From 438479d9a6448756a44b6185806b5567dfafca73 Mon Sep 17 00:00:00 2001 From: janash Date: Tue, 2 Jul 2024 20:45:05 +0000 Subject: [PATCH] deploy: 1b3b7d52e507dd844226f1343d3ef6b6ca75b803 --- ...fa7eac8bb03bc68d73d250a2960282cbabfdf5.png | Bin 39452 -> 0 bytes ...0921582d686f681160f65fe0c5f8e819d19d96.png | Bin 26097 -> 0 bytes ...85d516ae31773f65ba0ba8861e8f33591effd8.png | Bin 0 -> 47962 bytes ...26fbcc03e4832803205f2b3d8c36c971e45e48.png | Bin 0 -> 26099 bytes .../Creating_Plots_in_Jupyter_Notebooks.html | 8 +- chapters/MolVis_with_iCN3D.html | 144 +++++++++--------- chapters/binding_site_investigation.html | 10 +- chapters/nonlinear_regression_part_2.html | 2 +- chapters/rcsb_api.html | 4 +- searchindex.js | 2 +- 10 files changed, 85 insertions(+), 85 deletions(-) delete mode 100644 _images/51cf05d799f955c6bc97abcf6bfa7eac8bb03bc68d73d250a2960282cbabfdf5.png delete mode 100644 _images/8371472862b2f922bb59a0c77e0921582d686f681160f65fe0c5f8e819d19d96.png create mode 100644 _images/8df5c7f39f20f1dee3db00356185d516ae31773f65ba0ba8861e8f33591effd8.png create mode 100644 _images/bc36ef4c8e3d0ad87b6d00f65e26fbcc03e4832803205f2b3d8c36c971e45e48.png diff --git a/_images/51cf05d799f955c6bc97abcf6bfa7eac8bb03bc68d73d250a2960282cbabfdf5.png b/_images/51cf05d799f955c6bc97abcf6bfa7eac8bb03bc68d73d250a2960282cbabfdf5.png deleted file mode 100644 index 80a563eb4e20d10153ed8de064572d9dd163b9a6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 39452 zcmdpecR1C3{P*cjMF|ZJyJaS16o-(I>>WaqactRJk_tyfR5$#rm`TObWzUt2Re9mXQKkxB+z24s^DoU~k_tWi1p->0qu3u9_p~yN= zsDDz)_rkv@U7+~_e+WBD-*i;BHFb0`x@Uq?G;*}FvURk=++lGxx#xhfwc)=Ye1Z2o zi@Bqtor4GukM*AiF4*2P;}IacUJQd!*j?9gK%uCOkpFh2iKk*vsMk;Au1RXRMo$lT zyoz@6+TQLKa~N{ysrek>&)~BAJ`EMcqv*?lY2=S13eG-1W|>*+X=#1m;(*wGO?5rX zbi;!WyC$iXDIT*lNG@cbX4eX(q59{ru(?qEXhnGeI(7Z`x^X^N{j4c<@9R>t(bcy( zw_c+8S3a9*=a(-utS`8ol%yg12c`zUcv+uY@DTrsN;^kpLHz5x%QR`bh<_cHh(mS+ zeg*HoPe=S4FV+A3!3R1sdo;r4*8B2|AL;7pnVgU*dbykMQD069KM5}{uShYE;?vJ- zn&Si=N`9`jJMC+qFkBPT{?#E&ln` zdZ&Ss;;EhIdA;_?iV4ex$UYM~v}1G!PwP2$;tEX4$uP2iM!>@|)*XriL$qg-JNA$! z;VYs^TB2WJ{Wa3!RLrcpwO#O9#p7BY98OPmrl54$faCfU4^2||5t5xtU>7zd288vz z_GnAeXm|)aJ>7X$X4N|`rXq2$Lh6~8Q9X zt!8cIK~=-|nlxmc22_8pM4X?fxQgwds_o#Z>zS%ML(qO*zkiW%3|Ay|70-~4hCPvm z`~}C`$@<=TIAQl4H=)AnwU4!pp*eS1jrYmUDp+-VS~Xp|Sg&WQ?+hAt_OFGR?3|6A zKiDc5UWMYbF7iL0P8)Zh#EUfa+7!L?+aIXmvCFpDw27`M>XP!4Yggr8Ug!){z9RhH zSp4UG>VJ8IPx&0XaO>uKTEczzm4Wp;o9*u##IY$@O2kuibY<(M(%V+3`Yc@XNrW+` zHWr$@lV2KSWb2hst^fAfUh&b^*6#iq3touPsYA7FxzCcT;vT_Kw6Nc5?vANSD0Uj_ zG(3CVQbUG@OtR?sDLFHoQ$)mhodon;g~QKcn2wINfm^axu7TL(67`keaXD3M7L~th z=|x6g8P_gGzE+T#aMZ1=th|w|cEkWp7(2~2hB=MRj7!~)Hk3ViGQ=VzJ)1*o#zZ0V z*N%lj z>J_Zs6Gn|Y_1imc5HZy=u`CDo`QK?A8?5vgaf>ni{K~#%hTrsa3m%7-t*pw-lz)0< zE$zx;JT>F8eWrG9JnlX~7-LeIU`r9h ztDOe>uUI4u;<77c8+I z%JG;j9gCZ)T1@7d$ST0MB}fNlqml>~yQ!nMr!I3@%_5MQ%-u;_E9RdjTwBt^ z0`AJ5-+;d62>SPzsf#aX(0csOlu zu1pPWZw_VV-6anHATTF&HY+iD2Aq|k*+Q3%*YJdr(`;kIfuy%5TYt6dE&5!zY%qq8 z)tVX63_e7L)l+|7fA@t_YG;3crUs|x%m`r|-;4SBhGO8mrTq$@^i&k-#p+c{3-_yY z8gUp&kLCAve0u0;kEYLU}?D&Gpm7L z7RWxA^7f?a+0*B;(o9pnPx82zE!5@K+dk9MAh|e|mvC7Iw-Q9k7bdwbBVOGDwg$JJ zf8*TwlOn$>1ZsFYy6#RC4Q#sG%ck7m%F1eqjwhNL?@91O%6P4muNn81%OW)@_vnQ% zv(qwGd9pBJ)4Hh(#m%%`O*$n>esl64N!`_?BYZlCq(Y9f+fW_s429F8Y|bCVreD_xj!6 z-0@2Rq)5?mbo*Tw9zPphM$yJ;`s)iv*=oWbk=gNMv{u?41=1sdIZ82|8OnxE8F-v{ zcAtFK2|UTY3Z5eW$7DXoeZE*UmL{9-STio69o@G$nUf{DClZ}3cfc%_&h(-+isb#t zi-_L1N%)>ubzdXK^-xWV-)nA>4B-^VwooGhtyiq1i0%7qKcryN+G09>g}jiBH9Iel z_cvR0moB7EoUx5HoH?h-urnyG$}ce{`b^!K>jw@rQ!j>TuUO0kC{^YcD2FaKxG3ykMs`zb5OKZ7lX`>gqd@5)jik4(Qho9R#hos7Gzi-tos*o~cyrgNZn8%r&Uq*@`5}!t_vV`Mw$M*&Cuw3QCsE+?B*X$)kGiCYPoEaWoPC=)4Tv!$IwR)wEIs#FD6v2Z_BVTONq0!?n{x4nNxe8oL3OJGd>MO#!GYTVJ<(8 zBx!b9maiAtoWbIZu9B|*-qn46g$90w8DQ8^)B?^nae4fXq|f?#imRl2O=FXNrllCe zJYH`&(^+;9=Wf#d6N}@DD4Gg=DB!HMlkgopPwtI=KFU}YOGB&fC@Qx6{lY*A=65ar zNJ@!0EfyC~aySyZ;hSDpWX3?6q9tAFCQB_=E=6sXl2;HxT6T+s9}9eM#-*`;mo{5@ zBy@tidRCW@q*{*5Q#Hj7swLBYwreC| zz9QW&aaQks!4}=G#jlZ)bP3!f>H27@SxkRPETR`FGSS|Cwr-YuqzuLwEP7mv*ZuP_ zBy>6OX^%_J8JRC@@$RIIO9J=rF?}ckdM`-o3byq0UM9^d&0e@)(*>{E`YWUIML=P} z3LM)30cWB8q`PRLF}MtAfF{fJ%s_3I70ZDDrOom1=k(~Ia>o$U|i1L=r;>D29R zNa_wk_E*S4Ug&1|w996^qjm_sEp6x94nY>oA5n{^ZR~TZze8krTzyD71Wqu1NUt}g zp%@7E-o^UqCLKE0Kvec+ET7)QSuE~1H)(4!J}!AWfuVlsp+ln`>pz?naK3Ys+wd6%(dM3O`2}ARP1+FlBijT67+BMm}z=1*}rBGgrjcj1nXzl_CcwjSm0jO6V+8YHxM(us5$lxNJ!`(n>s z&-C{jp2#zt?(m8Vu$>mQm&w$+Fc+6saO3m!YuQiKo|($fyKv4lk#^EGtYQY^gV!Ql zjj~H{NU!(Np_}3P@02wv>gU~W(_w#)t9VKi6F4X;@x2fd!Wpr+Zzj_6?dII}DXmnb z<+QZySK_$d*iVKTkuf&Ad@>+@^rl8Og?#-9vvw@WJmXH$G9Z*QOI*sgcVHGlB(Jkl|UO9{TM}C1E#PR-)o&*iujm^$|`ute;NQCZi z%4yGmrzeO;5tk#pQ!uOB;#(gy+jQ@aD&gY)-0i-ar(PIXiw_Ju5fC|?qI-n3-8?Lq zczj4w2*tN5&9m6AG6KV)A?%!bW2J0J{brALw#?< zQS!Ei3GMQ=LT3ow6(-FswMtwGE72nI-7P&je69c5rnY{EFB%~g(`g5)kf4De4Q$uB zg7So%4eZyflFg^H9)El%p!?-6m-Qa$j7r~2dIhG~(Wa=>Yp3Ir$--ZHV}m>*k8jw#!2;LJ>m#fQ7sx%Aundr|yDhRp8nU$x)5rY!|c7 z%t@~ey=H2PcGHq`j>Bl>mP_KE5jo=PCq5Kj43eQt4vXkZ6~H*_sby0H@n(Ox${$~B zGaxeHI*iqYdEn7=q61Fd`elo4@=I;4oPy0qB0Deiqy^hD?4wx32cg~lJY?INUx#Bsr`r3Mr1|5#m ze0|9OuGFfI87}#pe8f0>DMQ7~k1*vfsNB*!GqtJRHjJN&rD$eqO)PaAcB{%V3dVPT zzI*XTYCBYPnw;U0Kl=#iV0fn?05L@)fMJZZL^&+JE9hVPN{+>uF`=coFwn%!`#ZO?kR*@`u3gQ0UP{4F3Hwr7uO1rsN)!Lv$7F7>a$Zy!D%;EB z%P09w&ByS#8iNI>Ca2iMSDzey;?Lyzb=S;5xwg+dn@_^#`pQ$+kiRSEK{mqT*rWW0 zF+N>d?~w>tb`37)&DMW!zxS;d&`o=IT7}+j{FONk*_n`#wJM$(-o>R{AAP9lLl;Y% zy_Dv><~)`@@p#+!a1_CYP8IjtL~T4I01^!eBrqfTrC4umTaVjPsBl?yEk6GurBqX1 z8eFr`JoBQL5BT;=#|c^Y2}mclo@zHQcbQ|lSR{12D@!Mm-wc2I6>B*D)&W0>{$lHP z3btt8ACY>tm714^JQu#!0l2`($QZV$gKQUyHE4JhlI%&I!%2!lV5Y;|9>@(c7#I-$ zvDIr$k$tl(US8>S{9EaF>KC*G62K+Me@JSH-wSID`gBLP%rU(y*DyCTr_AE#^3qiI zR3KN*iRH)zJX(2Wz$JEVeZ8|yt*^Y&r16;a=|ce9QhO+hGHHu4#cn7QCcw+_2W+}7 zvN$R8{@3C-xGv@B)(lNE=W*@@%=G!=Pzo|UZ8(JDRlggJG2n6E+E@LF?mqmuLZfBm@1O2pjO| zu~C|^O@^S+MXc7N;JEvV+X}3Sjw0EEg9gcJ=@vZukgcQxv}p%R6kpqOqJSH`q0Nh0 z{K^IEZc50hPuob#E8_T4S}mGf?%3+6CjsXO={vXK*?U{J z9*{8F7n<*X6^dJCes%3MxH0fAI)({->reDZ%yVdyJ`e+uC|`?CS{;uqlt-P>=L1>r04C^}PfmjsPedvhpYf_ti9vwG(F5O6(px1#v1wWCImR6euNe|oDzrQwGnS*O!k?ucx z86R0sdk)Q0;be@*k{-)Y7JXDKVm<#!q1f^Jzod`Jgmahm#THStvF^g+!Ua`$Tfnm` z+-ckS@rx3%ndV+j5rd+aY6~)!(;K*U(}~D)0?tZ%`PDd2m@BIA`p%Q!WJ=XPAo&@- zmYz~@4>7_D#$&W*pS3LgYVl``AdcT@-Q8~fk&&He>j1%zQ39R>wP5e}7XC_J=Lc9E zy~xre6BuEAAeBO*&I_TqJEVN+o|qv3^J|ZU8JLYLceNghUJc7lI+(ps@)uLMN zbH-$$X`;jg&iwWt7?kY&`0?8}0e7Lc8I0c-%UGJ{&Mf(iMj)QSk(ff1Hm}uugu@Zi?c%(`Sj3iMvk*M8lw_@?eCEdFR>M;9C5AkY2Li z{fJlTrD5GtPgL%33=nOPWjRC`F6~7bQ;{$bEu>?SvzmR5XC)qx1g@b!W_iqt zmNB!ZrB~PDO^GR-1n$kwsnC!o(gP6iVK)|6*V-d&qa^^x{y6I5YZ)m<;<@|MjkzYX zWc$3ra0Z9KK0HQ_BNQRZqBHO>gK^d|GFd3Mt6`j>|;Qy>dPnV`{$_!q8``K znNL^Ps;4@e1WL_{V@xx(0AX7QNzHS}>S=o-L(1q*9Y-pO9QS-;5kg4^%bOk!X=@l^ z6tSkl;*38#~VICS*6J&qpp+-b`E+cn~A3=to zoE?Q?GgqfAr%@?Z+IZ~5o8%)W7>R53muOw;z&X7rcoehn@EbNeuR!W}?8OJQcvVWP z2`jl*`8{nE!6f=Je58JKVk!plvZd-R2cl+}h(t22MJ~RU_RWmUx>~=EeO@ z;v^cP;B#Vc-O8&Lrm5)APv5k7W-#^29idgNaNJ2u)h9txQ8?`RSRLu6nrZA=; z)=JeB)paYGHh@`A3OJ_2DXqS>L@+8Y9{6Pvju=p=CTM`$6M$+rM^OCEv2=gcyyKN47$cMRCCW zSxDt<^OfEWvpm5=+-yOf|A^3Y8c-3eR*g6mnJZsLQ%B;FF^C;3AFrf0LbfyD^BfyE(q zU(fB~G#+fAem-MJ*g7IdrwtGysC^<_({H~^f_a4h(kFlSIPg=#m9^HV7JY>n3mcoR zk(Y)!*8Rm;_W|JXmOQFgJR(J$G9n`*9cxdTnYX7X?h_k@X9&+h>fY6*h4WhO?JIMd z`nrh}C|Sc##SQB3s>w2Y73RGCzJGK6Wwq$I@P+D)drdgBHc;6GrcG@~&BKUx4xVuE z=8?=-JED3)u#hy6``>^tPho%haA12H=`UQanyo>oyHH+1E}TZ4 zs$ygt!x@F$H2Xc-{^3nPn00E=pT1o=`kApCKiDSc=DO!L@F4f7IFvgvJKN=e z!>xP+?^P48?e!sT8nUwA--D>#XG*F!XUbLvJ(e1{a>uvU=ejL(D^pggRw~cr%y}%jo(gFT@$b|9YY&UL*@&kO(NSH3r-Ws zFPV-CF->AG4YrgIZQ9^`wpRNp+zPhVa<_GTmd$)p*5|5ye)5&xQmSKgiQbxs-I9Z< zTy&aF$f_rW;ibx6b{lEIY{4Ak5R10OF8@$I zyzFk83oc-M`R?fq^|g57DQr8>ZiHz!q_+S=xZ zTv;>sTFNx+YzXH%Cx>>PR*{u`1bp-%{d@K2Y7AT&xl6`V#WyF6QZux&b@0I zeV%gLS{-v*n@FAN)Hdw=RmUtoZOr68eoEhMB%JeDQ2u$#e>Zt57ej5zCRh>UUjto2 z;+_M?%qKh2*A`R7vpLjL7#4e2$Q@gykJk$*imi<&0`4IuCMGgd*zUNw)IFshyVmil z%WFEXZj#Gzwc!=pcf82dd2XHjYc7LsV_&V=Vmn8ZcXNH-Jlj*df>rQc>Ty|}(BZXR%~U;6vg zc6A$gWQ#VpOHqpnxb`EUL*<;8vd_ zwo#ycJI1Y>lp5o1@o@^-J_I#D21`+n&G{5`d`f(KL44obikBg^_{N)K=WoWzUnsrS zo~qmpkeySHFKbj2;VK}gWk^Vf5p#jhwzt>jlwo)2SPa_g6{}oo^u55U?ajF`+Dec13az-%7*W7IGn@3&XBH+|gU9G6y`eGJq%k|Ozx1Frmfq8$9T>x@x5vs@5+uyiz3{z7XlmVV?i{%zOK=TAMa&AByuAkq_uk9DG3zlS5Q zc$FcurS|z<(^u)S^44HCs^u+1bN6hOA1G$%t|$N!zSgEZ*pjimVVLcF5>U69nVCm8Pxl|sWvS@Xf{%*IwSl6AHt17;zv7O(rD7HVGI1`0=~1>-IzF4- zKG~_U-o&fyDw?xWy}bz&E&(uWNqKuwnP4Q%o}>KkV1|xMo!V1??L5Em_N(9fF$AXF zn&;V8>$TEi!#Rc`;MmRc&Mi}$oras?RX-o{u)l1am@a7ULR`?H?q$R)As%Laq!GC} zmLO0;e94uibmfEe8BMSGWnoD#bE>!85sY_ebJnHEZDF*=dm!ZF-%6cCuO^q-FT&G; zIa3yZa6(MzdS&1PA8{XjZB}Sh6L5&x0sPivpJi?*UmZi@r9oFIg7By&)Ou;c;&GMYW|%Dd3!QYcSq8wadlW>~nA$#L;s$oOJ2UZ)haE z4rs<9lB>W!eXva&+EZ&wHG>lhJl`N(S;@z#hJma_3#9eL^0CdU@;kuLGc>vs)v z7c9HTYuy=Hr{UK8%YD?3nd@PG{1a2;eqZ0@POMi&aOeHxCLy+uL@?x_kTaRz zY+Gg5zGeRq@h5U^C(WYc;nLjL{>8j)uM)RhUcFvkHl7fKAaTv!%LTf5cOH7LwZ}3! zcJ%Blf;M{NR4lyGa!DVZ5>>DGv*E&+K5YX=@Y%wjBD}$NvTvT6y zS@WCwks6Uyo?q|pD|BD77=Uo4`{wq0qv|V{zSupeS}w{x=pEfS;s{&KNw+yu%8atyQCE^!dNcoSB%O?ugx9jh)&j{`7Zkn-h2~81h)9I zhI(o;Gnc8|aucHKto zsE@dFG?dZe-JGG;1yFawn!oCNW>E$LO8&p*Fe!^h)AoX zx}1AWULGu+X=)aXzI7p0F-nMo4hvxaTBi{+mt4t^clnj&yr&1fH;PLt6=PRFn>lvr zm>nDx@>rfW%EiH`39aMLFogrvw*!VMc{fGbk23IDcAaN*_{?X#)(2RsEDhOY6B>TcZ`2-a1I<}`^1D& zNH*ozH*T40ZdP@TFdr0K9=;2iiMMQ0QJf6>%YY(cU1b8uR$IdXPA8XkDz6mIj zem5`;l*g;*&NWe$RvX_?<9g{b4s~!^|H6kX^K0q;$)m0sriE9;Wl>n}qxbvXNq!+J z9G^PVlxRfuaU9(*GV(%w5jL=-#%4F8%K2l|?uoeiyCGKJBpz;#}*gyON@=EVdN4dy1#x=T&{DPR+G;@lAEPHpNQ= zNpM@VW49Jlk%JK1Tx>@qfKEVfP#Y{DL;^ws=nbuDRc_AMb|ci-ocBukgHzp8xz#yH z0{K0Nr>j+#IeVtRWQsp_H8`|BX%PIld}xgK8U`89y-{y40dk*lBn%<)zNz2CPnn%X ztWPs}|29IH#S-vev6%YMb7dnDdW-AT+w1O-YRP^%?Ve;)wQ8#Gv$>>OZ1oy1JjO8K zwK4!zMJ6OW0q^U+fX=cHIEt@6y9pi&0?;_ZojelXFxs3p6K{W6wRp}8?ma_AZLxJF z5Q`7CJ=T|J+?RXJI@{V3Ru{%Hi;6UX+7L14Zfa^muF}_;&CSiVk8D@sEptj`kg6ot zXVY?X$#Au)?iuI0U_j1c?VvOD8ij7nvb&=vKNHZA~|CDX_)3Cd^iEdsmKd+de-FwUyZF zk1*sD9RmZ|KpT!{+j?cjfX4RyMDE>->9#)W{cDeWe(y6W(1A2ke$KtSywG{3PfnP@ zr#VIp(U_(wdwxHnn}7Go*$L*YZ_JAim^UPlBLTs&%g0>4=x{D=i=is7vd!iGPKa0# z3?`n-G6}OY%uG(U!9)ARV=mdoAW8UuW4q$o_v6)Ry#;1d3$fc3upg1{>!y41q=Js~ zFm3!Uh~3P(vfkS~>3875iG@M~0lLluJQZg*J#GS~Nwp;?d(?JA)3Fy;XaWfdQ0X8vh@ zxy)+1Fahv=1;F|nR57w8CoKS2TqM-q z_lA^X@_^y*tAvIVI*lFZRq2jk;LGxhx+U@I%3Bto=xS7oO3s{mlNSbd`cn@WN5Z&5 zwu7JF_oV5`N1Ru6aVfd7@Va^Y;}PYoWsrYMJg^7#n~vV*r&`K31ogc#kUmxn`02u8 zuf>x`->tingkbtk3zlZxJ4jZeJ2rRoL}Z(G;k-GmC=Egg|$jV zC`izV<7DD(6snd;)S26PJ#4!cIV@=KtP7A)AeTV(qPl-C>h=c$xZ}GQl-dXfIZ(U5 zt@cZgTc1_YS&MD%Fe3o^WIO51=nkS-SvGRyNPxqEJ~-H8-WT#fsg%V7%0QwGPeaMj^>7F5SS1l%o7 z=|5%U<;8zD*N9W=cT&KDN@K7u+g5ZS9q*+h?9IY;C(YQRznJ4lsGWGsDx zI8hyki6h}bnH3YAtq`9F%@$VEU;c-Ln^y40+WoiGk_3_qomwPJ)p|3L0>m%EM@9>1IK@Ah>kLi8PPs&*g2gp6r> zaM1DrRQjP80*XOD78d}#_%TfZ3wH9PBtg$s2~j%LTxN40e9i~XU2%CtxKNN?&k+cm zOA61ll(D!od}k2fksKP4a7c<@U0O#~s(6g+&=V>*&(;MKX-dYG>eJIJN zMOMZfhf=K9w&1!Q$6b`-is%Ho(GD0qkX9+?Jz#4+hF6;SJ;Ci>nyJjMzRz}*(htCB zSp?Ys(3@@n8WlP^;-2p&b+QbcknC&JKbbwyk{(Oh-qXtvG@0LSHZ^(9K_ENX86<$` z0lJoZb>m#tp=Q^hYm}R@2SU0H#ee!an+94~<{y13qp|1-(gBjdT=~>4lm<~;M{}om zDwEBOy1XfGu*1Q448=vK%85xAvzru-j#lOo;>&(C9cn){NVwViY@WV)BM~4?7eaOFbMPEvZ0Zk^$nC>uri}` zLB3*Z9Ll$kC~DPE{X?*Odl4Qt@NA&e*8|g|;L31pQ**$^%tjrvN#K(l zzsa>*=H#`5XsHfr3WcofBPbPd;_5GQ5ouoM&ArIlFGS+nGWgMO>5960FfylaoKu8& z_*%B7ivpEKP2BC*M8ImAS21Ggj!#!tNo;S*oM?#@u=4NTL=cWnO-@~rZ%}9#imFx_ zX|A{(N|fz&*goqj6;A~zZ9BC=MsBSV|6x_j4;u0xUVIXuL)|7Le8Ic3zy5T<*_p?h zc%{|VD&b{zqk@kUjNHy291Ap(vCjRQTf>rVK#w*yy_RhsDY6SStc@0*f$#Hu20aD@ ztu%LYZZ%6b6FvG2h#cRhcliUIiF_4NC*W(p)0O}Xi?)Ywn9X^Jcu*`v4_l_@@f%6Y znN!T5bm}`65${|-Do$5Et*B48Xm;*!j#_`fj)n|pm;yN^g$~|qFA6%(kkr94qPY8-aVjmA(q=*+5kd>9ff&|K$dEz{==Dw1u<3aY^$eT%i2|vi z9t=V5kbL;qp4}+l!2K)A*WtV3J}@A9NG+fED!)QLICabJhiuK{n{LLx?)%+;m44md zZx>2pgt*{PNDWABdkkf}@|~fpVaTIOeyFcd(PMq))JpdaW3!J4G7sT{5Xn#)#B-vH z`~xsJ9VP75Ana8>WHCn|@Y<`(Jl-vik}xKOJqal|2qJA3V<;}!*R?4;;PQ&VtV(gc zd{j;dmXU8DUP@JO9!0ghB3N&W%3nIfP6K?B8%9>f@)G6H-wyBUK+j43GdIq07Xf*R zA{QncjX*Gop2>X5(nJlRX-N&F=KY`$zSWll^o&*-*zs@*_+QY(!bV$2x%y-vgk0EJ zM7>*NQoeL3NjN5V+szGxP17B=G8WT-V;xYAWa{G%J5-|rR?Ug24-9a?LJu>M=yd|M z5`0wCE`X`QFeqPIo4VQ#f+3Tkr#&eCSpAEEkgw52;&TMvmS_TuY^{Ztz`WgP@y6|s{DKf76+g* z+<`8C4#EdT2!YTya?BmtHAB{da{Ruwgf#Z4PhoL?^iaqblo7a6-^h`jbgpS1rf9I| zBp+qb*&F>LHM;&_z;`Kzl<&Y6-9Czlz6pJ%-LB8HU@X1@jf*XZ6YoNzNtF7l@DoXV zHnYYBOZ0Vm(7GUkim~561)b>#YUK2!WPj;;Fx6iKJ}r)Qk@3}a2T^dN!l!q9G$qD3 z_2d)waDmRqH%Cn%HEVfCFbf(BQp-;E42v~#p(C8kXFF0jv+eG}s*viRCT3tSN<#4G zkwY-wcny$NH1=_dNTt5DkjoZwR=WtR`Ik5pr*t<`I8^ADOZKHO;<>=Pmz7?IFz`q!`^@iSjdZUZK zzc3eE3hA=mEbNot1xG4ELf&R#2}j15fr-coI)r!1y}LFUGK zKKXDocm@eU1>LwVAZ>sc8Gkz*qOPace^(6I4+~#{M7`k{;$FWL&o)mC9>nQx&y!Aw`^m+kpk(MoP4!|u|)fR9o;QY=PomD`LmHf5b zD)*__X3K9M9)>0@FE2-~B_nLQ@fc9#^C1`AWW5h=;?2sdw#HtTJIz6Vjp;To7N;In zcu(gt9Xc#84YD#tz7X_Y6iXKChWgs-SZw#=L_000q}J979mbTJqJ`Cqts56C=4f`z&(M8^R}n z=>(Rd+y6Kui@rZ0?I$!45+k)SqHS2;&$C++eWWEmqjD25z%* za0#3uMfOaypaknnMK1+0f-o$#=;I=2NZgy#JFTaKiBiN`MQJ26lhA+l)AksGTmvVw z_tUWb(&FNHq-9PksM@#3L15nsD6#kE#+Z2QXD5haaSDVU!*Wx#<>}r;NB29{a+Y0Lt<@Wi)oCDV2Bxxu(dA40LbJF} z#}vY!AgEFcv^XyUi={MP1Sdu(4PA)1g76Z{GuQk34LeGtzVy^X?uNqFLI1&tO{1E1 zP`k&!H1yU1AW;ptWT4s;08CSYgCF)LfTSS6?*?Sb5m?-bobuT=goOhZ#h~p=se^1q zPDzP2pf0T&s|!Vz-8uGqEdHjohYk4Q)VV3%QdUNLy};QCi|=$8;oR68*UT9h10 z@MJu|&Hg{$_hI*{0=$Sk@}Y#6@xZ1Um|#HDl(DV@FRM39D&ZXiYkl2SDazjSVTn~rfBN`O_U#4Ftils$ zgE`HuN9pqne7W~>-<9ls8vIUGbk2wq^w01b8`}@n*b}xQGOn2oI^{5p8KRR#4*%H7ns>t ztd9ZE(jdi{oSJF}5=_uxRH3(+yE&?7S4r(DYXwOf%2LHp;K&h?e!oq*;(=r5Pb@49 z0cKscIvTZ498Y+Y%c~Y$FtQJ|&R!sUTk4j0c5Jj3Z~hT7H#JV9hAg|sAb+<2yB6$b z+&W$ayixgVndPl!!T+s2f>jRQEYtVaJ`rHNEb+~D@$j>&RkKVwt#q&T<%#8fTX+Y?OGKpr%9U$K7u4Bw z@D+L`Hn`WA*Lc?{NqJ^Mdd; z0wmm;w5pHJ?alG(g$}9IqL+}`MQitxP)g45LTG5G_0UI7 z1$+tCt#%6%gwieW-nV$FekW|L#%}9?6<_}T5WM$ob{IFzr9+$Cg>b@pO0QDF8$}!& zrW>|uOhB>*pl3L*iI(eOSerlq-#!b#@4JpDi^kh}4$~6|+F6%sz3rdW+bVd(A_a~T z+Yu<-o-Idt=?s+HM|D*f%I7f0)Z$;AB%(X{5LHnxI^QbaubeHLavTZQ20(u81qe;p zhgL@12FH&hGrRexOZ3s@>+7GE4G;h-RR)CC-xqt!+~vwa)urjE-(;^2S@_*xjUUP;<7^DEpKq#px?TzqYTbN<|74C-mACnoNGAp ztcnz&)M1q*HdotKv@+i^+G!5RRWVLQz;EgB8%SA%vLLjrzdOW!Ihlpq_7TtZ1A4}0 z0(aQM-@sZ-v{>H4J!L}4@!1;ofnnU|WIW-HErkC?P|&Nm1;*M5Es$t1Vc z6r^`fgtr9UW*}*H`8)}L$;6S0Ga`Fl|OgV9dFM^TW4%I;%p3jc>UVw)`_h5`H zrUj@9ol?vRV-dPOzw-WvTR_jJ$|)nuKOO@>T7s>t5k&sHlqB=lAzc2U#_~dVQ3Jd{ zL~1tI(U@%viWOfOLIM1fwF+S1uCA0J$4oX`F5F|xR`6(G;cX@*xZ*Cc{qeR>p|`H9 zB9Zg3)j4C;qu=ECG(Hn8FM?kl-v7jGl&K^pLp5cH# zwm`aj6%x5~6WwE7wyjOaxzlc@As0Hk|Bd4I+{ol5XPLc$dqcIPi=V?~^(V9nm|rKo z2ml1FUI0BJ+(7gUMps@T;6^{|a7sLen{Q^OWC;*@CwEyrof4m_H`yIMs|DSUgq({% zD(c(UTIm z2Vgnyzwoa`w@n+9a?BL4xW>Mv79mleO%!1hM+)-Jx2eZ5F$*ZjE6Q2v;3JYiy zR7yk`vEwe!XGd)A(H`>hegqYF`7(8TkDI%PE*DovPyMPne14c9_n+*#=~uXG!Au|% zm=c4bcAu7$7NJMkRSe&^+RK)hg8@+FnkgHqu80>X4$;TwEo>Y~!I(UxLuV6&27nTf zBNl`TCN#ICp@%8j_L5%bf*f4sW--#F26Tb;{`SZ_s`@Ubb^iM)yeoM!Jzz$wIS=`r zX7ZhjlsSBi&442XKw21|dmpBE29}OfZzh)hFg0ijK;>qUGVwQc3n2OP<3wmg6U-B+_8@l zA$`XSqNqbJfW`Xs2SQN{)iu=EhmZAxw?#D&n$0`>kr&Xs@Du3H^?r5?d?m=x1&zQ} zG+bGQv3vw{y{?NAJVSLg^!Y8Hw$22?V2MKL~H# zanl<-^Tg|9{V??X`S zw2b>*_!z6D2ZdXHnU5e_u(f5X%3BBy0bKHRT|`NqL!3EFc;Q`D$ox?>B8Yd7Dl}zjgh2Gf}4O0 z(S{M|hfKO8=tekRjJ$6Le~2EPd)c@+M^`j8i_kh6ahb637Kf1OvX}3?jzGr8?zMk% z9>3|9v!0o7vk`2E#3};6_~vu$`2Qk7MCaGvlWwhPHLXyaaDy#7KfnnVl1AyB2p>9Jdz_G~9+eH`J$LG5r}`Bj9`i zNr4*r35X=naA8_Hse>@S3L~-$UmyPmeBF@jqxUE%a~b{@i<{FGQ18CLZA(BAafJ}T zXrI_2cS53)a3_u&BfEdmO&hEs#&DH|8<0f4f}=@AD#-q}&>+_G&VP}X0cbMe7{g!P z%MT;~u8-}q?#XyrwifV3yiyRNt#x;KLoW0MALnFFIw;`0RsGV1 znge|Tkng-gDTkD^jm3Lwc;VG4khq^8T2_S*buc03ZAViFX{SSnp(8C>xaBMZ^ppvz zT1;2W2hS6deT{^pN#P3&P+FimE+8LZNq3iw9NXtUS=0(|XmOa#%8x)@I}-qyI)J<8 zNuFbG;2y^J9R|wWFw0?zoU?(>R<6T}reH47{1!UfeuL5b3;KAFJ$lT3Ua>g>D zpDb6UmnA#*>v(yy)5MlpaXNa8vUEE*LvryB1fSPcWtGbAv5{rYkRC3WCd_i28 z0D;(H(C17asOZ1&}Tb9NCBO$b~_@U`DQ}AcDN@&$+nTuov^lays}#+bSDFc6eid zV_(lnz@imz-Z=L;U#SwNi+Y6Ed)!{=s8JYHP5DZR!JkhB+W{8`rlUJ-+M9yhCf^!_ ztBDJMhAEinmLHdRn!+>Wbtjp}npnpBInxScdfVxH%SR!MkSqkG&vt0=<9| zR`F(_41#;1eC?1KvG@a-BIYLhNs4NNClySnYVI=?H#)@=i?b(kvgaEJ5uKdyww$Y{ z;gy24`b(pn{XL~<^_IzJ(AtE{GSaBQ1!rw3Z*k zcRv(H`OCdA_oCA`ce`Y95b z=#FOiP$Amd|M?aWhF^K&Aa_OZDh#wQfTBiZA}MUq7Q|?@x40qbs{>boKiUB#s={FU z^;e^-_hWu{GHp&=x-^yI)O?VlJ*A{}>3IorZV~epJs-QlihO?zkRJT)6i)xEx9^Up z`v2cP?OmS=iFT2d$|{tUD0^>G8F30JJF`7dSs4*o$FZ`LLJN`XEh!;8B2ntTUg!9H zzn|~De)k{0$L-M{Jviq*U$5u5p4anwq8edevqgy*=!(S^mr0M1eW&jpDwt&w!%x52 zHyS(jLjI#(ap$wxyz@PvE}TD~`Fl+Dj}{tB!otGC#{(YxI?QM)f=ULupQhDWrEs+6 zJ0X4(?xaOKUM-E%W5Uq;$0>XSx>>h(V}%yeh*RnoY^Bw02vEQ8(4bG~YJ_R}yj4YN z(u}lmfFL&>64?oAvJTEkxO#rQBmcnS%ABf%C{cEk9*LHl0@BV@OC$OMk*o@(=VL+4 za>qk0k-yAW5r-;zd>@0fb*8le#6f#>m8`S>35Itv>3vYDOn3QaK}cnUZ?EqMg~nZi zsXY+Dtk?bc(EEMp#e(s-V(!C}f~@y1&3Sr#^Rw~GG1=!}F77uQ1UKFeT?sW6gHIOv z7bS42O-m20q!Cq*$R4X=pS26#OPLlg9c;_{_NXx@H}^C+dgqLFAN+W=9Rio`maj_K zZporY;Q4Lg(6@JYtfP3zKs^;z&*q1^=?`ZmPWeVC@74reWhTZ^`-7t|+dF2GacL9# zxJm8xZB1dj?E((~hM8>awnBSVAfCx^FD8afhw$kQ=10 z#(w26vhW9m>XS^o;WmB8TFtjhwJTTR4%Bo&L&IZ=w-k{udM^{-uv`?KU-C7H z36XT;e8=9^xP$B7Eh)L}baXPfeC>ox1X@708tq4+W8T4Dx2$#}^U5R8t%d(fBRX3< zodAn_x}G*7S`#(0nSnmazhCL0N*uNeXo@*6A|Yf&f-K$!0&KNtD9iSkb|viCOSx$# zg~vd?e;x8*`@)Nta_l$oZMe<9;r7OAfOTlW41F4-bfxl0lH*L}FGxY}Cc__l&1btQ zt?d7QN3VJ_2w4`bDR;NIgY;Yn5Sa80$om5Teei|BZv1EzN@Wm)!^)%`tnk0W<7sk2m!RQ-BF&T{$UO0CfcO)}g8Z+Ie9 zl7Lz#YSCNDXHhOId8TWLsM+)Bifr<2Z*u8<5$Zae;aFh>r80akM42gG`=( zs|Mns#HBQoq58FyRYCMnIbEY#TKpzTib(27f=82_SE9*1%ySyod;BfHxpx{he5zIT ztM&xhWU%a6L?SCDH?Pk3{vdsO53R!)F9~Xs3m9sXxmFicyBNqk9Ef26R}#XVW3nr`N)k( zSOR(X$}Io6GZ&(h1=)}u@gUT>C2S}QuX)R(`j4P>^HCBb@{tB)HO(`*S|UJ&uxi6Z zT%oo|{1wyxWQ*#9C~6++Og_C!jB$NxXZMYFuQ$JCBWto};q3iRXteGnq5}I&{Zftg z<)2}A(45$~?!5ezFhB27cDI=;rrZzQs-s%f%D?9#(;Rd=E)}cI_r-s~VY>hOBkyp{`r=iyNB6b!{a_zGSe>Vn@Z_S*tfT?y>wG zk^x>ODaIxdyvz6wKIkv%{&34eG?GIC`{1{hW;LXzky7-T_h*9lNzTwG9K};@J7vq4(iXhNGbbk+sTm>!~pxM`^RoYm*^vA;8lawfIfXzF|K)>T=Usi43Z{R zTh~<3iW=Y>Y1vyv9E&Tiw`()YA&Aa`9T$g@`Ul#mds>bf&N#-54# z)`avOosq^3KyrRp?=Z-FYHTZM=i1DuH@Eoj<}zh&4qpQ7?V`gzdi3P2ckKur?0d7q zdcepPfUs34ha^`JcmM*gl`oPYm_kOdCrt$yVuAGib( z1wvkvXbDh92YVYyBp<&jSVKPPjNuXTX6wXYue`P;b~u-@tTVsW9?P=q$H6FqW*I&T zQh6ofDVMor>zOx88Irb^5Tx8c-9NN>LYJN{3{+pCstHjlrQ<7}M3gs@YZOhDo=4PK zM}+4(_RoMdej7_~viF6wB=^4?sQQ$rIe#OO_j{{#XxO+#h4Cc4)IPqSLlM~o++X)> z5bs{-m*~1&7PB2}0MMuY?z@8F_L!^dc2@OYm>SO;H?;pIyTraMxsDxDkYhQkZwt2O zlmk4@;a0pMG>;@hls>}H61nrxkZ)~BvUS9@(M!@FoS$flx7KC_hb#?x@#wLYB_P23 zpEsu(HwM1Qp^5;BM6#!3a5I#Vvrrg4{+1Nzb;91Z3)&j?5X`9U9ssIkSFQXR`tP6< z=st6qh&s(z-6T&CIiT|dM|GffAY^#DwKYY_@RaTI;LZgKvWn5#)#F(Q`XNfX+~rK0 z&zBlm2Jls(a4+HSWyO(TNe;r;_+Ap7(1*WLBNEcD%YBsdj>;=D4h=}lLzT`Z&Ut}4`nXkBiTjy+Wo2AZ} zo`RFq^53FScgHWHoj$V|xVy%gk%rn1tXDOe87uVeZm0Hlx2#!`!t>lu*NW{QJ#=sJ zyXU8!LCF0Do-ib@pN=8^w!YJ~!LhFBLwdMp;L{;V)=?oW7aJ_3pL+c>y1b@>f$9Mq`!$E!#DmkeuAHXWW?!Lp1cNlS!C z3gecERLL5Fy-&`_QjqR|{%yXbk9@j==m<*(0RVzfgi^Gt>>RvyrgARuwSNd3^S4f# z13m_V&3IRv#>l%;FiNwRG9cl^m2cItdqf?jKEz#=L=ofS+7xp`8F>6BZ#3GrG5oI@ zC;7$;5U`b=tLJ>tjwYityMsCk8Z}O5n8|K6cOhPhSt+4WU`};; zlw-6{8=ivHQ5yul01zb z8$tFt{d^T3Q`1u~7}kDWPYIE)^qP7txq-sI9rp?Xt?pT~{QA}!@#922=K&N4j3p8f zZ1~r$+X=9xeMdfSzt3HOL+LQ`g!|ZV-T&CrE&GS%^B*N%#^))a5JVFM7}V zx6ChRdipnpF!nh_;yXa=mn|D(MEhz>$jy80V#T$9d-lD1u#ZR?HRI-ABgXOxjoai~ zj0z%NEMk+Ysuw!Dc5MQNq?``0cLvI%e6_&l)#rP;G*`+5N-xClp zA-&W*L0NT7*n_f*oU%`YeaZa!Bz%7{#+Jf&o>|#~Iemp4LgR!^)6UED=FCC64%D0+ z_djw$zl)^dr}%$^hZH3ioGffj15PG+VaXF)7#>%|ecI)cBA%{_`o|uS8Wm!EBb<(^ zp|@myJ5fhcTvI_92!NeJ75;4uDFH|pq$?Jle_rH;;12K^P(kP+k^`u*;Q)trzQyH` z1<0VG$E^z9!bn*tY9w?$#5*waSJ2z`=tDlyoL`uHm-34Z7pVqP|IVRO8h?Q9J`U}l zfw3>{FZ*}YrX0uwc__!7aVYu_lv&1JmzdPUe|9;0Ctr{DORRV@1Pm!sGOndu@@O`v zBp2`B`G(vr8KGAq8PT{Ri(tKGiQL%(n$ z?m@qIMeB;iwW}-+>+Xz_(qT`E3XVmvCnX8 z6$Bfz1|gI=iRLL@BfBqdS}1GY{(sbdz1=GgA^{D(ihaX>eh-(7{rIO4<)ReMqAzlM z>`fV&CZ2yH)&%;5-VB#nV6h}M?c!kHcYc-ni=kbuhg_fFr+484MB>EY6ZRGBte5rU6+5DsBdgci1Cx4zA9n)H&FA6 zZRv5smqSrLdC=_u5pDx(Bpp7)6FqWrhdUNH*zq?b9Wa&_@ zfuB8v{Cvfk-hKD&w{Y{HEFGEsx*~d3(BQm`r82#Tla0!QNUUFD8vn%|pfP-hhP+~L ztai>La6piMi8GNTU+Q0TOYk#>F)2YwA3l7vv^jJ@Fz;RZX2%}p(%9w*;M~pThXQWordh|fZY?F z;5@?BM{WetsVt)|0jZ|TTht&%^3Ohc1Iaqzk7H=}RwIh8?UV1EHhfS2*U*)y&scns z&=+Dy-v$YVNJYEd!w|K`blT=t{wr4K8cdbUG_6^(2&%G-ZkZqa`3_$)R$Ck%mU0Mg zM;<3!dqdv+{hmxh)C<;FlzB$ema!g37s^Jl-Fls6->Z>A;3gnX9fPDNomJOp_a}!B zzq*|-?4 z(~E=kzlNy(MX=hM$P)hyYATI|e|{GBgA}>pzKtSx0OXLhf9~^g6*YKXbXV_xSFY9I zu0?X)9IeRqj>ph6VH<;p5RCT9$sC4^bVyXy)6D<w~2+@VAo%4M21z0A)lYB^nCrfKcl7zmXHVBF~noSAfJf; z6$?>IeF(eYXICCkbhbFOOxj_+)pO}==o&eED7JPTTO+Bx4t=rfw<}`^#d?VXAKwVl zhk>e8=!~CUA}&jCz19iX>MZCPPUeF7o0L!6ihun$7nosJ!g4hgLqEsUtqC?1R< zXY@LYA}NQO_>%d2n_=i6*<~LP*YH@Lk(yCN0BA)W)XF#>Wwh@=)olo27f76hkbisj z+4xW90<*3gs%LZU5G|QxTTBk-d)?`h^!lW6X220s*px^*k>9;N>KnmOwJ&P{PmdoU zg-1)>TkGl#BW93gzKB>xibmPxfs-vn)a}u#jjXIXaoS3Rcb#uU zvG+r75k^Uq;3UvNh*3=>`Fx1EJAs+c|TsPQ@dH^Jn?bEl&vq$wrNPT*8+d*u+L>$NUZJKoNP1ubc`@2gZXQ zPXN8jy9NsU$_@-5W?jnLujP3IGHRM0s86c2}|lX4e*@CvseF z<~b8lOCQZ=sxc`3F|~yusT*}>BBT4{{@1j)GeAVTK7yYRE}u=F>D%45|KKM zQ150CGz>Kp(=+dpBPf!mYIMjngw^e5w;eF|HZW8^fILs7lEe+QRLGSU7 zOi3d3S%6-)l(!83!)L_{HWEh@V|%MrF04~?1SufCgQxL$t!2#@5;ToirWm!We`k=- znP}^bRqD8o1tI_#+_T!cl)2lO%8?qs88uH}4}2$r9Y&c~3ZrmUzP_~962^tdO@u)xYQlv$=aMfdWgdUh!et5Nq{U%t<=xq@ zCX*NkmCpN`%DFl?Q*pDwRuwG!;&(?(ni6fT={6*=NTz`RCHndY|IBAchB!NGzTmcy z4_8Qzb!4JZB`}tWJTBrlXlP_S1WKW7)YaWqV^$))Xm25&`*lPHG$EdTjqN4Nvm_`F zh7m~GKN3%ZONlDQ_D2ACqQnWa|IkxTg6^jB}%aA;*?ETFEZ8QE=kI`vXWZV>`sA(ll zbZ>mM0(#7bTk8^yLqFa5$=^&$U)VkWPD&}4mwOw`;RuoI=YM=|x;O%+88OA_c69^o z=oxAjfm(hWFxKqxPYdff7S>u8vc@ybLO@*b-|r^dOFHGy~ygkv=<*8CB?oTvTe^JrhTyt{+bj4$OSuIIF9v&&s_bshQ8H+_4BfX;I34076 zPQ_+R289;|_|@?_`d!8o#ojpGCh*gRX)re#Ev);Ciseg2 zYZ-zBY1&b{x09ZImMtqZZGl=d?&-|OpEH5s0#Nb~!}eA=2O zK~?X2rr5#{O=Woo*oY=q2HXf11y(P8Ef^!BiY*S!y_tOHEJ6wK8V{FGop~1w@-^SP zakpvb^2jOz$&(HX!1_9YOlw6U1D*J|&&))=S=qHrXcGN>EOeF=AbNyB><7b0f(4D~ z(6l`Fs>IR3q4!CDYAqD$XlUs`c{=^vlGl&zd(OB|CfI&)clwi7@HM9K>SZhPM1EU$ z^-g_qxHaCe+E4I82%9f^SPje1Kdt%SX!QPHw>#7F?V5Mn$;d2KUf>ic(s3`3E8bK> z+}ldfD!9wXRM1+?Mzr&Dbxp?Gcf8qag&hRW`)izQTUEmHT;UB%*YT@s4ZJuvxp{i- zZCg33i?8k0SGW6};_oY+CZ865xNyMEc_i<{?Th`c{8f!AA>v@j*L5B_hjt9F)2b(RkluPT!vFIL(ImgzYi@(}pG=u9hEYKhe}m zOh4aH>hWybRUH{UL6a>hi@)Z)v0Bc8qF;1PS_!0#BQ#68)vv+`)BzR@>rP|nCtV%S`&zlc@Mwq+Zoj8?8( zdDF+I4uf)Ie0-LonO3EyEA4dTUb{oXg?|b%k2D64rq3ofFc^eoR-B)=am4XBC3kz#P5lP$4 z?dhRIhqlRwhK81vmh#vsIXge@EDZ4XAA7!FBhR*NhkJW_Qw5$C^BzNZs9O?r?pLEm z>n+^@wdh<77*QuB`?j#SdUj~^{E56fCbS>6 z!r2zXD%Cc17jaxr3+u>6K*7nif8-@=B=qlp)1f zEfkx%-Ud5H-@jRx((>)4sP4co_nubm50yjyu1eeiZUb1Pqi36in;A!=*sysUEIY-1 z^?U4}hbtzu9B-?CKq}%^j-`&C&VR#VR?yFGYx1 z*Qa0WhqCgW6THBy?KPT*+6tuv+{#TRbioIS1_w2*PHT}4_lw^|7?}{ zI9Zi>INhykNe7E3ETbKjXV>-bS!R@TGU4!yqoA(A9mJk5wWc;#=^nV3&VEq)>-R@= zzg*v$H&w?smwJ|CCeou}fSlS1sqf_n!`?HikYHpYk26{`^MRs2@UTV#jDic0cjyQy zjNpAXUYj{ulmL$Qs8!%e1>+4fvJ(oWYqPlb8Me&6Dd*CXcO}f1+TnUsjk-Jhb+Sae z*rZEKn=u3MpcL)6B%Q*R5mrI(G!1z0o-g3d=b>{mZAY;nvJ$bjTq}`Rm4!j4Wrvu;qUOlb$NdW`rs)UOrY`CHTB= zordnLV`B51o6W>#-W;WEX=eVCq6)=*{&8!he#<3>ijRJO#8*`!b8Lgo`svAJHa9!H z1NX(#THW?7tYuyg-z@Kz9jUa^s!!Hd65&qrzQ6W&S!I@<5hJgtcvj>SHMLkSNk2NR z^sG}N^DCmW@s**X+u{n64m!Cm7fQ{9-kACC6R>C&un4WVr#qsA-!JfZYxkdDcsuFF z%EB@F$jF1gf?M;(yafYnnTu~OjSzn@oVtqnIH@eNvki@mZC5l4aCfa?3(DJ{_H}gj zJcnodjf~bZPA*+>ILh(X>Dnff3eF#W_rA>&^6{^fhvHRX8pC7f4j#87Ay(-AU(r2a;={Cr=-^KR4&JRN5LZr71uSQzy zmg`jia0{zc;WT}4`nXfqW@!iQof|Q`GblLsy*K^S3 z9O(XnTdW`dj)unHZwcp=9McTPyxx39BfoV{n=#XYOZyh<&KL#Cc0x8|{HQS663Bn= z&kTE^Q1*IDGtD67Eb?&X=QIa*Z`lw0b&^ieLMtrZd;A<65}ZT(%hU4@$F~E#QQW4~hN(SZNZ3tOaAPLDri zzI}>UX2{GC?f-|@1l<)dA$uWCcqbttLBeS$8KVaR^M^5_Aok}_J_*(C6&4n5*}65` zu2XJ}&XT%g?|ka{L95l&Nz%q=lUrubI(p6{xx1^&3f=9C7cIK`-bNQX`s3{vhVy6! zQI6*v@2BdeA6hSAetv+kce41Tnu~4XzL9Wevhuh6L z*5SAm0aaDiD_5`f4d#AGojUX$!aZj*wUczLKE1j@T{$_q(4V%D z*Cq9fPo14Xfq}6b_PbgZdCgK#QE{~Ek{HoPor?M!q!MnR4sq6q)OqhQAJ<&-G@wzeX0@dWI+OZusQR{?fu_F zZt*Xm-aFs(E>Y&%atw1RbQ6dQ=bJZgTt8k}BXZ)!+!W*doSXa(D-g|I z&A&yVW~LhF(=j8?08-5{I|KxjF3n$7b6@;CpS>Ss*Leg5RZs;=qYHT(49k`D-PtT- z54no6lj)XF^Hh+Rw>y|EJ=is%H~s5drKnlyU+ed~YC(h6!8}nqrE6es1hNXYoyU^1 zvP6!wB87-XJ*)4>NT*=pTG}8yy43F6Yx% z_msD(nH22xc>Nhf(!v@NjJTgtmDx(JN4{V z)A29WF;k=EJG**&6K@~*t*5WA4{g^3`|h`EBV*=kd2_B!P*+zc3gVwWeX<|~e`Y8Oc~b z7z9yA*G{U7I(UiBx1z{X+di3%jg9)HDw^oB;(_$iM=8JV2_MkCb@Qf~P-qrZZSfps zr>DkilhO+4kX+uaxQuq_oloth1uLj8E-xaw`u>PlkrDJarJHi>vANH$Ft6isMzN#* zpy(`5p#^O;Ohd@f6NvlG;e=iVjW@sRF}5LYw`nn%dC&*BZ0+Dhb*}IH>S3D*NgnHS z>gC4Yn|eog4qiP`O3kKXeo0?*W`ZJh0X2YgGLM6WC6-$`3<*_HH7*~~?ikc=$gI%h znlSH{Zn@%KtXY=z>r)an6BPVga&32R+_;g*j=Mqv{&ZXNnhu?MntF^-Nlrag`}pyw za5`P$t=gQn(w8q~A|#!35R>2de);lTSy|bj3vC!fAxf>|asT>!!9K~^XJ?%%p~LQ= z2Fe*18@u;6NfVG-YA7h&eBwCRN3ZcV=#ukDl{<2zzht9l9isj9)*n3oJbP=AX;V1; zoiAk#%@<28@_^?ti}Pb;ZWi>(>{`%E|RX5ky^1?yBkHpGZT}kkNjDTI)S~aV5^(Cohu%Ifi_+j;x{V z+?lq@(|Cbe-u<;n7Mc3UH+I;$VMBlJ?bWBRm+m_Ey{E4#T87MW?S(>gJ%rT*v5fJ| zsAFHMM@L7`^~6y`gEKqrVXHV`Ps!d531K(4u%N=w_0`1P!s{M*r#Oq61#$Ym(z{#z z8cY1vYvM`tHKZhwq?#kCv)H#55)dTC@?9^fgDq5p>q|lr|4IKUIzaUf3p+bI3HPZi zi^|B9w{MlQty^_QMn;Ia-iA~0ZQc4Z{f|GFqJ3`-m+!^{$2v=HJ7wKoC$0gd{PPZz z(kUMY^yYPJc;}~WVq(IzZQB<}F2rovvW116oz~Q(_YC4kLr>;L6`yy!@5dpkke8PS zlX#a~H8Pn9v!AMrbcISmo5LdMltoUuc<3L|KgkDehj)AV&W6~Wd8di52`PcaysyXA;Fl2W+-aIK6*f;l5e;l z{)t)@3(TQ|Az| zREvv9yD%{nw%6|DjT{<{hrF3ho1$u_cq_5jM2;6xF!Uk0>?dEtvkOkoAS1oU?N@gD z9E1kM#5SLL@a*F^NDG#og1JOHpGALbZrWB$Vg@%{7}$*~Q-S(~V7BeSgWhMv41?-F z_4o6en0yGAIO5?^a1s_5V?+ou<))usFm@lT@*hjcXfIx|BJFNwhfVjhk*{CXV&r`J z@*dU*8a&UmbFK2cHa6DLk+H>^Osxfd>l z;>Bm4+X}0&b>4ynr(qB=E++)S*V}tNg)0y*?1#HAv&k*rwbb0q%(A1%dvts}2p0m= zK3=POK;EBBiqOxrAfC#v*%oUvV4L}=Q~j7jqf7SO@Nin>{tHy{SA*2ZW}SV)jLToV zSOfN_`1VH63VjPmcT_>K9*X%EWT7L3(XzCpU0uGO4kOtQ^A>17ndG{fTS<+%ixW}u z|5J;@uIu6b&G8v6VyrM6wzjsgTfNxXTvLY7x4>4wj!$$Q@9PDqV1K5(va(UQa$gKA zXlY5w5dc{AxX<;i_izK)5ti7niY&8=ZXcqS1fLKW7srb@$e(4+nuIq2+mkRRqU`NkEenfyIA=`Fo0=F-3)rs8Cna@E zUS1v!F91(I4r?&buo7z|FgQ3K%5j#Hqg_NZe`^$fIp*=!}h{)S~d2NN{cX7|(Pf0srA!s8|=g$`s5)y%RkiSFMblLT1;AuOxzRB$!fsKLNos{w-S$kvJ4#&KRb9 z_rWFbPdsZbaKCWl=lM98J}UHh6qJWMSW8L#h{xsAMD2F<2$0NwUr0{JVof94s$KzZ-<3j@*Q)wYb~1|ow#w~Y}W;> zN4tTh-7@~^$Ddz3eGFw7xk8U=AFNx+V;?RIKPx7KC06}pG3nn~`0FIjwRF8i-Q(ec zp9%xQm`)Lc;N7or^XARPm@NIt*;q@=y@Az zdQ_;Ure>YB>b{Z7D_5^J#nC>0{>&~GUZIEnRnwnXhg9ba7w$dIfu-m0@bD;ZH1TwQ z>AqI3dH8uf){mvg>4t%@pLj=&Cm2dT8V@|C65ZV0NnDJzg^Njfg~_sa{;E$i`7j~@ z6aM`9b1n<9Y@7E64t;g%R4O%ZdK&=pf#%G`OPAX3*-W$a=L-^?LOwXbN|Y4muLs%oWBuCYrh7I;}}t6_9>G*`>b zO82oZ>hQxfT#?`4tXZ?D^>pnU=YNAIssp!yjL7MwyLKR~p{B`dXt8PEB00KrP+xV- zH3Vw{;T7?iiFMEQk^6}5wp&4K^o)0w!suzJsj1yKb)7W{_A{@<*!VUE{~^K1` z3&Nhi-H1pWsdV6ywjmVHGVtPoj#t4HthZjUVuO~WV~*(+ znH4K;uM!U3Mx20z%V;dDAxU*VnUHri=t{gMNSnmS#O08Dspnk;v7(Wh01*t0v_9SFK)MpJ86E@i9vH#mkotUpt<2N)_ml<7GCFVHBNs%eiys6pWHi zu*1Rqj$5$7xg-8((sfwSoVPvS5e!W*P^@|dNa59E<)AjB1e0H@YvLXUMBod84+pn- z>F|{jNa8g#G)R#C^y$9wq4$Q!7!aG?5wmHdjg8r(9MnffRADq1e@elP)!X?bBuLA2 z4cc)N$rK9YnPkQY(iA#8K{>oX1~$gVt3=RYNR04k>yW}Z{Ql+QyH+^6Oi<+HtA*}k)knxx5%EUdV=l6YxLAi`aH&&JR3xBxsq~Tx77s2h_-dA|q3ilaqx`om55=3tQSi8p}~{IaYpe zXCpF)b+@?MXmCI4_nwVv)2Fh+Y$n{@dV~ts+LB>@3&uIBI_60E88JzV6jB{Sw=S}e zR^@SR0ZB(AReS%O?&uYAR(2-;x zp{F9NNwxyirk_Yjk~ut!R&&#ke)-2@4w)^-KIccoZDN)6B4r|)fVhC1#S`_2oKy5O z<>0=E(W=iprCM?`%%AX23C@Ejrjw+TGFCKag(dp0%~O;0BhyVwkk0GeynbB`DS9^E z&bf(cgvQA@I4?K199*+5f?^o$s8v6eFbWHu<=}nm;KSu^1qP&Wi7?Ln$H!~XiDiuV zL%Mnz5kG5cz5wR8X&yd&Stsq7yJpYbSgc2FthcE_ThAo2!mzdwLHnJ`atEQE#2(2F zWiA)X5KFRd*l_IA2c#)n@<{hIuw6Yc;7nJ+1bsH$p*}aI4ili4)(td_q$Tbci6a!w zKWtk<_GkdNvIqxi$oqiChPnze@53o@VKCfK$zS`KJv_(sUDbJ_Q@o}rdQ)qs=6j@OuBfgsvX|j?oCYk zn!fKxKy(dTvP$(ez1r~Ss^wJU=44Y1i3|RdCslbm4Q*p+PLg^q(XINN3cVngxp7Q!$m)V^+QBhvW^YSasU%M-Hlv7et9$LeVt0=rP-`a|C{r`{b z|2pgp@u>KX@$&iAydo)MWBTi|P0Y!j-+$~}_4-AasgM{F8%yCA5MbOD%QaGLBz|=H z9r8#&Jb7zNUaE`uv|%v@&qs^q%WbA3a#XU6C##%BN}u2}$;bKS71dE5?QK}hzb1lN z(xAhplaR(o&mL9yGaq@c&1qO~ICb~pWr`Q^)>YV%_fB1XBkv|E@Fyxv?=QKlsH&-z zoS?(cksI;G6OxfF4llXHBsnm2-exDeM9;uLC2Y3xJp=2~rCqNQ27b8CaP9loZiilB z%=qpAtx_`{_pUdL50uo@7LEknem=e%@d}1LrW3P)Q)kvqdAy?N-ISI5JY-~KL@Kg> z?f18}-y8h5Va-=%^gh~`I&WxCcE?V1g%^<6Q6n>X=P<)-PZ2zZi)BVa|tP_ z)F-`3njaryDVm=x}j$L6yFELMBg*=K1=ILi>^M+)}D0U>f z%P*z4mLCD|_Hk-P4k=BWtII|Qe-8>z$9%N1rCrnPp7SrI<2KYql#dVyk(MfHJr|SZph#(rgL)!5TCBHq%D2Jt1{37G z4Rj+DGl-p6y1S{@PxSXBa0QNs5`_|5+YHy@I*FjR`=n~dq(4q|b?0<|;8o;Csn%^U zDr2YAvB4^jVJy1s`m2{_w_Uls<=pc`TppmFzbduPi7&@qQ12pN+3o*?Z*eBxWZ~6y zL*3-3x?^k~)eM>qa`D{MV4&t2Vpwmr5?ONXKe-#1@?=rC)czK(6Hq_hwK(T}x|M=g zJ=xj;K|}e4!`Xyb<7fv5N!Ort&4DRrT^FZ%%T2||#(uubKG$Un4&6^tQHG=;Ujbi^ zL*Yw-uH+xy`pdo6{64pJtnSGBs{2nXtolwrT-Z;(Xxe32;1p23s1L_^KQx%QQv)RBopkKtq2Tp~r&g%8CYv!Txhi8d)? zLZ|}wUtB*oDoIAoRz~+dyZJ?nQnuQ z>y%e2j~hS!9_3fI-fvYUvR%t2nGmdE<~ApV+Zg`IWGJq#!MgOFUNh@uC)>Pj3P%0W z0otka3FAiG%-`jiquz`gSE8-_Z7uFrbNlqf>fGr`H}-&@z|@`ZL9KW0yt;A~2kn)A zL-ll`-{gYiCt1wsbRRj!#t)AeL{$ChONsM7FBmy$t5#2@qULxKX`X{c5mpN#hf^OY$o^E_ca!eIc_MKg ztFCTTVjIAysJ-12M`P=zZS&nWXE68)A8n({pM{Wv^e~F9>eQP}KA*Zp0_EP=c7926 zJq=}GDXk>59uO;1Z(NC1e&*7gt}zc=Vce;n3N^MwT??0=WMVU&>qIpN3(A_S>xR_k z-)2(S4vim~N>gsHQ$GTqT;Oz6sTCf|$7jqcgK4|G*ob0*(; z@S&oaGIRe}ZHlD=zPfdH^I>ub$xfqi)AmT%!)~Xvfu9F8*JGP{Z#h0L+ig<9Vtl{_1}dU;63o^=rxzud`0%Uu?lbNU<3c}58b!8 zx$9h2d(aN2?9=`y`XoYfA7n=pk**K#E_1WC_${XlJ8qiG>!A*npr*wZuV=-#Fw?bC zyN{`3>4??-|h)Ou!}OLd3R=vby1kNmjn9NbDa-Q zo!=9gw!C@&UMBL=&YD}8Aa3eI!KWuOK7tIW@zA8_j)mLntaTNAy;)|oQf2w$9ZS4k z4`ttZmxu@c3jLm`sp_&pmxt(DzWvVSapFRvxA_x@iJFPUf}GFamurx@dhg5DRIXK| zj+%#|}nql8jcF`848 zf0M$Ps70AFO9}r@R{-_8h;mAh;tF{vCiDJ|MO~PFp42DV;f!}Kz3Dj z-O^pto~@}#8pmW8Imm5z+IitVgDZ_89F-%s+xhe&pPum3CMLbC__i3Y7eMhT2xmx? z6s@yb#|O2jY&))|31$4VHD7pfJQN4GtJyyf@Kz64s8&4jq%5S08?h{XP*9b5^{psX zEO9{m-!MfwqDT8yGhw@f{5e(b*hZ_xc;syV$rF;D=h$?bLJY)TU$-&!;{RBfD zuQbT`Eu3{#`D|jO+wRqiM3hY@t8!OA48?1kd;fl!*uwnh@#e>xYDN^2)_XCuyqKtA z+4?=-lA5jLk1;ED#h>qwyRP)-jj}#;(f;>}YJXX`OLU2*6ic&76hg^VVjdysH6V+>V*E4R`QZA9WwOf^}D{_>--m=B$~xQm}HMjdO3T8 zP(GtZ`gz?SLNN ze6i-SSGWA?KdGj(gN^^)xN*QycZjd*>u#AjX{x;Yg_Wu$Gf(mm z)DoZ9rM=QhhN+u$Ne5TW+QA62bPN@24Q{kJ=7&sOd~> z|G8_PeW@0=>_i6p^t4r3buj1P!rEXgU**lrU!hj^`!kzUf+;+xlzRA{{nA@)IJ3g! zj&-fGZ4V3<=R%uXLk_mzVzI})ix^>w)BETowuVXxesS`D01sBwk~>qaRv+67m2zR4 z4vq0%z8H?PuOQRR<4YX>P}4Ck&OBVd*<9Yj5CLrG6yIUsC2^%qY>K5T2c8Q~38`d{ zb|z`AYK(}O-p^+sRECY0i6^3g1KCXdV=%ZH5) zj@Dc&w=Zm;n>I-Q0X0}TaA1OR^~gWFbVp{f?x?Ec;p9=*#j116MwHavvXHQkqS{y~ zGjA#GGmZZ{A`1=c8_)N5&S@snN>Dg`%Tcp+Go|MIWVj=JZ*KO+3Pl3-)ZCJj+vA!Y zHIb=lFB~Te;aU@)lE-FD-;F74oNvey(T5BAT^U{eSb$7o>Wk~0=zuI5SASg-8JMZw zFj2}Ov_kKROFY;w$EZk`rcmXmV08SEkI^~wWZw1tB)N)gLy`1eO9I!8Z@hgiZwBM` zP-hMOd*dB5$b5uG1AmC9=q?C-e8E1ve(3SBD`29OH@%%t|CvDheDuzy3&z1PAI5gl z@Vfoiu7|%KU|IdrRks+^2+WKaFSltQ)G!EdX^GSNk?i?XwsgsI{4;KIAbwz@;eBmw zN`1G5=+9SK2nn487M#f^^v_N9Mw4h^Rn(&Y>dnRF4&Hnl4Nb9lX7 zr&@u9DBb{1zR98-*XDK!*V9269DHNr{s=+t%92q_3L)29`p^HE)<^XA_O?fB=m+o2 zx0_7Yc^yn{Jr8u-U7T&kzh{Y*gUTAj&jv*E-p%~%*zQ2LF3Q)$UHFOflo8t~pv?v6 zoqxlThr;aHi3PrW&ye#@1a9Aar2%e}4fFmp$5P?w>vSFI(#Ea?HsWQaP!91pEI#Z? z5a{2UH*i}Z{k1+y+W*&Q#lK7QP3&S91GTx@VfFoI9~ zQ|D&`&j_r(i}tr1Q<>k@Tg~-8`8^!VYZXV&>vib3K2=L)?b0mY{f<*Fq`3Ijw1&OC zy~pL~pdi6mfU|A0!UX9mDFdrM%?#pX=y;J~kMb@_B~q43GY!W-WcO=0d(Pf6c{WiX zV@V&TeY{Y0PLo?Wt*=E2kPVgjeb3mJ!Sa}^k2LDCv$5>#>_Rkkb*Y7D@#P*opb~oW z^$lZoZthR7L?O42!U2#;XtFytrHrD_`?~v?KzK=Sjh(S|Q!;aDoc(!?qsDXFE}nzOq7^czDHmI^T`jrmo*O=jCu zyojaEWZuuEY5GNh`b9Roc7QC}cRSD-$(Yv*$EK9TJ){h6?fLC{$CMUq>AF6MCs)k4 zlg4w5wz?YaD#y~4Ed@|;BXOv3nS6ZN!d#VAB5>Joz^O8F;Kg9ZbE2J{9TryBM=c?t zp(%Y&2}nr?Mbn^i>-mr~rNk<0?pW!fRz`KxS|o%+fHCCY%YY1f!n=s4D)VRe@wlE6 zlIE*?vi}exd^I>&ugtsfm$s95Uprs zfwO??EA{Xr=Djwxm=->Fjr)1(bYtn#uOh-Z@1_CYk+05X@8IAyy|lDsa&~$W6c#4Y zn?z{RuDHOx@9DbLY+aFpNuNGf5tsjl%}s;e&Y^Cf#v7G{4E9I5>~3 z>_FAA`itA!mWDSAGw<`F(WGKW^|_eq{zf}pm#_QrOszv4=qUnLX0qDF+Rkd94CaWMe~21Z@Gii%2!^`xNC@piLji7^HdG4ak^=uO_L%Lze2=rQAL z^ZBDtK%ZJ=XRhDV3Wj}bH>6uFAEeG7( zQtB3hj~^jN5K0n9IV$7rcbfkZ`aHP2dI1N`X5PKL@ z*QXbhvn74b%F|u`j$OhjwhM<<-?$7OR{TC)nF_Wq+wIXOl zP#7wG<5FVU(X&51e=>O4^^(IUjPq_XovW~O#h>ufGEX~6(kxgxL^7dr*3kEHCH>0G z(S>+}h31U{j^XQmSGJeKE??dxoLa6-&>^Pyd)<$n4we!@<&B@b-rKzj8tU^afJFEU zEZ-c5iegvTh-s%)V>vLY8ltjbqQV0WacnvyXStf{&{A)X>1Zf73bH38MJVTlZyEP` zS)k)1uyU0f5J-8YlG?`JQ3B8tz1Cfg`|WHbJ73?Iz#+gF^QD|>)KANOuLH?)=I_0s z&`ukfJInMG!?Nt*YzvKdAiYZxNXZ?0kCBG>jxnWh%wSvt3WEwJjLu3`4q}Y1m>Dn!OBI{oCMld)B<{*-8*za_N`&-J6%hDS9QXxZ>R&L zv!2k4bbXs~%O7&QcPvXxs9c>_T&ZNV@4XdQi$Urt$cEYa4i;Y!U_qE->u>QWN-O8D zUKUl%NNq7-Ed(fwjG5Z{Y_HI+0!p3;PtO{~(e>MRL@q#?kox3pN#kxsr|mxKJ;(gJ zS449L&uT6361hyY)Oi)uRF8~dUkR8zy5;d$F`Fv8P3Dc?_BD>CaP2+6)i%`d4-ZEk2HF(H)u2ky!Jb($xhq|h7{DKT=nkYx}Bde~W-iGNfg+}mvT@UE8 zq37O2HXDL?2rhl(NuJ7z87-&d0443nliNa$NzSov5a;gqHI`5fm^8+m`&#JS_`s2?p z_Xu*38$U$AX#`;{J(W;o0dckf0+*Ik%RbGTmW;l9!u!KeQ8a^Iq|BR|HemphN&F;| z8L3%`sq`N0B2(2TiQJR!0xzv#XiR;Vf45rou)OOlGJHk(_Jg`U7&=+H zQMdMaPXlD^Q-6 zOJ{+aC;Vjcz4tAjp1_up@1CGkw^$ZKRh;!@>9Y&_?VU)C_g32?au`aV{h!>rcdnP{ zmp+hvLqL{pS{A@biJV6BcjIhnExiFTgVs0oC!H@RpV&$fZY2{SRdydk>hsbEJq0O4 zC`L2xu@i8Wc4B)b-?tUB@`~BnsGhLW)Wu3MB9PLyKjSMdZ}pD}N^>h@Lb63avMZT8 zG_5{;{=K-9VZK1Gy=3nwDmxzicLX-7-l0)}Ny+0GP)BV|VUB06Zol#|9t{7#!Qi+3 z;G-cW9aM0{IpwYS)dAJI#*6ZLk(8(9-x%nzkgaPV_O#YPvmj*;#Ra0F(H4af@bU|r;hWhoL8ZGsE=IRgoMvyYu6i>UPkUEwLwrP-5@g-|K;i^ zbur*~Shfou3~&k=ppyv>S(bf)STt+Q)b$*;GGWzT3VZ3|``;Y2<6~ zAl>QgPutlhUBS9zzLrRA{EeP9c93$FADPao*Y6%uPQ|H&E!FemI3#*mKXk{XtxCmb zdeSx&Pm!-Y*i~Ru79fbMX{vS8bYeg^@T$dsSU&#%PKd!na^^JzKkUBYyMb`WhsX*mDOCf!W_MpaMo_M2fDlb{4G1yY4Tl7G`anhfF}P542A}Y1n06DAJlmB zs|9D3+AC?Qjjun-duO{;p?YlY8tLB6sa25D6H)&ju4`M#$r<73IYzrUXz-)ZxWy4`L@WWKPg!0QW3>UW{>FBGE!vN`<#<@p@B&tQh4H zo7mlM-JFB0*nLdGK2#&wk=doQHa7^B(Ewqia9JiZuE#&f(v45w{!Nw|)Q@J!7Ky$M zhM5vXExq08p1+{JSu?`Y+7GRU%A#3QB>7dhXNY<0Z!wq2iM^GbHq^mL?Fp+dk&w`P zTOSor`>_ENP_RCQ2thM z6+N;xdN2Oo`*tEFwM0rTCSf?i z9H`m3o~y@$dsEnczC0zt`sQiLovT+jgbRY6wD=nW*i4sz2Yl2PpG1hbRJ_G4h33FZ z-I||8sF>Muy|~Kcnyk`1jQ74Ac60hVBFxS=Hlwh zo2Yc?D>AqzbauQeqoB~1tCmM8bQ*6{Ct9Rmd&_1@C_OWC?qersbM5|AC=@g0yI+EX zC^a^I&N)gt`R1iOrrX|hVMZi^)$NAOy+c|R*%!)L0s3iT7041?8ZTOFvq zJ|KdqGvnmtQt9FTp8v{9Eu@DL-x(^%R%0}f`|&A3Z2v7%=8lL#=qc|H_#0?S*S?>Ee$n&S{t72$o$a zC&;$1AT-L)8CvF9l}e5ZT3y>d%yiUW(x#KB9T5n`qiL#f+uc5xk2HZY^GipE*z@Ni zFzaEiElxpgx@UorIixIBzkb)N$oe7!@C0C>aMj+GR>^tj5MhihIw6 zPJhPKU!$W-nG$fXrFE~Z`#p_D=;U#_&VAg!!YULU?b{y>Nt6-Iy#PnJ30FzB?5vH1 z0C>b@fK+r}XRY|{QyYeiqNx%U0%w~8O<*NM4l?EAZ^7xf*jqBbp_KDhTs_aCqfGv{ z86Ca3mApLVMRRMF+RrBxi$#+~GM3*{eM=0@4J0tul*}BOXJ6A@I+vv(RoNY`TUn>n&EY9?8s{y|DY;t2v|KFpN&Tkfr&0dG0`jEA5Vy64);d+ z`6Aoa?qk=*cr-_I>=R;fyEDHjigD&D;VB&DhShIB7Bl0m#k91pBmwP4LPlmh)9_NW z+?wXmBQVYQ`}>Co+iX_MyOvc1hljfU!$1kbFz|Fv&-*GOv;$t#Z5-a z2u~E~I~S>|Bd>si-(+&<_N`kvpGOzIB@tG9(zq_i&Z((KD?#Z*@rt4&1Xr2ul>}dP zvI)vE5s;h93eF8@aGzv{-nu)%Qd&h>i=nS%-L9fF%CGxWxuuBeO^^qtqWCNI%DEft zGNCdG6ih#LppGBa2?@%^?v|$nDvtR`VgBmfpR@TYeZjbWCVjsyUseoOqApU)BOp!< z6zyD?lt8iO$_%-B`XDHTTYqsGT1WJ*;-U|a2$Myw;X&rZWUBqC$eza|vEd7NvCj>p z#^P!?`aFlOLye`HC5+_G8dgV0^@fNore4v+K3WBI<^~9ASOwz+=t;IiD}PiqK#zyA z)lftKJ-tYs4L5Dl_j3JsKR~0YnsB|w^DPI5A72PtC8{6>&Q+}yHorJ`9y}Z*o`)-0 zR=4ldr|ua$SJ-8KtmzU-8EK`Jd*3%k`E zS9z%~^#_x%FwOn$de^=6QC~XofCC^Twy(W;^G4grRzjknASW?EkM@d9=H)NqruzPd$n13cIWwQmXG>+zcv3Vj{nu8*MqqcN>#N*F;PBK* zA==qtCfbx>H)j-s4?LCWkdfs~p;%jdfNRWC%uZDF9L}XnDe8HBc^Wq*q^0@1fknA% zVVyNQZ^|oFCW0yOB)Xf^TYw#VU-uo3S7OElWi$?e3Ln&vojDHc9Tz&HT~~9mY$0Pw zdV-J2b=IH!mgm8?It?{ppTE6_DTxl{)H6*o#4Hd#>_Y83uA@^Bd}(mLZ{-Tbn9At- z_w?aw9qAemuQR3gbZ-4v9DS19`g5UkXT&73(eT!cKe>KGk@ty(uKP-c>;9yR-JgXR zlkv}16kNs=c=^rT z++3wck9-hJ1YWR;bpQ&U17L$|oZSPL%69tfqdekXDXS>=mw9Z%G5cD`j=D z+Kj;e2STlq%GtSf=F#8ZU-GP86Uix0dlpK+`#jkZ{v$dkwdKA#qQk` zqme2nwu^YwBWC9r=>-j7(`cww?=+E1m;9CqrWg6Bae+*s_x`6G=NRNI(I15FRch5g z7d}1N@@`&nG(P;b5+Z-p(b0j1rmU=7aIZtXMSxG@WeQ4EZ@!D`?T`-!A0Z!m9jHXK zNfCdChTa>cB5h*QeBaC-CNGJBKc9Z=#>XEJD#y$LI|)Lj%V09MrGtC1xdrXeiE4Tf z{wg8D#9ia6`TVyU`A*mJLHO($6bt6N^2e*JH*Sc!y7GV0K7DyD^|L8Z8fH$c&O{Gud zsHwTR#IO4KszqWse*L~LeTi)3o!P|H!Pk7bL&{&+L;ka;O!u#x`0xWa{R8*nJW4w>Xr?-DZDH{J;?i;Cgxp}%Bc<&kq z2QKp5ar+uDd?A9hwk|H`P7mj86HuT@-VXCttAgJ_5Kj7)L6z4H7gh#>xK`c|5ICKO zSmBhln6F<;>3zDJytCbme;%zZg60w|Zj8QrFeITe9E1)KFmf75*7+am`OAN)=L2I_ zS+R84K&74nx>a6n?xn>E9N*((PhGoK(vWs0#iaEI&Ot$(QYwRS$B(Gq74}M5mkg3e zp-u4DU~bm2lM3QO%A3>+eG{Lb&+g~%PshT7H8?mJ(w>`_m-1)_AB#{AAtg#H4ect{ zgcqUUnRdXjc^+N#x8O;GbYCG|aWfMp@4^}Z8L}=e1F1h2_r`7ZPxcqP2LIA z>7RohK$|dund0<@!dE>!mHaLa(6@(C9 znostpBkR15J}<-uu{3ZGu7CeuhCM?1$zw!H2A3XdOTcQ%aQ3)om&Ab6AHCkm5)(|Y z!Xi*tIZbMIA;v&TR#sLgB0LEF1vp2bth`7ZU(3vTYd^UfFpWYQ$fv*CO6w`pWh}*f zKP?jywzLEU#Vxql-!bc=IG(?HcHhW|ZnJh@|9I)%ndqZOM31%F0H+(4XpY$@NDQaDyk>AFW@^fa7>avEj`DfhhgZSS+|<+r7G3{u-@bvxR{8!%0b!O>-U*S}Z&&WT zGc}!8mE7Q50)~IQJ$+`F!9%PdSKja;zyY7%Aryp8iX4BA>#~0=QWp(}g5pb!ta=nx zsx`tOXeEX)PAq|O?X+@@|8)06RfYBqKT+tT*(}dk^+k3>m#Jj>1bQ`!T2|0ND;=NFy z*j+(V$s_)JF_%YQ%Wz|#d1t6_etSUH9STasNOL}_$rH#Fpv>@zAsRToKG5(B;*13~ z;~B$XoC>Kkh-Bg7{vE9shw&6z&f;GMT(jE9%`&XL*axUbnGF$yIG8%oGkBTvBMt{C z|4aKTC~o-8J&nQ(&3rQRUH^4mEW$-W^l#Y1mKbmc217X%6*DRIvDGY{XI5|pMs$>N zf)qEd27;5cK*kucd&vtv9a(=9q1}Xn30gT^a6_N@4qjEI&vks~}wKsmC zL!=4{mm|x0;Xp9cZ zoFTM^JqC~f$fcFl^v2h3Yi70iMjaWNdz+Sa%B0~Lfsh!Ky#btl>P4P1qK-M+dDw3| zt+U3Gp02&Ni1}tjP&fsObz?DP&|`?c_UNg3j1k(wsjEQJ=qukxd7b3_|Dpf;hKX^| zz@P{!SP3%;VHv^#{peRM%S8E2cDMiF`-ixm`GMc${YzRxDWKE-rTIdHGxvrqfd!nt znM328E#JWbA_2gb_+MAaN8{aE0$(x^{<16Rt^%HiCrl=QIXbu%yS)5Vjs=`g@dgX? zwUb#&I%$LD18up!Ecp^g{26*RCfaQ!qAlN zJmVj0VVsf}5P;=dy%?uGr}q!-fHq%+fmZ@w3$0x)U$brni%g-jA?zh~0{26SM4<3f z(S~$OJM)u6ij6I3*WrZ9q0Ke_!s;9DNekv(0l+ffT$^RP@hW|fLXfZz103KaACM=& z-WvtxcTuyFzEI;q5H?qXX8CP~bAr*7ubHsh9UR0-fjozy6CLa>U4ytb zU&_I*-Ro^fvM4x69i{JUa9QsDkfQ&srxr1;d8$O*tk`d^i{g{!K7Vcv)`PIGxXNfb z&Th))Ru$SNh0gP>urWiCvxUgbed z=wt?43H=2D&jvAN-jHX!0ay;GMc)^EUN!!fYYXhbLFIRbmMARfInT`N;u$*Mv1q&=3i#-N3O3Bq|ikZ6Jn|r2oaiY zBHLfTz^9)r?fYhcY*E_@vAYAgG5zW<)$Xg`KdTq&1`iCVQe3`x`Kk!@UFY?uKV7r> zgQw3<_aO^Ygf=*!)vV zoFq6LV7W-wi}$`n#lK>Fzk!L^ISaE@oq1gWAFR7GHp2!!C0?oH3tohTdSQ446Zv}8 zWC-ih5zWSB4RGmjH4mvc@Mr}6l7u~YU3;Lj!gg<63qf#RhrdMa?6`!I4m)*&(chy4 zQ>uwqz5mut(kz`v`G)*Jzmzz%-{D(7fX3H!LtFQ`^GG6 zyb=SZGN~!TBjaDQmD6rnj@-)EF6$s)8!oz9SiLC-RNkkl9W5=bia(3-cIzWt(6pid z%_6Sb4B%TzZZ1wrO2XaydWtGkKNtQl8jL*Pcz}%8kHnyLrSDDe7G5>Sf_-K2lU~|~ z@x1bc$-GvS&KqNcGXlw8dsmR`4Q(itkhx_P72BKqFDdKkO)jrN7ffuoSu44+1~|&V z)du$K-$YcA8f`iTH0?H1lX)_h?oyOHKi5+#OmuHb8k>B}eNBQ&=;)6EC*QGhaQF|e zN$Tn*(9@EW2d1W`UhEZcUZ-&0oWMqkn|r4ez;L?Gyu?(}*PmLhiO+ZtGZ)O9^z`=* zaamR-?~hLK`XZGy$7hrWK5)N5Z{A(hAZs+^`XKuP-ksYybg2!4vw0akHZ{zCPd{Br zX77A;9UGy#o0`m>W%TMi1*~g!r1CXO(4m{ z4-<=GYUdx+{Ev2|ZvS7SJX^%D#UMcXlzztpL3H|5-a(_U@{W$&1LjV(tn%Q0sx|Ks zz{bXwk(2w$$a}w=nuhKIf&u|k4c(P48Wt}aF5jF99uozCekXbmR1-{01(3}2on+BB zlVdNY74CUkfj(?BK%Wr51v+M*(V1WWiX%eb^IDCi2ic5$!iEaiYCFLWtXp00?-XlW zbZ$vUP`{MR5R0T09&@ab*pP$XnChQ$I}>dT z*~P;mwCQT|d{OQuV9Jw3Pg5IKwYaPe&>;xPSZLLqzK=pL(N;b$gGLH4tOz}(Q7ybq zJ;87}vipmKXRIh8KHn-NUiw_%B9-s{?0{YgfK~xVDTq-Yq)C>~{9atJT$M2yb1}_t zK7hOjBnko$g8?9FF$kwngLh#1b!6mTqI%1nIq~AhQcUhrS4ek?K^6CP0(?Zs^8)To zwd-p7R$C9(dHdpvW`8rpNuokpCj5PX72827%Wy9{sm^*54M3s9DL5YnfU%v-F0Q=B zSIpA45xuiF%v`)!jXuD!`0F3y8b0oK`VfF8sb-K6%+GTo20~)I^76*^NPw)CUU>Eo z-ga|7315DBw>^XP@E(*70LrnxBbfCE(qvE|gY{CbnkstGn){RgTL2C=;LravXy>~6 z)`F<%GJ+gpeqpIlUp3Co8Ol~gUgi&o{K{5P-U4@Ic%M4{OUzu{O!;fYK%TQK}ii8uyF{Sk}_7Ibz8MD z`!!@Xx4N!$rWFfVFp~yiJlolRTUQ|@EM-^o^@FHmaS}3H>R^({_K!pEPU=j4TDQXD zy!eiFZr)vbb{6H=|ATmmpoOE+{j^9%VnF+VJo<|wpuaJRvWsZo?QfmtqY*Vt{KJPh zSMKECXW|E`tSg%!&hhVTyeka!siC0Ie!=fnv&hH8*PnV58XnlgI@jzTfN1I6B5aPEaLGwZgaI-XoUAnf0iq^Hvh&nlc{QlVesUkp{y7zscZ zDel2#A~Zzh0ck{J()+J#rQPf?y}-xMh_3|H(?IWM!9D%DX%Em2Rvbx_Iy#^b1Opaj zv>#M2P4Y2Jutun^1R8F0HE~5rU``QWLnF^qb-~ww39_5n%6|ZoZ53aP4M%jlGi@llpfYG_amd7GgnQ0I!{u ziUBoj4picqjUq)*ikbW|5v${68Ki#z>i0NDEHLK;WjEidOtJ0+{k-M7E4%;;OF7aK z0)A|kxnW${7U7sIIvJhuk=rs^Qem>a=HNQP1ROXSL4Y3Z%*UEXRW$TPY$nR<$#x`7 z`%He+aZBu9Q%jb_fibd)oj4y_XY1@_X{$VTo_P$XkQli{V)M^0~PkAw~Sho0YlfHV)O|x&=wp)Hv6=t?RsoKOw1FY5$z`eT! zH3)jZy}>y181f>^&gP|iWUO=NiN$xI!Rfl>g+G615G?rF55PhAKZr_|6&u>IIyMTK z@^~;6)QrHI_wN#^r=)f}j}W#sqpTQM$!4VrihQ6IKo2vDYW24B!aL)?9bU70I8O(O z9+~*q?FK!*EQ4e5O9-kaDyW)Hplag#y+Ul#H240BOlS`5nEq@;chXNQJcEYT0Y=y~ zoJRkrk3ZYl!)`h3O6SLqpd1Q9d6Mli^}3V{iND0A&L}4zm{G0LR6IK?p+u#}p@tXh zk1~C!HvZGl$(`V;IrwdB(c#!Ybqy;zb+UOK+V;eMI~W5A>$+c!e!Lcs?z#r8ED=~R zwD-#~1gk*O@C;J=0VU@c4&v?)MJ^JPbiWS^fnVZwy9m`-_M4{qD*D5xdxj z)Un`w7mb8LYv7WRE>vY2EYHCurOHQSg6v9RSo}HXs>QR;d2_YvN?Xe>iu^h+Kl&1`E8M8|0SJb;#rEQfA?-S)owj8UDm%A9 z-PF9rL$meVg^0P+lEuNp$iH6wX8U*k8wL%=D|A2jt0uxTVeE z_Ia1=8LBViZ(Mn)-`99Be)h2>>x0-Ge}$>wwe=r%@Udv;Gk%O1V>0X2=Ky6;a_=w z6Amikh4qFOKu?_yBjrqt9YKsxJkgTRh1z|;1-(qrELe5}795}jr{YPHlG8%W7(z+d zuYFQ{g?4N%fj_~+sm3L$3495!Dt>K1c?!G*bX*TG{YTk#OF(-6dT-SHiT*f>wEhA5 zYWP4q8!|6`c`T0XGE)0Xgu}oJdO-4Nne(fDi8tkxSeW0|5Bjw27}5#Ia&BLKxghph zJ~SEfu8`v1f-X+VCPf@`o>O%TXw*Ay7pwWmfsf~6g-&An-Kg)=<*Is5wAN{~>|Z3H4%eHU-71$?@U4)Ka?*JYX#?O%O>qW+T` zp;w&DkIf!k?V=#a()^tcIq|(C7MJZ7B|UwWEsS6Cc(T0hf0^L`V20^M20jFp&N9L{ z$e8$kkb7&0ookpPCUtce$AdOkgNIqlvuELotxn?6-JIvHfx!R8a8nQBZvo(5p3doL zCA@O-BCC4=ihIe*|Aeu2z*asCqLrfY#tjb2{=Kc@Ps#W%+GNu#QrNLA%oJ8gO?d-3 zh1OT2d<-JjwTem@sq{e`)d6AKf=YM{2JzAST=-p=~?dDWT^F^Ac4qM_# z+8+Rwh!B1XluY!gpTQ+eQuFctd*nk0{p%(FSJ(BbJf2ze13-TG53RqnLyL6Rs*kjF zmG=MPwl=OndQ6QCA8FP)K(GbdNQDcWfU-(F1D9(11v!v6n+$Im9&FEoizv`w$?Nx^ z#36t^GCjN=tkfm`xPH(mnI-8gwmg?HmS-@Nx`A)g7{$^&|wthZ$1fgAd_J8o+W3I4sVDuoX6p zmOh~pj);3=SD|d}(8$JD3)S-lz;hR2DWJ_z*cvEVgz0?XAvtun{ev0*;b;AN3!MUP9+teA5$zde&Ka_h?K(iclt zS=cB!jLFk9>Xmkty2w{O$ZqQA2Pww$;#NCvnE$HboAxAjb8|ZY3tD*n@xsmSx`_T2 zzkaRi_X(qxb=#ttLAmC9td^W#x_^{G8-tJ|*-h{Fmvj=ZvjC?Yn3ZYbIlb(@^i-86 zDqwW`4K#Jg{eM`mq$6ot=UPKcOxp3Da-ZUQ!IwW=fv@0nuX)+903KTYiEa&x4lB-M zuYN+$|LuxA$$hxpi+i&Y*#b`KP)|CYzB>{Nx>!ED?_L`VL{pOM9CmtE*3rrFgLmwW zJ{Xrgp+C&*Iy1Au!Heo^bQ1DqZBw2AM@OEgUqHHib5|{=$n!Pkp(NodGq9{pj{N1& z+^NJ{a~<5DADZ99FE2mM9$a--i<_I9b04HeE7oL3+RzY>-t_5SIU1VQJ37A?QfZBC z;Z$61KYzF{t^9Uh{(bn_jacsmv>gbhR3eD^#~g&7R`S45(jDkG)#T=&DOuvFzA%EC zsARkc){cTS0r*!Vw3)rF#xXKJ1$%0AgxS@ zaRl0@Zh=x%vo~h(Po4q{R6C$Xif24B0-ICFu8E0>(JhMA*6O?7RC?$gXEsdf1K9;J9Ej#Vp}@k;9I0r1rsA}~i$@Y`MkqfOx3wCt$=Q zJvF5_;TcXe53Q>{y!)hp_QL1(-FIfD3|U`NgU;-q5-mn3S{2i$9lCAB5ul>9-sPxx z&P?dvtDIaI{%H-e&!>HE{pt5bBTHZcjReWxP*YCAcM0if{fJ}%CuO)d7Ak9d$M2lG zuN-||(dJ9rX_Q*XLD;z+SHnj(vA=N7mYc%`;iV_4p%I{pory0of&G%|h+c>~mOP=D z;fbQ8W+e~)o?v+a^dBN(j-A&kU-boZO8qv!Wy19NbR+0!8jGE9G=`3RQ}q}F3U6Ayib8KCF0U>xH0@vyXwkS zv}4$K9{?t?FUBcHeych;4P+@H|;;TH>f8?p-#(U7|d39aD zpRcYX5Ufgt!T3BgC0DK>?b6GY(Cbw~cX62;h3+QFqvCnzY(12X?G7ge&!PS2dnN@i zLxYUi72d{_VO4G3x<;bf5*Hm1zyt8M;Nd%rjt$P(6H7KP>lfQzjRS3rS5ABe0eGR?kux08%x z1IzXTmd$(G^TK%KTh_U>e)^p+1CA2!DXpEci&6JQ2!w9 z!e)43Huhr02oH4&2^RF`I8pJ=#$ewuen9&XkL<>r_?u=R!;r6tPzq}>$_C-}HKVqp zME6{l>0KZxpat1p3FLO;|F+S6Fi+J^JFA?{c!wOVpyQ?=nYaS~Pixm6PG#D!sRG?_1a@9N5=II*ps~+y2_3)e5TK=1AANI7zsefVh-!bEM zW?bf-PIRyR<6Dlu=rt1K(@2F(ES&w?;~ylvO0PI=xLk7duGZWbe0jX%WUIno74_Z% z_e;e4Yn2L~>0{-!wblCk5wrjkRF~9yBdHqO)zy^lFS{L}ZlR|6b~FS0B6joeo%K5U z4)+%(@?}b^LVQ+C)YNKU2(VDtDvyr1{Bme~XQxw|xBjzg!F0J%vfSoZzck+1%Z;%l zX2~wp23vR(oR1@BC(2HK{#Q|E7zCaE@r~cznl6sCDZhaZn?b?mV0fKuD z*K7=yAJKBDT-dtyes>yoVS5zw&`PK9K97SXme2x6efUTvmO@+IylpOSARLN!!^2Ma zC(K-Q9S_t8S8Y5@qe~afLWSg_HdrK1lKt?ZgyE6&sDQcWp1lgN_zW;R7xTb+&0SIAdJodSes7{ z_9m#|B&~C{0E3qD=c__aj`KGU^p7$quP4wa1ZcbT; zd@&MjK(t%HfMY34e>#j3YHm=|@F$tXapA;*j9c(F)1eEPggLT~W*+$H|3{y;Co z+V|sm8uoNA?VNNBdWD2CL^1!?YEWK#TiJh2X?Eu|hl59zt{b?;$;nATTs$6B_~TDw z_{Md*iwnQ)tSUx!vPL|S%Q%MDwTF`{HqGIuf7kY{DNb{s6NXn5H-Aiz48|*WyXGJ3xoA&^ z7vBkxsch>)b`ZJ|{QXXzKK*E@pe75W{~x6=XFHu9{-Ji}%W*=)58srXot>myQY$pn zoYagC;+GoQ!aBmzx+ERm^-OlW+b$$?*JuAj$uzSol1h+b7?^I=&^Q9tTh}Cggx1hN zk`lX67tW7HB~xgy$q@=;EFoMwed%xX)Oqsw&D*is@P!cg8Onnb+UlH(=piVpUYH~C+OGoq$tAmMJ@ch*)t0qFtQpcxSl0O`0&~>%*^$oax zsA8nP{P+Y7b2ZOyP1CUMGFLFhuRFF<{?jM1$0?R`0K{!B9XPf*nxw6aMsDf;Uki)fk|@Cv;2Z|lWxt#rZ7+o% zVdaO3b>c_+-Ah^gTjH8OTJp0rSF>>bQ z3)TFF_YgLqEt=bXA!FODy>GUqjD?{u`zk}5A5C=~!fpr8bC^yaf)Rv!QcjRE--5k( z{E;!2*4FPAH98NrwY428?3h_BKWcApugWr{b(g#Qg0ejXB4G2+N=Lf=(vLapD|twD zYMl5`Q|e7KV9!=GtU5GB+4|2pW6;J>8$U`z>tCI3BU{__cNLu`Ml{d)FU( z9_UaVpoBE@l4*h{CkGdwcyxdN@ypVNQW5hn9c?XLz6I@*Z_ysqZcqetU98R*))_9Z zsRMV(9wxME(=fDvH|z@X$fFm*>N2?3m%HyA+_^O7jQ5rJySON>lhla>yOLE;_QT1O zCy&D#W5W(Nt5CkWeO1Xc`ajy{MfF`*Wq1E__}-hm-AP)Tylnz0oqu>$AaPuDwJz-7 za8q6zz<73f`F1K%MqBh**e6+MbFTc55w?Ejm^U1jd{B~TNM3OnM#4NX94B@X(x z1l*A?o9Ro57Dy0N6@~gIW0Dz6J7?pfDPHPCU1Mo$JHq<){{7Dd6>q*Ro7T-vD!k2Z ze>>(;YHNb_eN&=#pW-?xJw=Et(g9(iU=miBlz9NV9+);PBi zy;}I2$Phg~{C#4?}i#(mD=0jgg-b4uE zlw%mfw5=f`LQq6RPDn_oXwGKr8e>uMZME>_j`=7as({~L|JWr;;Io0c@vG+w_ zid?&P&2!Q2)TvXkiHTH57kk*{-BInM%Z4f_m|c-tvq}f8>hS8JE4wzE3(1*Zur4%( zX_2UkJx|8#Aj{U!9P{5nmnns-P(p|&hfkIL83=sT5z03tnn9-F+zTTRJivjV8r84! zJ?)!R5Pzh# z1`YSJ!Gt2r9HO>3_GLo*4o_>`+zEnH`h7Fu`gdOsdi;Tn7* z^~E=-F9IxE2mGqk;0Xk72S0Nvd+9QE14UC)gcdf%M|_Fk;;Om1&{%BhVcTdxY*Lc< zN5Kx8W5<>)W8kEVDWd;;{kn5!@i7vBx=Ev*_|;MrA$b$9jV%`I}~LJzhkU~$H}7gw2m!_A$LoGid7 zbX?dA;n8Y}o9=f*wK0C)_49WGjADQPeXnn;{#-1ae+7kvWZ>m1H#}}6h|ZFr zX|(Fe4h{{Oo;;aPC`8dOKe|op>(9J9Vs!g(TwUng`_NY({Z5_lGT;-7C4Z=? zsfnk~K^37$0fBKBt(1Oq^c;gK=7cJ&jH2QmaH`Et{`8Y_)>QjJ!}ai}5(}ww0O2HV ztfZlDF1>wJ1hf~SxVX3{E}HR(BJq%VFr^~!d`%Jipp6u|apQ)Jj*jjAY=dJ!b3fdLqW z8|22A%rm87^L|8Q#&~1QuavbkUO^L;HM?9{(CId^lsaW`OUIH;TUu~TZ5BAjOZJD` zNYZQ+zkwp+ceKC`>0-Kp4`cw!gp5yl`Cx-?KmiffG~q0vqFO5(!zb}+?52A~4^=iv zPX^}8n?d$5J#ixEx1MpMv{QtL=ZkW9!eqmegXB&>6TQDZmzCMFWiJ5Vyu&1WSYA`p zsu$695U0Z+e3it^@+?U~FtPsb_fcGNuI+bru=?n)GZbJ(L<)xJ) zxYiHfu_H2e9>m%^&`%v_w#gTP9HM(^aVJ3qTD z2%TusKY#GW;tiMPTg7JV7Ui@FJWSW|b^6DO&|ONJ#c82T zE(HoDR>g}L*icic)Ou%_U@5+HD@XbE3zZyt=s`)-6_kv45Jpc6ii>ZNTz5&PuO`@= z*1(k5>jk}Pbn_5{8a`9#7zf$&y|y_K94AnnbPlr~*%gta7|B7in17YMjJmp|-okXd z5zncQpKdKd{pptxAnh({eoW8atCDm0nm@WM7qk@JNR*OZM;hyW_?m}u)NVyl%@ zVq0p|M5QVfH_l7nr>A7lvm@$X%qc|+kQ{=DWW#9MRv&Z>t8VCrK0tH%yP2A!F zi&cLRn-ap0!pYDd(o8)(?xQnuG|#yTE0em+m2>Z`YuR^QWj%+9gF}{T5Ny5UQMX=8 zar;%vuE?6mHFn@6=hXbOWKGNI!C$PILm-S;l#sAlv0h3lry)ervtTD ze(*w9sYR^at$f2yzmqT}cX_j!>b~+z-6C!uQY0HpZs^>^MS&HgqoeV2HJ&|MRMrmh z#E}m*6|~8cVmO~E)}!IUgbX7dJ9WNz3bB~5{5q#H{lPw@mUBiDqy{_=;d{O92X|R> zAq4ph$IwPcdr>Q(|?#}60?FA&*0$S`Z7@}J1eX2WJ;jdeR|dyn>k-vT@o=->R%!)BJys; z{rLmla=S$R&{@S44UTy8cD}j>{~`C5dBY5-L)S$tv1knTRO?X6K9%o%eAJM8@?U@X z5%=BxCeX!Y|F(rc02lJGT^gHP8d@y$gO3?EgM--UJ8od z3aH{o+VApXZ?Nq=+kvpKC5Ur>eOHe0CE_>#qf#!;tEDI0ktd$UzZ-cwgUce5 z%B`%d>|=Sp_&q?p9rSs_Zh+@qv6A%8fGEGVSkTPm(Ck8~GC2SHX`ucSax$lJl zl&QFe3X|;*i5MSdezKm`B8GD(er`+jV{Ef4zyzOi9b2Uh7p8?{)@|xmDKY&3rbDil zCWO<(3ZSCbZ!KaJ`OkI!pI$Wrm4;QAV@q6w77k5DX`HA&x|s;YYsh{8&{`*<g#Y z<|6pu!2=(FXQYk#IG~7|#X@)y$)|1MzQ4$9HYDc|T3sAj;a^=jcC61Qx@oE9w{KSiaTpuDAC?Pl(_KrfhNY*!op?$h@%~#n zf=EASw6cG!^r4_%{dI0KDLp-%i$26Fp~Z_3Erl6hI*z8|88)Mt0cGgmm0c5GLVNiT zTlSF)lT{-&qsQ?ZKobxoR|Au(N~Hdz1HbTfX6p6m{B-+4-;Sd;-{-kz-dOWvg%`P{pbrzHMBcARcnE4m>c7!a6mjB@ag836H!%Ohr zkci^qdm_E~h5Oab9fchZdFl;cJ4)07Mh>wjf*ahYI&&uya7M)H-XofzX9aq(n^^nA3m diff --git a/_images/8df5c7f39f20f1dee3db00356185d516ae31773f65ba0ba8861e8f33591effd8.png b/_images/8df5c7f39f20f1dee3db00356185d516ae31773f65ba0ba8861e8f33591effd8.png new file mode 100644 index 0000000000000000000000000000000000000000..d708bf818e6c114631f8d43f34d7baa3cb88ad4b GIT binary patch literal 47962 zcmdSBc|6o>{5L#BNt;TGgi@kNWZxx~eJRU?kR**=_FXBC60(&&*|(9s?4=0V4IxX} z_bg)>+x_{@j85l%e)s)6|2|%?^E#cA`OfvduFv{@zdx6+s-{}Q&ncFR`H^1iKu!9ydIl7X$2nWe26=I$wbqlY#aOAFqM z!WX$OoO)nuYh@$C#by5I7cN>pH0I)?lr4aVP+Q4r*`QD~2FO3#QY4cxC{$6k+*K)c z$Ee93C)e8!ZZn%p;cj_;C3QJ`_6(xRB`kU@!Y7ym#UD-jW;UI;SlSeHF^~CacS2p( zVw9+;eckZYz8@$$Z?af5KV$}tH}0yYFI``Em-L<}!ou2+9|l^L>=UFvqN-@O^OOE~hjJHe2lC^2 z@RTYA>5tbvFYhD$iEi8f{TD0HlRKZ)SToq!+NR{>-1Ig$T+B%NsSQ;i#IfZqLE2@U}YZZ<`M~#V@zTEK78Ew>eh0t6ssR!3L*U>>i=z-|DWII|5v|w=Dw&!w$3^F zts`Q{^)pJ3=gQph)0otJRs}~x+8$Lxj<8OtoWgltHaYe^j?aJGm_3lPjre!{?=E!T zuxx3&EP$TWl;8P?p7e>iK{J`s^9mH5QMVoDVqV#wqckD?h0s^~+h1D4eqo-Un&RF% zic=kods_%M!x$dtojFamq1T^pcW9grRueNiKO*$S!ua-uh}qT5(6gj{CN*;-!tUzJ9oOn?#L#$Y%b&DyxA>#ezWU8 z$3b=G@*9$IsNR7?hMhysLu_j+&ISHCj}whshg5az-}88UW9#$W*SBm742b*L)-PWV zHxeCJ3a9^iAVKMB%w56X#nWZ07WJ```f;kVcs$0^6}9Zt>> zJXT(L+%PsC`KX_LOR+Ucsr7|m@2&m@qJdZ38xg`f2PJhmx5_7QB4!ZA?Y+0~>c&Zl z`ER`WCOGyUn?`Y}lR71i+1L-m^gT`^(K4l*FJ+jT?K*UmmwH`P=7;M=lR6Yx4yC1~ z-4tU&vm6qh?j=2ZaIgsb3!^ZbceeYy?>~uml0vEY5-+Gu3S6(3efTy=NV=X+$-FC1 zuCUL2HL#lN!{DLPwYj?L1qR9Gk2JQ;*N!n>Qmnh5TYEp3$|F{m#Xk#j2mElSe!!-0 zm?^u-k&N!#yP)rLA1wPMItwz#$H$oi&}ejediq4ll7qed_*imm`-sHShckK(Bhe19 z$npLx2%1;ih{4>m#`sjEnvSLRDk1j?CRkmL(u9i6`_kYNc4AoE{+uMCIe^co_OPx^ zJ--?o`4y{T z<$<%=SCoP*il+p6T<7ae9z1C3G>*-5nJGmVJIu6m7XCPmu`0gr;!-?aJX6NJwBAo8 z*%WRZlWJ5Kb|l`MxEk({w+iBWLsB0pg6oB_RNLVfV-n0hM2O}qDvVr(WVQYk>zi!yP zf2Q7p?T+vqYdZmU3M704_;Q0 zJ^fNuLn9QPclxDlb~o|OQP=u~un@owVH6q$UJ)J^NT8COQihZme?F2CZQ#n7Q) zS$p$ZQ@W*|3*r5K-1Q*Z(9g%oq5A1?5teW>>2B$He4^r~yfap}(VO{~l0q=1*RNfM zRWJn{o^#Qv6wIgb8yTrF&X z{g?Q{??-Ps;@=OXu^AnGpZjYo9nk94eoJM;)P6gdz!;FGdf7dIxz7H`!jO-NR`<(3 z!w1@0Z+7(@VbYNx*}{|1Y%{xsMBI_a14+@IPjN%fl)2ES4Qp^soH<^`&05;r=~om+ z6#e4@w%+7Z&9K>&+&!=!O~m{f-j7_`>ts>EqvY-bd@PO?h*kNs2+tl$F^-v_uQ`6U9!j$K)KIP)g-8 zI+S$ewUMavAkMyYxxMUe;myMtlvT_o+PosW^E@ir z=0*=k7h4tW_2P^rJ`{Bpi4>MCAx5+bN3>O1+EfG!$C@)4dYFfToyX=&b?o8?fG<71JIciE>~o~CS*_UYO<){&eT zF3Z*4Du8&*6Xv$?{8C!)sC12e2Q-p zUJFA(qE=%DF006nok+ub>GhOfNw$QJGxMLmaX{pxO23;ZD7&(D2^AEP(?S_zldRboL)vh4vKuzx1 zyhNFTyosNjQ}PUV`TNILT5Z(~)s5RUYEH?DvXDy=RaH32mkp_0=Cx3E>`vr(+3b~R z?rh?c%u~sl#+rvyD`&m7mZ*5zFqI1frIk!MUHq?}QVJ6b-?0yZ zMf_srdsoDYe)-Y&sOl$ozEriQXYe7fuj2KVV^U(C_7`Cb^1s-5C@7xjo2W@gKV2`f zFv`SgUy{)<@Hi;K(D&yU^H4^DEEp|dc257v!avu zUV5P$Tb|msb;cVDvVLWc%#;Hxr<$ZAyP*i2A5R}vz5&~ZpHJe+wmD3$20dx-cX~;6 zUG_eed0>&|9=>VVUc4+{y2c(u_-tD4IFkC!505axX9ip6Ka5GEq(W-x4tfXqDVf$W?UgM2kNnGC>Y%5^#b6N zUF}C3(;HKEjd~MA+~)k~LwEe+xZ5{Nfar@ttPp(55)z{Z4i|?~a~g{}TXg7Un);5F zy492rN-##+-E_F8&y8zl@Q351w}QtRdUD{U#2B78??kMK>4CYLgNHy?nXU3wr587% zOYankDNbHsC%==GET&acrB=N?C&2xZzm9%w+Zi2^g|F#|$;yv+vZ-{yNoi~9Xgry= z+Uf!B{PX8%UnDj-YES5NFMKoAtsVBpZp=IH)y;DZYv;Sl?{VGfrO4->TaAWXP`FK7 zBv0tK;jExfqfW&xm%$GacdQ%{d9tpD>;Pi1;h`UY@%Rc!<*OFcJ}aQ%+VG@M4=ND9v&*A*W+YVtd=p6|BCMe^WcYijIz;`=-g z<}#wW%1Tx0PZ)OPCrf5Y7|Y9=(!VXTmCJwZZh27T^DH?R-3hX0K!evhBK|AD`YkHn zSbwI4&@Pa_lsG^BJdLBRO$a>_%_FTxLn~T+V(aUuJM2PbN7`Nq7|}?U?1_IXX*iah z$w(L*w#O%BlsH$Gq?(xcnGF3n&$AZ_@@FIm@svCDGMgBfqvG}b4t96P;=Cfe7Csj! zCuYXA-T>>}cpDC%8;3Y}+U}p`t0Z%(pcMGibyR&?T@BXmIMmwcV9z0FhSRSYX&$P( zKT$;xsSiJN@um;m9hoy9g)LC{cbK|+}UPWRR25yWZ_Z}nIMw;Jr*f_eA@nPpFy zLq1_Ev>X4ZG}R>A6d-zayX;iTPHS}EK zC5gHLWnFQPq%)R99e&#Oz+ov2UwziZD8Fs%WB&}if0hhwACg>e;Cf%R6WU+LIAtn? zi7%K=%+nP)%H_8UT;+Fg)_N&&HFe7@7_6WcvQ>7&s1<-+MD+e>%~}<#TKJ^n!oQ}V zbM*IkEw72Kn_KjKb;{?hr{wpOzwInm(hwR%V*6|K37!!tF{)vspcv_}G=xhITd`YD z6Vc6g^=H5GnT_t5rHU4ltrj+H@2>BXNIpWrKIS5Me~=^!~?sNN|UNaHeMe@S-YGY@sq z-CYBSxo7oF)uhW@k=XAqfXWi#+#@ zrlZ~Z%)t&jTx|VT9^NJs@@;rwxj||LR`B>e#SZZKX3!>kqJ5E(A^8-!JKW=Gx|(NgU;sWC&ei@V~nniTm9nQD-AU- zyR-yknwR_gIYO-eWn{`kQv7mO@WA|E@n)M=O2o$j7$}g2$Ij zz0#Z6rQI9iL@CKmuY4I`0SN2@)Gf+SCW=g)%F*?l#dwnoG3Z!5rY1bzt_aC)RKC1b zj}7S9X`GKxudv})9#lV;d_**P2CBcJhIPID?e)9pLL{|1Sn^~sMbm3S+CO#?iZsCw zjZ^d-+hS!xnakO|B%E%&uva8kDRkTFnD(~p|cA1yNm#!B^ z8R%C9_Qk7^JVc$5`bhFe>I)3N(|88aP8D?~{!0Cp+@fP3-V=sO*!tp_t4qQ)W^LjQCD1!H%m{_;aR)Dbqz^N_VlFdzFTj zJT=_ETp@qC?O!09HOA6IQ?lnrQgxvnyV3r2dZ?r0lfS9Aj;9>eKp#!5^sS!3pF1>{ zetOU_RG*q0=N0Jzq<~(niv>W);-%y~EPv8I(ZzFuW_P3^wHhfHPgHq};FPJ4!2`Z< z?+v8_Gg#YgJ$zg4eCoaehd#H$;l|i3)pH31f^+HbPkUraBqHm_vo;A?{Fc39JG`Vg zZ@s&Wz$7=`SP-3W;3-tbY%g!f=tpo*36=C7?C6sqM7VFta5@w6vCIbA*P4?1L~XFs zn_j$j6W5XtB)xd-*%&`|M5;bgGf69y`BUB@bsmmC_!zQ;2JxlaZkwxp9SAEs#IO^q1d^rNj~;x5!Pj)uBsOSSTxc# z$6{Qjg_pno`tsbap1)(XL3HL@@do_e4K=mkUbiJ(rAUFP_jk8u|@J8n@b*9 zR?AIw3b~ybIh~Uq``8ZoHoFiTY|pn)GZHJo)3PVx@-P!MQ_;>=YLP{&xlZ_2(=#R} zQR%!YF|1Grs{GSom~whl&FE{EXMpNMF?Qd}=6z*uIp#Vz98Q`k3yal6qdS;qoR)eV z@V}mOu^-+&_S5HNdzstnLbbB5huGmcAsZvSp`R1pmUvCbs@SyRvFL;D>yj?blw^@mEG6UK&KePdtoTT&4_ z!L&&8dO(P0ue9V!jf%Pk|ME$^L)koIk5%P9LI=R8(%75D1OB46-R6aiYiz9V$L)-ziOv|V<6x!h6@|Z){k7WZT@AFX`azqGByNhxm7R7#F|DBmmo@s8@p zJ65)lL<=~4?XQlOsx&`YANqs!x%yK27%A_+`-8PL*VDDzy_mI~-m$zr=9d$+?7@Fv zS4vr#-U$J-ru+^)m*2DdP6&*Sr)NnFijTy&V3{2Ix9!`zH|6cyD?tmxk(RXsvng0C z_7n*q-EH{?^x&Q)E(gJ8}RO%b`3r<8l#B-L%$@Py#+JTul97 zRM`82HxQi_eW*RcTST|WR={WABwHo7`o_=B2R}UvzfZlnEYGT{Q*58PIMbJv-z+N=)(ckM|`h7>)DUIR=)$lC;;JLf=^A|!W&-@Cz$v!^|oMpLqgG( zVwg0D@A*6;PtONefBX|$SF~OTH2Z;jhaVw9sG>7C|K3H_3?~41(N4aRT=U=w^;Ag-*5&1KP z{Zd^wgt6)9-p;Jyu-AGsvV%Bdjh%Le($QGxs|*^J=nrO9t3n2-4UEMk3$c>F|1lK8 z#AbxoGV=7CRsqzhotb#fOKwfUwdt{9@wcH+AuOlz4$U9h`QoZjzXk-RInP(P2XqHX z1>0q*_x~Xm&T@sRiuci31}pt=n%MUac7_>0iH z$VJrNT5RTu8MKGybR(?C`DeWwz5CnSP8I1KuNs@}(oOi|Pu~jJs5-IbC8)~d+yYyV zsQM<1v_JQ4zE~tC0Nv6~Ie^p7ydmM}Gh zRDS@eG7W@$V>{fXT?8tsz3P;%bHDLdw%VlY z-~KWu128Nmmwag&OAK1S3#>udBLcFfNIX{FTZ-G31rqnQ2Uh&rP1PoRhmVomq5n0! z`&E(Tvb^)%;1W^dzJ5&K+mezC?AUqDKBZO%UKBD9LmuLE|Jq9t2FWW_n(;f_p7@_T zPPRwGps%;a6|`%G8{jMwdV56QfHlXs#OqYfR|Pi4b2Owh@59?g5NlWKPZO8a4=$wg z431n74k1IJ6$kg-vl&;4$T54ICk?Dach@fj%Y+(a5SRYRUAOq5KUVKXdfL14U5x%G zq3Gm{HrmFO-mKa}K1!dEf7@Roo72+0iu;kHBPzN&Kc0JrITJ%{_;?@9?Q&&m>rWQcG%KmFkKE1oDLaWHZ15cT2}g2#>>ukOP3eFW5KQ#{eww(!RMr zr7&~*@|n!P28a9y2~p(9jtK$81;Jaj7MrpHpbN}Ngf5Udtt<5>&@^4!B?90X8k9&( zdqM^&gZ=)(MZ};7L=NCf;UZ=koh&wr!_|$97HQZ;XfmCX_elI^2u<96s#xQ*h- zwpcM(0!u|7G3jwrFBo6ICtlDhPy-!;e1rYMbCNqbES;Snw@D7g5TW{*v*jIXPxdRk z>X`4wJ&-yH$M}JCj1`n&--g?Q`KVjG<#Y;SdV5pxndalujl;NCZC82 zS`Q5vsQjxALk0%!1HZFx(vZ3aPimGwI7)dsG=2!8CBLLE z5*>SJaiT~gzsUIugNFCowb6GAbl!0}o=cUu2UmAgH2>D8My%LR`aft3H#M|=$NGAc zhhJQp>S`smez5E#${@c7!(ZSjD{!zAzyl$GMAvGI z6J8A%&m`Q9Xop(GD`)m$uX7M#fFq}GQTp#81tLERgb1ktKC70=o$fmee_#y)qdGsZ ziF8(5(b1b2QNjU$of#$ilmdTthbt4jPTF3=AoDFs z$#g2g{4rniXn7s!~PO$sfTIGpa!wJB}~~zZU49QUr^N?WQV8+eLtAYOTqjdWvKT zs`tXCQUoz3rxXIiav2c>0r`Fp5B4ngmIWSwqU=6matG&~pEVg^emn0)c5oNr@NcEw zEDF^N;9H?UgI1ovyTY;1pv$d`d|V_s4Ypus zY;}BX6BJ|N=%HMx;-Ou4~!7aQR2@;@)s2`<$h4?7>Wql7Sc zoWICjBl^DP&gZRnUapivPFoqmze}V&r$KfpZ!(mzIJmC`c!%L0H_lGU|IlLoMSNd2d%=R*}HS=N;{CH>+@yFR{yRGr*f=g*1pgt&~nj5!MtJH2i zfIF*@#x|5timVHK+dz@b&^C3D%H*TI8Ddr4Ntu-gsD5 zT)yUsdr)zeoL1N>$TB20%fR;k0=-x!X{axA+kjbntOY>tJE0OLX=sSpuSo2Gq(Z@Z zh_rs8{a{J@T{jWx+b+Ppl5(N9ECD%)dBGwhniHMJ7o2RrjPVy`mnr9_UqPPpiJ0C( zsY-$^&N6Xpk>mO{iBdkHlQ{nR>Njr*s|4X72n7G5o!dlsJ>e(pc!w5KJgGb-kLdn%P+A!gGv9Ibyavju=& z%~(G3n;GArV;=%w?C5^Qm?Ms;Erj2jtSb9Zb1VU2Isjh|Fo$~ElqU6fki^5VhsusV87h5J8Deayj;CHkU!HN?>Np|$o| zo54>=5_50RF9Y@Cp^_`ZwTV7JyT~V%5T_<#@A;FJ9bBb9`c{=BbMyllr zG|t5N+Pib>M{ZV(K+Bv}`$mNc_EKm&$tHq9f`NOL6T*X3-EY8AC#Xt^TvQcdZoIXQ z0=zO);sa13k7-w{uLl^UtW^@@vsDJ`VxJ%4Q&zh=f7}TS`=*QqogUEnrdfzdE%rVt zake$N1-(zv1MB?lWxnF2JflnCl&NABCVZ$fTk9w1T2`&VuxvB&b?sLOKZ-sbjMl%Y zmYP)cLB#l{trP3-&&pe^m&Ye6Z&cM$qA7S%H-c9rDek++iVi%gqT_r|p&034KQs5P zYO$%b!Z9|aWCmS&2C3AA(T+vrY`e8^8U_>wH>7Z#RD^)&(umzhi>1Pj2z z<4;6Iziq(=v=8$cJ!i?A{@y?ok?8s6K|-O#tnSQlexMe~)YqOGf}u$T#Gpj&ej0qa znlXY4XVd<60-`0IXB0sUQ1Yb0!ZQdogaojef?~ErXtmA1e~(P+7_&6pLp2e*xi*r2=i~OLl?L@u z!fI%JxBOnmffvk;);J9`1|Z(uPp_nfJIyxqv9@7&V7cXBM;?mI9N3iN(6$!1)MaxZrgbl(()&%_1A;%WYQps)Gq3ggn zyE0ueuYBA)4&;}1Uk74Wz8T-6s|wUNj<#!;?K_P^RYL;`nE%wY98_+~&$!KHWUhFu zj+zqIPZo@(b`*I(!9Z?spZWHoXp^R)aj_$MjuqP*6}12H7OfcNfsOs90KNA<*{9y1V%LLTgvHq0dI+=89wl zk5TPM(_W_$Mz_H;Cz~37P!8RsXjnk8B3A?8M@s-J)WitAc`IU+JsGM{Hu zcXS=6zaF|V*|?!dBfik|(e!3&h_b}Wz4c1THLv@PF>arkw6(QuXG)jG{dgOM?ycw4 zT~s6LSrN72rE*CW%0G1e=W$GSZ-_ISR3Pa3+}EdJ1=AYqW9vE#(C^}lXBsWlXJye$+3Lan-$_J6e z{CI#D$66G)#0T9#D4|NQ%v#Yc*0x0s)U58d-#C6Xh|MczYUj%@{jh2L zSbdaBFT)i3;W~iqBg``^h*nb^R?zjqX5?eF#fPDz<~>CkStWC|%r3~8&TGcXwNzAi zYG!IDf{0W{f0NLWfA`BX=JZa9`S8Y+tSprPvAM68N>8Ft*K4hBpXC8Pyg~u*tcN-X zwPU*T(ZCy%c?<1uz%}iD{?eLrVQX;yhoW2Lj6p0^{cpFO+jpkMm$jkqYXznKzzf0J z0&`?dR42O&En{OGe^IY*%xrEL%;*%^rn0lM?_WhE(mtgQpl{B(pn%x#$7(o^c+jF0(Wedt)%;0_+X);-dxK7Onc=&zOO#7ld5NRbHU=+z73) znhp+yJ9q9}pxOLQLm+gNV=dh#bexC7jct4EI>x}ZpEgKtu6Z@u!Gk6|HfJ_7Veea& zMU{ZGP(8(M>r$z|F{D54(zhA|(V;XIh^ra|lg{P2#?PPZ_FvWm@UI4~aHq zvo9) z5h--+0($saPs8g8g>Yv_sDRw^rF|7IX1OocwAumA5{A<}5?7q9c9f2RM-}iMRTQnX z+`73v^5U@@W3g?WovDcmug0;((=8yjclc@=>#^bFwl;9G(ZzM7AzEZAueGX3<4ylY zKh4JF7cX9zSX!dZ%`@GXD^D_so!YP(u8$NPcYBX@`P^a4AhU1ZKEkkI`FT0S-t|1z z?GQabVIf(PbEJ}{7D<$4%U`(UgETX4#l6yZC*?X8)z#9zRdHR{*)Ir7Qdqujo~f04 zovU=AB`~+W46@@yZtQx7#Bx7{8$Mkhmn^xCA)d$NEM(X=!Lr$XNOUO&!YfQ0CcJ$z zTdeC%$j&{NN{^yYEk07(tjUfh4=FLxvw7`>1%RX%h1BnJE0+j}+jFcD=`NHb^z;(; z%fteDbPdp>$a5T%sD4kFtk}=+*$p`u2$MuZLNb`l`bQhEI_bsyhA83O15?{~6h0i1 z=hQE|4Zj(S_%9Hgx&e|K%Liw)AUeS=c~!QLz`8p0J=O#BJ9CZe_>}OAi~Fe~i;9cw z8iYp}7KKesO!Ds41ThD2>Xj__Z(HHL|1Gd_M0Aj!t8DpKU^TEsNH$Va7QP0xMOcz@ zbehje_gjKJwyhsc?|*w82ejgY=C{|hVNT<1bBg==g#N^2Zezp5R4qr=H5y;fC|l%r8&l91SzZlrn=~Y}7nUXRHj2&n8`=zi6CNx@7SSJAWY&axhuG*#53BorvOr$SL>XuZ)HL zR3#uBfI+N)m6J=TJ0<7CFHec~t@ul8PSf={QVS;D!bz$gs6l)fRl(v{rO%9tqQtuQ@POCxJpLud&m?)j=Nz*1u=cEm7 zLaxRkdKzhW=rdpQ0V6AFbzo_#uuo!eHlFb_=RRy#%{?CNoO`|-!!n7P}0WM3O(usrL5>pd`&QUvouG`;gf zTpn6bW8!2a2{({H*8w&dUwzVJ?ao&`jH#F)wd7!s0-w#WB66xaeT1-2Ki^^B|Jp6r zQuX3QK0J+B-L|EwA-_Mqxw^R_Nvx#OTm7q{f=}IC4%lqs$SQe@s4y10Eju>XVmH;G z?h>6m+DvN)H2)Y7-lWY24qe&XjNVizi`BAYxH%I>3C5o*Q06LtPzFlcZ&2AWXCO!cC|a zVYg1Yy56~SS%0M#ZM%-|NKZ<-4xcXD7|+^}2alsWgxZeczU@(UvyWw0i&-@e)Mjcn zbrz)`j8FYXoV(#`P3Q4-MuTM%EetKNBG1`_DU6L$Klu6ik&Q(f7&C$Nlbg%cMWD99 zugy13#GhOrWuEyk-yn*|Wx3n6ty1kid&qYb>1vQ|f+Fz#H~pE|&6U`p`IWr;_4J9Y z7+o+)q;BN9m)`=ar#XG}w*Z zK9z(q6_2#?)#7qBo^W+gNL(zQvo?Igcd=k7Ohn z6b*&xaAsn105W z=f@_B`_^IX6?6(h2{0s33Kbz0X8pJVKw?cWvXU+s>hbM5qPo^*#MO?5P-i=H{Lujz zZ>RJE+au0e;Vunbg<-NON19(u(;2x9^gOzj@9%I6v2&n3?~Xzx+~~f@D-KDV(7RNI zp0o$_X>Ko2l?vfJHngI$e@nJGU1aMGWk*WWJ&D3^y zHme?b)HTcWS^P&Br;ZTa3EFlz*tYKObfioafgb8PB9f?(f(f0{;8U_L9v(NLhajvp zSPXf;nB0p{51nQ`xAaNWgVh2kE;PJd)Ap{geHPF_(V2s1$jM0lk-3I~+8ETSG|a}Qk9cDcO-U|y)h(g+Tu zk-E7c`qb4*KX3Htw5?!Kt(OFR8T+1)ZvoFxszLI@mNgJr#n%p4wDRE-x!mNYrl!E8 zwV@V>ah$9!RW|>^+Y1G`w+0n);a$i%&iBm|)$mJX|mjn{D8I=&gWP23e5XJIPRV ztRzwEP}JWRJ|F?BTRu#kOTQ1bpUy#=$Z3UO^DxK+3NOHMA>pmT-6Ht@Bzq!@(U_8s zs6>n#Vg;~l_5?8|4cGVd^^y$~QmAvRB%IABBzvbYoF@XRJ*?!Y7mwiB^YnR3S{XJ9R+`{)oQZYb|0-&hU+tiS|L zOib{Bsv&BpN+6=8MZ{kLs|M64)mkD-<|%hEG8Y#a^`3~7FGyt}b0#IlTv-yCVs8MP z9j_g-Q9sBKD|vcl3uBve{@y~3GBkH}FNEDjS$)d+@bL(yX7cl1Bs6pN{YVEszjvDH zYkG&$K2s%W^;Z{CH7n3vI;R;saL7oYv7*M)?b^3=FJ@K8lQ3guNr={O0?8{P2`y*^ zWb1AfAXl6&DKOLOiYoUObi(s5h;dqHd z<|sietQ%wfu4O-pOoiNeoHO|`Gn$rP*2Pl)CNlN{%-p2G8BuA807UB}$k&FkX94wl zfIeiq47S9@-jJkMRG^rHN!_^fM(&6txI^@iNGUc=HhO!-AW4U#$PH{Cml5VvWbi~0 zFkK8p@x%b)W0t)z()C9opQ51=4&n(W$t_S@A2igKb~NWkWVg-4QL$2%GJRo0i=WS} zh~ADOof`FNW6|;GH&PM*XZ^fb1FN3*njR8{b`iXzrUWuCoGR}K#E9;8n(I?*w;x=h zi_koJ?jB4Llcu!>^vEjfa7U?#aGQlb(WM8#58E##%>5;>H@&SmDOO=fm$qvKkl6F1 zqPD2_FuMdJvk#1o%kRsGNq-Um+5M}Wy!S~rVO)1NP5?z7pRW)K&1D1)%pqECz}an_ zU3HR~x_%_BQ>^IFqpv0-1T_D*ND&KGd-j(wp~x8Mw3nL!V9h;w8Gez8Og& zD@PWbL)NVnEMclvQp95$1vTo;F4Cr0SJ}g@0pF;PCrq9EN)%;&Z{L45cQG)6d936b zFT#jna;qEDE>zM1`h7@Z%_Of<*!bsOxB0GCyGE|QX3-vsXQJ3OCh6yLoF+fu}YB;4=K(m^RMaqW})N@>j9LJAa};lMyKqN(Nf1s?Be)lGeq zyE`zTmO55kgy^k`U4otPKsx0CFTY16GSSo0^~p^z&zJA?k8C@s!@cd!A=2K+!)yV0 zjxO4l7WPO-#d4;FBJyrmF!0iUX*^=AxwBglDgc_S_1!Bn0{7s{FOj_b?4O}4xKhFd z?sT9j@4~{6CdbQ~AzY(~Q-p;{l&D3+P8efD1dZOVbJ>}+C|1%;)SG{{SiH~FEk(bM zi@!@%QZb)V7Z6-*c5rt(&I9GrUSe*0gW9^WVe>-vEZpZ& zy09qG(|4#9i`^)3R?;92$C+XB9}o2RZv=W+eMNPPY(rH)CK8Es()Sx~z?k4=`@58w z`wh*F_O?WkhjXhF{%I~dGU0ksmoIk^?a27O{W$d{*gkF^;;UECeMMB}a2tmvvUG~@ zD5mbNI3Iz+RKd{AnDG(i8?ECXwD}$6YqEad)n-HWUnQAtJgg7~*w6C7B_1vdC**(h zZe$>C%?1)Rqy6GbPpdjH;j`Nrn8q z{vwj^7TR2aG-BC1bpuSGyL-S1AAUrtr%5$gB}zia=uykY!Nmgf~ATe20)V3ih^V4G32I=#T^Ymf#- z9rucP$APrw<-78PMr#U`;ziOEeBcI=-jGD%Jvjc6AQ~tsR)M^0PIv=elK(9WN};hd zq!eQBIZ3tF+h;Mc;7ELb&cs#5!?4}w4!{iQD;}8k9xQ?(;d4?X9X6uh5M0_jh%-%o zl3$Rm{OUq@re~Hd+W9Gkp2pL4_C3Gjccb3e&g$-lX9S0Bsp_Jv=@X3pHvxwxIt^o| zeo{+Fy7!Ro7*M9{k0ES=gd!?nC+eIV@jYJKB3c%ru1!xW~eEC#JjmS5di9q5HapiXP`7 zWB@h4=>8A`aR9YAUX(jC_w=Zt4jbyuC!*t2JPFA*1KESo1(f9A~!c-@JLfHiC>B1PzS z0d-SzssR#Nz|(gx%NyTK?wh#5GKjwRl?_ocpoB=m-wYDo#pvg{CrILRq_*7`>-8=B)EZxodLb5Or?VYcv#3`#JJ(^sS7S^lo;f` z1%305N*$5IDkCZk;x-$6a6IFFUF^rt9!en2+>r{C#9aCPF!V&!gm?yV>v`q!H1J64X-x{_CFi+u4TEy5uCNR`3o3O)f-%1W zEh(|RA4L2B6;H~&JK!oRqy%{pf2!VEw{&??0&WDr7#n-&x!JQMKxJ5D);SrZwSHud z22of#c0xq2I7gIUT>iLVoMC+=A)KUdE^2=b7a}>~cktHXU`+a?s9jP?%r75JZ|gf> zJyoRiF_bPSl;TyAW!VgH5``E4qp-Ox=+^qsk~73`je~QcSKm>gDz1_?_7ZRJPqvJP-R5LaI5JZ_%JGGtWjNmj%UJlDj^rMzhyA0}Nb+?p46V6*F9NbeMuD&$(XjxTnS5p4E1<3dzc`KMeArA4PM4 zED7|p+D>oIt*>LDHjw?E^~_U+2`Q>n)#Hz*z-Z7Y!s^tp#b%sWOY&=P1q-{wKpM}j zzDA_m;mQWk8Rg}3!cgmtgH51lCwv~`XQw&3)E5g#k5)yx?AI(SPh>SA&jvQ0{Pyu! z_CY|(vvLSYv;b(IwnEs2=7wlde9w$K8m;Fvl)?`GPq-|n-*)UK zfNEo)9U<0cW-#7j%n;C_a-p4j?yu4r211`T7b*B4b@vf1w>&d`An{Ol!h zNO=rhDH#ST$*l;A!;*@{Dq}_0D3LU#NI7s`_IdIJ;(UEc7xpUaE41Y5;8+o)FVYm6 zB>;AF{rv?Efw54sp!}$+8B@%=3zUE@2qNAA2-j7;0-XbAE1yyKVl(l!nSrXy0?B2d zv_%u7w2j3w;ck_M1-L|F|3t?GGGV5L$RpQ|BNJvs&GXk}+3#Fjh#%3R{Y6#lhUPXy zRf2%=DcfA1Iq4t`3q8k(pl1UtvM&E#F46FAAFV+-8s=iI3$}G&?i;-m+UI_55R_qy zFf?a`IM+a1N&qLwNS*;QKH2Q94Np4UDFc0H7)Clg3b0qiEZ#sZ9ES32SR@GxQvB0xw^m}=CaJkm9(7j1Sd5+usV(rnEQU9_UN??)D?mt` z^Usml;~wKISsxXaOQ%O3BCrmTL~JS7rhY0&JTieq=1Z_nbfrS{N7{%P&@oqK4{RL%6VLL^I(gQ|(d8}3c=1_s8)dC%J*MQjvls^0|6LmBaU65@a<1|z&&z6s3Ubrp$~gs_Xc zX$1uWx^_5?GrQaN)46+QOceQuskaxHyN#>GwjeW?oZ5M#uVXh6-Uj{?cW?>bk-OK= z=Tv8CX#iej5IMtI)PP|L}4nWGyACo|tunGxH(0 z9TAH6YQr5uIzYq)l_!t>r#$(4D3m8Zu%21Sf3aYJ`BmVWQT;&v9WKbeZDYc&Hk?Bg z@&IK#`-w$1MYlJ+p<31$GVanKIFp+8++7|dAHz@t-5QcFllpkUwv-C8_!gdCUO*Z+ zmF_mV&#tihhEu#o(iVos#%Txle&{|oFn^1F#~Qf(P#A+w77Ii8Iv}c& zi6W*b6vq@;K?Ndze;2_gcTK~JV$#Z>w91*ZhQeb6!sihPZ#z|qeBG?bMzxFSB0ZeI zQ)Gg(?H~zQ{0B4Sk6rr7F$&o_Vh5fx|7h>%INs?3344+`2-^F6f6;aqV%|Lp5>7G%p4Vi>ihcefNcSP^C%v zZ&jLre0&R;{X8`s=8rvr|3DZ|eC100^##a{7;}fP^I|Xr#UbaddB_j>-3BLt!1d+}fMFD3(3!>qNtI&OMA8YwLY%P1qQ)4(YZ<#bs>lHUy`nPS5j{XKAFdBfk?-d6N} zxxt)J+f^=sSSQSPmO#F9L=nODB0jVBC&g?dnRB9@tEpbG#NiTrf>x-Dq%q+El-3Cb zI^Y*%?DemPon4{3Up3e~bzRXB2^F5$x5;*d8- z0tVzbWUF8-9{#n!rvM(PT!!*4#Akrsf!pHVW=j+Uoj7j!XI+KZf}+7cBzWk(;b=zKjEi=ut_~PIoa)ufe6VLu zUfN`YU9Bjr{#8?v6FCnua{1SaI|SP}MDf`J<)~uq{yKz8s45sB)H`q)V>ch?Ly(f) zjMFBfgKgn7ffmsk_fIcd{YY&^B^CIm;Jb97l8S-y2nx?kz?&FTh6|U(wzyg-Fe9mo zDfKM~ul{e<6crW9C}=oma^)-o1DPlbG2UW4=+6X0$;5}PQ2S8@gH$@BlIJM@pgq|F3Lo-#(rhbICxkQ**G zIc$YQ&=!c9zW%yUtvBC%-W!1<93AHKz2U#{Td_^!$T>Y7@gz#&qKOGqQsJje_iy1H z-=&c=4w8CZe494uJ;v%f(EnX_=qi6y)*}tmr9%otekCA}x&TG1&eC3SnMV`hda|Dj z#qd?wD)q%&EfL>;R2?1wAzb~Quc%mzv46JyZ&^hne&FUR6Uy(?JPXzykV}N||L}&L z1?uj!(#@?1d5K;pF-uJl% zqS&?>T@+!36Iqc=u2&ANoF=#|&tIQh_ma~M;;O7xb#{LxStObn;gq(oaKFIVxP{mf zgxeJDP+jvo&{Kfyh?Pg?wfb+SBcM(ds#TtZs7PXC8-__G_$1plbog~Hk2j><tnP!=LC{#SRlPjLRzqI)(Pc3*zWOB|! zH3ip?WL5Z9b!^Cw3)Mjhi(tg3%d3NRvs`Ax7_~hiiErPW7#D!pc7oTo)L%BHigigE zA8pshD((Q;-$oYlAxc}bNJDlBri<6s9br1R>Q6^Q{XAHE-$2q)xIY#b{ipn&VR<=w zM%S<8BZoKMo}9)>-_>U_T?=#fP*HzmuJhQM?_VlE*V0h2v>6mjOQK?FHLt#-{M4wj z4MHfsQ74|_wcjdaDl7il_jzd1UB&=7 z=klLR-mj{x;Wjz22s(4J+Y9I3q?eC2-;($^;Mxg`Vk{pJ@MCuJo&UkBiC2VXp5L+} zan~Z1!fWMRs8!ht$Bju;XCDrpJ0nV+ciY{IxDK$Z#`=1!$jT*8tK0Ek+ zYYkQz6}%)EG*67U-<*9DBGATG6OjeW7t}>9uehu@E{2fHMmvg%Hk zl8&;-h6vk9yeik&ZEsE1rL+ZIN)Q8`9G);0o-z@Eny(|n8o(C5(JB1~cGBbp#sSkQ zV_6^(MN>(}KgF~g;xc=9jgmKr2Q+MNtFO-t2sgqfjKdT3&fFyNpVhfu+XglS6U}KH zo+FKMKg|Kw2~v{-)2rz~O%20oUp)n3(a>S?RmUH1${hxA%dQ!Mx7rT!xM=m<`lzXO zA_0Vkt6#fkgSI|KR7@J4a+22hxFQZwKO|M*B5Jkz-Hus;ka@5>v5jO_*5vMM0> zfQrSrh8@6S`qW?*wvQQuhOFOwwmKB1VSaBcDeyQTL{KtBvDjFT?Q^6ejdyyjs%Z*Q z4ZK~68<3;|k=O{ROvSAJ$y5{%kdgx{XI0k$o_?}b9n#noyp$h_x44N3Cy1^BdHWCc z;idG3G-ZR#&bd68&IHvT!{Bept2elUjw-C2YrD^eXTMn$h(y7_czb)8x!SDLpJOv2 zSdV|K%<(C41NnU-2a?H=5uB6ypxE^hwrjrDYI>ZEf+pw6RgzY1ct&nsj zf#Oo}<9lDWJ3{0cNx+~edj{41WRM<7 z%FKsThbnI?ygg0^3kn2ehWi%&UsN=c;~h*K^euFKf^FfNlzS=`@WLnLkI6b2=;XdG zK*C1lU!IUlx^9kA;V1Ok*m5&IW{tWPkanL>;6T#T6*$^`=j-HE&F z8LwA?7()^*6lo3IpWMtK@Dp(utkmtd$M1pLIPe1nyM25`P8JEM4Ie@v>7Vj00;Eio zsQ~gWdxu}=Z^lZ=vulrC$ZsYFy5Z){SmqN!>jD-VsKz=Me`_8c`eDwN@5 zy`BJCgZy^geNj5`+MqQE8h4-{o%v_bdi9~kJBRSxZxY}lpB>oBe+Dr_a1rM5 z@a1G^B4vmI6Zdnzz(@nbrgQHQ@{-SEocmFADoA0rgNR)Z#D8c$v}%I`_|u92UIxs; zwF9QCwr&!v+pP{)ivMASo`i{NiyVh1fnGThfsrV}YeYX2NFF5zB#L0f}w!YxvpYq)dtbm|`rUqMX7_ z0xk~666H?b8!DB*2ErWybcnx+>i+^Zt&iB;9j_D5yki2b?h0F1^6-FN*8=o)bBZ0U z(u4&xlQ_A%T<>Tno~^c+e<`j#59PT?ZUOu!4oo%hsV*|xu$Qxa6`K~^#32HdNzI>! zI8SM8Awa4c>XC3}^+S^Fq1aYBeX#}5fSy)~LCydNqNsPxr|ugb*ciAo-@MgmJIoGl z0Lx5!`u;a|AH4g23sW4NH-c(2w>NbN^5MubOp50><%@KF9OCH+Yk_cz@KhJ5M-z(L zW`&$5TDp-5C1jYHet87yaG=)6HXMeLRyc>p$bvq-@Q(nyT5*9uBFZH2w2AkNZ~9ka z&hE!9%-q?-rz_j8r4%2D)x@ zbL^y6o}{M4_z#~U6r6eUhdF@$6ewig$(Rh{A(dU^lC_&iY7fKwmt25?p9}u3tpJG- zdmssAE0%%U4g3MB%k|mu{_muYnQvjW zAC<+;CO{}1iEbV{wURa1K+eU zR~`3*aLIp?aXdeJ45AYhM~?->k=8JrJkXngiXj>0)uAIeFH67SWz?<}2}~K{3MfNd zJa0+_y&q636*|T=K)xOmA0AQ_w%~eR9R8U|(LOzVDXr~WCjqHR>}4fWLc=UG}#X^&UvmC)gLs**Fh3y3ox zS~ToZ4gFxwYxwF;+vaucS|=RFHsr5hv^rErrCBNzG}C6 zUV!hGn)uqviNjrVJtR8`8tQTH6sN+I;qXPC^2p64$XE82G%QCVwOUyjW_S2!k1>6- zmKRBIFtPPVAC5~xlJq`DI4&V-!+YKywAWp2JUou%N){YRXJjCOi)XR_TEu0bEFsnM z{>NLQC*Z1+G2$QW2X6L3brhN_>ukNH(hCL$zH7 zZ$Q;kL^25J7F*v`kzWhz_Pu8nIX&LpS+?+MqcgM8d${QJ$?4( zQ4i|zYFQ9(2Ts&8GO3W&7Uzfr+k`SZqfSDv)fSVMhT z#p~Aww^!3{XF|=e^vKAF`}Ys~7a@#e1b<(J(&DNkuL1T2ea0F#LDtn7ikhqjc};#p=wtJDUGWVA&{%X3{GF$&kytUkl&ZMy>{N!}-Y--&IO98k zT+x;@T3{@zPXc?I!8sMxs1O4D7z9T{pQW>Dr$?t|fOaSXZ9jW_ z$CCUYdC5(}v}_ff3@4I9|7?T$NcNs$sMwGg{tor5z@RgK|3V;$PWP4RyfRQmRV@pz zpbG0{r+I;{SwUsrOsMQI>qlzbn}VYgo-XQS@$^I`WUHjC;1xH6PUid+Cn(2AH*uIMApr9ySx0sm zhKK1bo1{AO7e7yW6jlhOHrzU%>uv3Va>*B;+!vs_VXiB3QY24+>08i>4Kkc5$&hd& zNBDn>H?YZpT<=CERECoZTb0Au%7KGiT`H->^LY;Lyy&qTf)9MA-SWwl?5_LdZ+~n_ z%5@!wg9{6Fehf=RQW5|>D7vk6S(u)69h{>}hF37T!5J-OH%%-eR^G0xSSrfRC@9cC zp;HYNi4-Wfl?z1?R#dXnDHfE3h8na0oR<3j?FV5_x!ygEr%?>cNM-ezxg?zi$0DI{?-gN`i%S;=NZHIbax6YpFYV znj|A=!~d~Cq3|DvJC=Ij?shhC_~noeW93cP|DCx0_*HFaSrz%eMKmuWb?VPyk&)vzy`|^2l(HEdWFL$e~s{ z7B`?Xhnq!2U<4?CK}sp@+>R} zgT4Uk-}+)TBEls|uuR_EUztjX&1*RPAesqBr7M2Jf2wDRVrAeFe&*Ptve$+$*Nh}Yg|Yz&Ai=IJ{aq?kg4CubWp}Ra zoO6fk-(cNQ4lF~81%_rqqq#m?3tF9g?XgQ3drwA!tFC4+)i)e3x^Y= z=LsJBeKz18Bb}@_r7k9V7Kck*Ubc!J%lK#K9qo6Z4D*l9JISm7#US!5`-zVXr&Ld( z736p{wg9B!**&swJ0Ig5$XkKV81%^~0P=WY2qgTqM!^x_`a~sy z<^XeGclYJbyRlfkp=qdYAw@bMKtT&K3>8R8R&pa<0M-HZLy4 zM`aY}6MD5f2%sQ{xlRqPaaD)>Pi=ZW`!fGzrMU%2SXD&z=>Q@^-sB-}BK%&V6#~Pj z=F`lBQvR!94{&HG-3a+#*J4vJEDaGJuJNPDeBk8wzz$BZWEv~!5#=d!=n*|;^^YD1 zOs>MQ)gcXHkk$>-qb{yy=T^yu1wf9>xk*sCDZwpp)yS1lb%1?z#1#0fFpW1>aiO5e z^$(4nqID>n;6Y^*YVFFqfY1R^CCCj2xX&aLkFvHh;#aaV9*aYG1_n|y{4J@f{dxT4Qh4Wz_sy@v$KgzPB3W#k2# zEGUN|49X+8Ri9peNR99v?&Ddsbf3zZLouO#t=|1zEwBuYr-)gwe9FuCq9LOjuZXm) z9KLg}>~t_Xco!KxpNIG1drxMPcTI)nASG}a`cQ$;1_5xg(q+R#B&1ZZUok2T*TXI0 zmk9YJvY)Ck|G{J{nzF}KDC?5m;;O~JJg%{VIIlTpl$Hu<-4ql4=g=Izd5`EWk;Bm1 z;7M`#r^^7om8Yg2rxih23L-*m?JXaSEgm3Pe&@zpJwVM3d>24K2|6GqK$wSoi$Abi z@WLF4+hLVT`-K0QpH(IB`k&SDr!I$h*KS1=7LuPeA@CLT>iy?CAPQJ#bO5CpI^WG&-6bJ{?i1vq}2Z&ZV zrQRznNs< z+y1>36a-ozg$}wtK2#%iOqAw)`4XlnZkowS-}H`j!!779pXupFXp3Wqsa;1(AW{ev zv)UkY``5aB*m8{t8NG=mlcN%x`>8P2#qMeGfPGv;*JUk#z)RSc}nuV zBJ{`602lSsL}GxnyQ5YL=Wanxrh;okYKr_8!JFz*7q_hz_AKX8G8DbcR5X?kQ$HO>f%4HPy!#SXqa7{aPBU3)AYA(Kg86(|% z-CK$>8!wVv9p#mgs;Vhj!V%x6Dq?N5Rbl*HSXaAV!~M%Yo>52TL|;y?`#4-Tr1&!> zGPSQmI8Wf^B)R42N9Kl8*u(6w-u*;S%EE+nEH}Ix+c0qmyw!- zsbILE#Lp`4X$sNgvVY7w$7PwYWd3#N?4~Xi);Jy;PLo%dI}`j7vj?~|)J#rYRU>^d zzoDVxEb;XBvba-re!hcGW6tkkwx^jqa3<#CUUQPi7SU>CZwOfY5AK0{*?IlMEt@h)ed#NRaJ+f_g%*Yn>Jnl&Rle|TmYS72~ zKl;es?&Wg3@B%b{J7_$E?|i2fvFcD)Q5qyz71Clz)6JGr#!N6HCfxJ0B3~GSNdG43 zq6;rFZGzGhkA;S>B{A3Mb4P3}hU|;fvR3*qSnA^67gA>*HgR&eu$%sqd~2`Vmc6^i z!$RB*QVpY7G=AU7#FK>cVM)z9_JUwCHyiAFLC}1nif`HKoNfvP>)+$|FMYRkb(CtA z8BYHyRbYMh@JgTZu6iW}S&Nv?3Ds1xS;K{*qsQIn@@I7~g$pkASMDbnI_X*{h-8+W zo@xHtu9cay>mxosA}X;(Zi^CQXrF6i{uQ^09T|YhQ(jHYc__YO!p?DA=p(ohAy1Vp zb=72Yz4@x4gKipIyO96l>S~|6OFb{lLp5H7p-mpV$81O zQ)rw44Ng51tO3@?Cl1WS)B&1FItB|LJ^T|PAsP6(Sr&W^+y9~PmkIRWIowiofO^Lj1lr*k(RLqbjmX|p! z*M@x`XXC8$Egr=wB;?-23@}7$zvzwYg{vl)6JX<+{uY)bGvYYww3kt zZ2OCRc`X*}Abr*rKBbgnTjIpT**TWE6>gpxo_{L0V;U{w0Ti>4@)f$TM@cPspHR%G z6w07~WOY5Q-Q7(of=2M(*N$q+Q!ahUJ^_?Vaz7;MfCnaIxm-m5*0*)y9^A|?wdud&PT3` z5?%;K8R|UdYSOy69uYAke~X8=mAA6`8hQG|-=;C*L@2;+_~p(7cF@kS^jSulS+zIZ z)zj3@aET~#oYb9AHWWxy?LQcsTgY}#-zZHwn#`u-WF^q@+w#@{tnmXFzyO!;K6j43 z;8&RSQcHs86DxB0?IoJ3lUhQ3cn>^@{T90+fF06O*U^#Le~6)=t%+96>twcS@+2iS zQ!`T#X*c7NrJP&J669jygFiQ_TGil`m}8FV`?9+d?fg9LH6(*M#K`AC$XE37A~BT= zCz}og)RK<(S%zx%(061_x=s`om1*vO{2m`KQJO2Su$7^;pYQ0~b1^W0vqBMrH`sn& zM$_122ng^^=Y*#GMVb&Cf!88a^p2 z+~Q%em`vD`8)keI-N2nya>o{*zJ(UJ$=hZ>H#p2PleWaI)vnV^%$tq^G3$A~{eKTW#v^@3@n zB#~gevzBx5!}HbBMbAq8f=4@rOf{ePnqMt@uUMuesbUlIaUG?(;RZHf5XSfF9Z_qi zJZf$G@PzwYkVvW?%RSrY0y>O@-&eg>c$_?Qm1 z()xt&eWYvsXVDi%{ITA3LNi;&;RDT#lQ$<5A}c@Jo7C}`%{3!4l)K<6uL$S*$&^^{}`-K_~ z?jn5uh@oM_j*Bn&*C*x~c=QZYnAaGGIw;NEwDf43RxCz7DSq>+6aSY@^l1R9K0$xy z#j9Wo(j^aQ3wC(%O@!<5o%Mp_z=$(fUCB$KcXfPgygWOF^U?r!H?2sXMkuVu6^!b~ z;dVeuL_$v<_hi;zJTFW{R_k|4oT1FvTLi76ij@)B? zBO(1ZwIhcx*UskxI2uhn@2^I7Xt8wURMp=g+A)NNMSkPWX)RiFD2U9?X<-$fQ9IG{ z%gCN4HgV$U4WY7R)w}sEw0i#aC&Op#r)3ouj$wEb2MfZGdtX7J=e&_b+10XNgi5u+ zr^i~&PlQCIz6#sQ$|8C!q3 zUq!f>Zmt{Iq0Q9cn=cQDL$%kPH8&&c_(JF2A*%2}VLCl9$sDaVoG=Q_^<_WM8aTAq zCCldSbMIBFILD6%Zjb=TVY@J6l&R+!yXnSXjTcvzT11*+$2Z>h{caWTlU4VUe@Sjy4sY7*hKugqf`$ z?c-?y6}c27^aZk#tw@y$6%e3u0-r70zAkNitJ>`{cz-_$=*L&51OygACT;==1%d$G z3;5x^MS%-S<7g8#N#LN5SS)g|o&0i1i^Vd$(XLi?&EZoB7^#ffZGl8WiCWcMOPHP$ zAf%hZ)9qi|BZyui2TCNxPfMqSZC#B`?A}q{+XCR|%ryC6_pyKfGMm?S{YOkq7`x58 zdpjTsuK39C>O?j7X zBE=4ZseUFlA^RSF2zsT`-Eenx`K)J7w%`~)};u4!IoYpQB|6g4U7%&{$dDNfN551R{6n|TUZzIjWA&a$OJ!x#EqNb}HBWk3`L zwH52Js~msvsPM)}ZJ2w|W$sjvV_Tf|__@0eaYgKp7YE%rijQt z1O?gi(1COqj&BT*>BIq+n-B#zzBhi62FkJur<^GRQHWN zkzr{Di7IEkqOA}12fWt=#F2RH#dxzRpNfg4eau!}D>$srbx$<7MtSMw!#~?NR5~N@ zd!ait84OR+EtiyErLT_XxJDs2Z49|-BWn^nvd&pE3l1#D)S7I*kO#bw*w^vhPa@6Y z+9>NNcJ3R0OUc>>s#7`7o;@3ySq_W;c>$8_ZP2JF-;o+<+qvDHzb?P6sl{E+;^fcz zKFjK>0@U?@nuh8s+J5_NY4dc{g(!4Wec)---RC*Gw2JgpwG%6C&mJfl zbrKV_@w{En$*G!pIc z)zid>^t;BB9PcRF_4T9^O=P`GG^CwcMezbWOo0=@u{MRJ+3L3?y68(JMZ}bx7Sj=@7$6c8YzpxKHohbXvP2PGC#l& z+4<`9&+E1i$ML(`-7{XxuQ8r?oE)NBM+i9ioEM#Y|EVDxIx(fqR|)R4+ggP7@S8i^ z+?2EbN<9kFy>0DxIgm5*T2g5|m?(!|Q*<8_0(YEbQOB!QK zJ~K`5GyoT+$+&ysA+!8dqTQT_l36L!j&d^SXe#=%&BrLcfZfHFqAtI1HP^oo$O;=S zaQ`e)&bTbz`?cCox;3SYb}gx4;w4Axq~Z@pw4QK%+v0!u7#-0fG$YJ?J5S|NEoYI7 zv2?Hd71rQUdP?WPPX=e0A2Qk*!X5TIA2nmtlI#v^D z?NpbpPIuTsyKCJuoIE=$9V!>@bwHyf@Nk)}QsWL`hzh{%!Y#7dG;}Jhz6m#2^1=}I zSuZ2H(|N7aFDF{^RtV--6X!f<;Ccb-74g)cECPd3A!xy4v{Zt>e2TqbUH*cV79L@R zFlNf3j&&9doqc;PM}Pd9^Z0zP35T|B(rqN#UEYK&$!>RTO898K)0a^;k=AC7;bmliqW>H7yELvs>F z+As2fH?+J!2LdIdwBzK(ZKnVLs(ybXxnq`gUSt{=1-H1L2N1NuIa9~8-LXH;6qq4- z0Nko)v@pZY35gf^a=TOdbNlfhlir<^ZaGtxk02!Gl!lI4$8|-ID`4IvE(0iu@$Kq) z;16@s2wQz8$@BCS>cAdwXewlk;pbEVFG8!U8ukD<#4&YXWi^!jc@nF!kxqufgoK?b zSHXp{%gJf=1!l)`(wlibv&F!*o=GPm>o|Sp^%#Lf7f6l)4i1Q!OFO2DC+y3~Y+KDFmM%^?r)|<|Ts&{L;iiP85z$wz_ybsN_>r20q)xV) zC-#MYCKsMu&d#cv5CjN5>qXuWUbjtqSA8ms5CyXOfGK*%46Rd_EexAkDRcfF6r{!B zXdxOYn{c$x68x~3^G|Yk(=>$qlUA$zta*$KQ({&lOBdBBB+(IUCL3wH<9V0W-zh*5Cp;7T90!+w>QH`x`#FLmDTV zsL=u1rq&0d}-3^;@sF0oPy5g8XIA25w zzSD&RJ+;T0p)es^efG9mQWE78cg3;_0byeumGNArc(K8vB?%R z3T$R&&D?b@gxV_Pv*yS7f9(*ENJW-PpnCs_D!b!_`!J7nTGmOFRt$J``0)t?7r|L- zILjlcJG$I;Ot*m_Pm;!SxpN^Qxv*Q>(*|zHL2+4fXh+ zTZIPLfU?N6QLeWal%u)`?Vej%&^TvG*E>#Hj3!SKpdl>h^>hB#*USEed^2I;o^Oq=ot38EBh&QDss1(na+(k9(TQ(#s-Mr%>9|%8Km-v z!#%u^;Ab=>dsFd}utDfYJ! zaX+|KXyHVCVmj&W6``e2`$F*P{EcT?-{s5OWmrAX=bIX8hONQN5Y3f#^m~+^DEOx3 zsh;*S>R3)LnNv;dnY2TrO&dg-4)j1UB-7@u<7CzRDQ81Dsa8L8_7Qc3R(p-qPEEoi z@)-%9va^0U9!v-+rpn!G-M*Y)9z}B+-k5zCDXB$nn_x~;e7H#+h8^H4*1g!rGQCZ^ z=FHU$%%8~xm$weN=vW8O0}kg20B}@(J(c#chvQC*%K&S$t42;mUcw%5buLG47%M7J zgj9?`mAdhL?xu({>*`OxXcnRO%PsJQOyHFB8C!z0Vnt5e<#h2%F^<0%m4|u|CAv~d z1?GykRUflHK#L&jgCY4DK=N7Xl{rlP#@@Nn;V}>rfFUxVA=@on#g01+p*bb4Ngucs zxJp=>(8y-yJkoDmd<7(_5AVS+b`@ID_rDJ(0S>zJn9Y&h`-in`z!zjE6J-_a5J?O~ zy$Ax!rN%M94~pKreD=)L!`;Pjsb5c`VsLc$5O!sV^`C7as=#o%)R*UyX=3;JR_pS@ zRC!7U1aG%_qjRMtp+YXY>$j=WaMk}BO#aZ!BdXGAli<{ZI=|#kj_TB$0E5-uMQc}L zF1s2lP=F5N2cE|2BnU#SNWfzF4JvWUjCUABm4371UpnF4wftiWZ@EN#=_cdS>wrrI zPpNe7+ixvpd|jR7h)y-7mENFa=Qr5PH|hVCK3KT01Xgy{QzZ_arvW@`F3yjijuuYN zIZ_bZ&)+snDGOB(-efT@VktH_sUvV*IJ#~Vj+$tt0HG74-ze`yB0aoM@U*RHF{n9H zkJ&2$t7_~RPAK^rc3PRC&k{fTcFnjAa8gR~w9RAv-3#9>m0{`14A)M`HvFNK+nNZg zsKiR8_B&b&xbf*f+r9<5dz_AGTV?qofkkDNyFc~1_*C%P+P$; zhk(^vvQf6YnBZp`@PWI%7Vs*Fh)~k3&OfH zI^fN(h~w{WXL8+KQUvJVM@(eIw?7A`8%VYk#>~CqoT`OA)N!}9gGTB1TLUglZX5a= z9v1Lp6gEUo01XqGE6jT;w)1diwSiGpn@SgNwj(-sKlL;e$WwhKc@ri@RPT4r0ItdF zuk^*M&Phek#$z(ey2wH6zV@^@eaX!7Q$l8XrFjrv2r!~4$Ab|;AKqERfgua2n^kFx zMt=5%8+3uXtCl_9JO)}BjmvF-K-c;Z0)-GksPH)fu)vK~fCHr! zl63$#tCI;`YXEisMd-#)$(0&MBl^u1B12}UHown4Sc>OU`eNx4_X(S7EK9Z{5bz!p4Cl=6-qm1s*~M;EPHb`-+vzx?)<8yKbZ z-`2yYs$xfN!(xYF##p{wfioLZtp>1io}!#+Fk#k*Ri%UXJ^Z+k#yPzWyE?OgIWjzX zgq?#<5EksJ&bgT1K_i?xWWKm3kE&{3w@dF(7}3hixc*R|)o?&#BH5>b<=HWPTKk{Z zfo>|*zbhz1>nnzygKKj6v#lwK$({lZ%NC7VLK`=7Ip z#oMiB*eJ*i?GwfTzC>jJz4sAfs(?Z;n7DuU6r75P-V1ZBJcXGfIkMry1%U%3SCU(C zkuO4LqFyDdohhhTzu;iYt12hKv{F@zQFAtYs-TWd$mor~$ex1_-BDHPmMQTj?EI^E zb?FI=7=cOHP+SywOA)inaD{V}G)Se9r*lhj4)4I^|B)Zg%E}VDIb*PkRnkB>RteO+ zb>^rp`g;~W#q}=qw<)J{MIvU2{HHWC$%)M$i*gD9q?dyP;Ir;domQ$`he1!2Mc!O8@twF6Ia}*i5u``xL`YM*@U=6tq<%?Dj2I)`n z+V%a;m#*`bV1+OMt28A}n{4L(Ir%<$;T&3Yc_d}G@oPQcQc`VwyC-wMOH&ht zL(u-|DC!s{I=ym;*_QhEu7rR~p}qi{5@QS=;Pj<^Y`NQ-T-jvjMa@c%v7>B!_$iku z`LiuZgy2+@pRGJ?zFMQ={Q`1;i@XeVbkd{_HCZ+G$4-g%W`D@yLZl3RP;sSo7i`+* zPX_h8J1pUlZ?Vol=m(yOcku5OOPi|yhjn*%cYe>bW1l7TM{qQ>Nvpz`Oc&z(;w6-1 z0j@agv-qnreO`@#g6DuQale|F-x{_o*#j}vnT|vCmo_&5Z8qFaIZcC(T^aRta2|=! zDYi2%wv9G#c-DPC;+*v~J@>}sVdTL8Gu#> zhb5!VLeN}I)zL8z1wDXE)COjcu)frDtjH+ml}#t_I`M5vT0G3u&L>i)0=0FaKd%$)t|?C%45)A5pOafy|( zgQf?f4g)@@or9K+j?Kb&GZH!5PQ!FU4mEhXc=2LcHT~YbMeF6j)5Z7%PM zVWmXHWJr)$Bk3zo9NQAev%oIYbZQ!ZPS5W*rf0h( zbK`}5YocFHK?#=7p+`v6d+U&mTvg<(0mIAC!Y7g86734qQ7WiFU~eIH`g}siBfI|2 zgo{~O3u%ou^b*$B(t576rkKvTC^;gMEV;vlO|}k!d-Jl!I1^ zWVho<`@S*P@ys3TLQbByS0rk76+S}*RYS5e6_oJ8&-jVZM@C1?0gg;=0r1n5N`fe} zc)UJfQBr8L+l|lb=}@JgHz#S^SsK9`S~bLpMDfGKMM)|DJIG(`Ek09{)CN>7vq7R?)QS5J80rWd(z z9)6#L21=l1=S8j^*nIbd!il58wYQ>+sX0bGixxmVtxAy_xvxUP=G*#-#W9Li;YFfgw9!fo#Dv zab^GFS(_$4$SDlirc^s$wxbmrH=O8}J9@kKKhllacq=Sacp-eusm_jQCP0m%tZRK# zm$=tQlb8cOWasdbJ?ulr0Pj0M{(zOf(%sctanRz|?{G9tEI?k@Sfywq4Mf^G-h`f% zWC}5a7QVmquF~QANs-T%IF+S;X{1r%j!;eqfg@lf(K+bPgvdRP+q5EdK)3aefuhN{pFT}=fm_+4i zsCgLsO@v}62W^F=`!|;UN-3KnYIMFBbaCX@;&V+t{>a8xZ zv`m>Y_B?6Q#ai=DaKq-TDPKy6JP$7cXx7jWOXk2y$q$99V0XYJY=a~j?8k?OET;|s zA?gF^Q`pZqN)*6;{(t^O8J+!25!`j5Z0*pD&+*vitINyGB_4Haez-uA!dFxnh0_1| z2ceXf{EyC*pw~9Hw$9#L{Zje3tAZM|hJ!|P+Ltc*QCE$VZupqOIimr+yv)o}JSB~F zqP7i)i0IsTe#dF=_(Ax~4By^Hjk-dTa`zLPzu%ir^gFU0~4Yb(8qmoAZ5`6?f0`_tRmCd5w zR-i$qy1oi^lVh#n92%%uD_fpk!ZPX8t5p|PuZ1T}H2wfD@#}?GefGOp#4m3w8gE4WI9~=Gf}1{|ewAf21O?O| zuOr7W3%X~@K!?tU(6=+_)duvjOGmG+5XGzI=Jx7$qgcH%SG!OyO82Os=UFms9UY{P zjMv*J_8WvG%isAjt=Z5Hee`Tr=0;ZQuX`r}DmlM%A9s_kMO?)D%sXFFlExT9!5HX3E*o`DoD@rGsEXV)iG zTu?0`2stV{q!?Dc?cP7wgF12|MN7zQP)oXG1!#(} z@oSAv>v+>-94Pkd>19IVh=yyKA&gTD;I*iG)_1;SC5@3Fl8kR@!MX)PPc0?$45{4q z=J^HG3=?ji3lgzKc5Be4D@BIYOEV%OLN4Rr_%sYS2#RLv7ML^NjE8PsGN>_BAz;U1 zJJescBiA?=S`Uis&^o@K*;;Bp^gTwX|KfhbHv2XBGdY4w=Xsmc`>XuWl5YMmPBuY9 zLMPs1<_tVd2^Or>3xz)tG{kiJZw>8&!1rXc467C(d?DMelc;f|wY|Oar5dSRC(f}6 z=(YyppDEC*vNoR^RewTzNTkIHF?s3%Hm{%Gs~yLdptWBt%~!8pO&5=ij#@W9mtbFH!rHSkG75nMaUuLqsWjId`|kXUD0KvS%Tk?T`bnS& z9fWD0?kSmUy#1@77a$@C2BMomPtlEpyOg_cunHa8qC6rVC+d=EbZd~JK3YKLt%)jV zH=;g$NTKdn(ls2r6+Ez7yyWPU2TQa4xj%pYyB*sAur>d`|&D2X#ApvW?{#b zT2i8nGNF5&LF3sCaYJjVtuDjjeT7zGs8clRgo)+@O+B-i>o`>Gs$9yzi4I&ITgod= z+xn}HY5e@Aqq4!MqoF|;HN}c~sAv&`<{BV4TualL(Y-(M~aS|Y$_=UgG&c7-#J3AXqCK|Dj)`_9nn@qt+t^O{E3GQPOhohseNqT3d&dYO6(1L;!zGomH+Ne@MHwt z=7z6D&@6DK&3U-M8=$^>(507H>;;9(`IsG6w1i|6XU;Jz4UI6{;w4tYY1gvkjY;n< zO(4t`O?%V666_c!FK?t(jG?C1*QUhn&Uyc5XUdLe>g-C5O5vt271qX(iYx?Dh<1VW zj*|7=KGj23%axNjQ5~5Et=Rfh$h9c(@Kja~>b1Yw>xzrZN~+WWN!KjYZ4T3Q^=EOH zU0a^*1eM7wefw7zS%TBJjHyEM!Gsz?vrtr43%80 zx*l{Kgi3be(qa&^7<8@^U7YUG*|wefftb$q%5_(0Z>@o)p_EMvqYZ`GI>;7sZdZ^6 zefoq)XoZ7WZbB_pp%^=mMM4kEXgef}9Fv2`Wu~WF_H0C3JXd3*ZDzjNn+UbDNp@>W zr~8tj3%F$W$hPuJGL2d|!=$7!Yj<}7()Yxg76&|f1O_JsOzfmFnDR2xF&sxO*ing07ewprBbh|!Iz4yikEqyYqdPI1;>y5dH;M2zo{QOBhdPd z5w?qg49j1@X^o>pCm}9lDDo|XCQ$Z7R9(vJ*W%Fov_4Ku2Rh%D8+l9% z$!&C6Eg_h}Ab#tm0dEv{o%+R#_klLaSXgjg@sx!AvieZx9l<66t*#M)1nq-Yi)Ttu z&-zeJef=z~B_wP|cyA=eiZ`yTz(*#D^#nO@N4nIiVCnMn^HB!WvzK*K580nLA$S3k zG>IgHe|#Sjy7kQjy-~d9+(Xm_T@D{b>VrPZwKX+QdZs)2f7bV>gMpiN3o_XL%5&ug z9D;Sw?UB@$vHJB9ACY+$a=j2m1IJH(K>-LU>lESdpFh0*&Ht<>9F!4}k*Sc8Ik~>v ze_bC;@EF=6NM;(SK2_LZycIvL!jzYkvsSK8UtfgAnay>rnvBP+8W=5QB_$=h;H=!-&c#mS+`>Y^k+HGKsLG!s z{AIJyOqeH-@wD>#+Va^EQ?Ib>Y;L7E(V{*Na6Sn85RR4Q46bhFeMuy^WT9U3=v|>( zdKepOwNAO4r42S|0yJv3f`+Uy0v17R7>EMHz&<>`le_s=G9iYnuXuFz~o_@l< zUQj6|B}Fb2waZ4>uH*XcHGS0FTH2qc9ni{G>sKJFjKX}k-lE-_ppX#O*BlyE|B_+#{*ef1 z*BM%*%UYNJ;R^Ytc8B#{T#BHPGjXX4;W#7~Qsg#oj!p^yEeP6!&B$n!TvNpQn=;y$ zog1WZ3LH=u5Jdh`e^4o;;Tr9PSFY| z4Ko+eQ}H@#VjV2GDtrC)cRzGifXT6hIdp7X18{CR`Z+qyB|D5C&Nuw!ycg2J;Na}I z27j=9f)nRjJ#@>So&*{4_qDaP`OxpcPB+p_;@g{TaBgeE^6HUA`~`Dz;-h zZC}Wyo28An_UHwxN@PZ0KeBPG!1t|5*|fADb>4Hg(P&f2nbcVOd|)IkFCKYPY}aYz zffur9cs5jVJh<8vZESYWKHy5>86B_;nu;MMS(k!>q9Z9-(i)x*$F@f#+hp+VpQb&M z*UJ|pkJSLiE#|Jv2WW8>DgRfCe+1CZQ+4ux)pn&#O8PA1Mk20f-6)8K~a02$L>$#aS5xUgqu z8XaorVW6{LUX4NV5@)S0H0V*JI0=LD1g0+%xBL$sI+TZ;U6wrUid`rNPT*C`L_ zojnZ=rmPzt5jFfev5z%w~06j%P|+Kv|=KW~Do?NQ zd$2bV670`GWlg18GGK4k8)Hi?mxok(s+0vz#mqv>#LgD8p=Cu>S7VW>A71S{+}+DP zU0Nn*I0ywM?S|Ti`_vEjR850J3l#eVA#O4N){fx`1%foj;QF>nleG|s7y$*opc4YQ zp)y>EEcey}e!%tIU8cbyOV=YYiuR8PSIEIOm-waK+f-3xp|iF3DO(GuzGupPP?9hB zfH-D?!!1#-*x}-mCABmibt;?2vajrZ` zF^q5KHKWVwuCX%Qs&uG>ALwSjD6^?B#W+{EtY0)OrCH#Mx~y2^vsLkAY(?x*kIun) z9tlFa#ZD(vbr#;v*~@~TeY1Em9gJOGoBfi$dqpfOX~#AXl>>-{V?@WxWtyb;Ebrbw zz8)|iZI;@ax;ms@4Np#tW=2)x7AmhM8whL40=x%piGY&c+>LMWjOp?-RxUQ!mHe%I zKA$N3Z*%$$c;QsG9ti7rnQbtKgoZ{p>92q&nLkvxabfIokOvZ$n3!nk z7?FF;OKkqw?k1P~SQZ5SQoL@PC6>y4)M!??BsX^hs3D!u6v%BX>_x@^>uM+*6#YG9 zXfaC=_btXy<%&S&xoZnX#gsZEqpM&e(J|XuU8ir}oXu}~s7qxfJcXnYa`g^d!l^Hk zb3y`E`^k%tQUS&TgR& z62gKAG8nNd0%Qq5lz^tK{G9#azeD&SxoCeN*Z%^^mcI=YVY918}YxUyBBo zd!&$nr?|DARA;X{#l?ksL|flpDb(hvh6hy|v_rII_8C$|H|Q zau}+XsOqRx67=VnP4S{yi5T~1ucPi>&%=Jw9HHJq?9qtoyAQGomCcX`ubPS*P@C!- z8*?ei8Rfx-%j3xq(H)hbjGu47qm8I>pC0*}l$7QXTgc|KK{H}ucT^|#X5l3*wY@qu zfi^JlTz(d`4-QzRlvE<4UgHg>iKJgTuTmN%LLCLPV-anK=mK1{z`;ST?hJqI&%xQ; zNWljcs(BTfB}q=6GD1LzlM`u5?(G>i_mHjvf@Rf1|qK7k>7|Z~rATzG}VzWSlNnKwMs0!8w@-YrhNsM%wt$!|vs2+Vh z8e)3D1^qdC*EB5k+((c6&P`w9Drvu%Lz=_3JDY2wmG7;f6YQp*rPGsbn!0QHfHU=l zRkkT*HLIh24i68RkW63KT@94F#B<=oYZ1DF?j!vD&bB0MVqRH6*Sofm?0ifhK%)VX zo?iTF&-dy}hMffa_Y=@H0wL+(XBk{-Hiv2`F=Z~JXFRs{4{rtxWW4*6Fd6TU!uTXUV z_HB34=_bbib>buoK{nT%9ZBmxb_*4m-7=^(^&M4KGvd?# nq|>FT|MJ35{s$@i*zm;SP>$y8;`MXrLpOQh=9 z?ad8tPbTi~G-CJZaqhilP<+36#;n41Z08eU)CMKRkPBU&=U~-s-e8Q>@4B;iwg^ec|3uvCQF>_P3W3v`ECT ziHM1bv9M$7&)t!bkQhjcnSj4gx?^A`4nLmq>mWe>nT&}aej-!+?|-~EvvJCSuY5dY zXQ{VIpW{wAqxboMz`#I{%f3%LjKw@WgpJ?7vEUYAuN3h9BTPa=yt#Dant>Gt@w;Yx93=FAH8|VH1$3GtMR*qKMGn;nD`5hd%+zPdi^mLM z;_v;hZFI*6QkEk{r~3N(x@pTTN4Zqg)!plQ5(N5#(imZRdWP6+9$3Kz`;*ReqDPzJ zvWbFaEk=VV-T{;&bI40rx}*GYRqHA5V^4UVh(^7ah;_xx*^{^GHEUa`WSF-qp3^p{J<$R6Kx?URapg^Vg4t_ak|SshwIfC%OvrY_Di$r(YlS_`qGrN zwec}Nqsp*xaJIVKFT=b0sIqdWa+I)Ac6(nD?l@X*L+4LO6PzL*a2n$Ro2D=PkJ}r^ zi{#`fMMa|2flc*;~}!$e#ML8HY~itk`rEJ3`z<0zG0HrDf+wM z;e^A5b$i&q1EQAl7iC`Z-O{#Jki8a7Pp>_^UN~s9hin#xeDYU=S2KEZX{wqRr+q=~?{j#Z?6$ZChe{>X zhm_WJn21L!`l2}FG9hF<3+rwX{#qy3)nL;r8Wg8hwa#p$XkR$Fy@7L;l3|YD<8TIap2rE^sr%jrG0cb5;!de)vE^;SwHtUZ;A#+od%di|42P)?|UjKQh`d zui4k3r?l3e;1>%}_u|D@-z79JA4ajBT>r_?KK0W?9UB>L=M9azYgDdRO%-HM+pcU* zx#){=DW?&v?P*5)AnT)qK_d2c!Z4tiMvJ9l;xyg5kWcx3!t*B8a?s>sp2hlRiCK%_gizWY3fIhedaj4#kd@()i^^!Jl)BjNJq!nf%UR5MEF-{JsC! zHly)0JtNBkiE`?$i>(-LYlh^9E)9C=Zjtyvw^`kiS=?hVz!a*wxE|Jyu<&{!wTSYR#GX5EGf0z&Im*mO$2|E_Q{4Y1fEzhL%l?9?evSODCN408>-oE^ zdCyhsj!c!Wo8rGTw-c{h))b<)ex~o*uS!v-?T;$Ib5F>Ic7z1|!Y5_((+VQW`zJ-q zQ$Cf+=S?LAbW7cIX$jcFX$hzJ9!N06<8B=&iIpzI3vAEu0)o6(3FAT(V8j6(0aR+ zR}jUZ^{I4OvEy53_R-nQZEaGlVclWwxK6~6;C8|m$|;tb!qsjP>3YL~AMoDI=>2I!AuID+eE6T!Iof@n56VnZ%VC6HJGmdQ`jgbCmHOx4@&gq$= zTslQ66VB-SJrdi>)UHUD>1P?$!M&4>5wmBRGHr)fbL>e!^?Q#efuNJOR;pn-u;7)b6GFUHZI`$k*no>>TKO&h)_Su$erWds4_N-+BWUUW0rR8 zst|YRbfS3pSRehuuu31}VU-gd3^&-j*sGtiB(S!)M>U|qb%myhw8_JbHbgnJ-C8-{ zJPqgUN) z7VU6e z+?p#@PNQL)y_Vh9T8CZX!GTwpivz0ORGpufF#Q55o+}*s^#kEcEZ(H zFD@+pIvYpnhrh#|p+7WzD>;YPE#x%uT~x9rn*;yJ=rlqm{YW0Jk?;GzA4_zxYLh-X ztiPwbb$6@5#nAMun;%NclQ3P||9&l{rs|6OgoFCYuPH_ihT^`c-94kV^|eG*BR0w> zby*WhnVTz5qz@K0r}EYG8KuPn)q*$@zhrjGJDKH1?%K zhKxo(;WOSlTlR}uj<*Wm82x~;*vap$SVn8)H+Ooj@foyaSSA!e?%=|yFjAqL5D+XL ztTn4TH1&vnfsXM)T;mBW+@sTV&rPP_WF8+B5FL-WQxar;|A8|+6ZFa9$16PRU4iEV zxDuFHJ=^OaPIi}kXE&e9u=Xg|#>0gRc_Wb_6L{z}(zU5uVWUklkk3=C(r%1BoO{~Z z)miJugtI)v5P5CuXCx2VP^;1PpT-w192|UnlsB$}5s+J_O-hy5FcI)yP81~W9ec~a@Ua9;vQ32fZ$_86McpyZZZFxwC6XmEf zl%Bh>VSSQKtp;eV$T~mqAzR?o z;OKhMQxAPiqZ=r(Xk)*ekKjtx64rx5zoLTOx0|;xY1M$_sCFs!G0Bv%<&SuJ3x~7Jw^KBH?`n7*_IWGw%wkIIWs4NeE78)}=am~iqU7Q^ zk>H4W{yo!VD!N}XWoV``z8ZJ)dxO31)(?#{Z%jVZR$K0JB!dZK!{tBP~ zv$`Es=ZxLlq>aMd?+v`#I31>YXAR6v1%I_%(iGM!RJzO%I2gD05n0UBN#ks`KWd1{ z)r1-yuj9WwZ$04sUB-#3=O(Wa?D+X;O<~Sh%ulpoPu*Mh{ABu$jP?Cw{qOta3|_#S z7t)mmI%DR(-C5)$CA$6KlWhfNq#e$+J~!c8^jJm@ugn0H(^*8ZL~H3coqxR9ll0J* zk7c+y09C}pea6Sluhhk>NG-^ghDzrHKN1efiuUHCW}K60pN%d`#K>bsX`ij`3Yojd zbhO@o#RWBl@lJw*J@@;0dFPa(=n&bNl%4l1w+>B_5fqd6LzFs%FW|aHF1fUnXYKcodDx z!iunmYfUq&XpI8Pn@{(p9Bg;G*#~6=QhzL8*#D3cI+!0GKRavK+}!NaVrXbM?I5V6 zrsiK!Q6af>L$8k7`&WOmphX~rYb>A>kujF{UvTR8mGa~r|G@{Cs!!rro*JI^BZiyn zl=z`9ui$>bLvn=dbbi{kf5L-HK^yb>mYb4xlsE; zNSaT5PwRsv1@O-KpHpT$4D|FVb7${MNO+kP3jmRGrPL){BlV}pNolXvzw4M!Lr+N# z>q&X_8gM7w@z_^42`{>~oNGNdha@LLi@MQt`Sd&Qbg}#r2IC6eYF*_oE-q$aXWt8s zij2IIq6qvqwZnb@O}roDL!ddzo3Px8qq7f_4cF9O|2ZM>8>$`cG9G_CnqAJ`vYT_jY_gOuUEkAY3t~YF#I1MEtcC0|Wcx+pV#eT^`X~nk8 z%l3>@CY6o%!>8x>67MyIDqmB&tHH;8rbDTlS;DRCG_f0B)oSoj+(b;b>HNZiYu!y2 zmXAQaiD+pW}N{ zr%r=Z@hHE^k0dR>n~h9fo5SEIr1|URNSZ$wY!{6YVj}J|wdTBL%q8(n6O2oQKuzi0zqr&o;kiHQvXtnosG{QA*eKRJCoL^KQt{*pt>+J=Jl$H#t*tGW zp9|5I_z8ho0Xd~3O6FFcq;>v~!*{=u&ra56&Y(W8zITqf&}C}+)?3@QWNDcfKti!* z|Dg1&om;iD5vWV_^z>N;1(LS5JI7~8iIs*Ij?8&gv~0u^*~|6ssS(-*%js_E;jj4} zwlVWo`xJ>WiNCvxl^8ro>22P%#P2Nw+c00lQa&=)N>?>{sKW1K+qoWt$@SACR6Nx$ z`LeboOx+?LG~VPoK@6=ZxpH)}t-_+m?EK^ugQ6<*M@c_%WK%OWncEyi6&`%LTkK+H zC{tqpIC8s6GFp@T@U9~o&}DU%2u-qZ4!Wu8XkPLC=p9OCw6^Clz*FH#p7C(D_`CU~ zc#_e1SKt#8xe_s<`J`27LOqa9VL`*fKi>D|TIzx+Rnlbmiw)fCHM68&Qj2V5Zu@?V zn-Z1CkG!H>_*}CAC3k}6su-g|X|VKZS+wkT9e@8|^NTvOeqR3V-nUBn5Q1Y8hzE^% zC7GnL`?KTZ+_K!!3ZYKV!m7?gow<(>^pZaAO(+*0wAUGE2w$NI`<3CGJDg1hur_XT z*uRPn$w>q0+C5Xe?h0?_M%gN}ig?VNvLk0wg05A}XpkrO-+tEc2c{nlt?qcYepN@a@Z=75KEsv_YBDt!{^}Zg2ZnX(!E?b(OjspwRZ}t#F|lLS zhjpDf+sdu|+RWlV)nYs~_EDEon!bF(f7eDCC#(SIfa`wu5RM2wB33T*M3*?r-HpZS z;y1Zc*t{AfjbTkQMYXRJj~VrRkaD{DtOK6`u$mfK*g$~gql zFhpMsJ10n3`2@8RyOF<OKZacXoroBQy< zEo~R0C20?*Z#C*Q-U+830L>;Uuy6=f)-5NINi#0~WL;QkL z{~SXC9Z~cd$$=dZp>Eh33<&j+=~lBbiR~dTPK;27O`2&m++RCWEU;ip(o@0;Ei-8j zys5Q-__tqwv$^_fl7GqF$_$8q3dR{m`X2Yw>_H}gB+FFoPO3wQzJJ~aII$WAEpY#K zc0Sh@n<_!toq`Acd*MM1aC_NIi7fQ()zNf?cNTEx&kE-dEo=|BP3ox$)oInqAP8~? zFCFk7;KKsRD3y~0+goH^LC^N4)o69bh{g-mM*_DTGCEmBjr8%oxUZ4BmF>5^WR%7p zyiVL1r8w{m!Q^29h3>=H^sje~IMr-=0|s^L8HItWr<$8zil!X>Mh%;z1btH^=l`m3 zmIL|marwOdMhEUcEM3yxtip!Ckq?=gNJ8<@Gu#pyYdR(Zo8D_JFZ2+Ke*2CNUi0iS+hv4Psy*JKk}K=$WLJpfDNK_9$Bz> zD~`jW=5ds>;o4rrL2npC;el%H^DP%N1*b|R&3Ooi#H$ThLsmf1SR!y;Pt94+150v{ zI^Jeg4Us5~y_5B-Vl1@gtrZgDA@UHe@da zLVpV5mAI5W!M0=Kf^gjJz4)j|VDk@ii)D znNLYEnA2}&YHhz(FlOD%?kv(2pFD-WRC&cVWx&{{X>i*LD9d!(@5ft1{8+XX%U!(1 z4V1!Rv7rE_LV9q9t`j$)2prEKLEy9m$PhBQX@ld6Cv=)hs)wR>c36-6MF3OAoy_e& zX8L9RRcMWEGNFG#GJDjY(!I+w1%lDO_X~tLp=fra5&78!bK5=-%oG-W5)BGL}>LWtWvVk}(b^y$1V z6e6G#vS|*^vrNd(+iITY!m)2-H0)^?ecc7mz|5v(J7mJ;K~IH9FWN;&+q&j(%^bAG z6!ns>I$~tsJuAKBGrR?FKmpnBSucQ0=J4jTZT*`=ill~hc6Q1pwl`=JAQm8c-*zT##-ezaXSL68FMp zyQ_9~PMKlzTPct4xolxhHH*MFM32kz`Ky5S;SDpvhOiPylu4UaI^@9e$|D|fdfs`d z{_p{EG5Yyu9<9ko#>K7UEnGMa)SHECNWVYK(8D{Yab;`9Q>@rnQZUtLC0^&frucwh zeddwHP~Kf-WfC4r0{`=Lp*q!0WiChV8?^!S;{JCs`{~))3G4st7AooLPR$BPNF;Xu z?kCxpT^?g1jrZ}3a+#gG0)LuZetm7LA)yKp^OwqaXSk5>Qwu*Rhw2&t#g@p2l52@U z)7cx^6-4#Nzc-$2PTxi7HTUBl2?GOzh&Cu0Q`s-|v;ap4NRxUs+jRbR^ZDCHPY*Zh z>m#J(B?g4!`~B=yc{v98YAKiX4Xy(4^|`W?qolJU(RA(B^-5pAhlew*xhvH!55j!| zFZ0fdm(>v5n?F7Z&!s0{J@;q+9BxP*|M|T&`{E|Bz*82(1yD9X|F^Z3HT>IudX1B7&uH)Aryg~Jn1APFs7jdsiNa! z_ac9EP!aeZEC0gfrRN>Fqv@LT;>osb49^F!hjMH)CY~RW;5GWFd?U}TfYgjs*y7H*f6>0a{~TxMxR_4smELA>z)Ivd(hNUMrD4&#SEHxNo{F*4 zt7M{F>J;#hisIq%Q{>sFlCIx{^$jJk?~UAA4)Q z{WCDj(Mt=LmVyGOQhO>(=Ap9km#jGZzU_rBPV0$VHy*vm#Ncq*)W^iaGB`TeI_T2- z^BhD6LOOn8VvG}|p-3REa3}$oVT(d}3S}@~7SwFtDh(ZbUXv!7=X%>Xdj|?OXIpp9 zbEbAJly`>6q&IHPG!;9ps1+Uz<&2-7U(&cN=mAYoe&1ZL-Z+hcI3HYh77fsRO4~Cijf0ntMr`iWZH__gvDEB&}s~y4Vvmkge`+h-N;#rPm=A3!XtT z##yvYflb|_uKQ+NiI$xri0i6|xIW!XHesupr*6{vHamC7mYqOp31L=0BChAsM5#%Y zXgvTOB5yS5mE3K&jb7dgXEZ(54g>(%zPvaDaBSeG$J7!NKmYIw-O>7F^^<-%euL?c z&te1}uZte8mJm{0CRUQNubQ}}r|JV0pwZ?*JTZV2}cIMB>ye={Ph&zpQ? zVRS!h$h4UvQYtDgftdvv?3e!jVz*sX?;NtRlSJH$AVLvRS-MXv+cKQ?7=OLt5=M;F zI%Q2ln3oLIed^Zl|56gLrznZ z@@bXG<-LusuW}3P#&$;f(xm!w)eD_ysEL)_&GS8AHltp)B!(9m21>QPU@DrARlH~7{Knw)qpetC2`B{JYN#A>7AyftzV%LS&l>M z4p1Vw5t|emCOwlBBO6XspiUn%NXbzDZ4;*jVh_vp>(8~>rM}jA5>rr&{sKihu^kYM z-zcFow|9Nie~S!={ER&`#LTG~MIGkG8wn}V5zk7-dMNLaPZX>A?CNNV?iQy}>onpb zg0MR7Xe%LMwEzq&)~bl7q*)95Sw7eyI?;9rb%*D?xWa;L1R!$>b3z%7_MI4lo>SMG zm*y8oA1Al$^xl5OoaAyEUfIpsA0%G8xq35k76lEzc2}OjUNC42r9nhgsnF=atVj8B zlm(?@h*&<7s19&Gg8EroMkc-R{e>X&NXNlA|J<~|EcZ><9yx$T$bdniKb>XK#^JQ8 zL3Z(?c#7h5m=tZp)?8b$N!J@fn$4)$1gg}Jb6xLd{?<7L2l%T8vgeVSwlU$$EuQK~ zMjVJ{XlUSgm4<66_3hQcQ-NVa9@r@5_-+6-mi$U zFp?wUVRAD)LL1G|dR{mol0FKeKQSSbZyqs>)OiY>C7>KIfFev)R#~FI1w?@2IYv<- zk15uv+dWU2xwtHVLuJk{Cl0^?P+V&PtAmT?RdD(Nq&5(Q zI9ufdPCI+j+YHNmfYDSm*36cN-vE&oa+ja+@qAnZbv>!G22i<%%83YPdJPmqln~^r z<8Z*_MG*Do4FeAknaox73q(q7wpGhclm*57BIdUWn_n)(zgJQ`k!i+xaVp$p^$Kws zVR-;$!J1=nBu8V`Y_(DqjV?1S;LvZD*Z(E}FdG;Wa?i|+1?ml$&fM+~AaAheP6h#X zm1E*#FaLOZFR4|0gJx64(k;Mz>&u$D(bR#l0z~94BD$P=zPjDb{wyDVYFD~$Hk?C3 zI=!GErA^J&**|;b^)p~TYz4>Nlj)DAj%Ln#-?6jf@;V&<>NM{Xlodd9;+|@#;~^k_ zqgBknN;TR7v`0?8&1lN8<1=5y0$H9a1L%>dv`tI%88ag5jw?emz21Mg5eXjS<4Cbl zN}t(gCu<=H4XLcAe;e2;C|56>PNo$O;CCi>5uvqGH0l6>NCAJR84PC(yQso~DG9QJ zF`lKxSv?U1+Hsi#4;w`=E9@}}Nk~NJR<%CEeb67_|01Le;i%$|b82R}&$dqUM<}PL z4HbpSrp=@dp z<@3?)3r4$p9vW1iYH|9n6`N^Nwx&xWo;Cciv*ZprthzVvN=&N6|JeoPKbds=2Z|dU zr~#JV{jXk!Y|6^YV>ZST14bGMQ?j(Jq*AxIe!~gM@aNnW)LdHH_FsUlOO~Z(Z1c)a%2OQw|B*p0F-|^L58+DBd{PsQ~zOeoerA_Vb1<{}Lq>M~Vvv0Jl z8>$>v#_TO6$liiZp`uA6Cr|mO;4O8pbG!h=!`x-Jw?MS$$(1)E{&^9R4AGd{`nFR?5lq>{;_}8 z&g!LFs4tup`wVKR3O4}HGQ#^Cz=xm#Zcf^2=Z)50uRZRX?M~MAPoI3X+1rqsZP?tE zR1AY0$F~!f0o6gM?inzoz>fI47Pe8rI3ZY5&KwjbO#+$d5|8D+m_+xEKqXYFAns^9 zJxAw3^cy02J13Y0pHyOjDI~@!B-&*>(He{$PhagN-)o9w<^|awBwjL#`JlfnJMEPV zn8anDmcEiyJFPwMFm4PazJhE9#Qw{|#;JIE9ERMC7zXkRA)%k=L5G6t1^Im8^Yk~MM3*@nPn|VNe z#z(QZ;spm%e)}<>Aq4Ps;7^_tbEoW{WcgbRFs>3HN_u-Gl)-k@TV|meltioem&_ds zxB`{Omi%?%cW@xP)`Ki+lP=mGs=F4j$xOf>qc0Q$tfpjF8uD9Q>pFKd|Ip+q>CX&!#l+CA{gbEW6ZxzemMH-4hxJn5E>kGt?GydqCK{cR2PbwO zmCPSMg21+-0CG}0Gh3O$NQ9pM(ueufFPgXaC37R^AkJ~vE9Nl=DRqM4MR^rDC{N%C zN-s1~$^SOd)C!v{6z$ketnDtOf;Ps$cYT(77Zo6K3BAZ?_qYcIL?Oj|9wnZ+2qb@@;zWmxt=Cfan+ z|8C~Nzm-1v2?AP~VEo1}P$qxD>0$^5wy?XXcJ#=+5$U?ZYkAhn-0+L7S2p5Zyiz|f zixkSLnNID$Tw57c)nJbx%2vN}zgv%0VqWivO=6&lclcuG!iAB|CW@MpB{IaaxRpYA zqx;jxx4QI6F;It(yt`J(c28m+S$wywH^0OZ^Gl(!XGzV<1?3NFl2^yhI`1E|hn#>} zjV9A*i2+9#%<{9i6+|9OrV)I_@08@5-{3p@A7cv?ldegX-X%y+=w=TB&fr?j;B z@OkltUdx__XN_Q3%z9^wP>1QW-Rz^H&jPEEwG@$nA~{z{ejkYqJ?01M>Zj`UJw7eE zU%6$%F%p$SpDT0!IZB>GtPE-4S4LLD1FMALw@$4amSt20u}}S51(c~oyw{ZJ_=M3P zJCwO~kG3(@j>LSxRZ2wcXaci69n<}YzdR$G;HOg(OADTs!rQ6_U&BhqyZMpyq7nqL zD*VxsX_55z*`$IxLWiA_nqwmGuN#O<=uk#brD8Dp-iaD~mcx|8o1uA5_a{_FXm4%> z@4w=G+pK|CEBRg85+q(bxJj>MrUdv`rFyBJsBRF!vsIC2%RU&4qmx(FA6%r4j9+0U zvmoOV=Afr|LQe^B?U}M}^d}bMaCJXPw&;{GHpRYXV`GNY0x-cVJvGbLdyOdvY3!)Tb~M1MwOCuF4~D-iy$g^=y>2x&rn5zJoOGd^~&R1 z1lfRxJt;<+eFmgrPIrmtkJV>h-a4afgx_APZ#^J3V>mkiAoST*1I?jnU|<0eOxZdw z9TftwaQrLTG{C~X&9KO<%g7s?XQ^e*P-i7dQ3owmd8=CC)!Pv>@ho|qGVQbRT_M+V z&$yLQpO?QsV{FK`A*K|w)^xr6tm zr5m(tY6qp$t}Y9L0MMg4`1Z?K#S7FSG?+4c)nZK)hQqonN9d;>^`WaZdvWmut3mzK4yJF>& z7_hoO`{iqBqS-)}(j`92OG5=ZD?z*9SK^;^AboRFZ|d6tK)4C7!?jzk+l-A(O;jRN zWFVx*cQ5|szc~dGBR1jU#HnRn%{VPkD4vr)5@^4+XYKU!MM|yh@d2Y*q+>O1mk9|V zZH}VRtHh31PI8^7C*1Z!GCr8aHCI6y8D}Yeg7*xNL(7@tThmb^5>x{&d(l2y;~m*aV02P`tDf~H zh=3T2r+)IybyilNt_3k!*_Z0VOiX86T3Y0i?6>EoS3$f6-kI$6>sn`L=jLbe^C_vR zsiUs^h@g>r?}hMJJ!r>pyvU|%5u9UDbe;8FK(Cs6%VWae7ID&t!nsMt;l8%DxDB$X zz^rqdhp6la`(KE}c*e~~)||ishhRo*oa}M>-JeUzZGhB*2XocMa|ijL!mK8quU3Bi zF-S0m==2~jp^7F|Z$7cu^lho&VkdV|6!mU5dy|628Ng(Rq@A zQUU6+=+mm7Tu@TjrM~^RhZ=12)5GEgot#JD{4=Ar3W}h!xPE-&>5Wskvn#w?S;euP}@X9W*a#mWe1A~{BIKfFp93$e+ z_h&o0{$PcTsO-h{+}e&xUW}rBV*$j>gZluSy)qQEaWT)S3W9e&DM2|ekSi-itzF1! z0xEG~di#}I0Uz=rn3v7aGLBY6`P&z}8H4@#QX+;`IfR^?E*>a{LW~Q3dIj%DU?L zl@+hR6M^7C2iUjZtC^b6d8$B|uoIlw@~zmx^z1K5OjpAcLGnhZdoiGp;LeQ7*0ir_ z4+P}-B;&nTn-xSeowP%JC=)6kl`4RHSVDpgilhTLnmI#A?~vz)dERjW5rLZy1E*L3 z0@^PaZ8kqIlaav8M&A|6uc?G;R*r8Q$6Q?bF~}kx6?r`5+m>10w+_buuE4)u&DT+q zpal(J%7y-FEl{RYLi#=&U%$!W1+pD**fV{isxgZ|azbj;4YlGToIV)^npcp*vBW%L z#HM+hj_R)Lq|9sYZ0*~TEIi1ge-h)Z6PziS_Ij{8A6z$qSyph{vMXTr;3^>~lT$%l zGDn-PHFa~0C@P18(0>|;+zkPW5u*(sYwyxgazO}Y=xF)VAEmpM{W}e5Gr7d$DDoCD zBokc!rgD@iE#XjkKo$87w@fX6)NS>&?&zCyFY^Cv>4%(tCI6twx0FRe_HPaf)^xBd zIAFm7s%Wmc7_8u|_OR{*zmg032;K^)=%30O?_yFelzbg`OdS+BcE&rNMCWWkSBUb% z{y|C%u(j@A-|5H!Oi5I|nh8n|JUsLE9GIfn(eIzI?o zia0f}ik2#{&?bk4#^@6~twPE9>Jo^cuMMq#6y!0WS!Vh*8yBp-7tyvmEl{82If_o59e%WLTH$`MrU?(xBfgi3#jgnSOp;l za@Rz^dXpf{&zfb6ZT5pm%YwZs1Tu0i8~}kf8NkUTl zzpOa8jqlN_&nXPFin=h`2Ch~?TG&$$O4afOo;3JE-eF-WaY4Eje#c>cqUj&*UscXj zzO0NCe3c#}d-aZE$eE}MLKE=Hfeh__y*LYo@utDI+WkVZFPORdIXOfzF)m9ZsS3Lf zbR~)T^MF+p)$^}$k1HD4z(h5yTR@aGz8GIK%dbQ8%60gvcy6ABbvCdXD@E}Rcv9F` zj>;6;LI5cLSaC4iArADNEd3;)PQFu0}rOlmAy!5qVG* zWk-?fGpNWqPa|T?z_1OcXgLga3^sky_clYQDV(?PX+}C{PV6|}gZ$8D5ZAG5VB9(8 zgrTIDq5jK}?6U3pu=qE9ciT=7)tyw|}{E&Sd2dNl>bM z&OYdcbH_SoV~%SEQ>|lVX)B4hSF$d4Hw0V^h^(RaY?~`|%7E3?(n(rkfDKmhDeT48 z|834WHBhDy$b-NMCFjPkBV@LkxkJ>VT7KYXV#z7k1vLw2KlDLkev`X<4mU7yB{$x2 zWZ7*Y|tO(ts|2=1rXsiOjg zr1rN|9;*abU7bST!rlBZqNYcoX_v1(mr`iS=qCL!}%f1>58q)$m61FUAjqqTh z2j3npG&Bx*d!H325u>+w9fQPL!-stGkuf5iI3L-X+-K^ZNGl!>tSVnC%pEdA^n7Bh z(@gvW3p64&2t_ccs^U8*hJ9=Dv~~GY-zvFXaBshMZg^g*A@W};!oOWYNg72Tti?r< z=x`b=Jj>hACWA&Ureb-s zkXWHuk>qG>6Em1Wz?o5X1GX|(35{AcX+34^)1~so)K8WHchh{K3t`bAZNgA0q{+{p z^`j3j?u~@8^HALc30m79qNob4b-R=V*|(Sp#b{%Y#A+Jqc){Rq@E_~D;+j+1(Bkv% zh1$aIZ}Yaod~5_D-7%YfW?8u|n!qC~F#x{26!vt3vPEU&H}8wFh)#JELV0Tpih4-x zp_$B>Fc@SdqzFghLKO^R6mVG`NhGAbS#+l08&A-vWji1LN_R6@FOdjvgE4gQ%z<2p z_euP;b^?*k3$r74=zb7eT{O?vC;rRXHn`CIjP@nUDOv&8w4$s5?b{Jh5 zdYXRXFlw&o=O89NC2QTT0Q3l)(<7Q$L)8CmFmiq+-CQWSw>6gOAK@Pq_>BSfTK0*! zq0{eC)(WjV$Kbn!y7k=PD%UkG><8TaeK%XDgF4VU-4E2CLgOmgC69%uPZ-p89RC{M$_J+r^y$6^ zPW(FheD)o$W`ty9H}-H!&|?SDRnzX zHp2r0HDPRHi7kr~&|sfg{S(!VWyF>=n&5NBPgQs8`x(Q{ap~;O7R$%O#!U}El>&G( zU=8OFP|F3aok7Zf>k{?&!Ya8)5~%o~_ilI#+Oqo2^3}lS1inHJa6)w2MnhP$AKTU# zSw$mIF4Oji&|4?3=i^12nTj4bkrN^^RdX$zUj!h1CVx_~tjRnu694t(c?_q;H?z=y z47x;c_GO^Z3hM#pztd_-E>+5kLEl_r@Uc4yvC{ZfzYn{XMF{(|s^A`0y``D1IS{{R zf(%?dz@~(cDy&euDixXJK1@X1w*X6KwfG?I0mi|M3KlYJu98X8eimbBCCBv=Wi04h z%K(QUl`aY3B)C?TR1C~{nr03-18Y`0V?7=oPb%73ML9$f6GobIOb=@hdgvkmbCX9B z9P>$6dlsXe&wLCk8Po`i`oEeq8gfUkVtj)pP_V|$0--=U8q3}j z>Wosh5|RZ%K~@;v`djQoMz4fK^6u^QzN;AXx*X_6$&(I>819_&>y(Mu3s)n2qPDBX z6;W6=;>2)0%pm08%Qq5?1a|%*Z@s|!4YnU+UzzA-U!-$$f4P;}AIU>Balf1YEA+ceLt$lofn=s$2fpW>GM4^ihGh`e5@Gc5IX@1rM-yWDSv;m{M zV!7e+-z1mPa^fQGyGEn_FC0u)Q~Lw}?7h27P#f2B7o7Rp;b!KZHs`2#QDpuERQ_ca z!)}I9c5Rd6pY&bmispBpS}Xq=3Jmuyd-R;%@vn=7G=c-G#eDGueDU2owS8t1Vq&Lr za>1rF;nHZKV2}rgV#00(6N80&9F%8m4|T;E^5mEceo`5G;(;Hws42mwY35Vacl{dF zG`mcAD2Yi(X8V`QzlwUUItd{b01#)~TQU`rLq**8c-*JPZR$ggjy!~S2Of&n_JDl} z`Gub{_wQGvK5=#izXGf$xQI37EbDsM8$6H8ds&M)&BzX#2!3zP=beJ8B9O3IbX5X+ zAS-{$4vvq$4`a&qc!#l&2Kf;GQuPY@|{k;8Z8)v+=>Tt6Fey}vu6{unM~Fz0*_ zgiu#rK|!ZDOtg~@9}RG~&Q|vT>I-ID@prnD->99oAr}-hZX`=Y^C^&t@dTfG+O^P_ zAYi|ldHXjGl%7Rz*K6kcYfc_CRWKJrXAAGRz6G+^S4AEn&hFGkWhkYA8s32J2^nGX z=3AYY0}L7TH9Wq({eJtxwxnttIPfF~sWCWWWk=wfA%wKTfnTBSiGfi*PC$=IhKu#V za`bse1haGJNHrcb`Q;I+lzoBCj__a0-nI<7T5nn(_kd~W)N1xKix+;CSOal6cT3AI z?H?V2od2sw2{WQaOt{R2goK_aBy0`4B2{AuF35&qJ@1fLqQ9`AHHk)aas3_Sjo8Xv z$!HAQB4}UbTbh1e>@^F0zcYWJ)4&7_wsBcQMG*kV9aX(**~K8f)L4mmZ=Dwlh21l4dGzu+k+){{j`VOG-AnZeVWeQA9jg&VBYmE zG`;SgELntJL_Ff&TUc0d`Sm?h2^y;4h6Z!3A@^lvF)^SVg?v{fS$tIuwF+*AAxfRo zAGa8;Krd)(Y$v6HEPDipvjc+{FIP&(Pi_cN!uJQ~(c874vG8!>KwN96!}+3h`JKuZ z!iQEXgOorY>o-I~pbabaZs7w)$!|rLrf0tx;>#tq$xlI>y#m;(_6||ks<`U-sxY5M zpfjvbjdBSy)2SGdRDLfJ_UzFMIOxGo;zYz-gQgEHO#0U8j*Trww?~}MLPZP<-IjeZ zwShGD`=tq?Qs@HehzDo%6(;`4*U;vO`+|nudBvHm_g{@Mj|qaBj#iZ4s`7fq2ch3} zwV_>q2((K_#;z5OX%!+JTo(g+=XPnBmB#f2Tzqx?KpR1NSG$v_pcu{oGxzs|Sgu0@ z!%BrpwakN+5cX4`g1>mox1{fF5T)*cIyMs)7APAXmxV4SXs^F}GLcKSTdHpTr3Z+X z$`gs{uN33Cm}t>L*UX%Fsf@5-8C}7H7pOgLu)(sR&kx4O`HUANNKVSjFPF!7Dw9id z(^BNwq^pVUR`E4r4IVc5LPvM`eeA((qKt>zATtqTVKVXSC~9dkV|*+iHE}VpV9%jk zm7)H}_$yl?{X&}waYQ;Pb3)Q^Zl2G;Gk*X9isRqxJ@2G9Q?@8$)E;`jQwbGI1sR+l+VmMGxIf&4 zvQJ8jmMnTHMX(~MZX=_3Yb|i_Z`%fz!6VbN@cotUq%LHm4fJzVem6!xo|!$Sh=KJS zmdOPLS*BC3qR1N zaL> zo^Mh3NN8+drD*!0X;B2 zLFSHct6Iz9tSegPwLte0wcx`A@?Ppo&CR38zegZyf5%H+!kQn0IF?=4c7yf$`SGDDd!_TO^_IuF z4)UQEsCy-vZFJZPm%~>qE>tsTD0Oa5`;r}5+G^)UJgamD5m9L+X2Rh#m|)7r6=or8 z*UYN#;mg!*lIiM zO_`DB|DC!EEcc9b*xh{5bNdCz_XC8O_-QU@j`$+>9gUL?nWb+M69Qlv%vUj}Kt_Zh z$^KAkcK)fKi)4ScCe3*)e@!xL2O!awc-*e!0S2}*D^d0mdKCcY$q9A9w=Me41;9rD z`bZ;Aq(_?Ji^~_{bWTrHgRGQQ%TZ~54vJ~ko>u2&3Hat;5U4@NFh0ICw$<)mOXXF8 znMp$}pcQi8(=!(nobn??Y!jk9-2;CcFkw06Va}g}({R+OW5}3{kxB#z$s8J}OqDWAHmXxpj$|IQv4wrMVUzf-r?b|(-t~U( zI_vx6`=hm53BTVn-1l|g_jO&nO@XLn-cZ-~Y7bL;AFDGbLk*g7=36F%W& zdGH=_%-t2z#2sd^tI04UBi3N^@=Ndl!iW&ezQ9k~m+=0(3;djy!W;pPNh6A$aWQSj z7wKm!W=HTeZ7CqGCrb<+bK%TG^y{QHw0N{de;4ryJ9tfkzcGUpr{P&~6gDw#gx2v@ZQ#E*SJiqGJq-uUnCv98`CJv#OzonCf zKKOmv8N`Y8i&gXb=3ON8bP27X{`ecAeqZrcf^HW~S}c#xJfY;S~F` z+{)I$U{5*0ka96Nc!^d_Fdnw`^{Fk=va+{pY-D>3eiGQ#?x<3qro|IfMbV3Goh*h6 z9nAQg2i~k+!o~HB>2^rdl2Kp9Y~SIPqRx}&!5GY9{_<}QerK8{ie5(>%I${!LVaR; zU{KHu&prNeHBaupzs=h#M}6;J3&uxzs<4YT^2@*b1wN4}JQjT~)#oP=WV?1RKU-Fx z64YGmhVPcJWY)hI%yo-N`fgZsDf;?9I{GD1k3F{i8QAaE`?F+P1d#fm#YPM4CgRFx zVq&rk7!B<9e2`rah&fC*-C(xA1B_c7qJ0T`+7cTs5vf+66bI^>fQ7GJGRn$)c7>vt zXL&Jmo~fOC(s9&0kNw~EEP9z=QZJ0QN0>dfmEO5iB38BsCBV@KjFC?Ti>t$U!gMo# z1;x(N_eha+{gk2uV{XjsT?rpC8puU zTluwPEdNB+BELCSow&w_(VU#-7N@kJKtHN$|2}2fykDNFu5PGliFz6czw| zc6pePvEsB^*M&BRULG1J$ZI(J9vu!DYRg%?B7b5V5~^PIl5GBVYhrk*e62?zVxv-{db??iEB`bFpB<{8v#x&Z+@Q+RwE@G_l`;8kP&8k<3ILs`x{A-ph zvcpxD_?u`f%(00fgK7CW9rIjvflVDbCK@ySai1z_T8|z*GKK@>44dIuYwUaNZh+$c znrwgf0fyAVn@N*Xr)2wGy)!GH>g(%^o?eJ=MKKRO%1%E{PZ&7;c6+%Wx7jm2sQ*#O z4etyN;WgeM@Ck%IIiu9}jW%Nk6d4N)(Af!bjwqi@q0o{Jehy;d`#h^kZgDqH_Z`jN znBR-2IEvl)#cUBpM8j)yU|`^8obS2MO0<(Y=_&NuTI!6O$p&D#aI%9(&(OFZx%SC` zwNEG-FgdYg<(NOS#=U-)pwL|!@V2Yxp2R#s;X37`==>+m%(?^ zmqoYVe;nGGV^P1*fa73Zt?QemI;V1cGtBXKVI+g^t%X%w*8OKu9V5^ zOG{jBYA>Iga3j1$-OD0B+&PFUZK+(PANPep_s-q(b9cqNGQ2@mbpMZeu zffTiM!MxT(AMW(#mX7`l-i3S7Q7eh=R+eW`^Xb{G!6q3=s z%qz3^%0#pIppcNP2~I*3#6al>v+0PAbo^(Hm<~{Ht)U@F9b0dBQ;M=} zwgm2>>a^|-L!7re0HC=!%`+TUpY`yc+1d}9BFUTRLCsu?Un-*Jo@Jc<8F>&qgPX5O%^v_?+a2zH#Ew^IUj>eN&*8&1OJcJG(J{(qg1Pu0!%uE-&1UD_G z9u}|f?ioprbX9hB?M|mak@<2jkw(et1r3M!hvrCksq-2fdY4^vueT; z*l7!wK{t|CRTc4_9<3n;MevmQ@s!7)egO4vJ>eIPj9NQ8yL=pPMBM`NB$1Infm_Tq zRz7VRR$eRa*?wuA!HsTg{a{xmEv%e-(pkKzWOUf1^!D za|N~}7>cPn-+FIzq4YSMbEJcL3kwT-d%`4z@RPK2jzr<@BjAhE={8bh>w^P&M`Wj8 z5&Unhkww<3tG6+CXnh^osth2Le&hjQWN^{UK$2!m%Xwk2Rj;XNFrsjFA7O5>&I@cyAA)@U~OeXuWfXrr1K8%t5be_lfkU(PSLtnipZ zrw>yBE=qEamESHvNTh`8QFH6pAUYyic`oBl!%<`7ZtuM7*RQAAXw44Fe7`{lv-enA zXLwDuoGI`0#NRk@){+l^UGj=@OC^9tI*8kyBMmysq<7A9Y@qNN5-jDknwgpPqQfgB z8m$W;qlf(YEA|xe|J1UeDk<{&aga3_tD|+5L9;=q*mM5;LoX<9Yl4^a(`8~bdMD?` zD!%4Id_xy3KXPc{fZ}$S-aRa>1-6!g#BTR>pjFIdWm~mE?VFG2&8z*Vf05iK{e8|tN2j8Xlw%X?jB17}z%n5?{#&&;Ocr2&4piY7xHp~Jz{~1|X`%H6=^js*d zDRSwfKQwzx1jJIVZf-R;F`9Bf^?SU%iy4!O`yByuYv6ZO1N{!nw)~{A9cTrrB>Ec# zaq$pqET_qGCDZ&}a3CWh-AD+MBhk1s4-N_Ou61PvIfMCTjfd$46tjl5l%$nZ24}i* zL80HZ*z2!X>uZoq>9`hj0w){#+y>t8LDVLw?l~&p?d{#0a3&QH^;rMFz)#Y{v1{%e z+<5muihKa4hl>El_mwmnSxlTfxi~#24a`s3+WO?)d27p-Rq_8iB?u$30&weY!@Vh4 z)pzQl*FeGKFn5xvlLx;X^Gx&xzmlku;;oL^fyJ>-S2%`+rZ7Zk~B7p}FitTXS)9%N9i;K8T z-_fyr@(7CowtS@JAMyPIP#XyIuRm~}C6ciT7CkTb#?OD42be$|6b!D^Q{D{47R1er z+qda%Z*C}h%>JFepA2eg`? z2h99o6^Wi{PRsOd+?BwkD~|bf**-Qy7G?p4d0XSMlkGnI;K*|6vP~+&-|&2Vls)_R zNAqfjL#7t4K3bIdsu|AM{IRkT;FWpT+%rsAi^q`*&dPH|E7n`Ws@$hAJR*Ws@?(5J zzNMj~r5~$CsOuiDwgv6mBsr^Wzpmdr`abl-^lgVV?8z0*s5(pG0x*a=@!GX(+kDG-7sbjJa#GoBHe@B6AK=~ z|K-)_&g$-}pmNJK7a5a0;%dPg58d51Bg(}sc9C}xh6$Eqo)GL=jva;lz`AucjOpfg zkZhDyctWXwuoa2J?wiZT;v1Wq4mPrnyU%f4^6VE=2uQ=}?RG8JC#$hiUpM9P1 z6W;D2o+x_AoJK|J$a;v@P=P_7n?XazhlafL2CW4#sK)yQ%Wve#%gdL|FO#x!0uiA&!M!;x7YR8V%>klNKWwU?Abzrtqo>L0s|I1Md5#Rc=36)B>1gs3_TV;; z;onwDXoz^WyWn`KUPR`WAWjoVPa4nkW~aVH1qLn>Q*&Q-`t<4imh(iAOyu@SjwQ>J zRGezF58cZ@(;z|AcEl5+)xi&-i;fJl`Sfc6Vp|u+BUy`)6sw9$@&xjNs!Q(@r10_X zARa<8efj$J3*>^$PMsP^PVJsu{yQr_9x~DlneL)V8fi`n5Yj4;_=%?bhbhDI`^Zxc z)TcxdsU_-oR8x}quAg616+%Yao+-_PV!n3$dM-Sw!f0b$VqzpIYS21R4VY7v@aq17 z%=&yPkZ-x~9Z1ne?v4|TtdsCvNjeMja||sR6&2wH@MXh}TKNk`2`f!`x9?AYZNL=? z&DQgiwMX%R4R}Nqlv#leZBKiU-v~=qI_{N5Q!=Ke)z$^wCCuE?jOLQ8k`mD{Zt=fn z?Yv5zQ25^5>F-loCS-DmurH9-dUBBK2c{|m{vG}tP@|pFA z+j{tPh8M^ZJbJPDE`7Qdo*f?Kw_Uw)BNQczIC%p@L&MT&qnsn8g7ZTEf;G#`vzZut zUo?Jx_khKZ!V9J@7V(Pe^EhZBL*w0;KfL zg*i71|H-DC8s1wfzK*Il^bu%HmYb~6(9jS;l~=HO_4XA9?eXnl6BF))v1lkMXemLd?cevU5{#3;4Yh8_tTl{xj-iO|e(~}V>gNZzde8$J}8YKPy{4A3HOP}@H b0#EHOp?Ix#UA6cC7K)zEfjzm}Cj$Qmq*$}3 literal 0 HcmV?d00001 diff --git a/chapters/Creating_Plots_in_Jupyter_Notebooks.html b/chapters/Creating_Plots_in_Jupyter_Notebooks.html index 415d59b..a92e1f6 100644 --- a/chapters/Creating_Plots_in_Jupyter_Notebooks.html +++ b/chapters/Creating_Plots_in_Jupyter_Notebooks.html @@ -465,7 +465,7 @@

Using Matplotlib.pyplot
-
-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad347d9850>
+
<icn3dpy.view at 0x7fd36c6d74d0>
 
@@ -502,8 +502,8 @@

Applying the power of python -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad346203d0>
+
<icn3dpy.view at 0x7fd36c6f0e90>
 
@@ -581,8 +581,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad3462fe90>
+
<icn3dpy.view at 0x7fd36c6fd910>
 
@@ -649,8 +649,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad34631690>
+
<icn3dpy.view at 0x7fd36c700bd0>
 
@@ -720,8 +720,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad34633dd0>
+
<icn3dpy.view at 0x7fd36c703cd0>
 
@@ -792,8 +792,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad34636250>
+
<icn3dpy.view at 0x7fd36c706110>
 
@@ -876,8 +876,8 @@

Pulling collections of commands from an iCN3D web page

-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad34637a50>
+
<icn3dpy.view at 0x7fd36c8a8e10>
 
@@ -955,8 +955,8 @@

Teasing apart the command set from the -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad34604dd0>
+
<icn3dpy.view at 0x7fd36c6f4c50>
 
@@ -1045,8 +1045,8 @@

Creating functions based on preferred command sets generated from iCN3D web

-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7fad3461ab90>
+
<icn3dpy.view at 0x7fd36c6e79d0>
 
diff --git a/chapters/binding_site_investigation.html b/chapters/binding_site_investigation.html index 49ca487..b39e00f 100644 --- a/chapters/binding_site_investigation.html +++ b/chapters/binding_site_investigation.html @@ -470,7 +470,7 @@

View the structure -

+

Text here about NGLView

+

This view looks a bit messy. MDAnalysis has a human readable selection syntax that allows us to isolate parts of our structure. We will take our MDAnalysis Universe (the variable u) and use the select_atoms function. @@ -505,7 +505,7 @@

View the structure -

+

Upon viewing this structure, you will notice that our ligand seems to appear twice. If you open the PDB file to investigate, you will see the following in the ligand section:

@@ -543,7 +543,7 @@

View the structure -

+

When we inspect the ligand in the binding site, we notice a few things. First, the binding site has a large hydrophobic area on the surface. diff --git a/chapters/nonlinear_regression_part_2.html b/chapters/nonlinear_regression_part_2.html index a8db1cb..a0683db 100644 --- a/chapters/nonlinear_regression_part_2.html +++ b/chapters/nonlinear_regression_part_2.html @@ -557,7 +557,7 @@

The Michaelis-Menten equation -
[<matplotlib.lines.Line2D at 0x7fd8e6db7f10>]
+
[<matplotlib.lines.Line2D at 0x7faf90849450>]
 
../_images/ed2e8a80cd568b164f79f3c9cf21556ba7d5baac33497c50cc6db1e0744d85e0.png diff --git a/chapters/rcsb_api.html b/chapters/rcsb_api.html index aa41116..e3fa203 100644 --- a/chapters/rcsb_api.html +++ b/chapters/rcsb_api.html @@ -680,7 +680,7 @@

PDB Search API -
{'query_id': '1a6a7ab9-1503-4a5b-8875-7d29c82bf354',
+
{'query_id': '4a0becaa-d9c8-4f68-9349-29cee744f9a9',
  'result_type': 'entry',
  'total_count': 668,
  'result_set': [{'identifier': '2BMM', 'score': 1.0},
@@ -802,7 +802,7 @@ 

PDB Search API -
{'query_id': 'a5117d87-a456-41f6-96d7-19fd3e32cbe7',
+
{'query_id': '9d8db27b-ab5f-4204-ab73-d4fddfb36c18',
  'result_type': 'entry',
  'total_count': 571,
  'result_set': [{'identifier': '1MBN', 'score': 1.0},
diff --git a/searchindex.js b/searchindex.js
index bda519a..c032eeb 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"1D arrays": [[8, "d-arrays"], [12, "d-arrays"]], "2D arrays": [[8, "id1"], [12, "id1"]], "3D arrays": [[8, "id2"], [12, "id2"]], "A final note about regular expressions": [[2, "a-final-note-about-regular-expressions"]], "A final note about string formatting": [[6, "a-final-note-about-string-formatting"]], "A note about jupyter notebooks": [[11, "a-note-about-jupyter-notebooks"]], "Absolute and relative paths": [[2, "absolute-and-relative-paths"]], "Add the column to the dataframe": [[3, "add-the-column-to-the-dataframe"]], "Adding commands to the icn3dpy.view function": [[5, "adding-commands-to-the-icn3dpy-view-function"]], "Analyzing MMCIF Files using Biopython": [[10, "analyzing-mmcif-files-using-biopython"]], "Answer": [[2, null], [2, null]], "Applying the power of python": [[5, "applying-the-power-of-python"]], "Assigning multiple variables at once": [[11, "assigning-multiple-variables-at-once"]], "Assigning variables and data types": [[11, "assigning-variables-and-data-types"]], "Calculate the Slopes": [[12, "calculate-the-slopes"]], "Calculate the initial velocity": [[12, "calculate-the-initial-velocity"]], "Calculating the initial velocity": [[12, "calculating-the-initial-velocity"]], "Challenge - Repeat analysis for a Zinc Finger": [[10, "challenge-repeat-analysis-for-a-zinc-finger"]], "Check Your Understanding": [[2, null], [2, null], [6, null]], "Check your Understanding": [[0, null], [2, null]], "Check your understanding": [[6, null], [8, null], [11, null], [12, null]], "Common errors": [[13, "common-errors"]], "Converting the 2D ligand structures to 3D structures for use in docking": [[4, "converting-the-2d-ligand-structures-to-3d-structures-for-use-in-docking"]], "Create the Equation": [[3, "create-the-equation"]], "Creating Functions": [[13, "creating-functions"]], "Creating Plots in Jupyter Notebooks": [[0, "creating-plots-in-jupyter-notebooks"]], "Creating functions based on preferred command sets generated from iCN3D web pages": [[5, "creating-functions-based-on-preferred-command-sets-generated-from-icn3d-web-pages"]], "Creating the pandas dataframe": [[12, "creating-the-pandas-dataframe"]], "Data Fitting": [[13, "data-fitting"]], "Data types": [[11, "data-types"]], "Datatype": [[12, "datatype"]], "Digital Representation of Molecules": [[4, "digital-representation-of-molecules"]], "Downloading all of the ligands using a for loop": [[1, "downloading-all-of-the-ligands-using-a-for-loop"]], "Downloading the Structure": [[9, "downloading-the-structure"]], "Eliminating values outside the calibration curve (optional)": [[3, "eliminating-values-outside-the-calibration-curve-optional"]], "Enzyme Commission Class with Ligands": [[1, "enzyme-commission-class-with-ligands"]], "Exercise": [[0, null], [1, "exercise"], [3, null], [5, null], [8, null], [11, null], [13, null], [13, null]], "Exerise on file parsing": [[2, null]], "Extracting the output from curve_fit": [[13, "extracting-the-output-from-curve-fit"]], "File Download using Biopython": [[14, "file-download-using-biopython"]], "File Parsing": [[2, "file-parsing"]], "Finding information in a dataframe": [[8, "finding-information-in-a-dataframe"]], "Finding the ligands": [[1, "finding-the-ligands"]], "Getting Started": [[11, "getting-started"]], "Hint": [[2, null], [3, null], [6, null], [12, null]], "How do we download the ligand files?": [[1, "how-do-we-download-the-ligand-files"]], "Importing data with pandas": [[3, "importing-data-with-pandas"]], "Importing libraries": [[6, "importing-libraries"]], "Importing python libraries": [[8, "importing-python-libraries"]], "Importing the Data": [[12, "importing-the-data"]], "Importing the data with pandas": [[8, "importing-the-data-with-pandas"]], "Inspect the data": [[12, "inspect-the-data"]], "Install nglview": [[15, "install-nglview"]], "Installing Python through Anaconda": [[15, "installing-python-through-anaconda"]], "Introduction": [[11, "introduction"]], "Investigation the binding Site": [[9, "investigation-the-binding-site"]], "Key Points": [[0, null], [2, null], [3, null], [6, null], [8, null]], "Libraries for the IQB workshop": [[1, "libraries-for-the-iqb-workshop"]], "Libraries you will need": [[3, "libraries-you-will-need"]], "Linear Regression": [[3, "linear-regression"]], "Linear Regression with SciPy": [[3, "linear-regression-with-scipy"]], "Lists": [[11, "lists"]], "Loading the iCN3D library": [[5, "loading-the-icn3d-library"]], "Locating the data": [[8, "locating-the-data"]], "Making a Map of Ligand Contacts": [[9, "making-a-map-of-ligand-contacts"]], "Making choices: Logic Statements": [[11, "making-choices-logic-statements"]], "Making queries": [[1, "making-queries"]], "Measuring 3D Properties - Ligand Neighbors": [[10, "measuring-3d-properties-ligand-neighbors"]], "Modifying Ligands in Python": [[4, "modifying-ligands-in-python"]], "Modifying a ligand that is known to bind to trypsin": [[4, "modifying-a-ligand-that-is-known-to-bind-to-trypsin"]], "Modifying the ligand molecule": [[4, "modifying-the-ligand-molecule"]], "Molecular Visualization with iCN3D": [[5, "molecular-visualization-with-icn3d"]], "Nonlinear Regression Part 1": [[12, "nonlinear-regression-part-1"]], "Nonlinear Regression Part 2": [[13, "nonlinear-regression-part-2"]], "Obtain lesson materials": [[15, "obtain-lesson-materials"]], "Overview": [[0, null], [1, null], [2, null], [3, null], [5, null], [6, null], [8, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "PDB Data API": [[14, "pdb-data-api"]], "PDB Search API": [[14, "pdb-search-api"]], "Plotting the data": [[13, "plotting-the-data"]], "Preparing to Plot": [[0, "preparing-to-plot"]], "Printing to a File": [[6, "printing-to-a-file"]], "Processing Multiple Files and Writing Files": [[6, "processing-multiple-files-and-writing-files"]], "Processing multiple files": [[6, "processing-multiple-files"]], "Programmatic Access of APIs": [[14, "programmatic-access-of-apis"]], "Project": [[6, null]], "Pulling collections of commands from an iCN3D web page": [[5, "pulling-collections-of-commands-from-an-icn3d-web-page"]], "Questions": [[4, "questions"]], "Reading MMCIF Files": [[10, "reading-mmcif-files"]], "Reading a file": [[2, "reading-a-file"]], "Reading multiple files with nested for loops": [[6, "reading-multiple-files-with-nested-for-loops"]], "Repeating an operation many times: for loops": [[11, "repeating-an-operation-many-times-for-loops"]], "Results for Glucose and ATP": [[4, "results-for-glucose-and-atp"]], "Retrieving Information from the PDB using the Web API": [[14, "retrieving-information-from-the-pdb-using-the-web-api"]], "Review of f string printing": [[13, "review-of-f-string-printing"]], "Scatter Plots with Seaborn": [[0, "scatter-plots-with-seaborn"]], "Searching for a particular line number in your file": [[2, "searching-for-a-particular-line-number-in-your-file"]], "Searching for a pattern in your file": [[2, "searching-for-a-pattern-in-your-file"]], "Selected ligands": [[1, "selected-ligands"]], "Set Up": [[15, "set-up"]], "Setting up your Jupyter notebooks": [[11, "setting-up-your-jupyter-notebooks"]], "Slices": [[11, "slices"]], "Smoothing the plot": [[13, "smoothing-the-plot"]], "Solution": [[0, null], [0, null], [2, null], [2, null], [3, null], [5, null], [6, null], [6, null], [6, null], [8, null], [8, null], [11, null], [11, null], [12, null], [13, null], [13, null], [13, null]], "Solving for protein concentrations in samples": [[3, "solving-for-protein-concentrations-in-samples"]], "Sorting data with pandas": [[8, "sorting-data-with-pandas"]], "Stages of this module": [[3, "stages-of-this-module"]], "Start a Jupyter notebook": [[15, "start-a-jupyter-notebook"]], "Structure Preparation": [[9, "structure-preparation"]], "Take Home Exercise": [[5, "take-home-exercise"], [13, null]], "Teasing apart the command set from the iCN3D page for PDB ID 1ETS": [[5, "teasing-apart-the-command-set-from-the-icn3d-page-for-pdb-id-1ets"]], "The 7 Enzyme Classes": [[1, "the-7-enzyme-classes"]], "The Michaelis-Menten equation": [[13, "the-michaelis-menten-equation"]], "Things to Do for this Notebook": [[4, "things-to-do-for-this-notebook"]], "Use pandas to import the csv data into a dataframe": [[3, "use-pandas-to-import-the-csv-data-into-a-dataframe"]], "Using Biopython to Analyze Search Results": [[14, "using-biopython-to-analyze-search-results"]], "Using Matplotlib.pyplot": [[0, "using-matplotlib-pyplot"]], "Using curve_fit": [[13, "using-curve-fit"]], "View the structure": [[9, "view-the-structure"]], "Viewing Small Molecules in iCN3D": [[7, "viewing-small-molecules-in-icn3d"]], "Viewing a PDB structure": [[5, "viewing-a-pdb-structure"]], "Visualizing the Binding Site": [[9, "visualizing-the-binding-site"]], "What is pandas and why do we use it?": [[8, "what-is-pandas-and-why-do-we-use-it"], [12, "what-is-pandas-and-why-do-we-use-it"]], "Where can we go to download the ligand files?": [[1, "where-can-we-go-to-download-the-ligand-files"]], "Why Linear Regression?": [[3, "why-linear-regression"]], "Working with Pandas": [[8, "working-with-pandas"]], "Working with file paths - the os.path module": [[2, "working-with-file-paths-the-os-path-module"]], "Working with files": [[2, "working-with-files"]], "Workshop Schedule": [[16, "workshop-schedule"]], "iCN3D and Molecular Visualization": [[5, "icn3d-and-molecular-visualization"]], "readlines function behavior": [[2, "readlines-function-behavior"]]}, "docnames": ["chapters/Creating_Plots_in_Jupyter_Notebooks", "chapters/EC_class_ligands_search", "chapters/File_Parsing", "chapters/Linear_Regression", "chapters/Modifying_Ligands_with_rdkit", "chapters/MolVis_with_iCN3D", "chapters/Processing_Multiple_Files_and_Writing_Files", "chapters/SmallMolVis", "chapters/Working_with_Pandas", "chapters/binding_site_investigation", "chapters/biopython_mmcif", "chapters/introduction", "chapters/nonlinear_regression_part_1", "chapters/nonlinear_regression_part_2", "chapters/rcsb_api", "chapters/setup", "chapters/workshop_schedule"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["chapters/Creating_Plots_in_Jupyter_Notebooks.ipynb", "chapters/EC_class_ligands_search.ipynb", "chapters/File_Parsing.ipynb", "chapters/Linear_Regression.ipynb", "chapters/Modifying_Ligands_with_rdkit.ipynb", "chapters/MolVis_with_iCN3D.ipynb", "chapters/Processing_Multiple_Files_and_Writing_Files.ipynb", "chapters/SmallMolVis.ipynb", "chapters/Working_with_Pandas.ipynb", "chapters/binding_site_investigation.ipynb", "chapters/biopython_mmcif.ipynb", "chapters/introduction.ipynb", "chapters/nonlinear_regression_part_1.ipynb", "chapters/nonlinear_regression_part_2.ipynb", "chapters/rcsb_api.ipynb", "chapters/setup.ipynb", "chapters/workshop_schedule.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "0": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "00": [10, 12, 13, 16], "000": [2, 5], "0000": [1, 4], "000000": 13, "0004": 4, "0014948066523110296": 3, "0020": 4, "0030521595419827677": 3, "0040": 1, "0044": 4, "0046": 4, "0050": 1, "0056": 4, "005635": 12, "0060": 1, "007": 10, "0072": 4, "0078": 4, "0083": 4, "01": 2, "010": 3, "0101": 4, "0104": 4, "011162": 12, "0124": 4, "0129": 4, "013": 3, "015": 12, "0165": 4, "016580": 12, "0170": [1, 4], "0171": 4, "0173": 4, "0179": 4, "01832": 12, "0190": 1, "0193": 4, "019578": 12, "01_molecule_represent": 4, "0200": 1, "020353": 12, "0210": 4, "0216": 4, "0217": 4, "022": 1, "022319": [12, 13], "022319351245112782": 12, "022757": 12, "0228": 4, "0240": 1, "0244": 4, "0250": 1, "0254": 4, "0259": 4, "0270": [1, 4], "027092": 12, "0280": [1, 4], "0283": 4, "0296": 4, "0300": 1, "0301": 4, "030884027089284245": [0, 3], "0310": 4, "0312": 4, "0326": 4, "0337": 4, "034661": 12, "0353": 4, "0356": 4, "0365": 4, "0369": 4, "0376": 4, "040318": 12, "0410": 1, "0434": 4, "0437": 4, "0447": 4, "0460": 4, "0461": 4, "0462": 4, "0463": 4, "0464": 4, "0466": 4, "046964": 3, "0480": 1, "0483": 4, "0484": 4, "0494": 4, "04948248037131796": 3, "0497": 4, "05": [0, 3, 6, 12, 13], "0501": 4, "0508": 4, "0513": 4, "051681": 12, "0520": 1, "0525": 4, "05263157894737": 11, "0533": 4, "0540": 4, "0543": 4, "0544": 4, "0556": 4, "0560": 1, "056988": 12, "0570": 4, "0574": 4, "0575": 4, "0590717448341336e": [0, 3], "0596": 4, "059896": 12, "0610": 1, "0622": 4, "062613": 12, "0629": 4, "0630": 1, "0633": 4, "0646": 4, "065213": 3, "0661": 4, "0680": 1, "068643": 12, "0690": 1, "0692": 4, "0694": 4, "0695": 4, "0715": 4, "0720": 1, "073658": 12, "0739": 4, "075985": 12, "076442": [12, 13], "07644213958496243": 12, "0767": 4, "0773": 4, "07806979615939849": 12, "078070": [12, 13], "0800": 1, "08042268476177239": 13, "0808": 4, "0814": 4, "0820": 1, "0822": 4, "0852": 4, "0860": 1, "0863": 4, "0869": 4, "0878": 4, "088": 9, "088046": 12, "0887": 4, "0896": 4, "09": 14, "090909": 13, "0932": 4, "0954": 4, "096143": [12, 13], "096204": [12, 13], "0963": 4, "0968": 4, "0970": 4, "097595134597833": 3, "099827": 12, "0999": 4, "099906": 12, "0ca": 1, "0cb": 1, "0kv": 1, "0x7f99809963e0": 8, "0x7fad34604dd0": 5, "0x7fad3461ab90": 5, "0x7fad346203d0": 5, "0x7fad3462fe90": 5, "0x7fad34631690": 5, "0x7fad34633dd0": 5, "0x7fad34636250": 5, "0x7fad34637a50": 5, "0x7fad347d9850": 5, "0x7faff0484370": 13, "0x7fb0005728e0": 13, "0x7fd8e6db7f10": 13, "0x7fec32370310": 0, "0x7fec3239e310": 0, "0zg": 1, "0zw": 1, "0zx": 1, "0zy": 1, "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 16], "10": [0, 1, 4, 5, 8, 11, 12, 13, 14], "100": [3, 6, 11, 13], "1000": [6, 11, 13], "100000": [9, 11], "100796": 12, "100k": 9, "101": 10, "1029058355571": 4, "103351": 12, "1040": 4, "104366": 12, "106": 10, "1060": 4, "108": 9, "1080": 1, "1086": 4, "1088": 4, "109": 9, "1095": 4, "1099": 4, "10u": 1, "11": [1, 4, 6, 9, 11, 12, 14], "110": 9, "111": 9, "1114": 4, "112": [1, 9], "1120": 1, "1129": 4, "113": 9, "1130": 4, "114": 9, "1140": 4, "1147": 4, "115": 9, "1152673937227531": 3, "1153": [4, 9], "116": 9, "117": 9, "118": [0, 3, 9], "119": 9, "1193": 4, "1194": 4, "11u": 1, "11u_id": 1, "12": [1, 2, 4, 9, 11, 13, 16], "120": 9, "1200": 4, "1202": 4, "1203": 4, "121": 9, "121434": 12, "1216": 4, "122": 9, "1220": 1, "1221": 4, "122747": 12, "123": 9, "1230": 4, "123059": 12, "1233": 9, "1245": 4, "1253": 4, "1270": 1, "127118": 12, "1277": 4, "12786666666666657": [0, 3], "1279": [0, 9], "12u": 1, "13": [1, 4, 6, 9, 11, 12, 13], "1321": 4, "134567": 12, "135": 9, "136": 9, "136443": [12, 13], "1364430576421053": 12, "137": 9, "1373": 4, "138": 9, "139": 9, "13u": [1, 4, 9], "13u_id": 9, "14": [1, 2, 4, 6, 8, 10, 11], "141": 14, "1420": 4, "142857142857146": 11, "1430": 1, "1435": 4, "1438": 4, "144": 9, "1442": 4, "1446": 4, "146": 14, "147": 9, "1471": 4, "147517": 12, "148": 9, "1490": 1, "1495": 4, "1496": 4, "15": [0, 1, 4, 11, 12, 14], "150": 10, "1503": 14, "1507": 4, "1514": [2, 9], "1522": 4, "1533": 4, "154": 10, "1542": 4, "1544": 4, "1546": 4, "155": 10, "1570": 4, "1590": 1, "1596": 4, "16": [1, 4, 11, 12, 13], "1600": 1, "1604": 4, "1620": 1, "1621": 4, "1650": 4, "1661": 4, "1673": 9, "1674": 9, "1675": 9, "1677": 4, "16h2": 4, "17": [1, 4, 10, 11], "1712": 4, "1720": 4, "1723": 4, "17234": 10, "173": 1, "1733": 4, "173306": 12, "1737": 4, "1749": 4, "1751": 4, "1752": 9, "1755": 9, "1759": 4, "176471": 13, "1765": 9, "1766": 4, "1770": 1, "1776": 4, "177801": 12, "1787": 4, "1796": 4, "18": [1, 4, 9, 12], "180": [1, 9], "1800": 1, "1807": 4, "1810": 1, "1826": 4, "183": 3, "1840": 1, "1842": 4, "1843": 4, "186": 9, "1874": 4, "1899": 4, "19": [1, 4], "1908": 4, "1914": 4, "1924": 4, "1925": 4, "1926322406324839": 13, "1932": 4, "193419": 12, "194682": 12, "1952": 4, "1960": 1, "1969": 4, "1970": 1, "1988": 4, "1990": 1, "1993": 4, "19fd3e32cbe7": 14, "1a0j": 5, "1a1t": [2, 10], "1a6a7ab9": 14, "1a6n": 2, "1aq7": 1, "1auj": 1, "1az8": 1, "1bjv": 1, "1btw": 1, "1btx": 1, "1btz": 1, "1c1": 1, "1c1t": 1, "1c2d": 1, "1d66": 5, "1ddo": [2, 6], "1h": 8, "1jp6": 14, "1jp8": 14, "1mba": 14, "1mbc": 14, "1mbd": 14, "1mbi": 14, "1mbn": [2, 10, 14], "1mbo": [5, 14], "1mlf": 14, "1mlg": 14, "1mlh": 14, "1mlj": 14, "1mlk": 14, "1mll": 14, "1mlm": 14, "1myg": 14, "1myh": 14, "1myi": 14, "1myj": 14, "1pmb": [2, 14], "1uvi": 14, "1uvt": 8, "1uvu": 8, "1uvx": 14, "1ux8": 14, "1yca": 14, "1ycb": 14, "2": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16], "20": [1, 4, 6, 8, 9, 11, 12, 13, 16], "200": [1, 8, 9, 14], "2004": 4, "2026": 4, "20284295232781954": 12, "202843": [12, 13], "203": 9, "2030": 1, "2031": 4, "2035": 4, "204": 9, "204653": [12, 13], "2047": 4, "2048": 4, "205": 9, "2050": 1, "2051": 4, "2055": 4, "206": 9, "207": 9, "208": 9, "2080": 1, "2081": 4, "2086": 11, "209": 9, "21": [1, 4, 10, 11], "210": 9, "2100": 4, "210920": 12, "2117": 4, "212": 9, "2120": [1, 4], "2123": 4, "2129": 4, "213": 9, "2130": 1, "2157": 4, "216": 9, "2160": 1, "2163": 4, "2172": 4, "2178": 4, "2182": 4, "2199": 4, "22": [1, 4, 9, 12, 13], "2207": 4, "221": 14, "2217": 9, "2219": 4, "2232": 2, "2238": 4, "2246": 4, "2249": 4, "2254": 4, "2260": 4, "2270": 1, "2272": 4, "2275": 4, "2286": 4, "2296": 4, "23": [1, 4], "2308": 4, "231": 7, "2315": 4, "2319": 4, "2329": 4, "2336": 4, "2339": 4, "2354": 9, "2369": 4, "238": 9, "238095": 13, "2387": 4, "239086": 12, "24": [1, 4, 9], "2400": 1, "2403": 4, "2411": 4, "2419": 4, "2430": 9, "2449": 4, "245": 9, "246": 9, "2460": 1, "246186": 12, "24625953559097755": 12, "246260": [12, 13], "2469": 4, "247": 9, "2478": 4, "248": 9, "249": 9, "25": [0, 1, 4, 8, 10, 11, 12], "2526": 4, "2545": 4, "2547": 4, "2550": 1, "2561": 4, "2569": 4, "2573": 4, "257587": 12, "257892": 12, "2583": 9, "258405": 12, "2585": 4, "2593": 4, "26": [1, 4], "2602": 4, "2605": 4, "2619": 4, "2654": 9, "2659": 4, "2661": 4, "2690": 1, "2696": 4, "269802": 12, "26h": 4, "27": [1, 4, 8, 12, 13], "2700": 4, "2725": 4, "272718": [12, 13], "2739": 4, "274": 9, "2747": 4, "275": 9, "2757": 4, "276": 9, "2760": 4, "2763": 4, "277": 9, "2775": 4, "2776": 4, "2779": 4, "278": 9, "2780": 1, "2782": 4, "2790": 4, "2796": 4, "28": [1, 4, 10, 11, 13], "2800": 1, "2809": 4, "281": 9, "282": 9, "283": 9, "2836": 4, "285": [0, 3], "2867": 4, "2873": 4, "2876": 4, "29": [1, 4], "2910": 1, "2957": 4, "298": 2, "2980": 1, "2990": 1, "2996": 4, "2awc": 14, "2bmm": 14, "2c": 4, "2c8y": 8, "2c8z": 8, "2c90": 8, "2cccn2c": 4, "2d": [9, 13], "2eb8": 14, "2ef2": 14, "2f": 13, "2fal": 14, "2fam": 14, "2mb5": 14, "2mga": 14, "2mgb": 14, "2mgc": 14, "2mgd": 14, "2mge": 14, "2mgf": 14, "2mgg": 14, "2mgh": 14, "2mgi": 14, "2mgj": 14, "2mgk": 14, "2mgl": 14, "2mgm": 14, "2mya": 14, "2myb": 14, "2myc": 14, "2myd": 14, "2mye": 14, "2nd": 4, "2pkr": [2, 6], "2r": 8, "2spl": 14, "2spm": 14, "2spn": 14, "2spo": 14, "2znk": 8, "2zq2": 9, "3": [1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16], "30": [1, 4, 8, 10, 11, 16], "300": 1, "3000": 4, "3010": 1, "3039": 4, "3047": 4, "3049": 4, "3057": 4, "3064": 4, "3084": 4, "3090": 1, "309966": 12, "31": [1, 4, 12, 13], "310": 2, "311": 2, "3110": [1, 4], "312": 2, "313": 2, "313216": 12, "314": 2, "3142": 4, "315": 2, "316": 9, "31637950083089": 4, "3169": 4, "317": 9, "318": 9, "3186": 4, "319": 9, "31u": 8, "32": [1, 4], "320": [9, 12], "3206": 4, "3220": 1, "3232": 4, "3247": 4, "3250": 1, "3253": 4, "3254": 4, "3268": 4, "3283": 4, "3287": 4, "3295": 4, "33": [1, 4, 12, 13], "3314": 4, "3318": 4, "3331": 4, "33333333333333": 11, "3342": 4, "3345": 4, "3360": 1, "3367": 4, "3372": 4, "3373": 4, "3380": 4, "3393": 4, "3399": 4, "34": [1, 4, 10, 11, 12, 13], "340": 3, "3400": [1, 4], "3420": [1, 4], "34244478125714295": 12, "342445": [12, 13], "3427": 4, "3428": 4, "3440": 1, "3447": 4, "3456": 4, "3462": 4, "3485": 4, "3488": 4, "3495": 4, "35": [1, 4], "3515": 4, "352183": 12, "3524": 4, "353": 9, "3530": 1, "354": 9, "355": 9, "356": 9, "357": 9, "358": 9, "3590": 1, "36": [1, 4, 13], "360": 9, "3600": 1, "3603": 4, "3604": 4, "3609": 4, "361": 9, "3617": 4, "362310": [12, 13], "3626": 4, "3630": 4, "3632": 4, "364301": 12, "3668": 4, "3683": 4, "3691": 4, "369177": 12, "3692": 4, "37": [1, 4], "3704": 4, "3710": 1, "3717": 4, "3732": 4, "373572": 12, "3740": 1, "3744": 4, "3754": 4, "3763": 4, "3764": 4, "3772": 4, "3783": 4, "3795": 4, "38": [1, 4, 9], "3825": 4, "3829": 4, "3837": 4, "3851": 4, "3889": 4, "3891": 4, "39": [1, 4, 9], "3900": 1, "3910": 1, "3914": 4, "396": 9, "397": 9, "3976": 4, "398": 9, "3980": 1, "3982": 4, "3989": 4, "399": 9, "3d": [2, 7, 9], "3f": 13, "3h3": 4, "3iva": [2, 6], "3mba": 14, "3p17": 8, "3shc": 8, "3si3": 8, "3si4": 8, "3sv2": 8, "3vnd": [2, 6], "4": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "40": [1, 4, 11, 13], "400": [1, 4, 9], "400747": 12, "4008": 4, "4020": 1, "4024": 4, "4030": 1, "404": 14, "4040": 1, "405": 12, "4050": 1, "4053": 4, "4062": 4, "4070": [1, 4], "4072": 4, "4076": 4, "41": [1, 4, 13], "4120": 4, "4130": 1, "4139": 4, "417021": [12, 13], "4170212341052633": 12, "4173": 4, "417302": [12, 13], "4179": 4, "4195": 4, "41f6": 14, "42": [1, 4], "4205": 4, "4213": 4, "4220": 1, "4236": 4, "4244": 4, "4265": 4, "4283": [4, 9], "43": [1, 4, 8], "432": 9, "433": 9, "4337": 4, "433750": 3, "434": 9, "4345": 4, "435": 9, "4350": 1, "436": 9, "4361": 4, "437": 9, "4370": 1, "438": 9, "439": 9, "4390": 1, "4394": 4, "4395": 4, "44": [1, 4, 14], "440": 9, "4401": 4, "441": 9, "4413": 4, "442": 9, "443": 9, "444503": 12, "4453": 4, "4455": 4, "4481": 4, "4482": 4, "4487": 4, "45": [1, 4], "4528": 4, "4529": 4, "4535": 4, "4580": 1, "4590": 1, "4594": 4, "46": [1, 4, 9], "4605": 4, "4630": 1, "4637": 4, "4641": 4, "4657": 4, "4678": 4, "468796": 12, "4690": 1, "47": [1, 4], "4704346427639096": 12, "470435": [12, 13], "4708": 4, "4718": 4, "4743": 4, "4779": [4, 14], "4782": 4, "4793": 9, "48": [1, 4], "4804": 4, "4810": 1, "4820": [1, 4], "4840": 4, "4846": 4, "485": 3, "4852": 4, "4855": 4, "4857": 4, "4860": 4, "487": 10, "487957": [12, 13], "4888": 4, "49": [1, 4], "490": 4, "4921": 4, "4928": 4, "4936": 4, "4945": 4, "4949": 4, "4958": 4, "4976": 4, "4980": 1, "499": 9, "4990": 1, "4991": 4, "4a5b": 14, "4eyr": [2, 6], "4f": [0, 13], "4hhb": [5, 10, 14], "4mba": 14, "4mbn": 14, "5": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15], "50": [1, 4, 8, 11, 12, 13, 14], "500": [9, 10], "500000": 13, "500455": 12, "500934": 12, "501": 9, "502": 9, "5020": 1, "5022": 4, "503": 9, "503140": [12, 13], "5031401632390977": 12, "504": 9, "5040": 1, "5043": 4, "5048": 4, "5051": 4, "5073": 4, "5090": 1, "5098": 4, "51": [1, 4], "5104": 4, "5113": 4, "5139": 4, "5140907641142858": 12, "514091": [12, 13], "5165": 4, "5172": 4, "518850": 12, "5191": 4, "52": [1, 4], "5204": 4, "5206": 4, "5211": 4, "522863": [12, 13], "5247": 4, "5260": 1, "5267": 4, "5269": 4, "5281": 4, "5287": 4, "5289": 4, "53": [1, 4, 10], "5310": 1, "5314": 4, "5317": 4, "5322": 4, "5328": 4, "5350": 1, "5354": 4, "5360": 4, "5394": 9, "54": [1, 4], "5420": 1, "542678": [12, 13], "5442": 4, "5453": 4, "5456": 4, "5462": 4, "5469": 4, "5475": 4, "5482": 4, "55": [1, 4, 6, 8], "5507": 4, "5515": 4, "5518": 4, "5534": 4, "5540": 4, "5549": 4, "5559": 4, "556695": 12, "5569": 4, "5590": 1, "56": [1, 4], "5610": 4, "5620": 1, "5623": 4, "5635": 4, "5664": 4, "5683": 4, "5686": 4, "5688": 4, "57": [1, 4, 11], "5706": 4, "5709": 4, "571": 14, "571428571428573": 11, "571429": 13, "5730": 1, "574": 14, "5753": 4, "5770": [1, 4], "5778": 4, "5788": 4, "5793": 4, "5797": 4, "58": [1, 4], "5801": 4, "5805": 4, "5811": 4, "5818": 4, "5819": 4, "5863": 4, "5881": 4, "5890": 1, "5892": 4, "5898": 4, "59": [1, 4], "590": 10, "5903": 4, "5919": 4, "59439795024717": 4, "595": [0, 3, 13], "5964": 4, "5968": 4, "5990": 4, "5eu9": [2, 6], "5mba": 14, "5mbn": 14, "5rsa": 2, "5veu": [2, 6], "6": [0, 1, 2, 3, 4, 6, 8, 11, 12, 13, 14, 15], "60": [1, 4, 11], "600": [0, 1], "6000": 1, "6009": 4, "6032": 4, "6055": 4, "6065": 4, "6070": 1, "6095": 4, "61": [1, 4, 9], "6103": 4, "6107": 4, "6110": 1, "6119": 4, "6123": 4, "6133": 4, "613302": 12, "6143": 4, "6145": 4, "6152": 4, "6155": 4, "616": 10, "616135": 12, "6162": 4, "6163": 4, "6170": 4, "6171": 4, "6181": 4, "619": 14, "6193": 4, "6199": 4, "62": [4, 14], "621": 3, "6228": 4, "6230": 1, "6241": 4, "62520287388557": 4, "6256": 4, "6259": 4, "6288": 4, "63": [4, 10], "6300": 1, "6309": 4, "6310": [1, 4], "6329": 4, "6330": 1, "6335": 4, "6336": 4, "6380": 4, "64": [4, 10, 14], "6404": 4, "6417": 4, "6420": 1, "6433": 4, "6440": 1, "644208": 7, "6443": 4, "6464": 4, "6465": 4, "6490": 4, "6494": 4, "65": 4, "6509": 4, "6510": 1, "6538": 4, "6554": 4, "655447": 3, "6555": 4, "65734834390893": 13, "6590": 4, "6592": 4, "66": [11, 13], "6601": 4, "6635": 4, "6636": 4, "6642": 4, "6654": 4, "6660": 1, "666666666666668": 11, "66666666666667": 11, "666667": 13, "6670": 4, "668": 14, "6681": 4, "6690": 1, "67": [4, 13], "6716": 4, "6719": 4, "672": 9, "6736": 4, "6745": 4, "6749595215280199": 13, "6750": 1, "6751": 4, "6770": 1, "6780": 1, "6814": 4, "6818": 4, "682": 3, "6837": 4, "6850": [1, 4], "6852": 4, "6867": 4, "6884": 4, "6890": 1, "6898": 4, "6924": 4, "6930": 1, "6945": 4, "6948": 4, "6963": 4, "6975": 4, "6977": 4, "6989": 4, "6992": 4, "6999": 4, "6zt7": [2, 6], "7": [4, 6, 8, 9, 11, 12, 13, 15], "70": 13, "700": [1, 10], "7032": 4, "7072": 4, "7091": 4, "7104": 4, "7110": 4, "7125": 4, "7130": 1, "7148": 4, "7157": 4, "7169": 4, "7172": 4, "7191": 4, "7219": 4, "7223": 4, "7251": 4, "7256": 4, "7266": 4, "7270": 1, "7284": 4, "7301": 4, "7307": 4, "7317": 4, "7354": 4, "7358": 4, "7380": 1, "7384": 4, "7387": 4, "7390": [1, 4], "7393": 4, "7397": 4, "74": 14, "7422": 4, "746525": 3, "7484": 4, "75": [11, 12], "7518": 4, "7520": 4, "7527": 4, "7548": 4, "7560": 1, "7571": 4, "7574": 4, "7583": 4, "759": 3, "76": 11, "7605": 4, "7613": 4, "761905": 13, "7626": 4, "764705882352942": 11, "7660": 4, "769": 2, "7698": 4, "7725": 4, "773205021308": 14, "7733": 4, "7750": 1, "7751": 4, "7780": [1, 4], "7790": 1, "7796": 4, "7799": 4, "78": 9, "7800": 1, "7810": 1, "7814": 4, "78260869565217": 11, "7833": 4, "7850": 1, "7852": 4, "7857": 4, "7860": 1, "7865": 4, "7891": 4, "7897": 4, "7911": 4, "7914": 4, "7925": 4, "7930": 1, "7932": 4, "7937": 4, "7955": 4, "7970": 1, "799": 3, "7d29c82bf354": 14, "7dd": 14, "7tim": [2, 6], "8": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "80": [8, 9, 13], "800": [1, 10], "8008": 4, "8013": 4, "801416": [12, 13], "8020": 1, "8041": 4, "8050": 4, "8088": 4, "8099": 4, "81": 9, "8114": 4, "8129": 4, "8133": 4, "8142": 4, "8143": 4, "82": 9, "8216": 4, "8220": 4, "8233": 4, "8240": 1, "8244": 4, "8249": 4, "8251": 4, "8252": 4, "8260": 4, "8268": 4, "8270": [1, 4], "8274": 4, "829652": [12, 13], "83": [9, 10, 11], "8300": 4, "8319": 4, "8320": 1, "8326": 4, "8350": 1, "8353": 4, "8357": 4, "8360": 1, "8367": 4, "8371": 4, "8390": 1, "8394": 4, "840": 9, "8418": 4, "8426": 4, "8454": [0, 4], "8454285714285716": [0, 3], "847": 14, "8479": 4, "8482": 4, "8493": 4, "85": 6, "8506": 4, "8520": 4, "8565": 4, "8599": 4, "86": 11, "8627": 4, "8640": 1, "8643": 4, "8649": 4, "8652": 4, "8688": 4, "8690": 1, "87": 13, "8711": 4, "8720": 1, "8736": 4, "8738": 4, "8767": 4, "8770": 4, "8798": 4, "8816": 4, "8840": 1, "88494688682022": 4, "8860": 4, "8864": 4, "8875": 14, "8880": 1, "8885": 4, "8888": 4, "8892": 4, "8894": 4, "89": 14, "8915": 4, "8920": 4, "8941": 4, "8945": 4, "8976": 4, "8983": 4, "8gch": 5, "9": [1, 4, 6, 8, 9, 12, 13], "90": [4, 8, 10, 13], "900": 10, "9000": 1, "9020": 1, "9021": 4, "9030": 4, "9047": 4, "9070": 1, "9084": 4, "909091": 13, "91": 6, "9100": 1, "9113": 4, "9116": 4, "9120": 4, "9127": 4, "9137": 4, "9140": 1, "9149": 4, "9151": 4, "9160": 4, "9181": 4, "9189": 4, "919": 9, "9190": 4, "9201": 4, "9216": 4, "9225": 4, "9228": 4, "92307692307692": 11, "9240": 1, "9243": 4, "9250": 1, "9257": 4, "9265": 4, "9273": 4, "9280": 1, "9285": 4, "93": 10, "9300": 1, "9315": 4, "93229707347896": 4, "9330": 1, "9336574705860224": 14, "9347193058098741": 14, "935": 3, "93574367649991": 4, "9364": 4, "9378": 4, "9387": 4, "9388": 4, "9417": 4, "9432": 4, "9441253498945321": 14, "9450": 4, "9452": 4, "9458": 4, "9474": 4, "9484": 4, "9490": 1, "9491": 4, "95": [0, 13], "9509": 4, "951": 10, "9517": 4, "9520": [1, 4], "9535": 4, "954703": 3, "9550": 4, "9560": 1, "9561": 4, "95652173913044": 11, "9565217391305": 11, "9570": 1, "9591093723128088": 14, "9599": 4, "9600": 1, "9610": 4, "9622": 4, "9630": 1, "9660": 1, "9666": 4, "9670": 1, "9680": 4, "96d7": 14, "9700": 1, "9714": 4, "972362877827634": 14, "9724": 4, "9747": 4, "9748": 4, "9753": 4, "9760": 1, "9765": 4, "9772": 4, "9780": [1, 4], "9812": 4, "9824": 4, "9830": 4, "9833": 4, "9837": 4, "9859877949560755": 14, "9864": 4, "9881": 4, "9893": 4, "9898": 4, "9899": 4, "99": [2, 10], "9903": 4, "9911": 4, "9923": 4, "9927": 4, "994690398528738": [0, 3], "9948": 4, "9996": 4, "99p": 8, "A": [0, 1, 3, 4, 8, 9, 10, 12, 13, 14], "AND": 2, "AT": 14, "As": [0, 1, 2, 5, 8, 11, 12, 14], "At": [4, 13], "Be": [5, 8, 12], "But": [6, 11], "By": [0, 9, 12], "For": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "IN": 2, "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15], "In": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "It": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "Its": 14, "No": 9, "OF": [2, 14], "On": [1, 5], "One": [2, 4, 5, 6, 10, 14], "Or": 2, "THE": 14, "THe": 10, "That": [0, 8], "The": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "Then": [2, 3, 5, 6, 9, 10, 13, 14, 15], "There": [0, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14], "These": [0, 1, 2, 3, 9, 10, 12, 13], "To": [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "WITH": 2, "With": [4, 13], "_": [0, 3, 10, 11, 12, 13], "__enter__": 9, "__init__": 9, "_builtin_open": 9, "_bz_mode": 9, "_cell": 10, "_check_file_lik": 9, "_citat": 10, "_closefp": 9, "_df": [3, 12], "_entiti": 10, "_entity_poli": 10, "_entity_src_gen": 10, "_fp": 9, "_generatorcontextmanag": 9, "_get_stream": 9, "_i": 13, "_ideal": 1, "_io": 8, "_m": 13, "_mode": 9, "_name": 4, "_parseatom": 9, "_parsebond": 9, "_topologi": 9, "_topology_from_file_lik": 9, "_w": 5, "_wrapped_seri": 9, "_x": 5, "_y": 5, "_z": 5, "a456": 14, "a5117d87": 14, "a595": [0, 3], "a_": [0, 3], "a_dict": 13, "abbrev": 2, "abbrevi": [0, 1, 2, 3, 8], "abil": [8, 12], "abl": 15, "about": [0, 1, 4, 8, 9, 10, 12, 13, 14, 15], "abov": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "absent": 9, "absorb": [0, 3, 12], "abspath": 2, "accept": [3, 8, 13], "access": [0, 1, 2, 3, 6, 9, 11], "accomplish": 2, "accord": 1, "accur": 13, "aceton": 10, "achiev": 2, "acid": [2, 14], "act": [1, 2], "actinobacterium": 14, "action": [6, 11], "activ": 1, "actual": [1, 2, 3, 4, 6, 9, 13], "ad": [0, 3, 4, 9, 10, 13], "add": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "add_compon": 9, "add_represent": 9, "addh": [4, 9], "addit": [5, 6, 8, 9], "address": [2, 3, 11, 14], "adjust": 13, "advanc": 5, "advantag": [5, 6, 9], "advisor": 6, "affect": 8, "after": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13], "again": [0, 1, 2, 4, 10], "ahead": [2, 6], "ahm": 0, "aim": 1, "ala": [2, 9], "alcohol": 1, "algebra": 3, "alkalin": 12, "all": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15], "all_coordin": 9, "allchem": [1, 4, 9], "allow": [2, 9, 10, 11, 13, 14], "almost": [3, 5], "along": 6, "alongsid": 0, "alpha": 0, "alphanumer": 1, "alreadi": [2, 4, 6, 12, 16], "also": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "alter": 9, "altern": [1, 9], "altloc": 9, "alwai": [2, 3, 8, 9, 11, 14], "am": [1, 4], "amin": 9, "amino": [2, 8], "among": 3, "amount": [2, 6, 8], "an": [0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14], "analog": [8, 12], "analysi": [0, 2, 3, 8, 9, 11, 12, 13, 14, 15], "analyz": [0, 2, 3, 6, 8, 9, 12], "angle_alpha": 10, "angle_beta": 10, "angle_gamma": 10, "angstrom": [6, 14], "ani": [1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "anim": 0, "anis": 9, "annot": [0, 12, 13, 14], "anoth": [1, 5, 6, 8, 11, 12, 14], "answer": 16, "antibodi": 5, "antigen": 5, "anyopen": 9, "anyth": [5, 6, 11], "anywher": 2, "ap_kin": [2, 8, 12], "ap_kin_df": 12, "ap_kinet": [2, 8], "api": 1, "app": 5, "appear": [0, 4, 5, 8, 9, 12, 13, 15], "append": [2, 3, 4, 6, 11, 12, 14], "appli": [1, 3, 4, 12, 15], "applic": 14, "approach": [0, 4, 5, 6], "appropri": 15, "apr": 1, "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "architectur": 10, "area": 9, "arg": [2, 9], "argument": [0, 2, 8, 12, 13, 14], "aromat": 4, "around": [0, 3, 13], "arrai": 13, "arrang": 8, "asc": 14, "ascend": [8, 14], "ask": [0, 14], "asn": 2, "asp": 2, "assai": [0, 3, 12], "assembli": [1, 14], "assembly_count": 14, "assembly_id": 14, "assign": [1, 2, 3, 5, 6, 8, 13, 16], "assignbondordersfromtempl": 9, "assist": 10, "associ": [1, 13, 14], "atom": [1, 2, 4, 6, 9, 10, 14], "atom_list": 10, "atp": 7, "atp3d": 4, "attach": [4, 8], "attempt": [4, 13], "attent": [8, 11], "attr": [1, 9], "attract": 13, "attribut": [1, 10, 14], "audit_author": 14, "autodock": 1, "autom": 2, "automat": [6, 11], "avaiabl": 1, "avail": [0, 3, 5, 9, 12], "ax": [0, 12], "axi": [0, 13], "aziz": 0, "b": [4, 8, 9, 12, 13], "b01": 8, "b03": 8, "b04": 8, "back": [8, 9, 11], "background": 5, "backslash": 0, "bad": 9, "ball": 5, "bank": [1, 6, 8, 9], "bar": 15, "base": [0, 1, 3, 4, 8, 12, 13, 14], "basenam": 6, "baseurl": 1, "basic": 11, "bbox_inch": 0, "bca": 3, "becaus": [0, 3, 6, 9, 10, 11, 13, 14], "becom": [11, 14], "been": [2, 11], "befor": [0, 2, 4, 6, 8, 9, 10, 12], "begin": [2, 3, 9, 10], "being": [2, 3, 11, 14, 16], "belong": 10, "below": [0, 1, 2, 4, 9, 11, 14, 15], "beneath": 6, "benzen": [4, 9], "best": [0, 2, 3, 4, 13], "better": [9, 10, 11], "between": [1, 3, 6, 8, 14], "beyond": 14, "bicarb": 3, "bicarbon": 3, "bin": 9, "binary_fil": 9, "bind": [1, 10, 14], "binding_site_investig": [2, 8], "bio": [10, 14], "biochemist": [2, 7, 8, 9, 10, 11, 15], "biochemistri": [2, 3, 5, 7, 15, 16], "bioinformatician": 10, "biolog": 1, "biologi": [2, 15, 16], "biologist": 10, "biomolecul": 9, "biopython_mmcif": [2, 8], "biotechnologi": 5, "bit": [0, 1, 5, 8, 9, 13, 15], "blank": 11, "block": [2, 11, 13], "blood": 1, "blue": 13, "bn": 5, "bo": 13, "bodi": [5, 13], "bold": 4, "bond": [1, 4, 9], "book": 2, "bore": 2, "both": [2, 8, 10, 11, 13], "bound": [0, 1, 2, 5, 9, 10], "bovin": 8, "box": [0, 5, 15], "brace": [0, 6, 13], "bracket": [3, 11, 13], "bradford": 3, "bradford_plot": [0, 2, 8], "bradford_plot2": [0, 2, 8], "bradford_plot3": [2, 8], "bradi": 13, "branched_entity_count": 14, "break": [1, 6, 9, 13, 16], "brenda": [1, 6], "bring": 5, "broader": 1, "brows": 10, "browser": [1, 14, 15], "bu": 5, "bud": 10, "buffer": [1, 12], "bufferediobas": 8, "build": [3, 6, 8, 12], "built": [8, 11, 12], "burk": 3, "button": 15, "butyl": 4, "byte": 9, "bz2": 9, "bz2_pickle_open": 9, "bz2file": 9, "bz2picklabl": 9, "bz_mode": 9, "c": [1, 4, 8, 9, 10, 12], "c1": [1, 4], "c10": 1, "c11": 1, "c12": 1, "c13": 1, "c14": 1, "c14a13u": 9, "c14b13u": 9, "c15": 1, "c16": 1, "c17": 1, "c18": 1, "c19": 1, "c1c": 4, "c1ccc": 4, "c1cccc": 4, "c1ccccc1": 4, "c1m": 8, "c2": 1, "c20": 1, "c21": 1, "c23h35n5o2": 4, "c24": 4, "c2a": 8, "c2c": 4, "c3": [1, 4], "c3m": 8, "c4": 1, "c5": 1, "c6": 1, "c7": 1, "c8": 1, "c8h10n4o2": 4, "c9": 1, "c_rates_df": 13, "c_xdata": 13, "c_ydata": 13, "cache_d": 8, "caffein": 4, "calcul": [0, 3, 8, 9, 11, 13], "calibr": 0, "call": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "callabl": 13, "came": 6, "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "capit": [2, 6, 12], "captur": [5, 7], "carbamimidoylbenzyl": [1, 4, 8], "carbohydr": 1, "carbon": 4, "care": [5, 11], "carefulli": [8, 11], "carri": 10, "case": [2, 3, 5, 6, 8, 9, 12, 13], "cast": [2, 11], "catalyst": 1, "catalyz": [1, 13], "categori": 10, "catodon": 10, "caus": [5, 9, 13], "caveat": 2, "cc": 4, "cc1": 4, "ccc": 4, "ccc1": 4, "cell": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14], "center": [5, 9], "central": 9, "certain": [5, 10, 13], "certainli": 0, "cfile": 1, "cfileloc": 1, "cfileurl": 1, "ch3": 4, "chain": 10, "chang": [0, 2, 3, 4, 5, 6, 11, 12, 13, 14], "channel": 15, "chapter": [2, 3, 7], "charact": [1, 4, 6, 10, 11], "character": 10, "characterist": 1, "charli": [3, 8, 12], "chart": 0, "chd": 1, "check": [1, 3, 9, 14, 15], "checkbox": 15, "chem": [1, 4, 9], "chem_comp": 1, "chemic": [1, 4, 5, 10], "chemid": 1, "cheminformat": [1, 4], "chemist": [3, 8, 12], "chemistri": [1, 4], "chlorophenyl": 8, "chloropyridin": 8, "choic": 4, "cholesterol": 1, "choos": [1, 5, 9, 11, 13, 15], "chunksiz": 8, "chymo_mm_data": [2, 8, 12, 13], "chymo_mm_df": 12, "chymo_rates_df": 12, "chymotrypsin": [12, 13], "chymotrypsin_kinet": [2, 8, 12], "cid": 7, "cif": [2, 10, 14], "circl": [10, 13, 15], "cis_peptide_count": 14, "citat": [1, 14], "class": [6, 14], "classif": 1, "classifi": 1, "clear": 10, "clear_represent": 9, "clearli": [11, 13], "click": [1, 5, 11, 14, 15], "clinic": 2, "close": [2, 6, 9, 11], "clot": 1, "cm": 12, "cmo": 14, "cn": 4, "cn1c": 4, "cnc": 4, "cnc3ccccccc3": 4, "cnd": 1, "coa": 1, "coc": 4, "cod": 1, "code": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "coder": 3, "coeffici": 12, "colleagu": 6, "collect": [0, 3, 4, 8, 10, 12, 14], "colon": [2, 5, 13], "color": [5, 9], "colorschem": 9, "column": [0, 4, 8, 12], "com": 4, "combin": [1, 10, 14], "combination_count": 14, "combination_str": 14, "come": [6, 15], "comma": [2, 8, 11], "command": [0, 1, 2, 3, 4, 6, 8, 9, 12], "comment": [8, 11], "commerci": 13, "commis": 1, "commiss": 6, "common": [2, 3, 4, 10, 11, 14], "common_name_1mbn": 10, "commonli": [2, 10, 14], "commun": [4, 14], "compar": [11, 13], "complet": [2, 3, 4, 5, 6, 8, 9, 12, 13, 15], "complex": [0, 2, 3, 9], "complic": 14, "compnd": [2, 6], "compon": [1, 2], "compos": 10, "composit": 10, "compound": 7, "compress": 8, "compresslevel": 9, "comput": [2, 3, 4, 6, 8, 10, 11, 12, 13, 15], "compute2dcoord": 4, "conc_list": 11, "concentr": [0, 8, 11, 12, 13], "concentration_nm": 11, "concern": 4, "conda": 15, "condit": [3, 10, 11, 12], "conditon": 10, "confid": 0, "confirm": 12, "conform": 4, "confus": 6, "consequ": 11, "consid": [4, 5, 10], "consist": [1, 10, 14], "constant": 13, "constraint": 4, "consum": [5, 6], "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "contains_phras": 14, "content": [1, 2, 4, 6, 8, 13], "context": [2, 6, 9], "contextlib": 9, "contextmanag": 9, "continu": 3, "control": [1, 4, 5, 6, 9, 13, 14], "conveni": [8, 9], "convent": [3, 4], "converg": 4, "convers": [1, 4], "convert": [1, 6, 8, 10, 11, 14], "cookbook": 4, "cool": 5, "coordin": [4, 8, 9, 10, 12], "cop": 4, "copi": [5, 11], "core": [9, 14], "corei": [8, 12], "corner": [0, 11, 15], "correct": [1, 3, 4, 13], "correctli": [2, 11], "correl": 2, "correspond": [9, 10, 15], "could": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14], "count": [2, 6, 8, 11, 13, 14], "counter": 14, "cours": 3, "covari": 13, "cover": [3, 11, 15, 16], "cpl": 5, "creat": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16], "creating_plots_in_jupyter_notebook": [2, 8], "creation": 11, "critic": 7, "crucial": 10, "crystal": [2, 9, 10, 14], "crystallograph": 10, "crystallographi": 9, "csv": [0, 2, 8, 12, 13], "curli": [11, 13], "current": [0, 1, 2, 6, 8, 11, 14], "curv": [0, 11, 12, 13], "cut": [6, 10], "cutoff": 14, "cutoff_dist": [10, 14], "cy": 2, "cycl": 12, "cyclooctylglycyl": [1, 4], "cylind": 5, "d": [2, 8, 12, 14], "dai": 16, "data": [0, 1, 2, 4, 6, 9, 10, 15], "databas": [1, 10, 14], "datafil": [6, 8, 12, 13], "datafram": [0, 13], "dataset": [0, 3], "datasourc": 9, "datatyp": [0, 3], "date": 14, "date_pars": 8, "dayfirst": 8, "dch": 8, "deal": 10, "decim": [0, 8, 13], "declar": [5, 11, 13], "deeper": [1, 3, 4, 13], "def": [5, 9, 13], "default": [0, 1, 2, 5, 9, 13, 15], "defin": [1, 2, 3, 4, 5, 9, 10, 11, 13, 14], "definit": 5, "degre": 9, "dehydrogenas": 1, "del": 9, "delai": 0, "delet": 12, "delim_whitespac": 8, "delimit": [2, 8], "demonstr": [11, 13, 14], "deoxyhaemoglobin": 14, "depend": [0, 2, 3, 13], "deposited_atom_count": 14, "deposited_deuterated_water_count": 14, "deposited_hydrogen_atom_count": 14, "deposited_model_count": 14, "deposited_modeled_polymer_monomer_count": 14, "deposited_nonpolymer_entity_instance_count": 14, "deposited_polymer_entity_instance_count": 14, "deposited_polymer_monomer_count": 14, "deposited_solvent_atom_count": 14, "deposited_unmodeled_polymer_monomer_count": 14, "der": 9, "desc": 14, "describ": [0, 2, 3, 9, 10, 13, 15], "descript": [1, 10, 11], "descriptor": 13, "design": [2, 8, 9, 10, 12, 16], "desir": [2, 3, 4, 5, 6], "desktop": [1, 2, 15], "detail": [0, 1, 10, 13], "determin": [1, 2, 3, 10, 11], "deviat": 13, "diag": 13, "dialect": 8, "dialog": 5, "diaminomethyl": 8, "dict": 8, "dict_kei": 14, "dictionari": [1, 10, 13, 14], "dictionary_nam": 14, "did": [2, 4, 6, 9, 12], "didn": [0, 6, 9, 11], "differ": [0, 2, 4, 5, 6, 8, 10, 11, 13, 14], "difficult": [9, 15], "diffract": [2, 8, 14], "diffrn": 14, "diffrn_resolution_high": 14, "dig": [4, 13], "digest": 1, "dimension": [8, 10, 12, 13], "dimer": 2, "dion": 4, "direct": [9, 13, 14], "directli": [2, 10, 15], "directori": [1, 2, 6, 8, 9, 12, 14], "discoveri": 4, "discuss": 13, "disjoint": 13, "displai": [0, 2, 3, 4, 12, 14], "distal": 10, "distanc": [10, 14], "distinguish": 13, "disulfide_bond_count": 14, "divid": [2, 11, 12], "dna": [5, 9, 10], "do": [0, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16], "doc": 9, "dock": [1, 9], "document": [9, 13, 14], "doe": [4, 5, 6, 8, 11, 13, 14, 15, 16], "doesn": [6, 11], "dollar": 0, "don": [2, 9, 10, 11, 15], "done": [1, 4, 6, 10, 14], "dot": [0, 2, 3, 6, 8], "doubl": [3, 4, 15], "doublequot": 8, "down": 15, "download": [4, 6, 15], "dozen": 1, "dpi": 0, "draw": [1, 4], "drawback": 10, "drop": 15, "dropdown": [5, 15], "drug": 2, "dtype": [3, 8, 12, 13], "due": 9, "dump": 14, "dure": [4, 10, 15], "dynam": 9, "e": [1, 4, 6, 8, 9, 13], "eacc": 9, "each": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "eadi": 3, "earli": 5, "earlier": [3, 6, 11, 12, 13], "easi": [0, 2], "easili": [0, 4, 6, 8, 12, 13], "ec": [1, 6], "ec_class": 6, "ec_class_ligands_search": [2, 4, 8], "ec_lin": 6, "ecnumb": 1, "editor": [2, 6, 8], "educ": 4, "effect": 4, "effici": 10, "eg": 9, "either": [6, 9], "electrochemistri": 4, "element": [2, 4, 8, 10, 11, 12, 14], "els": [2, 9], "embedmolecul": 4, "emphas": 0, "emploi": [1, 6], "empti": [2, 4, 6, 12, 14], "enabl": [1, 3, 4, 5, 10, 13], "enclos": [0, 6, 8], "encod": 8, "encount": [3, 8, 13], "end": [0, 2, 3, 4, 6, 8, 11, 12, 14], "endopeptidas": 1, "endpoint": 14, "energi": [1, 4], "engin": [3, 8, 13], "english": 0, "enoent": 9, "enorm": 2, "enough": 1, "ensur": 12, "enter": [1, 2, 5, 8, 11, 15], "entir": 1, "entiti": [1, 10, 14], "entity_count": 14, "entri": [1, 2, 4, 5, 10, 14], "entry_id": 10, "enumer": 2, "env": 9, "environ": 15, "enzym": [3, 5, 6, 8, 12, 13], "enzyme_kinet": [2, 8], "equal": [2, 11, 13], "equat": [0, 11], "err": 9, "errno": 9, "error": [0, 2, 3, 9, 12], "error_bad_lin": 8, "errorcod": 9, "escapechar": 8, "especi": [5, 15], "etc": [8, 9, 12], "ethoxi": 8, "evalu": 11, "evan": 13, "even": [2, 5, 9, 11, 14], "ever": [10, 15], "everi": [3, 6, 11], "everyth": [1, 3, 11], "exact": [2, 3, 5, 11], "exactli": [1, 2, 11], "examin": 6, "exampl": [0, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15], "exc_info": 9, "excel": [3, 8, 12], "except": 9, "excerpt": [9, 10], "excit": 13, "execut": [0, 1, 2, 4, 5, 6, 11, 13], "exercis": [2, 6], "exist": [4, 6, 8, 11, 12, 16], "exist_ok": [1, 9], "exit": 11, "exp_type_lin": 2, "expand": 3, "expect": [10, 12, 13, 14], "experi": [2, 12], "experiment": [2, 3, 9, 10, 12, 13, 14], "experimental_method": 14, "experimental_method_count": 14, "explain": [1, 4, 11], "explicit": 4, "explor": [0, 2, 3, 4, 5, 6, 7, 8, 12, 14], "export": [0, 12], "express": 10, "exptl": [1, 14], "exptl_cryst": 14, "ext": 9, "extens": [4, 5], "extinct": 12, "extra": [0, 9], "extract": [2, 5, 6, 9, 14], "f": [0, 1, 6, 9, 12, 14], "facet": 14, "fact": [5, 13], "factor": [5, 10], "fail": [5, 9], "fals": [8, 9], "false_valu": 8, "famili": 1, "familiar": [5, 6, 8, 12, 13, 14], "far": [7, 12], "farili": 14, "fashion": 4, "favorit": 5, "fe": [10, 14], "featur": [1, 4, 5, 14], "feedback": 16, "few": [0, 2, 5, 8, 9, 10, 11, 14, 15, 16], "fifth": 2, "figsiz": 0, "figur": [0, 11], "file": [0, 3, 4, 5, 8, 9, 12, 13, 15, 16], "file1": 1, "file_format": 14, "file_loc": 6, "file_nam": 6, "file_pars": [2, 8], "file_text": 1, "filehandl": [2, 6, 12, 13], "filenam": [0, 1, 6, 9], "filenotfounderror": 9, "filepath": [2, 6], "filepath_or_buff": 8, "fill": [1, 9], "filter": 10, "final": [0, 3, 4, 12], "find": [0, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "finder": 15, "finger": 14, "fingerprint": 9, "finish": [6, 11], "first": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "first_fil": 6, "first_result": 14, "fit": [0, 3, 6, 12], "fit_i": 13, "five": [2, 3, 8, 12], "fix": 12, "flexibl": 2, "float": [0, 2, 3, 6, 11, 12, 13], "float64": [3, 8, 12, 13], "float_precis": 8, "focu": [1, 4], "folder": [0, 1, 2, 3, 4, 6, 8, 12, 14, 15], "follow": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15], "forg": 15, "forget": 2, "forgot": 6, "form": [5, 8, 11, 16], "formalcharg": 9, "format": [0, 1, 2, 3, 4, 5, 8, 9, 10, 12, 14], "formula_weight": [1, 10], "forwardref": 8, "found": [0, 1, 2, 3, 8, 9, 10, 12, 14], "four": [1, 4, 8], "fourth": 4, "fp": 9, "fqevstjzsa": 4, "frac": [3, 13], "frame": [9, 12], "free": [4, 8, 12], "frequent": 5, "from": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15], "from_mda": 9, "front": [6, 9], "fudge_factor": 9, "full": [1, 2, 10, 14], "full_text": 14, "fulli": 0, "fun": 8, "func": 9, "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 14], "function_nam": [5, 6, 13], "funtion": [6, 8], "fusca": 14, "futur": [2, 3, 4, 8, 11], "g": [0, 1, 4, 8, 9, 13], "gain": [3, 6], "gave": 4, "geeksforgeek": 13, "gel": 13, "gen": 9, "genbank": 10, "gene": 10, "gene_src_common_nam": 10, "gener": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15], "get": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16], "get_atom": [10, 14], "get_coord": [10, 14], "get_id": 10, "get_par": [10, 14], "get_resnam": [10, 14], "get_structur": [10, 14], "getcwd": [2, 7, 8], "github": [1, 3, 4, 8, 12], "give": [2, 3, 4, 6, 8, 11, 14], "given": [1, 2, 15], "gln": 2, "glob": 6, "glu": 2, "gly": 2, "go": [0, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15], "goal": [4, 6, 8], "goe": [1, 11], "good": [2, 3, 6, 11], "googl": 8, "got": 12, "grad": 3, "grai": 5, "graph": [0, 13], "graphic": 2, "great": [2, 5, 15], "greater": [1, 11], "greek": 0, "green": 15, "grei": 5, "grip": 10, "ground": 3, "ground_wat": [2, 3, 8], "group": [0, 1, 4, 5, 9, 10, 11, 14, 16], "guanidino": 4, "guess_bond": 9, "guru99": 3, "gz": 9, "h": [1, 4, 8, 12], "h1": 1, "h10": [1, 4], "h11": 1, "h12": 1, "h13": 1, "h14": 1, "h15": 1, "h16": 1, "h17": 1, "h18": 1, "h19": 1, "h2": 1, "h20": 1, "h21": 1, "h22": 1, "h23": 1, "h24": 1, "h25": 1, "h26": 1, "h27": 1, "h28": 1, "h29": 1, "h3": [1, 4], "h30": 1, "h31": 1, "h4": 1, "h4h": 4, "h5": 1, "h6": 1, "h7": 1, "h8": 1, "h9": 1, "h_hem": 10, "h_oh": 10, "ha": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "had": [4, 6], "half": 13, "hand": [0, 1, 15], "handheld": 3, "handi": 2, "handl": [1, 2, 6, 11], "happen": [4, 11, 13], "hard": [3, 14], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "he": [8, 12], "head": [3, 8, 12, 13], "header": [0, 2, 3, 8, 11], "heavi": 1, "help": [0, 1, 2, 3, 6, 8, 13, 16], "helper": 9, "hem": [10, 14], "heme": [5, 10, 14], "hemoglobin": 14, "henri": 5, "here": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "hetatm": 9, "hetero": 14, "heterogen": 2, "heteromer": 14, "hetnam": 2, "hetnam_lin": 2, "hetnam_list": 2, "hi": [2, 3, 5, 8, 10, 12, 14], "hidden": 9, "hierarch": [1, 6, 10], "hierarchi": 1, "high": [0, 2, 9, 13], "highest": 3, "highli": 4, "highlight": 4, "hint": 10, "histidin": 10, "hit": 13, "hiv": [2, 10], "hmg": 1, "hofste": 3, "hoh": 14, "hold": [2, 4, 12], "home": [1, 2, 7, 16], "host": [10, 14], "houghton": 3, "hour": 16, "how": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "howev": [2, 3, 4, 8, 10, 14, 15], "http": [1, 4, 9, 14], "human": [8, 9, 14], "hundr": 13, "hydrogen": [4, 9], "hydrolas": [1, 2], "hydrophob": 9, "hydroxi": 8, "hydroxid": 10, "i": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "i48": 8, "icon": 15, "id": [1, 6, 8, 9, 10, 14], "idea": 9, "ideal": [9, 13], "ident": 0, "identifi": [1, 4, 5, 7, 8, 10, 11, 12, 14], "ignor": [9, 12], "il": 2, "illustr": 5, "iloc": 8, "imag": [0, 1, 2, 8, 10, 15], "imagin": [4, 5], "immut": 11, "implement": [3, 5], "import": [0, 1, 2, 4, 5, 7, 9, 10, 11, 13, 14], "in_memori": 9, "in_memory_step": 9, "inactiv": 3, "inch": 0, "inchi": 4, "inchikei": 4, "includ": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 16], "inclus": 0, "incorpor": 5, "incorrect": 11, "increas": [0, 10, 12], "indent": [5, 6, 11, 13], "independ": [3, 5, 6, 13], "independent_vari": [5, 13], "index": [3, 8, 10, 11, 12], "index_col": 8, "indic": [0, 4], "individu": [1, 2, 10, 12, 15], "infer": 8, "infer_datetime_format": 8, "info": 14, "info_4hhb": 14, "inform": [1, 2, 5, 6, 7, 9, 10, 11, 12, 13], "inhibitor": 2, "initi": [1, 6, 8, 11, 13, 14], "initial_release_d": 14, "inlin": 0, "inner": 6, "inplac": [8, 12], "input": [4, 6, 8, 10, 13], "insert": [0, 1, 6, 13], "insid": [2, 6, 9, 11], "inspect": [4, 9, 13], "instal": [5, 11], "instanc": 14, "instead": [1, 2, 5, 10, 11, 14], "instruct": [6, 15, 16], "int": [2, 11], "integ": [8, 11, 12], "integr": [3, 5], "intend": 1, "intent": [1, 16], "inter_mol_covalent_bond_count": 14, "inter_mol_metalic_bond_count": 14, "interact": [0, 5, 9, 10, 11], "intercept": [0, 3, 12], "interest": [1, 2, 4, 5, 7, 9, 10, 14], "interfac": [1, 9, 14], "interface_area": 14, "interface_charact": 14, "interface_id": 14, "interface_info": 14, "intern": 1, "internet": [14, 15], "interpret": [4, 11], "interv": 0, "intestin": 1, "introduc": [0, 2, 3, 6, 8, 11, 16], "introduct": [2, 8, 16], "invalid": 9, "involv": [1, 9], "io": 8, "ioerror": 9, "ion": [1, 10], "ipynb": [2, 8], "ipynb_checkpoint": [2, 8], "iron": [10, 14], "iron_atom": 10, "iron_coord": 10, "iron_residu": [10, 14], "isinst": 9, "isn": 9, "isol": [2, 9], "isomer": 4, "isomeras": 1, "isopropyl": 4, "issu": 3, "item": [1, 8, 10, 11, 12, 14], "iter": [2, 4, 8, 11, 14], "its": [1, 2, 7, 11, 14, 15], "iupac": [1, 4], "ix": 10, "jakubowski": 5, "javascript": 5, "join": [0, 2, 3, 6, 8, 12, 13, 14], "journal": 1, "journei": 4, "json": 14, "jupyt": [1, 2, 3, 4, 5, 8, 9, 13, 16], "jupyterlab": [5, 15], "jupyterlab_3dmol": 5, "just": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14], "k": [1, 13], "k_m": 13, "keep": [2, 3, 6, 14, 15, 16], "keep_date_col": 8, "keep_default_na": 8, "kei": [10, 14], "kelvin": 2, "key_nam": 14, "keyboard": 15, "keystrok": 2, "keyword": [2, 5, 9, 10, 13, 14], "khelifi": 0, "kind": 9, "kindli": 3, "kinet": [3, 8, 12, 13], "kinetics_df": 8, "kinetics_fil": 8, "km": [8, 11, 13], "know": [1, 2, 8, 9, 11], "knowledg": 10, "known": 10, "kwarg": 9, "kwd": 9, "l": [1, 3, 4, 8], "lab": 3, "label": [0, 1, 8, 13, 15], "labextens": 5, "laboratori": [8, 12], "lack": 1, "languag": [4, 11, 15], "larg": [1, 9, 10], "larger": [0, 1, 3, 10], "last": [0, 1, 2, 4, 6, 8, 9, 11, 13], "last_wrapped_seri": 9, "later": [1, 6, 10, 11], "latex": [0, 13], "launch": 15, "layout": 12, "learn": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "least": [1, 12, 13], "leav": 11, "left": [2, 11, 12, 15], "legend": 13, "len": [1, 2, 10, 11], "length": [9, 11], "length_a": 10, "length_b": 10, "length_c": 10, "less": [1, 11], "lesson": [0, 2, 3, 6, 8, 11, 12, 14], "let": [0, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14], "letter": [0, 1, 2, 5], "leu": 2, "leucyl": 8, "level": [0, 1, 3], "li": [8, 12], "lib": 9, "libari": 1, "librari": [0, 2, 4, 9, 10, 12, 13, 14], "library_nam": 6, "libretext": 5, "lig_converg": 4, "lig_list": 9, "lig_view": 9, "ligand": [2, 5, 8], "ligand13u": [2, 4, 8], "ligand13u_h": 4, "ligand13uipr": [2, 4, 8], "ligand13um": [2, 4, 8], "ligand13un": [2, 4, 8], "ligand_13u": [4, 8], "ligand_a": 9, "ligand_b": 9, "ligand_c_ipr": 4, "ligand_c_methyl": 4, "ligand_c_tbu": 4, "ligand_cn": 4, "ligand_h": 9, "ligand_mol": 9, "ligands_for_ec_class_": 1, "ligands_h": 4, "ligas": 1, "like": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "limit": [1, 4], "linalg": 3, "line": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "line2d": [0, 13], "linear": [0, 8, 11, 12, 13, 16], "linear_mm": 11, "linear_regress": [2, 8], "linenum": 2, "linetermin": 8, "lineweav": 3, "link": [0, 5, 14], "linregress": [0, 3, 12, 13], "linspac": 13, "linux": 2, "lipid": 1, "list": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 15], "list_nam": [2, 11], "listdir": [2, 8], "liter": 0, "littl": [6, 8, 9], "live": 16, "ll": [1, 2, 3, 5, 8, 9, 10, 12, 13], "load": [9, 10, 14, 15], "loc": [3, 8], "locat": [1, 2, 6, 9, 14], "log": [3, 13], "long": [6, 8], "longer": 0, "look": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "loop": [2, 4, 10, 12, 14], "lot": [1, 2, 10], "low": 2, "low_memori": 8, "lower": [0, 1, 5, 11, 14], "lower_bound": 9, "lowercas": 14, "lowest": 3, "lowri": 3, "ly": 2, "lyas": 1, "m": [4, 12, 13], "m0": 4, "m2": 4, "mac": [2, 8, 15], "macromolecul": 2, "macromolecular": [2, 7], "made": [2, 9, 14], "mai": [0, 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15], "mail": 6, "major": 1, "make": [0, 3, 4, 5, 6, 10, 12, 13, 14, 15], "makedir": [1, 9], "man": 10, "manag": [0, 2, 3, 6, 8, 9, 12], "mangle_dupe_col": 8, "mani": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14], "manipul": [2, 3, 4, 8, 9, 14], "manual": 13, "manuscript": 0, "markdown": [0, 1, 11], "marker": 12, "match": [2, 6, 9], "materi": [6, 16], "math": [2, 3, 9], "mathemat": 3, "matlab": 0, "matplotlib": [12, 13], "matrix": 13, "matter": 0, "max": [3, 13], "maxim": 13, "maximum": [3, 10, 13, 14], "mda": 9, "mdanalysi": 9, "mean": [0, 1, 4, 6, 9, 10, 11, 13, 14], "meanin": 4, "meaning": 4, "member": 1, "memori": [6, 10], "memory_map": 8, "menten": [11, 12], "mention": [8, 14], "menu": [5, 15], "menuicon": 5, "messag": [2, 13], "messi": 9, "met": 8, "methanamin": 8, "method": [1, 2, 3, 6, 8, 9, 10, 14], "methyl": [4, 8], "methylpyridinium": 8, "mg": [0, 3, 8], "micha": [11, 12], "micromolar": [8, 11, 12], "micropl": 0, "middl": 11, "mifflin": 3, "might": [1, 2, 3, 5, 6, 8, 9, 10, 11, 12], "migrat": 13, "million": 13, "min": [3, 12, 13], "mind": 3, "miniconda": 9, "minimum": [3, 13], "miss": 9, "mistak": 13, "ml": [0, 3, 8], "mm": [12, 13], "mm_data": [2, 8, 12, 13], "mm_data1": [2, 8], "mm_data_for_nlrpt2": [2, 8], "mm_df": 12, "mmap": 8, "mmcif": [1, 14], "mmcif2dict": 10, "mmcifpars": [10, 14], "mmdb": 5, "mmdbafid": 5, "mmdbid": [5, 7], "mmffoptimizemoleculeconf": 4, "mmloidmsbrjza": 4, "mode": 9, "mode_cod": 9, "model": [3, 10, 13], "modif": [4, 5], "modifi": [0, 1, 2, 5, 6, 7, 10], "modifying_ligands_with_rdkit": [2, 8], "modul": [6, 8, 9, 12, 13, 16], "modular": 13, "mol": [4, 9], "mol2": [1, 4, 9], "mol_definit": 1, "mol_h": 4, "mol_id": 2, "molecul": [1, 2, 6, 9, 10, 14], "molecular": [1, 2, 4, 9, 10, 13, 15, 16], "molecular_weight": 14, "molecule_nam": 6, "molfrommol2fil": 9, "molfrompdbfil": 9, "molfromsmart": 4, "molfromsmil": 4, "molresultl": 1, "molsperrow": 4, "molssi": [4, 8, 11, 12], "molstogridimag": 4, "moltomolblock": 4, "moltomolfil": 9, "moltosmil": 4, "molvis_with_icn3d": [2, 8], "monom": 2, "month": 3, "more": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "most": [1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15], "most_common": 14, "most_common_combin": 14, "motif": [10, 14], "mousechang": 5, "move": [0, 6, 8, 15], "mu": [0, 3, 12, 13], "much": [2, 3, 4, 6, 8, 11, 13], "multi": 3, "multidrug": 2, "multipl": [5, 9, 14, 16], "muscl": 10, "must": [0, 1, 2, 8, 11, 12, 15], "my": [0, 8, 13], "my_queri": 14, "myoglobin": 10, "myview1": 5, "n": [1, 2, 4, 6, 8, 9, 10, 12, 13], "n1": [1, 4], "n2": [1, 4], "n2c": 4, "n2ccc": 4, "n3": 1, "n4": 1, "n5": 1, "na": 1, "na_filt": 8, "na_polymer_entity_typ": 14, "na_valu": 8, "nad": 1, "nai": 1, "naj": 1, "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nameerror": [4, 11], "nan": 3, "nanomol": 11, "nap": 8, "naphthalen": 8, "nation": 5, "navig": 15, "nc": 4, "nc2": 4, "ncc": 4, "ncc3": 4, "nd": [8, 12], "nearest": 4, "neat": 3, "neater": 6, "need": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "neg": 4, "neighbor": 14, "neighbor_list": 14, "neighbor_search": [10, 14], "neighborsearch": [10, 14], "network": 2, "new": [2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15], "new_list": 11, "new_molecul": 4, "new_th": 11, "newlin": 6, "next": [0, 1, 2, 3, 6, 9, 11, 12, 14, 15, 16], "nglview": 9, "nhheaelkplaqshatkhkipikylefiseaiihvlhsrhpgdfgadaqgamnkalelfrkdiaakykelgyqg": 10, "nitrogen": 4, "nitrophenol": 12, "nm": 11, "nmber": 11, "nmr": 10, "no_charg": 1, "non": [1, 3, 4, 10, 12, 13, 16], "none": [8, 9], "nonetyp": 8, "nonlinear": [5, 8], "nonlinear_regression_part_1": [2, 8, 13], "nonlinear_regression_part_2": [2, 8], "nonpolymer_bound_compon": 14, "nonpolymer_entity_count": 14, "nonpolymer_molecular_weight_maximum": 14, "nonpolymer_molecular_weight_minimum": 14, "normal": 0, "notat": [2, 3, 6, 8], "note": [0, 1, 3, 4, 5, 8, 10, 12, 13, 14], "notebook": [1, 2, 3, 5, 8, 9, 10, 12, 13, 16], "noth": [11, 15], "notic": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14], "novel": 14, "now": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nozawukj3ym": 4, "np": [0, 3, 8, 12, 13], "nrow": 8, "ntop": 14, "nucleic": 14, "nucleocapsid": 10, "num_core_interface_residu": 14, "num_interface_residu": 14, "number": [0, 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15], "number_list": 11, "numer": [3, 8, 12], "numpi": [0, 3, 8, 12, 13], "nv": 9, "o": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15], "o1": [1, 4], "o2": 1, "o3": 4, "o32a13u": 9, "o_2": 10, "object": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "obtain": [0, 4, 10], "obteain": 3, "obviou": 0, "oc": 4, "occup": 9, "occur": 14, "occurr": 14, "off": 10, "offer": [5, 16], "often": [2, 3, 6, 8, 9, 11, 14], "oh": 10, "okai": 1, "oldest": 14, "omit": [0, 12], "onc": [0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 15], "one": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "ones": 1, "onli": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "onlin": [3, 8, 10, 12, 13], "op": 4, "open": [1, 2, 4, 5, 6, 8, 9, 11, 15], "openani": 9, "openbabel": 9, "openfunc": 9, "openfunct": 9, "oper": [0, 1, 2, 3, 6, 8, 14, 15], "operand": 2, "opt": 4, "opt_13u_h": 4, "optim": [1, 3, 4, 13], "option": [0, 1, 2, 4, 6, 8, 12, 15, 16], "order": [2, 6, 8, 9, 10, 14], "org": [1, 9, 14], "organ": [1, 2, 4, 10, 13], "origin": [2, 4, 10, 13], "original_molecul": 4, "oserror": 9, "other": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14], "our": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "out": [1, 2, 3, 4, 6, 8, 10, 11, 13], "outer": 6, "outfil": [2, 6], "output": [1, 2, 3, 4, 6, 8, 9, 10, 12], "outputfil": 12, "outsid": [2, 11], "over": [5, 6, 8, 9, 10, 11, 14], "overal": 6, "overflow": 13, "overview": 16, "overwrit": [6, 9, 11], "oxi": 14, "oxidas": 2, "oxidoreductas": 1, "oxygen": [10, 14], "p": [0, 3, 4, 8, 9, 12], "p05": 8, "p_valu": [0, 3], "packag": [1, 9, 13, 15], "pad": 1, "page": [1, 2, 4, 7, 9, 10, 11, 13, 15], "pagin": 14, "pai": [8, 11], "pair": [0, 14], "pancrea": 1, "panda": [0, 13, 16], "panic": 15, "paper": 14, "paramat": 13, "paramet": [3, 5, 9, 10, 13, 14], "parameter1": [5, 13], "parameter2": [5, 13], "parent": 14, "parenthes": [2, 5, 8, 11, 13], "parenthesi": [2, 5, 13], "pars": [6, 8, 9, 10, 14, 16], "parse_d": 8, "parser": [8, 9, 10, 14], "part": [0, 1, 3, 4, 5, 9, 10, 16], "part1": 4, "particular": [6, 8, 10, 11, 13, 14], "pass": [5, 8, 12, 13], "past": [1, 5, 6, 13], "path": [0, 1, 3, 6, 8, 12, 13], "pathcollect": 0, "pathlib": 2, "pathlik": [8, 9], "patt": 4, "pattern": [4, 6], "pcov": 13, "pd": [0, 3, 8, 12, 13], "pdb": [1, 2, 4, 6, 8, 9, 10], "pdb2pqr": 9, "pdb_file": [2, 6, 8, 10, 14], "pdb_filenam": 14, "pdb_id": [5, 9, 14], "pdb_info": 10, "pdb_ligand": 9, "pdb_list": 14, "pdb_request": 9, "pdbid": [5, 7], "pdblist": 14, "pdbparser": 9, "pdbqt": 1, "pdbx": 10, "pdbx_audit_revision_categori": 14, "pdbx_audit_revision_detail": 14, "pdbx_audit_revision_group": 14, "pdbx_audit_revision_histori": 14, "pdbx_audit_revision_item": 14, "pdbx_database_pdbobs_spr": 14, "pdbx_database_rel": 14, "pdbx_database_statu": 14, "pdbx_descript": 10, "pdbx_ec": 10, "pdbx_fragment": 10, "pdbx_gene_src_scientific_nam": 10, "pdbx_keyword": 14, "pdbx_mutat": 10, "pdbx_number_of_molecul": 10, "pdbx_reference_molecul": 1, "pdbx_seq_one_letter_cod": 10, "pdbx_unique_axi": 10, "pdir": 14, "pdq2pqr": 9, "peopl": [2, 3, 7, 11], "peptid": 1, "per": 0, "perform": [2, 3, 4, 8, 10, 11, 12, 13, 14], "perhap": [2, 3], "period": 10, "perman": 12, "permiss": 9, "perr": 13, "pertain": 2, "ph": [3, 9], "phe": 2, "phenylalanyl": 8, "phenylbutyl": 8, "phosphat": [1, 12], "phosphatas": 12, "phrase": [2, 5, 14], "physet": 10, "pi": 9, "pickl": 9, "picklable_file_io": 9, "pictur": 0, "piec": [2, 6, 7, 13], "pl3": 1, "place": [0, 3, 4, 6, 8, 12, 13, 15], "placehold": 12, "plai": [0, 10], "plan": 1, "plate": 5, "pleas": [0, 1, 3, 5, 12, 13], "plf": 9, "plot": [3, 8, 11, 12, 15, 16], "plot_lignetwork": 9, "plt": [0, 13], "plu": [0, 16], "pm": 16, "png": [0, 2, 8], "pnpa": [12, 13], "pnpp": [12, 13], "pocket": 9, "point": [1, 4, 11, 12, 13], "polym": [1, 10], "polymer": 14, "polymer_composit": 14, "polymer_entity_count": 14, "polymer_entity_count_dna": 14, "polymer_entity_count_nucleic_acid": 14, "polymer_entity_count_nucleic_acid_hybrid": 14, "polymer_entity_count_protein": 14, "polymer_entity_count_rna": 14, "polymer_entity_taxonomy_count": 14, "polymer_molecular_weight_maximum": 14, "polymer_molecular_weight_minimum": 14, "polymer_monomer_count_maximum": 14, "polymer_monomer_count_minimum": 14, "popt": 13, "popul": [2, 12], "popular": [9, 15], "portabl": 2, "portion": [4, 11], "posit": 4, "possibl": [0, 1, 2, 5, 10, 12], "potassium": 1, "power": [4, 6, 8, 10, 12], "ppm": 3, "pqr": 9, "practic": [3, 11], "precis": [0, 4, 13], "predesign": 5, "predict": 13, "prefer": [0, 2, 3, 6], "prefix": 8, "prepar": [13, 16], "presenc": 12, "present": [3, 9, 10], "preserv": 3, "press": [11, 15], "pretti": 5, "prevent": 2, "previou": [0, 1, 2, 3, 6, 11, 13], "previous": [2, 5, 8, 9], "primari": [1, 8, 14], "principl": 12, "print": [0, 1, 2, 3, 4, 8, 10, 11, 12, 14], "pro": 2, "probabl": [6, 8, 13], "problem": [3, 8, 15], "proce": 8, "procedur": 15, "process": [1, 2, 3, 4, 9, 12, 13, 14, 16], "processing_multiple_files_and_writing_fil": [2, 8], "produc": [0, 1, 8, 12, 13], "program": [0, 4, 6, 8, 9, 11, 14, 15], "programmat": 3, "prolif": 9, "prolin": 8, "prolinamid": [1, 4, 8], "promin": 3, "propag": 9, "proper": 9, "properli": [1, 4, 9], "propion": 8, "protconc": 3, "proteas": 2, "protein": [0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14], "protein_": 9, "protein_2zq2": 9, "protein_assai": [0, 2, 3, 8], "protein_assay2": [0, 2, 8], "protein_atom_lin": 2, "protein_conc": 3, "protein_fil": [0, 2, 3], "protein_file2": 0, "protein_h": 9, "protein_mol": 9, "protein_sampl": [2, 3, 8], "protoporphyrin": 10, "provenance_sourc": 14, "provid": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13], "pubchem": [4, 7], "public": 0, "publish": 14, "pubm": 14, "pull": [0, 1, 2, 10], "pure": 1, "purpos": [1, 11, 15], "put": [2, 3, 9, 11], "py": 9, "pybel": 9, "pyplot": [12, 13], "pyridin": [4, 8], "python": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 16], "python3": 9, "q": 5, "q1": 1, "q2": 1, "q3": 1, "qualiti": [0, 13], "quaternion": 5, "queri": [10, 14], "query_id": 14, "question": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 16], "quickli": 5, "quiet": [10, 14], "quit": [5, 9], "quot": [0, 2, 3, 6, 8, 9, 13], "quotechar": 8, "r": [0, 1, 2, 3, 6, 9, 12, 13], "r_valu": [0, 3], "radian": 9, "rai": [2, 8, 9, 14], "rais": 9, "ran": 6, "random": 3, "rang": [0, 3, 13], "rate": 12, "rates_df": 13, "rather": [3, 8, 12, 13, 14], "raw": 12, "rawiobas": 8, "rb": 9, "rcsb": [1, 4, 9, 14], "rcsb_accession_info": 14, "rcsb_api": [2, 8], "rcsb_attribut": 1, "rcsb_ec_lineag": 1, "rcsb_entry_container_identifi": 14, "rcsb_entry_info": 14, "rcsb_id": 14, "rcsb_interface_info": 14, "rcsb_journal_abbrev": 1, "rcsb_polymer_ent": 1, "rcsb_primary_cit": [1, 14], "rcsbsearch": 14, "rcsbsearchapi": 1, "rdkit": [1, 4, 9], "re": [1, 2, 3, 4, 11, 15], "reaction": [1, 13], "read": [1, 3, 4, 8, 9, 11, 12, 13], "read_csv": [0, 3, 8, 12, 13], "read_handl": 9, "readabl": 9, "readfil": 9, "readi": [11, 15], "readlin": 6, "real": [2, 5, 6, 8], "realli": [1, 2, 9, 11, 14], "rearrang": 3, "reason": [5, 6, 9, 11], "recal": 6, "recast": [2, 11], "receiv": [13, 14], "recent": [0, 2, 4, 9, 11, 13, 14], "recogn": [4, 9], "recognit": [4, 10], "recommend": 15, "record": [9, 10], "red": [0, 13], "reduc": [6, 8], "reductas": 1, "refer": [3, 9, 13], "refin": [2, 14], "refine_hist": 14, "regex": 2, "region": 0, "regplot": 0, "regress": [0, 5, 8, 16], "regresson": 0, "regul": 10, "reinforc": 16, "rel": 13, "relat": [6, 8], "relationship": [3, 13], "releas": 14, "relev": 10, "reliabl": 0, "remark": 2, "rememb": [2, 3, 5, 6, 8, 11, 12, 13], "remind": [3, 5, 11, 12], "remov": [0, 2, 9], "removeallh": 9, "render": 5, "reopen": 2, "reorgan": 12, "repeat": [0, 1, 3], "repeatedli": 2, "repl": 4, "replac": [4, 5, 7, 9], "replacesubstruct": 4, "report": [0, 2, 3], "repositori": [1, 4], "repres": [0, 2, 3, 4, 5, 9, 10, 11, 12, 14], "represent": [5, 14], "repretoir": 0, "reproduc": 5, "request": [1, 9, 14], "request_opt": 14, "requir": [5, 6, 14], "res11u": 1, "res11u_mol2": 1, "res_count": 14, "res_lin": 6, "research": [2, 5, 15], "reserv": 3, "reset": [1, 9], "resid": 9, "residu": [9, 10, 14], "residue_neighbor": 14, "resist": 2, "resnam": [9, 14], "resolut": [0, 2, 6, 8, 9, 14], "resolution_combin": 14, "resolv": 9, "resourc": [0, 8, 12, 14], "respons": 1, "rest": [9, 11, 14], "result": [1, 2, 3, 5, 6, 13, 15], "result_set": 14, "result_typ": 14, "resultl": 1, "results_df": [0, 3], "results_set": 14, "retain": 8, "retrieve_pdb_fil": 14, "return": [1, 2, 4, 5, 8, 9, 10, 11, 13, 14], "return_typ": 14, "reus": 13, "reversibli": 10, "ribbon": 5, "right": [0, 4, 8, 12, 15], "rigor": 4, "ring": [4, 9], "rit": 2, "ritonavir": 2, "rm": 4, "rna": [9, 10], "robust": 13, "role": 10, "rotate_view": 9, "round": 13, "row": [3, 8, 12, 14], "rstrip": 2, "rt": 9, "run": [2, 3, 4, 5, 6, 9, 11], "run_from_iter": 9, "runner": [2, 7], "runtimeerror": 9, "ryyvlzvuvijvgh": 4, "s1": 4, "s_length": 11, "s_list": 11, "sai": [2, 7, 10, 11, 15], "same": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12], "sampl": 10, "samples_df": 3, "samples_fil": 3, "save": [0, 1, 2, 4, 6, 9, 10, 11, 12, 13, 14], "savefig": 0, "saw": [8, 12], "sc": [0, 3], "scatter": 12, "scenario": 9, "scene": 5, "schafer": [8, 12], "scicompforchemist": [3, 8, 12], "scienc": 3, "scientif": [3, 8, 10, 11, 12, 15], "scientific_name_1mbn": 10, "scipi": [0, 12, 13], "scope": 2, "score": 14, "screen": 11, "script": [2, 7, 8, 15, 16], "sd": 13, "sdf": [2, 4, 8, 9], "search": [1, 6, 7, 10, 13, 15], "searchabl": 1, "sec": [11, 12], "second": [0, 1, 2, 4, 6, 9, 12, 13, 15], "secondari": 5, "section": [2, 9, 10, 12, 14, 15], "see": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "seem": [8, 9, 11], "seen": [5, 6], "select": [5, 9, 11, 13, 15], "select_atom": 9, "selected_polymer_entity_typ": 14, "self": 9, "semi": 3, "send": 14, "sentenc": 6, "sep": [0, 2, 6, 8], "separ": [0, 2, 6, 8, 9, 10, 11], "seper": 2, "seqr": 2, "sequenc": [2, 10, 14], "sequence_1mbn": 10, "sequenti": 3, "seri": [2, 3, 6, 8, 12, 13], "serial": 9, "serin": 1, "servic": [1, 14], "session": 16, "set": [0, 1, 2, 3, 6, 8, 12, 13, 14, 16], "set_index": 12, "setprop": 4, "setup": [2, 6, 8, 11], "seven": 12, "sever": [1, 11], "sh": 9, "shape": 4, "share": [5, 6, 9], "sheet": [5, 8], "shift": 11, "short": [8, 9], "short_list": 11, "should": [0, 1, 2, 3, 4, 6, 9, 11, 12, 13, 15, 16], "show": [1, 6, 10, 11, 14], "show_mdanalysi": 9, "shown": [3, 5, 11, 15], "side": 15, "sign": [0, 11], "signal": 1, "signfic": 13, "similar": [0, 9, 14], "similarli": 11, "simpl": [0, 3, 5, 8, 10, 12], "simpler": 4, "simplest": [7, 13], "simpli": [0, 3, 5, 8, 12, 13], "simplifi": [4, 10], "simul": 9, "sinc": [6, 13], "singl": [0, 1, 3, 6, 8, 11, 12, 13], "site": [0, 1, 2, 3, 8, 12], "situat": [2, 3, 11], "six": 3, "size": [0, 1], "skill": [2, 3, 6], "skip": [9, 13], "skip_blank_lin": 8, "skipfoot": 8, "skipinitialspac": 8, "skiprow": 8, "slice1": 11, "slice2": 11, "slightli": [3, 10], "slope": [0, 3, 13], "slow": 6, "small": [1, 2, 4, 9, 10, 16], "smaller": 13, "smallmolvi": [2, 8], "smcra": 10, "smile": 4, "smooth_i": 13, "smooth_x": 13, "smoother": 13, "smush": 6, "sn": 0, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "softwar": [1, 4, 9, 13, 14], "solut": 1, "solvent": 10, "solvent_entity_count": 14, "some": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16], "someon": [6, 11], "someth": [0, 2, 11, 12, 13, 14], "sometim": [1, 2, 10, 11], "somewher": 11, "sophist": 0, "sort": [2, 14], "sort_bi": 14, "sort_valu": 8, "sourc": [1, 4, 10, 13], "sp": [0, 3], "space": [0, 2, 9, 13], "speci": 14, "special": [6, 8, 9, 10, 11, 12], "specif": [1, 2, 3, 4, 6, 8, 10], "specifi": [2, 6, 10, 11, 14], "sperm": 10, "spin": 9, "split": [2, 6], "split_filenam": 6, "spotlight": 15, "spreadsheet": [0, 6, 8, 12], "sqrt": 13, "squar": [0, 3, 11, 12, 13], "squeez": 8, "src_method": 10, "stabil": 10, "stack": 13, "stage": 13, "stand": [0, 2, 4, 8, 14], "standard": [0, 2, 3, 4, 12, 13, 14], "start": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14], "startswith": 9, "stat": [0, 3, 12, 13], "state": [2, 14], "statement": [1, 2, 3, 5, 6, 10, 13], "static": 0, "statist": [0, 3, 13], "statment": 6, "statologi": 0, "statu": [1, 14], "status_cod": [1, 9, 14], "std_err": [0, 3], "stdev": 13, "step": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14], "stereochemistri": 4, "stick": 5, "still": [3, 15], "stop": 16, "stopiter": 9, "storag": 14, "storage_opt": 8, "store": [1, 4, 14], "str": [2, 5, 6, 8, 9, 11], "straightforward": 3, "strand": 5, "strang": 8, "strategi": 9, "stream": 9, "string": [0, 1, 2, 3, 4, 5, 8, 11, 12], "strip": 9, "struct": 14, "struct_keyword": 14, "structur": [1, 2, 6, 7, 8, 10, 11, 12, 14], "structure_determination_methodologi": 14, "structure_determination_methodology_prior": 14, "student": 3, "studi": [1, 9], "stuff": 2, "style": [0, 5, 10], "subcategori": 10, "subconc": 13, "subhead": 11, "subimgs": 4, "subscript": [0, 13], "subset": [0, 1, 3, 4, 11], "substate_conc": 11, "substitut": [4, 5], "substrat": [8, 11, 12, 13], "substrate_conc": [8, 11], "substrate_concentr": 11, "substructur": 4, "subtrate_conc": 11, "success": [1, 14], "successfulli": 14, "suffici": 13, "suffix": 8, "suggest": 5, "suitabl": 0, "sulfat": 10, "super": 9, "superimpos": 5, "support": [0, 1, 4, 5], "sure": [1, 3, 4, 6, 9, 11, 12, 13, 15], "surfac": [5, 9], "survei": 3, "switch": 1, "sy": 9, "symbol": 13, "symmetri": 14, "syn": 10, "syntax": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "synthesi": 1, "system": [0, 1, 2, 3, 4, 6, 8, 9, 14, 15], "systemat": [1, 4], "t": [0, 2, 4, 5, 6, 8, 9, 10, 11, 15], "t20": 4, "tab": [6, 15], "tabl": [0, 1, 3, 8], "tabular": [8, 10], "tad": 1, "tag": 2, "tail": 8, "take": [0, 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 16], "taken": [0, 3, 4, 5, 9, 12], "target": [4, 8], "task": [2, 4, 6, 8, 10, 13], "tast": 8, "teach": [5, 15], "technic": 3, "tediou": 6, "tell": [1, 2, 3, 6, 8, 10, 11, 13, 14], "temp": 11, "temp_lin": 2, "temperatur": [2, 11], "templat": 9, "term": [2, 3, 6, 9, 10, 13], "termin": [9, 14], "test": [2, 3, 4, 6, 13], "tetrazol": 8, "texa": 3, "text": [0, 1, 2, 5, 6, 8, 9, 10, 14, 15], "textbook": [3, 5, 8, 12], "textiobas": 8, "textiopickl": 9, "textiowrapp": 8, "than": [1, 2, 3, 8, 10, 11, 12, 13, 14], "thei": [1, 2, 3, 4, 8, 9, 10, 11, 14], "them": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14], "therebi": 10, "therefor": [3, 6], "thermobifida": 14, "thermost": 14, "thi": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [2, 5, 6, 8, 9, 10, 11, 12, 14], "think": [0, 1, 2, 6, 8, 10, 11], "third": [0, 4, 5, 8], "those": [1, 3, 5, 6, 11, 12, 13], "though": [2, 5, 11, 13, 14], "thought": 2, "thousand": [8, 13], "thr": 2, "three": [1, 2, 4, 5, 8, 10, 12, 13], "thrombin": 8, "thrombin_df": 8, "thrombin_fil": 8, "thrombin_with_ligand": [2, 8], "through": [1, 2, 3, 5, 6, 10, 11, 12, 14], "thu": 2, "tight": 0, "time": [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16], "titl": [0, 1, 2, 14], "to_csv": 12, "togeth": [4, 6, 11], "token": 10, "told": 14, "tool": [0, 1, 3, 4, 8, 9, 10, 12, 13], "top": [1, 9, 11, 13, 14], "top_5_combin": 14, "topologi": 9, "topology_fil": 9, "topology_format": 9, "total": 1, "total_count": 14, "toward": 8, "traceback": [2, 4, 9, 11, 13], "track": [0, 3, 12], "train": 4, "trajectori": 9, "transcript": [5, 10], "transfer": [5, 8, 14], "transferas": 1, "transform": 9, "translocas": 1, "transpar": 5, "transport": 14, "tree": 1, "triangl": 13, "trick": 3, "trimethylpurin": 4, "tripo": 1, "troubleshoot": 6, "trp": 2, "true": [1, 8, 9, 10, 12, 14], "true_valu": 8, "truncat": 13, "try": [1, 2, 5, 6, 8, 9, 10, 11, 14], "trypsin": [1, 9], "tube": 3, "tupl": [4, 14], "turn": 15, "tutori": [2, 3, 4, 8, 9, 12], "twice": 9, "two": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "txt": [2, 6, 8], "type": [0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 15], "type_of_resourc": 14, "typeerror": [2, 13], "typic": [3, 13], "tyr": 2, "u": [1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14], "ubiquit": 11, "uhfffaoysa": 4, "unabl": 9, "unambigu": 4, "uncompress": 9, "undefin": 11, "under": [6, 10, 12, 15], "underscor": 10, "understand": [1, 4, 13, 14], "unintend": 11, "union": [1, 8], "uniprot": 10, "uniqu": [1, 4, 7, 8, 12, 14], "unit": [2, 3, 10, 11], "unitless": 3, "univers": 9, "unknown": 3, "unleash": 4, "unless": 14, "unlik": 13, "unsort": 8, "unsupport": 2, "until": 6, "untitl": 11, "unzip": 15, "up": [1, 2, 5, 6, 12, 13, 16], "updat": [14, 15], "upon": 9, "upper": [1, 11, 15], "url": [1, 9, 14], "us": [2, 5, 6, 7, 9, 11, 15], "usabl": 2, "usecol": 8, "user": [1, 2, 11], "userwarn": 9, "usr": 9, "usual": [6, 8, 9, 11, 14], "util": [4, 6, 9], "v": [4, 8, 11, 13], "v1": 14, "v2": 14, "v2000": 4, "v_": 13, "v_at_or_below_km": 11, "v_i": 13, "v_linear": 11, "v_nmols_per_min": 11, "val": [2, 14], "valid": [0, 3], "valu": [0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "value_to_return": [5, 13], "valueerror": 9, "van": 9, "vari": [10, 14], "variabl": [0, 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14], "variable_nam": 11, "variable_valu": 11, "variou": 10, "vaue": 8, "vdwradii": 9, "ve": [0, 14], "veloc": [8, 11, 13], "velocity_str": 11, "verbos": 8, "veri": [0, 2, 3, 4, 6, 11, 13], "versatil": 10, "version": [0, 4, 7, 13], "versu": 13, "vi": 13, "via": 1, "video": 4, "view": 4, "view_binding_sit": 9, "viewer": 5, "vina": 1, "viral": 10, "viru": 10, "visit": 4, "visual": [0, 4, 10, 15], "vlsegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlkteaemkasedlkkhgvtvltalgailkkkg": 10, "vmax": [8, 11, 13], "w": [1, 2, 4, 6, 9], "wa": [0, 1, 2, 3, 5, 6, 9, 10, 13, 14], "waal": 9, "wai": [2, 4, 5, 6, 7, 10, 13], "wait": 15, "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "warn": 9, "warn_bad_lin": 8, "watch": 4, "water": [1, 3, 10], "water_df": 3, "water_fil": 3, "we": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "web": 2, "webpag": 10, "websit": [4, 14], "weight": [1, 13], "weiss": [3, 8, 12], "well": [1, 3, 5, 9, 12, 13, 14, 15], "went": 3, "were": [0, 3, 5, 8, 14], "whale": 10, "what": [1, 2, 4, 6, 9, 10, 11, 13, 14, 16], "when": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "where": [0, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15], "wherea": 6, "whether": 3, "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "while": [2, 6, 7, 8, 12], "white": [0, 5, 13], "who": [6, 11, 12], "whole": [2, 6], "why": [0, 1, 2, 5, 6, 11], "wide": 10, "wildcard": 6, "window": [2, 5, 8, 15], "wirefram": 5, "wish": 4, "within": [0, 2, 3, 5, 6, 10, 11, 14], "without": [4, 6], "wkz": 1, "won": 2, "wonder": 6, "word": [2, 3, 6, 9, 10], "words1": 6, "words2": 6, "work": [1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16], "working_with_panda": [2, 8], "workshop": [4, 6, 8, 10, 11, 12, 14, 15], "workshop_schedul": [2, 8], "world": [4, 10], "would": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14], "wouldn": 5, "wrap": 9, "write": [1, 2, 3, 4, 8, 9, 11, 12, 16], "writer": 9, "written": [1, 6], "wrote": [0, 9], "www": 4, "x": [0, 2, 3, 5, 8, 9, 12, 13, 14], "xdata": [0, 3, 12, 13], "xlabel": [0, 12, 13], "xlsx": [2, 8, 12], "xxxx": 5, "xy": [0, 4, 13], "y": [0, 3, 5, 8, 9, 12, 13], "ydata": [0, 3, 12, 13], "year": 10, "yellow": 5, "yield": 9, "yl": 8, "ylabel": [0, 13], "ylamino": 8, "ylmethyl": 8, "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "your": [1, 3, 4, 5, 9, 10, 13, 14, 15, 16], "your_user_nam": 2, "yourself": [0, 3], "youtub": [4, 8, 12], "z": [4, 8, 9, 12], "z_pdb": 10, "zero": [2, 4, 11], "zinc": 14, "zip": [2, 8], "zoom": 9, "\u00e5ngstr\u00f6m": 14, "\u03b4a": 12}, "titles": ["Creating Plots in Jupyter Notebooks", "Enzyme Commission Class with Ligands", "File Parsing", "Linear Regression", "Modifying Ligands in Python", "Molecular Visualization with iCN3D", "Processing Multiple Files and Writing Files", "Viewing Small Molecules in iCN3D", "Working with Pandas", "Investigation the binding Site", "Analyzing MMCIF Files using Biopython", "Introduction", "Nonlinear Regression Part 1", "Nonlinear Regression Part 2", "Retrieving Information from the PDB using the Web API", "Set Up", "Workshop Schedule"], "titleterms": {"1": 12, "1d": [8, 12], "1et": 5, "2": 13, "2d": [4, 8, 12], "3d": [4, 8, 10, 12], "7": 1, "A": [2, 6, 11], "The": [1, 13], "about": [2, 6, 11], "absolut": 2, "access": 14, "ad": 5, "add": 3, "all": 1, "an": [5, 11], "anaconda": 15, "analysi": 10, "analyz": [10, 14], "answer": 2, "apart": 5, "api": 14, "appli": 5, "arrai": [8, 12], "assign": 11, "atp": 4, "base": 5, "behavior": 2, "bind": [4, 9], "biopython": [10, 14], "calcul": 12, "calibr": 3, "can": 1, "challeng": 10, "check": [0, 2, 6, 8, 11, 12], "choic": 11, "class": 1, "collect": 5, "column": 3, "command": 5, "commiss": 1, "common": 13, "concentr": 3, "contact": 9, "convert": 4, "creat": [0, 3, 5, 12, 13], "csv": 3, "curv": 3, "curve_fit": 13, "data": [3, 8, 11, 12, 13, 14], "datafram": [3, 8, 12], "datatyp": 12, "digit": 4, "do": [1, 4, 8, 12], "dock": 4, "download": [1, 9, 14], "elimin": 3, "enzym": 1, "equat": [3, 13], "error": 13, "exercis": [0, 1, 3, 5, 8, 11, 13], "exeris": 2, "express": 2, "extract": 13, "f": 13, "file": [1, 2, 6, 10, 14], "final": [2, 6], "find": [1, 8], "finger": 10, "fit": 13, "format": 6, "from": [5, 13, 14], "function": [2, 5, 13], "gener": 5, "get": 11, "glucos": 4, "go": 1, "hint": [2, 3, 6, 12], "home": [5, 13], "how": 1, "i": [4, 8, 12], "icn3d": [5, 7], "icn3dpi": 5, "id": 5, "import": [3, 6, 8, 12], "inform": [8, 14], "initi": 12, "inspect": 12, "instal": 15, "introduct": 11, "investig": 9, "iqb": 1, "jupyt": [0, 11, 15], "kei": [0, 2, 3, 6, 8], "known": 4, "lesson": 15, "librari": [1, 3, 5, 6, 8], "ligand": [1, 4, 9, 10], "line": 2, "linear": 3, "list": 11, "load": 5, "locat": 8, "logic": 11, "loop": [1, 6, 11], "make": [1, 9, 11], "mani": 11, "map": 9, "materi": 15, "matplotlib": 0, "measur": 10, "menten": 13, "micha": 13, "mmcif": 10, "modifi": 4, "modul": [2, 3], "molecul": [4, 7], "molecular": 5, "multipl": [6, 11], "need": 3, "neighbor": 10, "nest": 6, "nglview": 15, "nonlinear": [12, 13], "note": [2, 6, 11], "notebook": [0, 4, 11, 15], "number": 2, "o": 2, "obtain": 15, "onc": 11, "oper": 11, "option": 3, "output": 13, "outsid": 3, "overview": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "page": 5, "panda": [3, 8, 12], "pars": 2, "part": [12, 13], "particular": 2, "path": 2, "pattern": 2, "pdb": [5, 14], "plot": [0, 13], "point": [0, 2, 3, 6, 8], "power": 5, "prefer": 5, "prepar": [0, 9], "print": [6, 13], "process": 6, "programmat": 14, "project": 6, "properti": 10, "protein": 3, "pull": 5, "pyplot": 0, "python": [4, 5, 8, 15], "queri": 1, "question": 4, "read": [2, 6, 10], "readlin": 2, "regress": [3, 12, 13], "regular": 2, "rel": 2, "repeat": [10, 11], "represent": 4, "result": [4, 14], "retriev": 14, "review": 13, "sampl": 3, "scatter": 0, "schedul": 16, "scipi": 3, "seaborn": 0, "search": [2, 14], "select": 1, "set": [5, 11, 15], "site": 9, "slice": 11, "slope": 12, "small": 7, "smooth": 13, "solut": [0, 2, 3, 5, 6, 8, 11, 12, 13], "solv": 3, "sort": 8, "stage": 3, "start": [11, 15], "statement": 11, "string": [6, 13], "structur": [4, 5, 9], "take": [5, 13], "teas": 5, "thi": [3, 4], "thing": 4, "through": 15, "time": 11, "trypsin": 4, "type": 11, "understand": [0, 2, 6, 8, 11, 12], "up": [11, 15], "us": [0, 1, 3, 4, 8, 10, 12, 13, 14], "valu": 3, "variabl": 11, "veloc": 12, "view": [5, 7, 9], "visual": [5, 9], "we": [1, 8, 12], "web": [5, 14], "what": [8, 12], "where": 1, "why": [3, 8, 12], "work": [2, 8], "workshop": [1, 16], "write": 6, "you": 3, "your": [0, 2, 6, 8, 11, 12], "zinc": 10}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"1D arrays": [[8, "d-arrays"], [12, "d-arrays"]], "2D arrays": [[8, "id1"], [12, "id1"]], "3D arrays": [[8, "id2"], [12, "id2"]], "A final note about regular expressions": [[2, "a-final-note-about-regular-expressions"]], "A final note about string formatting": [[6, "a-final-note-about-string-formatting"]], "A note about jupyter notebooks": [[11, "a-note-about-jupyter-notebooks"]], "Absolute and relative paths": [[2, "absolute-and-relative-paths"]], "Add the column to the dataframe": [[3, "add-the-column-to-the-dataframe"]], "Adding commands to the icn3dpy.view function": [[5, "adding-commands-to-the-icn3dpy-view-function"]], "Analyzing MMCIF Files using Biopython": [[10, "analyzing-mmcif-files-using-biopython"]], "Answer": [[2, null], [2, null]], "Applying the power of python": [[5, "applying-the-power-of-python"]], "Assigning multiple variables at once": [[11, "assigning-multiple-variables-at-once"]], "Assigning variables and data types": [[11, "assigning-variables-and-data-types"]], "Calculate the Slopes": [[12, "calculate-the-slopes"]], "Calculate the initial velocity": [[12, "calculate-the-initial-velocity"]], "Calculating the initial velocity": [[12, "calculating-the-initial-velocity"]], "Challenge - Repeat analysis for a Zinc Finger": [[10, "challenge-repeat-analysis-for-a-zinc-finger"]], "Check Your Understanding": [[2, null], [2, null], [6, null]], "Check your Understanding": [[0, null], [2, null]], "Check your understanding": [[6, null], [8, null], [11, null], [12, null]], "Common errors": [[13, "common-errors"]], "Converting the 2D ligand structures to 3D structures for use in docking": [[4, "converting-the-2d-ligand-structures-to-3d-structures-for-use-in-docking"]], "Create the Equation": [[3, "create-the-equation"]], "Creating Functions": [[13, "creating-functions"]], "Creating Plots in Jupyter Notebooks": [[0, "creating-plots-in-jupyter-notebooks"]], "Creating functions based on preferred command sets generated from iCN3D web pages": [[5, "creating-functions-based-on-preferred-command-sets-generated-from-icn3d-web-pages"]], "Creating the pandas dataframe": [[12, "creating-the-pandas-dataframe"]], "Data Fitting": [[13, "data-fitting"]], "Data types": [[11, "data-types"]], "Datatype": [[12, "datatype"]], "Digital Representation of Molecules": [[4, "digital-representation-of-molecules"]], "Downloading all of the ligands using a for loop": [[1, "downloading-all-of-the-ligands-using-a-for-loop"]], "Downloading the Structure": [[9, "downloading-the-structure"]], "Eliminating values outside the calibration curve (optional)": [[3, "eliminating-values-outside-the-calibration-curve-optional"]], "Enzyme Commission Class with Ligands": [[1, "enzyme-commission-class-with-ligands"]], "Exercise": [[0, null], [1, "exercise"], [3, null], [5, null], [8, null], [11, null], [13, null], [13, null]], "Exerise on file parsing": [[2, null]], "Extracting the output from curve_fit": [[13, "extracting-the-output-from-curve-fit"]], "File Download using Biopython": [[14, "file-download-using-biopython"]], "File Parsing": [[2, "file-parsing"]], "Finding information in a dataframe": [[8, "finding-information-in-a-dataframe"]], "Finding the ligands": [[1, "finding-the-ligands"]], "Getting Started": [[11, "getting-started"]], "Hint": [[2, null], [3, null], [6, null], [12, null]], "How do we download the ligand files?": [[1, "how-do-we-download-the-ligand-files"]], "Importing data with pandas": [[3, "importing-data-with-pandas"]], "Importing libraries": [[6, "importing-libraries"]], "Importing python libraries": [[8, "importing-python-libraries"]], "Importing the Data": [[12, "importing-the-data"]], "Importing the data with pandas": [[8, "importing-the-data-with-pandas"]], "Inspect the data": [[12, "inspect-the-data"]], "Install nglview": [[15, "install-nglview"]], "Installing Python through Anaconda": [[15, "installing-python-through-anaconda"]], "Introduction": [[11, "introduction"]], "Investigation the binding Site": [[9, "investigation-the-binding-site"]], "Key Points": [[0, null], [2, null], [3, null], [6, null], [8, null]], "Libraries for the IQB workshop": [[1, "libraries-for-the-iqb-workshop"]], "Libraries you will need": [[3, "libraries-you-will-need"]], "Linear Regression": [[3, "linear-regression"]], "Linear Regression with SciPy": [[3, "linear-regression-with-scipy"]], "Lists": [[11, "lists"]], "Loading the iCN3D library": [[5, "loading-the-icn3d-library"]], "Locating the data": [[8, "locating-the-data"]], "Making a Map of Ligand Contacts": [[9, "making-a-map-of-ligand-contacts"]], "Making choices: Logic Statements": [[11, "making-choices-logic-statements"]], "Making queries": [[1, "making-queries"]], "Measuring 3D Properties - Ligand Neighbors": [[10, "measuring-3d-properties-ligand-neighbors"]], "Modifying Ligands in Python": [[4, "modifying-ligands-in-python"]], "Modifying a ligand that is known to bind to trypsin": [[4, "modifying-a-ligand-that-is-known-to-bind-to-trypsin"]], "Modifying the ligand molecule": [[4, "modifying-the-ligand-molecule"]], "Molecular Visualization with iCN3D": [[5, "molecular-visualization-with-icn3d"]], "Nonlinear Regression Part 1": [[12, "nonlinear-regression-part-1"]], "Nonlinear Regression Part 2": [[13, "nonlinear-regression-part-2"]], "Obtain lesson materials": [[15, "obtain-lesson-materials"]], "Overview": [[0, null], [1, null], [2, null], [3, null], [5, null], [6, null], [8, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "PDB Data API": [[14, "pdb-data-api"]], "PDB Search API": [[14, "pdb-search-api"]], "Plotting the data": [[13, "plotting-the-data"]], "Preparing to Plot": [[0, "preparing-to-plot"]], "Printing to a File": [[6, "printing-to-a-file"]], "Processing Multiple Files and Writing Files": [[6, "processing-multiple-files-and-writing-files"]], "Processing multiple files": [[6, "processing-multiple-files"]], "Programmatic Access of APIs": [[14, "programmatic-access-of-apis"]], "Project": [[6, null]], "Pulling collections of commands from an iCN3D web page": [[5, "pulling-collections-of-commands-from-an-icn3d-web-page"]], "Questions": [[4, "questions"]], "Reading MMCIF Files": [[10, "reading-mmcif-files"]], "Reading a file": [[2, "reading-a-file"]], "Reading multiple files with nested for loops": [[6, "reading-multiple-files-with-nested-for-loops"]], "Repeating an operation many times: for loops": [[11, "repeating-an-operation-many-times-for-loops"]], "Results for Glucose and ATP": [[4, "results-for-glucose-and-atp"]], "Retrieving Information from the PDB using the Web API": [[14, "retrieving-information-from-the-pdb-using-the-web-api"]], "Review of f string printing": [[13, "review-of-f-string-printing"]], "Scatter Plots with Seaborn": [[0, "scatter-plots-with-seaborn"]], "Searching for a particular line number in your file": [[2, "searching-for-a-particular-line-number-in-your-file"]], "Searching for a pattern in your file": [[2, "searching-for-a-pattern-in-your-file"]], "Selected ligands": [[1, "selected-ligands"]], "Set Up": [[15, "set-up"]], "Setting up your Jupyter notebooks": [[11, "setting-up-your-jupyter-notebooks"]], "Slices": [[11, "slices"]], "Smoothing the plot": [[13, "smoothing-the-plot"]], "Solution": [[0, null], [0, null], [2, null], [2, null], [3, null], [5, null], [6, null], [6, null], [6, null], [8, null], [8, null], [11, null], [11, null], [12, null], [13, null], [13, null], [13, null]], "Solving for protein concentrations in samples": [[3, "solving-for-protein-concentrations-in-samples"]], "Sorting data with pandas": [[8, "sorting-data-with-pandas"]], "Stages of this module": [[3, "stages-of-this-module"]], "Start a Jupyter notebook": [[15, "start-a-jupyter-notebook"]], "Structure Preparation": [[9, "structure-preparation"]], "Take Home Exercise": [[5, "take-home-exercise"], [13, null]], "Teasing apart the command set from the iCN3D page for PDB ID 1ETS": [[5, "teasing-apart-the-command-set-from-the-icn3d-page-for-pdb-id-1ets"]], "The 7 Enzyme Classes": [[1, "the-7-enzyme-classes"]], "The Michaelis-Menten equation": [[13, "the-michaelis-menten-equation"]], "Things to Do for this Notebook": [[4, "things-to-do-for-this-notebook"]], "Use pandas to import the csv data into a dataframe": [[3, "use-pandas-to-import-the-csv-data-into-a-dataframe"]], "Using Biopython to Analyze Search Results": [[14, "using-biopython-to-analyze-search-results"]], "Using Matplotlib.pyplot": [[0, "using-matplotlib-pyplot"]], "Using curve_fit": [[13, "using-curve-fit"]], "View the structure": [[9, "view-the-structure"]], "Viewing Small Molecules in iCN3D": [[7, "viewing-small-molecules-in-icn3d"]], "Viewing a PDB structure": [[5, "viewing-a-pdb-structure"]], "Visualizing the Binding Site": [[9, "visualizing-the-binding-site"]], "What is pandas and why do we use it?": [[8, "what-is-pandas-and-why-do-we-use-it"], [12, "what-is-pandas-and-why-do-we-use-it"]], "Where can we go to download the ligand files?": [[1, "where-can-we-go-to-download-the-ligand-files"]], "Why Linear Regression?": [[3, "why-linear-regression"]], "Working with Pandas": [[8, "working-with-pandas"]], "Working with file paths - the os.path module": [[2, "working-with-file-paths-the-os-path-module"]], "Working with files": [[2, "working-with-files"]], "Workshop Schedule": [[16, "workshop-schedule"]], "iCN3D and Molecular Visualization": [[5, "icn3d-and-molecular-visualization"]], "readlines function behavior": [[2, "readlines-function-behavior"]]}, "docnames": ["chapters/Creating_Plots_in_Jupyter_Notebooks", "chapters/EC_class_ligands_search", "chapters/File_Parsing", "chapters/Linear_Regression", "chapters/Modifying_Ligands_with_rdkit", "chapters/MolVis_with_iCN3D", "chapters/Processing_Multiple_Files_and_Writing_Files", "chapters/SmallMolVis", "chapters/Working_with_Pandas", "chapters/binding_site_investigation", "chapters/biopython_mmcif", "chapters/introduction", "chapters/nonlinear_regression_part_1", "chapters/nonlinear_regression_part_2", "chapters/rcsb_api", "chapters/setup", "chapters/workshop_schedule"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["chapters/Creating_Plots_in_Jupyter_Notebooks.ipynb", "chapters/EC_class_ligands_search.ipynb", "chapters/File_Parsing.ipynb", "chapters/Linear_Regression.ipynb", "chapters/Modifying_Ligands_with_rdkit.ipynb", "chapters/MolVis_with_iCN3D.ipynb", "chapters/Processing_Multiple_Files_and_Writing_Files.ipynb", "chapters/SmallMolVis.ipynb", "chapters/Working_with_Pandas.ipynb", "chapters/binding_site_investigation.ipynb", "chapters/biopython_mmcif.ipynb", "chapters/introduction.ipynb", "chapters/nonlinear_regression_part_1.ipynb", "chapters/nonlinear_regression_part_2.ipynb", "chapters/rcsb_api.ipynb", "chapters/setup.ipynb", "chapters/workshop_schedule.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "0": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "00": [10, 12, 13, 16], "000": [2, 5], "0000": [1, 4], "000000": 13, "0004": 4, "0014948066523110296": 3, "0020": 4, "0030521595419827677": 3, "0040": 1, "0044": 4, "0046": 4, "0050": 1, "0056": 4, "005635": 12, "0060": 1, "007": 10, "0072": 4, "0078": 4, "0083": 4, "01": 2, "010": 3, "0101": 4, "0104": 4, "011162": 12, "0124": 4, "0129": 4, "013": 3, "015": 12, "0165": 4, "016580": 12, "0170": [1, 4], "0171": 4, "0173": 4, "0179": 4, "01832": 12, "0190": 1, "0193": 4, "019578": 12, "01_molecule_represent": 4, "0200": 1, "020353": 12, "0210": 4, "0216": 4, "0217": 4, "022": 1, "022319": [12, 13], "022319351245112782": 12, "022757": 12, "0228": 4, "0240": 1, "0244": 4, "0250": 1, "0254": 4, "0259": 4, "0270": [1, 4], "027092": 12, "0280": [1, 4], "0283": 4, "0296": 4, "0300": 1, "0301": 4, "030884027089284245": [0, 3], "0310": 4, "0312": 4, "0326": 4, "0337": 4, "034661": 12, "0353": 4, "0356": 4, "0365": 4, "0369": 4, "0376": 4, "040318": 12, "0410": 1, "0434": 4, "0437": 4, "0447": 4, "0460": 4, "0461": 4, "0462": 4, "0463": 4, "0464": 4, "0466": 4, "046964": 3, "0480": 1, "0483": 4, "0484": 4, "0494": 4, "04948248037131796": 3, "0497": 4, "05": [0, 3, 6, 12, 13], "0501": 4, "0508": 4, "0513": 4, "051681": 12, "0520": 1, "0525": 4, "05263157894737": 11, "0533": 4, "0540": 4, "0543": 4, "0544": 4, "0556": 4, "0560": 1, "056988": 12, "0570": 4, "0574": 4, "0575": 4, "0590717448341336e": [0, 3], "0596": 4, "059896": 12, "0610": 1, "0622": 4, "062613": 12, "0629": 4, "0630": 1, "0633": 4, "0646": 4, "065213": 3, "0661": 4, "0680": 1, "068643": 12, "0690": 1, "0692": 4, "0694": 4, "0695": 4, "0715": 4, "0720": 1, "073658": 12, "0739": 4, "075985": 12, "076442": [12, 13], "07644213958496243": 12, "0767": 4, "0773": 4, "07806979615939849": 12, "078070": [12, 13], "0800": 1, "08042268476177239": 13, "0808": 4, "0814": 4, "0820": 1, "0822": 4, "0852": 4, "0860": 1, "0863": 4, "0869": 4, "0878": 4, "088": 9, "088046": 12, "0887": 4, "0896": 4, "09": 14, "090909": 13, "0932": 4, "0954": 4, "096143": [12, 13], "096204": [12, 13], "0963": 4, "0968": 4, "0970": 4, "097595134597833": 3, "099827": 12, "0999": 4, "099906": 12, "0ca": 1, "0cb": 1, "0kv": 1, "0x7f99809963e0": 8, "0x7faf90849450": 13, "0x7faff0484370": 13, "0x7fb0005728e0": 13, "0x7fd36c6d74d0": 5, "0x7fd36c6e79d0": 5, "0x7fd36c6f0e90": 5, "0x7fd36c6f4c50": 5, "0x7fd36c6fd910": 5, "0x7fd36c700bd0": 5, "0x7fd36c703cd0": 5, "0x7fd36c706110": 5, "0x7fd36c8a8e10": 5, "0x7fe8181dcbd0": 0, "0x7fe8181e9510": 0, "0zg": 1, "0zw": 1, "0zx": 1, "0zy": 1, "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 16], "10": [0, 1, 4, 5, 8, 11, 12, 13, 14], "100": [3, 6, 11, 13], "1000": [6, 11, 13], "100000": [9, 11], "100796": 12, "100k": 9, "101": 10, "1029058355571": 4, "103351": 12, "1040": 4, "104366": 12, "106": 10, "1060": 4, "108": 9, "1080": 1, "1086": 4, "1088": 4, "109": 9, "1095": 4, "1099": 4, "10u": 1, "11": [1, 4, 6, 9, 11, 12, 14], "110": 9, "111": 9, "1114": 4, "112": [1, 9], "1120": 1, "1129": 4, "113": 9, "1130": 4, "114": 9, "1140": 4, "1147": 4, "115": 9, "1152673937227531": 3, "1153": [4, 9], "116": 9, "117": 9, "118": [0, 3, 9], "119": 9, "1193": 4, "1194": 4, "11u": 1, "11u_id": 1, "12": [1, 2, 4, 9, 11, 13, 16], "120": 9, "1200": 4, "1202": 4, "1203": 4, "121": 9, "121434": 12, "1216": 4, "122": 9, "1220": 1, "1221": 4, "122747": 12, "123": 9, "1230": 4, "123059": 12, "1233": 9, "1245": 4, "1253": 4, "1270": 1, "127118": 12, "1277": 4, "12786666666666657": [0, 3], "1279": [0, 9], "12u": 1, "13": [1, 4, 6, 9, 11, 12, 13], "1321": 4, "134567": 12, "135": 9, "136": 9, "136443": [12, 13], "1364430576421053": 12, "137": 9, "1373": 4, "138": 9, "139": 9, "13u": [1, 4, 9], "13u_id": 9, "14": [1, 2, 4, 6, 8, 10, 11], "141": 14, "1420": 4, "142857142857146": 11, "1430": 1, "1435": 4, "1438": 4, "144": 9, "1442": 4, "1446": 4, "146": 14, "147": 9, "1471": 4, "147517": 12, "148": 9, "1490": 1, "1495": 4, "1496": 4, "15": [0, 1, 4, 11, 12, 14], "150": 10, "1507": 4, "1514": [2, 9], "1522": 4, "1533": 4, "154": 10, "1542": 4, "1544": 4, "1546": 4, "155": 10, "1570": 4, "1590": 1, "1596": 4, "16": [1, 4, 11, 12, 13], "1600": 1, "1604": 4, "1620": 1, "1621": 4, "1650": 4, "1661": 4, "1673": 9, "1674": 9, "1675": 9, "1677": 4, "16h2": 4, "17": [1, 4, 10, 11], "1712": 4, "1720": 4, "1723": 4, "17234": 10, "173": 1, "1733": 4, "173306": 12, "1737": 4, "1749": 4, "1751": 4, "1752": 9, "1755": 9, "1759": 4, "176471": 13, "1765": 9, "1766": 4, "1770": 1, "1776": 4, "177801": 12, "1787": 4, "1796": 4, "18": [1, 4, 9, 12], "180": [1, 9], "1800": 1, "1807": 4, "1810": 1, "1826": 4, "183": 3, "1840": 1, "1842": 4, "1843": 4, "186": 9, "1874": 4, "1899": 4, "19": [1, 4], "1908": 4, "1914": 4, "1924": 4, "1925": 4, "1926322406324839": 13, "1932": 4, "193419": 12, "194682": 12, "1952": 4, "1960": 1, "1969": 4, "1970": 1, "1988": 4, "1990": 1, "1993": 4, "1a0j": 5, "1a1t": [2, 10], "1a6n": 2, "1aq7": 1, "1auj": 1, "1az8": 1, "1bjv": 1, "1btw": 1, "1btx": 1, "1btz": 1, "1c1": 1, "1c1t": 1, "1c2d": 1, "1d66": 5, "1ddo": [2, 6], "1h": 8, "1jp6": 14, "1jp8": 14, "1mba": 14, "1mbc": 14, "1mbd": 14, "1mbi": 14, "1mbn": [2, 10, 14], "1mbo": [5, 14], "1mlf": 14, "1mlg": 14, "1mlh": 14, "1mlj": 14, "1mlk": 14, "1mll": 14, "1mlm": 14, "1myg": 14, "1myh": 14, "1myi": 14, "1myj": 14, "1pmb": [2, 14], "1uvi": 14, "1uvt": 8, "1uvu": 8, "1uvx": 14, "1ux8": 14, "1yca": 14, "1ycb": 14, "2": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16], "20": [1, 4, 6, 8, 9, 11, 12, 13, 16], "200": [1, 8, 9, 14], "2004": 4, "2026": 4, "20284295232781954": 12, "202843": [12, 13], "203": 9, "2030": 1, "2031": 4, "2035": 4, "204": 9, "204653": [12, 13], "2047": 4, "2048": 4, "205": 9, "2050": 1, "2051": 4, "2055": 4, "206": 9, "207": 9, "208": 9, "2080": 1, "2081": 4, "2086": 11, "209": 9, "21": [1, 4, 10, 11], "210": 9, "2100": 4, "210920": 12, "2117": 4, "212": 9, "2120": [1, 4], "2123": 4, "2129": 4, "213": 9, "2130": 1, "2157": 4, "216": 9, "2160": 1, "2163": 4, "2172": 4, "2178": 4, "2182": 4, "2199": 4, "22": [1, 4, 9, 12, 13], "2207": 4, "221": 14, "2217": 9, "2219": 4, "2232": 2, "2238": 4, "2246": 4, "2249": 4, "2254": 4, "2260": 4, "2270": 1, "2272": 4, "2275": 4, "2286": 4, "2296": 4, "23": [1, 4], "2308": 4, "231": 7, "2315": 4, "2319": 4, "2329": 4, "2336": 4, "2339": 4, "2354": 9, "2369": 4, "238": 9, "238095": 13, "2387": 4, "239086": 12, "24": [1, 4, 9], "2400": 1, "2403": 4, "2411": 4, "2419": 4, "2430": 9, "2449": 4, "245": 9, "246": 9, "2460": 1, "246186": 12, "24625953559097755": 12, "246260": [12, 13], "2469": 4, "247": 9, "2478": 4, "248": 9, "249": 9, "25": [0, 1, 4, 8, 10, 11, 12], "2526": 4, "2545": 4, "2547": 4, "2550": 1, "2561": 4, "2569": 4, "2573": 4, "257587": 12, "257892": 12, "2583": 9, "258405": 12, "2585": 4, "2593": 4, "26": [1, 4], "2602": 4, "2605": 4, "2619": 4, "2654": 9, "2659": 4, "2661": 4, "2690": 1, "2696": 4, "269802": 12, "26h": 4, "27": [1, 4, 8, 12, 13], "2700": 4, "2725": 4, "272718": [12, 13], "2739": 4, "274": 9, "2747": 4, "275": 9, "2757": 4, "276": 9, "2760": 4, "2763": 4, "277": 9, "2775": 4, "2776": 4, "2779": 4, "278": 9, "2780": 1, "2782": 4, "2790": 4, "2796": 4, "28": [1, 4, 10, 11, 13], "2800": 1, "2809": 4, "281": 9, "282": 9, "283": 9, "2836": 4, "285": [0, 3], "2867": 4, "2873": 4, "2876": 4, "29": [1, 4], "2910": 1, "2957": 4, "298": 2, "2980": 1, "2990": 1, "2996": 4, "29cee744f9a9": 14, "2awc": 14, "2bmm": 14, "2c": 4, "2c8y": 8, "2c8z": 8, "2c90": 8, "2cccn2c": 4, "2d": [9, 13], "2eb8": 14, "2ef2": 14, "2f": 13, "2fal": 14, "2fam": 14, "2mb5": 14, "2mga": 14, "2mgb": 14, "2mgc": 14, "2mgd": 14, "2mge": 14, "2mgf": 14, "2mgg": 14, "2mgh": 14, "2mgi": 14, "2mgj": 14, "2mgk": 14, "2mgl": 14, "2mgm": 14, "2mya": 14, "2myb": 14, "2myc": 14, "2myd": 14, "2mye": 14, "2nd": 4, "2pkr": [2, 6], "2r": 8, "2spl": 14, "2spm": 14, "2spn": 14, "2spo": 14, "2znk": 8, "2zq2": 9, "3": [1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16], "30": [1, 4, 8, 10, 11, 16], "300": 1, "3000": 4, "3010": 1, "3039": 4, "3047": 4, "3049": 4, "3057": 4, "3064": 4, "3084": 4, "3090": 1, "309966": 12, "31": [1, 4, 12, 13], "310": 2, "311": 2, "3110": [1, 4], "312": 2, "313": 2, "313216": 12, "314": 2, "3142": 4, "315": 2, "316": 9, "31637950083089": 4, "3169": 4, "317": 9, "318": 9, "3186": 4, "319": 9, "31u": 8, "32": [1, 4], "320": [9, 12], "3206": 4, "3220": 1, "3232": 4, "3247": 4, "3250": 1, "3253": 4, "3254": 4, "3268": 4, "3283": 4, "3287": 4, "3295": 4, "33": [1, 4, 12, 13], "3314": 4, "3318": 4, "3331": 4, "33333333333333": 11, "3342": 4, "3345": 4, "3360": 1, "3367": 4, "3372": 4, "3373": 4, "3380": 4, "3393": 4, "3399": 4, "34": [1, 4, 10, 11, 12, 13], "340": 3, "3400": [1, 4], "3420": [1, 4], "34244478125714295": 12, "342445": [12, 13], "3427": 4, "3428": 4, "3440": 1, "3447": 4, "3456": 4, "3462": 4, "3485": 4, "3488": 4, "3495": 4, "35": [1, 4], "3515": 4, "352183": 12, "3524": 4, "353": 9, "3530": 1, "354": 9, "355": 9, "356": 9, "357": 9, "358": 9, "3590": 1, "36": [1, 4, 13], "360": 9, "3600": 1, "3603": 4, "3604": 4, "3609": 4, "361": 9, "3617": 4, "362310": [12, 13], "3626": 4, "3630": 4, "3632": 4, "364301": 12, "3668": 4, "3683": 4, "3691": 4, "369177": 12, "3692": 4, "37": [1, 4], "3704": 4, "3710": 1, "3717": 4, "3732": 4, "373572": 12, "3740": 1, "3744": 4, "3754": 4, "3763": 4, "3764": 4, "3772": 4, "3783": 4, "3795": 4, "38": [1, 4, 9], "3825": 4, "3829": 4, "3837": 4, "3851": 4, "3889": 4, "3891": 4, "39": [1, 4, 9], "3900": 1, "3910": 1, "3914": 4, "396": 9, "397": 9, "3976": 4, "398": 9, "3980": 1, "3982": 4, "3989": 4, "399": 9, "3d": [2, 7, 9], "3f": 13, "3h3": 4, "3iva": [2, 6], "3mba": 14, "3p17": 8, "3shc": 8, "3si3": 8, "3si4": 8, "3sv2": 8, "3vnd": [2, 6], "4": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "40": [1, 4, 11, 13], "400": [1, 4, 9], "400747": 12, "4008": 4, "4020": 1, "4024": 4, "4030": 1, "404": 14, "4040": 1, "405": 12, "4050": 1, "4053": 4, "4062": 4, "4070": [1, 4], "4072": 4, "4076": 4, "41": [1, 4, 13], "4120": 4, "4130": 1, "4139": 4, "417021": [12, 13], "4170212341052633": 12, "4173": 4, "417302": [12, 13], "4179": 4, "4195": 4, "42": [1, 4], "4204": 14, "4205": 4, "4213": 4, "4220": 1, "4236": 4, "4244": 4, "4265": 4, "4283": [4, 9], "43": [1, 4, 8], "432": 9, "433": 9, "4337": 4, "433750": 3, "434": 9, "4345": 4, "435": 9, "4350": 1, "436": 9, "4361": 4, "437": 9, "4370": 1, "438": 9, "439": 9, "4390": 1, "4394": 4, "4395": 4, "44": [1, 4, 14], "440": 9, "4401": 4, "441": 9, "4413": 4, "442": 9, "443": 9, "444503": 12, "4453": 4, "4455": 4, "4481": 4, "4482": 4, "4487": 4, "45": [1, 4], "4528": 4, "4529": 4, "4535": 4, "4580": 1, "4590": 1, "4594": 4, "46": [1, 4, 9], "4605": 4, "4630": 1, "4637": 4, "4641": 4, "4657": 4, "4678": 4, "468796": 12, "4690": 1, "47": [1, 4], "4704346427639096": 12, "470435": [12, 13], "4708": 4, "4718": 4, "4743": 4, "4779": [4, 14], "4782": 4, "4793": 9, "48": [1, 4], "4804": 4, "4810": 1, "4820": [1, 4], "4840": 4, "4846": 4, "485": 3, "4852": 4, "4855": 4, "4857": 4, "4860": 4, "487": 10, "487957": [12, 13], "4888": 4, "49": [1, 4], "490": 4, "4921": 4, "4928": 4, "4936": 4, "4945": 4, "4949": 4, "4958": 4, "4976": 4, "4980": 1, "499": 9, "4990": 1, "4991": 4, "4a0becaa": 14, "4eyr": [2, 6], "4f": [0, 13], "4f68": 14, "4hhb": [5, 10, 14], "4mba": 14, "4mbn": 14, "5": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15], "50": [1, 4, 8, 11, 12, 13, 14], "500": [9, 10], "500000": 13, "500455": 12, "500934": 12, "501": 9, "502": 9, "5020": 1, "5022": 4, "503": 9, "503140": [12, 13], "5031401632390977": 12, "504": 9, "5040": 1, "5043": 4, "5048": 4, "5051": 4, "5073": 4, "5090": 1, "5098": 4, "51": [1, 4], "5104": 4, "5113": 4, "5139": 4, "5140907641142858": 12, "514091": [12, 13], "5165": 4, "5172": 4, "518850": 12, "5191": 4, "52": [1, 4], "5204": 4, "5206": 4, "5211": 4, "522863": [12, 13], "5247": 4, "5260": 1, "5267": 4, "5269": 4, "5281": 4, "5287": 4, "5289": 4, "53": [1, 4, 10], "5310": 1, "5314": 4, "5317": 4, "5322": 4, "5328": 4, "5350": 1, "5354": 4, "5360": 4, "5394": 9, "54": [1, 4], "5420": 1, "542678": [12, 13], "5442": 4, "5453": 4, "5456": 4, "5462": 4, "5469": 4, "5475": 4, "5482": 4, "55": [1, 4, 6, 8], "5507": 4, "5515": 4, "5518": 4, "5534": 4, "5540": 4, "5549": 4, "5559": 4, "556695": 12, "5569": 4, "5590": 1, "56": [1, 4], "5610": 4, "5620": 1, "5623": 4, "5635": 4, "5664": 4, "5683": 4, "5686": 4, "5688": 4, "57": [1, 4, 11], "5706": 4, "5709": 4, "571": 14, "571428571428573": 11, "571429": 13, "5730": 1, "574": 14, "5753": 4, "5770": [1, 4], "5778": 4, "5788": 4, "5793": 4, "5797": 4, "58": [1, 4], "5801": 4, "5805": 4, "5811": 4, "5818": 4, "5819": 4, "5863": 4, "5881": 4, "5890": 1, "5892": 4, "5898": 4, "59": [1, 4], "590": 10, "5903": 4, "5919": 4, "59439795024717": 4, "595": [0, 3, 13], "5964": 4, "5968": 4, "5990": 4, "5eu9": [2, 6], "5mba": 14, "5mbn": 14, "5rsa": 2, "5veu": [2, 6], "6": [0, 1, 2, 3, 4, 6, 8, 11, 12, 13, 14, 15], "60": [1, 4, 11], "600": [0, 1], "6000": 1, "6009": 4, "6032": 4, "6055": 4, "6065": 4, "6070": 1, "6095": 4, "61": [1, 4, 9], "6103": 4, "6107": 4, "6110": 1, "6119": 4, "6123": 4, "6133": 4, "613302": 12, "6143": 4, "6145": 4, "6152": 4, "6155": 4, "616": 10, "616135": 12, "6162": 4, "6163": 4, "6170": 4, "6171": 4, "6181": 4, "619": 14, "6193": 4, "6199": 4, "62": [4, 14], "621": 3, "6228": 4, "6230": 1, "6241": 4, "62520287388557": 4, "6256": 4, "6259": 4, "6288": 4, "63": [4, 10], "6300": 1, "6309": 4, "6310": [1, 4], "6329": 4, "6330": 1, "6335": 4, "6336": 4, "6380": 4, "64": [4, 10, 14], "6404": 4, "6417": 4, "6420": 1, "6433": 4, "6440": 1, "644208": 7, "6443": 4, "6464": 4, "6465": 4, "6490": 4, "6494": 4, "65": 4, "6509": 4, "6510": 1, "6538": 4, "6554": 4, "655447": 3, "6555": 4, "65734834390893": 13, "6590": 4, "6592": 4, "66": [11, 13], "6601": 4, "6635": 4, "6636": 4, "6642": 4, "6654": 4, "6660": 1, "666666666666668": 11, "66666666666667": 11, "666667": 13, "6670": 4, "668": 14, "6681": 4, "6690": 1, "67": [4, 13], "6716": 4, "6719": 4, "672": 9, "6736": 4, "6745": 4, "6749595215280199": 13, "6750": 1, "6751": 4, "6770": 1, "6780": 1, "6814": 4, "6818": 4, "682": 3, "6837": 4, "6850": [1, 4], "6852": 4, "6867": 4, "6884": 4, "6890": 1, "6898": 4, "6924": 4, "6930": 1, "6945": 4, "6948": 4, "6963": 4, "6975": 4, "6977": 4, "6989": 4, "6992": 4, "6999": 4, "6zt7": [2, 6], "7": [4, 6, 8, 9, 11, 12, 13, 15], "70": 13, "700": [1, 10], "7032": 4, "7072": 4, "7091": 4, "7104": 4, "7110": 4, "7125": 4, "7130": 1, "7148": 4, "7157": 4, "7169": 4, "7172": 4, "7191": 4, "7219": 4, "7223": 4, "7251": 4, "7256": 4, "7266": 4, "7270": 1, "7284": 4, "7301": 4, "7307": 4, "7317": 4, "7354": 4, "7358": 4, "7380": 1, "7384": 4, "7387": 4, "7390": [1, 4], "7393": 4, "7397": 4, "74": 14, "7422": 4, "746525": 3, "7484": 4, "75": [11, 12], "7518": 4, "7520": 4, "7527": 4, "7548": 4, "7560": 1, "7571": 4, "7574": 4, "7583": 4, "759": 3, "76": 11, "7605": 4, "7613": 4, "761905": 13, "7626": 4, "764705882352942": 11, "7660": 4, "769": 2, "7698": 4, "7725": 4, "773205021308": 14, "7733": 4, "7750": 1, "7751": 4, "7780": [1, 4], "7790": 1, "7796": 4, "7799": 4, "78": 9, "7800": 1, "7810": 1, "7814": 4, "78260869565217": 11, "7833": 4, "7850": 1, "7852": 4, "7857": 4, "7860": 1, "7865": 4, "7891": 4, "7897": 4, "7911": 4, "7914": 4, "7925": 4, "7930": 1, "7932": 4, "7937": 4, "7955": 4, "7970": 1, "799": 3, "7dd": 14, "7tim": [2, 6], "8": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "80": [8, 9, 13], "800": [1, 10], "8008": 4, "8013": 4, "801416": [12, 13], "8020": 1, "8041": 4, "8050": 4, "8088": 4, "8099": 4, "81": 9, "8114": 4, "8129": 4, "8133": 4, "8142": 4, "8143": 4, "82": 9, "8216": 4, "8220": 4, "8233": 4, "8240": 1, "8244": 4, "8249": 4, "8251": 4, "8252": 4, "8260": 4, "8268": 4, "8270": [1, 4], "8274": 4, "829652": [12, 13], "83": [9, 10, 11], "8300": 4, "8319": 4, "8320": 1, "8326": 4, "8350": 1, "8353": 4, "8357": 4, "8360": 1, "8367": 4, "8371": 4, "8390": 1, "8394": 4, "840": 9, "8418": 4, "8426": 4, "8454": [0, 4], "8454285714285716": [0, 3], "847": 14, "8479": 4, "8482": 4, "8493": 4, "85": 6, "8506": 4, "8520": 4, "8565": 4, "8599": 4, "86": 11, "8627": 4, "8640": 1, "8643": 4, "8649": 4, "8652": 4, "8688": 4, "8690": 1, "87": 13, "8711": 4, "8720": 1, "8736": 4, "8738": 4, "8767": 4, "8770": 4, "8798": 4, "8816": 4, "8840": 1, "88494688682022": 4, "8860": 4, "8864": 4, "8880": 1, "8885": 4, "8888": 4, "8892": 4, "8894": 4, "89": 14, "8915": 4, "8920": 4, "8941": 4, "8945": 4, "8976": 4, "8983": 4, "8gch": 5, "9": [1, 4, 6, 8, 9, 12, 13], "90": [4, 8, 10, 13], "900": 10, "9000": 1, "9020": 1, "9021": 4, "9030": 4, "9047": 4, "9070": 1, "9084": 4, "909091": 13, "91": 6, "9100": 1, "9113": 4, "9116": 4, "9120": 4, "9127": 4, "9137": 4, "9140": 1, "9149": 4, "9151": 4, "9160": 4, "9181": 4, "9189": 4, "919": 9, "9190": 4, "9201": 4, "9216": 4, "9225": 4, "9228": 4, "92307692307692": 11, "9240": 1, "9243": 4, "9250": 1, "9257": 4, "9265": 4, "9273": 4, "9280": 1, "9285": 4, "93": 10, "9300": 1, "9315": 4, "93229707347896": 4, "9330": 1, "9336574705860224": 14, "9347193058098741": 14, "9349": 14, "935": 3, "93574367649991": 4, "9364": 4, "9378": 4, "9387": 4, "9388": 4, "9417": 4, "9432": 4, "9441253498945321": 14, "9450": 4, "9452": 4, "9458": 4, "9474": 4, "9484": 4, "9490": 1, "9491": 4, "95": [0, 13], "9509": 4, "951": 10, "9517": 4, "9520": [1, 4], "9535": 4, "954703": 3, "9550": 4, "9560": 1, "9561": 4, "95652173913044": 11, "9565217391305": 11, "9570": 1, "9591093723128088": 14, "9599": 4, "9600": 1, "9610": 4, "9622": 4, "9630": 1, "9660": 1, "9666": 4, "9670": 1, "9680": 4, "9700": 1, "9714": 4, "972362877827634": 14, "9724": 4, "9747": 4, "9748": 4, "9753": 4, "9760": 1, "9765": 4, "9772": 4, "9780": [1, 4], "9812": 4, "9824": 4, "9830": 4, "9833": 4, "9837": 4, "9859877949560755": 14, "9864": 4, "9881": 4, "9893": 4, "9898": 4, "9899": 4, "99": [2, 10], "9903": 4, "9911": 4, "9923": 4, "9927": 4, "994690398528738": [0, 3], "9948": 4, "9996": 4, "99p": 8, "9d8db27b": 14, "A": [0, 1, 3, 4, 8, 9, 10, 12, 13, 14], "AND": 2, "AT": 14, "As": [0, 1, 2, 5, 8, 11, 12, 14], "At": [4, 13], "Be": [5, 8, 12], "But": [6, 11], "By": [0, 9, 12], "For": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "IN": 2, "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15], "In": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "It": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "Its": 14, "No": 9, "OF": [2, 14], "On": [1, 5], "One": [2, 4, 5, 6, 10, 14], "Or": 2, "THE": 14, "THe": 10, "That": [0, 8], "The": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "Then": [2, 3, 5, 6, 9, 10, 13, 14, 15], "There": [0, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14], "These": [0, 1, 2, 3, 9, 10, 12, 13], "To": [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "WITH": 2, "With": [4, 13], "_": [0, 3, 10, 11, 12, 13], "__enter__": 9, "__init__": 9, "_builtin_open": 9, "_bz_mode": 9, "_cell": 10, "_check_file_lik": 9, "_citat": 10, "_closefp": 9, "_df": [3, 12], "_entiti": 10, "_entity_poli": 10, "_entity_src_gen": 10, "_fp": 9, "_generatorcontextmanag": 9, "_get_stream": 9, "_i": 13, "_ideal": 1, "_io": 8, "_m": 13, "_mode": 9, "_name": 4, "_parseatom": 9, "_parsebond": 9, "_topologi": 9, "_topology_from_file_lik": 9, "_w": 5, "_wrapped_seri": 9, "_x": 5, "_y": 5, "_z": 5, "a595": [0, 3], "a_": [0, 3], "a_dict": 13, "ab5f": 14, "ab73": 14, "abbrev": 2, "abbrevi": [0, 1, 2, 3, 8], "abil": [8, 12], "abl": 15, "about": [0, 1, 4, 8, 9, 10, 12, 13, 14, 15], "abov": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "absent": 9, "absorb": [0, 3, 12], "abspath": 2, "accept": [3, 8, 13], "access": [0, 1, 2, 3, 6, 9, 11], "accomplish": 2, "accord": 1, "accur": 13, "aceton": 10, "achiev": 2, "acid": [2, 14], "act": [1, 2], "actinobacterium": 14, "action": [6, 11], "activ": 1, "actual": [1, 2, 3, 4, 6, 9, 13], "ad": [0, 3, 4, 9, 10, 13], "add": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "add_compon": 9, "add_represent": 9, "addh": [4, 9], "addit": [5, 6, 8, 9], "address": [2, 3, 11, 14], "adjust": 13, "advanc": 5, "advantag": [5, 6, 9], "advisor": 6, "affect": 8, "after": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13], "again": [0, 1, 2, 4, 10], "ahead": [2, 6], "ahm": 0, "aim": 1, "ala": [2, 9], "alcohol": 1, "algebra": 3, "alkalin": 12, "all": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15], "all_coordin": 9, "allchem": [1, 4, 9], "allow": [2, 9, 10, 11, 13, 14], "almost": [3, 5], "along": 6, "alongsid": 0, "alpha": 0, "alphanumer": 1, "alreadi": [2, 4, 6, 12, 16], "also": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "alter": 9, "altern": [1, 9], "altloc": 9, "alwai": [2, 3, 8, 9, 11, 14], "am": [1, 4], "amin": 9, "amino": [2, 8], "among": 3, "amount": [2, 6, 8], "an": [0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14], "analog": [8, 12], "analysi": [0, 2, 3, 8, 9, 11, 12, 13, 14, 15], "analyz": [0, 2, 3, 6, 8, 9, 12], "angle_alpha": 10, "angle_beta": 10, "angle_gamma": 10, "angstrom": [6, 14], "ani": [1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "anim": 0, "anis": 9, "annot": [0, 12, 13, 14], "anoth": [1, 5, 6, 8, 11, 12, 14], "answer": 16, "antibodi": 5, "antigen": 5, "anyopen": 9, "anyth": [5, 6, 11], "anywher": 2, "ap_kin": [2, 8, 12], "ap_kin_df": 12, "ap_kinet": [2, 8], "api": 1, "app": 5, "appear": [0, 4, 5, 8, 9, 12, 13, 15], "append": [2, 3, 4, 6, 11, 12, 14], "appli": [1, 3, 4, 12, 15], "applic": 14, "approach": [0, 4, 5, 6], "appropri": 15, "apr": 1, "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "architectur": 10, "area": 9, "arg": [2, 9], "argument": [0, 2, 8, 12, 13, 14], "aromat": 4, "around": [0, 3, 13], "arrai": 13, "arrang": 8, "asc": 14, "ascend": [8, 14], "ask": [0, 14], "asn": 2, "asp": 2, "assai": [0, 3, 12], "assembli": [1, 14], "assembly_count": 14, "assembly_id": 14, "assign": [1, 2, 3, 5, 6, 8, 13, 16], "assignbondordersfromtempl": 9, "assist": 10, "associ": [1, 13, 14], "atom": [1, 2, 4, 6, 9, 10, 14], "atom_list": 10, "atp": 7, "atp3d": 4, "attach": [4, 8], "attempt": [4, 13], "attent": [8, 11], "attr": [1, 9], "attract": 13, "attribut": [1, 10, 14], "audit_author": 14, "autodock": 1, "autom": 2, "automat": [6, 11], "avaiabl": 1, "avail": [0, 3, 5, 9, 12], "ax": [0, 12], "axi": [0, 13], "aziz": 0, "b": [4, 8, 9, 12, 13], "b01": 8, "b03": 8, "b04": 8, "back": [8, 9, 11], "background": 5, "backslash": 0, "bad": 9, "ball": 5, "bank": [1, 6, 8, 9], "bar": 15, "base": [0, 1, 3, 4, 8, 12, 13, 14], "basenam": 6, "baseurl": 1, "basic": 11, "bbox_inch": 0, "bca": 3, "becaus": [0, 3, 6, 9, 10, 11, 13, 14], "becom": [11, 14], "been": [2, 11], "befor": [0, 2, 4, 6, 8, 9, 10, 12], "begin": [2, 3, 9, 10], "being": [2, 3, 11, 14, 16], "belong": 10, "below": [0, 1, 2, 4, 9, 11, 14, 15], "beneath": 6, "benzen": [4, 9], "best": [0, 2, 3, 4, 13], "better": [9, 10, 11], "between": [1, 3, 6, 8, 14], "beyond": 14, "bicarb": 3, "bicarbon": 3, "bin": 9, "binary_fil": 9, "bind": [1, 10, 14], "binding_site_investig": [2, 8], "bio": [10, 14], "biochemist": [2, 7, 8, 9, 10, 11, 15], "biochemistri": [2, 3, 5, 7, 15, 16], "bioinformatician": 10, "biolog": 1, "biologi": [2, 15, 16], "biologist": 10, "biomolecul": 9, "biopython_mmcif": [2, 8], "biotechnologi": 5, "bit": [0, 1, 5, 8, 9, 13, 15], "blank": 11, "block": [2, 11, 13], "blood": 1, "blue": 13, "bn": 5, "bo": 13, "bodi": [5, 13], "bold": 4, "bond": [1, 4, 9], "book": 2, "bore": 2, "both": [2, 8, 10, 11, 13], "bound": [0, 1, 2, 5, 9, 10], "bovin": 8, "box": [0, 5, 15], "brace": [0, 6, 13], "bracket": [3, 11, 13], "bradford": 3, "bradford_plot": [0, 2, 8], "bradford_plot2": [0, 2, 8], "bradford_plot3": [2, 8], "bradi": 13, "branched_entity_count": 14, "break": [1, 6, 9, 13, 16], "brenda": [1, 6], "bring": 5, "broader": 1, "brows": 10, "browser": [1, 14, 15], "bu": 5, "bud": 10, "buffer": [1, 12], "bufferediobas": 8, "build": [3, 6, 8, 12], "built": [8, 11, 12], "burk": 3, "button": 15, "butyl": 4, "byte": 9, "bz2": 9, "bz2_pickle_open": 9, "bz2file": 9, "bz2picklabl": 9, "bz_mode": 9, "c": [1, 4, 8, 9, 10, 12], "c1": [1, 4], "c10": 1, "c11": 1, "c12": 1, "c13": 1, "c14": 1, "c14a13u": 9, "c14b13u": 9, "c15": 1, "c16": 1, "c17": 1, "c18": 1, "c19": 1, "c1c": 4, "c1ccc": 4, "c1cccc": 4, "c1ccccc1": 4, "c1m": 8, "c2": 1, "c20": 1, "c21": 1, "c23h35n5o2": 4, "c24": 4, "c2a": 8, "c2c": 4, "c3": [1, 4], "c3m": 8, "c4": 1, "c5": 1, "c6": 1, "c7": 1, "c8": 1, "c8h10n4o2": 4, "c9": 1, "c_rates_df": 13, "c_xdata": 13, "c_ydata": 13, "cache_d": 8, "caffein": 4, "calcul": [0, 3, 8, 9, 11, 13], "calibr": 0, "call": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "callabl": 13, "came": 6, "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "capit": [2, 6, 12], "captur": [5, 7], "carbamimidoylbenzyl": [1, 4, 8], "carbohydr": 1, "carbon": 4, "care": [5, 11], "carefulli": [8, 11], "carri": 10, "case": [2, 3, 5, 6, 8, 9, 12, 13], "cast": [2, 11], "catalyst": 1, "catalyz": [1, 13], "categori": 10, "catodon": 10, "caus": [5, 9, 13], "caveat": 2, "cc": 4, "cc1": 4, "ccc": 4, "ccc1": 4, "cell": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14], "center": [5, 9], "central": 9, "certain": [5, 10, 13], "certainli": 0, "cfile": 1, "cfileloc": 1, "cfileurl": 1, "ch3": 4, "chain": 10, "chang": [0, 2, 3, 4, 5, 6, 11, 12, 13, 14], "channel": 15, "chapter": [2, 3, 7], "charact": [1, 4, 6, 10, 11], "character": 10, "characterist": 1, "charli": [3, 8, 12], "chart": 0, "chd": 1, "check": [1, 3, 9, 14, 15], "checkbox": 15, "chem": [1, 4, 9], "chem_comp": 1, "chemic": [1, 4, 5, 10], "chemid": 1, "cheminformat": [1, 4], "chemist": [3, 8, 12], "chemistri": [1, 4], "chlorophenyl": 8, "chloropyridin": 8, "choic": 4, "cholesterol": 1, "choos": [1, 5, 9, 11, 13, 15], "chunksiz": 8, "chymo_mm_data": [2, 8, 12, 13], "chymo_mm_df": 12, "chymo_rates_df": 12, "chymotrypsin": [12, 13], "chymotrypsin_kinet": [2, 8, 12], "cid": 7, "cif": [2, 10, 14], "circl": [10, 13, 15], "cis_peptide_count": 14, "citat": [1, 14], "class": [6, 14], "classif": 1, "classifi": 1, "clear": 10, "clear_represent": 9, "clearli": [11, 13], "click": [1, 5, 11, 14, 15], "clinic": 2, "close": [2, 6, 9, 11], "clot": 1, "cm": 12, "cmo": 14, "cn": 4, "cn1c": 4, "cnc": 4, "cnc3ccccccc3": 4, "cnd": 1, "coa": 1, "coc": 4, "cod": 1, "code": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "coder": 3, "coeffici": 12, "colleagu": 6, "collect": [0, 3, 4, 8, 10, 12, 14], "colon": [2, 5, 13], "color": [5, 9], "colorschem": 9, "column": [0, 4, 8, 12], "com": 4, "combin": [1, 10, 14], "combination_count": 14, "combination_str": 14, "come": [6, 15], "comma": [2, 8, 11], "command": [0, 1, 2, 3, 4, 6, 8, 9, 12], "comment": [8, 11], "commerci": 13, "commis": 1, "commiss": 6, "common": [2, 3, 4, 10, 11, 14], "common_name_1mbn": 10, "commonli": [2, 10, 14], "commun": [4, 14], "compar": [11, 13], "complet": [2, 3, 4, 5, 6, 8, 9, 12, 13, 15], "complex": [0, 2, 3, 9], "complic": 14, "compnd": [2, 6], "compon": [1, 2], "compos": 10, "composit": 10, "compound": 7, "compress": 8, "compresslevel": 9, "comput": [2, 3, 4, 6, 8, 10, 11, 12, 13, 15], "compute2dcoord": 4, "conc_list": 11, "concentr": [0, 8, 11, 12, 13], "concentration_nm": 11, "concern": 4, "conda": 15, "condit": [3, 10, 11, 12], "conditon": 10, "confid": 0, "confirm": 12, "conform": 4, "confus": 6, "consequ": 11, "consid": [4, 5, 10], "consist": [1, 10, 14], "constant": 13, "constraint": 4, "consum": [5, 6], "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "contains_phras": 14, "content": [1, 2, 4, 6, 8, 13], "context": [2, 6, 9], "contextlib": 9, "contextmanag": 9, "continu": 3, "control": [1, 4, 5, 6, 9, 13, 14], "conveni": [8, 9], "convent": [3, 4], "converg": 4, "convers": [1, 4], "convert": [1, 6, 8, 10, 11, 14], "cookbook": 4, "cool": 5, "coordin": [4, 8, 9, 10, 12], "cop": 4, "copi": [5, 11], "core": [9, 14], "corei": [8, 12], "corner": [0, 11, 15], "correct": [1, 3, 4, 13], "correctli": [2, 11], "correl": 2, "correspond": [9, 10, 15], "could": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14], "count": [2, 6, 8, 11, 13, 14], "counter": 14, "cours": 3, "covari": 13, "cover": [3, 11, 15, 16], "cpl": 5, "creat": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16], "creating_plots_in_jupyter_notebook": [2, 8], "creation": 11, "critic": 7, "crucial": 10, "crystal": [2, 9, 10, 14], "crystallograph": 10, "crystallographi": 9, "csv": [0, 2, 8, 12, 13], "curli": [11, 13], "current": [0, 1, 2, 6, 8, 11, 14], "curv": [0, 11, 12, 13], "cut": [6, 10], "cutoff": 14, "cutoff_dist": [10, 14], "cy": 2, "cycl": 12, "cyclooctylglycyl": [1, 4], "cylind": 5, "d": [2, 8, 12, 14], "d4fddfb36c18": 14, "d9c8": 14, "dai": 16, "data": [0, 1, 2, 4, 6, 9, 10, 15], "databas": [1, 10, 14], "datafil": [6, 8, 12, 13], "datafram": [0, 13], "dataset": [0, 3], "datasourc": 9, "datatyp": [0, 3], "date": 14, "date_pars": 8, "dayfirst": 8, "dch": 8, "deal": 10, "decim": [0, 8, 13], "declar": [5, 11, 13], "deeper": [1, 3, 4, 13], "def": [5, 9, 13], "default": [0, 1, 2, 5, 9, 13, 15], "defin": [1, 2, 3, 4, 5, 9, 10, 11, 13, 14], "definit": 5, "degre": 9, "dehydrogenas": 1, "del": 9, "delai": 0, "delet": 12, "delim_whitespac": 8, "delimit": [2, 8], "demonstr": [11, 13, 14], "deoxyhaemoglobin": 14, "depend": [0, 2, 3, 13], "deposited_atom_count": 14, "deposited_deuterated_water_count": 14, "deposited_hydrogen_atom_count": 14, "deposited_model_count": 14, "deposited_modeled_polymer_monomer_count": 14, "deposited_nonpolymer_entity_instance_count": 14, "deposited_polymer_entity_instance_count": 14, "deposited_polymer_monomer_count": 14, "deposited_solvent_atom_count": 14, "deposited_unmodeled_polymer_monomer_count": 14, "der": 9, "desc": 14, "describ": [0, 2, 3, 9, 10, 13, 15], "descript": [1, 10, 11], "descriptor": 13, "design": [2, 8, 9, 10, 12, 16], "desir": [2, 3, 4, 5, 6], "desktop": [1, 2, 15], "detail": [0, 1, 10, 13], "determin": [1, 2, 3, 10, 11], "deviat": 13, "diag": 13, "dialect": 8, "dialog": 5, "diaminomethyl": 8, "dict": 8, "dict_kei": 14, "dictionari": [1, 10, 13, 14], "dictionary_nam": 14, "did": [2, 4, 6, 9, 12], "didn": [0, 6, 9, 11], "differ": [0, 2, 4, 5, 6, 8, 10, 11, 13, 14], "difficult": [9, 15], "diffract": [2, 8, 14], "diffrn": 14, "diffrn_resolution_high": 14, "dig": [4, 13], "digest": 1, "dimension": [8, 10, 12, 13], "dimer": 2, "dion": 4, "direct": [9, 13, 14], "directli": [2, 10, 15], "directori": [1, 2, 6, 8, 9, 12, 14], "discoveri": 4, "discuss": 13, "disjoint": 13, "displai": [0, 2, 3, 4, 12, 14], "distal": 10, "distanc": [10, 14], "distinguish": 13, "disulfide_bond_count": 14, "divid": [2, 11, 12], "dna": [5, 9, 10], "do": [0, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16], "doc": 9, "dock": [1, 9], "document": [9, 13, 14], "doe": [4, 5, 6, 8, 11, 13, 14, 15, 16], "doesn": [6, 11], "dollar": 0, "don": [2, 9, 10, 11, 15], "done": [1, 4, 6, 10, 14], "dot": [0, 2, 3, 6, 8], "doubl": [3, 4, 15], "doublequot": 8, "down": 15, "download": [4, 6, 15], "dozen": 1, "dpi": 0, "draw": [1, 4], "drawback": 10, "drop": 15, "dropdown": [5, 15], "drug": 2, "dtype": [3, 8, 12, 13], "due": 9, "dump": 14, "dure": [4, 10, 15], "dynam": 9, "e": [1, 4, 6, 8, 9, 13], "eacc": 9, "each": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "eadi": 3, "earli": 5, "earlier": [3, 6, 11, 12, 13], "easi": [0, 2], "easili": [0, 4, 6, 8, 12, 13], "ec": [1, 6], "ec_class": 6, "ec_class_ligands_search": [2, 4, 8], "ec_lin": 6, "ecnumb": 1, "editor": [2, 6, 8], "educ": 4, "effect": 4, "effici": 10, "eg": 9, "either": [6, 9], "electrochemistri": 4, "element": [2, 4, 8, 10, 11, 12, 14], "els": [2, 9], "embedmolecul": 4, "emphas": 0, "emploi": [1, 6], "empti": [2, 4, 6, 12, 14], "enabl": [1, 3, 4, 5, 10, 13], "enclos": [0, 6, 8], "encod": 8, "encount": [3, 8, 13], "end": [0, 2, 3, 4, 6, 8, 11, 12, 14], "endopeptidas": 1, "endpoint": 14, "energi": [1, 4], "engin": [3, 8, 13], "english": 0, "enoent": 9, "enorm": 2, "enough": 1, "ensur": 12, "enter": [1, 2, 5, 8, 11, 15], "entir": 1, "entiti": [1, 10, 14], "entity_count": 14, "entri": [1, 2, 4, 5, 10, 14], "entry_id": 10, "enumer": 2, "env": 9, "environ": 15, "enzym": [3, 5, 6, 8, 12, 13], "enzyme_kinet": [2, 8], "equal": [2, 11, 13], "equat": [0, 11], "err": 9, "errno": 9, "error": [0, 2, 3, 9, 12], "error_bad_lin": 8, "errorcod": 9, "escapechar": 8, "especi": [5, 15], "etc": [8, 9, 12], "ethoxi": 8, "evalu": 11, "evan": 13, "even": [2, 5, 9, 11, 14], "ever": [10, 15], "everi": [3, 6, 11], "everyth": [1, 3, 11], "exact": [2, 3, 5, 11], "exactli": [1, 2, 11], "examin": 6, "exampl": [0, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15], "exc_info": 9, "excel": [3, 8, 12], "except": 9, "excerpt": [9, 10], "excit": 13, "execut": [0, 1, 2, 4, 5, 6, 11, 13], "exercis": [2, 6], "exist": [4, 6, 8, 11, 12, 16], "exist_ok": [1, 9], "exit": 11, "exp_type_lin": 2, "expand": 3, "expect": [10, 12, 13, 14], "experi": [2, 12], "experiment": [2, 3, 9, 10, 12, 13, 14], "experimental_method": 14, "experimental_method_count": 14, "explain": [1, 4, 11], "explicit": 4, "explor": [0, 2, 3, 4, 5, 6, 7, 8, 12, 14], "export": [0, 12], "express": 10, "exptl": [1, 14], "exptl_cryst": 14, "ext": 9, "extens": [4, 5], "extinct": 12, "extra": [0, 9], "extract": [2, 5, 6, 9, 14], "f": [0, 1, 6, 9, 12, 14], "facet": 14, "fact": [5, 13], "factor": [5, 10], "fail": [5, 9], "fals": [8, 9], "false_valu": 8, "famili": 1, "familiar": [5, 6, 8, 12, 13, 14], "far": [7, 12], "farili": 14, "fashion": 4, "favorit": 5, "fe": [10, 14], "featur": [1, 4, 5, 14], "feedback": 16, "few": [0, 2, 5, 8, 9, 10, 11, 14, 15, 16], "fifth": 2, "figsiz": 0, "figur": [0, 11], "file": [0, 3, 4, 5, 8, 9, 12, 13, 15, 16], "file1": 1, "file_format": 14, "file_loc": 6, "file_nam": 6, "file_pars": [2, 8], "file_text": 1, "filehandl": [2, 6, 12, 13], "filenam": [0, 1, 6, 9], "filenotfounderror": 9, "filepath": [2, 6], "filepath_or_buff": 8, "fill": [1, 9], "filter": 10, "final": [0, 3, 4, 12], "find": [0, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "finder": 15, "finger": 14, "fingerprint": 9, "finish": [6, 11], "first": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "first_fil": 6, "first_result": 14, "fit": [0, 3, 6, 12], "fit_i": 13, "five": [2, 3, 8, 12], "fix": 12, "flexibl": 2, "float": [0, 2, 3, 6, 11, 12, 13], "float64": [3, 8, 12, 13], "float_precis": 8, "focu": [1, 4], "folder": [0, 1, 2, 3, 4, 6, 8, 12, 14, 15], "follow": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15], "forg": 15, "forget": 2, "forgot": 6, "form": [5, 8, 11, 16], "formalcharg": 9, "format": [0, 1, 2, 3, 4, 5, 8, 9, 10, 12, 14], "formula_weight": [1, 10], "forwardref": 8, "found": [0, 1, 2, 3, 8, 9, 10, 12, 14], "four": [1, 4, 8], "fourth": 4, "fp": 9, "fqevstjzsa": 4, "frac": [3, 13], "frame": [9, 12], "free": [4, 8, 12], "frequent": 5, "from": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15], "from_mda": 9, "front": [6, 9], "fudge_factor": 9, "full": [1, 2, 10, 14], "full_text": 14, "fulli": 0, "fun": 8, "func": 9, "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 14], "function_nam": [5, 6, 13], "funtion": [6, 8], "fusca": 14, "futur": [2, 3, 4, 8, 11], "g": [0, 1, 4, 8, 9, 13], "gain": [3, 6], "gave": 4, "geeksforgeek": 13, "gel": 13, "gen": 9, "genbank": 10, "gene": 10, "gene_src_common_nam": 10, "gener": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15], "get": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16], "get_atom": [10, 14], "get_coord": [10, 14], "get_id": 10, "get_par": [10, 14], "get_resnam": [10, 14], "get_structur": [10, 14], "getcwd": [2, 7, 8], "github": [1, 3, 4, 8, 12], "give": [2, 3, 4, 6, 8, 11, 14], "given": [1, 2, 15], "gln": 2, "glob": 6, "glu": 2, "gly": 2, "go": [0, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15], "goal": [4, 6, 8], "goe": [1, 11], "good": [2, 3, 6, 11], "googl": 8, "got": 12, "grad": 3, "grai": 5, "graph": [0, 13], "graphic": 2, "great": [2, 5, 15], "greater": [1, 11], "greek": 0, "green": 15, "grei": 5, "grip": 10, "ground": 3, "ground_wat": [2, 3, 8], "group": [0, 1, 4, 5, 9, 10, 11, 14, 16], "guanidino": 4, "guess_bond": 9, "guru99": 3, "gz": 9, "h": [1, 4, 8, 12], "h1": 1, "h10": [1, 4], "h11": 1, "h12": 1, "h13": 1, "h14": 1, "h15": 1, "h16": 1, "h17": 1, "h18": 1, "h19": 1, "h2": 1, "h20": 1, "h21": 1, "h22": 1, "h23": 1, "h24": 1, "h25": 1, "h26": 1, "h27": 1, "h28": 1, "h29": 1, "h3": [1, 4], "h30": 1, "h31": 1, "h4": 1, "h4h": 4, "h5": 1, "h6": 1, "h7": 1, "h8": 1, "h9": 1, "h_hem": 10, "h_oh": 10, "ha": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "had": [4, 6], "half": 13, "hand": [0, 1, 15], "handheld": 3, "handi": 2, "handl": [1, 2, 6, 11], "happen": [4, 11, 13], "hard": [3, 14], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "he": [8, 12], "head": [3, 8, 12, 13], "header": [0, 2, 3, 8, 11], "heavi": 1, "help": [0, 1, 2, 3, 6, 8, 13, 16], "helper": 9, "hem": [10, 14], "heme": [5, 10, 14], "hemoglobin": 14, "henri": 5, "here": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "hetatm": 9, "hetero": 14, "heterogen": 2, "heteromer": 14, "hetnam": 2, "hetnam_lin": 2, "hetnam_list": 2, "hi": [2, 3, 5, 8, 10, 12, 14], "hidden": 9, "hierarch": [1, 6, 10], "hierarchi": 1, "high": [0, 2, 9, 13], "highest": 3, "highli": 4, "highlight": 4, "hint": 10, "histidin": 10, "hit": 13, "hiv": [2, 10], "hmg": 1, "hofste": 3, "hoh": 14, "hold": [2, 4, 12], "home": [1, 2, 7, 16], "host": [10, 14], "houghton": 3, "hour": 16, "how": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "howev": [2, 3, 4, 8, 10, 14, 15], "http": [1, 4, 9, 14], "human": [8, 9, 14], "hundr": 13, "hydrogen": [4, 9], "hydrolas": [1, 2], "hydrophob": 9, "hydroxi": 8, "hydroxid": 10, "i": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "i48": 8, "icon": 15, "id": [1, 6, 8, 9, 10, 14], "idea": 9, "ideal": [9, 13], "ident": 0, "identifi": [1, 4, 5, 7, 8, 10, 11, 12, 14], "ignor": [9, 12], "il": 2, "illustr": 5, "iloc": 8, "imag": [0, 1, 2, 8, 10, 15], "imagin": [4, 5], "immut": 11, "implement": [3, 5], "import": [0, 1, 2, 4, 5, 7, 9, 10, 11, 13, 14], "in_memori": 9, "in_memory_step": 9, "inactiv": 3, "inch": 0, "inchi": 4, "inchikei": 4, "includ": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 16], "inclus": 0, "incorpor": 5, "incorrect": 11, "increas": [0, 10, 12], "indent": [5, 6, 11, 13], "independ": [3, 5, 6, 13], "independent_vari": [5, 13], "index": [3, 8, 10, 11, 12], "index_col": 8, "indic": [0, 4], "individu": [1, 2, 10, 12, 15], "infer": 8, "infer_datetime_format": 8, "info": 14, "info_4hhb": 14, "inform": [1, 2, 5, 6, 7, 9, 10, 11, 12, 13], "inhibitor": 2, "initi": [1, 6, 8, 11, 13, 14], "initial_release_d": 14, "inlin": 0, "inner": 6, "inplac": [8, 12], "input": [4, 6, 8, 10, 13], "insert": [0, 1, 6, 13], "insid": [2, 6, 9, 11], "inspect": [4, 9, 13], "instal": [5, 11], "instanc": 14, "instead": [1, 2, 5, 10, 11, 14], "instruct": [6, 15, 16], "int": [2, 11], "integ": [8, 11, 12], "integr": [3, 5], "intend": 1, "intent": [1, 16], "inter_mol_covalent_bond_count": 14, "inter_mol_metalic_bond_count": 14, "interact": [0, 5, 9, 10, 11], "intercept": [0, 3, 12], "interest": [1, 2, 4, 5, 7, 9, 10, 14], "interfac": [1, 9, 14], "interface_area": 14, "interface_charact": 14, "interface_id": 14, "interface_info": 14, "intern": 1, "internet": [14, 15], "interpret": [4, 11], "interv": 0, "intestin": 1, "introduc": [0, 2, 3, 6, 8, 11, 16], "introduct": [2, 8, 16], "invalid": 9, "involv": [1, 9], "io": 8, "ioerror": 9, "ion": [1, 10], "ipynb": [2, 8], "ipynb_checkpoint": [2, 8], "iron": [10, 14], "iron_atom": 10, "iron_coord": 10, "iron_residu": [10, 14], "isinst": 9, "isn": 9, "isol": [2, 9], "isomer": 4, "isomeras": 1, "isopropyl": 4, "issu": 3, "item": [1, 8, 10, 11, 12, 14], "iter": [2, 4, 8, 11, 14], "its": [1, 2, 7, 11, 14, 15], "iupac": [1, 4], "ix": 10, "jakubowski": 5, "javascript": 5, "join": [0, 2, 3, 6, 8, 12, 13, 14], "journal": 1, "journei": 4, "json": 14, "jupyt": [1, 2, 3, 4, 5, 8, 9, 13, 16], "jupyterlab": [5, 15], "jupyterlab_3dmol": 5, "just": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14], "k": [1, 13], "k_m": 13, "keep": [2, 3, 6, 14, 15, 16], "keep_date_col": 8, "keep_default_na": 8, "kei": [10, 14], "kelvin": 2, "key_nam": 14, "keyboard": 15, "keystrok": 2, "keyword": [2, 5, 9, 10, 13, 14], "khelifi": 0, "kind": 9, "kindli": 3, "kinet": [3, 8, 12, 13], "kinetics_df": 8, "kinetics_fil": 8, "km": [8, 11, 13], "know": [1, 2, 8, 9, 11], "knowledg": 10, "known": 10, "kwarg": 9, "kwd": 9, "l": [1, 3, 4, 8], "lab": 3, "label": [0, 1, 8, 13, 15], "labextens": 5, "laboratori": [8, 12], "lack": 1, "languag": [4, 11, 15], "larg": [1, 9, 10], "larger": [0, 1, 3, 10], "last": [0, 1, 2, 4, 6, 8, 9, 11, 13], "last_wrapped_seri": 9, "later": [1, 6, 10, 11], "latex": [0, 13], "launch": 15, "layout": 12, "learn": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "least": [1, 12, 13], "leav": 11, "left": [2, 11, 12, 15], "legend": 13, "len": [1, 2, 10, 11], "length": [9, 11], "length_a": 10, "length_b": 10, "length_c": 10, "less": [1, 11], "lesson": [0, 2, 3, 6, 8, 11, 12, 14], "let": [0, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14], "letter": [0, 1, 2, 5], "leu": 2, "leucyl": 8, "level": [0, 1, 3], "li": [8, 12], "lib": 9, "libari": 1, "librari": [0, 2, 4, 9, 10, 12, 13, 14], "library_nam": 6, "libretext": 5, "lig_converg": 4, "lig_list": 9, "lig_view": 9, "ligand": [2, 5, 8], "ligand13u": [2, 4, 8], "ligand13u_h": 4, "ligand13uipr": [2, 4, 8], "ligand13um": [2, 4, 8], "ligand13un": [2, 4, 8], "ligand_13u": [4, 8], "ligand_a": 9, "ligand_b": 9, "ligand_c_ipr": 4, "ligand_c_methyl": 4, "ligand_c_tbu": 4, "ligand_cn": 4, "ligand_h": 9, "ligand_mol": 9, "ligands_for_ec_class_": 1, "ligands_h": 4, "ligas": 1, "like": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "limit": [1, 4], "linalg": 3, "line": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "line2d": [0, 13], "linear": [0, 8, 11, 12, 13, 16], "linear_mm": 11, "linear_regress": [2, 8], "linenum": 2, "linetermin": 8, "lineweav": 3, "link": [0, 5, 14], "linregress": [0, 3, 12, 13], "linspac": 13, "linux": 2, "lipid": 1, "list": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 15], "list_nam": [2, 11], "listdir": [2, 8], "liter": 0, "littl": [6, 8, 9], "live": 16, "ll": [1, 2, 3, 5, 8, 9, 10, 12, 13], "load": [9, 10, 14, 15], "loc": [3, 8], "locat": [1, 2, 6, 9, 14], "log": [3, 13], "long": [6, 8], "longer": 0, "look": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "loop": [2, 4, 10, 12, 14], "lot": [1, 2, 10], "low": 2, "low_memori": 8, "lower": [0, 1, 5, 11, 14], "lower_bound": 9, "lowercas": 14, "lowest": 3, "lowri": 3, "ly": 2, "lyas": 1, "m": [4, 12, 13], "m0": 4, "m2": 4, "mac": [2, 8, 15], "macromolecul": 2, "macromolecular": [2, 7], "made": [2, 9, 14], "mai": [0, 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15], "mail": 6, "major": 1, "make": [0, 3, 4, 5, 6, 10, 12, 13, 14, 15], "makedir": [1, 9], "man": 10, "manag": [0, 2, 3, 6, 8, 9, 12], "mangle_dupe_col": 8, "mani": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14], "manipul": [2, 3, 4, 8, 9, 14], "manual": 13, "manuscript": 0, "markdown": [0, 1, 11], "marker": 12, "match": [2, 6, 9], "materi": [6, 16], "math": [2, 3, 9], "mathemat": 3, "matlab": 0, "matplotlib": [12, 13], "matrix": 13, "matter": 0, "max": [3, 13], "maxim": 13, "maximum": [3, 10, 13, 14], "mda": 9, "mdanalysi": 9, "mean": [0, 1, 4, 6, 9, 10, 11, 13, 14], "meanin": 4, "meaning": 4, "member": 1, "memori": [6, 10], "memory_map": 8, "menten": [11, 12], "mention": [8, 14], "menu": [5, 15], "menuicon": 5, "messag": [2, 13], "messi": 9, "met": 8, "methanamin": 8, "method": [1, 2, 3, 6, 8, 9, 10, 14], "methyl": [4, 8], "methylpyridinium": 8, "mg": [0, 3, 8], "micha": [11, 12], "micromolar": [8, 11, 12], "micropl": 0, "middl": 11, "mifflin": 3, "might": [1, 2, 3, 5, 6, 8, 9, 10, 11, 12], "migrat": 13, "million": 13, "min": [3, 12, 13], "mind": 3, "miniconda": 9, "minimum": [3, 13], "miss": 9, "mistak": 13, "ml": [0, 3, 8], "mm": [12, 13], "mm_data": [2, 8, 12, 13], "mm_data1": [2, 8], "mm_data_for_nlrpt2": [2, 8], "mm_df": 12, "mmap": 8, "mmcif": [1, 14], "mmcif2dict": 10, "mmcifpars": [10, 14], "mmdb": 5, "mmdbafid": 5, "mmdbid": [5, 7], "mmffoptimizemoleculeconf": 4, "mmloidmsbrjza": 4, "mode": 9, "mode_cod": 9, "model": [3, 10, 13], "modif": [4, 5], "modifi": [0, 1, 2, 5, 6, 7, 10], "modifying_ligands_with_rdkit": [2, 8], "modul": [6, 8, 9, 12, 13, 16], "modular": 13, "mol": [4, 9], "mol2": [1, 4, 9], "mol_definit": 1, "mol_h": 4, "mol_id": 2, "molecul": [1, 2, 6, 9, 10, 14], "molecular": [1, 2, 4, 9, 10, 13, 15, 16], "molecular_weight": 14, "molecule_nam": 6, "molfrommol2fil": 9, "molfrompdbfil": 9, "molfromsmart": 4, "molfromsmil": 4, "molresultl": 1, "molsperrow": 4, "molssi": [4, 8, 11, 12], "molstogridimag": 4, "moltomolblock": 4, "moltomolfil": 9, "moltosmil": 4, "molvis_with_icn3d": [2, 8], "monom": 2, "month": 3, "more": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "most": [1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15], "most_common": 14, "most_common_combin": 14, "motif": [10, 14], "mousechang": 5, "move": [0, 6, 8, 15], "mu": [0, 3, 12, 13], "much": [2, 3, 4, 6, 8, 11, 13], "multi": 3, "multidrug": 2, "multipl": [5, 9, 14, 16], "muscl": 10, "must": [0, 1, 2, 8, 11, 12, 15], "my": [0, 8, 13], "my_queri": 14, "myoglobin": 10, "myview1": 5, "n": [1, 2, 4, 6, 8, 9, 10, 12, 13], "n1": [1, 4], "n2": [1, 4], "n2c": 4, "n2ccc": 4, "n3": 1, "n4": 1, "n5": 1, "na": 1, "na_filt": 8, "na_polymer_entity_typ": 14, "na_valu": 8, "nad": 1, "nai": 1, "naj": 1, "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nameerror": [4, 11], "nan": 3, "nanomol": 11, "nap": 8, "naphthalen": 8, "nation": 5, "navig": 15, "nc": 4, "nc2": 4, "ncc": 4, "ncc3": 4, "nd": [8, 12], "nearest": 4, "neat": 3, "neater": 6, "need": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "neg": 4, "neighbor": 14, "neighbor_list": 14, "neighbor_search": [10, 14], "neighborsearch": [10, 14], "network": 2, "new": [2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15], "new_list": 11, "new_molecul": 4, "new_th": 11, "newlin": 6, "next": [0, 1, 2, 3, 6, 9, 11, 12, 14, 15, 16], "nglview": 9, "nhheaelkplaqshatkhkipikylefiseaiihvlhsrhpgdfgadaqgamnkalelfrkdiaakykelgyqg": 10, "nitrogen": 4, "nitrophenol": 12, "nm": 11, "nmber": 11, "nmr": 10, "no_charg": 1, "non": [1, 3, 4, 10, 12, 13, 16], "none": [8, 9], "nonetyp": 8, "nonlinear": [5, 8], "nonlinear_regression_part_1": [2, 8, 13], "nonlinear_regression_part_2": [2, 8], "nonpolymer_bound_compon": 14, "nonpolymer_entity_count": 14, "nonpolymer_molecular_weight_maximum": 14, "nonpolymer_molecular_weight_minimum": 14, "normal": 0, "notat": [2, 3, 6, 8], "note": [0, 1, 3, 4, 5, 8, 10, 12, 13, 14], "notebook": [1, 2, 3, 5, 8, 9, 10, 12, 13, 16], "noth": [11, 15], "notic": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14], "novel": 14, "now": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nozawukj3ym": 4, "np": [0, 3, 8, 12, 13], "nrow": 8, "ntop": 14, "nucleic": 14, "nucleocapsid": 10, "num_core_interface_residu": 14, "num_interface_residu": 14, "number": [0, 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15], "number_list": 11, "numer": [3, 8, 12], "numpi": [0, 3, 8, 12, 13], "nv": 9, "o": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15], "o1": [1, 4], "o2": 1, "o3": 4, "o32a13u": 9, "o_2": 10, "object": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "obtain": [0, 4, 10], "obteain": 3, "obviou": 0, "oc": 4, "occup": 9, "occur": 14, "occurr": 14, "off": 10, "offer": [5, 16], "often": [2, 3, 6, 8, 9, 11, 14], "oh": 10, "okai": 1, "oldest": 14, "omit": [0, 12], "onc": [0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 15], "one": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "ones": 1, "onli": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "onlin": [3, 8, 10, 12, 13], "op": 4, "open": [1, 2, 4, 5, 6, 8, 9, 11, 15], "openani": 9, "openbabel": 9, "openfunc": 9, "openfunct": 9, "oper": [0, 1, 2, 3, 6, 8, 14, 15], "operand": 2, "opt": 4, "opt_13u_h": 4, "optim": [1, 3, 4, 13], "option": [0, 1, 2, 4, 6, 8, 12, 15, 16], "order": [2, 6, 8, 9, 10, 14], "org": [1, 9, 14], "organ": [1, 2, 4, 10, 13], "origin": [2, 4, 10, 13], "original_molecul": 4, "oserror": 9, "other": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14], "our": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "out": [1, 2, 3, 4, 6, 8, 10, 11, 13], "outer": 6, "outfil": [2, 6], "output": [1, 2, 3, 4, 6, 8, 9, 10, 12], "outputfil": 12, "outsid": [2, 11], "over": [5, 6, 8, 9, 10, 11, 14], "overal": 6, "overflow": 13, "overview": 16, "overwrit": [6, 9, 11], "oxi": 14, "oxidas": 2, "oxidoreductas": 1, "oxygen": [10, 14], "p": [0, 3, 4, 8, 9, 12], "p05": 8, "p_valu": [0, 3], "packag": [1, 9, 13, 15], "pad": 1, "page": [1, 2, 4, 7, 9, 10, 11, 13, 15], "pagin": 14, "pai": [8, 11], "pair": [0, 14], "pancrea": 1, "panda": [0, 13, 16], "panic": 15, "paper": 14, "paramat": 13, "paramet": [3, 5, 9, 10, 13, 14], "parameter1": [5, 13], "parameter2": [5, 13], "parent": 14, "parenthes": [2, 5, 8, 11, 13], "parenthesi": [2, 5, 13], "pars": [6, 8, 9, 10, 14, 16], "parse_d": 8, "parser": [8, 9, 10, 14], "part": [0, 1, 3, 4, 5, 9, 10, 16], "part1": 4, "particular": [6, 8, 10, 11, 13, 14], "pass": [5, 8, 12, 13], "past": [1, 5, 6, 13], "path": [0, 1, 3, 6, 8, 12, 13], "pathcollect": 0, "pathlib": 2, "pathlik": [8, 9], "patt": 4, "pattern": [4, 6], "pcov": 13, "pd": [0, 3, 8, 12, 13], "pdb": [1, 2, 4, 6, 8, 9, 10], "pdb2pqr": 9, "pdb_file": [2, 6, 8, 10, 14], "pdb_filenam": 14, "pdb_id": [5, 9, 14], "pdb_info": 10, "pdb_ligand": 9, "pdb_list": 14, "pdb_request": 9, "pdbid": [5, 7], "pdblist": 14, "pdbparser": 9, "pdbqt": 1, "pdbx": 10, "pdbx_audit_revision_categori": 14, "pdbx_audit_revision_detail": 14, "pdbx_audit_revision_group": 14, "pdbx_audit_revision_histori": 14, "pdbx_audit_revision_item": 14, "pdbx_database_pdbobs_spr": 14, "pdbx_database_rel": 14, "pdbx_database_statu": 14, "pdbx_descript": 10, "pdbx_ec": 10, "pdbx_fragment": 10, "pdbx_gene_src_scientific_nam": 10, "pdbx_keyword": 14, "pdbx_mutat": 10, "pdbx_number_of_molecul": 10, "pdbx_reference_molecul": 1, "pdbx_seq_one_letter_cod": 10, "pdbx_unique_axi": 10, "pdir": 14, "pdq2pqr": 9, "peopl": [2, 3, 7, 11], "peptid": 1, "per": 0, "perform": [2, 3, 4, 8, 10, 11, 12, 13, 14], "perhap": [2, 3], "period": 10, "perman": 12, "permiss": 9, "perr": 13, "pertain": 2, "ph": [3, 9], "phe": 2, "phenylalanyl": 8, "phenylbutyl": 8, "phosphat": [1, 12], "phosphatas": 12, "phrase": [2, 5, 14], "physet": 10, "pi": 9, "pickl": 9, "picklable_file_io": 9, "pictur": 0, "piec": [2, 6, 7, 13], "pl3": 1, "place": [0, 3, 4, 6, 8, 12, 13, 15], "placehold": 12, "plai": [0, 10], "plan": 1, "plate": 5, "pleas": [0, 1, 3, 5, 12, 13], "plf": 9, "plot": [3, 8, 11, 12, 15, 16], "plot_lignetwork": 9, "plt": [0, 13], "plu": [0, 16], "pm": 16, "png": [0, 2, 8], "pnpa": [12, 13], "pnpp": [12, 13], "pocket": 9, "point": [1, 4, 11, 12, 13], "polym": [1, 10], "polymer": 14, "polymer_composit": 14, "polymer_entity_count": 14, "polymer_entity_count_dna": 14, "polymer_entity_count_nucleic_acid": 14, "polymer_entity_count_nucleic_acid_hybrid": 14, "polymer_entity_count_protein": 14, "polymer_entity_count_rna": 14, "polymer_entity_taxonomy_count": 14, "polymer_molecular_weight_maximum": 14, "polymer_molecular_weight_minimum": 14, "polymer_monomer_count_maximum": 14, "polymer_monomer_count_minimum": 14, "popt": 13, "popul": [2, 12], "popular": [9, 15], "portabl": 2, "portion": [4, 11], "posit": 4, "possibl": [0, 1, 2, 5, 10, 12], "potassium": 1, "power": [4, 6, 8, 10, 12], "ppm": 3, "pqr": 9, "practic": [3, 11], "precis": [0, 4, 13], "predesign": 5, "predict": 13, "prefer": [0, 2, 3, 6], "prefix": 8, "prepar": [13, 16], "presenc": 12, "present": [3, 9, 10], "preserv": 3, "press": [11, 15], "pretti": 5, "prevent": 2, "previou": [0, 1, 2, 3, 6, 11, 13], "previous": [2, 5, 8, 9], "primari": [1, 8, 14], "principl": 12, "print": [0, 1, 2, 3, 4, 8, 10, 11, 12, 14], "pro": 2, "probabl": [6, 8, 13], "problem": [3, 8, 15], "proce": 8, "procedur": 15, "process": [1, 2, 3, 4, 9, 12, 13, 14, 16], "processing_multiple_files_and_writing_fil": [2, 8], "produc": [0, 1, 8, 12, 13], "program": [0, 4, 6, 8, 9, 11, 14, 15], "programmat": 3, "prolif": 9, "prolin": 8, "prolinamid": [1, 4, 8], "promin": 3, "propag": 9, "proper": 9, "properli": [1, 4, 9], "propion": 8, "protconc": 3, "proteas": 2, "protein": [0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14], "protein_": 9, "protein_2zq2": 9, "protein_assai": [0, 2, 3, 8], "protein_assay2": [0, 2, 8], "protein_atom_lin": 2, "protein_conc": 3, "protein_fil": [0, 2, 3], "protein_file2": 0, "protein_h": 9, "protein_mol": 9, "protein_sampl": [2, 3, 8], "protoporphyrin": 10, "provenance_sourc": 14, "provid": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13], "pubchem": [4, 7], "public": 0, "publish": 14, "pubm": 14, "pull": [0, 1, 2, 10], "pure": 1, "purpos": [1, 11, 15], "put": [2, 3, 9, 11], "py": 9, "pybel": 9, "pyplot": [12, 13], "pyridin": [4, 8], "python": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 16], "python3": 9, "q": 5, "q1": 1, "q2": 1, "q3": 1, "qualiti": [0, 13], "quaternion": 5, "queri": [10, 14], "query_id": 14, "question": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 16], "quickli": 5, "quiet": [10, 14], "quit": [5, 9], "quot": [0, 2, 3, 6, 8, 9, 13], "quotechar": 8, "r": [0, 1, 2, 3, 6, 9, 12, 13], "r_valu": [0, 3], "radian": 9, "rai": [2, 8, 9, 14], "rais": 9, "ran": 6, "random": 3, "rang": [0, 3, 13], "rate": 12, "rates_df": 13, "rather": [3, 8, 12, 13, 14], "raw": 12, "rawiobas": 8, "rb": 9, "rcsb": [1, 4, 9, 14], "rcsb_accession_info": 14, "rcsb_api": [2, 8], "rcsb_attribut": 1, "rcsb_ec_lineag": 1, "rcsb_entry_container_identifi": 14, "rcsb_entry_info": 14, "rcsb_id": 14, "rcsb_interface_info": 14, "rcsb_journal_abbrev": 1, "rcsb_polymer_ent": 1, "rcsb_primary_cit": [1, 14], "rcsbsearch": 14, "rcsbsearchapi": 1, "rdkit": [1, 4, 9], "re": [1, 2, 3, 4, 11, 15], "reaction": [1, 13], "read": [1, 3, 4, 8, 9, 11, 12, 13], "read_csv": [0, 3, 8, 12, 13], "read_handl": 9, "readabl": 9, "readfil": 9, "readi": [11, 15], "readlin": 6, "real": [2, 5, 6, 8], "realli": [1, 2, 9, 11, 14], "rearrang": 3, "reason": [5, 6, 9, 11], "recal": 6, "recast": [2, 11], "receiv": [13, 14], "recent": [0, 2, 4, 9, 11, 13, 14], "recogn": [4, 9], "recognit": [4, 10], "recommend": 15, "record": [9, 10], "red": [0, 13], "reduc": [6, 8], "reductas": 1, "refer": [3, 9, 13], "refin": [2, 14], "refine_hist": 14, "regex": 2, "region": 0, "regplot": 0, "regress": [0, 5, 8, 16], "regresson": 0, "regul": 10, "reinforc": 16, "rel": 13, "relat": [6, 8], "relationship": [3, 13], "releas": 14, "relev": 10, "reliabl": 0, "remark": 2, "rememb": [2, 3, 5, 6, 8, 11, 12, 13], "remind": [3, 5, 11, 12], "remov": [0, 2, 9], "removeallh": 9, "render": 5, "reopen": 2, "reorgan": 12, "repeat": [0, 1, 3], "repeatedli": 2, "repl": 4, "replac": [4, 5, 7, 9], "replacesubstruct": 4, "report": [0, 2, 3], "repositori": [1, 4], "repres": [0, 2, 3, 4, 5, 9, 10, 11, 12, 14], "represent": [5, 14], "repretoir": 0, "reproduc": 5, "request": [1, 9, 14], "request_opt": 14, "requir": [5, 6, 14], "res11u": 1, "res11u_mol2": 1, "res_count": 14, "res_lin": 6, "research": [2, 5, 15], "reserv": 3, "reset": [1, 9], "resid": 9, "residu": [9, 10, 14], "residue_neighbor": 14, "resist": 2, "resnam": [9, 14], "resolut": [0, 2, 6, 8, 9, 14], "resolution_combin": 14, "resolv": 9, "resourc": [0, 8, 12, 14], "respons": 1, "rest": [9, 11, 14], "result": [1, 2, 3, 5, 6, 13, 15], "result_set": 14, "result_typ": 14, "resultl": 1, "results_df": [0, 3], "results_set": 14, "retain": 8, "retrieve_pdb_fil": 14, "return": [1, 2, 4, 5, 8, 9, 10, 11, 13, 14], "return_typ": 14, "reus": 13, "reversibli": 10, "ribbon": 5, "right": [0, 4, 8, 12, 15], "rigor": 4, "ring": [4, 9], "rit": 2, "ritonavir": 2, "rm": 4, "rna": [9, 10], "robust": 13, "role": 10, "rotate_view": 9, "round": 13, "row": [3, 8, 12, 14], "rstrip": 2, "rt": 9, "run": [2, 3, 4, 5, 6, 9, 11], "run_from_iter": 9, "runner": [2, 7], "runtimeerror": 9, "ryyvlzvuvijvgh": 4, "s1": 4, "s_length": 11, "s_list": 11, "sai": [2, 7, 10, 11, 15], "same": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12], "sampl": 10, "samples_df": 3, "samples_fil": 3, "save": [0, 1, 2, 4, 6, 9, 10, 11, 12, 13, 14], "savefig": 0, "saw": [8, 12], "sc": [0, 3], "scatter": 12, "scenario": 9, "scene": 5, "schafer": [8, 12], "scicompforchemist": [3, 8, 12], "scienc": 3, "scientif": [3, 8, 10, 11, 12, 15], "scientific_name_1mbn": 10, "scipi": [0, 12, 13], "scope": 2, "score": 14, "screen": 11, "script": [2, 7, 8, 15, 16], "sd": 13, "sdf": [2, 4, 8, 9], "search": [1, 6, 7, 10, 13, 15], "searchabl": 1, "sec": [11, 12], "second": [0, 1, 2, 4, 6, 9, 12, 13, 15], "secondari": 5, "section": [2, 9, 10, 12, 14, 15], "see": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "seem": [8, 9, 11], "seen": [5, 6], "select": [5, 9, 11, 13, 15], "select_atom": 9, "selected_polymer_entity_typ": 14, "self": 9, "semi": 3, "send": 14, "sentenc": 6, "sep": [0, 2, 6, 8], "separ": [0, 2, 6, 8, 9, 10, 11], "seper": 2, "seqr": 2, "sequenc": [2, 10, 14], "sequence_1mbn": 10, "sequenti": 3, "seri": [2, 3, 6, 8, 12, 13], "serial": 9, "serin": 1, "servic": [1, 14], "session": 16, "set": [0, 1, 2, 3, 6, 8, 12, 13, 14, 16], "set_index": 12, "setprop": 4, "setup": [2, 6, 8, 11], "seven": 12, "sever": [1, 11], "sh": 9, "shape": 4, "share": [5, 6, 9], "sheet": [5, 8], "shift": 11, "short": [8, 9], "short_list": 11, "should": [0, 1, 2, 3, 4, 6, 9, 11, 12, 13, 15, 16], "show": [1, 6, 10, 11, 14], "show_mdanalysi": 9, "shown": [3, 5, 11, 15], "side": 15, "sign": [0, 11], "signal": 1, "signfic": 13, "similar": [0, 9, 14], "similarli": 11, "simpl": [0, 3, 5, 8, 10, 12], "simpler": 4, "simplest": [7, 13], "simpli": [0, 3, 5, 8, 12, 13], "simplifi": [4, 10], "simul": 9, "sinc": [6, 13], "singl": [0, 1, 3, 6, 8, 11, 12, 13], "site": [0, 1, 2, 3, 8, 12], "situat": [2, 3, 11], "six": 3, "size": [0, 1], "skill": [2, 3, 6], "skip": [9, 13], "skip_blank_lin": 8, "skipfoot": 8, "skipinitialspac": 8, "skiprow": 8, "slice1": 11, "slice2": 11, "slightli": [3, 10], "slope": [0, 3, 13], "slow": 6, "small": [1, 2, 4, 9, 10, 16], "smaller": 13, "smallmolvi": [2, 8], "smcra": 10, "smile": 4, "smooth_i": 13, "smooth_x": 13, "smoother": 13, "smush": 6, "sn": 0, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "softwar": [1, 4, 9, 13, 14], "solut": 1, "solvent": 10, "solvent_entity_count": 14, "some": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16], "someon": [6, 11], "someth": [0, 2, 11, 12, 13, 14], "sometim": [1, 2, 10, 11], "somewher": 11, "sophist": 0, "sort": [2, 14], "sort_bi": 14, "sort_valu": 8, "sourc": [1, 4, 10, 13], "sp": [0, 3], "space": [0, 2, 9, 13], "speci": 14, "special": [6, 8, 9, 10, 11, 12], "specif": [1, 2, 3, 4, 6, 8, 10], "specifi": [2, 6, 10, 11, 14], "sperm": 10, "spin": 9, "split": [2, 6], "split_filenam": 6, "spotlight": 15, "spreadsheet": [0, 6, 8, 12], "sqrt": 13, "squar": [0, 3, 11, 12, 13], "squeez": 8, "src_method": 10, "stabil": 10, "stack": 13, "stage": 13, "stand": [0, 2, 4, 8, 14], "standard": [0, 2, 3, 4, 12, 13, 14], "start": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14], "startswith": 9, "stat": [0, 3, 12, 13], "state": [2, 14], "statement": [1, 2, 3, 5, 6, 10, 13], "static": 0, "statist": [0, 3, 13], "statment": 6, "statologi": 0, "statu": [1, 14], "status_cod": [1, 9, 14], "std_err": [0, 3], "stdev": 13, "step": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14], "stereochemistri": 4, "stick": 5, "still": [3, 15], "stop": 16, "stopiter": 9, "storag": 14, "storage_opt": 8, "store": [1, 4, 14], "str": [2, 5, 6, 8, 9, 11], "straightforward": 3, "strand": 5, "strang": 8, "strategi": 9, "stream": 9, "string": [0, 1, 2, 3, 4, 5, 8, 11, 12], "strip": 9, "struct": 14, "struct_keyword": 14, "structur": [1, 2, 6, 7, 8, 10, 11, 12, 14], "structure_determination_methodologi": 14, "structure_determination_methodology_prior": 14, "student": 3, "studi": [1, 9], "stuff": 2, "style": [0, 5, 10], "subcategori": 10, "subconc": 13, "subhead": 11, "subimgs": 4, "subscript": [0, 13], "subset": [0, 1, 3, 4, 11], "substate_conc": 11, "substitut": [4, 5], "substrat": [8, 11, 12, 13], "substrate_conc": [8, 11], "substrate_concentr": 11, "substructur": 4, "subtrate_conc": 11, "success": [1, 14], "successfulli": 14, "suffici": 13, "suffix": 8, "suggest": 5, "suitabl": 0, "sulfat": 10, "super": 9, "superimpos": 5, "support": [0, 1, 4, 5], "sure": [1, 3, 4, 6, 9, 11, 12, 13, 15], "surfac": [5, 9], "survei": 3, "switch": 1, "sy": 9, "symbol": 13, "symmetri": 14, "syn": 10, "syntax": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "synthesi": 1, "system": [0, 1, 2, 3, 4, 6, 8, 9, 14, 15], "systemat": [1, 4], "t": [0, 2, 4, 5, 6, 8, 9, 10, 11, 15], "t20": 4, "tab": [6, 15], "tabl": [0, 1, 3, 8], "tabular": [8, 10], "tad": 1, "tag": 2, "tail": 8, "take": [0, 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 16], "taken": [0, 3, 4, 5, 9, 12], "target": [4, 8], "task": [2, 4, 6, 8, 10, 13], "tast": 8, "teach": [5, 15], "technic": 3, "tediou": 6, "tell": [1, 2, 3, 6, 8, 10, 11, 13, 14], "temp": 11, "temp_lin": 2, "temperatur": [2, 11], "templat": 9, "term": [2, 3, 6, 9, 10, 13], "termin": [9, 14], "test": [2, 3, 4, 6, 13], "tetrazol": 8, "texa": 3, "text": [0, 1, 2, 5, 6, 8, 9, 10, 14, 15], "textbook": [3, 5, 8, 12], "textiobas": 8, "textiopickl": 9, "textiowrapp": 8, "than": [1, 2, 3, 8, 10, 11, 12, 13, 14], "thei": [1, 2, 3, 4, 8, 9, 10, 11, 14], "them": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14], "therebi": 10, "therefor": [3, 6], "thermobifida": 14, "thermost": 14, "thi": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [2, 5, 6, 8, 9, 10, 11, 12, 14], "think": [0, 1, 2, 6, 8, 10, 11], "third": [0, 4, 5, 8], "those": [1, 3, 5, 6, 11, 12, 13], "though": [2, 5, 11, 13, 14], "thought": 2, "thousand": [8, 13], "thr": 2, "three": [1, 2, 4, 5, 8, 10, 12, 13], "thrombin": 8, "thrombin_df": 8, "thrombin_fil": 8, "thrombin_with_ligand": [2, 8], "through": [1, 2, 3, 5, 6, 10, 11, 12, 14], "thu": 2, "tight": 0, "time": [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16], "titl": [0, 1, 2, 14], "to_csv": 12, "togeth": [4, 6, 11], "token": 10, "told": 14, "tool": [0, 1, 3, 4, 8, 9, 10, 12, 13], "top": [1, 9, 11, 13, 14], "top_5_combin": 14, "topologi": 9, "topology_fil": 9, "topology_format": 9, "total": 1, "total_count": 14, "toward": 8, "traceback": [2, 4, 9, 11, 13], "track": [0, 3, 12], "train": 4, "trajectori": 9, "transcript": [5, 10], "transfer": [5, 8, 14], "transferas": 1, "transform": 9, "translocas": 1, "transpar": 5, "transport": 14, "tree": 1, "triangl": 13, "trick": 3, "trimethylpurin": 4, "tripo": 1, "troubleshoot": 6, "trp": 2, "true": [1, 8, 9, 10, 12, 14], "true_valu": 8, "truncat": 13, "try": [1, 2, 5, 6, 8, 9, 10, 11, 14], "trypsin": [1, 9], "tube": 3, "tupl": [4, 14], "turn": 15, "tutori": [2, 3, 4, 8, 9, 12], "twice": 9, "two": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "txt": [2, 6, 8], "type": [0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 15], "type_of_resourc": 14, "typeerror": [2, 13], "typic": [3, 13], "tyr": 2, "u": [1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14], "ubiquit": 11, "uhfffaoysa": 4, "unabl": 9, "unambigu": 4, "uncompress": 9, "undefin": 11, "under": [6, 10, 12, 15], "underscor": 10, "understand": [1, 4, 13, 14], "unintend": 11, "union": [1, 8], "uniprot": 10, "uniqu": [1, 4, 7, 8, 12, 14], "unit": [2, 3, 10, 11], "unitless": 3, "univers": 9, "unknown": 3, "unleash": 4, "unless": 14, "unlik": 13, "unsort": 8, "unsupport": 2, "until": 6, "untitl": 11, "unzip": 15, "up": [1, 2, 5, 6, 12, 13, 16], "updat": [14, 15], "upon": 9, "upper": [1, 11, 15], "url": [1, 9, 14], "us": [2, 5, 6, 7, 9, 11, 15], "usabl": 2, "usecol": 8, "user": [1, 2, 11], "userwarn": 9, "usr": 9, "usual": [6, 8, 9, 11, 14], "util": [4, 6, 9], "v": [4, 8, 11, 13], "v1": 14, "v2": 14, "v2000": 4, "v_": 13, "v_at_or_below_km": 11, "v_i": 13, "v_linear": 11, "v_nmols_per_min": 11, "val": [2, 14], "valid": [0, 3], "valu": [0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "value_to_return": [5, 13], "valueerror": 9, "van": 9, "vari": [10, 14], "variabl": [0, 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14], "variable_nam": 11, "variable_valu": 11, "variou": 10, "vaue": 8, "vdwradii": 9, "ve": [0, 14], "veloc": [8, 11, 13], "velocity_str": 11, "verbos": 8, "veri": [0, 2, 3, 4, 6, 11, 13], "versatil": 10, "version": [0, 4, 7, 13], "versu": 13, "vi": 13, "via": 1, "video": 4, "view": 4, "view_binding_sit": 9, "viewer": 5, "vina": 1, "viral": 10, "viru": 10, "visit": 4, "visual": [0, 4, 10, 15], "vlsegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlkteaemkasedlkkhgvtvltalgailkkkg": 10, "vmax": [8, 11, 13], "w": [1, 2, 4, 6, 9], "wa": [0, 1, 2, 3, 5, 6, 9, 10, 13, 14], "waal": 9, "wai": [2, 4, 5, 6, 7, 10, 13], "wait": 15, "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "warn": 9, "warn_bad_lin": 8, "watch": 4, "water": [1, 3, 10], "water_df": 3, "water_fil": 3, "we": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "web": 2, "webpag": 10, "websit": [4, 14], "weight": [1, 13], "weiss": [3, 8, 12], "well": [1, 3, 5, 9, 12, 13, 14, 15], "went": 3, "were": [0, 3, 5, 8, 14], "whale": 10, "what": [1, 2, 4, 6, 9, 10, 11, 13, 14, 16], "when": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "where": [0, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15], "wherea": 6, "whether": 3, "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "while": [2, 6, 7, 8, 12], "white": [0, 5, 13], "who": [6, 11, 12], "whole": [2, 6], "why": [0, 1, 2, 5, 6, 11], "wide": 10, "wildcard": 6, "window": [2, 5, 8, 15], "wirefram": 5, "wish": 4, "within": [0, 2, 3, 5, 6, 10, 11, 14], "without": [4, 6], "wkz": 1, "won": 2, "wonder": 6, "word": [2, 3, 6, 9, 10], "words1": 6, "words2": 6, "work": [1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16], "working_with_panda": [2, 8], "workshop": [4, 6, 8, 10, 11, 12, 14, 15], "workshop_schedul": [2, 8], "world": [4, 10], "would": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14], "wouldn": 5, "wrap": 9, "write": [1, 2, 3, 4, 8, 9, 11, 12, 16], "writer": 9, "written": [1, 6], "wrote": [0, 9], "www": 4, "x": [0, 2, 3, 5, 8, 9, 12, 13, 14], "xdata": [0, 3, 12, 13], "xlabel": [0, 12, 13], "xlsx": [2, 8, 12], "xxxx": 5, "xy": [0, 4, 13], "y": [0, 3, 5, 8, 9, 12, 13], "ydata": [0, 3, 12, 13], "year": 10, "yellow": 5, "yield": 9, "yl": 8, "ylabel": [0, 13], "ylamino": 8, "ylmethyl": 8, "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "your": [1, 3, 4, 5, 9, 10, 13, 14, 15, 16], "your_user_nam": 2, "yourself": [0, 3], "youtub": [4, 8, 12], "z": [4, 8, 9, 12], "z_pdb": 10, "zero": [2, 4, 11], "zinc": 14, "zip": [2, 8], "zoom": 9, "\u00e5ngstr\u00f6m": 14, "\u03b4a": 12}, "titles": ["Creating Plots in Jupyter Notebooks", "Enzyme Commission Class with Ligands", "File Parsing", "Linear Regression", "Modifying Ligands in Python", "Molecular Visualization with iCN3D", "Processing Multiple Files and Writing Files", "Viewing Small Molecules in iCN3D", "Working with Pandas", "Investigation the binding Site", "Analyzing MMCIF Files using Biopython", "Introduction", "Nonlinear Regression Part 1", "Nonlinear Regression Part 2", "Retrieving Information from the PDB using the Web API", "Set Up", "Workshop Schedule"], "titleterms": {"1": 12, "1d": [8, 12], "1et": 5, "2": 13, "2d": [4, 8, 12], "3d": [4, 8, 10, 12], "7": 1, "A": [2, 6, 11], "The": [1, 13], "about": [2, 6, 11], "absolut": 2, "access": 14, "ad": 5, "add": 3, "all": 1, "an": [5, 11], "anaconda": 15, "analysi": 10, "analyz": [10, 14], "answer": 2, "apart": 5, "api": 14, "appli": 5, "arrai": [8, 12], "assign": 11, "atp": 4, "base": 5, "behavior": 2, "bind": [4, 9], "biopython": [10, 14], "calcul": 12, "calibr": 3, "can": 1, "challeng": 10, "check": [0, 2, 6, 8, 11, 12], "choic": 11, "class": 1, "collect": 5, "column": 3, "command": 5, "commiss": 1, "common": 13, "concentr": 3, "contact": 9, "convert": 4, "creat": [0, 3, 5, 12, 13], "csv": 3, "curv": 3, "curve_fit": 13, "data": [3, 8, 11, 12, 13, 14], "datafram": [3, 8, 12], "datatyp": 12, "digit": 4, "do": [1, 4, 8, 12], "dock": 4, "download": [1, 9, 14], "elimin": 3, "enzym": 1, "equat": [3, 13], "error": 13, "exercis": [0, 1, 3, 5, 8, 11, 13], "exeris": 2, "express": 2, "extract": 13, "f": 13, "file": [1, 2, 6, 10, 14], "final": [2, 6], "find": [1, 8], "finger": 10, "fit": 13, "format": 6, "from": [5, 13, 14], "function": [2, 5, 13], "gener": 5, "get": 11, "glucos": 4, "go": 1, "hint": [2, 3, 6, 12], "home": [5, 13], "how": 1, "i": [4, 8, 12], "icn3d": [5, 7], "icn3dpi": 5, "id": 5, "import": [3, 6, 8, 12], "inform": [8, 14], "initi": 12, "inspect": 12, "instal": 15, "introduct": 11, "investig": 9, "iqb": 1, "jupyt": [0, 11, 15], "kei": [0, 2, 3, 6, 8], "known": 4, "lesson": 15, "librari": [1, 3, 5, 6, 8], "ligand": [1, 4, 9, 10], "line": 2, "linear": 3, "list": 11, "load": 5, "locat": 8, "logic": 11, "loop": [1, 6, 11], "make": [1, 9, 11], "mani": 11, "map": 9, "materi": 15, "matplotlib": 0, "measur": 10, "menten": 13, "micha": 13, "mmcif": 10, "modifi": 4, "modul": [2, 3], "molecul": [4, 7], "molecular": 5, "multipl": [6, 11], "need": 3, "neighbor": 10, "nest": 6, "nglview": 15, "nonlinear": [12, 13], "note": [2, 6, 11], "notebook": [0, 4, 11, 15], "number": 2, "o": 2, "obtain": 15, "onc": 11, "oper": 11, "option": 3, "output": 13, "outsid": 3, "overview": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "page": 5, "panda": [3, 8, 12], "pars": 2, "part": [12, 13], "particular": 2, "path": 2, "pattern": 2, "pdb": [5, 14], "plot": [0, 13], "point": [0, 2, 3, 6, 8], "power": 5, "prefer": 5, "prepar": [0, 9], "print": [6, 13], "process": 6, "programmat": 14, "project": 6, "properti": 10, "protein": 3, "pull": 5, "pyplot": 0, "python": [4, 5, 8, 15], "queri": 1, "question": 4, "read": [2, 6, 10], "readlin": 2, "regress": [3, 12, 13], "regular": 2, "rel": 2, "repeat": [10, 11], "represent": 4, "result": [4, 14], "retriev": 14, "review": 13, "sampl": 3, "scatter": 0, "schedul": 16, "scipi": 3, "seaborn": 0, "search": [2, 14], "select": 1, "set": [5, 11, 15], "site": 9, "slice": 11, "slope": 12, "small": 7, "smooth": 13, "solut": [0, 2, 3, 5, 6, 8, 11, 12, 13], "solv": 3, "sort": 8, "stage": 3, "start": [11, 15], "statement": 11, "string": [6, 13], "structur": [4, 5, 9], "take": [5, 13], "teas": 5, "thi": [3, 4], "thing": 4, "through": 15, "time": 11, "trypsin": 4, "type": 11, "understand": [0, 2, 6, 8, 11, 12], "up": [11, 15], "us": [0, 1, 3, 4, 8, 10, 12, 13, 14], "valu": 3, "variabl": 11, "veloc": 12, "view": [5, 7, 9], "visual": [5, 9], "we": [1, 8, 12], "web": [5, 14], "what": [8, 12], "where": 1, "why": [3, 8, 12], "work": [2, 8], "workshop": [1, 16], "write": 6, "you": 3, "your": [0, 2, 6, 8, 11, 12], "zinc": 10}})
\ No newline at end of file