-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisual_interpolation.py
151 lines (118 loc) · 4.63 KB
/
visual_interpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader
from model import GaussianModel, LSEPModel, Model
from reader import LandscapeReader
class_names = [
"plant",
"sky",
"cloud",
"snow",
"building",
"desert",
"mountain",
"water",
"sun",
]
bs = 64
device_name = "cuda:1"
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str)
parser.add_argument("--experiment_name", type=str)
parser.add_argument("--main_path", type=str)
parser.add_argument("--backbone", type=str, default="simple")
parser.add_argument("--method", type=str)
parser.add_argument("--domain", type=str)
args = parser.parse_args()
val_loader = DataLoader(
LandscapeReader(args.main_path, "test"),
batch_size=bs,
shuffle=False,
num_workers=8,
)
n_classes = 9
if args.method == "gaussian_mlr":
model = GaussianModel(n_classes, args.backbone).to(device_name)
best_path = "results/%s/saves/best.pth" % args.experiment_name
elif args.method == "clr":
n_classes += 1 # Add virtual label
model = Model((n_classes * (n_classes - 1)) // 2, args.backbone).to(device_name)
best_path = "results/%s/saves/best.pth" % args.experiment_name
elif args.method == "lsep":
model = LSEPModel(n_classes, args.backbone).to(device_name)
best_path = "results/%s/saves/threshold_best.pth" % args.experiment_name
model.load_state_dict(torch.load(best_path, map_location=device_name)["state_dict"])
model = model.eval()
for param in model.parameters():
model.requires_grad = False
all_scores = []
all_paths = []
with torch.no_grad():
for batch in val_loader:
images = batch[0].to(device_name)
labels = batch[1].to(device_name)
paths = batch[2]
N, K = labels.shape
if args.method == "gaussian_mlr":
mean, logvar = model(images)
mean[mean < 0] = 0.0
scores = mean
elif args.method == "clr":
K += 1
logits = model(images)
probs = torch.sigmoid(logits)
pair_map = torch.tensor(
[(i, j) for i in range(K - 1) for j in range(i + 1, K)]
).to(device_name)
left_scores = probs >= 0.5
right_scores = probs < 0.5
score_matrix = torch.zeros((N, K)).to(device_name)
for j in range(K):
score_matrix[:, j] += torch.sum(
left_scores[:, pair_map[:, 0] == j] * probs[:, pair_map[:, 0] == j],
dim=1,
)
score_matrix[:, j] += torch.sum(
right_scores[:, pair_map[:, 1] == j]
* probs[:, pair_map[:, 1] == j],
dim=1,
)
negative_map = score_matrix < score_matrix[:, -1].unsqueeze(1).repeat(1, K)
score_matrix[negative_map] = 0
scores = score_matrix[:, :-1]
elif args.method == "lsep":
scores, thresholds = model(images)
scores[scores < thresholds] = 0.0
labels = labels.cpu().detach().numpy()
scores = scores.cpu().detach().numpy()
all_scores.append(scores)
all_paths += [*paths]
if args.method == "clr":
n_classes -= 1 # Remove virtual label
all_scores = np.concatenate(all_scores, axis=0)
# class_mins = np.min(all_scores, axis=0)
# class_maxs = np.max(all_scores, axis=0)
# class_mins = np.array([np.min(all_scores[:, i][all_scores[:, i] != class_mins[i]]) for i in range(n_classes)]) # Start from second min
# class_maxs = np.array([np.max(all_scores[:, i][all_scores[:, i] != class_maxs[i]]) for i in range(n_classes)]) # Start from second max
# class_interpolations = np.linspace(class_mins, class_maxs, 10)
method_path = "visual_interpolation_test_results/%s" % (args.experiment_name)
os.makedirs(method_path, exist_ok=True)
for cidx, class_name in enumerate(class_names):
class_path = os.path.join(method_path, class_name + ".png")
sorted_idxs = np.argsort(all_scores[:, cidx])
sorted_paths = [all_paths[i] for i in sorted_idxs]
sorted_scores = all_scores[sorted_idxs, cidx]
first_nonzero = np.where(sorted_scores != 0)[0][0]
selecteds = np.linspace(first_nonzero, all_scores.shape[0] - 1, 10).astype("int32")
selected_paths = [[sorted_paths[i + j] for i in selecteds] for j in range(1)]
imgs = [
[np.array(Image.open(col).resize((224, 224)).convert("RGB")) for col in row]
for row in selected_paths
]
all_img = np.concatenate([np.concatenate(row, axis=1) for row in imgs], axis=0)
print(all_img.shape)
Image.fromarray(all_img).save(class_path)