
double imageval = ( double ) paddedInput.at<uchar>( imagex, imagey );
double kernalval = kernel.at<double>( kernelx, kernely );
// do the multiplication
sum += imageval * kernalval;
}
}
//std::cout << "Sum: "<< sum << " sum uchar " << (uchar)sum << " sum%mod " << (char)sum%255 << std::endl;
// set the output value as the sum of the convolution
// if(sum > 255)
// {
// sum = 255;
// }
// else if (sum < 0)
// {
// sum = 0;
// }
blurredOutput.at<double>(i, j) = (double)sum;
}
}
cv::Mat temp8b ;
cv::normalize(blurredOutput, temp8b, 0, 255, cv::NORM_MINMAX);
temp8b.convertTo(out, CV_8U);
}
/** @function detectAndSave */
void detectAndSave( Mat frame )
{
std::vector<Rect> faces;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
// medianBlur(frame_gray, frame_gray, 3) ;
imshow("gray",frame_gray);
waitKey();
GaussianBlur(frame_gray, frame_gray, Size(3, 3), 1) ; //0.7 was OK
imshow("gaus blurred",frame_gray);
waitKey();
sharpen(frame_gray, 3, frame_gray);
imshow("sharpen",frame_gray);
waitKey();
cv::normalize(frame_gray, frame_gray, 0, 122, cv::NORM_MINMAX);
// threshold to produce solid black(remove shades)
for(int i = 0; i < frame_gray.rows; ++i)
{
for (int j = 0; j < frame_gray.cols; ++j)
{
uchar tr = frame_gray.at<uchar>(i, j);
// if(tr < 35)
// {
// frame_gray.at<uchar>(i, j) = 15 ;//0
// }
// else if(tr<70)
// {
// frame_gray.at<uchar>(i, j) = 45;//40
// }
// else if (tr<105)
// {
// frame_gray.at<uchar>(i, j) = 75;//80
// }
// else if (tr<140)
// {
// frame_gray.at<uchar>(i, j) = 105;//120
// }
///////////////////////////////////////////////////////////////////////////////
if(tr < 20)
{
frame_gray.at<uchar>(i, j) = 10 ;//0
}
else if(tr<40)
{
frame_gray.at<uchar>(i, j) = 40;//40
}
else if (tr<60)
{
frame_gray.at<uchar>(i, j) = 80;//80
}
else if (tr<80)
{
frame_gray.at<uchar>(i, j) = 120;//120
}
else if (tr<100)
{
frame_gray.at<uchar>(i, j) = 160; //180
}
else if (tr<120)
{
frame_gray.at<uchar>(i, j) = 200; //180
}
else if (tr<140)
{
frame_gray.at<uchar>(i, j) = 240; //180
}
///////////////////////////////////////////////////////////////////////////////
//BEST EVA
// if(tr < 50)
// {
// frame_gray.at<uchar>(i, j) = 10 ;//0
// }
// else if(tr<100)
// {
// frame_gray.at<uchar>(i, j) = 50;//40
// }
// else if (tr<150)
// {
// frame_gray.at<uchar>(i, j) = 90;//80
// }
// else if (tr<200)
// {
// frame_gray.at<uchar>(i, j) = 130;//120
// }
// else if (tr<255)
// {
// frame_gray.at<uchar>(i, j) = 190; //180
// }
////////////////////////////////////////////////////////////////////////////////
// if (tr < 25)
// {
// frame_gray.at<uchar>(i, j) = 10 ; //10 ;
// }
// else if (tr < 50)
// {
// frame_gray.at<uchar>(i, j) = 35 ; //30 ;
// }
// else if (tr < 75)
// {
// frame_gray.at<uchar>(i, j) = 60 ; //50 ;
// }
// else if (tr < 100)
// {
// frame_gray.at<uchar>(i, j) = 85; //70 ;
// }
// else if (tr < 125)
// {
// frame_gray.at<uchar>(i, j) = 110; //90 ;
// }
// else if (tr < 150)
// {
// frame_gray.at<uchar>(i, j) = 135; //110 ;
// }
// else if (tr < 175)
// {
// frame_gray.at<uchar>(i, j) = 160; //130 ;
// }
// else if (tr < 200)
// {
// frame_gray.at<uchar>(i, j) = 185; //150 ;
// }
// else if (tr < 225)
// {
// frame_gray.at<uchar>(i, j) = 210; //160 ;
// }
// else if (tr < 255)
// {
// frame_gray.at<uchar>(i, j) = 240; //180 ;
// }
// else if (tr < 210)
// {
// frame_gray.at<uchar>(i, j) = 195; //200 ;
// }
// else if (tr < 230)
// {
// frame_gray.at<uchar>(i, j) = 215; //220 ;
// }
// else if (tr < 250)
// {
// frame_gray.at<uchar>(i, j) = 235; //240 ;
// }
// else if (tr < 255)
// {
// frame_gray.at<uchar>(i, j) = 250; //255 ;
// }
// else
// {
// frame_gray.at<uchar>(i, j) = 0 ;
// }
}
}
imshow("prev",frame_gray);
waitKey();
// Blur the image to smooth the noise
Mat blurred ;
GaussianBlur(frame_gray, blurred, Size(3, 3), 1.2) ;
// medianBlur(blurred, blurred, 3) ;
//-- Detect faces
logo_cascade.detectMultiScale( blurred, faces, 1.1, 1, 0|CV_HAAR_SCALE_IMAGE, Size(50, 50), Size(500,500) );
std::cout << faces.size() << std::endl;
for( int i = 0; i < faces.size(); i++ )
{
rectangle(frame, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar( 0, 255, 0 ), 2);
}
//-- Save what you got
imwrite( "output.jpg", frame );
}