-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
243 lines (190 loc) · 10.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from flask import Flask, request, render_template, session
import numpy as np
import pandas as pd
from surprise import NMF, Dataset, Reader
from scipy.stats import hmean
import scipy.sparse as sp
import os
import json
import datetime
from lightfm.data import Dataset as LightFMDataset
from lightfm import LightFM
from lightfm.evaluation import precision_at_k
from lightfm.evaluation import auc_score
app = Flask(__name__, template_folder='templates')
app.secret_key = "super secret key"
DATA_DIR = "static/data"
# Siamese data
movies = json.load(open(f'{DATA_DIR}/movies.json'))
friends = json.load(open(f'{DATA_DIR}/friends.json'))
ratings = json.load(open(f'{DATA_DIR}/ratings.json'))
#soup_movie_features = np.load(f'{DATA_DIR}/soup_movie_features_11.npy')
soup_movie_features = sp.load_npz(f'{DATA_DIR}/soup_movie_features_11.npz').toarray()
df_movies = pd.DataFrame(movies)
movie_ids = np.array(df_movies.movie_id_ml.unique())
new_friend_id = len(friends)
# MF data
df_ratings = pd.read_csv(f'{DATA_DIR}/ratings.csv')
mat = np.zeros((max(df_ratings.user_id), max(df_ratings.movie_id_ml)))
ind = np.array(list(zip(list(df_ratings.user_id-1), list(df_ratings.movie_id_ml-1))))
mat[ind[:,0], ind[:,1]] = 1
movies_ = mat.sum(axis=0).argsort()+1
column_item = ["movie_id_ml", "title", "release", "vrelease", "url", "unknown",
"action", "adventure", "animation", "childrens", "comedy",
"crime", "documentary", "drama", "fantasy", "noir", "horror",
"musical", "mystery", "romance", "scifi", "thriller",
"war", "western"]
df_ML_movies = pd.read_csv(f'{DATA_DIR}/u.item.txt', delimiter='|', encoding = "ISO-8859-1", names=column_item)
df_posters = pd.read_csv(f"{DATA_DIR}/movie_poster.csv", names=["movie_id_ml", "poster_url"])
df_ML_movies = pd.merge(df_ML_movies,df_posters, on="movie_id_ml")
def recommendation_mf(userArray, numUsers, movieIds):
ratings_dict = {'itemID': list(df_ratings.movie_id_ml) + list(numUsers*movieIds),
'userID': list(df_ratings.user_id) + [max(df_ratings.user_id)+1+x for x in range(numUsers) for y in range(len(userArray[0]))],
'rating': list(df_ratings.rating) + [item for sublist in userArray for item in sublist]
}
df = pd.DataFrame(ratings_dict)
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)
trainset = data.build_full_trainset()
nmf = NMF()
nmf.fit(trainset)
userIds = [trainset.to_inner_uid(max(df_ratings.user_id)+1+x) for x in range(numUsers)]
mat = np.dot(nmf.pu, nmf.qi.T)
scores = hmean(mat[userIds, :], axis=0)
best_movies = scores.argsort()
best_movies = best_movies[-9:][::-1]
scores = scores[best_movies]
movie_ind = [trainset.to_raw_iid(x) for x in best_movies]
recommendation = list(zip(list(df_ML_movies[df_ML_movies.movie_id_ml.isin(movie_ind)].title),
list(df_ML_movies[df_ML_movies.movie_id_ml.isin(movie_ind)].poster_url),
list(scores)))
return recommendation
def recommendation_siamese(top_movies, scores):
recommendation = list(zip(list(top_movies.title),
list(top_movies.poster_url),
scores))
return recommendation
def predict_top_k_movies(model, friends_id, k, n_movies, user_features=None, item_features=None, use_features=False):
if use_features:
prediction = model.predict(friends_id, np.arange(n_movies), user_features=friends_features, item_features=item_features)
else:
prediction = model.predict(friends_id, np.arange(n_movies))
global movie_ids
#movie_ids = np.arange(data.shape[1])
# return movie ids
return movie_ids[np.argsort(-prediction)][:k], prediction[np.argsort(-prediction)][:k]
@app.route('/', methods=['GET', 'POST'])
def main():
if request.method == 'POST':
global df_movies
# global top_trending_ids
# print(list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].title) )
print(request.form)
# Get recommendations!
if 'run-mf-model' in request.form:
for i, user_rating in enumerate(session['arr']):
session['arr'][i] = user_rating[:-2]
session['movieIds'] = session['movieIds'][:-2]
rated_movies = min(len(session['arr'][0]), len(session['movieIds']))
for i, user_rating in enumerate(session['arr']):
session['arr'][i] = user_rating[:rated_movies]
session['movieIds'] = session['movieIds'][:rated_movies]
pu = recommendation_mf(session['arr'], session['members'], session['movieIds'])
session.clear()
top_trending_ids = list(df_movies.sort_values(by="trending_score").head(200).sample(15).movie_id_ml)
session['counter'] = 0
session['members'] = 0
session['userAges'] = []
session['userGenders'] = []
session['movieIds'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].movie_id_ml)
session['top15'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].title)
session['top15_posters'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].poster_url)
session['arr'] = None
return(render_template('main.html', settings = {'friendsInfo':False, 'showVote': False, 'people': 0, 'buttonDisable': False,'chooseRecommendation':False, 'recommendation': pu}))
if 'run-siamese-model' in request.form:
# global df
global friends
global ratings
global new_friend_id
new_ratings = []
for mid, movie_real_id in enumerate(session['movieIds']):
avg_mv_rating = np.median(np.array([user_ratings[mid] for user_ratings in session['arr']]))
new_ratings.append({'movie_id_ml':movie_real_id,
'rating': avg_mv_rating,
'friend_id': new_friend_id})
new_friend = {'friend_id': new_friend_id, 'friends_age': np.mean(np.array(session['userAges'])), 'friends_gender': np.mean(np.array(session['userGenders']))}
friends.append(new_friend)
ratings.extend(new_ratings)
dataset = LightFMDataset()
item_str_for_eval = "x['title'],x['release'], x['unknown'], x['action'], x['adventure'],x['animation'], x['childrens'], x['comedy'], x['crime'], x['documentary'], x['drama'], x['fantasy'], x['noir'], x['horror'], x['musical'],x['mystery'], x['romance'], x['scifi'], x['thriller'], x['war'], x['western'], *soup_movie_features[x['soup_id']]"
friend_str_for_eval = "x['friends_age'], x['friends_gender']"
dataset.fit(users=(int(x['friend_id']) for x in friends),
items=(int(x['movie_id_ml']) for x in movies),
item_features=(eval("("+item_str_for_eval+")") for x in movies),
user_features=((eval(friend_str_for_eval)) for x in friends))
num_friends, num_items = dataset.interactions_shape()
print(f'Num friends: {num_friends}, num_items {num_items}. {datetime.datetime.now()}')
(interactions, weights) = dataset.build_interactions(((int(x['friend_id']), int(x['movie_id_ml']))
for x in ratings))
item_features = dataset.build_item_features(((x['movie_id_ml'],
[eval("("+item_str_for_eval+")")]) for x in movies) )
user_features = dataset.build_user_features(((x['friend_id'],
[eval(friend_str_for_eval)]) for x in friends) )
print(f"Item and User features created {datetime.datetime.now()}")
epochs = 50 #150
lr = 0.015
max_sampled = 11
loss_type = "warp" # "bpr"
model = LightFM(learning_rate=lr, loss=loss_type, max_sampled=max_sampled)
model.fit_partial(interactions, epochs=epochs, user_features=user_features, item_features=item_features)
train_precision = precision_at_k(model, interactions, k=10, user_features=user_features, item_features=item_features).mean()
train_auc = auc_score(model, interactions, user_features=user_features, item_features=item_features).mean()
print(f'Precision: {train_precision}, AUC: {train_auc}, {datetime.datetime.now()}')
k = 18
top_movie_ids, scores = predict_top_k_movies(model, new_friend_id, k, num_items, user_features=user_features, item_features=item_features, use_features = False)
top_movies = df_movies[df_movies.movie_id_ml.isin(top_movie_ids)]
pu = recommendation_siamese(top_movies, scores)
return(render_template('main.html', settings = {'friendsInfo':False, 'showVote': False, 'people': 0, 'buttonDisable': False,'chooseRecommendation':False, 'recommendation': pu}))
# Collect friends info
elif 'person-select-gender-0' in request.form:
for i in range(session['members']):
session['userAges'].append(int(request.form.get(f'age-{i}')))
session['userGenders'].append(int(request.form.get(f'person-select-gender-{i}')))
return(render_template('main.html', settings = {'friendsInfo':False, 'showVote': True, 'people': session['members'], 'buttonDisable': True,'chooseRecommendation':False, 'recommendation': None}))
# Choose number of people in the group
elif 'people-select' in request.form:
count = int(request.form.get('people-select'))
session['members'] = count
session['arr'] = [[0 for x in range(15)] for y in range(count)]
return(render_template('main.html', settings = {'friendsInfo':True, 'showVote': False, 'people': count, 'buttonDisable': True,'chooseRecommendation':False, 'recommendation': None}))
# All people voting
elif 'person-select-0' in request.form:
for i in range(session['members']):
session['arr'][i][session['counter']] = int(request.form.get(f'person-select-{i}'))
session['counter'] += 1
if session['counter'] < 15:
return(render_template('main.html', settings = {'friendsInfo':False, 'showVote': True, 'people': len(request.form), 'buttonDisable': True,'chooseRecommendation':False, 'recommendation': None}))
else:
return(render_template('main.html', settings = {'friendsInfo':False, 'showVote': False, 'people': len(request.form), 'buttonDisable': True,'chooseRecommendation':True, 'recommendation': None}))
elif request.method == 'GET':
session.clear()
top_trending_ids = list(df_movies.sort_values(by="trending_score").head(200).sample(15).movie_id_ml)
print(top_trending_ids)
print(list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].title) )
session['counter'] = 0
session['members'] = 0
session['userAges'] = []
session['userGenders'] = []
session['movieIds'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].movie_id_ml)
session['top15'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].title)
session['top15_posters'] = list(df_movies[df_movies.movie_id_ml.isin(top_trending_ids)].poster_url)
session['arr'] = None
return(render_template('main.html', settings = {'showVote': False, 'people': 0, 'buttonDisable': False, 'recommendation': None}))
@app.route('/static/<path:path>')
def serve_dist(path):
return send_from_directory('static', path)
if __name__ == '__main__':
# Bind to PORT if defined, otherwise default to 5000.
port = int(os.environ.get('PORT', 5000))
host= '0.0.0.0'
app.run(host=host, port=port)