From 3e152ef4e2a689b1edcae9f429dcd4807b1b3d87 Mon Sep 17 00:00:00 2001 From: janash Date: Tue, 2 Jul 2024 23:01:23 +0000 Subject: [PATCH] deploy: 658063f07bc57f4e0d9ef4f619f76cfabc008e6f --- ...47111ad4d11dc5acab0479ef51e2b280a83398.png | Bin 0 -> 23097 bytes ...f53fa6c362f0e4dda61f34fff77d7fca88a748.png | Bin 25391 -> 0 bytes ...ced6358be44b366ddd21b896699eebb23e7172.png | Bin 0 -> 48195 bytes ...5c0c313bb65e946e426bbbeb940cbe6f70f91d.png | Bin 48246 -> 0 bytes .../Creating_Plots_in_Jupyter_Notebooks.html | 8 +- chapters/MolVis_with_iCN3D.html | 144 +++++++++--------- chapters/binding_site_investigation.html | 46 ++++-- chapters/nonlinear_regression_part_2.html | 2 +- chapters/rcsb_api.html | 4 +- .../binding_site_investigation.err.log | 42 +++++ searchindex.js | 2 +- 11 files changed, 157 insertions(+), 91 deletions(-) create mode 100644 _images/88c52027db529de7c3ae7d423a47111ad4d11dc5acab0479ef51e2b280a83398.png delete mode 100644 _images/a3c950784f486b8b28dce3de97f53fa6c362f0e4dda61f34fff77d7fca88a748.png create mode 100644 _images/a951e6aad5e398bb17cba2a433ced6358be44b366ddd21b896699eebb23e7172.png delete mode 100644 _images/bd02bcab94c68d2fa2388a53115c0c313bb65e946e426bbbeb940cbe6f70f91d.png create mode 100644 reports/chapters/binding_site_investigation.err.log diff --git a/_images/88c52027db529de7c3ae7d423a47111ad4d11dc5acab0479ef51e2b280a83398.png b/_images/88c52027db529de7c3ae7d423a47111ad4d11dc5acab0479ef51e2b280a83398.png new file mode 100644 index 0000000000000000000000000000000000000000..bba39d10eebf89140df2aee349783e9cb0734185 GIT binary patch literal 23097 zcma%j2RPR6_rDYwku4*8B~h|h$d)~`XJxNEW+6K(Qj+XsXOxV`7LtTKRyLusla=*9 z@2Ah_`}_a??N%`@(7=ZO!kq zm%2Q`2{tyi9G+}~9h@lmV?r6j0Ka(1%jXI|@f4NUu)@a$t+NsEV-C@O|FED{I#~O$ zJ>Biz3`J*WJ`Po)9e3ngIPwI~ZgAPz+skF&sTUoXd6@R*b}yTxq~v%T3ygM4%=;&m zgwN{ucbW6AYog=g@U(qAXJ=e_^(cQI|(^Cxgs_811baKaWZmp9erz$>;I1rTTRBD$KH`#z4b}f(2#~h zwe>V}VBhznwT2xgF0G7M3`YNbd%N}T@BO>q9&5>8HAWVI!1|Ia9}RKD8M+6wmVsBY z4y#?pBDx-P+qOlJj5Gv@a@}|qOn3Db%e8Awams3N(?od+`6&0ZxCN#j>xVm2ox;Or zl$cHYGv|UC-0H~_Wd0QNcDjf#IE$q1@Bf)kD=sRkk-q|S4l8*5S}8CvP&RXlTzXOI zsXZ(m2Pfy=#O)tn@}d$Fe1fhBJ%&ZCQ@rc3`RQtJvrUB+?BV^Lo0WEiMMXv9mie0L zL^A}@a1Dk{L~OH1bm~3x@vid0{?xIOiOKV+!?z}v-kP`&C@aA3Gig_)Zne?3_!SN37Sss0}G49oCjVaLK z;pfN4`M%}j)&JiBKGqWg@9JzJ}v&fu=M01JP3l3!)!BeYzVo5p;ZLO?M3jI`PC%@?nwVbkbP+Pr;Sj z>1o=83o?H2G{3Z-;;G#bF<#N!5vkG*S?0K2%zW`#?^@Jf`QhWUOvfL6B zx0=Q~l$WT!9`-khmW!8AFRH(`Nylbk4-lIG|IMtoEiRLZ53pwISKy7ASXfCOn{t^9 zvBD1QYG8Ppw`65UWKH((S3XqA7LMY_T>8a-UHCn6{0c&gy=$}`9W#qbL{B3JF^9B7 zSl~J#Yq_;0xw9tSCfBxWc)#%3zaJG;twj`-k5mM1k}peHkgDST^5_yge*tYC85VFTXe{hv#|I%wHXp zSZ`hIT>sHRk+5PLkU!nEbozSIOG9zZa_n<^<7lSD>b@Zn-X7|T__Jz%3~_JJ?x{Ez`C!TM{S(B@9jc+`hRt6qw-^ieKOvgqBUn`7qogY=lD`5X{B}JJ_tx9 zcu!@t77`JMJ<2jv`<{C1eZ!nTTbYqsOefhHtbftzaQ4diWEVP4k*YU565>ZHM{p0w9Q=Fib^}L6e)Xt;Mb`@yz@g`k=y1;K28ceREEYI?>i&i3r4GpdKZM7G7X%a4xVb_bz z%pmS0_0y-yJRjtzLl3U{+6SCi{!FZ>Yf?gUR%0pD+MJ>x!Q3hGI!%<`pVg0do)GDG z;ZhF`-8AL?X8?F09;ZBxwb`F0Qd?ct-)If}oiim^&Nrp@5i6ChC9zuMhnTRo%uw_d zaq=*j`B&E36;M+ooq0}^a7Fv?9JEVwR|S*xTu1GBSWk(pUW=r*WDMQP!8@WLapZgU zBJ_&JjZ>>nm_nDoouf)NvBEe?FANf}YCCvmS>EEqw`;Gu^P=UifmwexT^5@nO7Y|6 zLrJ~)LC`3nvs!V_d5ucya-k>%?)P_hlGP4w1!_qhWu6qfUCG{(6=7Hy+{2msy;O5uZ_sUL!0{~*eG>f5sfI+HBR zzcM_eJq90r;zA22aj;sHDdotmcv*(a6OFD+#$h8NMsqY>Q0+z)Q?C`ebg0g@6wa=3s1|;->ls=AFBaJ$@hUEKyNbXYfc*|W|r`MFC$MYZ$F^H$G` z86)4%qx@F-G;7duBY6V6;kaE&BsK@{`4o~q1f7QPNB+^#CkKP6ta7qrUB7=scQ9cz zGLMltH#8`@T$yd0PTzIqd3lNI01eimg+C+1rKXWAGO0mncz9pR823FFpk?6i?8duX znNilhn{xs?3o^&JDkl?q)F{R#FfktMx1yfiw?Heow!E|svQA0a(rh`vY2{~kxYD?Q zjU$*2yPH{`Y(i__**gvI5}}104W5Zs&~k0NNG%Ie(9SvWV^_hYKzQi&1}$nY#x>el zEbm8ow~BdeSuJ*MRf)XCC#i>?D)I#SRN`vg^E_uy(#pRWzZOjw%5WB~uR@U&OaET+ zyG>wEJ2regskIByeN18)uqkl8N@!V7saW1K7Qcw}OKI&n>|+?}+m@lv%qOP>(K$~2 z;N{!@M)ujzKf-)6ahOC@h#WCFR_XRDpY68QhOp{8)%E!@q1S-0mjEJTkIFFhOKy}^v4Tj?h(4Z&^}S&<`S zLAg-S3O!710N-x9kx-g}1dS>9xiD02I`B97Jn_grMDPvCEz`}R*W~h6a|!Ln74yDt zTKUDRx!kb^{(RcKOU!8EfMbm)=De1hL~NOszOVCHj^!jTrw5(bJs>wkQ*sXWG%O5UFLJ3AzUgE<8*knhyw%eq;>4bU2fZ#*B_Etc+i~gN*=ss?4tMOGOIs}6)kjaB;Hf69x144c+IvxIT5YqtKGXN(?)U!O z(-!_e^4>A?0BCtZRD7N^C3s=cPe7hP%uEoHYqDUa3oWdtiX77{UY6Aq(GX7^Fkh~)s!c29x)0NcUx|q)H7IJ ziN+T`3f#hx5-LrYqH=?{RB}psj;bwKM{+|q0G=S45)e}K-M!fa!UcC(iv)jbxMru?Wx zluC&b%=&4AUi447S?f)es){(?90}7=pcZX!Z&%UM+8KG8kwFSrqq0&kv-iJ2tak0_ zD4y75O}hNv;VidXj5Ies%O&WuJFaLZo30d8N%pf3M&Uj7y8O1qEcGY->7!p$p-3Jr zrCaZX=CavxseOhKm~iW-C^O3SVp|+~dz##*TE8twe@oqNf4}q9pkwynA1w<`ww&)a zurTA!kq4WLZGHUF=aSNcZ5R0pimKQx^5x2YpDT;k@M`0)b=BCX)M?jHQo?^26C?fZ zNpiAmo-V7nxcH4+zy{m01mLdDzcN{KARd%xqxayryj!e+UKKx1Ir(I` zB|LeqazckP^Sy5sE(5PLKJ@g2o0O6c6abtYhlk~SWs)%V_GJHfxq4Nl>jZs6#KiM$ zo|5*sQRj{d+s^SRS}H25waEq*H8uGZe)Dp>E{Yf8UifbH8~8X@tK+r48|}0eRxP;W z_jV?BVMELPw;b#D7Sd+?iIJ_t`ueneL46hz3KU(j9=kX)K3_?D5A644>()~{JAemq zaK=$%F209b!#euFQh)gPv30Ze+S-nYJ7mNbapn<@ zu}$UOH`&qCLpn!o{G+AOj7em2$#pteb#?R`8yf{hMe=4Zj;*c&@NHrQbj!uyOls8J z`)|wvzYLE3;KANOe1SMZK7i-W<4RKw`I5X4Vg5_A-~$$vu|4>kAvoeTof%95A126% z4bM90;TPT7?FLo8zaC#_O4XJ%ADO>L>HnuE%;tg5H(Lbqt(dea?mcG|zJ zuKcS2)pa<0OfQl`>oYFMWOA!gQ2ch}IEPstQozO_41ZUpY-&6Hrs5R>4Vb9kO-&-E zXU{@?L)V1+|IOs!;**FA#H?Z@%y@)Hr`_=yd8VGW<@s(8u)|E?1ng)nhj;J4+FR~W zNeWX4t?LhSdnkp3umbbKw_iObf68WEe4;-rwtfI$Z!a6bUeoudQQ>-jScHds8nZM@ z6&~sk$MNO}zPy0*_iOI|q+zFJ97b-ByaL@@y4OEy8 zkRt&ur@UO;oTrd9@Jso`g}Ew7I#F%q-9qe7Z>+_vUbrHYNtr8ZCStABm?# zwMF!&dHJ@3xk>hk(e-|IwBxhf%esY+9yw$Fn3p8v&<4$dB?9Sz*RC%{`y8BMvMD`YWLY6KM48#IfOB#3W9vG9J zJi&`<32lce(T1y#-~{@bFrV3?L^)szA5r9nKY;5Jkfft3)#{|cVYs;_^Rtlsj-B75 zi8>dkRN@BZ%dGF>4r0Tu3){11b-+MJ#<)+t}uf+VT0<#2y_^E2l`v$;vO2!A z!WAe*aT~gbha9gGOD!i&&^wZ1WA9sdvLG?@XnTgU0g>hl-fbkcqcTPm@x#T5?_EiR zPhxlFVb4ubhuvAc?E?o*B)`GvB9_Es)pE*$X-|ClS3XNC9NO%mW+d%-PIY5CZ-CQw zqB?xHb2$7&q?xDMqx8K% z9OAR{qUGn`A>U!i%=%N5zBkPbVqlUp`vW17=3M85RD=rPmLe_4Eu~J;`(F5aHrr`C zb>;~8kS8R(^(OZ=*lL$6NjR1wCE{KGVl-l3q8W~$ z!})u94G(EiPCOW73~@loFwF0|Fu8x#P^Hx$b7nO-Q1s<^oCac zK{Y(xSd;IR_sGHoj#FaozgH6YrM?8ENEynT&lCHvcp9r zjJ>DqRxhN=!VV)4lrOQPXP@erXE~Cg3Ux6(rPkFEUn!BRbolz3)$`RmzPb@@^tws4 z@uNBD*4N+4$h7gtNl@$ByoH;ik(7!@4UgV;Pp=kFD=_d}WG@~K48-$@qBumZErHB2 zb64PT6wgOk?VHS~y`S5Z?lt^(oxaSy^##mlmXtod#fSxcLr#KMbOMmA<9P@d{}5RI z^)Q64W>|Ryf*xyo!4};ERm|kNu8z`^)Kke@wKdw5jL)7&)w-)O$F8O> zZ!y9~d_mUwA+izp45&hV6*%hFcGVGVXO7z`$Q8?FPYQ&B3%H{X(4^k=kn7FhRB$t0RZb*B~v#gb?!;MU^H)07nWg$X? z+FO6y_yJkRzb?(TIwI#3oP`_$vOClBXY(&s@I{rYHz-9@<78iX#Z zs!D7>i$$+1i6S$y{42&Vo1<2KH>Od%>iC~Og(H>n4cUaBPS8KJKxX?jTNYOU&bOIV z!`VN#d?U=&lEOGbJDj8$a_%6zQjlHo9W0OjdLBCsS(t{Rfw1wrjm!7%kfFryS>dm4 zk|RgKTOXN6>!;tF0D?nO;=;{k#5hm;N$W{%m#q!GUmCO^-XizLE^VvAk>8i{+Ce!0FqelzX{{p%u+X+KNr zl!?dX?rQNyBYB$U)gLdTg%!M!^A;WjBp}A_x(oZ`h$b1G_QytF>HPT2tSV=gOK|6I!Y3-Q-F3`qe0Vn`ND)>PXn$;42f9~|gW z``+H6OSZ(6>Hrz(?cif3`swO&($Wx_@TFzW*I7nl%a1g=w>h@sRZT9eS9Mnpk_z{%sy{X_pxnb(+`jt|!oGcyw)BeVJQ`v(sn z-|yPv`16vN1Gb&Vy@$<5nu4xP-rsi#+?nuscJ;Pql(MD*re>2y^0VR4Zao7pP?s6I zyJU^m45H~H7w0NWI9Hj*CfM82uT6914C~`lvZHXxhK|*r3RuRYSL=wq7Cy-}-9KDk zeuLC?7>W%`f7KojTL#6sPSjaX*86>*Y>?z{_^k^C0O^q`r<5t%5oZy7Bcp&ohK&sW>6?76kEZiWHT)n@>p__%dlSa#%A;~fdGm0We9}?9J^ck#AJqC-uPC+Q?M2~I zy_@ZDt+w4+op>f_|FCoWg5E2u#n0(7nU7OaA_wxdkh%<+{PcLOm+xY_kNf-+qd(H0 zzvQWtGc&Ipef<2{b#O;cLBH48YxdI~a_e-y>gnS{+p|zSkbcMgeeipdU9d%|e2He9 z-aHMXKm|*GmR$ZR>9@Rjy~FHmQ>}*M$xoiN%zLs*OHbGa`1?yh(tS^cTR`Bf)9~x| zIMGRhIHl0o*fSg)9Mj>n7V7~oIMttK6%~Cv^!|w{G`z>Gpiqg0?yBCUz36PSN(3*@ zWCSfMS%(icnCCs}6PJs8YkZ07nvcDZ8lmP19x4hj;U22(m}-*aPHOqx!_2+rkdx0u z-I$o}{nlBYY+zszbybj)JF)ONeQ9T_%H$H%(4-onhNo`(I3lF3y!$kONC6k=nZ#Ka z3~&FXE}YPg%~u8~IB(Sm={)L0&Wq{@5s#HlU$}5VoA-%@`SYYCiZWNthCKBYn@`WK z7{9$kj$^ex-4YcY-7->PyOGj#fR~z@>LTOHmg5f<4*el9mcYACVPv~&;AFwErBda} zCCP<)#*lnb46;y5I+cf8P%hCYaFym{Zmi7au+OSm)H=c)ym6yb5no@o~hx!_^C-W9uLGui5M^urr1C)V$Cy$w-e0 z=-dgG%T-7njW@|ZLl~_0RL7>Wt-xS*(nC61d)<=??&MA0ghxy>J!I;p=<3R^l)w~c zWZ{Pw9v;5heM9{zUrXxM+v^<+Za6r%K0OOTuQehz+=?mGLjcC!=A!NUD009QM2n`Z zIi#&v_J0%o#ht}E{WSSy*P)JuvAn5dtbCk5^u zp1)HiS>f63;XJbFXB!5P3Cn@fqi#oi#j=9TW&k;$4%M@BX>uy__4~?%v$-{YS|0>L z>@gt1)3qHfWhKH^VM#C&Kl!hV+pl43ErXIo>z`MF4o(@6?1^e0*!Q=SKe0SS7LKHU zIWaG)M-CU{&-07SL<13=A7e;osM35Xw{G@nqIs6Cg>jL5o;C}o;arspGkH}*@NliT z=eMX%;l=ZksOjfUuUmpooV@Jtg#)Q^x;{QZK_32~jdLzG6PuANNoviCE^Yf#iI_h= zV|>NwoNMpWg3ib}Z{E9_m^bCDM2~}G((WJr$$tBGm8SEO={u|O8jnZzbfQy%S1Bkc z){89l=K&xtd9b}cN$l`cYt zu447x6C%PN9uhCxfBMorz}( z9C|luWqQ&Lk2}X7zz4=IbZ}ML!I%bjZB-`D$cM_;PCl>Gp#svNGhLeNBU1$itfK{6 z&s1(Gl;-!i;azi|#yR>k+~n_!-WoF9*l9X$5EoEZpz@>v`t%lqS>?`@&%c3L%zVD$ z@Sz-Cja#5rLbrxmc$i%-jnX9nIr1u6xx=YDf~i>pKeC3GvIqTNzbov&qphbmP!!6} z=I8=G%XOpSOF0;ZLMVOAtL>HorY@%a&N~Jw5HkxV2#adEy1Gti?+{yoYp(g0q&}Xo zGS$SKF5&Gs*aFV}6+-%ROz?p*+OwU_2Jd72;l_rhj@I-sJamMhfH zF|Br0QB`#ql8uh~nl!qgklKYm+BxOk*vjwih_}ixMQKF(@ize)Q}jed*fCqD!t^>7 z;R9Y*!`Eifa6o5%{}^BzQwFcHm=QqQ7J1eUd062{KH}t?&X0U&ziSP7fz-~p*X~wXP@Lt#EUj_1>v?|kvY_)s9d&JOt&6w? zTaJ>jh{Nu_-V@_@SIW!PY?Lvw5s3#qj!5UHJ3e?tc6{(ho{LJG77983 zmI*g_RFlZcjMx(==yM9l+&$g^XEg5FeQEdifL8XvkM+rbH6({vwLE3|&bb9*-k5Wi zfR^Oto4>vwJOeQhDk!7xF4jYf8=i~m6j|GeFv(9Ofe>FsCEzB?nZCW z5v52P39yG-#&65&>ltw#y?C*__G1Niahyz12Igm8*^Ca*wDk@x?~WBa&y+FLd2v~= zB@0ZONB-32UXS8I6i?1>no!`oO8#Zfsnk~plf?Q^%B3-Cs$ET8J@L^aoT}%=C<>ji z4N-?0{^d#nU~QF4=j6G$FDQkE>v`7y7r)Q?(B_0d_1?#eWzDzVoG940|5e>|ND>_# z{o%t0S$TO}8a`v3o7)yf526b4K8bK^W|nR6I)D5m!smCa%r_N?$t|bLeEe{*dfuN( z1W^A?LVpg1Dn93^9JA*1w1Bk++F>&B6Y{#2&%LImjLj4*gSDTF4AD6l1R{H$?kDUFAR_e{(qr_(mY@_sFP1n>(X ztn$5Z^Phui**jMjLt&(6(d4=?HH>CJ5zYiN*A z5pgY0=xmCc398+@LH};#g>luqn8?9*I+S>g7gQy09fSiRsT%@V$)5x~$aw?p_8yn& ziG`!JUYY$f?8@WyI*^ zr-7`?x_Jd@rfseyPSS&4DNXN*1?qzx23~>JoXtzIaO~ayh<%4|`B(Zx{>Il74dD5pgdb;et_luc zV$g}>2=F|VklIBeHrWucm9gqJJ3&@aQCir<_uyBez@%SgswkW{gsRcNqEkH)1M8`y&9s)U-)PvAtnc0?vc|16Lgnz214xncM`KRT72NYNYb z{Y(<%;Z^W_K(5+g*djIv6)+LI3=vV!^$q4^!`t_1)~s6jN$9C{ZL72a<}0|w!uR&( zA#`6I)3)7N9y&#dx}ZvtWFr(c?DfQ&jfey|hHrWxNT9wY`3-;KIecB17w?OWcVEFX zLPZ5^$xcel9Gt{mq*xkL?zrTUaHHVcITB#e=Mo9=)@j_>h!Dc$+d`SCo@3=qsz&6- zO4laS824}0_WI}sX@2oSD(`CFCE@z^w5ZllWI}OTfFw7s=lLFaL2XeiooELN%cp|R zl@eW0(xm6gS%(@vrX|(!JkL&lXzeCuyzui(}Tt%^G2QB8^2$* ziMch9l}=w=rocfc`ZyEhA{5+5=k&KS(>X9Ul|^4E3>X_&1wBUP@*R1>TWmS9z}x+l zrC%BXb%6c_4l^%R?t>F%A5*cWw%+&Uu!2V|JDmaHnR((7b zD=LIUA1^@(i~%qUTT7N)j$DsveRRRZtfFTQ&mx5L*F}njT?+;yjF5+C1g%22x$B5m zIqR(w13a|Oj6xw@wn(+vOHqzjs$PvKi%%@{ClXakP(w@kUD z{qj*EuA{xVb*{FG_63d|PM%WT5Z;?vt&V3W(jesE!*=VmauUOdmO%>xP6-khqx9+= z3^!-GAacF*5mM3>QY%x}5=l7&*p0&N5HxAVA4ty-h4PC+0RvP)A zsmrJLD0zP-*KmGI0-Pu)v}|Mz&Bhw(*m7vV7N}ZapWtrT{MHom+rwXt4$pl21m2rd zJ%NV;J7Y@)W#6UKL>7L>)N)@d?76+?6;Vah5qAe4%JvQ_roo zwV>mGyDML*O-gB`1Ge9TkD$rvr>J6v@>zbbX#?UBWh9LsppV?ZBU0w;&GcJtw=ut7 zUep=+F02Nyhutt=$)b$vVCAda_Y^wf;+|-VHzbB>l!t=08`VyySwZdgVUn2~fOD1C zzogPdqu1}BU9nyN)h%EP@I?#&N8Q~Yvzy{qZ-0JY>$QlK@_zpuBS`d;!u6KoN^l`rG`GjWDOsu`B+M%+`9p=T`Mt z1q7xWsee+s-DYrNwY(22uckk%#n_hTkme`E&ZF&YN|2FF=km zVL3WFTKY#ON?s21r5YksMuYy;A^^Fxf;`VP9ZxGKwBCaAT<<^TZgz!dz-TKm?!mYH9xSl4io^Ap|J$zhVEQ+SAzJ`sNCS{OkG z2HaFDT*-GmiKE0EO|!A#eeor~Wg{a{bkc?;#wQvq*0vZ+4T(z)m#WeW8XgB(TrR8Y znAv*PGt*iO$bFTm_eO!tj|yX8kL$QPYpPX|LLvPIsDUVSI?3M6a=|XB<$Wnu*VEOV z9qcJgNllH`OqZx7X2^1lk0-;;*UD6as_@v|PYT((OYYg2Z)j7mf*N|H1`tkdxFeD$ z-wLIL=>;s@M_d{aoRVyV3)cmKUD{@GK6C&+ZKf>}iPB7CqHdG1_4QJjy&$n^)M+MP9AJr_N&4^y*X;>{a2>UF z&1r~_gPVIUUUC)C$mw#IF%dqKw*)?ue)+xXx(bOeJ62nNYzi0r@}Miq`t)FbXnu~_ zlC}<^2t?1U#iqE?#lQG%yweCtd+LS+XnlYph?00&{<*exqk}=m!XmztIfzkFQSqFZ zJBx_(NHEmCad93#e5h?~{C#rjj*ty3!tTV{{mAigGnj}i=)ZTnEsrQ(SIc5-5QtvU zroUv4sj&<3L1lJ0S;98m>R4Ludnbh7?eE~zJatk zM+7sHu8p&fR9k>K24&}tNP|fkax6Tc8(}6NWpeVwpaU0G%*W?Hku>CQy%x!bc?clS zG10NbW*@-vfUMEx?SW--6p!&ik1B@f-|LH@4lIwP^g3?I^%QJ}{@#xv z{hQ}^r+VY9#u5b+R&xD0tY?yCR37%%RR0iGdwH%(`wi?56$Pv+{hboilQ@>=1v&@P zNayOeGL1U*!O=%3(v@vp>Nnp0uZ$usot8AeK3*@$RqL^0XIgQXh`s8sS8PSBdG zSGF{06u(AO{+xXh3HqMj#^c(NgZkL`wX9=)#mSD=NB;rn;jneD-N5r8D7XZp%)ml> z)Yu)&EoGMTL*^H!2J+oYZ+Y!a&!$C1;X(mRBKhxR-9D_uN_LtNpp!WW3H^mB&N%K& z=zu&!ro1MbRPG-YB`PxkZ5LAQlivC~of`_c%o#(cLj{P?P?U@+xCbXkr>xMmC-oye z-~KMyeW@jY!M5&Ps}8`qTlKMEjR+OjPNG-}_q-1USbDzaUrw{vao1KCKJlKQPk)Xq zA(Evl=D`&$Vdfo6gRmpWL7`%WN7he7jPLjqlAi-QV0(Cj&y^?VLuE6F;R?#X0$Rr^ z>#voG>Otqmr{yNZJnUas#MvQ7n+=4E56?*^Jh2AJ9cbqw+Bp9a(o5S0uy9|cSun{z zUStwzyP6j78wQ36vg>+8CQ>L1LK09E!Q@mxq{`O%+14J(k{}OL5xSG5!)xW!CFcH) z{%q6ENswE$fEvo87bMii8|@y><5PE`#QyrVsooSJ2%Zo<&R6N1G{#k1V!)mV&fa~* zK`2ka1K89C1Nfo>^zlOJVPM+APm^?{EwHA^52Uy?9QaLM~%5SYj|Y;ySsq8Z8oZ` z)v+wiHun)oLLUi`2I6Mvs9h!uDKe2Hr7@U8C~wRj{mvW^vCunUGZaN^odR0r3l;PU zcz-|zA+athSrwp)Pm)a3Y~v%h@AYn=eVP9Rb#Q5H@2+%@5^+6O; zM+|oPke|=B!2FG*J)ns1$#!10UpP^OmHz~j;l5F_vxSlitQ&c;-u2vME3c0TMw?qV8}5J#E7ma( zKly^*1h>%-y;xO}BKhF%B%Mi90>)sQj4z9yUTTyMhhmz3ogHSx%w6bN&}Mf_>azfy z|EePgM@30MwvKVdoHjQc#CSW=(|_e850&h+?TOD^|C}+v6s`dpW#aq=E4v*#Y$MNG zF*s$Dvl^W1SMK1*}aC?4NO0WwT%Ld4v0iJB|N*J5p^u z5I%<$hjZ$-!NvBod6!VudO*LAQ(LrfcT_9EW~?9RJuEu)ixDN)Q3j_bulW=Yl=sgZ z4}F|)rn_zJjT>u!{Ogzw6jSoRx6XlQVzsXj*KvI}+|Dgjsg;FwKn@iWJ0>C^9D|d@ z0Y#MB(S<9wJ5prZ_)h?EV`H0wNv1(Zjka|~8)v}OqlXJ1tW#bHL6=+H zO#aC#x_osd&^Z@3Y`AK`$T(Tx@MyZ9L_|j+svZnik<4@+ReBtNK_@nF{z>`RJz1Y1)FRD#>Pd+3Y(Q% z^lBqZon^he+keAfIO$xrEU4k5+DU|Y`&=~;jpZLUcFo0#bb!p{I;M~j$>2#;;}h^N zQ%rvq2EYH#c>GZc6h)v$v;4UOi%<7&y|?iQEmsf5e&-IvvFbmr8U~b0LpVUxA$v1$ zBFr4u+iCb^yF<3Yh9DIbRv-$U%5r@&qpJro4=U;mmWN@YO(cB4GuR+W(486-$fLp) zM%Eh4YdtyZeAY)>9r-Ya<@-D&KXrzJeTf zs-&m$Ym6?E!7iXWiqazes6~iWZA)6i&KHG#o_C$MWG`Sd6tnjqej^(PTAFnceA=%M<9~ zwMHQKMaII>zD32wiRtNaMMb>O$XWGqKT0U%mi&q4)J@Q(fV}Eg5$nyG#Y!d_w|PxC z2P0P5GGG`_|EuxRdjHMW|A)BXerENp9(u-W_ZbtUw~b~08wR{Y@ALAFxVac4(3^$< zP)j+U450C8s_4!w2TgJLa-H0>YlYQD*14c{dIF+t@RQcm@49vE?d{!b&9F-2jEs!< z*;$*+UUC25Jiryl0^GlzN96n+sZT$^BOad`_HmVXZnYZ5D?GZ6;f}0W;szM4diZ4> z-Q56wgk@o|S^c#+3_U}$jn1RzM+=0l*HSfg&$pJ`e6yZ^?T`@Uz$cm-4U5AKi(NLv z*l%VPpBaucmpR_kF?QzPK>-shJJBmJS|G=GQUH8II)SOj z)TG?%glof=;kSha8z^-6f&v8KQxt$h+=4U#5UkME1K85$p#qSV)wwzFfia; z0e-qw(PFmb>}mO?CmOoV+PL?n-ST&6QG}RM`4>QBDlu$dd=8#mCVY$XCx`|V{QSg` z+6r*W*3-=)Bjwg7>rg91I6S<(^48YYVjy+k6XE{YgA$v6g%%DV>YY<%1_N<(_A#4d zhx7TH9^nBCum`lt*4liLi}69NmW(doH|Q{-F&&tA4h|w{$|86Nss-C!QSB7)ec6eZ zGl0Pf@sa4KFhl-nQMBxmf|wqVqcoCco&&;;<#3Vtw7p{qjf60=ojii&HPPCDKVVd0 zl#%Q{sND#0I-qIGnjc(I*Ssz446c`0JDpqr3_UiE>e3^CM zdge)(qRjp0ReJv*+_AfNar^2am_bjYO3XasO{t`f$KPHD7L57?e}@qW2%$aIs_{;G z8j!ZcT#M6!ux?uvXXrCiA>~#`jBVGDoW+unCrx6{0v0=%g18?*hAggq!CT|>salZM z{k=}dV6NFu-KyH>BtV`Z$!ywJe+bd1u_in7zh9EO<>4M0sKW^nIQ9MXxd#OErn^7niVpF+XyUg9nbD=y9QaOfLxLZsoGn_8iwot6PMX= zn`d7c04MwP`Q*lJP+Xt7-*|>P7tkJP&7z|CJ7&4ggprK|mY)&`yiY|l7Orj-g2cd- z>@Tx#`-%_-C8~gxMwAt3KEblvf;2a_nNc@;K_n559pJ#mgHj$D7M6sQK{(3kn=Uo< zJj04bKZS9y&rSv1y)MqZT8kUsxLYF4hps|09X(^u19lGdy8}B&@+?MCxXjDaOBD@n zN_;e0Ycc$)U=AU5-P#wFG;)1zz>tZcympyx9(9ze=m+k7%WGu5jDZlS6rBr?Xo{VL zZiOI?pSB(Y522U{+S}bT2n8VEpGTJ#7zcO)8R&5g(&h>IT3bzG`)C%MtI(>|OVoZ%P>k+?r)dAZ{Z@+Pe)~wJS*|j?*(iFF8&C@{H`P5$c;yoEH(4WQ(fX;UQ0AA9NWB7jd72bcfSj7(KntGmz zH4%Qx3&LZ1;}!mr{cWmm_=Gc%LZwq|y|9EBg~5ljiU7*L-BtUmT!a*msr+rNiU|mS zN>hpNd5l_yKiuG5^N<`d)N7%0Oz1ulb)4=4RRaCNui2p0jT>yunz_IYi=ghz{8lze z?qrqjgNfev)@XIvOR6B*?Y|(`+X^Wt&ne`Fe;bcx>jzKtTUo>f2Nw>7FgYm2_Ns%gaq0^Z$ib}i6YQ2H^`LH9`aOvX zVZ614$RDX9y8}+-q7DxShsrVjuh3)R{D(xgHuyATq zCH`-({cs!{ehut83MB#*aCl8kjp03)y5L1|A>WMap^M^oeP3VCE&cq4443OM;mw;j zwRz|>4F+Z;M2W(2(bn!OIj-ONiiw+w5)$+O zdbNkf#V?LkzRMMzS%Z#k(#ZuKn~d~Qz1c0Bj1p4A+5JqPy&}`F?+EFSL*8HT|6j~B zmQu4?3TPyX1lk>nx)t~KQBC`eP=tRbX#q z9cKGvoO?^gqWeA4${NB}D2iMOIts+z?*4t5j`;I2(2kc2@5op@LK+aibv>@IZo@~k zp_E)Vnvs6Q%uMFlMCGSey(7|WD^>a`xaQE_L z;HJj!l`+w<+;}OtDQNAiwwFh1prx-o==gs9;r7_>Dthhm?awdB5~M1P`Do7237!&Y z+_jP2hc2+`hZkQrgH9CDAuBWaodV9f4TP0r9qe(=Fk1ONQX-;}D024qpwX3nx3w~6 z#Ai`2Ha!dqg{Iws%p=U#>oL4N(!C&@%-wBcK4M`CSiW+_?!zMyM(ew<&Orwoooq5P z7RUnH`0B8aY#w0rw4#}${e7JSj`kK6K@L3T9NUi{?0bB;!!WU!9mzy-Z-0Ah1l23O z6Qz@@R5kM`=_~mV{lSF`g_k1E zQ9lpJ7%sUPI@g&nSJBDjw8W|uzVKr4?6m_j&}jMo>f-J%)Z_m4?VHt1Yj{CnAz}L? zc3rQ}ULeNO%#?{EVGw~fJg>#iGwD8)Ey(Ls9GV|bST5(Cq8U7UFA3uIDjSUP8=$M%?_Blzxi(kr(`JRb;-7-CMg;!`%idov9 zDuz~|V|!&RTX!S#F3WST46PSpA+TqlznXy;&?w)$Ne8;J{iZ{Bi`%h=Vy#Y zU2?78P{Iriwf?v}TU7iSI@*U%? z_r%*$X*al#SIO+{?d`6(1rcYhUNXi*&Ade*2(JBAp|&IJF6Pci&#V`K;&G&O6Y-$byy> z%*aJzQf2VPrgN1^wzlt)qap7T9R9mB1@j*1=)?Kmshr7ahp)lcdDnoEh6c! z8SRfiVMqw-aKkc-OQeiqEDODv0yZ`_@8M-e;bih~293x4mr7R;hf7Vl^?9EdSJ;FD zkns#MFf@!WuH$;WDevW$jN6a9IN-fae6O31{42mCRDi$g2gTqO@Cfb=;ZbDE zeimU+X&o)z^~0sJe-QaJx}C^`+t6L zvxe>X$#~3$L1V;h$Z00B)1-`K#YSZ`j#Vc0AVP#@QF7LiO~%)~ax|iHCNRVAU#p7y zpfCp5%LZOmwA$&4UJ<$CIxe=e1GQpGocc!i#k;<EjeEB|pz2MQAW<0z%G9`{#x3uR zYUfe52-5SsLiBOphf33os~io!pJuXtAl*CjhcP+KDihw+6qR!t?&x6gnk{r8M8(9kA&n*ZnfK}86;W{? zSGCpei@-^vqoXU8VsjG~7DmKaP&Msa=qxhQ(FuXAwORRE<${WZcUjTJ&|GSTeeW-` zY!Z%l8Zl*}3h**oq)}T>ea40cAVi4H7b)u5ejAD`IUPt=V_;OR)=MEgdVRCK$Ke~Q)_B!Br#3Oi{zL5 zEBtW0?(u-PL6+>%sPpuwuN`C)phybfB_O!8>Ey=15%AjXE^vfH&I%*U=>Qve{tm~O^NTjNZqh4wT|eQITMR?#)( z$WQ5K&qCloChXxeO2{{#j0}X@g^FZuV6yHI6$zZ2tK?dK#9X6Og6W2Vfp9zQ=_J32ojnEDMSKp zAGwf*PybrM7Qev%2*5kZiyuOnWPqYL1k9HZwQ5>Y`zFEwoZvxTJBNDO)N#k5*SFn1 zh?{~k7H;tSA!k|^B+7c4w{|O@;U0cd%Y{W7x3n_!Ln6rYKbD`m&^c|n}%8tUarzNu5}9X<%BqN={A z_4m{BafVtcbPF;kV@wS1<6)ADuUF)DgBmUHLO75-;}APqM#j6C%8@f-Kb=J3VuQKj zdtQaAv&21fE=Vy{(3kb^$BxY@2pNA!jcf=Nee0Lr|t^u_~$#y1w`9 zc$gk6h89g~x@Ic4!X~1SHU8RNTnZdx2n;3gABo}&mDfMN#s6jP!Sm>6ZVR0Og>$Es ziWrUTJV`%Nxv1zmdOV8e)ak+5-MqfNlQofN7t%RJ^tJv0t2 zkVd6YqXSHEIz&jQkRl^B2ir0m?sj$g6L@4#^qxFmzBTPZdOn`_jzU&`&Pwx7G)U(r z4i~AXX1kZ@qp=};-2J%$sq+Jw52u;vnX>cp22?8CKH+g4KVBQR2T=fCeL~V~JxKUa z8tz+{pAFuA;hxYn#@l^-5>SjQSv^ny74KXwB7%|2SFW@Sspy)U&$Rc)IkTrgeV&bd zgtX_HU%6dKi)NL=mN^`p6*@E0oC9no4E3j>*h|c&Yoc^#Hi(hNVjF^z9wy*2HKtUn z&gbXLB#Hq_n;}dZd1$8$_>+ zj0|^Sps(-Di{5=Byi-9doSYUSyP}sH?(|c4S$P*EJnDUb7N|Q*C=`}#D{?lgnw;z_ zTH@&VZIXs=_&9II)ehOd8vmr&Z?@YyT)JSbN!mE@;fnprv(KG-w|3cDOUuX7IF4YG zuUpFZtwcnMWYS=^b@S$7Wkaeo`#TVul_HvzRq6A^P z*~^h=v-r$qokdqr=^{ZrgT)1EVjG0?tDQ42vFkw>yh)7(qs6LZWdP{*ZW9a6S)IY@=A z(iKaWUVYi~lq@p-EG=40qlsm9r7yHj2@(VE$GVg}4@PM@D8x-42QRW+vRKN1xzzrjF8!AmTu>{4S z@tM%=LXZ#2biMM{XyG*;!+|pcG|jgtq6B39Mat6sXCRHeR9s8}TDze&gF}v`S6(t1 zFAzN&D2It4l7}Gek={1}=vmV>fz!`If(e$iZ~>RI8r7;e!W2Amf6U1Jv?&*{wAj*8 z0|N^iqm};2nI`rU@Y4tg;~OFdpR?j`3eDnlfN++inKs?Xq~a_dk$FaOWl|KZLPOEu zGhu}4gSZ0Pe}igs&VXM(-nAE;_6JxOZuj$h)xX{e0Njkmh6kb~`57pe^dL6^j}S%H zL$nfj?0xkn`P(EtN%d1_D7B`-OdXGYtyXZ^682u0)zMKp=5T|I%-`;Lr z^$1Nlx1hkZ8>>Z!6Q92O_lp;M4#$IHOV(4H^qi8(J`+i(*@i8jvr#=YLbSIU-2-CO z6tC-AkN^4khSkk%FV@7jjXqp~R5Pobec1ijtc&&GPV$0pC zW>Q*nZG;E{IiV2dSb8<1*?fj&tD>NgqgIOfs8BBLsA=;|A<{_1gIN&VYpp47%c~mc zxCo@w&wh?Z**0f1M-$g##oUg_y%pI@pMvJf$J&4B$aVxNCV{=bgcUvvh!Ld#Fr|8& ziJ1r53SNf`hx<}ZB8bDQ{MRK}cP4pdQb}?M+y(~7{0Q;D0K2hx{chcNeSK0qwZJaq zYuMZl~K5heB?QAPtuwX+J ziNfQ*D@XjzihCdP|8is?Q&TMgnQH!j<6wMV|J%o%Q|on#Oke%xNppjZGi8gLw`(Om GIPpJzvy;LA literal 0 HcmV?d00001 diff --git a/_images/a3c950784f486b8b28dce3de97f53fa6c362f0e4dda61f34fff77d7fca88a748.png b/_images/a3c950784f486b8b28dce3de97f53fa6c362f0e4dda61f34fff77d7fca88a748.png deleted file mode 100644 index 9b441776fd60b010162e3b4103fa3577185600c5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25391 zcma&OcRZK<+XpNpBO-ei%HH|fBSOgDJCqSJGPB7HX^HHSd~K5K$V{@b_bMwh3S~UU z`R%%XuiyQ8-S_i6e_UO~IX>g~9OM0dA7`|d#&u#sIzlWgEMgU91syCbY*8$%Q)T#g z@DqJc1zq@`xQC*VhpvmQhqu)|8!UAz4_7A_52riU7rkumx!-YdzQQNYC%|*j-owMy zU4ozg?td=ebGc{7FN~}F4jw|_s%-3zg>}vf`R^23Ht!A=mUXI%f}EaD>iU$o&vX50 znXNxBWuB>MDun$vN3L9?x9^i$GuS-g-^KgzVC$$zf`vRpTE>EWAE#~ZQLGC zL`}-XM56LERGN{6g@rJf6r1fCL1$;D76;vCw@2OlVski=vWg19FX5=DDD>%`bmPkN!vFt*TKuUmDS}&JTxLsG!}mAmBAa0etXVp88VD1 zB6piZaLx$We4;Q5I{GQ*v8*N8`y5_ZO9;ytDov1StD7D#^BZ4u%0st;Nz`Y{a?)$! zuFq42BE|iG94bxh zE5}KaX_19DP5eGt|7WAFdMVwn%&GlmvT3In;T`e796%rES*bIT^ zIEYONec~nAjp{q?$t1Tvxi-^yp(XNM$JSiSDXbW3{&x6_bfPCU1;s^K*%|i}(P6&PxrgKGUpw!%eIu^z;B|E)j6L|TjW^vk z&TO@g99ty(rAOC_F(+(m?;34Ao5+Ew8jWj19hjdb>v^sS>ls#)L}LyLO8LcU)z4l@ z>uGz!dI1=l{K%g&5NEBsBulJ+0b{E_wC{Lke;!Bu=NVFyZ?2Yik`(5APmL&u$2{j0 zTAWxPUUg%`Brj|A7UsC2%OtdH-EjTr?y{giAiGXs##a>^`e{{!+v%aY7lWAYFkA1C z&Khz=J#~jjL?5b&RDXMCEPQz1fXrgr?Yv3C`3a^5JVC2uk^9q&)=O|i(DYmtVp>|p zQ*7btHkIU!C%uA)bB!HVZ)&ux-z|(>U?dn%F!=jKR(Ki9Ge(iTI`#C;lzN@|vY)uB z-&2PP2RH=9S>LOtH(ti9oF}YEl+aBc|G6;(y2$HY=MJN|VRVA&8!fFnJF)o*=QkQ_`2%HYy|swwgOMfCR(7|L zAhvONFrY<}7~8lm85cK`rZ_dNX>yMBMQ@M7Otk>VrTn4N0Taxs%Rg_kaHmsseh}Uu zu4r2{nHsKpnW{HQ9((c8N?cw0Yx!cmt5n#=;cTf~3hfyDA`WuAsso&+si%mz|xpr4BCEtX817h`%3|T^A3je5eU$R?sp$*93Xve()l=3cnfH-)jwN`%Tz`71_JiT#~XSm&Zb{#gI&fR;SI|BrxE z)1wJQrfDpk)9AK^3Lya@)c6%Pq7dSl^zflMrBrR4@K?d|%yM~JEQ0bO&0Lbh8=u-n z1Irn`9zMjZCpCN6)$%ctisGLt(`{^$=`+c3M|PhY+U?G&Hnr$}u^hagNFq+nD`x5- z7p6f>Fx?h&NhL}M{lxTkdq0tWb++N{!X@f|{BcstP_i)B%HP zco>rsBbB;($FmEJa#jh9+IXn9s;AeSX(O7^=-r^ThqztS#OpO2Pt()h}?p?e5__n3v98N zZx*4A!5ME3Hn{s_d{tOa;|VRdh#hmOg@1F}EgiR|(P=GCN_Cm*VHR;T4_9b^5gug2$vpPN$cFL@vA|9OAKVw-@o-V3T1c>L66JSU9q@Ect&GIpZgsuMr+Q! zKF=-UuIJ_5nh$=>-!bg?JnD)=7Kx>sn_WBdc#bHTv0m;_wCtu>$P~M3eLMSZeA_(j zN|ZCp@2kuzQGyPnS>J1?l4~(Ga#{s06><0fqI2H!pyJ(db9Tl4irM#S%9v(xEQsd3E(}z?@Pqy>(Y4 za+*3DSGDsJIqi#Fa0&8k|1R#^K~n~A5<1^PAK-5oqhU{k@mb>`q}Vo8XSfQ})Msi= z9oV3@35>(1w+X7u9%}Z9=#(ix4dZB_(>CXk$l}G=p2IB-OqB7m>(aQ^nK(~Ay-S|4 z)mn7+tP6`w7WZ}bx2G`~;N6c--dU};BPW{`TNL$0q#9B5XMS+kx8p=>;)gGXy=%f) z4KY5mmbF*YZO5@Y9L%`yF7P)OX8dVq=Sfe0R0wN=pYWe66V^(S8yrpOvb3x`XL~c! zTGO9_m3^@;_wilWCdi^n>!ZSKeWkqPv--VnFJ{~Bve(a(Hw&vCu8s?~dpw<7W%tV^RcM-Own{hPO@wSD|;@y^plYg$&lcEhYsa(*Ql;Y>zx z(%Z!fp zTjllVxm+<%!k(>t>m64d?l&S#ks;t>#TiMG@2ZS(>q3auOaHM;vS?zgSb5b^Idmp#Bc2SkX%P|>~mpr*p zJXWVfg?-^dZLsKGYG}^OZGxwln8!1f^jQ5Sv=%UHG^A_eo;^7Eror)Hfs>E3qX^0G zXiXm%VEfr$|TAh{-~^VZ$Hwkmf$6c$vbEN)_!G!V0s<1 z{^4%}#4j7waZ}eQ+KNqKJLHBPOUL@y>jcF%4yxxvF6Hd`ZdrIR5iY81IM^mgtV2EV z^~@n78uUk&g5&mj7v~4?@gZXy@^9sE;&e_$nznCalcygp;|B&UknV0;IrUGYsOpFc z8$Y(a$mx#P>_byTof~;$I-r3pgtqcin~=)7dsgr29@Av)cwF}&ynLROqFU=tOP8dE z^*3HaVLI>G-nj}&pJ5k&dD%%}shST<&n^*Y`=YYXt_{CsM>e10=_3oYyz>*t1C~&kdHrh9g2}1J(9dW z-9SHbGf4XBvuDgI=Vgxf7uYUTIF9heGKim-NFzD={j&wCqUmGu%MgR}KCcE3@Mh+d zJ6{%=ZMvOYc$kIr0M=YRCvs)NiXz=P3!XG!697`w!M$ zb&Otq>!GCu1qEIi>`+c+$TQC!69jC3kB`s%c>8*_263EDXp6b-D2=e{XU4R7?`;=# z|K|JkHSE3IGR(~KF*X%Kf;^WCK8)ydI}Q&o({cKv13dGO(ujzNo;-d$i+b_+F;-$% z_|vE78{>`3txrQeDIKJvqa$Hm0QPb_VMyaud$`s1uE%bSX!D|L*5GPz_ndsA4=a_X z=3dISNBO6S+|85Vk@p{eaygaIKaFbap&zohBF{3+F?^dIuKw6FzlRtrra;lWdY$9!CS#lxr}oDhd%4{15al$yI|NoTjP&4T8SA1( zWO}#Z$U7-XwC}ly$%ITL_vGH76pfCK=HS_#=E+B+@wpNR%gf6HFXRk4WDPk;TKgg+ z7s;bz>HFqd&+l6sb(?tKdErfuYivSTo)Hf{T2$mnTIVY|W;tUTZ?Q{vVN8h=WRd5}s z4fOTHKYmo!GcbV6k7aa#nI)TwR31WyLO7~yDxAMUa%%tkw3NSVpQMbHrH&zp-OGbB+)X=gsnmN;+?6X}s+5dfZHN9b#+_CA+*h^(i{JlS7 zY(C!Rh;u~`kjrPbt_624I{ohPOy#V!Y+K|>t+xLatAZ6MQb4_t(nn2~aMIxPa(1c` z$#AkYx;O6Spg(zUCbxf-pMCIPX?sLEZ`Nbvo#S~{4^Ua$C7!ddiouBO;n%>UgN$HQ9g^V>00W0@Mg&*IU@QAt*G~vawpSUL(q2qk&SmRzlU*nYH|ca%=fEsino{^sh|rCl zUnOJiZ*YUAr|b7|!!I#Qs69}Yu0v%-A^F4Uv@YJ9Q70FJF!=}D1o{0)@-W|W6v_4- zrP@k6R!m@n2~%iDDIco;vQ^|@kkWm$^zJw0H%Wu%M9+z;3;DF#v{zCt4wjHEE<{os&!>MFvOa%25i!59e)^lf} zctcoNX01!r^TN=t{W&4QUaV%@y5T{*rWV(w*04LIJ6^jb!?)J}rNFomV89pFcJA;mwne7BgcY zg31cjLUNnoCRPeU?z=u-H>lprE-_|oJ>!15)%P_paDg0#?xw`s4A&zmNVeDfi_-v{ z7%_&VML6)tSgm|M8@s+F3;v4kFAP&z;}A*T_8K1eiHD@VdL8$@gg(CvvouM(#?K2G zP0qxqFj+Df(`&%8o}1#tYmElHp$VD}{NmV1pJNby{q^g)akZ0e0xJ{B`O)GmJj`1~ z=I(WI2#r}0xo*-`bcY)@e*Ez37UaY^IyvQUVa65&iXpR_XUNDZliT1-iErVDa>O?!k4MDRuAy?C+0>;<<4;LJA~Jau8(3RplkoJ57^i>0Y~?D1CqbBfAVU zc9*SPrr}!`BpnzuJ5)jZfm`)$ikD8V)!3%O{`HxJP#4abrS0P;$Tv$b{F!}MsB`Fb z8wUFVgI{zTcyh`!KW=b@L+uh2fJgtnbMK+%GBtI?w~8zMjgkFJg7xPgnmmw2f&UgT zrs5EsuzGjqowvG0^l7Bx%!7*au3_$M`gXu!JEWP{iZS&ZHk_9=b8_XdP$)BJXT_mn zSt8FUb24BnS*Bdsp(!cOde@wB5$2@>)5YtiXJb=)aQVuYBg{+JLuAzz6uuh5vyhD}t|k;)W*{WbB`SJR^Z+P>;a-9`i&g*@~LH8bv~Vhuf9nyj)v3W5fAWka}3?|QSF zDW#me=S*Fo8RT1Nq$gW{yLCkobwDuUsNVxvQgBGc7&%59CzMiLJ`Qhtvbs*Zs zKUDrHDV*ZaDY{iGqc<>S7`dH84Rbm_L73Yn3NB)N3XPnr1s z`~*lu<-47UJxP%yaw=)+o07J^rQZlcomO~)DR#UjfZ&37#4N;X!&)84Q5;m)$6yt{ zn{;`m?GrcCKGe+&$7n{KYx!Y(yg>eTHMtUX>~)dN!38slmy2uW&kU_UJXAOS$XODn zsioYMstwm&Qh{VSj^n}W?j>~!4$QlwhUVk}-mIGRL2AZ&?^%Z7pcTf9#|-+A?7zzU zYn;Z&*;vH`&=&AW3IU>p-d3OHm01R)pz>rbPD zZO1Y#W_VXKLlTEHM5jkR2{ZgR88ZYfiDPSi z?osIFm_aHdbRjaT!M2xtymZc7TR)b=RRQ3P+o7z4$K{6kb?klURXV^}zByuN*?g++ z-`bB(wq{$w*3RsuwaYe2ey7h6kR(4^2v{I*_H<~CxRa>`12jK}x&Gr~k+JZk-mHyt zIW4!S9dp&_Jgu&B)4E}<<+K=#AtC#u2 ze=)QV&ctNMJRjZ0ur0#116v0_9Ev8NhUdW4oa=>XPyFJ*7{7l2gWbGEyES zGiiK#wY_gcq_+wk!Po(CpKqy@adeKt$N$~<5al?W=`!=aZ^eT~{N5!fAqSR^X6`RB zo~0K#i}&D^ii%40-n5^#iOINJ#bp+UbjUDHCx~P;F9P_VzCVkf{(Fy1YG*}I>Y$&j zw3!VIXJF)9^Rp4+T`ni^g#hn%YWq@&C=lbXHpa%$i(2<*EAIa+4T`%KNrF_yP_c^q z*x5On4%(b2V#pWvL!J(8!+DseG6o*@!+53R(ew!b07@A$0cEap^1JI3)P^?$P)tyy11b0S&1H}U zEp-(hIe%iu@C%B-6xr6%8$?dHr(8OP7kA#b@_fHlvcv-F&+w(|tC`y6rq>3aXC868 zi7|+|&SKeqPMSl>+-g6&Hc{2Pd8j`p^nWgNcxFap#k zx}f04Z#c+Ie4FOFTE@hQYbQdR7kc&QMh{ez)}2e^{_HxO1~35NOt+HH4^v}Mf5z?g z2rpe;w zAuX)>FE-+S@l&Q;FNgG7E}I9vDhlsIr)P>zWXYHn9-K&ud#%w>@tH;CrTY?|Az^5G z!E5>$%1tOMh4&AEFuiVLle^SAR$({c0c0jy3OOvZm3QsY^oDCE64`mieQ0c6jL%;$ z)XDUYWfJtP6(Xq$HeqJwm0=Ks15H|~(8qT=J|^aYPX6x77Ya(s0}ppTQ@{k+)RKa8 zZzN)4MUXH)EGrXGOBEvv+Hbk=80ga-nqmW@VuOiaF2PZ?4Of4abn@0xWN2A$(~aa) zEK?RgkS{oreH|P;w$YsV$`va8A&UVv!uxXHC+&sl5a4K{%4Lsk=6!%9Y~|*jpg|!e zVffzjgipy{caI9mqN2v1b+5D^JY2;iqOam9n@jPR+U=1mZGH{p8BytayipEbE)}~I zAMG2`vO1gR#;H+#`CBoaceFT0%b6YWGo9zFe73D8Jx9!GP!1IBarBX*GyddAnLMEO z-z+m$N#n7v)K(LYQJojBZBJ@+Xec(1$y@xK>+wqW?%flZAtdu;{R@oao#+l}`8TT@ zvMq#w$IdUe8r@nqPUWp^V!?{jY0mtLFD0BW+n(3v**bBN&=~Xr&UNb|&tJTle`%L4 zCnt9*;w)__)aT476eX6Hmey?LQn&QpB+j$Wun`MC;&|y_G}+nNuIrT}^J8`y#KWc+ zvz=SNz0kh>re(NkJh^?IoGIgFh_>fEdBonM_K$-!NHmm~iW0OJ5EBn&q|X+)813vO zlLwNACr_TBi;92(P$B`GD~{Vc2+wWYW8j? zPL^z?k8iH#x1D;{JvJNQ#lYVT2xGHTsd*52mhN2t%8E?g*+L4!)^JD5zO4~{ZNIrj zK9+1eVG5u7#&DSVgS^g5YEt;c#jjIC)+|J-YnNz+1u$b2$|37^RRr1`2?sxN@)cWV zz9!6v7qe@b*v-&2m;k%B5D+5%_~t68%jJwD!J&-J=Zr_f5H&xatmrQ3z0vwg z<=Mq9p^fSV5(P!YxuD~vpfb3FZcf9$4}wI{SArYz6zb-3{xUFdYVZ&n@%Sb6KU90~UXN!|>;>hC z$2|pwyNdWBLNPcAL-06f4jHT8nYf1zs&uin<2MrtRpdRA@SgZ0_K*`ClfwUgzxn(3 zSFbLWmTG3m#GPUC$-HZ;s4y7u50}n2lNJ$9x-V5Y>f+x#zp_&O+QL6nqgcVen#uur z1}~o7d2QuF$T4ia_8VI3#4#jAd#2ngsO+;X?e|W%fivOY;0V^qSAf7rN=-eI9etjx zk{VOMHq;7w1_TsP@HYKVxNaAOPJ*HkYK?o6S2Mg)QNglA3dk*P${1q^cDXqbD@^ zJFzN%2{61$!}4niX{JqW-9-HL!AP`@W={{+$ZP51Z;Z`2Ib5n)K%7`ZD*l z{J2Z%(D6ik@F-j~Gm@;Uv`ZmlbQ}=BV&>J|-A4U4O5>jz^D4+9(e)|I%>Be~gXml1%MrV)8g_K=i_ns4`zWwgef9h~_WXJ9-E zx)wchMsG(Btk>CB{}+E<&%QVk^S8qD?1(};Iu6T-rii+<%N}o^8(sJMoGL!xIPm_< z7agptPEJk}y>E!!x{0+%46Qr?YTYHMe;(e%9?3r&H!xQaCnH)K1u^3;tj z!n?zc%ZcorXya*@Ojv}gd-|4${Ztiu8vwS?0^wwgE%e-dLZ}Rl} zi?p$fl2m8TF}1n`?$GakA2|nm;Of_t7*+cO^2y7#CovI?pLpAdCf;Z}7potL*gr=& zLLm0HxGbAJQB!o`p^C)X-lVQ>y54ts5Y+w8%n1|d>Nv105BIkrWA_0H#(0ucyAVn~ zOzc~6PZ^qPPEM;C^?23ic=+kLvXsmKR3Euo7x~O^9=sm1n~g>j-5GA&?>Zs>)Ya88 zn6KO5T=#3-QM!$UO#6m0BcL%1U|#QK4MXfi?Q+TrM3A#IdtCTu{sozI!#sJc1m%45 zTg2sE1DE&CX)F}*_T`_xdWMF6QwHYd#NnaQH41}5ah{HdWaHQ3+z}4o5i0~rJQ-=x zgWyi!UhRtGpKv;+(i=BN%W-bC$8P%{4H@3d3OYHyD|&@xRfKNh@h0$X2F^XrD>{XL zPl`I66!0FgCY083CLGA&8-@^;Tzj5NP>{@h@$;RZVNvKmfcAf$ziLzI@;~@_uKa01 zJf4)akk75-0eqNRwRprrL}4(X^0%m*jm>2wEk1;@qzz<&@itvAD%yybSiOi5~Nv2-Xx*x(O9iAK!N&;Nqe z@N`2GeeQxIDv>|;Zn&Pz?DP)$F??dZy+FSZak9)(QuPgsW46iUFEtc+7XV!rlsqgcE+2KACl@&} zl9gd5gou6BTH&sLs6nwpyesb@j{_wBAUqYVtIp?^l%)SYT-#hfK&E}#*wG1ut&xsd zg%yc_WkgbonuE?H`<I#gJFx>k<3~>~^X}SC-Jwn3& z9d<9kEc-LjN3H`~w>AB-n}`phID7yee{#L1E#zKdi{0dg$3m&!&en$yI~EJH(Q`&J z+~f_nh|>j~KVDb(fRJ!>Q*~^0We{E)i@=-aKXx4%ovyy6Rxt8ya;`SnnOO8IYqljo z(1YFJe<@P@_e$Wf)$gdw9M6o{Y3;opG{Qjyp1z?#C7D&@;SmSrl4@^li;`)JUhcvM zp<6*gnoQNVM3ZuBcd9r1!|m+KSk8=NM0+=aTL?$itDa5L7HTL`X77V?-oE+DiTI->6i4=tWB{<4UQN{(rR*ng+U)SaV|0WwadC;70mg*vlAr7MwN zIT+I?o)TBSdCi@prL4tyNfX>o{?%`}T^-R;5?5dgm|r!o!o;ggZ+Qb%)o_2m41iRC zuaI4MPJ^RCk(_0q?AnQKMVH%~&t7L50f0xu3XHuI8T+XoDB!(h5ha>_T%~%yO@Lvk(bO4z zOAraL;EC~SjKPTP7SyuYXC3Sl2uG)cxQaArDpjQb9iS#B*Urnc|IN4V*qw}8o~YvY zkYI#tKU&)Fm#}Y8-PEI-C%;FO)z!ld3Kcw;s4n;t3js@{FdKT5tk}Xg2D;W3VA2yYOgfcRG?|2ypd?OB zgO0*&b&#{QwH0@l?yoi`fmvT)AK*tM@nB)8_6n}0g1oa*%<>J2BI9v*iye1EdubgD zS!2@V40pL{o&gKgGL=Hh-KH$r!Fu}o%+N=W*}Iu}Wb6LF0*ny7$dS0)E4|0y`)e(F zch`f*_zmvR&=B$ao`;m&q_ngv2hW~9{qlPA0XhftsHvssUz|>Ge1F_xUOWkCG_)eW ztF;g>N(>ARtwp%{Te$}yH6o&C0c1#$S6@d5yJ{jXEDX1F8~&i6qWT^1IbS!g%zM)U z3Kjp|{_7l^oFDiDw~3x7B%rD{Y!7~XGphF~U;5saMxR}hU0&7|F;8AXOB#7SFPHU; zmft58NUC9uX(nSE?rbcCuQPA*dftCf))hu7b1Sj)%~_SFTTskg6nbMDIfxX8U|EPt zBx~e*0MlOu%|zh50%PX*oKp0d=-T$-tk5HxVgPR9swJs<``Br0gNHkxK|#9T;I~ zc5v-_FL{N5AKm<^+gQxh!cRX_mD$RoVILPuU{x=Q=$7_1g(*|5y&8guMKgBI!D%4g zFWa7h>*ArTCZbhe0?%_})9xvFU=Kl1SB#5xCn|N_LUOfx7$PaM49R z`{ErAazZSPL=!~2p+PlN!e7Ub;kp_2z7Ort%R!HkVpuRTuw-ulm85;fvB;E_DC8VT zYRk>N#rtjSmlRhq%G+YlPw6QG6c}*6K02ya^4Q?g>Q&o1qFmd$nMzc6f{0YzWulpk zokyDcD}9$heA4TfX!SrT938)%t539sL|AYR!tmYTAa1} zI$w)K0ya>Vk@OLl{c2Gler?a(mf%%XPzZsrJg5YanW`E|#xgFF7xMf4*y_)Myy(GG z7D!0(d==@XZkc#?k0;mqje&Y>7BYv*r+{e)e<>EX&tx@FDvL zblQ08k)KndIP@U?IfS>@qL2_sj~(@o;8ecQ8X2`C^4nAYcvA7B>2#pyKXpT#t1?dr z^=seTPQCZ^A91NeuP-7RVT85rMkL*%xA!KH4Eh3tRHSF%JUQsXS}7Y?q;Em7N>+Ie zE<5E=Uh*B7lR7D!oW@PbF)AQwBzWN^rD*j&e9~}=1WcrPSTA&h?FI9?_!wCnF8MsLh zGNB*6u0{RP1cJVp-G82(N^K+ldnDU^4RNHHNUn{E0tM+Uuo3xzsbq&ddY28EaA;+K z9w!b?Z0HWkwtG8$g{nlCRU{U9q9x34%0hQ4`RW3>9^vWvW|V;ae(%F5j--9lq*~s; zDib5dKo{>?oBE?6+WJ4mkm)w=3-DwlL>~iX0GNYy%iDDM$f&4L$k9D-cp0i!wa@*S zDemMhw`_aO^Oa(xot@(qG*Hxa48h+h&(Fu2gxxvNgmG5Py4+qh2qT5=F>USjFw*8F zuPUCc;}CbB?>7L>{fdUWn5AJyFu($`yq+RF&gcpI0#o;_Y%t=F2e92OPs?VLq0sv) z$6`fRHtl?nr0z$@0#nworl5EV>+T+g(bURtO{XM0P(E6E%+T~E{Y!E8GrP01WG@0i z&s?1Ete!vii27YxljwawMs$Vdw?7V^imHYR>@iRXDEyK9BWcjTd9v_0b6i3V!QoCD zYx7yTGP571sC&jz6~syaiAB{?QHfIAbLvUP-HfP3K}lV@_VL3b9+(rTKFV$@NzBJW zy8&R!vDy#tF*iUHD}_+JGO>%oT7@8VG zwYy0cu?I2ZHx{%*yya>YlnIIA_*zz-rBMoM@|Mdj=+kC_RA(KZpI4Kg)r%%5^iFSm zvZHTNHS>@5qoGzrhM6sv{s*Kc$g-`h=n-;UYT9_3rGH?NeAm0vwdQtxJ?oiY5`Gh4 z9*7LGWEH7~vo}C|;%Nf4x=svExe~FCb&G4ks9D7_b!Fa@RA*5_uDhKF!~aABPgob-0t`g}eSm~2&6E9{h!X*6RoM5zK90-JP16u5QdLoOUw)bW zIF?!uI!<%;@-&F4h+^nh^-__zED0TsrQ352InXB}f$0TQ{mfBTQ%`jkrwOABfesd| zi{M_IX!y55W&(WyT6x+Cx{>?ZbfI@^y5F_h2DCft`lHK(gooDm=mPI4X6Hp|b0Uod z@}*W)Af7>b$>f$?hddmeG`t_|<$G0c|K2e3{~ZuAvQH_^3Nc#k(#?mOSXen4;nf1X z6!onsQD~%pTTcHkAiV~!ieKU`zjuR*Pj6J}7650}%ooVWPQd|FUgHymIgiq>42ziw z9Ul+f0S2nb&|m%pLd?J%Xw*bDaY^D zbhREj0rB$~Aq**5|K&r4Op;sfwc6J2TIPOC+3X8}>nR0!&~ev*h2O|-?3Y_(YiG}D zfPQQ?!XFfRpgwZ&{;3^xcApV=z67bzK^B&y_qXQ7qK2EP+7EI8G7Nf~=E}DscaU=1XSiuO3fQJH50!Y>J>MRjE&uT5}drg-`C&3f(zj?Uz<N zF|+h?aGV}$JyCnH5EZrwB>vv=8o6ZwARk_@r0*2m$9kX@`tj)5K1?8FgHcF?SfvASo0KKmOiYemhZ5SWG$ zW1KgFWd}_dl4odD9jbh{YDM~w=&2WJp;@JTvJN!U<5;kBFF-hi=-t5pBe%{4c8tFNgZ=`z~Xp@|U&)SuC~+7{CX|-}iY*0n43l zru9*QYvVI`1}{byzBaw(E;0?N$n3xc!mZyuW}{{hb>e$JH=zNfxvCx}AMaW`lFtb} zsP7>3`$NkZaz2N~K-&(C4A2wX=Ae1HgX3ojEdv}bbFY#Uph;M%Z7>YIM;fUx;4PdwP zi@fH)^=eoz5kN3;JF?y$jrAx+R?5-gX}vyX?-(yGXNW+FF9!r(*1(Fuy|2n^V-@U~ z9RUa561DR6s(*aqp70Kx3I@qV%?}4X+%o%pXn?Ig+5FQ$NDmZ!?v*dwktuk9F+;Kn zs@PY`NF~d%Dgb@=PVgas7%JZ8WR#|X1{pwGjRH3vwr<|3h9Re*ecM5cos@9CS68&}o(1 zpr~mxaIemwSCqmC!z{UWs(U-$L)xQFoLuIf^6Mh7q^#NqNG%-14(q~C)s0oX&Cg{d^?sDIf;riD4_ zJEj%oCkXc%D@OoKWHO-LSPIKSQN*_}FVgt`)C2_|9v)h1l;1!GpTt-uf&G2hKV3g8 z(fcb99UuYr@%W8pcID#qk|1<^i{(&Rsr_IB%_k4~&m`_O^oF}GhV?il9_(TV{l$r1 zsjVeg3*=Z=y*WEmB#FVq1w5hyoY8mT+ZoWcFq*m%ym9g~AHKt|j;J(|WV@B0eXpa4 zIXX}irAR9rNW=tAttYBYof=V?@B~Y7WZK53{BJsh`?0E7SN*GBs6cu%m|Ir85(*B# z%~o>ll$T?m7;vFgx6d$SU}53K5pK`LYF%W>E{TN4vV>g?ABukHV0RUBYD{k~&PfA| z`d1+!kkRpPN{n&d=HxLce9h3s1B83akcS6076OhVDTKMh&sY>y2G*bgM{DGj&J@V) zMW{s6QvWI&aMp&aZ9=>oyE|qYB^D}s)m7mW44^@<%|4-AY`>v0{dYW%+SJ)?-G@CK zQ#YDwQFdKLMm3j-I&fk&u^cq6wb7xXEW@xN!-NkOq&h$aS1&fzq5hW!^wB2gW=w>_jH0h){`IrR|F{y% zDLQ6cuiKPJRIn-^u{h6^Yq$VftR%6EJ(~*{j_>XR#dDC77XFt96|F;p{ zWMWS6KTNv)may(CXz|A!N71HvHs!zPx3sI0{#JQinU@`($dS=9D$quif+-^*q!k~u z-I;8il7K}%h?sGJD8aNJJ@NrCs9dTuJl)H~{y~Vuq({k0A1W24+@?by#)Fi0cj>`6 zeB;h*F66kM}I7p6S?PpbUa{S7QKH?f(w0 z7487ThHt0nNn#V#;s%pL>fAFJuSt{gP_knm5;KU1ehLCe=&j|a5?wC>sr0=Yvr}}4 z!f?XB-ke`1%RBZIl;13@g7qIdgb+Id+plx0cBn;(*v(EQ9}01&Bd_g>N>75M$DV$< zT>!ZXO%;>k1&!aClXOOXmtnA5+gU{WT}%*a*llereQ>r3un_kd1s`G=hzKKv4&Db1 zv{T6l84Vp94-hh1y^S3UInOLV;9$_7$38_ZB9HGRYY}EByBDWvBqhygC`t+@o*MD+ ziUVm65+qqJ@HmHNHm^2i$Vx^_|6KUnZr%b(N%ygcbhBq4y4oA+;3u+Rf}@x=<)bi2 z%#)O&BTLm=V&#ZC*s-p{7aWX~IG|+@^{`F-O!=s}QNbr7Y?u$a7caSVLpEs z&m;yGMnd1Iy>wbStf(0hLV_lU;`7G@$V5%H+^N5Cagz^v-O(hUPS>B4z=nIsc0avCz zbVUxrQNGnuWyc&dUicco8^E!%^xXnrFSY$F-3AB&Rba0A7;FE)W%?N|0eFv|7bcJ0 z`>~+|P{u3`1eWYwQ@|fX zOgQ12F^FiG$ex1mY?SDmGWfX8>czv>yWxOaEYGw=-76%Q$1k10b$Hq|K;9zw%I>x+ zn=(v;xV-w#>2UexYtMeSp!KuMK0N|F>mOMz0~Gm4ua(&?WRXIUMcRKWhM}PZI2jD; zh(LFi%18U)DeG2VN@>&n+iFYACopW&xzKqLV5&%N{b`$D4(Eay{72^s0qG(vff5BF zf#L2vG!Fngwg9RDNPPa^zu*PP;{W}5um3;4M2AX;JYoyO!U6*6^nEsv*HWOnGA0sb zJLm`2AJRYT#Kl6sO!h+!-h-}DVHlh3+Z z3KGztD46X2xjdXLG4Hc~Z*%i0l2r0zSb8lXlISKU2%q5kukWqBWiB>|$;$|&Gbt7s z)g`zi)x-FpqvjUe&A{~iQ9tb?_bO8@H5f-$TpFbH|Mxnk*qT75_50U45$NHbuwJ(Y zX(sXXUduVz*4>o>vI`gD;qz*-AYwGFa$av5^D^%i@A3SfMFw+rO~;sX)xt>QF-k}G z|7q;Xqp4i`wmPRt87dJOQl>JNxeR4$Qj)?U6rBuZItrQgDU=8er$ZUGa*7k#A=7Kv z(cY<7Y@sMS+falIJM;WqcdPZTv)=cg&swczWv}PCpZodUzwx@RZ3W`?8#;wTMluo_ ztvOjG)l(?}ZIys2o={s4pm{{_P`Sv12M@>}-6sY=7SB)jgV;=_S=?$V?WshEQvZ_} z8zC9{(oBL$|6?h?;t?H1Oqeez?%NuM91k^Gc^*z;XkW?^9!oEh*XHZ*2f zR0Ce?)BbD`sMSk|&;h^1j;2cWA-lW5$*Nh|*^IIaBWmaSn)vU!H@~~trRQ2F{uP)j z0A7s!{k7UcCmc?lKJDM0U7Ff0*#rK!b6eSkVq~JeqhBn`Fi4sN)mx1+Kg*wbq1idt zR_$zyS{d+Si#{5vstPna1W3poN{#}TqvMr4l>v1-Zsjtmrz7U2g}7W=C_gW63n0ME zOG{Rkz1Xg<&O}+VI4o{=_|mH+r}xw^xZcpv71HWibd@vPt=-w1K^2C8!kKE(%a?J1 z+9d55z{?2xWOd_8(OUgFmf=Df_KMovqDU*-M5bw8eycQj7<;5bo4$lfLe=iZojbjn z<3LYE=ekrEcD*(_u(A3*HEvS;RFB-QAH~r%QT6{6M@vS<^OT;S+Ab|8_fY@g`Zabz z$;~vUcsBdE-rQ*8fIjnj{mrgfJlzS*v;qf9dg}9CE&hU(&a0cUnK?OwQCkA`DeKmC zRmWFj{Px7XQ4ZrnZl@_p=ONeJH9X;RFbE0Tv z-Pyk(WKjIkOGZW}FjihhCJk(bw4OkqKTl%6UF(v^6P@?Ez4A5qXL;2be{Q4QZ^;%Z zJ0kJYj4~QK(&G(`aDKzMF-~dO+1L8L#ISBX%puE0>UI`me0L)Mefw`EKF|5I+W`$5 zz`8d8pdCh6g|M8gtnA+X`*|B)8`RJ-8D&lF=8IpkL@Dqa|7OA z+cfU!R!_C$y4V)`NT&w%Z2>ig$G-6FZm8%9E7{hswi>XW4RxB0wQBwHlC^tYTYJ}! zA?-rzR#a+#&-b?$`)(%mAYzw^TAp^nhw^LA4Ek!_F>j$$3}N^YSERz$@2b55z8v%w zS_?g&L%g6>+HYvT-M5is9LQAt;7w2sRM!Fr=$}(w_PT;kIyBqd#cSovpEW!;fxY=^*Cg{L1c>35mKMCfbLU5UHty73)ZnH;s8faBoI%Zs&>8=0 zQic_k)#d-t4@^}T*yR`RXJYbmoVe~KXe|WKE7?Bb5fv5H37J%TaZR+*(rV}kmZ*mw z#PMREMW^%MtNV8{RwxMZj$+L1(9?Ph>$87stsvA!zk7SX?C&4y78kS?`*wv?sFKIb zv`kO4&I;Gasu%i$Rq5}LBknvu#iH;Q*eOHMQ6BvaIbmfxnX0NPMsH(Aq@a;UMd30-T(3poMcpXz#Kr?3-)yry3=rmVnJy_hx?mD~ujtN{h<8e{j);LN1 zt^NZaWS6d5zpTEfG*{Q5NG~=bIDHJlGCL7%ye00yil) z8dUz}ZB_!oB0RBsETPw*lL4Q7+s1Kq_)@+#LFJAzva(lq4i*~&lbI9l`mrDcr!aQD zVk{szV357#vVfEd?){}PBOZ(!&+j)G^yPoolP2@?Ofre6JBqu}4E%qJa{f=$&WxEJ z@TSDTvu$r_{NnFF$X>DU=3z_AH-ofen7vEt2el(o4b0m~RC*Pq2Mo1=YOw1`hLJS1 z$Si+{Ymx+JY2Qs)!W){CA%T1d$2>U3YHir`E1VUM-kvPS4Lsuf%Tj{}b$<~2aK;h= zQ+P*n63A$L-`6v=cY^IF0B*@ct>B7Rx8z;G*K>4%ciXdj_eGl>LBT|Dh47BBl8lc| z{dxFI*I2WYH@9oUjHFwE9l5QA9@iv>N>vbibi(5IOvO8zXa4LlrXb!X8d40Dgjc@H zap?DR!u@i3tIX0@o2BO-V|DoGsQGo9hky$=IX6U!U$IsW?d`=*lsQeuz>X!Wqzv?A zN{t^+wSj{rBPUnLy%uuJ#>VC2zs|Qjb+;;|zxx$GEk)i^@IER2!LfLaKOIO=VRE~w z!T5XTA1u+={Xw%NS|NfB57$1UYFf-s>d#2cv-IGo1v*ed$LS*xy zs45~H!yGAo^l0n0fWhNo*BRJCNV zIpf8PXwV{9{clyhkc%>q_b_09OysXyiHjSl)!q3u&%Cd=Tr|>#O|?mvJO;6Ev?v@Z#}koe$e>7UbKj#pbHg^ zjD=S^LhX*ZGf?Nw@3MbMb#X6h)n^_AE9mSNfOW7%(N}0bvJUDUiju$?! zyLWUe6B(y+MCKNi>evnPl7a1uSR*CJRj8e(0sk|)cQ^`gA+uAit}$pouPk>Q+Hxc^ zbBmX=voixxjS0^I(y3yE(LF)%Z@h;S4ZpqIOcvqjlHe4KEY%q)ZYMT=ld|$bxcGh8 z5Myz@z{6kL%I(Qc-&V8uii#1BftID0;tg*yWcj*2Fal z{h*^f!{-e8M79_$$CmS>K#@MHmDC)Fr_^8Qny_L2_3$BYLd|EFL=>1GX$E`t%R_v$_`b<13UVHo320wUEEYA+dWco!lyr-gP4{J` zwpv+Pq2?Nzng$b#U?JfgT+i00?T(6$uELSo5Rw8TeFmvzEvr|`<(F#=dNJKra!>G4N%vscjuLM_||X=|2m z8~6|axcwAVQ4=R+IC%an&xxvt6*@@A*&~#-Wr;jlIMl>lf`YGec?pykFN4O@EkiXS8CD8~4nT{j}!i9tB$c z+e~UJmoQCgiN1EWL#ePwffzKq4PuTwuc|7m@X8Eydz5+oS5Y7qLFLL|d0JXp@)_jJ zhsf-^q*TM#W~i@U{$^AEx8tgYHgnu*m-9{w-#inXoM_G3lVW*F#(y8}e0K3CN2Vwb z&9rg8jq`a*^TGT?H{t{XJUdsyj4#HL1cik!o5l!NcKG}}8j>)zlYhRui9K}i_;GRY zhUVI=7j(48*|DJuebb+AS@^)K7xon_K4xv*Jx1lZU-+Vq&r&@iGE!PunGal;MGl_o zhz`Ijc42mxiZc{f)lxA(w-k!g%*noke84zf!ozvi=i z;B%<0$5lj-IW#mhq`h$?NK=;Qp^UXN6GPtb-m1W%dJZ>?!4*Cq@K4XoeAzRn)$?x| zN_C!e@c7rtSRkTd^J`IA8q>q(e7=2pb=r`F<4_jI#{*8j016m`NIO5|7~<7&5@)zw zs{I_gAxx-ZZrq+_d+gZl=HPW0pn}lBr_HYKYhKBKH;Kai0$!f6oFKSr3Ak`Rtb-{L zz`lsE(us)+lhoes4KghEn+BoN8)3g!1fWmt{kHL5N8hLv{cJDuR+B{Fc1MCMBg+0{WwZf2ue{E87>g zBf|@9zqsr~ft@e1sAaQu7KU>gq{JtcECG#@@&lUY{JRb=>xG|rhV>11T#+It3p^T$ z)X?$wryY1dW>`pJ5GL@lt`3Xcmp(HJ^z=yxw2|xzCm;@?TM%!{fHi@ngQTQ@`*K_F zkvRDT?s0a0f?kb~I6OgLkf4>1i~Xte%bMY`xjVXkaws1@oS2Y1jIdse3Muzo?-7z? z>jaG|pwVD}g2zI;2ln~IR;jrA?isr=y95|jC*;r_DSfGft@*A3P*Zp#M>8c@iTnOC z-!&aw5Hq{(p2?|v>fTt7)EA}d8$YVOSILt6)3sH9Y_SqVcL#NW$W0ldxMU{%!W&DU?;3V&>0v}wnV9qr9`^)75DqVgf%UdfZev@apVBgSyq6=8EhWRgsn z@_=uDFT=?n>}XAYAcZ8wAR+sAc6D(-Cpc*Zau#Oj3(s+Vk`$Y#>WRX`7$mWjkzHeA zjB>>&B&3WprbCeDXb-8*j!+jE$j*kFtSmaf*{=jUe=Rn>1ZP>zqe)@5-)X_)?Fi2^ zkfzkU*gCVL8HP-37csF_;yU&D4|_NZ^V(tGZc%qV@JPDNODN&k_VRhXu_h~?-)R-o zyckOtqu15?sUT|hhDn+{c&(Yno*$mBIPj-ZB@V>$$om8Hsvfzvq(xFT*%?C`NyLYu zwL`B&x%c6#rr5W9>f9=#b$`pk;Qb)Y^rMJ~5H$XdkY>T5RK2SsJuL04@MD~N##gT2 zz8wi2|Ma}PH7vc6RXpv8QW4KPo+%fxFF`Y+=}`6beNyCwomDg(7W7 zp>}2L-wQuczI>z~{v+rlt?Q&=cgM-~rlT23>86wYT|1|{mbVyO%pC7o+S&447QD>K z#$e&(WPeYHgTv;}A6&L`H0R(Yl`VlcIbbiVcMpX+d=vSHBvU-Y5`}vITJD;p=KZ+e zn{M~xT)k$ut7dv+8os<|S1@IMGxEuxT(0r@e#YC6em~A_K29MjA$O|xS!-KrL#f1r zh$txy3MF}5iv3l~+sq#rZ+|`#b=Snr^{%0$0(!%(n+nI!Mw_R{$@MUl4nPyA)7Dc77A65YQ^1aERx|{HAzyk?# z!go}AckvOvGokvw|1dxz>&!)_F6WNH!8{DciaJ0I<3f0)>bZpRto(eHLi47mrj;%0 z<_k_qo$y!pMQ&iO5dY-DvBwWFQ&U4LF$ZWfwRCh8PTxU zU*p!Y{<8T&uScJV=^LsCrwOkPnbPG9I7av$RU?svY$kk>?cVtVPBKy}!q2KXk7N?w z^8Z(VXwps7#p-;BNs4&yz9UhEG{q}-I-(2Z2jst!$`253A60KW=+Yiu62WC7r!M`) z_-BZG;LcXdmdq5o=vTBNO}rM)2W|-&nvL4rre9qK)Ju6T?CgM|>ZY54sHH}f z)UzuzJ8yejv9_oq{)$;IsU@=?@zPBEzUYONwWT{oX<)Q#d5IC}>u}jl7$av;{{k+U z`qa)P)Lv?E=m_WPNIWllMsDX_M}nr`V!rER8hRE)^4q6_g#Y~F;gmc4LjDfBUy<6i zohz<|EB^IfGG^phYVehvkK?Le6v2+#VAI)q@(eI87s&qnB2(NB&1_TexWDyD@XjTZ zeSJ{^m#i4ekgNIU(tP7aGlgwf%mveI%|4zdp04?gdw+oXT>6p)?wS>-l7Xf-EL&{eK`8(7bIQS_SoWxdVR+Ot@WpgaW8QIS@}+F zyUqyYPWJ5FG}8~a1l&T2dt21qE_P?(KWE(c+*DH^MlQC1#;@qjU&K2}lI2d%ohiE1 zc0u+`!_J*t*K2fy3yI{5S1cfrLh%7{w zJs5Is5?z^S*HF=7Jl2w}gnYjj~%B2G?v0J$OZT-Fyo3=ft43k*%-deiafDQd0%_ zBwg|4t61BztS|BSwC4M`(ODFms>D>rBX7p;mY{=);(S7uuee1ow*I@Y*l|>Tz+<)| zklx^}eR5vKvi^W`mr-5$cAfavo4l$m_X=#ML5#5Lj6=m8mPmCarQooyskh#AA6TKl zU+RSmO^Xrry_oMYj{OCH={~t5Zzdbgay8A?^b;8~Gs{z+cEz^#D0TyTqI`nH_WCr;a8^#yw#}@;A66MpBbD(s<7w2%AV-#_xST7b7bT7Eg z{g4z4NqNa*PT}r3_U$F+_ivH0OXexp)}h)X0O<^Gap?&o2y?ee}>A+Q+jzxnMHQ|ie+f60Kc$g~Yqu!bPk1#|n@h2Hq=tuG6eqcV#OH&2a%G## zea;Q+rJ2delH&;;c{A^4#isj8RZ0il(WwunV{B|}%C@)G_YJHd>ujFrRT9Ofr~agb zup|Pe!g*yp>9~7H&Qr)6pTurj3NG-PJ3czu6!LXkc=@@}h+Ge;m33EMN3vAl(kO?I z9;~!}!R^Nh_kTXF(GV6E5-PGAs+3$|43`t#n5)4>`>aK)7m?www-!0Cv0Rb$gtQZp zX0z_TWE^`;o<_c5KGnWD!;L34uJQvL#n0$@OO~V_lJracJecc`Y+VnK!bk&y$Sv#$fdrArkL|GH-85J0Gp z5^o?4+^$uB#hj85B==%j%neREy1>hLnal@;^&@%Hh$ly!GwAJ zwtkF^02q8*q8j@!%8*P-+jE01eT}=+fIYED@3tz@J*&}*ZI9=A+OKCxOklna9M(dZ z#uxPl%8<*$tS;UIfv*MUk{7b*MCu9r;rNPn`-CzDhg_9*_^;+7U;L+9#XPCadMkYmXOsgaP zCEtHD-LZtVE3zOerBU;S*3GJ|xsPrOYa!)KPUUBbS$ZS@DhQ?_tC%^(Y4EbM@JRg= z!EonwrbAA>ODv;`2K(CF%oa*cc4|*qcd>Wi_w)0sVd7eFjtS<$HDzfwMvZe7-z&;_ z!K2skGkgiRRYc}d>BB+7MsTJtjj~}=@l{Lv0!^C> zc4ImpikmiqjyEx zd@UxA%UEfNB|$aHF$!WaD@X2`_T5<;dGtG`(0Rz4=6Fka zHG){IBwoIz)e)su@DiNrK4tppZ9>LSxtr|w*kkTlqFSnnYP6lfXbiR`t@ug62Ghjr zjh#IRb2L<`pw`HWV{cjv@!Ea;;pkiUvC+%9)^ZcmQZM~*mo!-0+o`&w%^Ov#XIUi! zN1qapOax#G02Ba@00zAR96&eJlN?x5G%4XznN(Sncbz{!Wa_s@#uv_@V@|qTJC~_O zfJt_>NU^3=P^oPXEh(9NK0PfXk~p)mrqKZ(_OpkNX~OpIPEbm>MHjZmzPT-E3k$;8 z>t5(?e-E9|J8-FuZliLaXTW7WUJdIrKVx``UtOaO5hd1tllHVlz$OWZBhmX*zQJ((VP#v={y6RT3+%Lm2l;`wV~zP zhd=FLoPh7nqDV!?V_dbB&JRVf3`>jA?|+d|_fQ{LbsBBeA9$O6qtNOc6UP45&Q8^R zUld7mEOF<#Bl+6@`KVihOEFVNe^|5K;P1~QoN?$2=UC!4~l73A}t87TzsUL5b zD&C*_?$~c?9CUolJ>iDu$TPa`h~|V4O-ZjiY&o&opPfIq>OI-J$ux0f=QUntipcp* zS9*3OMzOD>X=SFX?0ar+SNx^Srq~-<>9udgoNCD~xJ2#rPXe$00ZR=P#%)AP3Z)L) z*mNX&7baDTh{-{`qHoUJhL;@Ji3eF?8!-(hK93gDG$qs5yEGBvlD6nCr6AS1=TLf9 z7FQmR`DghyhL9)3gCQG+VA@_yp9BUQUVvfxRqwRK2ih(*P>Xb*o#1!s`KhPhrkaoY zO38#dQg@ZGP1U64|JqzLI~n;Y{bTOS#r~&pmvsU*%iMeJ4!kb7p}``>GzIPup-^irdt(X8FqI zeS=u_cOR1}#^bI?D+N2S=c1oWKD#nTOn{sre{bz+p>RRbw`p1`zcH%bUp#)VP?xQK zqt@@E>dIyQH4qwes{UHQZr6NgkCX zb>a}Qc#QatzJ&$?({wyFn70nQv@x|0D**@IX_>O!+WH)_yA7wB)CDFuBm*z*bXK*T zeGVP5#qCH}Gx)}?+JVPLM|_~rc#5C7y*Hdavnf$64Wjn4A*Ycyz5m_|$B02#%Rp#) zzUh-%p3f0CpK76<#~* z%Zs%_r+=%~(ujQfU@l89;#C%-T~};!$N90)wRc29#Dr{4M8(U^pu$q2WGbpG-ob1r zIjGY{*`#*;s1wmSrEeq*K;&b<4SNm-JZtJR~J z(<5aQ->47bydY1Q9w2U(*|~r8&-?}HDRr*S6HvJU=A3Ge?)==|E+Au`ctu+5g3C_< z;tHzXiWT8fNPP@LB2Ee=aVO!gd@b|)p8WRq!l6l=8R?M}@>FUplgkwKKLcBWZv9bjB!YFk; zfIz)}-FNm$L=r7p=kOQWg{bTP-d?|R@QJn!U6W>cWaQw^%YM2MfwH*;#{cG`h>F1q zHruUD%%-QyKsC|uXgfLUlry%VC;Q2f2PVJfjF00_e#*DMn|qJnXXYwty4v!MMU&vH z+?c{}WOgY%v9d9(xNO9$kc>Jm%(XzQ+EmhBf(jMX3cz8w6f8ugWVp(6SW(BZW`gDnmH4L&f6GV={ zgw#w)W`LSdeob%auw(?5lwjV()7IdxXm|mh+~Ova zqC8ubeV#Wu0DE# zbnuq$UCAmH=xel|qjuAU_!0x@CIQ9)XG933=c8|NJ%g8X?c^rnXA~tji!39N^cUFl zBCncs=!Py^z|BnV-#To^;+n@(Xb%&QWQhNtqOW{i$ZiT2(cQutO@WQwg9U(qyhBfh z^37Z3&ma2lHV{HzC0WxAb}=Mw-F^DJsY@@5BfcR#i?Xh3FM`o9&uORS$M+q!@3cW&;R>lxxYnAI${H2)5 zf%t;B53{Dtb`xRJJP0%r)L=o7$1(CXE!qRw+`r8C{E#DNq#v%38!F3l2aA~coD~Kd zUtk^0G--G40PN}$vYhLO9O(xB+IbVBKm41^Iq2KR zT-}$d(;t>FyC1@6uu7HPG>aE2xm%L`@!GMJubgCB5BD}+NAI7%5z0HLh8&vehtbgC zeSN`g<5zTi_-%ssntU|usQZXSSrT0$O-C;vjRO1ht0da8!Rbju{G28XG$ulri^LM6 zsH@ke=31*c=osR~b?_IPj7nvD);|8yY@SHgOpcsfZH*C{cyXU>&$uo=E3z6@v+jId z#!T5~B)dNo!PpD?KW&7|Ip~hX2RqZr`+A`k@4*(T#J@`KaERB^srj&ya`D7mme4Ux zX90%9(3N*Dh`V__0HEgA7xLqWq!?%n%vmzv(=lI-XzR&)=%%2cLdw+dQ_XKn*NM!m znQtf51l+iJCc(nYxCq?ky z7|nbFpLM6j_SPnD#ZufE)=KU z3?;jj6YbWoB#o+GDeG_~=Ehh691ZayNmS9ArJyo-A?3zZ&b@YK6ezpS`bbvi*@_i9 z@4LevAC)clS_5C^N@=(a%wASjmYiMXS~@Urj#u+v%BKMrm2#UqOP9^%V+Fou)juU1 z!=tI>u_Ny8TfzQTgAvUQ@m_ndy)l2;>TBggMg57|P*Xp8y1P~H=)%3dMn}mJB8}22 z-O{QdioI+kM0l^L_hec$=FzDe0zXAV#c-LYPoG{w)*JWXuy;~@y}XeZwgb0bwe2CD z(sF(lrxK&p<0Mn$Sa{o z%IrTltqG!hKJD2Q)2e!Zn*E14pZ+^m;Lm=1@OPw<;W2Ln>gwA|o{pX#w@)5}o{LJN zEB*JLTsznM`ldexok*rQE=643)pbR!NeyAvI-;d-p=%yB0W`OLGv)A9`LzxqtmXxxJi{wh9m=))3=I;bk$FS5E8KUVM$~* z(?{2+EAl24ZuqcIW=za!xmNzFHKl?3Bf+>Xh{yAJ>hBjDg`L-@OX;_~fL{`!qyLbP zd^}235yTk|J2bxyu=A!vzBLrfU&@y^OQJ1e; zoq>VeJd8qb)@By$Z%y-+n|{Q7h*1er-kuZNYjH7Gc)0*c{#8x5fV=jP@LZ7#JP znmG_yb1<;xe4hyN!AXpuDS+O<7RX>Du1f+d_nxJ@Z3|3=Xj!vWVJuijF- zMB56iw%qPMzP{dGr|r!Zg)p(L`OvA^?X6iXgx@-@HM%m@f8SvY$JS4drK+v2Z6S;* zUX82nj{FHP;E)I4u zDz^{tQ;eYDqD+3k9#45z9NkhYShILxhGtlkB@Kd(DO~RJtvBkW_yfL5n?4OdktM!V zVW9rSb3R(pN;EW;mXQ8{1i9~`2<=V0uwAw%so42*6DzcXt<(&0G;IOl$0NTJi7Uph zj(h!zwrC`K=b=sSeVwZ$4ys}0`EtAQgezM3_9$QQ;{es=8ct2>Wwa2DChsTT2ak!u zh3d(>by{|v>c)+oq=SllY||BbqHo`6sm#o>UmRH{MJzK_qT?$S+B3RL&KhbLzKbwi@`~99QIA2mGelpJ7nkR z^bZbnR|_I4S#i0yYs03?>MC#gfgI9Q=_2u+ z{QxjGRY_tV>eqnZDRXL3eB>WD?#z9aBr*HEq}HR|3x#RNXZ?xy!TUExWpit2Y4cdN z-W+?_>+vs)8ay}7xat)Eor#w8u7msbGdg$@ZzJV$d?_euhbS6lk}KoVWJ*e{Yf7$Q zZ|C^Ak6a2b29AVsUJhYaj?WK9HD=pOKy1vO4y@g!x|ICm4MwL z;MEYd9mK53_{EAhg1G)bLXGa#PSvB3>}@H+-bQ){mFby?QL-EFPA#1&yWOIgYx$RT zW5g3^J+8btO+Fex2)nt;KfMcl4eEMF_Pp1CS1`Q}Q_RNS7y7GE}Rdq! zkQhW49isy(MW6es=v>b20KOoG@@Yi+2d;-57F79!h%)i}2cJQ=9&q5(qR8}Jg={yC zt5sg;_enR7lVi##3!T3&2z6ZZXPU6TJA9Wn$d%Aca*_Z>0T~sEhgnBam8L3h+3)P@ zMWreENn)%gTVev-kt2CdQd_rz9-o<6PaasfakHP$%lbO7nfAiQB2B}PS#REznVx*- z*yEt^o@^gi%GU(Y58do!&TF9n02;cync1omVuP%TM0%5xVw6n=x=6h?AfnCE#G!$s zop!%(9ZQi0qz_0kkV|xG`oAjv_M{i9QPpBh!pKShRB7RyCy>R}0*Hvfo!;v9zCAZ0 zQfd>SfRx00TJn~jJ!^U9^uZ5l;HJLmy=mnYxDMc3OJ-L#q(d66Wa5qsm=NXcY1iqg zMhnQKa1R{7VHWTJhq;Dum`8L5epx&gVj}?O0E=W_Fdd-Gh_0Gi&c9WB;JaQhEW4y4 zjaP!tW>P>UYvj$UJiRLhUHLg(5%sEaxHE@Xu0kiudevJyg+z*Y7gWD?^uTBarLbRa z30Eoxa>tYoOj{_OY|qesA3VO zj{*^v@+v(gz2<+v0OTsIiw+C$UKvUM%9@y zQ`NU{#P>PTFk<$x$OwB|F>Uct9~JXy;7ZwB(6ARa-WeH5V(-pnPU&<`V$2EwxJM<` zENC4)n8^Z{@rA=5-a}22Kyxz@B@9Px$ajK3o%T=d>nOjJth2mA*>0}#1i6oB_LwYA zb6?t%OY4J1!6#LH<KRSgPs#(C=RSq5NN~+F<4p`tzU`=vGo*)Gara8-23qn0OG~nuHQrve>*)Vl_6}ijQ%$kLtJY-sx@6&ibYU?EZB7{`ZejHv~VXI>Y1ryttT!d`L+Ti6LsjHtMAF!Tm zYK3weBYFvneS?C)gpM;~5|Sa{XqXXe-gPx0JG8Kk@+!l0T1hHGNDK!{?J0&l(8ZRR zJEh%j=_s8^IuLoPs_DLKwS;OiYWH4WN8(ndFqjJpMO=xbFNk+I=OC(5<+k_?(Yes< z|B(v2YpHg4nelRgq;JIJu)m%_o2MILwB>6Z4Uue&T*A0&dXjg2`$0awT4xZJPRyzN zrqm@#v@=mKXH5D*>cipt<{_bMUiZc8UzjG9eg<~aUUyIPK)T-6^xd1FB(#>nnHrz? z-Io4^|ACGPH6X_3>K+Tqv)*j`YR_%`LOP0SxxaZbelBKLmkcGF?#^^TZS-8KB0htf ze7Pak^S^>$da&)_Pc1hG`JDid*SZ0&d%5l;4?+B>KSb2 za~=q8Mhd|3osfhftcx{Kv^jEdjC2kdn9F7#PX`4twdh z^}b&eZjj9g+$~5pc<%N!**}=Jy*t({dzybE7a=%Sqw#bI?sERG=E%+E)4sG$2Cx@u zB;`R)6BJd`g|Q(=1VVF?dA)l;X&J>c?}rEyz#nIVXx#N4cL;+GPk~h3mG<^fO8^TmMb)oyAjz{MOWJ>3BOTEHeiUrKT=6V!_@ zgyZnT=x=M7e9N@T=u&f(HquB5TF*TZ0p53&!21p&ysxfMvad=9Y-bG_6^fINVP^0LX6KBKBAG1*)xhQT~L8 ze(@UGC}8P)Y;Wzc1Q=#+pblUP_dRxC4_22k369fb@2GQj)_zEBt&fTL*_Q-GY(A&1CY$=6g$lDvDD}~Zzr71U;%3R;$2%>4`0ck`)$NNkKcHH)0j=U*$-NGC%{aq+|ps__pb z7sZGdadpS40qB?lh`;|$7M)w&ZplB#`#P=g+^MAPuP-gOO??Puf-MGZ^Rjk1t2OA89wwY9RU9-sGbq^Bz??LQn_EK~US(sv|DJ z$X8$VLlXKs0BAE7iAQo|a%2ZjLeJDaXD7rYfqlBWNl&WEdhz6Hb!^H8GAZfHam6l(tpQ-gL%& zX=}CZ<+sTX;8eM#6S%PagX9p<^-r7P5UwL$D7OF{6JpR!Y6&D|6Cfli;_#K1y9Kg6 z#qyiHX70sYv58?}Wp&1O=%9;>u`gDNi;E|HHbS?PfnUjf_3COvG)EUW{`MLby3XD} zn8@s`EH!86;zq%78nCF%+HV#nZsv@AkIk^)&7N$_n2NE^YiZ!95}6RptHfD-f5{{B zT=p8gYuRX&LHppKx1n)gpx9FKNLk*AnRnxK@$Q%`AQ|@@VZ` zbud<1X2hrate5(n(HyGqD7Ae%yf@yl{t_rNKv=D;iwyy7##F=U)Mryl?!FP8xRFX$ zL$x#&cdwCpCVD@r`n5n_24G_*_X13V-iVl@2ROWpy*%@`>Rf%$z_IUrWcfTvg+DL5 z&BxoSc;@ZTZw_bDwI1$@Ir`KBgmR@^psGnOA~xF)Oi7<@TLAf)_Wu4HaOf#-Zf@eb z>%=b93F019iHhP0Y)Z1d*k9o)R!s?_IPvZAZHv}axxjq4kzoF%2Zuc+%oE(wz1JFy zt?EK(aeY;r2GZxA*L3B8ZE$FPaHR;AR}=_FIHJ)v+$WQ|w&nuGbFfogQ;|A1T51l9 z=kO2Smx6yr)I2Tj{>d-M3ec(F28V5^*18<*Oe^>thVlcg>+AYv- zU{{gGnqRJd%FzBniA`U66%Jk1nz%KYh#3x~7xPrQ5KdV4)j*%-9KFK9(!i*wlL$p9 zG?h~rqFc4G(9qG+;;`CvTt&p8-eA`~xBKK(2|Kw+=BGUQVww!PMbuBb2?wqKna;qSNiMz9nlwJ3=ghqyPM_1)CpHhN|TXS*3_+*&EWi^H)&EYCymufiM`})v@jY0~g{fKGn5hM_@r`sbC!PP$=kvvF#}eey!MKfL66lpj}D!}^jhb4AYAY#k1a3(t0Pyi zJTm~lgiX^DcKO}>l%w+grv#8qO8h#^!`g?2@*`PwFbN(rEjpD8l3!NvoSJ)b4Q^BjsmD9D1QC(n$Ll(0D*;9K;m!9nH1O>>7P)eo2Jl@DF}6 zsYpcml$4elnVs6rSpweQTaQk2?(KJKQv#^~u4-bq4v_@v=sXmG7_RbZUq8ulBPTmM zJ7r71{QkV!>_CCpQ?`cIG>GNZH$8>s)(EFN{ODAO`%p@#Sav|b-T`>C7%tNQ?Ht`? zpY0VNaYI)lolx z>HS%E8soA!yyu_FOk;1qNY7$7C?RuiVwwa$v)9nd#^+PUY;VU48ZNg%S~Jt@eC@tE zBEDtnwUk2NAtSc%Jmtn>gYlL+a(#Y#4lTWG^1NrdaX(d-Pdv0-G}oN86E9O;+0O4MyW=+S_D~y;o$1<-_{`-W-T8Fxp(U!8 z28KXPC3sJFfM?smYu00^O^JViQ4TMP;BdGVqqU_^$5qPhk{pYE$b|_B3sW9^bns(3 zIH|J>3l}q2D%Qqg%OIc-on$J13zJ`D*>+)bGI1;G zaZ6X#7I@0rHOjVdQ`o1*8&^-=xIa8RUIuw?scL&=TN{@DrFlYD@ELxV69>uNE2=gc zs@hAdHf_wfspIc83c5o+3hC{Gr1GlI_PtVYaIk*K-IrHv`!j9&N+uznV~$D{mz4>5 zjSCO8u$T6~+FW0mVisR}4C!aNa<=cQ!2P)-nz|NHpZ1A*=d6^&jr_IJU6Ko8Lv~5Y z^4l9#@80QwUZ|y@(4dz8?&lL$2p)dRnf`a~Q@N!}rBEZvCSE-)GHZyEL^G41sPZ%$ z)nQZv@tlbSV8`!@mZca0QqodMpS#zaEf|h?;9)dCEvar=UOL!+USMk#=58q{(Bb%gIQGoSYoj+f{i%PXEoVM=rC2xnR}T zNnHKJ{Hts?eOUgxvD02#i;2;UaEuK(%IEyHriZp{RFjrHs#ZM8euXKtx3nbNd5)aX zFT4|+;Ip+RX`Z|J*?8lT7&c2~GTwEtCAxBn$?NCw#Aee_QI}72#$H%0FD%-)15{4z zl<~IyR9Al2?!zKUyZ2GhaH)px)!t{@{aO<8P4rB~$_>b8KfHz#kyNw2mbmSAJ&VDQW{il*3PW2BhFpAG{q4he3yy5kKSM>Q4fFQo zx17srfho+V7Y-|8ekt;zMr6UeK1=(_3(=}K7Mr?UD;H^v96nRlZG2dS;z(VT?~GfT z{A_XRVi_f?wna~Y8Df@q?lFtD?8-C3eT8&bxx#j%Tz9s7u~BUb_M~HG;C-lWET46h zVwkG7EI1S}EikB-SXfe`{q!XJ>80+Ej}9HCe@scq%jSWTBA3=*`ZE44vdD6${E`gz1*bBw>L<=uFKL35v$ zj*-?}_pDgg^V{6iHa!K>-c`o=70bQrH(2G2w-%zYk2pMs=Vry1k`GV9W|cLVKh2$b=h^Ml9tlkz%a+D(_)$nVZiV=#!ENFhEZ5aPW#Wjxh4v{kaO zwvnVdCkk;%82jKyp*He@EP-06FRF8WwhZJ%XK@k695hS1f=7H{TVD8#H_~7(NGr4t zPwfBONHd;#7B!**doi>z#t#waC7-ypl))qi$e=XA8)u0Op2&#)We|4f+Y2rWcLvS` zFI-zP`=YJ4%Z2lw-}VqT)o2UVMt&@rH}*Bd;5O-dZYNZ zXT?H2t3RCw;L^kSQHLH~wYq!PbI3ZRc2Q(>acw16!F|Yj@LqX1|Mo`HwxL*}ii+4; zYF_z*JU&ZHpE7c4pECdUBAJ@!4$YPq!x2>@qxi9=M4xY62OnKUz$TKNK*gS!8-byX zcD^pdd+@oSc>CF7A(XQ~gAeiWz(6Sgangm{{r3vgDCe=4<`@nb&k3bUmurPliU?W8 z5D$Y(FmBnP=Gv>-D1>XDn>TUwP)A%WTL@tTc?D0{=yU?enb_|dsx(VZmHC8J^C(L! zJs*jQX2j zq4kQPwo{dJdo~eO)DDN_h+2+n}_Er%+-%3yx!u<<=OsoA-?({nz%kqMc~&1t)-{UI$-?eYtjusj(l)}YC>05R;Hl# zy+WD{xFrl+K&SC$hp{E#2LD|WP}&)Z4dV#E>^c3lXEj69}`Q?}fZSkIAQNP@$EG4?y==TnYO7jkQ3@XyW%}N#|Q3~c%-Z-AxVD=ikzl- zoI?Pe_v%frAG_(FF-o61Dhh*SWe^7)ZEeVW7Cr_55Im|uSG{V<^ad0(IlDD88=;(` zWnh4YR?qPJ_wVN&1-2gS-nWFL1>=pMr;tfBxz?f0fgz+aWFgK1n0lK@H6D@e%rinu z1yW4HeHRG9;L+``$3*8p9ryp(5)wjzw3KtRDxz3Tu@i=DrcX zvI|8;{SQe$^9_wo)%|z)&fn{zhH9d4@l_yEjGV@T911sE5W0S!CM`&jzK_4o4fdVa zx;i~QosCAf!PFb4h1pk~DxB8lkA33JunL}rP4_yqbiiXKiknE0$)UG=q%T6J!~K%R ziQ~^)9UZcdb&criSk}!F))SX8mTJ%n9AMQ|SoUZ;U z4a7I*)q7&C_Up}!=Se<4?(*&>Ls111`k@e3yoZR{{m6Y&I|k z1fAl1(=3lBB}FE9%`S3^X?K%Ue?{i(t{whKX9d%WG(o`*)}!^2n8`^zbc}bXrB1U2 zACSor;-FaY5JPS*KN>NjWevpdX_MP6CPl9&08<=Oe6ChzkA-OT{|D*^=!FK<_3wRlRYsVTz~CGNJ`K-?eWlHi z>_vmI0fYwQDi?{FXB=FRfut4OS*onF8lZ`ssI)#klOs71W<9JP<1J60mmZh?I~grFUg$kv#7$z zZ@L9WE8YA-T>qUTxgcF!^5#bLd)|@AJY$wxf52G$H;weoNzkeCb1Gvt`mm=6$ zw5V7s5C@|0!u{aRE49VAh)bq-T1QK~L~&!aI+0woO4<8aj?Fc=h*oq)b`EWpx zr3u+>6{(jVKpiKTA2=m}2g4tgU^GLnunlH7H`m=s=6&nh2mcdfa`XaT;CmX;*FD3k z7)Q}E#N2e^sgAez*bv(w!Iuq zSZzl(AX)Paa4F5WEtqgsMsS?{_sXS7cTD36Tf04|pv#1{j)Qakk3oo|U~tkOoKd^i zAZDY&_#fA>>3AItqW>?zjL1nvOq}{r^=7*-PKMH+k2FLUL(oZ0%@I#j-}LT5m0SPz z%s^~t_KHMDGLINut!dCHLp)b!_O5w(L`2KRY&>0F;?QX&y(8z*&;kM$-<<eaI#2|y{)+6U-rxZt*evE00zC%mBJB$9kAtrSyUQh}l;(M2ni2%>%KR_moJi9IT z$Y=a}Vmk2T*#py;oXr)Lvi4if|E6MXLnS>VzAqz8g?!fqQ?!mKq~6Wrb@ zNbP%m{XgSEH0j}b!OPyBVp0lI*4KZpp-{|($4OA_Mkc*#HMftJNQUr%Y$Rh1z<$}X ztxt3hHU_4L@-tz2$Q(aCR5SdPbQ87_>SoZ(+)U712y>+oTrd_C{-!;#6h9Vp(G(It z49_4g6%N;b%oCk#QfEZwiE2!#cB5NvwfKH~urPZH#py`6AMRfuK=Gujzk5TU3dt-H z{3h5Pze!W3I%MxtmtS1orV=>yZI%b}ALY}%b=Rs;zR!tQarBQt*i=Loo{xb08sdUj zMg}ZlIL@(=5ft5GtC?S1ZqFtAA?EzgYkT9R0TG;YnXt$>k=#TJ;`*t1cIK%a{m_)I179E&)9 zzH`y0f{gYrdn)>4*_-4W^hQF~igzQ)p!PoAtMz%!0_8iRx;4}TH{k1Vj$rqhesdrlTK>m2x`zjiOou@LD{XP#82wzLjFQMA zSd;3$E{fov3!~83yt}s6_dkwN@Mc-*({?>sO)W_9qec)1h2qq0gOICU z|A#FpVEP|^QNL=$LJ|d&dI9boo!8*Jya5XZgdI$$_au(&MZFLpT*LVZ!gEmK-keGW z%!D5^M;xQbnE5nu%v|fCeDlCO%+)-RMr;QSI2zcvPXxJmBV>ms(tbu9+XWNI&ZyH= zI#}f1rIzF{-@NYU{rMI6b=TDPpj0bYFYkftmxVAd<4IqTYNTRyjT!-h={@3&cP-=D zgKbOKf-y8hdNI?oU1mZD+6bHCwvcla52Q*W`o4zmf-sPO#LU; zcrW)Pv%~~1Y*K)W(SQA;rqHDjRC|2n^W(RXGmrSx1>4`Gh;`wg4$^jlgEW*q)+nlt zbI2fA8_ZeQYcSWOthwg3g6zX}-<>i3ey(Gw|Cf<;l>be52PD16ga;OlJQ?3~eKz*i z^t^0?UPyvxmIll_YMHa>s2b}U5!;PJEuWRtIW z%#lrB#1Ar^H&tgwp>`9N=ngTp14{gdeRSq}FsWymBMb)L&Fsq2P30x0+k=Lyq#}Np zGVvKrqx48ch|iTnQc`+p*&z%Rusj1UgDy50W#`rPqX-Rxg+b8}9xhQE^!K3o=nH5k z?&Z_B1G-ptSptvSXTo@J^fwlCHOr61ODD-8o!{mIQ?Cr(Bj;NXT}T57*-R0fn>68; z?|a|EsE*CwqdL}SM!-$p*1+=mNxw2F)B#|K`g~6E(Jp)utbRfKbW^t4J}2qY><}3{x*Fr@>6^InM@W zYP79m(KXtWV0g^A{xqO|{2M$at@a%LbVkGx=B9!lFxaSg$Rl>1ZJZ?ebP@OOE*Qt2 z!tFRfq}IU852FAwyAI-dpc+)m;!O||U;p&}>>~{DP=d|nTwBCcRmcYe#`=`4!K_or zU_-;0>b89|4BUZxBk6AA-Q6gY@{6If%dnC!R1r*KjpnzmcWB_31%G@~Il*C#A2$X$ zj)>FiZ(;F9!^4VGL8SO=u)seKL89f~!;5NW>@qOM-i+Yzj%e_JB+zOAEE{i(Wih7C z*@A&oLW&(V{{kPMLKrNTZXu$Y(K9fxuSm4Gu{u9Ikb+EyAh1f#Na;Ws>xmtko;eg5 zlr%m;`>I9apG{*%n+gv}!~OtM6&T#W10uGGr(2|~PyZBh)(5&}!;WBZ1I(H%F}3^=i#cK5en!87193J9xKoh z-GQQa?zPOY1h>O^Y!TcXl_~TjGeud3FZUuD%ixs`(BZus$}0GWY=9-W4SC3h&@nd2 zK!0#sAnUS!-fkG)^6Bxdyp4T6bNk9>E7uw2so<^GlVcEBz%r2Yl&CZh(h8x;JdZ2s;QG>}OOVem9S z!2Mh^uqxHM@CXPfiMUWs@HX*5l`|Exy&58Wx~K@PDzL)=d4xIs&hp z7aW$b8E=e7+ ztLjhb>m#-`v%~O|kb^+p{KPl-u+)G;d}Zz70a|8XnxFupYBP`0Q}SB2GRAw%ygR>% zM8!p<2dUSCuFSE4Q`RGkJqsC2zdxcXnJaXxxfqOJWt7e_po>Vl?j{?lIJ=wV(eArb zq$rad;VcRENcl;SAk=}y-}S&3gq(cDAs|Mt&tXZG!b@=(({t_hUZvC4)kYs}~GY(fvBZaGW^!331#A^eh1_rryDJ(%j z`{-%iVEETO`B{hzvbZ_dRYWSWvb0napwYIo%SY6PO(40u5ba#W^XGBgw4IOe@A2~g zO@SWs0_#fo^nC^+0EHD6?1N{OrPw&*pwJF8Be9itO>$urGy+NB*SRS^gbamxVKfq3L0GVqYXxUgZbqWFK3E>|XF%af8C>aU z^46x`UacElS;vmRHxDa;F!p^6&ujbhbgoq3r=f#($D|>2)neZ+F)1Klv-rpzzQ5E5 z?_!$8m;4xuXGo$`lwjT%*gj;u>UX(n!*P1xy^ar9qcZP{ z7h_l>(|Ej%e9!o^$gmN2TnBm|!lX?ZZSKM1zN!Jpm}-?qn6wL@;He-_r1v$-EUpRA zgAa#HU|3?>)j#jwdAP+^_?2Z_`q$Z&Q#seCFc=oy;tO(KUS7TBZiR>wPJAs~{5dZt z|uKj&9pyF;8)DS)Y1rB>Z%kZ#$$s3okF zMzr|720R4;KWvpKh}MU(YayRO-Zh02w;uWL?h`_Pj0=UsdN6*D`C+`Ut5t0fHQ4>& z0^sR~?O?UL9g|LDe&5{T;h(1owj<-{tMlNz!GN#w(p#~UPZ3XpKONqp0`8NEBAIQrQsT>Wme9gX~#RcemIQA1+*oWh8>-Msi){0wETc} z&q+4Qz~0HYetZyPL+|!p0z81=vWSP%_J0VmOyoJ2t*x#9A9HUWPvzRh5AWs)ol0fa zV2BWz$&@4WJY}wAo@0|)DNf3eF=U?SnGh;PNQP|)p-JqGoQxrQ*LCkY&*^!8&->5& z{_*-epL2Sg_I=;`y02@k@A|H_zKgK2GJYndD~DA%mZHudz7v#l?g)p=sj!e+Ph+Y+ z#VSTrO97yVMv89$=(#*JI)ORD=)I2#!VUQ>8z5w-d;i8U?w3Hk;NFSc`$o5{7{x|} znhVBd-~Y36;hxSUaeb_Iz;}H))U6&i%*UG$?o4n&=>9P6BcJl8qCgwKg^RB`Om;}f zZIwhKZcy%t(hZ7h`+h+(V=@CGgecdyH-PcAZbzsF3P0??cil<0m+>82R01Aw3CM})t43K+v>dh_ zQHgt1uL;HTb8#G1e5{TJmS4=VosIxkIM7^8Tlbx*pc-L=Zn3Ao3-!*e^J zsF}5c!x!?KkjEf%jlsQ^GQOTZksu?5n%h{1^xDw7zVzsVMaQI*|GE*B5pBeyvM8jz z*$4JOtqww29D@;x3gfri1g|ZiCOJO{<827EI{YjqrI%3VLd;dqX0z-p!(ss&oelsH z?5ceX9;ww=UhKuJBT69?Q9&P+3*|Mf*Ei93j=`1LDmOvHrqbYujA6Psmc1ZIApH`0 zhMRt}aoovSf|N`7DaM+So6xpDnGr+sff$CjjKcfWQ)ISKR(_47--Pmp9e5MbFxMG+ zfFsVv?HmdtBll5`sjIqGovwWz|&!Qn)Cn#hraSkZTbeSC+m^}!YeAJ~O z9w|KTqm8!Q66Ezs{!lSdBn3qhdIEHeZJQSkTY-FFz%?x%nS@DCThDrVRC^$CpDS0r zXfLrPW@+t>K^25r>*H4HhW{WOW^891IQ#J7ROZ&I6?^EON3yeZ_4TNLw_IIc0EKj^ z4AIIE=qDpNEg*Qj7C`w#k{kfxzsB<`o#o@7A6vC%-Tf7y=r>_b**#-jtZ~NaV8KW~ zHphR6A5@3rFYob8P(nDHtx{hJ`E1lhrzY`;HEkpB_b$2+pYEogmf)xyu_W zq2R$r6eJko7LRm6F7jVeVxsk_eqU@bRi@sxg!GlqSXTg)(^J3m5r8vgdGXAC_!rB> z!Av}xD~d%SAEM)@a0V*jf#6I7pN=Zwry3yr){lXWm#5}!MZnE{#N_&T+uKSb@JusmrQ7f&U=E4vSE7s=uZhH(!LZzMo%Ac&%^dNBk?|*l|9j!W(av3!O0;E3m?lj2`%>F%05-s2| zFo3WhuCY?|j)_JO)PWj@{hZ&B>;-p-mrTm8$2!{P4$dg{q%R--dzJd`P94Vg=yme? zVUa0A4hT`Z*RZ4R!O8Len>c33us*cSsS4z_N2Fk1@)7nWc|o)i2udxFmcHna2(?7L zysNJ{4G??jw{BUJV6<$bZKD%Q{J6kUon3KD& zAEpH~U7w5wXV#CL*~RCB02EFg#h8;hXc-DzE1;|gjX3Cm&Oh-fZsIzewkD*3JL=bV zGyRq=En(nez1ULsXFbNLE~H=9KLw2>MUwasAGx=t7}LBH(DKVx%*JiS+9tc72zB{y zyqE_07wAK8>z2MmO+^EuxV=yPw0~4_q*;7b%s6rd06A9hF*H`Z`4}>I|LLLA^xVj} z^Vmbu@IiPO7{!B#!wZ10=57gdFX%;p3&2vfS5aQ#gN7kU=h{6j%s=3}0n)1=GBZUS zUAGwil4|(G3e$Y5Mw(BjFD&B6!_h(Czuo3N4%s2xcP#zNdl?caSpP~CDBEIoI@pa zU2(62KGd(&gQ<{_?)?wGI{TnMJ&x%1Qq^0g13wRpg5{IiwtlUHEet~sza!J>8*Fuu~`Yp=I&Pg)}_wS64IrnJkX{&-gKNmyPJR-4Sn!FZ?^53 zN5X6#wi}=IehRbcPJaf?1Q0*iJfZqp0JAZ+=}*&xJmA{o9!8oPcyvxsgA|qB&mn#j z_U`nu@{y?~A=YS-XuTBS($0lSqVC!^(j&cB@jh=$l2CV_JaqRtVBLMf$!86aLP@wf z=kSq^fG+4{hbGBV>-We^U&lzOmZbMPZJO*}JZv*Ol9D;Nk`wbP9@ZKyhD(Xcv=XFr z|7rGnu12mFL7C(4v?s+m7B_Bfm4xQ}{152l2OPjS%9hZmJ-vQ$UA&c-2L9e!f`s1S zeWf(L)%|<;J?H^&#b+hbk#vm?NxW|iDwrR2NV=ceWL*NWIWMLpAHdfIDy8MsUKO7e zci6Dc*VPY4g66`Mu#@}IKJ)tl#U`3L)3Jk)mBZm(meO7F`j>d18&xi{=B~ z;DGEfDIwnTr*1n!D#f^d11&f?EM?YmPm7%KaCe_d1KFWIl<{b_ zLpAIDIVv1VxfWQV(F-inNo7GCxbzS--JqHV;)k6m=0;tC8REk+uf+pxgOK)7HmdF_ z3_YC14EB0$bfG7tYAY4&liTD^d!12Gw&XHU`+Bo-Ao(6h)%FwW#UVKx%&>hU2&_J6C0VZ7mc~QAaBh#W--28aK{PTGlj zUDMBDg2-}H2V{M6s|{5{UERjM=gl7m2|YklsxKg^`QpJJP_-8jg*loKP~nFlL#y@! zLc0HH-(E0ZlvtJ)rHtv;L2Q zh9;-QU6ddk4jFaGZfcqW&ckJ4OP~flOwiN^qGLmjE}*aUut?sc66yDXO6)$;=}8q- z6M+=I+rjEw&V|6>-Z60Om(F7+oc;N=F-C!iin~H(3({t$=(LzaK?C0|Cw6G?hbCBk z__WoleAu{1BEVXs|9ybZb{n|+p`B<8(ZoKSIJNZU`Rgk~P|pO)A1I4613B?Ph#Stt zX9*U3$WLV8R+4(3imD;W`%OxcW***MgstScYlPXv!nz8gz5B zXMZ(R+?4GOL~No4CO^dhY7SbWMtOz0l``852t9yIQ0q2+X<{EqdHRa2?Zb=;^~4iq z2iO48H8xLX95z1>>=CX7>lHpm@bkE0H5RL%d8~*Xt6Bg}857^yXIpknb|&Vd4%fbZ z>MUjq5kL8gPWGj(kZJ@8MB)jx8T+|TObFweM~;g3-|oEuUEQGL(Kp=U)tO`{N@{>z z0s9ic>+1WkwwHX+i@mfJY8BxE1{K#2iJOf8kN}n7CDN8!*&|Qo0{u*?3V#8K+?9hU zZT}xIg`;6ZYlUQx`%;*9_XZVH(02~LtuE2uU&#VZ`yd$nDI^sHdrAu8z&2f7l#2aR z7ShHtxx+Z=F(HCw1i<#|!&?xxCv9%tT$@om0Gb2Sq8e9w5?-wUO>AfKu1fTLmXurA=(`7Xb+{N&Xf+%bCN(0UVG_Qqvo$2X* zQvEvQ4`wI$7;oLT=a7`6iQ@z5KdynKZb5HwATZ_Z}^=C2u-Ou?2xrbO;0 z<~#yEV6TjV^Tl&D#o_)09WY{N8a;DUkK9EC3SuVpSE|`yPgm`Sg@STqHado-G_*UP zXkbr^X}@rPd9F6Nu=s&K7%_uimO)bd0{$YhKrea?<>WnM9(3{QFw*Ysr2&M23(!Kj zyGs<##!%RsrE`GY-SEH5H!=DiBngNaOpcI!w1vcu{LKtWMr!!D2v%Is{(wA&r)%ii zU4b%wDAWW>3l(_mT8Bc-@-;f7O|itGjUB*%Jt&|EI2&Cvp7@6N^0ZdOK$6f>1{7cd z&VmBWZB!JBlU*sV<|lh3*nXr~tb4?JqbJ0rM|%biwOA@jfKJ5bHW~SN`R{3lNHL6i}?<`!QM~DO>lp zd_!Ej2fO=)3!d1d0^Wnj)So&)CZsI54b)uN++iw3=iK7d4bX*AUql)`L2k|MV!rlJ z1ASY5#r!4~+6!{fX@MF(U|ZZhMvEol5^7Hcjxt|?C0(~bj|fej5~M2V=6Z-4eN>ag zbbG9IP+p56)gx~I-8?p2VHFN@ zXSAJtEiAG&KdEp2X_bVJg?5l7pd5*)ryczn@$9VM!1G@B&z|Lssen^?SI8RVRggdr zQsPU>GnVm%;zp!s0^rQK0CfUQ>3}3tmwd;;~&q;ho z?Pd7cszDMoA&C`FK7!^;T?2zW)CtmxNAi}xrt|cqT!f;Y2iFGRHQp7rMx~f9mxbV1 z7heShjuc-KHEg))!ny>_lyus^DOF|)!?u4qsQ{6l)0fQue{y) zVhl7(-3UpZ$}ZpC2Tj4JT3rNOKfjU*?|LYzos^U`=k4U{+W_gCVeCj((t^i^vq-zla8EfCzY`_|;iYkd%$F>L+FE zE+x?3z2|iX+%k-80fth3qY7>wpmhp56eMJSEDbL_Hs8Fv46W4#o11=E`yFIt(m*|S z`g5X_?h>t}7Alh%XTYM|@nQjhGtU1{5o>0v^GVDx>fFtoGTfp+Mll-7mEGDc#- zpiv6{WA8r=xxwhy`|YP+9fmu>@EDgazoL;s8un4WTz#N zsqsWOA7%1z(TVU*S%|2&3bpM**EY)MqU1b`3z8g#=G(}fdU4QYL)=`Si(}cCZrUt> zLzThbbxu2S5gjD@@ozyWffqAl2Pe`A(^iUUH!OenAt@Yj!%<}6vpNEB!!I5xf@&EI zY51fm^?lq5fMZ|?s5pMx(~AxfUyN#MHMI0Iin%GEc1fTx(}3Zgy2GB_{kGPXRS`xS zfr#n&`)QNGew46*)-dH8($dh&PmucFEHwpZ+CHywJMM|d#3Q7x4tkQWyAS=4?@8Ny z42)QI%8a%CFvH`6ugNv7C}ql5-~}5US|Fh!lyT2X;r0Tgy&7=M>bmKDH8mdDJRM-n z1(n#MLS9@!Eif9EFgt7>MOUk{*UUUX5}Ume)*CX6gOvYLgT3YkSKZ+Q$!;x+mr^A1 zMYYgb6*`S?xWxnHSE*TjYE-Io#m=MnzR9N|h|8rb`x6TP!pLkGe8a4TgFzP%{{)$AzJ46y7v)X5eb} zqrjd258|mAKHr+gtxg>Q&_Nlt=B5D)a_JoMVqkRB`tjU;#JkF4fy2I0>Tl#gZ(Q}z?4Ya=$9zhbN%TnA4 z6rZ3(IkVWZ&l~CU+}SDbyN?5H3)8QPbU;2sM3V>3>j+tx-=<&t44%_z|CkotZyKo? z!@>V>Qsjk;LeT`xAWRE_fXEmYP62UVKQ&TQ)5Mj2uX5F#ZT<&v@wQu)fg!*hLUK`; z-g5M(ZUGwjf2yX1*&?G=HYFX=f}y=9FA?OuN1sI}@D5@q-`P|&8lZi%@gJawa+_3P zU)(#Ovcky9;(-$o@W4^LCkWv#z4CVImNt7Gs}GCyU&Sdm<8=`zA;wWSmy7*K@ZftQ7fTT$=??Lbjwdr6e8>`3wd^oOVm`1&japY{Ou z`h+MNT>(Y4v6?;a^qHd;kL}^3oB>nn4~Il? zsf9yLu968x&lh@Fh#-!JX35-jV&cq&x`sM;^4S0l|BPXIi|dz+*s;JDH-Y$UY+{qn zfYz{Eh?w=0rE?pfJ7tk#xAJV>&9!@^Qp8BdDBB*U3^jc+0d*1$-jaq97;_L%j+mKK zr=hb0fTQvKF8K-ueW~%0EQtNcvS_4AB_za~4yKfZ3;4yAIqR?o0usZCxBz4gh&(;9 zYKS(}q5nRKxIL z2h3G6fw@X_Xs*(gJ}+LN59g@pcJIJQB^-?%de3rb*4`___M@vl0*YQRyaFvXlwL=O zU*$9YZOqa+TM3Ze#j0?zcn;Tc7NV&qxt#EYp#-dhEPFcr-?FFI7aLi3lCv_M%%L$B>S4A>NRTH%G~b9P<9HJS>9@YQBX#^{$S;qILxxPzi7&|mW*=PO`D;|gI$5#$?=sdFRUOr)~jg@_ia& zE66{K|CWEItBUA={@5^z?Kb4%0UX;o^vX3s=NPJdBkv^rpR&uZdxBp-khDD{zD+U( z3$0+gJ^9hpAih7mym95nk2l*dUHObmtU-OHq^};rbnH;(_w?5K$N$cD3LTUHi-MNLG=Z_T*SvC3lXJ!U%VTp*h z?`p-nn0(rN^>)RZ?QNUjnX#1(faTwI!Q)DwjVuTP?jO=26_^DJ-M((#7UYAyfaQX|Uu12W0Si8Jqgb#(sd9$Z^jtFQj(67Ozt z7KQ$}C;IOWZNn`(KUGkvdb-?D=xQ=_T%xAVcw!eF^&O+L4nbQDY!akcQ}1l^uJW>9 zeR_f0RJ(X0afS1sov#nUaq2_QhM=&Nx@W`VS*?+>>kr*6ydKVr&?1|SdshHPS9dC{i(9vf zlZRt)m(j}f6wR4Vi@}+%wRN^y$zD04BUO!Ols!a0tt4C%-HqTG?jd^nQ!*c1l&fa1 z8(2NtK!I?MoWMI!c!k3aBVghcV9iyWko_0wrsj(%ks?=E zkiFa>HGHRUdvnNh?$w#j%Z6{ubqLfwX)S-He|`Qjy!|T?-n%M&0{+>J9XZX8{GV1H z%-5<8*{jR|*MoCj1M`?lZ@X7`mrdwpRIt84EvZ`n8!id9NDN}|jh;MTavyXuU%Zn+m92F7<${z)x9 zfR9nMG>9FDW7cy~tW|PnRJ!Q#hN6~1NR%PSSSaydJI{{MG)FexRNIj-R=kb^gn*Ag zs08q^F*qc@F<=hKzS{ky2Mz?Y{Yc4&$ZNihIXssoTIU8He-GfH>sO!H6_~##Xu?BW zkW0MCM4ZrTLbckEZA^6&+opMl<23n`_aNbYOCNlv6AYo#MXKJFS5wV z(n0${T|w>1&dQNtJi_KUXNXvEsZrBYGTWA(=9-R{8o?Bn z?z9$#XKSBi8qnFxyb-TRzx5LTz1TZRKX1*5jJ8l5*&tOh=LRNc{@Y}OHa14AH^x~b(Hu05r&^iy`jKW z+~lKI^n!I_7@x{_+1EK%Uv9^iq#sp&ii}&|;f2&^+!EXNVNfKs0d3ciTNy6>I}*=K z&*ZLWz)tt_{m3NIlzo1kB)ezYeAhSpY;-_&a*uf43XigfI2@T@#=#BMEkykJ^-Qk&=Fuw?Wx^_HKqybHR)uuu{>Ch3UzSD zhG40V?YVjX0ayXSTj?Pl-4R<9^UuA_%(CNL{G2VZSN>zs0E3Y1(Xe*dZRaT4m6Q!B zg_<>5#>IOhJy#Jejmt#iwJM`7zSZ*O%^$u5N9TJ%O2nULGez28N!J>h@F`)9b$!#7 z(}^Fixh-X$Tk3RXE!tV%38toflFy=sb#7i0T}MF>Or3~osDD#t1s_9H|BX>=IF5@> z!Ih6Pjk7F*4-I&Gs+ve}sO#VB(ybHsl-gtzO8m~GP3stJk0lXsb;r>acHF;cjDMO- z3e=SQ$T$*u#oc5)(T++?^w}=lIv+9I$v$76*`I^Vvygwi~L_vIfU;~}G zZa<=8QM1Evf5&umtBpFz1$}|k3hr z5Hb-Hl6PgF%xfA?>Jxjc7JRlL`z@OcN<{@E!)ylW@S_rEVdRA_%YbNI4+ze+w9_4q zi=HkKr(!Eye@kT|>Jso-h2~h(po%TGP4VYrofF3pGls(fEi1j>!XTEexpU=$9fiDj z-NPd;9liMuyL7;gcIsB`nI4ji`>aMa60k-ZEzn8Q?kpZn zlbZ_Ei3$WM1!r-D$T}$%mzq$KUB+mXX%pxuQmT zu9kTDC3upR2jwG?9^{LlB&?eeh8+H)ljVCM-WG7MqyNoiCD=l=4UpK4%yYi3#$mn2Z5u8#XJ^|NA1F#80ur~l-KTtOH|vX!u~foxIwRCX zw-x!jFSr}lJ*$vu^)-`yw)SMq^zi3N;?4W$P>Cyoh5UU>vV%YC&bkd1om3%C$onTkg-2?Ly zOn)MzMSQUIMncP9rlw|jaRa*fLNuxurR)@(4j0i?o-mh&` zJDTZGQmhZ|e{A)!p}ZNMB;-(MZy$!BnSF|Q9{!C(5N5%&-RTcuqwtRDq9@JO9a)}c zKjWa|dn(`5G>0K5?UFz?Jo?fTyTrn#vCOJh&*(TX#^c1Or*tPq5c*v@T28T243z(uTY`>R)d z1a+w*q>jYw|GkV&?ctj(B{*rLn9bRU#y8qIZgF|vGzZn_&PKl%()CM~8Ce#xzW!q| zdf-S{%hK}a2E+1fOE7V0+@S&w+u=FaX7Jk&E;aHOCOc9 z)spg|R@w$8m~oF>2xG{D;c2KYTrAJ`9+QOO?c2AJ9;7l;wZ3q$F86|8G$n9sa1C0|r+=GG$zdTafPvnQFt z3qTvO!JGMqtj8&8ty9#tt9796*td6QHyd~{J_c=gmKNtqi~8}|Xd8a&I|kQ84>spH zzlyY>fuKsU#Kp`+0iij&6dm~6c2$=AnXa#A3eq{YPklg_Tv!aB@;ok%ag1!#+u*-YO^{U=5S)T76&1?w80!YGIYOJDlfF$k+AU z1c!VlN-WqSha(~;n{l1g&pyf_`(t+mmjPHMflQ~mAd4Kr>iss6HGH)>~YoN(=^ z3lD*(sa2=0Kzl<3#YDJ=(mCI@59X*d56v#$a;zkgNVkfsGPpr45sB8u@|fg<23Ydn zWjt}pJaK@Hc0`P%e>-=IsrR{#|x3*D-?7q%jMx3pO2dBfEIehQo zBl_7tQSAElhKj?;NNU2Ri+(lQ&E9bEdcWkiRFK&f zuzW=WsZl&WtR{Orblh<%3r3e`rq>k`%6(kKS z*QE{*8?J8n_4oC?oLs=WiAv{C-xKi25WF>9LeFjB&g|IRD|pz;oWOKDqbMgt%s$96 z?3LbSndF@otWLJMEJK(Bk*wiJ3?;|*-G?h#*+~M7wm7ly-ywPT)9Nop+Q=8JUr7l| z4t|FpUg~rat@F}KUbAHJICaOSrphfd>D8?(Xah?RLLs8G)(3J{q=2JwlYXV zMfLt`f5piI_@{rF8Z;T5DJtkg@vGO5SQ<(y+4-$8A7ejew_q;+}-y=ylgXZ?f4&t_whZ0nq&Eu&C#M3;H{9AA_l z8DgZ`0dlIlQOuOC*xM39$IZz>F!Nwgxwufvn81G-K=>=&?7{dxF$SSTAEsa*M{OZ8 zUV6d@cQ%Q(FtFX-+D8+TpLRFM8gRJ$$o^b7sEO`_Y=tWw&Nilg$vm`)C)Fc&;U2gr zemB*o<&oE#dx4p-DPUs)c)$t>2L0%{b7b!3@dOsRD=r(J%2lz^(bG<3Ag-tl;CC`~ z>a=|1oY7~uH_=2q=je-YS@iXvw7oyX(%puS`$IL7?z|=n{FBX$(zY$VzqRz$)9 zG(e$fCRGuRPFDO!WiM_ree#9nC(xN{geO;f22U<`C4WCY9B%(R=q_okq_1<=h^-yY5}mE{@hL7& z7LYa|7H1AzrU^RxmTFZZ`xVRhUF@UXuCVls$7t^4@zCg+i{xK??0pL&S)0yrDw`hC zwW2dp4@;9{KKJ!U?VL*d=o%%7dtym5@2LXUnE6S4;D%uyaKwo+2<$KER6YIcMA>x+ zU>pI#&-s}a!O3wLAB-qvnwmh72fw^!2T{Q>?m@F<)VMik^K3*Y`8!0wq!Q^!!Q19w z!-1Pt`G zROxnXPkPxSL~-uO7|o|wjkHZT;pJ(Ph0NUWC4tMnB-#dDAQ)V>eOKIHgBgI=zYyn> zxUU@4*7Bk6KmSp5Jeo!TkN36>^zu`^9qUl2#XBsjIEDq!PCBUt$by)R_dHLNOxlG9Vcum0LT5`GX zm(0P)&$eU(AO*dt@Y4zd+#aTXc^e85k7QnMPdbFbW1hU1N9XwP6VHu1lX<26!sGi4 zf$&P`fH0h&D2u&BoCqx}9z6r`LcxA~lXr$<=OJ;aw~b~901PG9-CEj|tob}KN&LXK z5jDnYi8cZ7D%nZomGAb1Ex`U>LDR+Zba4gck@ zMhG{>t$)3L%ieIr{^6eFLE<+oLtLG7E?ttkKSgL}V4vM-eCcrrT3s$>!?tf{?mJC9 zBt9!73wsv8+0QrLeFq{vd7HhhI`sG4MjQnchs~IK_hlVkBe3fNTsJHN>R^U{9r@=2 z8~l-`|L~`gOv4!Y(T(PC2#$*v^3V_mMy(@t+)Fi;mD;O(I!xuR6g8j!Nr|74O5M_M z4qjK~NHkF}=F16k@bAXG-FB)c;Td25j+3@iE%5nDPmdyS7B>CW+r-v%v+EfWB#!Ir zt1+aG*}Tpi{D6g-O0Hi&LZ=h5mS682kx)}7UZ~(wW}Z8ji(G`3W>o1I5Ztv<3vNS? z7(A2OerUcEg77qfLzMiA+n%!S;FFb8mOk|2w6HTByH zuF;8zal7_kWQW@s_`b1TO7J;GM~dkze2kaHh9jf`_DmCkEsCs;Un7xL{4)PtH3Y; zZ5hv`9Y$@8N|nJe%b(DYjXQepxz0!*KQI9{(_>aO?{pM7iD zJ6$$H0Y>RRPDOgZY-$h>D_Axm8co?;E4TmlrwSq{eD^72!N6o?vifJG3Xa3$b|0#T zj}G40$qgK02zP%7lVCZ4SW1lK+Yme>r7r5Hu0&FFg{;kkYdP=yP+>8!h`R91yb$z2 zgmF7VA_wfIWKm&HdjG_lbt{>Rc4fo3XmFTp4M%`n_-y+HB_$N4Kt2I}Oh6Y$t2oC! z;{~@evx8JBviid&WH!2X)w9k`MNNsPs*;v$d8ovHE*1M-X-bZssQMo89(wk910Mt@ z)<$l$+*$$>192G(@{6j9r4~T8*Qx?dpu~0yQI@#w(LZvJ=aGqEK>ZTP(9<<*Hf(~+ zK2y}!xTf)J?a{d=Fg*!g7v`c>W(0n*3(*Xyd>j|>1@us7d6;T+m>rY*hR_=(UXs0t zP}b>bj{-?*hbl{j1inJdX~#?}D@y#zo)Dnz1wOz0gx$U}@#LsA5HcSm3gP~o`-N=) z=QXSnnZWp%HQ5Ney?<%nd3v|?B_}6XatPYZuYhg~{LDf|D<><*1NiTw-qV%V_*w)p zziEnINgxz=v`&)p6}Lf}EN0O#jDqfOPnCFbg%0i*$L>C7rSm-xY!kg4g%d0cI5$R) zqmasB2r$Z+jhcysO#lybN`agHygEN{*2uwjk^^B}Brv7yvtZ;QzSdwF=$UZ)>*Cv9 zZ?hQ$va59m*$XF^=5u+aQuoPQfQR-Ae$YH{&icuuB{{Cg<(*FrD(NHC_hf!vZ${q| z*e4BL)&Drp(3V3}}x@cDheNnuH!CGcH7DIo19k^#&vPKrU0?|Xe zfK`h!g`Nf_4^i+ZK(I-@K~Ig4;0?q5vckhs&*2a_il?HKjInN9>Dc(>z}xTVOaMB+ zwVW4!ZVzVCVB0zAZ!LX~eAS@sJ>4sC08$KS9XP2`*S}Io`E|B03 z;9Fa=<|Jz?MoHji1Eq`TA$J16ONTjx(|s{%$vgG;to76Me`l?=w89CO5qcYyi@?CQ zwEmx|1Dyi5(ua-cXQs}I-JTEphZJEM5W6Ta8}ySDi5~1ojP!b&Z2}2IQ}!I}FyTyS zQ)cSpll}Yw0%++LAV*q?Zwm7h2Bx@^DW#x*Z6ePjfu9w8A^;n0zMsp@!hD0SZU@A8 zUV}1+OLzu@LK1E*L894&UsOFVv{N(TwBU~!!f)wCT-~9qf^IfF7meq98rAOtA#Cpd zlMn_U=6Y2s-rcBo8roeTP4k_J|JMrT$%7}!!x-QKl#0xsKEG!=!_^l>V#D2BLt4%s z{r^MBV^!wh`aCYcr?Rs7(t-3PO)SNL*FH4RMb~RIc!Z+w%{hN1lFOR}c6ZB1jO7PV zp*PsIli=f(bMtMmF#01wVy_%zv}S~4`Q?`hkUxDr6%`xl1%#$wNghR6RZvc*a>C0q)2s0Rc^PdrOFK%g}7ETFv%ChZCv0LG$d=z$c6M^K$PXy~e zt~0jVbU$@jf?$q}kAU}i9E%~JP^uYmF z{?UXu=I%nsQDvQa1E=C&6#+PDepv8FkRPcLn(c`cJPhf&=u$t+CN~pt*3^ownZ(FF z2|<@nK^y=lxN;=Y?;Q4xx~pI%n)`NTc;TBJp?u;z=0Kx%E%gEqs><*nK9c^&h(i!~ zd&%(l$ah%$jB``nZmUoW#RU>(hG~#I(b8rauf{l&ZCydGX#h;8`CW0K1$YU7im`^<+OU?JeUY4vU)pSrqWHGE($d-C=3 zNId_oV-1^nav>CUGp&>X7n306-+193&GE#}Y#@yJ@wd}ekw@(^-P9TPvkV=3TbZN# zAojicl#vx>U%F8a$;>i2K9aZ7VmM~j6^Q2oiWQWdu#xMTvV?60GSGW_!1#yQwK?AiKkw9sPMLY@oQKhBohfO?Zda0{AhW8 zo{jsh@dnvpv8=5ns-0_IpBG|wtiF$$)aJd1TWDIeDNP}Fs?TXuia z-!R0)yO>SoL8?5nZ>4H$VNp@c_?$izsryKd=S7ba`*xfh);~%r{U{Hi_e6y)!XU-l zLibEtEs{g;a0tCa*sOm~m*AZ39op`Q$pssNAd-zu9vUxDHSE_TchsgoUw791p~k69 zjVb2K+71p^CaKj_Axs?<{?fBx$5~k-$=6LEH>nSxNV{t)sa%=szYcu2-~X8at{ib; z@|rp>@%NK$v(-`xkZbaCamYec3uN&MU<%^mWrMovOQ{zova`2!^HOBhCy4jHqQ*bL zPESB`7AVTfGmO?=HPEYf=l^fg*1Be6g(U{SGT_Cr;Y$7Y){pxWnk`Wt7af%+T!08b zu@j5ME!%lmF{F!=(9YT22UBcL){iE4hw8z!lI|*ZF=L)MV;=qb*%J1(D^5ue+fQ#4 zty4>pzIX%O8yDWu(;v0a$1Wi_S21e&a#Cnw0kVP*Kqn9VM3%r~s^w^-5ghXq9r%eD z{c3xd4_0g0l{|VQM#lCFHP`>d5Vo6&qJW7dvf(j@$V4DcdN1(Ts*z|s*K|pf>FVk# z8XlPJMdFBwi9te9QGIZ6)J*|2cJ(={jkTr7%(XQy80nx6gNNdP)Xmk*5c|ODCJubT zO5+>EtT_}Et6%Jzp6J0!L}IveP71~ufSV#SJncc`Fa+mgkh7<6@4kKbcTcuRe0vuN z6lm`QKJ!ZZp|g~90t%5jy1H5A<>h)^@ggo)I>wcil~EgqO?RryaFv}tr}CWp`TGyx z?3iJIozTLICfOl2<1*HpI%&RLA)Hh`|!W>;~WJXo&7*;I1FpMtB@Z9ijxNd zAwoou8Xc(@VRS>pYj50$Zx~P(cGJ&8i3AP{c)+s~ucJq!$b>*@(e6Gk8t{!}0AYZC zm<}UD7*{r`?wCV6U(N|?YeoG^L{F4rjYa^xUWZB-1w%oJo`X0B;fwQCFLo{00%0K? zcW?HLdI(PikRTS1R97V||9LMDdA3$L0&V&~lHQ516v3TrkZ=eZIZpo*_)lHg-B*_v zq@m-#mZ^l&IXBiIp>!+24D7Tj?OSn+L*lAG-P}owR*YxEp{(lYtIfKI&88UfMN-hH z?d}(bMNk1NSrNW>ACPOVAHJ5%wh>D?2-7-scl{l)1x%ej`F@Hm-!@?}@$ksvd7InM z%B~j(5*)1urZyAAMb&SNjYao=a)CmZMGy!XBc7FZf|eUlAK}MF|c2bawV%zbh6%nFMW~ z;D!w4pWa^poZgd#NJ z3ttRp#k!9*jpSV(vMKlF;H{uVIc4C55`VHnxOX~#4RTdB4KzTkGcOT3Wm zjY5IWl!M)wG7V5c2VrQt+Rt<4Y-rDDf>RsMcUWJFiW9O`)-8e>5y)ZAi!ctCm6(Qa zdKPd}32~ktmHX*YyP;U3?$PzPy>J7F^>qDHj2sC(0N_4Wo^GAf(`G5o(fgut&JpjH zM}GX#tv3vh*4TIyLE0RxSTpZcnn+@4Tjj{rnjwe*sv7D{fu(l;?eBX)=3e1dBw_4( zQ6=q#0-5bR^{V$DWd(-5592(5T{qR}xW@DcFK>8RLC?y*@eRtBecrO8q2V>PKH2qm zOB~3>y8zIn8$M$K2&lYpU_}w=reOM$=r`~m7xd1^K8T+Ky(cgbf7x{Z#!W5Pu$KkB4;2r>?c47^^9OY!{mtr@aO*@|HUUgJv-c3I?7oTA&bsvO!l!j zvEKVWQwpYTCnUr)3JMCMSYT2dRWaFS;gV#)jeqz1v4`3GBKx6wy!O}Y#`PX^dKWGP zQ8Z6YT?;UWAy$y))$sJJ^^r7_kK6W6L`45a@eS9*Q*`i$*CpaG+SmdO6s)bSEgw?z ziK}E9O|z^RijIpL?6JVHzkp0!BD0pXM@#KqH_C?v(t}Un4}PPw=Qi?RSDvI%A}=tm za?1@=G6g@~JAo}`pS)J<1{1Z~Ca&S#IB;qKKW~WL`McMe=Ws^wLGs_nImiY7>!ajf zO49>tO#Y(-s@KPU&^@~MoP()NVju7Ee{!!E^qjw1WL!J{DBKs+$M7)xGv8^vaembY z!G;1rL6$)|gJrEq8O$ zf0JFVf2)MHQ5V4~#aHiRYk1t?w62<37&ZXx$&GCs`A4SW$NYczn)t0ww0CyKT&D3_ zorr6i7oBTZNd}P4RWnj_TsCM5#-=qznOX0Gl$F>UG~f{iijmNqs(~V-95j^`Rdzt8 zH*EDA%$qfXd6;QvG;D9L7BrT5*1-haD#y_}YJI9jE(Zzy@Z7w-9!lZ2srz^y9g~aM zDlwAxumH84g&aP;xIX^FG{t|j774PI_|DpK6w*x@41*xi-%oedy$_;y>)@`jhBiXO zI=4I}C8forIUn{HG20}RWn}|f!kJ52p?oBhsmXOx&BTkCB?hy(;MQUrpV+04(qtMu z+VQp+cM8Do1sQj7Uga>h*%p*|4IepQ?x?qfMm>&Q zjoGt!J;$r~$l=38P!WtCbsU6J6*O)*C)F@@(ssIb4Z0=sb8{77=&S~aN@^Q$cAHm0 z%M1({&Vxy{w(HA~U-nxc87INiU_DPyPbJ%(USiF>i!c_>2JQ)U6-ZRIVU1KUTyCM< z0r;?9m0rlc8^VX^o1EHrsRUEE-EO`d6B|oPzsqA=wE_P`^9$iY;hf;{c%R+4$SIw! zekAS*LZ^c;o-S_Y;FhVr*C5gBs|)xOO@5mgd>+j}O~D#eCP? zbaiylFi4<-yjQ;TgGeV5jpaJbx=lop*>_R%S*-*}=%V3w_Z2b&^Ocz7<&T0-1szj; zt|Qv+?(PM%LqkK*C)}kt`|-X!lP0_o7zi78kNgZs{8L_P?LN$};|LBktC8k>*j`&_ z-b&>QZ}wXKD7>w>N~k{Z{joki_%v`=Z8%-T_MB_UYA~L-OLDys&@2p$J{)=h50a`= zXqqag(oW~d<(VPZSFYl8p|(FZH`?3Uh^g(7fv{GGcquaa2V*T*?ZsnJ@dGqm4#Lju zFEMMn8nf%&oZ7N+=!+{T_Jm57EwCczbSJiatFQiU8ru31CT62sW~;=fBVp1e7)87Y zuf02KCyS=hYeHwD@H85W3>%{W_Bfg#I}Fp1(Uf7G=)I|wVR%PoJ8zFC{_)!wbJbHM z%SUGS{Gitd>lQJ?>;SsSXtpoBFL(I#@;@Y)?jj6uY)Ps4k-=zxi6*JR zU}giDVeVAryE;FSAnCj2l2T*ca{^5t_JaB2k36ZoH?*>@lSZMLPA3AmUbIG z{f;%tYw|1m0>XqHhAVHm!W`alJwLxj6~fHV=L$rVqhTg$!~DX6Ae6A7;k(dnZfA4( z$JcQG!uEEh4fuC-A4B%2b2H4IENgWeFtDonzCWP#qs>y&G;Ubm=(R4~ozJ|b(#x;O zZv)Kjq3UhcW)2$-V*Z;xn4~b;QYgk9Zt`zJlh#Ll7CPszpJQCr3UDkanj}udnH7T$ zrS86?JV<;Lg;1!#O*>mf)6vmUzL7fBsGy`|5QI?;8^>Tf43wCafC#tUyC*mHOp+XG zMzg^-8KV-JqMEUM7z(Wbvk2#^KnXI;YmXun^ShP)zb;zg8}=&RIz=9fOyOrt^Iamx8AHI_3EIc(EVf7naO^ESWJb z9SmT)+?gOK22)@S8%;|u-N^L!Sw6RBECKEc1(I0zvfoPmIES#Xe$#5FlN%_T=R984 z;pOtWN_KYvQ7sbxAL5s8^SAy#HWGL*pO=s8`S=)SF2X?#-p{PIR)*w`{WjK+*sG$H z9w#WmQZk5WWMySxfcx7)DE-Do2ndh5MNu?IT&4l-Vc8&x9;AgF6cj`lp3B>5jw~V! z*LE>%jm>lxDGX-zyZF;(rbzku4=Vbr ziG-Yj{Cp)SWEu@~J-1(CF#-u7Q!*psmp>cAD%l7?eGvAr_Uke!Evu~mAeBLAM>ysvE0gQ zWnpNJG#al7@Ic6>^%2NHBi#pU_^))L*RJ-40pL_)f{G*Du{@ww)>h_9V45b92B?F{ zsNev(h|EcrV61**07`f{ajmVK3%Cs%u*pj5>Tz9@gvXu>l^%1ZioMX`o&hz3(%{jo ziGJQN7?wp5jbQ!a(NqBMt!;9Fh(;9$QPLaQiq=)kDp+-&@n2P*`1I-2>C?(J<9_RV z>R&N|7ixe}#b_L~BNT0^KH!x>ukrip!V=6OoJO9x&nIsTIeK)_S@&r)7#LuJ;j-(e zvoB%V@hK@OGt&}%LXP_2WQzY7>3T`yT0WSS3HSPbDCz^Pd|ht4_s$okzCGP90Im{t zkPWFX&ueAW!)PD{l+G{I?R#ot{OBgc>MUBXM<@dqc|F!Y`f&w2nDCeZW%7ufOfCB>HI1b z?OHER^&l{J?s_Q{VBXg&@&5bW(>0KUNP`iv2DG%abRy2Fz$fK>^fO~2h6;~G049X# zA$23uzuy*HKy1^vEXr=;P17ahK&3p|m4@7ki?92}vki%_kNJC=2hNxk3+8g2ArlWWhb2|0~NCB+;$~R zn{}Z0&1vF3WMNq2Xrlbh{W-G#zJQQ8d3Xk(S~(p}<3=N60pl7m5#GGXMJftw<3Bdc z&>jT;Ljd!^ows`M4Gc!8x@C{3Y)N0Q4p;wg&CDc(4*&xT0A$(`D1*Ez%&tz5+*s81 z1(Vs2sw82o@5RW)H|F7JW-gl4YqWfH_x6KhIe;mUt(KFM8-C=H@ulg9-^NJOhS9V2 z&6g*`(GEr+0Vdh{`l507upaJj=Q^P@cAT`aT8>I&(ZFDIuIJ~kp$mbp$puXr(FV{= zL5lqdhE|{RdwO%n8q5h@0-14JaQ09!o&~dJ6HCVtTm%>=S!AAck3&1#8itoTcmbWE zZ~`pUF-1qHlC*;}&TZxoV&!^zda;5|W9K@65pP`oQlUbCL0tt#ObeibVdP#viX8P& zwGDwyIkL)Yi4;2-$}H8`Uj~-;@~V&IX&Q>^VM(_sjp;V_lyjdKuxmpQ12Vo2LqZ;3 zj9~-){ivkv9(o98Hwf(-}W<5v8Vl?g4DAvLNJXIKL+uB0P zkGJy=056P2UIiOt0RII7h6?23%$dw#)5cz=(X+6yD40EJ?0f?$-oGj5>hM}4=5Q+x zAoo4s53k4oz--Z2;2HmL;5OaAytPp*2m8}=s8Ow>ybw@fAK1Wp!^TaRsC#*%qv^YH zK`Vo2Q7{!FT&o-=E;yOM4B#RrS1_m-GcJVMu6n`O0;&0>qS%s;UmpPwm9m2h^wuH^ zSjqvY(e-&{?!W5m2eAj2;=uCkh*9+hL24rk&8>j7EvT*@IIBv4u*arj?R|4Fcgf%g zsS38%>60g$*FHt5tF2y)#m~$=?O}qlT05{5>^@LyrNAf#4p>?X=BC>rn>;c*02aax zCb3tNUjJXUUHMbfcM$D#YFjMosI5n!WI8~t2U>v$ngX@O13O?lYSeIe&{QxGMM$I? zU`8#96+>-7jZlzF5fGsXU;ruL5IKfRNDM~O8bQuRARHwU`xa-~zo5T|FFE$J``+8n z?px{{lrV+=G%|)regECJxWaYu4AwTl08o&IFbQDeEeO*1s^r?04sLG#WbuI4OHAdh z8Cx0zB_-k%nszrRwc=tr@rUGWBz*KGHek1SuJLX?b1(atSfUKq2Hw|)X@*4La>cXXvX?W;kLIb5 zXWlC~W}N5&b83a@1)p4z8EjD=l5+%7;R@@ysqN;At}4^fJZa}t1;B=6E_S;#$}@D& z7Y>;`b(L$_s_tJy-Bfi*p!;+GfVoPfUcrY z@NNt^1YbSc8?nJx=;#G5{Il#(vkg+^9IJJC9l$N?5aYf%7VA)OT+Xsm`w-X_D**F2BzHb4!0;MaahQbj0M;<*C(!I zog5E|8t~P%O%Cf>-#$p-Oz_#7X+++wj+3@txt#pA7k}0)tgb4);u@BYc@c4av&X^S zmh1Qda(5R9G#p=Fgg!SZ%VWB4yW;8jl|H7(WqOQ{xb;Mt5bVksr7Wes@v0L`pmoK* zA0f9)l+P&$$hQ)dZq!ZIx^P!-v_@IQvCaX7;e$HD=3cr!JR3&r*)$G9B_77uv@~dX z@Q}wtDU08ke~<9K(|3(6vljcM(VFb_VjK?`8T%@p?W zTbY@jz~Zm65b-I-wQtX}$wN2Olk|~sgD$4p;zmvEoQLREVPIrMsHSMsD>#&AVrIi` z&;U@6Y+eRRZ4MM2#Do0_Hbt99QwQ+$7J@5o=1ILn%>thef{`$K(2H_X@-AGkd=jaT zC+=u$VjDGSiyVHMr1Xm#>mWmSI$t?Zy125SpDb%yka;LQ^+Hck zAr2r)WCBYqXS2(m^oQT|o2g$fPBVK^FWUDWO36BP>dk+*R)ODby<`R+-GLG&zg=lQ z;VpIcLdJgx;+7RqaU#W7*yJ|h=isl{Nx+ZVv(PyzdFk19gzjeqCLp5V`{(9UU>Sib znc+n}!&=C1jI{^P04a8q9N9-OK^ZkziLy*KP6&=9dMwh&$*O3(J{YAZQYapY9=%3k zNfT5Mr;4>1Ls-e*%De3U@!5>1ztTn!OoyM|kIOe};l^_*lUOB6o}x#}@9f@#RR+eT zs=6*u5{`SHkt9cNEH!#6C!~1XRH?^;Dxkd2C7+F)6Wr}ygh=%9Flm~dk93ub*tNrr z@QVP7Y$uDEOeSi7vUM!!oN13sAzR6X1DstPPI1l-Ll6NH;E-&fg`3&gn`!F8j%WZ@ zYAK*-3G3`H%XVv&AI$#28OV~DBY)_7DnK>wLl literal 0 HcmV?d00001 diff --git a/_images/bd02bcab94c68d2fa2388a53115c0c313bb65e946e426bbbeb940cbe6f70f91d.png b/_images/bd02bcab94c68d2fa2388a53115c0c313bb65e946e426bbbeb940cbe6f70f91d.png deleted file mode 100644 index a601790db993c55aec2ab687ac66f21732be02a6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 48246 zcmdSBc{r4P|39p>QMf89LZy%`lFGiMvM*%|*(xz4WZ$(>lqLJlWj7g>t?Z?c-Prdc z+l(c9#`e6=nNi*M@Av&a&%aN{aUZwiV$M0w^Yi|^m)G)nuC6LaL(N1@K|w*IAbQmB~N+uXCZzlXYY+|l%b9m@Lt zxicbX1bB~|+uPgNiSqMX{r-b9)(_11g?7jnz(uHRiPUu2a)wi7`@`Cz%sKic98vFkU3W-mlF~A;(j=dCN z6e2{W5)*=rrDt+Y{dz(rnC8ioxc4Vc{UguYU3H-=^1O4NZUK9Pe6C05;IU8lQ)W5z zbLCyjF?F2`4eRR`(@_*m9&6%FQ?>@33~*!c&wF@?&ykY!bH(LLiO93VzZcscGLe1~ z*tNrg^i#!=e=@d_e!MOHzyIMc|9(Z9Uv-%tK-#ml^hG-PEfujNExAL^N!rlx$qm<9i8`bn2aym8?9 zlYd*rlS;3MTHvoS_z~=zzFDd@t?(_fi1O5N$4~^^ZRr5LSy&_9q zBk$qxvsMl?Dd!{4`u8igz}k@Cj-pY=yY>X3FhO30>$=T4KLY%GrD;gNle^OsKnU^i zd8hqWpNnxT0%}aU0|**vKJUVBI^p6Y9EG=jA^h3#=9kvAAymlmsXcpO7a{+Sce2o8 zcU@0oew3HYrcR2n$WJ#rwb*WR#S5B>sJ`uu`e*Bp(=tBR|MU}T<&ZzRcl&wb=e@Z& zOmEGBGLcuk;#5Tby+uxy)P3l#Y-Q@L+X@Lq ziQ&|km}(ECyyV=vszTK}7Mc_ln!CIoF#3~@94x?YPMEwj`wyCtWa&F z<6HfY!pF&rTodxz6fK3~HofuX{?6g83mC^n6(nzjCME5Y>ACX*l1@2(z-^}e(ayc} zw7%_KT^WZBoxeZp^qdPx2(2Fex{`aZ``vcOeZ)}sImp}FvXS&!l+gMF6>{V24hwu| zPUlqNAf}vvF2{Cc>pOhhd3d~*C#Nl5!j0B#U21b)3SC^h+MIBMH*KOd9X}dlea2>t zcroKFJ7ygSA(nL%J2vfRC!eEI&B;K0woSSOkEL$CQrGhQS`Q@R{Or*4^5es!v60m?Tnp|WzJu?U@=_v@+9lvd)wqjv6+(O zfmMH_wM*8ei{X-snQ9}sSBM`L_;QC&Ut;z}(Jt&0)R83kumYCFsV_<2x>QR=MMZSE z&(2|Uec7@pUZQBKp!XDwb?4;dWE&-&xWG`^jOTK(=;~x{zWd7Dtvu2j;b3faY)cRn z3VrL>uc+|grjGTLN^LmWrL{Ki-u|;hH4E|7Y+^akX zwek%+4du6#3f&m`Ik$Wp$EO=VKRp$-ZmGXjs3XAYM7??NmHa791A}a5aST+yTZNQ_O`QV_YZnMXsITRSAy38PgPLj~_?J*A}H?GE?8&ZWU{BB9K2J?fyS=20b8%>!oS zY(|d+kvyZ{V!BX};GWiiPqqf@V`-7seX^q%WS*`Wx|CiQ{?;0s73A}-V0!gS?}OOP zS=Ixj4|{WcaWG&POuOZQT4bl`);P68lo8$%x8w25EE{Rom*V^l!?PJ_yorTwz6*Lf z|H`u*(*7EoM2g-ZYjR?oqAw1kVvj$2M--Fg?t4t~pE(x>r<;qZFSa{rGn2EGF;sO-8}Z7RC|9JIWuJK3sA9#Ve|@*G$K}yD#(XLNGa(DU0gXbqrj-YCwrHRW9zD zQg${Blsl$>P)oNteO=Z^F#Ke7Fg7ha{<1c_M`T&%T8M#u~ zcRIKo#X@ScTw3j`Q~e!quc=MW(b|_S7di$~?tO^9n5|qls;v?ghT2UoLEcn#TPqHg^wCdOaXs<$ORaT} zv!d8!_gww`7Hp8bW6Ir;fR(O2uFNCQ>bNkhBf2;gvkF!J+M7$HKvzD3!CMGeqK>0# zA4K-(nty$r%30uq|IWuEDsadAO5W8m{^%2dzI+M9S4+WecG@yi3RROwg{98sM~%zr zi!Ov%87SV}bhE$}ba{Ku-%n^1ak#p_m`9vkJ=C$k3k6SJz((kWJg4#QPS-m@X9fwyYDv<)+Md#an(irA_mhbr&F(W zr6y-$M8ob=`ekzYR(yh@+l`WCe3W<^`?yu}5yglk5rti*F=RSyM&RK4i2iM1=|e#G6< z5D$Dxjx_qG!|$2oV-!Un;9MHLiWP?XzZ%T+#T8ZVUKWn=Zo@oXyZy)!i9V z6G^NNV_k=D-z>?sme002E3xdFb9F4jq+CZQPAffz>8MaT_s!T{oX5$F73B1%Vc7$b z;U;&JuHZ}FM1NVVtHY_pquTBG=rB7i7ApFr%I7c1H~2%P=S_QrVCea&TZMw`!Wi`7 z!JeE&tFu!$*80p&Enf$_+mA6fB;~$)=j>rorQO=qeWuF#kONVVk7xh0udbyk&Mm)8 zA}wIUUe%-JHFf^$=eSQ_a(~PVnt!{q75cWfZ$QK8^QyaVBKU|G+-jgT9(z(>v^_%T z0S-OZo{=h&RkhL@*(DM{4yFo)b5q}sTb-5-(%!S%=bh^vrF7Q8j?^C+THc0%_8(EX zZCK{^2|I58w(mc-+Bwz8srNWFMyC234-A&OE`CdyoKQl^>MI|0nhHY&x|dT*1|pAR zc{DjI;Skq#UkyrfzjowYwJn2Mj9)skx-NyeJV_k|k)Deko-aKMc`kVx6hFXVjI<#7 zKK{FKv7Ov@c@K{kVGf{_C{eP|jfJaW@VJXJOPTq6X;Un-v4ncR#QPTan&q0ZG<1WW zr3X0|5@)UoTZKEyG^bQ_12iVJInLKPF7!=%=nWofEnW=~SzKwY%fpCd`A5`iSB&vp z^4*FFx$~j0qhWNRP?4|UT3oS>Pl@s*FE=?LY;K?` zwT)`kJMscO&Z>4v*ER+hes1C7;jq7`^83~k?S}*mJ26iN z9;bgc583fiI&Pu)S1}v&E)qp|zTV5W^0W9@KgZ_q?Bv##dUdMu0hHX(`ccfQPrqEy zPQ-XEFV;yO6TQ4$(qrMZXn$K*qHb8ykkGT+N7Tr>O8M6B4IEBaE)mp5fCwx=>vUvjdC9=8Ka-FgbM&ZCA;J}uIkp=~4=mg^X2C{uG zI#~>=Ur6`Vmd)3TP8N0hXwTuOdUor1qzi^Ej+>qiCNHopUWv)o-ZI^DPBFrVHg{+S z^0K|syf|N+zSfgzb?U8GF8$Z?zC<@ZgvhO4s7Ff(P6f|o58_)=l`QiyTv;yXYW>ww}*V{9RtbO#Yd#$Hi#|sO1$6MRY+9#^2b~U`-!;mf$%1qu_ihaga znqJt@5#cZQO|cLoF@ty=C_MU0`+l^ghwZc<#_cl5y@lca^qKR>b1ybx0X}^V3N%bz z$Xv`{FpN8FJ*j~dt3}$8wxelR@(Q@J>cTs?$IWhW(gu>>`hk!O_ZCz4nW_}SEX<_a z+Ho#t(OlNew`e#jmcVGo-TsavYyNO!Xj9#1Rc03QL$R~{Szh+w3yVuPvlm2N7F2OAhqJntgTGylT}2Eg6c#6p}9nx5&nbE&K?$Z(1L$f47u% z;@@+3Ee-56_nK+ZXUZzyAuksFb5j_~qnPS{U}8T#cX9H%j_2HK_psdB>eUkeUgJ2SYKKLv{_eJ(0y(kb-F7&;tWQNBGG%ml6O!eToqtxB z9D_k-F!l!*2nAhuP;lbbB$O+!sU9@cxG#iOk;SLEwe3(wd{q+~KCAxNiVK&aBFwJb z@LjK9oEBN45ze~PfgSEGUaSeHWjP}F0LPPj9?EvsN+?Qs^0ML97w!JNe;wb^?lXnI zR+T8rR#K>By*4jj^erz6X-HlbWkC|;BEvJ@wxNQ&(1SA`lIi*Cx0srjR4Oag-+i)` z^@G-hZ}a2tQtk2zGG$sOOrbxpfXR+~FM*y)wcl=n9Qa3eGq!3QVb!aUBp+a*<8%p@ z!1a5>I+MrHO_%0$OYO#X8Z_>FGMi@TMp~A46B;^v29wQDsh9wAkc9-DwSujkO7kc$ zxy{ZLb8(`h;!guj7@c3iFOXU3;Pv(B2VbD7-C>X8bWzCYED6C<1R z@7&M~tJ~zXoCQVDX^Gtq*Mi!gFC^zM`$});`T(1~@cF0PCAECkv-S{1;)c*Iv|BIY ztN^*#I|@R-p6;|Tp44!5O686nP6^N5julrMdjr z88MuYnpv?W7o=~e?~zLc6;}0Ug8VD_08lZloMa{M$f&4MK?MaH|8>NI8)o@M@tJ89N2kyf>oSJ)yEmK60DhL-Lq*O3CWo9-l6>zR?rvDXII7V+qh%_b=ogf*EE-6TNDb}Z7#ZiS)3+zyS{V>p zI#d_gU&gu)moQ~p24vZ82sPqsPv*eaH~;K5H__f;*g;BO#F+i-UcP+k`u*wQ09TI-G3`d{?MA4LwH4~8m-OD-ByFq@Zk9^-Z%0C(gSzrT-o@Z+ zozl?)Q#(pJ7&-^nerT-^EcY(JNOAI09>mx&DYtmmwe?(wRrd7#X(I}{%{e_;Z$?%4 zTNmbzo9G3H)l=s$;ydw6z1E$j%LC~7CMl!Al}0D~kuV*LvBtRQi`D}sGrGl&*-O*? zXaw=l%QFvlb#pV-)qW_p8@Y{8ZZhQY-Ra9)NT=m4g=#Q9q2$cO(ujqXoo?MWfs?aUth5oO&8(qm;0T@ zZf@3}YsyGXy)siWACRV&;CZPj>TfXP;53mAP}c)kPr9egxa#`zwH`4OfHcPpXW9u% zw57#TQ5p$S$;!~88rWCe+quW3Dz19?8YHJ$8|mQVl)I==ydu{WF4y>&n9q+k6wNn^ z$%%V*n?_8eMi`1tN(4$QMMg(QFVJoNq$7N!^GuwZdthMKaGp?HzAAQw&DY2(D~PdEo3_L@2!aATi0B zC9jl}l&4}&ZO>m{U9KyzYVYU>a4sn*(3X&p@GS*|Z=l7WzbwN>__f?I56#u(na*SD zEypr*a%P^5W%PS2_Y<%YWkS>IL}ggOv*oP(@s`7#lAm-MacCt8eb&GyowVJ5N8ea{8f1@tH|}2 z5zg9kKBj0QEoOm#bB^EFAk`57&4~c9Y2gJ2wqSK3CYEX)Bo-)6pXzi7lh^)8sG9)ov@x}(S-J<-1&CGRkNUAZ?$6*Xks^@&0a1Q$eGZY40|K&JH6rW()Q@v3&3BG)T%+?5ZZ{b6^e!f#O(3eg;|-I3S;qZnCbFO&#CTQxx#+On3V5R(Q$EcuHPQ+ zKBaJMwX1r;$!pn(P&&9O;W43Pgaz1k@hQK%%qHGzJ?A7XJ90l1$~U)lJTTMpc!-8nX~A_!p@fQmqm)CLIavecMr0DWE4N*FwC_mdr1&&_{K?qA zcQ_fY{KfJowHm@8B;}H-6nKA1)2p^V^J0Ra3Le6mA=_m2yD$}@G;7~Z&HYOURaI?n ze|@fa_bG{ie07I}0q7#s&XLmRFIc;=naEruVZolzdD3Hi0YO77S|+|$h3>NSN6ld!mBRx{HcRyQ_2nzpN5%dX>> z^PZjVS^HMC_Ak`cS>$n%XCHOV@G0}-Ru%%cQPc^FLL6eEL#}VE0zKDNja0L_Cp#T@ z@DBZ1AF{X*Sn}(avBeT8rhZ#`(ZvU!3v5)2rz z4JtH6xO&kmT|UlOwi&u3r|Ag7*0dtz(ztU(7=w(4TpF}8J!hi|k~e$W(KJ?POFJWK zGZRE}Z^Any{G7=BvHbQC?#{2$f$w~ACgs~pB7~_)U4pdCdtj@2u+lv>A~SnGywX)t zn;!3|j1kN8s;SA$G0*6LF|5&0AdW$k^CLjGyu$7m^mKzFcU1d&0VxjuTq4NOQhHZ* zXbFVKF{_DYwE_pOC>D{ottS!K%b_kh0{~Bk^p6T`-{!NR*}Kxke~faMz*SP8<6Xk| zn^U?yF{x%L>!#dP(t-4>kNBZy#j@w?^)k1Y5PR04dFWZ`Rx}xCPuGjs2~&|TVH@$g z?R`5r&Di!Bw#TQVtLI%$-h;Y;)~Sc46@NY#X<9iRs~bBjnO$k-=SQ~)(2`%}FbA2g zT6)VLk1&y|ZtE6S{wRF>!&n0FH1}^B{lU? zRkp$Y20I*uU?N-TU(GAyODkNWAx&g3FDgYK6Itz#=g)R{WbNCn$+~d%^)?rB&nax; zGm;@?dO9i}VH)Zp3*ue!<>;)Y)t$scG>oq6WQLErh+2Q&M_VJc%`-=b;rsV?^KHju zPR)_WJAu2ugP9}#!eSQ>%xRXyIcfq2I4z*$6VG8{2DFj()XP{xmJ4yzLv09cPa6KQ?5Z{E`RouN%Kfx9eWaT=_WQ$e z*!-V!pYg0RvIteNF!u>>+p0cK0waUAKK>VGo}PHaND<$AyXU=KjRiO}Zs< zGaVHw6~6(S>A+t-|E_(;bEKi%o9ojbc!x^_*09xjwXKLN&FXI)6EGo{XGW=ka0{fY z&}6(zS#gcjc5sNaveIIG1b3j40rN?i8Ayi_yEGT+{VtX≪a)!<}7e&YG{UR%(*d zX-Mc_F&uL^y&w;Thl#7Fc_3-v<2_XmltI{i-Gl8P_L|kyC9TMPu@F+eLRxWwuQ1#= z_h^b+fgs?3S`-l@T2o9v;H&%A31&S9q`~V}N4hLp?PQazlSID9TLFXtKzxy;4Eup* zf}%JvfdHJb`_Ds9q7+__;D?9mdHJvV9;8IKc$<*F?;|u8#LOEs^-sz=2AHw7o5Pc>zBUfy10 z;!uh)5YY+yF1=qg_Q-b09PUa_Eg#C)S1GTO;2Cc!^FQ$kGzWiKzEO6}t)5aR(oBay zZwTP&9j5I&3={gHg-pM8^NMRET%uyftKYd+#%BZ}a1fLsj&dTFfXd~uhirdF*y<2Z zcEGo97RbQjnNZj@MZr!^QXJlY$lcUC`%HNy3bK^~?@g!^>waTGnm*M1^Ep>p>12A$ zck3i0z2x2lbQHHgmY+omj{2uRNw)bfC{%*m7{)TQc8tvYkV`nH$0YYHI0dbXr73M7AU#V`Ue5aPt6wpVRoKLK=oJQ z9^{)9pKWnNj}50@paGDG7?2FoK<`_1n5zANU`%OYfQuTS=H2L2ad+U8@mpW}mmnk1 zqw>_)dyMD2YJy(xlDV82Te@ViAdFN;7lO~>Bd@v~F_kILVuRJ1d+L>od~f2jKRALA zGp{7@HqasvrXFglu7@(3B76_PX}Lod^xDbWo|0?Hm2ZDqgJ@)4afEqgiFWE}EpcAy zKxSUxm;m2rPU012{x{6`7sIjB^cz-4>+QWAhCUKb-FreFuf|Ad0q69McK#p$)D z=h^@#G_^y+!%ob(m1a46o!3Jm^dl)kq#vGwErDQNT#h_fI?o4n_`tw04+DeckJazX zuJ&JF>1A8qZ(d^@xq^EmbmfsG@Y4W9{V+*oRTm=dk07((;MY>sfK0Zv{{#S>t>Zgg zO=S`!UA5!x-|Qz505=}F8wNtV2@lWygakp&og%7(M0nn$F#+yj+5}9%RLiIYrN|=6 zbQ?l5cD{~8`w5h%vC>l!G#P0#V&U$;elOQV-nT&GU(N2nus_P(Z^K&Ma?N!*ojxGI z_b((*gMvJ587ZEe6ez(ACt$sZUrz?Ns}#uMsRwkO35xI1vds*8iI7M2Ig!QIF-;sm z9*ssq8j}2Qfz9}~uifSqpUJX0&adResUaq>l%leJM?ZqKADj6wFG|B&(li>G^%%2H z2)&~J>7uoti59yCfxjSw$!O@!ep%T`K%Je2}AQyn~ zhP03U4*PmzquV?Ryy{PAm3&FP6y%BT6p$Xjl9w>x<5psg+lCFwyOO07M@z-0qWoN7>UK=ZMdLJYWgvQrlzt18Px!4CX zdTMORzP(}#ZNOVxRpDC%z7qI#z0S5o4TQI-{4`I@eTrk6y^YkyYoz2CsR_&x+il>S zYNKw+^z^R!ATt19S7GOHslJqk9zW`d+M9Z>z&qDO^aY#Q2jE znHIL2^yj4NwS^9N84dD@oaKF^ZTPH8z23IOx`>8r!U8LFeanDdrrGLdfgfvkUs83U6OZW&_x}Il>rG6YCE{f@MAJVV(xylyjpou{{}N16 z-&HeGJlb=s=e;G;1_wR$Zc63}Z))kO%D|;x@oO_NxeP_fhmzY2Lg4^W_N=G_P_3EN zs%}H9h{njsNYQAtWm`*&ZT+gKnAoD!M)hX%3&wMr+S+MhJUSMDGoHkB=UYZ#K8!MH z>FA)}y}LdZYZtII*=?7x5!K{=b?@Obnx_u5yw=UNpUUsVEp{3mo0UNRx*_JG8bHJj z4h}_&9s2Fr&##c4Z>#Tuh zpA+mFMa*9F?+1zZ-5UW*9D=w>HMJ-KD>I!-Uh^S3i*AFKtr|H?FZQ%@U-I-=n{;vg zx!lw;c1BkmRhb8r56V;qGEiC(?iu|4lMn?vXj&@v_j|5Rxh}NGwfFR79X4{mCMzpT z7?+dc?vBGJz;a+OH)I`Zalhh&{O}|uZrFFRg7li zD`N?r1y;Qa7ro{$Qu|i=Vo>+)wJnz|OHB3TD>X^3z6NgJG{WG*&@S68jUGZJbcsUA*lMY%Gc`3+Y&Y=5^%wCtRnU* z++kP{_GOiCu9kO#wlSbbR$o5`0r}z_I&^)rjcmU#;HIY~7se3z-*o40ii%l5E4k9g zjKFz>)~jwDZ*U-zJbykOo;F)un$mlF>*;_io{#V5`=4(*#h1En zBglSe!(E0wJ09S~oTl5xB$q|vAixL^ZU27pKWtg`f|1bES(b)sO?&yi!@NA@X4AUGS-Id%a*d8KulNtdecWdsyRYBoB#H6GuB(mwhPg(HdpnLAU-j3UW5{~0< z0rkf}=ZtTjSs$2TnJqJ|3(x%b-=Sw-;e7gzpWT3i;cXRi08#?zk?Fnp^g~}6JR#w?%zrOIZzU>S#IpTA{dO&kOz~vK z%nH2TSi7c?2qVnWl4DewNE++LufWY4$5v|O?7y-{FwaJhC3qPEu-q~9#eZ=Xb_s53 zilr4?E;hmi!;t(>cO+=DS*a2P_^i4B7V+JvcDgt*li(@AsjLsmBQK{ZL67ASm7-fK zu?mONpi_aw3=`S4$~-|Wx$RF-6dd&6;y5S`*|b`6>8!_$+hA+M#X(*L!go5a3?Cn# zWQ@BjB*p-y3}!CpS1IxFtUDinjD3?yB46Z6W)SiP0xDf>`n{~zN`zOYO3Z}`wao=J z2I{8^&(+*7m6nzQ9e^F&Tpz>(4DMI9v6zF8GK+7ax!9MOu(>u?1euu5Bgbu~R0nx` z*6bk)akf>AJ-{+N`WW1Mlo*@imCREB4gta3c|Oni=AdV5NZ18=-uoaZ!aCa zc)tw<>Wl5L+ukJUd3cnT&Bx7*cj#NU50tts{u&On#CK%Nc?_yn{Uzu2e7#(fo<8U@`nSLK%4tY+$;NCTT{oegKALeR#9OfG?S^~@H3Jbl6BlL>ki1OS&DzA23_hIet$xJB0re5Z7;=zANZ)`?JL?W*=$ItvTb8cNB zF828@V>X^l=_y2=FSRi&l?BS?x^TW$iRHfJy=UHkd($boxi(LL*o&S2g)t~b68eu~ zt;BDhAon(EXlTGqPHG~Lxm-HKB6@s7ezYk;YTDyH#;tA4o>>m`*+{0~P|(Y_2s1H`(06L~<;8(!_&cp^!&1HSwGsY&lgeEZ zzrH>0DYPCmp*)XrcKDVYD47NIKp);>!XbV`_qOG+g5LYBUTf7}%mmRe#R)JLgf=Y? zCigo{_hrKCWtnw*F};3cW+ix9q;FX6fd7{TGp{8x!i1Wa=+HXL)VC!g1!T7a11aRS z;V!ZABc$lN&(Q$<2MUTHA1`foZ1^s$&porb-Kf9yasVflcP4|14?*NrqplgI(9Tzn zu}B`x2Jo|4>VtOAw#Xty4s|i-f0qB7^<|wu+|*y}6xh`%YT5DnQr=$rzAP_i`M4q@^4quN^JZZmMb;uerM_m%yqzx1SzjFScCk^j?wz4la&H(gM(6R_h2u# zBWdOHjINGOda6=HfHOkx`qI`UfXaW(bJHZpW%kQqIdN@}r{i!IagIGGQRsw(ta^kb z2;<2`BjNhA2IuTXm65*6|1f{YD|RKYcrD_MHuZokyRT}kW8~q`c)NVHl$JA05e1#q z+={y^M022P_9>5*I-`y;sm&ExBd>AUW7y8}4Tm_eX85wkK1I2{}vaj%rlhzz;h+8tLP z-UJQb&h6W*`rco&?8Jnfa&U6Ox9b?SORZH(G0&DEv_7O0*4eJ3)+M&)`8NfQXxiD$ zU&|3W0DNu3-9Wtv`!-8j(SffqM7u#wCmOMS=omPJNzMfaLNYibI<$zSX}A+QkE!KV zEhD3xEB=RA=0E&Tl142ZEf~_y&C*wziv%+y}kYUcKNbfdHT6V zVOg))!(O&X-JxX`PQ1bE*w?GLjY6Y$YnYfu`X8(QbBUmcg&~u~srs}p7Tx`FQ_E-G zF7)!-9qt3mI>{?h%~ZzMd7ev8eUs^P8gLnVRvqZ@PoYqW1!u@t^9gJ!0bjm>ue?tw zaXO|U;MWzgVENda!_p5u)`pLDLXfzu_m;2s+NvyxNAV>otA!6u9;y)L@nuW-IVk8nd-6~rNQ>9+wYly) zz4GaBS)v2JW8(3#wM0p1Ly5&-cim==F@( z=ITjp9%MY|Dfik;%87}ISsYIe#DRYa8&SSyil}tJ7ZfPDF&lWSXq14@fxLn*$01)u z?E4p5)riI&I`?msuTo$b14Eh&@(IG~susAbkXwW9ErK?C!|yU1p(W5W1tPCpOE3yt zI&qlyL)7^N1p#&6e?bS`nl8D>b_K81LN7F8$U@vm5I2Mn&wxtZ!uxT^ z=Hd5Rse@6X1D0a3O+)SF9=YP;;(W8Fcv&NUxMwwq#ZaUoP8e;B7zsH|-}J!i4`QLJ zIgdw!zcyPhAJ^PD_^ayT!b@v+S;RzVo6|AB;@PpJ;cydMZbwG*`m4g0OxPX(+29f!?73auB*IT00hKuU&6}^QHF;p znCSxbx6fx37ZqtjDuDux`ds@886=1*8`xay@5`DXh4BICQO)W$`DU>)TiyR^vS0P^ z$wm`O#ct5&WFalS{vZKl!N5uizb4xSf2h8VRo-L zYKc~G@VRmNn+Dht9yDI16!?1T02K`3$8^Bo#M7p_aD2K2da&62t&3OpKD{*j?!nH} zK1h$ekS^73*Cdf{?X}wbUoU)C9{qb=Xp)`M+7M-PQupUU|EHS@UOgj2 z3w{Q(OB!c_`&{!5X#}KNF%iQIp)_XmL{N_r`7GXv7P05#II=&$Zv)cA)^w{~E_+;(3VSp-caB8~J{ zO*oG#kQU57Na3UMK4}N?rHT>1k+H@f`w&ABXCauB8sd5`hBjm-w5w+$=(?eR2ln2> z7eKO81Ia$rd5Pi(&qf^;eE!?Bt+Ebwvy$<@)ZkZDI2Yx?Ww);%;#+Ap)!2c*A4_~7`1FH)rv>`^>_V0;@+QaKs#Y}WTFgk!`oKuUQNTyJ)C8Dq12v<&& z^@s4w|CfM4>b7dCUdLsJjZaZ?D&F&-3#KPJz3%&QIUeU~wPpC}N*{L(6POc~PRARM zxCX%?)Md53B9z4JDxV-x8yrSK;qozruRKHz=$BSRg8pa%fzz+ZEIR^lmN^%jq}*ifvMNa)N-7EsS|VsJuoFmMaHkNR(m>4Zct=*MBZzN( za3wv^CVwl{D-RC8#~|KJuF8&jzaUuZ62m~Y`0pl^63<^FrbyATHb&*?9p2kXi_CF$ ziwIFToPtm((D5J|-ldFS(BXjZN;f?wnhEh;rO>K1>br&D#+6X6y6Pv&ojzxYLY9nv z=Z#2zEe)s;?)kIoHe(!#!sUR8XlwgiL(uvHr>b_~*9S{_BQ$cTR}q(nLE$^Yc2m%( zInUA39@(?264TwB6~;+r|=nZaE9-?ezh?x`+2>sLFq!r zw)}#rmd5Fiv4q&HH}~&bG&9tVofh0iH@-~NjcYP4p?QVZEPG!21#OoM+}C@pD`qwN zT|u&UXYz#U$4iBKDaiJ90fj9>P-N-L!6zmngd796d?1b82(a1zNaiI@a5x4y+ML(B zQo~=~B=&Cs7;FzUVwy42G7XtbA4Xao3}{l6`7+UM?>=Zfy?>M(x}GyXE%It@rY-VLideTOdrT3|ISld-bo7?W`iWt-8wMiAPdfga8DRXZ zx9g#jY8rMG-F9%jhQf&;fvA#QY%DpnvF;c8b7M}b8cdFu?m$}8#@ zv+on_X)fls)@z66T|uVx0;SJMVLTLdLn;o*Ib5Ifd>`i})&JOo{V!qvd|CtwEFp&z z&g#o-ex^=FO47+~T2Iyv-k0A_VLVBS(*w8va$8=ldCqCo^Mc{yJ7tZHw3;d zj=pYVB=dj&ew?qOK$RjA^rXnWv%%p22rU@OWp-c(3OwdSd6c6)kEO^-3nQ!~s@)}oab1TZl*8k@ zI*6>FYRFxPqJnf-g!KNuwh%k;L8S+ds)HW(x9Y`NvoW?+rrvB}AxdcY%rGc%b5D`U!|U^+zO&)2;2h zQQ^NkC2P8r2e^5&&`d}_{*95@-c9;XXsbEse`X3!>RbuRZGjGr)GWMsNL1w^2Ln(s zrKHm6lU1H=Vv*1?=^CX1wjF1O+vlR>ek;An&E~q9w2aq;uP24~*M~$!g)nUhQ3tZ+ zoZCfb*U{^;*99D{Qg-cK( z?|I%0JTHH1KWtE&qW^$~f`K+eupapwifbw%5x!XZq4L7<2FIJFKSw1I)xws@8XtYs zz8fpTUS5ml9Y@?kbN`fMpdCFZl?0y>NL5)l&Ih{a(fm>n5o;id&A)Wfb74QZbG(~Y zH}X`=*UGT8YcOgc00K?8v?W*&*KaO7rwWeA@(}3*8oj@Tg>@_-jyyREP50sssqHL zpiFg8Lf#Dwb|7kmVq7Y+?hDcm;s|1)Zs3q2&%#RdRMe!CTd^sC@2?Znpg<-(s+An# z2A^snI_$K-VRzpY9Cqh*&YON@vv;}&%s!Y9NTM7H4jR%|DjpP(x4WssU+y6da?a9@ zu$s&!%sv#9HH>(!YVZMrDXl{bXzowl<`8$!6Ye9=r%AgDHJeAYAIVakwUU$SZAYwj z|1EGxdOB zJ;mwhLs=Oj%5!Ps74gGF?~*r_729qUSsngyYg6j*o> zea>qF?v>sm11Pli&!Hc+o5S~BB!*Jxi#!uFzv*d9I3Q-^{o-GzAZSvI!<-&>Rv+=N zi=yGAkszFOjWhW4U8BCxfFPOR+m)soMp$=!h zl>rkdEU`fCqe^|zI>cVLjl$*taTlly{n2XI+5%PID+bE{Kl%)VatjQ`K$m1W9ldoO z&LbHnRkNLDa8lNFA0NSkCyCnu#Ft>P>}i((x48xb$x!DW@aZ8|xH&-qdZr(A#P>yA z<#-b&E8^KyP(=LdNup%X_Tt9X#@Y@ya_fLZ6)X?Bb1weJ^jySQ!+a5ek0M7GC55pd zu?dhK0BJQG0Cl-1^xU>bd2rGXXMw{+FkhT#5OQe3DDlt)Xp|LiE$YB@XZZ3EZRq7U zz+c~yLu6InCGea?aZIQL;m5`Sd*jn+XtQy%aOy_@Q_#0y`;SA2vKqs5Nsa)gB~Clse0l`R%1#rSMuUay(0z;`^vsL1N$eOH@ErF7Nylb> zy!)I2h!~VvSXdDC2{GAM>_xMIh*o$7i6*H0$u7^z8RS)J}fCwDyBV6tWcs$CHD!Z3WhYnC@INIyD<6W=%DF-5Hkhj{6y7X z>4l~&8;>puk6ln(Vdk>)pEDsEGcKImMv{cW;TW%L)oq#D zU<&)5+X7q+MaAU{(_Spv8XC!foH>=0^TCy<>$gtLi9JArto#3VR753g{u6p{(|xu> zO|iW$)pGFplX#a=M!?r=fmH&m93jv~7Uv4B;L-=fexp;#5w2l-AfXQFuOgFqzZ+sI zxBR5nOW!`CWXVAN%dh$S&m}B)7Q;-uT1eM-`1G)c&g+*f!h7m{c#sOLkw~^~?$zEx zYjEfFry@u;{Pz*z0)Vo--2wM`tgA#m8N!E6fLE@mtRtCbiUr3k4=JHjI|Fj&rmC&D*!c^#)yj(vLAFatU7Don>vyUH-DM>(Q)!EriD z$SD_aI13!=VTS|F*92g6+6`zf#b+an&S309gDI%F$wCOCsu-e*xmqMIzZJh|VQeh@ z${utgJWUHmypEAh5eA7%IBlnb1hV>8PORSuaRt`YWvvIE``<6JHi4GgP4 zo>1l^N)h6zVL(7l0IT#ta<#ij@zv5)Z#oW#JL^@B7%7R=62j!YN^zV1Acx45fIN^y zULUQSC;McMFiE62hS@LahSaso)7;6KlGZnwM?S6&Oi)O{HrY}XS`M_IT zOY#{VqK5f29C0{&)LV%m zYxrQV!lLCkRw4a^lJ&8gOrSQ4?vLCwD9d-M%jZf>li{{4t=R!U!N&ky^okOne2>+TN@6iP-0}N4K)n9+Y^A`c*yA#hz#H3 zWBmi9QTn&ljKTd%B(hl0I1BW`{3(rrc=o(Fu9)7cS8y-tRAy3=3^WHpENlgE_~>Mjc$q(dWzp_EiR11x_gk7z<*kw@c70sA zInlLz!D*5bqpDr8JlHB)ilE~Z-pOL$r5oPSmRlVMZG{;4)+5UY|JURDa?apM$M+ov zh8uEF;Cn9+U4n2>BoIPcc_$p!5q|+rVtN;crN)Zx#=63}T!_1{^1;FkjVQx4~-?`KW3=L{>%RWh2O2&JGs--_Q5^4==4VV4f5LNzi^@CLaNM zdr)24dXhyG53S0|sN~DWUvNwVa{k5rd-s~_{XWec&)Bn~#qb@F9txXV;?u&+SuKNu zIXZ?eS8__`{1A5UrJT{u;QzxwE5HHcA~-+O3`Aw%=)Rsc!*W0+dfu5GPnXQ*O+2b| zaXcDPYoD3S63D4euKj5fbm$xMEdsSS9{hXO%g+TQEp$)Kc5m9-+t)Z4ghfQCWgx@8 zF`MFDzQyzxu~Q*m?f_6UTSc6MwP(~-OaC9{-ZC!AwQCz669aIopn{Z&BB@f+pr~|6 z3J4}KLrN))1zVJm?vMrvX@*iULAr-h5s4Am#DMg>&TDYr_rCAv`TzbO-VZOI*luR7 z^EzXl$2!(p$GT<+#m3KwR`{HItFL_wVgtbdyz9M1Lx9*~5@eP+AI~u&I%bBSxRTr0 zsO~XeG1vhC*iUa%VMjFDZWca{2Mn*}8M84?}w1JR%M zm$<{;dBm|URFeuUaBCWp_(4fcsCMFtL!EH(^Qd%2x{m2PJNBozNX5@LDa`PG8^I=i zdAeYD=5)=1|LTvXRn@$zx#-m|?5k%WJw;~h0$?4xo9k#_dfAb3eN^q{Y%|;;<;g}& z4&TDH^Au2#Evm14-NU$LqJEN+#q(9)R7~@)FgtjGaq*vW)*V^8i^C_pGS`-y*4k0> z97-@nvEP`c0WdCUoYZPJ82SHa$;Fwa9T>R=C~UvuQ5M*wq<8L#Z%`f_(&Su(%Qy=V z-p5-kJ6_eU*^7!fCx-c9;sacy}>qNH(@193b%)MORBIUwF2C?66h4#iX z(L+Sng^5i_H%hW%uQ-L26=Y-cWV}vjNKcOI%;|wE-ZhkYNK7rbqm=6R<>$%Gi9U(>T&``5(-e?&k$##mmj}u0#RB>G}<)%0z#s=P%$(?e;+Kfsq|+x10jeN z#@GT4D^&N<0CC=Hx~T4BN2m7jla)DzQlq@1&RX!n5KQJJ2r2#`iId|t|6|#QKOJ%L zxkQ-nj+vHbRIod$t;?Bcw;}xjC<8p%kB#8g-*xyI9uQF*q004?&VyVJ#_DU|7ckK> z$}g;Q$11hpdfpPZX9t*~0nDd)cNZ(Hi~711k8kU2lXRU0ga%%{I3?97jDU|%hiFMq zshknt{eO#6!zyk>j`2$+AoSPuQ$eVw;Ps<))sjEYM;Qm4sNV zOBHs)La>6{m$yLiYh4x2@t*EWHt;_?i16V~mcKDrd5^YCTe^BcE}aRa@3 zY|ruT2b!>eS}(a^2YFv)dEWscLJ;;+d%RiL_CgdeibyN&yA(`KjjLM?=-|z|HeFS( z%9VHyl5dW0r^R>B>~JtKaIpYPnH0YZ&TuG3TP+7f43P4cJf}(^?x@vi|7}LOWo&q{ zI~w46j9#+|s9kB?{@LL(7YTaH;*|4+JSYPLsxE``aJ_ueK!pwLYQ5*#r~r4bHddMR za>>NivSxLeLoh5&x7 z?$9!ROH}t57Dmbdl_Etu8n6fB*t82*Hq7+OdI4XQ3Hr1y!YnKgm)Ss8jj$G!v<8xE zeir_fE<0Y#?E={>FxAynM%+j?3o1m_V=%3}1nsDZ5q5qc;D~&QbwM>8uUKI-ox_eq zT4m_9vEkBPqd8UgfkL5wh^KM+hSr~bv z{^>1`fg{(N!PLBLnc@atP1OKo_27`bD=PLn&f9iNcUW>+`FUbf@)=NO4XM~NbFQkB z5lOzCsB)4^9`Vt8u#A=*A#RX!9h!?(&<1Wa?a3LKSKNDy+DwamBF>VM>SbLixo z-F2kRnQ?l=hu|~8^LZ*m!rlH$_d#`zJ)hPTL{OX~NJHc)$9=fQaRGbL zaf%eA-=D%-L{-XlH6LvLQ>dNuV^}s2i%|4ranX8VyL73kr0Y)#W`wB{lR|Zfb~tYi z5|a^YSL;DgOHfMcMcWnc5g2ZyDq66YDZgdd$$xf1fWyN|O$Tj&xm`@KDHvv5Zg$sR zGX#;{z???`E*xh_`4o_gldde6ue#q8yEt90OMt>{@$|+Iz4`YChf!hg6nKq65sy$< zks9SuH3aQm2;mC4edCz8ofCap?e=BjrL}VIG+4K-{a>u((;Ksz-*=uXCJYn}dH#gR zze1_=I9Hw{{$$9~@(6!y68NRzUHa_v^HNMn-WnZGz3cAF9CHRs7Yo8JV6etOzzQUI zl7?toJ-a~Jx9G58a_QVL#-;;V^fbj8CCg>{fuN^P(S))+&m0IkJ;_+8VlysC(X)&> z=ven;Z?A;JKAI+l>>WaIL*cGUp$L(;Qf(0{;`Uh0&Uase$>ERJK9%M+&?lLJL_-09 zi9?Rig?|WNhKx_#Vd?8MV50x<9>NzutYH-0F{yeaRt?&on4aYUF1YT=@f%R2@B93s z!+2ZWMie*6HMt04NgR_a51@_@yGuAGu~m9t+7qy~HEpZVLpl_n1>r(WQ}73CU1nF; zIV2qyaUv!;QMP8UFiL<5*vv3ph_0eUOs)Ur1BlK-D*2u*^sT7um1-%7TfvgQEoMZP z98O=t-S0O$CSbM=^feu0oxRZOZ&3Dp|F$IVNRB9|sYRy~?g{s$RSv8c2&Y1IY zNw5C?NHWw4Put7DR+YPmOqO@BIhKX=sE9k=`wZ#dD#EQvM+guLNkXv@?fW2(`N{1B zSYQ!T6ja8bt0pEqn0QkhM=M?S8oz6>zZk!hn^x zBz%G)0MOEZ^vMn)stos;zvd49`_ra5glfKNfyxy=C z5H>E98ACRLe!G8Hw!%7_kd?o+o9p`^L9tvzlXS(CYhUz0pmGRN}Z1h z!o&Vo$xOX7X%=8UKyn7teuP10V(jU8?I#@kQN>7w5gn@~-zTw)pa+8B6S#&mp1*3S zerxo$Gw52SHvHI;d*F=WmDXlZC>?!a-4Fch5dxbM2tk7uNk({MPMzBcw!o1UM*M~? zJMtINyA5Hre+*A1%9I(z6v_WC=dutB>Jt$HnH{9>8Q;}T)VrOa=2sC8-@Rvb1RPm8 zPi#di3o+?Epp62IA~~#YHzl%J^(OBh=+0|ty2LgM!9PUwx`MSIuG(MIl|8Nq6k1K? zz_JbYC9Bw(s{CkJ0?BC~pYxaEkb{IIpaJzl-Z7N3nqcLuPM{v0wQYFqh9)(4a60kC z-G}riWd!Q@e&P z!iFJW_h#fQ_H-p6+vR({a5NOf-IFqxvPO1lyd}rjFTEjlF?tIqQaI?Ci|CAaWShPm z(S@hi{ei;$>m|&e9{?sl_fF@q^+)?1ds9I85OZ0ItBjZ|zd5){w}Q1sr3CvLvp%?; z09z*lwr;20zJq9Q?@Yi!I4Tl~pzeSI+XgP@YPhb+Pzl>dt}2Lo+Jr?&q98(&i6SH} zlMiQrx5Z&)rvWOR1&kU|%FGXAy34DCKyYwfxCI=IgL++L5;z(Go2N;S;f>!ejU;ao zV@Ez`9kxXkpx+3T>$YCFwv|o{O1=jqAV*x9)UzHML1IYu3$c}Xd)BFFMtVDB2ypaR z7LB;yDGN}JT>!iVi{x*LL% zbe>7r?%%^8B=zxs4}-W&rb4t>jS0J9?cCAAM!p6RB}dW}G>Sa4DVTw*f(O~#gSUSo zJ?TcMONEl$7Eo0bQRS_-WCsc#YMcp&&um$tMQ{3Y3Qg429U$?7?M&VLk-m;N4Dwfl zD0*@QTHi_oQ}@ZEI1K0$Q4Sb( zze7G3GDIkCr@^5N$Z?&$+rN1XqurRsCUb2g?zcY6Ve5TX*UeGh&fjs0CR53g_Aw$* z-Hlcmjq8>+5__OK+89@ZPg*MgQzCDWeRZ#-+rMeFT*$rmPZ8?MIi!m)O%zo`MQ43K{;IVZdU?7c}HghcF3Eq;! zl*g3em?E(Cd2hCY%8Pcd?UKVd95|ax#(9={pWyHYb(tIhZU*Ol9R=#H-h(C@u)cz6 z#z7;6>jEv-rzUzMmJL7lFcB!xe<<;B5X<~mX)t6($cBUpKYkmA0Qnq~&su&|U@p|)r)Aj^R>bEKT zBiUI6qm=$i+)xupeOp$P=o8A(duvyYVxdC9VglFF)6Sui`uV|j0v$#4(ey!Lt@A<_q z#?6x*jP>6!LAI`Q(MHG7|rUBqvY-A{~d50XeTRw-+%%UXjfx3?z-#)>PLzFPKB-3Dv}Bo{N8A!ibIEIxQK`!lKs+_{fWQ;bCq3K$^Y{^1dm zC8%E*U!G|~MJEi8&S5pqsHk8^H$MQ^cTT=d3Lx~5$raD77>RggPc4tdL83^9IAk@Up~+gG;YRZ7$z5b%{ z(tH5YOD|hkW4oC&q6%VPtNu{^AE{&lq})z_zjfW*#R344oi}FvPfod9E|ueAW3TNo zPsl+Px6m6$a<&`FyBwi1V+@5uawl)q(w#<+L)FItvZ28CsK+qxm5&OKfx0j_b+0HF>3V}AJ@lZsbR?l|k}?YSxnUPWMe!>KFi_=NSbbyc;Y;CBDA%JERQnQS`XxRk01(+!TWtu`Bc^C2_ zlozr`6JjhHY^8y)J#laKKu8mU748+eZl892J5l-9J*ae@MOAZ98I`_|-!R3cPzX5m^vlNaM@!(^T?!4iCaj zr*Xq=4(Gr5do}Z(+uJz$48q6drSdtfFt4(vkf>PTxeGCugxs9TT!1U|AVK; zq54L4_SZZAgHE86z&1aB%lP)2@Wz(2s727SwbKTiDnCfNpS*$EC^i=}SBRRF;pJhYz{jTI30)fz4J`$h3G+A>6 z`t!6{m-Zinnok2Lc0koJO0B5y-vW+~#LyEVP9=0)s;B&IM+*~HtXfRKOcOvO8VCqT zA5X{C7SIU&O*vzZ%inT6A7LDjgHNd2xPxX}E4=c_;{V^;oKW2Os)`y}d5Rqud zijpCssEV{XuLgt4#osX3&=v$sN*z(jN?qiU(qMpjz8VRrAOfyFfnLX~bQs=50v1PjR zJ~$nKd_j)dlO6dTP$Z6Sl4bfXCvakgH4`7j1(3&qi^%|5t&6zlAAEA~`@;H4wm?+5 zqOj406?xP+RjetYg_xoWwS5`a8kVlwgFxXxlC(!=>|*A+M*F^|I0&arJ z&3O3y%UcLDsN%8uXowq$kAw}&3xbBNVS;d0}rkufMTfn--yyL8j}Ta*=>54Evro99H@d;16az=6_Rcc7p^q#I>;G^qo@cxFN(@mRjpgjUxh+%qf3PKQA2fj!KL2A2^YwSy3Lm2+O zr;gQ8>3^k_RjRknA{|jW+lf!}b(rYy8j_7UnZzilNLIQzYX|%dsU_zL@HZ})uY{zt zfIWgk1dtrOO~PT|F0eV1!e&R-Ja4sd&hM zChRG46pw`#onlEb{j|IlMQ8q_&(6QpF25D;hrOBw1oZc#is-ocA;tZZhZuMi0V5)w z7eIJXw%f^cnRK4#z*-PNL7`Hk71ihkKu*IPb)t@*Qvxr7d-?Xb(_(cf;HYyj*N??(?b{=#`b`v4A< zP&hQP9MDfzYK5W*)Tbj4xNkTi>sS#=XdsvDdsPJFv5AKIM;-|UW6LO@yvfN%qgs=d@a?|h;O()hzjP90#wpj4Co zC$Jf_|DJB4q`F%PIOLbMLeK;vELR&~qzA!_z@ug&bchaaRQyLdI@ z_DUlAgl3(7=yTBBJEYKSjA-Kjljw|TmeVwLG2|??SAlL>vumZdM_Mj+xU8;SDb2F6R?6D= zz$yi|;mjQWnY%A~x4cbd>{EPm3vX@y<5qQmKPg7YroXN64#_62#B}zyYmwW9o<1Xd zSemiLi=z+DZ`SEl-*`9wSXk=Z($bOOV+ryV7*8VxK7F6fB{V7<3rw|9srFw(va6{9P4%FUHZ+^?^bNw|{y zY`aQYgJzh>Yqq5>5C7;ZCaI|hEg2=R-%M}2)|Pr?#>x2B(;bD<>6g2@ zu3>B9z4sN@R@~^T*DuP(!S2u|RIjw?>9aMT2zSp+Q@kuw%AL@!DQp8W&RbWme~gHB zXwmea98^h|$Y@)h=HVYKI58$t&`00EqMwodZeF{j%f)b9f-SHu*TjU2x^A(5z^ycT zH~PpeR;z#v@jYvcG^O&d3ueFi@ra!NTKCbhPP3jrUcfggRyBQYbFJ&*3cr1fbIzba z!t8P%Uqo))rIdPw{U3%@J<7tq5Td%3f)MqTC=Hu1(Knw@<&~W(g_}h<-{p34)|^P) zh^SF*k^D&RuD9(69+5xCze^d3dm56|8tg4_pi`f|g8yhS>-7UZf|s35-D2$}wA=*H zKIuoX8%Kw!2dRtSGsfjFzTKNXQqp)MbLV*mwM)}IMz4#`z1A{5p0!D>C1s_B6YnTn zlbgWM++#kgzQCXsbM1J2f9uom@n(AXF1dM>{NAs_GpDd5;aRE;3v)bLQ=2pGe#1pp z{@Q~^p*fSWlA1?$u5jmlv=K6#v!979=!HT8w97}C(0j$;Y2WLx`^C?#w5UJmGSxn- zMS1l-IahMRr}0yL>rmml58+<}gxhRFnr_sMIHy!Dq3d6+39&={a)+l%S6ZG;wf_io zmb&tjp0Mi2<57m!&{BxLrWhsQYZWZmPv0-$bXB=ln7YT9)Fm zc-Gb9Y3HJC$Wm_#_;i;k-rpni@w&sWQk;DIgX(QU#!h}K>R}iSN$LsN$UIo1uRJ~_ zHZkp{>Jqoyf!2qk_*eS|oUx_@XYQh=j{lcSq$XC4ON)QiOGoRQq&5`ODUr`tNk!|j zG#7m-&+6-XPSiXHb0t45sMQ)3K4$-6H zT#UJ^mwX%lrH;_i{xG<+sjf+@C&fFBz7gNQ>}BC;rc8Lj`JtCf%AD}!<#{_Pfa zgYAw`ze#@gDd`Z}qgPY$$kWx#Jt_)jM#3|9D<&Ym;S&#MjI8F#-pT z6UoQ+aSu+ayYSnzkuh=f%oH2LB+0Y1LcRDDEWmLqh{z_8jS0oIiu zuXYkIJvh?o^!7Z_QOC2cmLH3<;6{1Syl;B&>=sN@$APiPm6pRV9;}w#D%}^VpE)k) z(7O1!nu&*Z`)K90a_+(91dPhU5m9tTF*#s>J?9il+oWtxOMP}$ao(ZeA{l|895UAy z9jQe9y3@Z+bgmx^PU};F;haLYbFp82i2J?Yv5& zQ)7?HLvz~P8`CO5TdV2Q)`+oYxPFuZ5o^{`yOqxI&8kIk(Tg;bnfmP65j8ibn_HL! zDsowjGP2*#YbU7cE0gn?d7&kUS<_?MEm$X`5vowZQb zQ0m%P)d_+~O{KEYyzsFc8dnz`y*i)SGtu?0s85%s zfv3CsTSz5c%@{6e42bUJR;n03Yp8QE=PjAQAoF!jtD>R#q4{uD5oe;1y`Yxi`=m3Q zJOjCDsQYYtB5WQn!DlNU7R^f(rLMDgBn8b z80$t(X&dgOJ~ojbHfK;f!=udV@}Y{BuiI7Ftp~DQhIJRO>z~9|y`1cP{`D~ImlLH? zB#(M2^@;*%b(h#5C{Yh;eBkgl-*5`I5mxehv&Z#ztpNXJgPieA4N7Erdm&v|snfo5 zVbX6)jm(HF({9v#f~6ZIzQ_BqkPh+-)Q^`P+7#UWhu@fgu_R?Wi@<8(2WDq9A*UeN z`xyOb*z}_~->r0!)Rpoc0y?|-$eXX*MchShaxhPJ!=p)iY01O79j-HN%y5HRcY?+F z8Rg-$lH%?2-88j`zM>(h$r`=$zydbveyAt(w#gCSqwjH?#7%7B%(TA}vhVrx)?m5{ z3>)B2JATY?Z-_piSz{6(+Ifv+J?)~p(6>H>IW&ZcH+#eHC0V48fxAGFBnx|;50fDk zoWS$94L3iz^^iz#m!&k?r4GCcVtgYFHku?vNKDhXD- zc`m$JMK%h?t*+{6+FfdVt;08Vd~-^h>v~aN#M^s=r}k~02l}{}u6x18=G3=)!hOIQmv)eUpT?+0LKopx9cbh9Mi$8=2I`w0-C%5|XH!RmyAz9U^=UDxy~d?OrIfco zW}#EE62C}Qaqfi^x;ojS2hmMfxW)`06bAhSHkGwMDH#EqReLk3~_}u#CNIp}vsFX&bvY&9i z#s$p82=?={;xnr;{}#mr6Zc-KcFFthnSb7haFD^@NN~buE2W`XErf<}=Wd=hyj*Kq z|Cxppd95^8eqQ|gr+d>45+&ypc5oKW%C!uAYt2HMhBU)_L;J%?MvCZ0#d(3ud7?c3 zV5PpSr&ApB>r<3ziQ#;v9p{J8_;;;&R(-!LtTVJUKRzmG3RX>@t-W%Z2Y`TFtLurp z%xtdNwy+yJ!-hq*4Ikr6xqB^n+J=Lkey!?8Uyl1I(NT3qLw2R8QEZ5|yx&GGR_r3k z+(~}FaRnrjj2&CfkN1}5xyvLR(};f#^edNt$3`*TM-NiV*{v?ZRvA={u<}W|^Ew#5 z8f+*4(G$5DTF*Aw&OG7bt6DpsQ@!+>r+=w6UFn)(ja6Xv=?T?_iWQcAyE*SrA3R&S z@q%aR#;U41`Ek+cwn&*5kBC&$rM6x*4GIkV9o&Dm97kATUljiS1;ZK*J=Jm9T$TeSDo zbM=DSc|`bc-+RmgbS!h;`|M)RjS?~+Z&6^EPU<=!Zl9v8qJpGHW1EM_Wb!cRjOpuh zB{bdEa@u5(0I*b^GYvqi45?CoZOXT)gR7Ri_aZT8Pk5?_+U}LVf(vy7^KToD@AP@* z>d~NHMRfJ07d{`-sj_uW3$G+Mw5f-C;*UbO*s7U@KVQY1CS1y8H~VMmElK+xozuB^ zF$u{VSqEH!k`Sm)SlC{50Tfd~ENyb&{c1BSy)Ve<8r9_H<;j-c+fZb5oEgr#_6@O4 z*PZEu6QOt^*s=EF!L^x+eZlwx(-m>td3hx=DG~Y;%`pj`8RE>gg=Ru2Gd{yv&p8th zm1jLu7`#B+znX415m>)?MH4n3%*PwbHYBQ=smc{o=*NLbC>m?>E>y zW-p>d`g9#$@4dG(4)P!H<90u%cvJ}xC4#9rZp@(}W1&ekTNK0j;I^e3kI6jb!o;0@ z3*oQJ2C1?(&((+%?Zf$Ftrr)Fxn+u5JT>YFL55rDepRIvV6jCUF3u!^Yco$Z^@GXozXB zCgR=Jf@1LE#?S6v=vSxvSTANBhi|!a)~oMQ_CvUz$*XB8lr!Q?0If%tuX$)o;9j1j zH7)xw?S{pwaX4cGSRGD0gkFeK?+)r-zWn@S2p1U+m#(R4DvDVs@t0cu?0z9%v(!Jy zS^NNhy5BJb)d(WB-JE`FASOL)YH9~)n)iY-s1Nv+6F)9Uvc+7puvi`Ihe}G8HX|}& zR_lE6oanjW&iDHkbVa!nl{UGhI}QpC&e1*4e|I)RN@4}Qs+cOM3_Yg zp&)X=0$8)7AA;=SG?JXLH492~LGB@b&M!ntIQXz!P%~IZX3Zf(A$2TU#J8 zmHw3>J1;L{a8e&6)ZDAvJ@dB`v*i0N0RJbowfl$jNYV>ieyQWBs`89@HdRtXQmsgO zeBm2j@0Q$(o16CfwSl0-1)wyJmg`P#v{4dofEQ*Frg(|)XOWkdxdJ$Kylbv< z0J@8a(^p$v6KKkZgJeQkYWoTcKF=Jj(hmbi+q9n$qjrj zfXgc<<}A**go#e#6%9{}4`0OJlH2e9A*Ago_|wRJ%Hz%pxsr-L4X~H{kI|$(+Yx8* zN>k_QrDw_Y3x-J+mu?y!71|f4R+hQ@OFv;-v~Eu9Hy9i3 zL*Kx$PoqeE{K-2>uhY?-0Mzjp&lm6WGE8pX&FUyBPyGD+a#+}A;S5_dW%5Z{d4r$f z;O(nZR{@+3V(~jWRd9u)4;v>RR0}ToiEjonW@T)Kl=3Lf##b%EpS!tu@8i%(hx8)) z^{o-fT|-3_&Bfrw_NxlVYl5AYKc05!nWba0L3pZ0Hdz>;Gr+TiqM!4TfasFUo{+g} z-mBvI>0{J912g$bgzIyzW48U?ZbQkXAgy;g8(aQm$Ki^`QbaWA>L4c3tG4BDt%u_7d%O94GNWM_yOFDYc z+45B#k1o3fz_h;8@}@^uoCfl%xoi4c$MU&*$vSC|ulS-dc<-&{QcQfT#K|Xe&Jem! zB^#&1TmX_;@tjbvswDW%oxT8vbiN6>FmE@xrdFza8Y-%vJT>ezZTScKhGrS};LXH8 zHHE1ZMXu1*&p{q^*U)D@Yn;=W1IvzffalrF0&C%@SAAl*7~2hLi~At?AMrdu#5!IF z&Io)jN>awNsoYanKih>Z#T3ESA8ys1V^L|n&4TKEg5~5HA6CP&`dm9+YpP%Jo;$rZ zyww52Vno@EB8htmi{s&qX^LHBK-m5wl<3lD%E&W0lHFw2BXYwkDK}m-Wq_#>;Q0aY zLc#W`ivPeO132$Cko+Izd^Yuf`7Hk#L%tRY5%B_k6H6ih(>wLLj^>QqlyI7ObJ$ph zD96OjhPztIG+nN?AZ1oZjZNTO*CeoybLF!;c2c2OvWXtr1|RZWN>Fm#L`pv zDlgkSWtEM9SM|;OD&DY&#w@dG8`$_-tq+3%0)G;6oZ+ysbmft8AosU&D>bx~t>))m z*r~5ah293E+OQxYH1kjS-|m%Et5EAP0hUvtF8w|V(<8u}qICFL=9lcMme(!0J^sg( zpu7yh789dFc}miy)|AI9RG-1l zIszt&`wxvvgl%tuh2vqKbcJszO)WVyQd!)WyOl~A(7e|ZDV zw_tm>Wh`WG*yR7T?72XnznMXJrw(g7oYOE{*`T6$Xy8kE;2C`?SJS{oD7E;2PZIbO zJtjiK@|Zh;6WhI+@RHl_?OyaI+ujr1Pa|%iDP|to+UjmbRl^gXoGrmtw<&!4XqpDx zfY|}eYlG&7Sacc}x9u*o-5$PrE$tLj+oCkZ>37SJU8;m2N{bZP&8xvwnEDqRtq zg{!?vXpa|2f^y(~6O@Q53GbOISj4{Y(+0iCh)bqyyW3b2g&dZlyR*88Rch+T7 z-ur_a`>eKc46xf%47)w-i3gfUaH4K5vd(VGavOS)=HkDU_KB%V-2!l!rTE-(*8#CU zbIEaJ^Xf}~s2JAUOA6n(oRrHvs8Lnfh_Osz6SwMyR3{*ujed}a7u3%32rO3CsXY-L zYQz=**%~E3yOyVwb9yf(6vf93w}RbuTo}Dq^uUNoz!%QPPX-Md6nVmNbZl#HzVY_! zqs}T|XMeW&@AK!HO>eR+2JWtRUIhGvA49ruGWN%Y@%r|Mw;BRZ^Xn_2M}|t5=nSW1I85Gv3Fpb#c_w(^!@}v9M`0Zn|O3+9!$cwo1@CF^%&E z*H%984}Ty)-@+1dhmXqiTLe2MazE48n`l00d7I~eGX3^+dT?@;Hu&?+rdRI!%_W$Y zQu#|BhxyDEShUF12B#G zJ>TXd>+B_O9>HR+z_P<@IKO^z$MUq{vlv=fg@}s#(KTT0Y)Hv(cH1_Qi^xEjIW{~v zOlh!Bt=!jU17QW7wECyhy;R?Iln-W-pL0+6J;WVZXqD>Sz6vg?E?fIDV^~&(RAkXW zz2$iH_VYx0t0ckx%$n!MX~sQl+DrnT57A11wUePsRsk!Kwd;Jxfq?pPpMDE4GTE_nY7m@8@%0MEOqzz83Nu> z<`(-6%L{7;Tjk9`JWYG6&ztR-QWcF zFzdTwWpcezrnTEav>jDs^K_U0d>SW!poBoP6M_=A|7|n0*&oEP9L|{WF0+I`m4JL_ z$H#qnTpcbRBC8W(@oKF40ZBMW3Ol&V8jIv6EQ4{QhykNsmF8}vP-lyB%>mL$!khRi z!!7P!eA-ZqR8@ga)o{!_ay&%a+qrT^7A_NQuFFLPG)8dI#jM3R#}rhh2^v!`9b6I6 zkP_#>>-0FDm1cMOk&OggT!14|58ehGLD2na3y`iI;fM`!r;BV2=lC3=fFx2iEh}5b zZeKAb_h%PKKyOhwCck$TliqjbnQKoW!(?Kpo8v+EG=*|&Lk+t6gu#`Tc=MYT%$!_b z4M{jxbs`>4D(2dp0@*RQfs#Rp-9$I%bSFaW6V}gtQfefH6krr|C;m!JjsGWklObFMmShDwNk31#kso!q-S<4frIzYRVYag9GtOXW`4bRLbcE#L_qR#n5vkT38R zj~(Ae-Yc?NwFNi(Z5WbbFQj zz^fYWnw`!7Vi=Dx+tu=)z)zTooGxd@Gg+Z8z~SJGs{=F#Zv`2A>8mea9)kb$`ehZd z4~!i^w${Zz@9~9&&31(z^0=uYpKnUCuA7UlbKH%kv*3bkHWPjsPCe)lyvo6%%h@Tk zm6k;dvS-Pb&Z8Y2k`TgCGn6&gv<(a2ES#1g%l|4IBOlX-MKN@TvvYLkd4Ed8OXO-I zviA28d8hB8h%D__Cy^bjyAPABeFVgK^;6%TXKp_P^s2eEwt=NHe6b?eN*uf~J`MpNxVhZf;Cvw*p|7G4jn`PYN*zVB z%w~f0rN2?xucs52q~!ogB=fr=cqlW7pu}GlBH3k%Z3^GhhxJrqt`({OaQuThjm`Mo z8I+UZrkRIWw83FG&J0*z;v5x5An%b1)PrL(ffub7FUtE-(!Ps1A5l1P%C$>`V=>1K z7t6e{nC&owb$Mzbp#5jQbO*#z4zaWyv~(U1>yRv}IR(L?B(IV><&Du|iTdDkMLQc= zDi}&MqMR^L5!|)0*oH4&tlfVfEaeO=WkKno=MlVFlqC&In4aD+bDv;BxB+02!o5N&F(c(d0Nk+ta^PD*6)D0So0FBBsJxfP9k zFToX2(-m5OhU)0a-9DS>BY+X!SAMj>o>?cnOZ8KM@D`KOPwNk#b_J9W-g^kVwE6|? zQF4oLKdZo-qJU%-TnMDAVt5aoBn{J$jS}XX>^-gdQ#B1I(P48_?XjkE{9uK_f<@Tp z0}{}mY=$F}CBvX%m>`uA2rGhswu-cK3_K?D!I!NAE`PR^mwipsZbXvbE*fQoYvp)AeED zuCerB<<(7zWscZejbWli%xU^MDr-GIE1e{*_+e))mwn=DOUtuLq*Lb9YDACPvJP~Hg)ub zYtinD#pOwG-ynuqG;{Sh-owHqtxkE7+$ZGFDtbn!Z302$VGim=inE6KuH7tuvFe3$ zx`{!tJWcd7B{KM%nO0heUB&nO8Uzl&gE1w_*{H6Gx}Ax~Hj1S5$6vh!0SR&g>|hrE zQiDRKR+n0PUBk;MLNf)eT7m0}^r^^ced2PVG7MknaU~g|ulTWdhHnE7^o-eeW3d|^ z0j;}(A>ppzl)1C{q97yHQ^(oelj!iU{vWw`O9DaIZO)4Bps1>7j2dLf-d@~szQVmE zS$)1{G0MinGZpTh3bjaxxsASaShO6NFehITkP_m*7L9oM`cygFKv<;L7$tyf7Klre zw|;eR3lUm$P(bkCa=bm$^?Q`LBk1}Qpv&0!V2xMnQ0fB&WIExg&YT^?#mWb%< z2n7=(+Say#`eLp=>bo;0`YZIO?p$_paj^~<86L)W1=Y&L=v5cp9e?ZW`BV zlg7R>ssL&=>f|m8g#s<*(kCcx!K^efC}uIRYK7>)+jNpvK5$IZ4UTT0Oirk&K&Ol2 z_1M-|ZOci)PGzF`IKy2-b@hNB&Td+#4M8VJtBaIrSAN;P{4#u{>$4NLX+!`rAZqZ< z?utp5IA`NiX>whvd|K*euGLMVwLy@;GI`3>+>i_VLdE;=`r>iwC|;xz&ex)=Z`|SP z4s>$#sT&t)^tNWEYUh6i7y=d`n`hUtocTsO!1*hVZ@XU?sWlh)d;sl2plD{T-bG=Iq`C@5%fco)b%xH!nj$mj}Pe?+dn z#DUa?bX@9f$^W1wWqD;GF=b=4gcz4~sX_F*SzX_h%`a%{3!dkBU7Cl+5hrQ}^N2)= z1^2P2vrznvn?hQO=a<=xK=sYRgT?P)T8w?(USP zGt4hA^jfUcn>upAnaCwduhVb-L?kdwsUE#g!YJc#q2*Mu6hOXn%y2Jc<*A+qYu4Q~mcr8+``PiIRSm zAHQOkjgg2)rbI1$QXG80qvKgP9Voj>aV%i+ac9%^42&uf5W|M&t#e3|e9W26sxxo3 zNC_?lUS?a#7i~ocqh$oI0E?>AULR8u{Xlt=07TOp~f z;Q-{Ta4}@w_7So!{@d9i*>GXb7EWo8Mw|GMEAt%mn`>Lug#XCqs;QApz`fBF%Rm{m!Pl&@30affQQnlCEK5ubk9 zBEv|Tw$L~k8$MIMZZ%g=W2_!dnnr0GsbQ!nJEDub6hApi#n`x3$iU{}s~v_Lbq^J9 zdb2?u`4!%_Va<}Rs7{X_Y<_SOyc-`cKQSHAo}BZ*PMqxL^GL#BM$Xmi!=AR_5qmX`N#rl zjyP0`GN74W_+Ayg^lG0qiB(4|JP3lJ)Qq|4lZmC^yusmxyKOUbpt`D#-wNUfslB zijM%;aEqk-`8F?u+US~5iQ1zF9WANUMR44?nPA+v7)K##^(LB_q=Q)5HN~{rV~|ML zZw4ewdpKz;Bwh~w^Y2&F{(N>zr7_QDq=@N4%$dys6>2RHQdiWT2Jr00#*t_QyZ5WB zTO4F29G-e}v8#3}e8ZNiszzabjO)iZBd1$Oc6u(L5C!K<{4ts`cT zCXsia2Xh;7qb9K5#9|tnZ`X)liV~=B?(pqk@#lS-4+zOp-vj+q^-{yDf}SUNURVSa zhjZtLiN0DF#Io`utA!bYH)(dN#dOz19^OFzkzg!hsO|I3(eV*BR9wGLa`MiXW2a0N z15ow{`F5wJm-e};Ds`Z{TB4}KwSz=Krz4^GSB^%Xx_7)AIS$Z*U?=g1PIWGWi2kcLccYr zLW#W(%!5|!3qwUza)3lJ)E24<4Kgq1HM@L7ey~PyA z^#(o_b45$;_PgR8j&zr^<+@(NFP{Aq5-Y^UBKZT#)Is8ksGStxznbZRo8}s^FQ5H< ze^=eGy^|w1F5vz@9_qU2L`wGEv;NVE^Xu^r?4#6wl#@i6<=D>zwed6jj-JuHU20{v z4VA8abFL7%_4OQRL;i>i^cW7)hXj`WnYM$~041ZPTna$gGEP`;=j`Q)a=l&ikht;j zi=9PZ*{w|eKfF`su4F@Z;`u?Znys`4I3ns(U)`r6qmFW|I{eK-#q$y#UmorkcK&h6 zrOJenfnl_FaJ2*i#}R3SyYXYSyJXuL^)DyAetj0Y6+r{X3Co0;S2XMvU*9~kujpqM zwg_5Xs#%kyJamRM>%{vg^bbJ36m?odO&OsfU@p?{g3eTIlqq)4Ur7SQ(ZdLZ0OF8< zR+CPU-eN%+@4)A>j2e*Ka@e4oZF-CiQ3(X;u0``~aV-fc*E4U3PK8c|<4EAG`q$T; zsN=GEoRc1N_Ey*MIg@lR=y2rJrgnM^HA`Ehkc%x^4nwvE8RQ4mqj_mu!$AtspH)&1 z+HJLOm-YnNIU;CjIzo000Uo_L73lRG=`xg6QM7dJgBT$Njtx1y=?)qp^K1%(xz$Z+LE-@ zF;S88nV;Vdq@4QS$ui&MaY1LfQ2Wh32U3CQV>b7{Ug<<^ljFLbQw_NaJOTo!>unlz zFT;;EClR3pxudTyHX!&e+sMt_HV`SyAQBBhO)uQk05xkyg}A8K@Yr#tm)p@GLUJd@ z+R`nD>%#mlB(v)1j*CeUafw{L6}R)CvGMfuG>N6DzP=4QimH!_uz4-t5)l<80L0Ba zzS~>|fSPK{Ud)@g#Ftj(HlLN4n0TK@g-)W~ zTm9w9C!$x3!owVYSfI=hUp7}oRQ7FSW0O_4>94T8ReD2HWvF|vFT3X@d0%=peHUDH zYkZA9sCLrUHt#%9nWz+UY^`M%jNF zK}WH)&;GHA`_%cl09Q}aPYK%0XTpDJa^9i(MRgvC9DaA;D*k*;z-@9QM&T)Wx^uln(F&zHfVKyJfV5H+ zv9Cc&;qiTs$4~=s=#kvxy8J!H7WH0C_&I%-ExD?T$2*{9z*0m=NE^AgYfI2K`t94d z<8A4Iuv)38iycLaQRm33jKmDKztW#XMJUDv5SX~uia~<%WEv!GFQoMV(jXr*$>nU z9mn-V`u`%1X}%#f+bj=!%VmX#mZ8eE)g?h%d752pste^P4XUs2GIDH(N0fb``y(`C z&VKgnS+WXTyuO(B47Wo)f9Z#lv`jvS+Jr?cnmPJG3W8u|C6(GG-E;K^lFtS;WR0=D zV32^Ag%;oVAKfpeU8~>(x1e0kK8Gf5X8-tUa(Ww@I7pz3FX@t;teim^pQYlWV5h+4 z{xCV8P%^_(kD3zm=9Zn^L_-hbqZfz2n?+^eTr0~%E3}sdB9KD%%4Zr`u`%dAk4sMg z&NKIwmd3>|ZC`5ZVzO6_xqv(+3Is#M26+jPAGe`^4``|l($BCA9E3qm2 zvbAcCWEs5LiJwEe1%U*3C5ZJw8l2gu$fQr7R2ST3P!D@h_zvep#?uutUyC8Hvh!yt zYCayU11JDVVuMA_g*090OuaG3xT2&u{D@>Pz0=l}JrWx~@>VjA|k#Yu2hk zbYB2uF6_RXg}-)z>unL5#mXY81~stt^Yi;gaTRf$wE*Lq*DybGf0s-%WB~Upx`K?n z>^Oe{*vo{~8#*`w&r}$C9~kj|sAbFk%ZVhC;R-ZfZ-!A1&n!5?Ftee5J;mkKRn60VcJ~DZ z1$8tv6H%jOg^6l6a!x4%i*U(IrZiEU&;%@P9gvH?7z>&^qpks0GQY70r2}iM?MfN% z{A(fzKG_T1uLDubZx0Z(Cqj!}$B#!NET9>1P9PqHD4M)h9abjSR`bv<1iU*AHY2Rv ze&>(p28D+5CDGB$YEgozlyan;;t0(E@I&wXqh&mZpo?)#JvIX}FSQdq=Atm&VgP!{ zG7I1KDz(D8XQC|9xn5gak19EipjnTsjErXZP8~hHG}OU3$(OAa^{PGUF~|l5b`k}ojDyaCSihWKpZiQhCurpu z)~v$8doJU#cnNZ(3;5~_0Ck?J7gozIDJh|x0%MYETH2daS6A10gWQ!@%4xu>_uRr` z0D4jP##%ym=m55_WFy?8!(G;x`u|XpXR?! z-9ZqZTsB#el=Mnat<4qofnnhJ!@INd^P63Nym$|fe-4|bDfs3J;C(BPPmm34s#Fji z6T=Vx2d3BvHhb;GrWc^MUw@L;@_hg+z-SNv>J0RpJyKu5M+T*lLQaF2)3!FoYtRqc z8cav=0vpS!5WE_x#5(5aN7t{9xB`}B;0pyReh8A|-TqHsS02;!8HSgb7+usXG;UrL z6&#n!fKoYxE>k&F@J5tVAmLE(pj8e5x1q#LsK9UtL6~4cCdagei9nq=L8VfzR*OIo z6==sThvn#=w=7Hc$M#>7{@VP0-}n9A_j#W0d*5d;WLAwlE*Lk{jGBcpBl@bD)~6og zdJ2?0kT_9P1KPa=C9N>OIj+LlT#tCoWPF#Jw?3upOhiO6f;;oxHP|@A7VejhkvXL3z;4P>=$E8eip?lR&fiYw zfsALp5I~SNva|C94cYoW%EZK^RVvNJ6blE_uOZ|Sv_YXo-TBV?6n)IDr+BlG(cZAI z0dqanrY)(p9*pV4dw;X3P~euWh;CrHx@NMB`_W#mqO^JEH6JcBq@T@l(AWK!ccTe{` zVRx-|$+YDavBMPkky|^X{~R7l!YP)Z}m4q7IeN%R_+nKFVaIY z0e5yQUd~B3r6#U1EmK#nHBE6Y1n-bA{SyO&g7n6soMZtjF6mr;Y_7-Q_DOpd#w3Q? ze>m#I5CidVg`CUp1w6UZ1Te*~WXH`!qIXoAO!j4U*TnADt%}J}5ArC+itj@x9kN2ES-Of>jDc(6e}$qDa|3Y-NJAC1X18$&(A2M z{*Be)MN;~xyG-DkB|xY+4woFQOFSGHHu=_gY1E~fqIA>4H_Fw6u$*uOx1oOeakDC4 zLSPECu7WjuA?+1rvBUN|I$o+l1%Q@Epy5|BHbDCj-wz)+kQV-6pq$|#N5(IV8hhW5 zRM`q3BZ6}QDFdlTZQl{R>fpAxMneV?hPAUv=OC0NiX3^vaHxCu?SgUC7b$-*tC6B? zg>To*t-rdCqB;e9YR^Q?-$9E@^5xSA&q6!`_WLFavpopqlMPbN%v(eC=yS7iC_yBd z98{Ghq*=wPxv+1U%kU001l8C@g#y$OtQs-(s5q`Vyn5XI)roRhi3l15$h~qkY|D+a zRadbS1Ops_B&YV|EpMcd%@A-}&Yw+*zvcBA)ugj1@H+sI_MihP1GF%7cLBRXlztE55&zx0pj`Y%;={%cZh=Rf_Y f{Q7?v4r>Using Matplotlib.pyplot
-
-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c3b1710>
+
<icn3dpy.view at 0x7fb55cc7bcd0>
 
@@ -502,8 +502,8 @@

Applying the power of python -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1d3490>
+
<icn3dpy.view at 0x7fb55cc9d590>
 
@@ -581,8 +581,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1de850>
+
<icn3dpy.view at 0x7fb55ce5f450>
 
@@ -649,8 +649,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1e1650>
+
<icn3dpy.view at 0x7fb55cca1ed0>
 
@@ -720,8 +720,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1e2650>
+
<icn3dpy.view at 0x7fb55cca3cd0>
 
@@ -792,8 +792,8 @@

Adding commands to the icn3dpy.view function -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1e4110>
+
<icn3dpy.view at 0x7fb55cca2650>
 
@@ -876,8 +876,8 @@

Pulling collections of commands from an iCN3D web page

-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1e6910>
+
<icn3dpy.view at 0x7fb55cca7550>
 
@@ -955,8 +955,8 @@

Teasing apart the command set from the -
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1de750>
+
<icn3dpy.view at 0x7fb55cc756d0>
 
@@ -1045,8 +1045,8 @@

Creating functions based on preferred command sets generated from iCN3D web

-
-

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
+

+

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the extension:
jupyter labextension install jupyterlab_3dmol

<icn3dpy.view at 0x7f799c1c7250>
+
<icn3dpy.view at 0x7fb55cc86e50>
 
diff --git a/chapters/binding_site_investigation.html b/chapters/binding_site_investigation.html index a335470..bd61a96 100644 --- a/chapters/binding_site_investigation.html +++ b/chapters/binding_site_investigation.html @@ -470,7 +470,7 @@

View the structure -

+

Text here about NGLView

+

This view looks a bit messy. MDAnalysis has a human readable selection syntax that allows us to isolate parts of our structure. We will take our MDAnalysis Universe (the variable u) and use the select_atoms function. @@ -505,7 +505,7 @@

View the structure -

+

Upon viewing this structure, you will notice that our ligand seems to appear twice. If you open the PDB file to investigate, you will see the following in the ligand section:

@@ -543,7 +543,7 @@

View the structure -

+

When we inspect the ligand in the binding site, we notice a few things. First, the binding site has a large hydrophobic area on the surface. @@ -577,7 +577,7 @@

Making a Map of Ligand Contacts - + + +
INFO:Debumping biomolecule (again).
+
+
+
INFO:Optimizing hydrogen bonds
+
+
+

+
+
---------------------------------------------------------------------------
+OSError                                   Traceback (most recent call last)
+Cell In[14], line 5
+      1 from rdkit import Chem
+      3 from rdkit.Chem.AllChem import AssignBondOrdersFromTemplate
+----> 5 template = Chem.MolFromMol2File("ligands/13U_ideal.mol2")
+      6 pdb_ligand = Chem.MolFromPDBFile(f"pdb/ligand_A.pdb")
+      8 template = Chem.RemoveAllHs(template)
+
+OSError: Bad input file ligands/13U_ideal.mol2
+
+
+

diff --git a/chapters/nonlinear_regression_part_2.html b/chapters/nonlinear_regression_part_2.html index d76a4f2..c8c0898 100644 --- a/chapters/nonlinear_regression_part_2.html +++ b/chapters/nonlinear_regression_part_2.html @@ -557,7 +557,7 @@

The Michaelis-Menten equation -
[<matplotlib.lines.Line2D at 0x7fcddd22e6d0>]
+
[<matplotlib.lines.Line2D at 0x7efd3ce69790>]
 
../_images/ed2e8a80cd568b164f79f3c9cf21556ba7d5baac33497c50cc6db1e0744d85e0.png diff --git a/chapters/rcsb_api.html b/chapters/rcsb_api.html index 9fcd865..9a41767 100644 --- a/chapters/rcsb_api.html +++ b/chapters/rcsb_api.html @@ -680,7 +680,7 @@

PDB Search API -
{'query_id': 'bc667b42-9091-4a62-af30-c23666e5e7ba',
+
{'query_id': '817f2b57-9670-4609-9431-50845964fd08',
  'result_type': 'entry',
  'total_count': 668,
  'result_set': [{'identifier': '2BMM', 'score': 1.0},
@@ -802,7 +802,7 @@ 

PDB Search API -
{'query_id': 'f987c8a2-8c6f-487d-96af-dd0b32e8a43d',
+
{'query_id': 'dc4f4404-d744-4a64-9bda-67402b963e68',
  'result_type': 'entry',
  'total_count': 571,
  'result_set': [{'identifier': '1MBN', 'score': 1.0},
diff --git a/reports/chapters/binding_site_investigation.err.log b/reports/chapters/binding_site_investigation.err.log
new file mode 100644
index 0000000..9f70f5d
--- /dev/null
+++ b/reports/chapters/binding_site_investigation.err.log
@@ -0,0 +1,42 @@
+Traceback (most recent call last):
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution
+    executenb(
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/nbclient/client.py", line 1314, in execute
+    return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute()
+           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped
+    return loop.run_until_complete(inner)
+           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete
+    return future.result()
+           ^^^^^^^^^^^^^^^
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/nbclient/client.py", line 709, in async_execute
+    await self.async_execute_cell(
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/nbclient/client.py", line 1062, in async_execute_cell
+    await self._check_raise_for_error(cell, cell_index, exec_reply)
+  File "/usr/share/miniconda/envs/biochemist-python/lib/python3.11/site-packages/nbclient/client.py", line 918, in _check_raise_for_error
+    raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)
+nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
+------------------
+from rdkit import Chem
+
+from rdkit.Chem.AllChem import AssignBondOrdersFromTemplate
+
+template = Chem.MolFromMol2File("ligands/13U_ideal.mol2")
+pdb_ligand = Chem.MolFromPDBFile(f"pdb/ligand_A.pdb")
+
+template = Chem.RemoveAllHs(template)
+------------------
+
+
+---------------------------------------------------------------------------
+OSError                                   Traceback (most recent call last)
+Cell In[14], line 5
+      1 from rdkit import Chem
+      3 from rdkit.Chem.AllChem import AssignBondOrdersFromTemplate
+----> 5 template = Chem.MolFromMol2File("ligands/13U_ideal.mol2")
+      6 pdb_ligand = Chem.MolFromPDBFile(f"pdb/ligand_A.pdb")
+      8 template = Chem.RemoveAllHs(template)
+
+OSError: Bad input file ligands/13U_ideal.mol2
+
diff --git a/searchindex.js b/searchindex.js
index 4412631..c242a73 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"1D arrays": [[8, "d-arrays"], [12, "d-arrays"]], "2D arrays": [[8, "id1"], [12, "id1"]], "3D arrays": [[8, "id2"], [12, "id2"]], "A final note about regular expressions": [[2, "a-final-note-about-regular-expressions"]], "A final note about string formatting": [[6, "a-final-note-about-string-formatting"]], "A note about jupyter notebooks": [[11, "a-note-about-jupyter-notebooks"]], "Absolute and relative paths": [[2, "absolute-and-relative-paths"]], "Add the column to the dataframe": [[3, "add-the-column-to-the-dataframe"]], "Adding commands to the icn3dpy.view function": [[5, "adding-commands-to-the-icn3dpy-view-function"]], "Analyzing MMCIF Files using Biopython": [[10, "analyzing-mmcif-files-using-biopython"]], "Answer": [[2, null], [2, null]], "Applying the power of python": [[5, "applying-the-power-of-python"]], "Assigning multiple variables at once": [[11, "assigning-multiple-variables-at-once"]], "Assigning variables and data types": [[11, "assigning-variables-and-data-types"]], "Calculate the Slopes": [[12, "calculate-the-slopes"]], "Calculate the initial velocity": [[12, "calculate-the-initial-velocity"]], "Calculating the initial velocity": [[12, "calculating-the-initial-velocity"]], "Challenge - Repeat analysis for a Zinc Finger": [[10, "challenge-repeat-analysis-for-a-zinc-finger"]], "Check Your Understanding": [[2, null], [2, null], [6, null]], "Check your Understanding": [[0, null], [2, null]], "Check your understanding": [[6, null], [8, null], [11, null], [12, null]], "Common errors": [[13, "common-errors"]], "Converting the 2D ligand structures to 3D structures for use in docking": [[4, "converting-the-2d-ligand-structures-to-3d-structures-for-use-in-docking"]], "Create the Equation": [[3, "create-the-equation"]], "Creating Functions": [[13, "creating-functions"]], "Creating Plots in Jupyter Notebooks": [[0, "creating-plots-in-jupyter-notebooks"]], "Creating functions based on preferred command sets generated from iCN3D web pages": [[5, "creating-functions-based-on-preferred-command-sets-generated-from-icn3d-web-pages"]], "Creating the pandas dataframe": [[12, "creating-the-pandas-dataframe"]], "Data Fitting": [[13, "data-fitting"]], "Data types": [[11, "data-types"]], "Datatype": [[12, "datatype"]], "Digital Representation of Molecules": [[4, "digital-representation-of-molecules"]], "Downloading all of the ligands using a for loop": [[1, "downloading-all-of-the-ligands-using-a-for-loop"]], "Downloading the Structure": [[9, "downloading-the-structure"]], "Eliminating values outside the calibration curve (optional)": [[3, "eliminating-values-outside-the-calibration-curve-optional"]], "Enzyme Commission Class with Ligands": [[1, "enzyme-commission-class-with-ligands"]], "Exercise": [[0, null], [1, "exercise"], [3, null], [5, null], [8, null], [11, null], [13, null], [13, null]], "Exerise on file parsing": [[2, null]], "Extracting the output from curve_fit": [[13, "extracting-the-output-from-curve-fit"]], "File Download using Biopython": [[14, "file-download-using-biopython"]], "File Parsing": [[2, "file-parsing"]], "Finding information in a dataframe": [[8, "finding-information-in-a-dataframe"]], "Finding the ligands": [[1, "finding-the-ligands"]], "Getting Started": [[11, "getting-started"]], "Hint": [[2, null], [3, null], [6, null], [12, null]], "How do we download the ligand files?": [[1, "how-do-we-download-the-ligand-files"]], "Importing data with pandas": [[3, "importing-data-with-pandas"]], "Importing libraries": [[6, "importing-libraries"]], "Importing python libraries": [[8, "importing-python-libraries"]], "Importing the Data": [[12, "importing-the-data"]], "Importing the data with pandas": [[8, "importing-the-data-with-pandas"]], "Inspect the data": [[12, "inspect-the-data"]], "Install nglview": [[15, "install-nglview"]], "Installing Python through Anaconda": [[15, "installing-python-through-anaconda"]], "Introduction": [[11, "introduction"]], "Investigation the Binding Site": [[9, "investigation-the-binding-site"]], "Key Points": [[0, null], [2, null], [3, null], [6, null], [8, null]], "Libraries for the IQB workshop": [[1, "libraries-for-the-iqb-workshop"]], "Libraries you will need": [[3, "libraries-you-will-need"]], "Linear Regression": [[3, "linear-regression"]], "Linear Regression with SciPy": [[3, "linear-regression-with-scipy"]], "Lists": [[11, "lists"]], "Loading the iCN3D library": [[5, "loading-the-icn3d-library"]], "Locating the data": [[8, "locating-the-data"]], "Making a Map of Ligand Contacts": [[9, "making-a-map-of-ligand-contacts"]], "Making choices: Logic Statements": [[11, "making-choices-logic-statements"]], "Making queries": [[1, "making-queries"]], "Measuring 3D Properties - Ligand Neighbors": [[10, "measuring-3d-properties-ligand-neighbors"]], "Modifying Ligands in Python": [[4, "modifying-ligands-in-python"]], "Modifying a ligand that is known to bind to trypsin": [[4, "modifying-a-ligand-that-is-known-to-bind-to-trypsin"]], "Modifying the ligand molecule": [[4, "modifying-the-ligand-molecule"]], "Molecular Visualization with iCN3D": [[5, "molecular-visualization-with-icn3d"]], "Nonlinear Regression Part 1": [[12, "nonlinear-regression-part-1"]], "Nonlinear Regression Part 2": [[13, "nonlinear-regression-part-2"]], "Obtain lesson materials": [[15, "obtain-lesson-materials"]], "Overview": [[0, null], [1, null], [2, null], [3, null], [5, null], [6, null], [8, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "PDB Data API": [[14, "pdb-data-api"]], "PDB Search API": [[14, "pdb-search-api"]], "Plotting the data": [[13, "plotting-the-data"]], "Preparing to Plot": [[0, "preparing-to-plot"]], "Printing to a File": [[6, "printing-to-a-file"]], "Processing Multiple Files and Writing Files": [[6, "processing-multiple-files-and-writing-files"]], "Processing multiple files": [[6, "processing-multiple-files"]], "Programmatic Access of APIs": [[14, "programmatic-access-of-apis"]], "Project": [[6, null]], "Pulling collections of commands from an iCN3D web page": [[5, "pulling-collections-of-commands-from-an-icn3d-web-page"]], "Questions": [[4, "questions"]], "Reading MMCIF Files": [[10, "reading-mmcif-files"]], "Reading a file": [[2, "reading-a-file"]], "Reading multiple files with nested for loops": [[6, "reading-multiple-files-with-nested-for-loops"]], "Repeating an operation many times: for loops": [[11, "repeating-an-operation-many-times-for-loops"]], "Results for Glucose and ATP": [[4, "results-for-glucose-and-atp"]], "Retrieving Information from the PDB using the Web API": [[14, "retrieving-information-from-the-pdb-using-the-web-api"]], "Review of f string printing": [[13, "review-of-f-string-printing"]], "Scatter Plots with Seaborn": [[0, "scatter-plots-with-seaborn"]], "Searching for a particular line number in your file": [[2, "searching-for-a-particular-line-number-in-your-file"]], "Searching for a pattern in your file": [[2, "searching-for-a-pattern-in-your-file"]], "Selected ligands": [[1, "selected-ligands"]], "Set Up": [[15, "set-up"]], "Setting up your Jupyter notebooks": [[11, "setting-up-your-jupyter-notebooks"]], "Slices": [[11, "slices"]], "Smoothing the plot": [[13, "smoothing-the-plot"]], "Solution": [[0, null], [0, null], [2, null], [2, null], [3, null], [5, null], [6, null], [6, null], [6, null], [8, null], [8, null], [11, null], [11, null], [12, null], [13, null], [13, null], [13, null]], "Solving for protein concentrations in samples": [[3, "solving-for-protein-concentrations-in-samples"]], "Sorting data with pandas": [[8, "sorting-data-with-pandas"]], "Stages of this module": [[3, "stages-of-this-module"]], "Start a Jupyter notebook": [[15, "start-a-jupyter-notebook"]], "Structure Preparation": [[9, "structure-preparation"]], "Take Home Exercise": [[5, "take-home-exercise"], [13, null]], "Teasing apart the command set from the iCN3D page for PDB ID 1ETS": [[5, "teasing-apart-the-command-set-from-the-icn3d-page-for-pdb-id-1ets"]], "The 7 Enzyme Classes": [[1, "the-7-enzyme-classes"]], "The Michaelis-Menten equation": [[13, "the-michaelis-menten-equation"]], "Things to Do for this Notebook": [[4, "things-to-do-for-this-notebook"]], "Use pandas to import the csv data into a dataframe": [[3, "use-pandas-to-import-the-csv-data-into-a-dataframe"]], "Using Biopython to Analyze Search Results": [[14, "using-biopython-to-analyze-search-results"]], "Using Matplotlib.pyplot": [[0, "using-matplotlib-pyplot"]], "Using curve_fit": [[13, "using-curve-fit"]], "View the structure": [[9, "view-the-structure"]], "Viewing Small Molecules in iCN3D": [[7, "viewing-small-molecules-in-icn3d"]], "Viewing a PDB structure": [[5, "viewing-a-pdb-structure"]], "Visualizing the Binding Site": [[9, "visualizing-the-binding-site"]], "What is pandas and why do we use it?": [[8, "what-is-pandas-and-why-do-we-use-it"], [12, "what-is-pandas-and-why-do-we-use-it"]], "Where can we go to download the ligand files?": [[1, "where-can-we-go-to-download-the-ligand-files"]], "Why Linear Regression?": [[3, "why-linear-regression"]], "Working with Pandas": [[8, "working-with-pandas"]], "Working with file paths - the os.path module": [[2, "working-with-file-paths-the-os-path-module"]], "Working with files": [[2, "working-with-files"]], "Workshop Schedule": [[16, "workshop-schedule"]], "iCN3D and Molecular Visualization": [[5, "icn3d-and-molecular-visualization"]], "readlines function behavior": [[2, "readlines-function-behavior"]]}, "docnames": ["chapters/Creating_Plots_in_Jupyter_Notebooks", "chapters/EC_class_ligands_search", "chapters/File_Parsing", "chapters/Linear_Regression", "chapters/Modifying_Ligands_with_rdkit", "chapters/MolVis_with_iCN3D", "chapters/Processing_Multiple_Files_and_Writing_Files", "chapters/SmallMolVis", "chapters/Working_with_Pandas", "chapters/binding_site_investigation", "chapters/biopython_mmcif", "chapters/introduction", "chapters/nonlinear_regression_part_1", "chapters/nonlinear_regression_part_2", "chapters/rcsb_api", "chapters/setup", "chapters/workshop_schedule"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["chapters/Creating_Plots_in_Jupyter_Notebooks.ipynb", "chapters/EC_class_ligands_search.ipynb", "chapters/File_Parsing.ipynb", "chapters/Linear_Regression.ipynb", "chapters/Modifying_Ligands_with_rdkit.ipynb", "chapters/MolVis_with_iCN3D.ipynb", "chapters/Processing_Multiple_Files_and_Writing_Files.ipynb", "chapters/SmallMolVis.ipynb", "chapters/Working_with_Pandas.ipynb", "chapters/binding_site_investigation.ipynb", "chapters/biopython_mmcif.ipynb", "chapters/introduction.ipynb", "chapters/nonlinear_regression_part_1.ipynb", "chapters/nonlinear_regression_part_2.ipynb", "chapters/rcsb_api.ipynb", "chapters/setup.ipynb", "chapters/workshop_schedule.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "0": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "00": [10, 12, 13, 16], "000": [2, 5], "0000": [1, 4], "000000": 13, "0004": 4, "0014948066523110296": 3, "0020": 4, "0030521595419827677": 3, "0040": 1, "0044": 4, "0046": 4, "0050": 1, "0056": 4, "005635": 12, "0060": 1, "007": 10, "0072": 4, "0078": 4, "0083": 4, "01": 2, "010": [3, 9], "0101": 4, "0104": 4, "011162": 12, "0124": 4, "0129": 4, "013": 3, "015": 12, "0165": 4, "016580": 12, "0170": [1, 4], "0171": 4, "0173": 4, "0179": 4, "01832": 12, "0190": 1, "0193": 4, "019578": 12, "01_molecule_represent": 4, "0200": 1, "020353": 12, "0210": 4, "0216": 4, "0217": 4, "022": 1, "022319": [12, 13], "022319351245112782": 12, "022757": 12, "0228": 4, "0240": 1, "0244": 4, "0250": 1, "0254": 4, "0259": 4, "0270": [1, 4], "027092": 12, "0280": [1, 4], "0283": 4, "0296": 4, "0300": 1, "0301": 4, "030884027089284245": [0, 3], "0310": 4, "0312": 4, "0326": 4, "0337": 4, "034661": 12, "0353": 4, "0356": 4, "0365": 4, "0369": 4, "0376": 4, "040318": 12, "0410": 1, "0434": 4, "0437": 4, "0447": 4, "0460": 4, "0461": 4, "0462": 4, "0463": 4, "0464": 4, "0466": 4, "046964": 3, "0480": 1, "0483": 4, "0484": 4, "0494": 4, "04948248037131796": 3, "0497": 4, "05": [0, 3, 6, 12, 13], "0501": 4, "0508": 4, "0513": 4, "051681": 12, "0520": 1, "0525": 4, "05263157894737": 11, "0533": 4, "0540": 4, "0543": 4, "0544": 4, "0556": 4, "0560": 1, "056988": 12, "0570": 4, "0574": 4, "0575": 4, "0590717448341336e": [0, 3], "0596": 4, "059896": 12, "0610": 1, "0622": 4, "062613": 12, "0629": 4, "0630": 1, "0633": 4, "0646": 4, "065213": 3, "0661": 4, "0680": 1, "068643": 12, "0690": 1, "0692": 4, "0694": 4, "0695": 4, "0715": 4, "0720": 1, "073658": 12, "0739": 4, "074": 9, "075985": 12, "076442": [12, 13], "07644213958496243": 12, "0767": 4, "0773": 4, "07806979615939849": 12, "078070": [12, 13], "0800": 1, "08042268476177239": 13, "0808": 4, "0814": 4, "0820": 1, "0822": 4, "0852": 4, "0860": 1, "0863": 4, "0869": 4, "0878": 4, "088": 9, "088046": 12, "0887": 4, "0896": 4, "09": 14, "090909": 13, "0932": 4, "0954": 4, "096143": [12, 13], "096204": [12, 13], "0963": 4, "0968": 4, "0970": 4, "097595134597833": 3, "099827": 12, "0999": 4, "099906": 12, "0ca": 1, "0cb": 1, "0kv": 1, "0x7f799c1c7250": 5, "0x7f799c1d3490": 5, "0x7f799c1de750": 5, "0x7f799c1de850": 5, "0x7f799c1e1650": 5, "0x7f799c1e2650": 5, "0x7f799c1e4110": 5, "0x7f799c1e6910": 5, "0x7f799c3b1710": 5, "0x7f99809963e0": 8, "0x7fae3b0f3ed0": 0, "0x7fae3b190f10": 0, "0x7faff0484370": 13, "0x7fb0005728e0": 13, "0x7fcddd22e6d0": 13, "0zg": 1, "0zw": 1, "0zx": 1, "0zy": 1, "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 16], "10": [0, 1, 4, 5, 8, 9, 11, 12, 13, 14], "100": [3, 6, 11, 13], "1000": [6, 11, 13], "100000": 11, "100796": 12, "101": 10, "1029058355571": 4, "103351": 12, "1040": 4, "104366": 12, "106": 10, "1060": 4, "1080": 1, "1086": 4, "1088": 4, "1095": 4, "1099": 4, "10u": 1, "11": [1, 4, 6, 9, 11, 12, 14], "1114": 4, "112": [1, 9], "1120": 1, "1129": 4, "113": 9, "1130": 4, "1140": 4, "1147": 4, "1152673937227531": 3, "1153": [4, 9], "118": [0, 3], "1193": 4, "1194": 4, "11u": 1, "11u_id": 1, "12": [1, 2, 4, 9, 11, 13, 16], "1200": 4, "1202": 4, "1203": 4, "121434": 12, "1216": 4, "122": 9, "1220": 1, "1221": 4, "122747": 12, "1230": 4, "123059": 12, "1233": 9, "1245": 4, "1253": 4, "1270": 1, "127118": 12, "1277": 4, "12786666666666657": [0, 3], "1279": [0, 9], "128": 9, "12u": 1, "13": [1, 4, 6, 11, 12, 13], "1321": 4, "134567": 12, "136443": [12, 13], "1364430576421053": 12, "1373": 4, "13u": [1, 4, 9], "13u_id": 9, "14": [1, 2, 4, 6, 8, 10, 11], "141": 14, "1420": 4, "142857142857146": 11, "1430": 1, "1435": 4, "1438": 4, "144": 9, "1442": 4, "1446": 4, "146": 14, "147": 9, "1471": 4, "147517": 12, "148": 9, "1490": 1, "1495": 4, "1496": 4, "15": [0, 1, 4, 11, 12, 14], "150": 10, "1507": 4, "1514": [2, 9], "1522": 4, "1533": 4, "154": 10, "1542": 4, "1544": 4, "1546": 4, "155": 10, "1570": 4, "1590": 1, "1596": 4, "16": [1, 4, 11, 12, 13], "1600": 1, "1604": 4, "1620": 1, "1621": 4, "1625": 9, "1650": 4, "1661": 4, "167": 9, "1673": 9, "1674": 9, "1675": 9, "1677": 4, "16h2": 4, "17": [1, 4, 9, 10, 11], "170": 9, "1712": 4, "1720": 4, "1723": 4, "17234": 10, "173": 1, "1733": 4, "173306": 12, "1737": 4, "1749": 4, "1751": 4, "1752": 9, "1755": 9, "1759": 4, "176471": 13, "1765": 9, "1766": 4, "1770": 1, "1776": 4, "177801": 12, "1787": 4, "1796": 4, "18": [1, 4, 9, 12], "180": [1, 9], "1800": 1, "1807": 4, "1810": 1, "1826": 4, "183": 3, "1840": 1, "1842": 4, "1843": 4, "186": 9, "1874": 4, "1899": 4, "19": [1, 4], "1908": 4, "1914": 4, "1924": 4, "1925": 4, "1926322406324839": 13, "1932": 4, "193419": 12, "194682": 12, "1952": 4, "1960": 1, "1969": 4, "1970": 1, "198": 9, "1988": 4, "1990": 1, "1993": 4, "1a0j": 5, "1a1t": [2, 10], "1a6n": 2, "1aq7": 1, "1auj": 1, "1az8": 1, "1bjv": 1, "1btw": 1, "1btx": 1, "1btz": 1, "1c1": 1, "1c1t": 1, "1c2d": 1, "1d66": 5, "1ddo": [2, 6], "1h": 8, "1jp6": 14, "1jp8": 14, "1mba": 14, "1mbc": 14, "1mbd": 14, "1mbi": 14, "1mbn": [2, 10, 14], "1mbo": [5, 14], "1mlf": 14, "1mlg": 14, "1mlh": 14, "1mlj": 14, "1mlk": 14, "1mll": 14, "1mlm": 14, "1myg": 14, "1myh": 14, "1myi": 14, "1myj": 14, "1pmb": [2, 14], "1uvi": 14, "1uvt": 8, "1uvu": 8, "1uvx": 14, "1ux8": 14, "1yca": 14, "1ycb": 14, "2": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16], "20": [1, 4, 6, 8, 9, 11, 12, 13, 16], "200": [1, 8, 9, 14], "2004": 4, "2007": 9, "2018": 9, "2024": 9, "2026": 4, "20284295232781954": 12, "202843": [12, 13], "2030": 1, "2031": 4, "2035": 4, "204653": [12, 13], "2047": 4, "2048": 4, "2050": 1, "2051": 4, "2055": 4, "2080": 1, "2081": 4, "2086": 11, "209": 9, "21": [1, 4, 10, 11], "2100": 4, "210920": 12, "2117": 4, "2120": [1, 4], "2123": 4, "2129": 4, "2130": 1, "2157": 4, "216": 9, "2160": 1, "2163": 4, "2172": 4, "2178": 4, "2182": 4, "2199": 4, "22": [1, 4, 9, 12, 13], "2207": 4, "221": 14, "2217": 9, "2219": 4, "222": 9, "223": 9, "2232": 2, "2238": 4, "2246": 4, "2249": 4, "2254": 4, "2260": 4, "2270": 1, "2272": 4, "2275": 4, "2286": 4, "2296": 4, "23": [1, 4], "2308": 4, "231": 7, "2315": 4, "2319": 4, "2329": 4, "2336": 4, "2339": 4, "2354": 9, "236": 9, "2369": 4, "238": 9, "238095": 13, "2387": 4, "239086": 12, "24": [1, 4, 9], "240": 9, "2400": 1, "2403": 4, "2411": 4, "2419": 4, "2430": 9, "2449": 4, "2460": 1, "246186": 12, "24625953559097755": 12, "246260": [12, 13], "2469": 4, "2478": 4, "25": [0, 1, 4, 8, 10, 11, 12], "2526": 4, "2545": 4, "2547": 4, "2550": 1, "2561": 4, "2569": 4, "2573": 4, "257587": 12, "257892": 12, "2583": 9, "258405": 12, "2585": 4, "2593": 4, "26": [1, 4, 9], "2602": 4, "2605": 4, "2619": 4, "2654": 9, "2659": 4, "2661": 4, "2690": 1, "2696": 4, "269802": 12, "26h": 4, "27": [1, 4, 8, 9, 12, 13], "2700": 4, "2725": 4, "272718": [12, 13], "2739": 4, "2747": 4, "2757": 4, "2760": 4, "2763": 4, "2775": 4, "2776": 4, "2779": 4, "2780": 1, "2782": 4, "2790": 4, "2796": 4, "28": [1, 4, 10, 11, 13], "2800": 1, "2809": 4, "2836": 4, "285": [0, 3], "2867": 4, "2873": 4, "2876": 4, "29": [1, 4], "2910": 1, "2957": 4, "298": 2, "2980": 1, "2990": 1, "2996": 4, "2awc": 14, "2bmm": 14, "2c": 4, "2c8y": 8, "2c8z": 8, "2c90": 8, "2cccn2c": 4, "2d": [9, 13], "2eb8": 14, "2ef2": 14, "2f": 13, "2fal": 14, "2fam": 14, "2mb5": 14, "2mga": 14, "2mgb": 14, "2mgc": 14, "2mgd": 14, "2mge": 14, "2mgf": 14, "2mgg": 14, "2mgh": 14, "2mgi": 14, "2mgj": 14, "2mgk": 14, "2mgl": 14, "2mgm": 14, "2mya": 14, "2myb": 14, "2myc": 14, "2myd": 14, "2mye": 14, "2nd": 4, "2pkr": [2, 6], "2r": 8, "2spl": 14, "2spm": 14, "2spn": 14, "2spo": 14, "2znk": 8, "2zq2": 9, "3": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "30": [1, 4, 8, 9, 10, 11, 16], "300": 1, "3000": 4, "3010": 1, "3039": 4, "3047": 4, "3049": 4, "3057": 4, "3064": 4, "3084": 4, "3090": 1, "309966": 12, "31": [1, 4, 12, 13], "310": 2, "311": 2, "3110": [1, 4], "312": 2, "313": 2, "313216": 12, "314": 2, "3142": 4, "315": 2, "31637950083089": 4, "3169": 4, "3186": 4, "31u": 8, "32": [1, 4, 9], "320": 12, "3206": 4, "3220": 1, "3232": 4, "3247": 4, "3250": 1, "3253": 4, "3254": 4, "3268": 4, "3283": 4, "3287": 4, "3295": 4, "33": [1, 4, 12, 13], "3314": 4, "3318": 4, "3331": 4, "33333333333333": 11, "3342": 4, "3345": 4, "3360": 1, "3367": 4, "3372": 4, "3373": 4, "3380": 4, "339": 9, "3393": 4, "3399": 4, "34": [1, 4, 9, 10, 11, 12, 13], "340": 3, "3400": [1, 4], "3420": [1, 4], "34244478125714295": 12, "342445": [12, 13], "3427": 4, "3428": 4, "3440": 1, "3447": 4, "3456": 4, "3462": 4, "3485": 4, "3488": 4, "3495": 4, "35": [1, 4, 9], "3515": 4, "352183": 12, "3524": 4, "353": 9, "3530": 1, "355": 9, "3590": 1, "36": [1, 4, 13], "3600": 1, "3603": 4, "3604": 4, "3609": 4, "3617": 4, "362310": [12, 13], "3626": 4, "3630": 4, "3632": 4, "364301": 12, "3668": 4, "3683": 4, "3691": 4, "369177": 12, "3692": 4, "37": [1, 4], "3704": 4, "3710": 1, "3717": 4, "3732": 4, "373572": 12, "3740": 1, "3744": 4, "3754": 4, "3763": 4, "3764": 4, "3772": 4, "3783": 4, "3795": 4, "38": [1, 4, 9], "3825": 4, "3829": 4, "3837": 4, "3851": 4, "3889": 4, "3891": 4, "39": [1, 4, 9], "390": 9, "3900": 1, "3910": 1, "3914": 4, "3976": 4, "3980": 1, "3982": 4, "3989": 4, "3d": [2, 7, 9], "3f": 13, "3h3": 4, "3iva": [2, 6], "3mba": 14, "3p17": 8, "3shc": 8, "3si3": 8, "3si4": 8, "3sv2": 8, "3vnd": [2, 6], "4": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "40": [1, 4, 11, 13], "400": [1, 4], "400747": 12, "4008": 4, "4020": 1, "4024": 4, "4030": 1, "404": 14, "4040": 1, "405": 12, "4050": 1, "4053": 4, "4062": 4, "4070": [1, 4], "4072": 4, "4076": 4, "41": [1, 4, 13], "4120": 4, "4130": 1, "4139": 4, "417021": [12, 13], "4170212341052633": 12, "4173": 4, "417302": [12, 13], "4179": 4, "4195": 4, "42": [1, 4], "4205": 4, "4213": 4, "4220": 1, "4236": 4, "4244": 4, "4265": 4, "4283": [4, 9], "43": [1, 4, 8], "4337": 4, "433750": 3, "4345": 4, "4350": 1, "4361": 4, "4370": 1, "4390": 1, "4394": 4, "4395": 4, "44": [1, 4, 14], "4401": 4, "4413": 4, "444503": 12, "4453": 4, "4455": 4, "4481": 4, "4482": 4, "4487": 4, "449": 9, "45": [1, 4], "4528": 4, "4529": 4, "453": 9, "4535": 4, "4580": 1, "4590": 1, "4594": 4, "46": [1, 4, 9], "4605": 4, "4630": 1, "4637": 4, "4641": 4, "4657": 4, "4678": 4, "468796": 12, "4690": 1, "47": [1, 4], "4704346427639096": 12, "470435": [12, 13], "4708": 4, "4718": 4, "473": 9, "4743": 4, "4779": [4, 14], "4782": 4, "4793": 9, "48": [1, 4], "4804": 4, "4810": 1, "4820": [1, 4], "4840": 4, "4846": 4, "485": 3, "4852": 4, "4855": 4, "4857": 4, "4860": 4, "487": 10, "487957": [12, 13], "487d": 14, "4888": 4, "49": [1, 4], "490": 4, "4921": 4, "4928": 4, "4936": 4, "4945": 4, "4949": 4, "4958": 4, "4976": 4, "4980": 1, "4990": 1, "4991": 4, "4a62": 14, "4eyr": [2, 6], "4f": [0, 13], "4hhb": [5, 10, 14], "4mba": 14, "4mbn": 14, "5": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15], "50": [1, 4, 8, 11, 12, 13, 14], "500": 10, "500000": 13, "500455": 12, "500934": 12, "501": 9, "5020": 1, "5022": 4, "503140": [12, 13], "5031401632390977": 12, "5040": 1, "5043": 4, "5048": 4, "5051": 4, "5073": 4, "5090": 1, "5098": 4, "51": [1, 4], "5104": 4, "5113": 4, "512": 9, "5139": 4, "5140907641142858": 12, "514091": [12, 13], "5165": 4, "5172": 4, "518850": 12, "5191": 4, "52": [1, 4], "5204": 4, "5206": 4, "5211": 4, "522863": [12, 13], "5247": 4, "5260": 1, "5267": 4, "5269": 4, "5281": 4, "5287": 4, "5289": 4, "53": [1, 4, 10], "5310": 1, "5314": 4, "5317": 4, "5322": 4, "5328": 4, "5350": 1, "5354": 4, "5360": 4, "5394": 9, "54": [1, 4], "541": 9, "5420": 1, "542678": [12, 13], "5442": 4, "5453": 4, "5456": 4, "5462": 4, "5469": 4, "5475": 4, "5482": 4, "55": [1, 4, 6, 8], "5507": 4, "5515": 4, "5518": 4, "5534": 4, "5540": 4, "5549": 4, "5559": 4, "556695": 12, "5569": 4, "5590": 1, "56": [1, 4], "5610": 4, "5620": 1, "5623": 4, "5635": 4, "5664": 4, "5683": 4, "5686": 4, "5688": 4, "57": [1, 4, 11], "5706": 4, "5709": 4, "571": 14, "571428571428573": 11, "571429": 13, "5730": 1, "574": 14, "5753": 4, "5770": [1, 4], "5778": 4, "5788": 4, "5793": 4, "5797": 4, "58": [1, 4], "5801": 4, "5805": 4, "5811": 4, "5818": 4, "5819": 4, "5863": 4, "5881": 4, "5890": 1, "5892": 4, "5898": 4, "59": [1, 4], "590": 10, "5903": 4, "5919": 4, "59439795024717": 4, "595": [0, 3, 13], "5964": 4, "5968": 4, "5990": 4, "5eu9": [2, 6], "5mba": 14, "5mbn": 14, "5rsa": 2, "5veu": [2, 6], "6": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 15], "60": [1, 4, 11], "600": [0, 1], "6000": 1, "6009": 4, "6032": 4, "6055": 4, "6065": 4, "6070": 1, "6095": 4, "61": [1, 4, 9], "6103": 4, "6107": 4, "6110": 1, "6119": 4, "6123": 4, "6133": 4, "613302": 12, "6143": 4, "6145": 4, "6152": 4, "6155": 4, "616": 10, "616135": 12, "6162": 4, "6163": 4, "6170": 4, "6171": 4, "6181": 4, "619": 14, "6193": 4, "6199": 4, "62": [4, 14], "621": 3, "6228": 4, "6230": 1, "6241": 4, "62520287388557": 4, "6256": 4, "6259": 4, "628": 9, "6288": 4, "63": [4, 10], "6300": 1, "6309": 4, "6310": [1, 4], "6329": 4, "6330": 1, "6335": 4, "6336": 4, "6380": 4, "64": [4, 10, 14], "6404": 4, "6417": 4, "6420": 1, "6433": 4, "6440": 1, "644208": 7, "6443": 4, "6464": 4, "6465": 4, "6490": 4, "6494": 4, "65": 4, "6509": 4, "6510": 1, "6538": 4, "6554": 4, "655447": 3, "6555": 4, "65734834390893": 13, "6590": 4, "6592": 4, "66": [11, 13], "6601": 4, "6635": 4, "6636": 4, "6642": 4, "6654": 4, "6660": 1, "666666666666668": 11, "66666666666667": 11, "666667": 13, "6670": 4, "668": 14, "6681": 4, "6690": 1, "67": [4, 13], "6716": 4, "6719": 4, "672": 9, "6736": 4, "6745": 4, "6749595215280199": 13, "6750": 1, "6751": 4, "6770": 1, "6780": 1, "6814": 4, "6818": 4, "682": 3, "6837": 4, "6850": [1, 4], "6852": 4, "6867": 4, "6884": 4, "6890": 1, "6898": 4, "6924": 4, "6930": 1, "6945": 4, "6948": 4, "6963": 4, "6975": 4, "6977": 4, "6989": 4, "6992": 4, "6999": 4, "6zt7": [2, 6], "7": [4, 6, 8, 9, 11, 12, 13, 15], "70": 13, "700": [1, 10], "7032": 4, "7072": 4, "7091": 4, "7104": 4, "7110": 4, "7125": 4, "7130": 1, "7148": 4, "7157": 4, "7169": 4, "7172": 4, "7191": 4, "7219": 4, "7223": 4, "7251": 4, "7256": 4, "7266": 4, "7270": 1, "7284": 4, "7301": 4, "7307": 4, "7317": 4, "7354": 4, "7358": 4, "7380": 1, "7384": 4, "7387": 4, "7390": [1, 4], "7393": 4, "7397": 4, "74": 14, "7422": 4, "746525": 3, "7484": 4, "75": [11, 12], "7518": 4, "7520": 4, "7527": 4, "7548": 4, "755": 9, "7560": 1, "7571": 4, "7574": 4, "7583": 4, "759": 3, "76": 11, "7605": 4, "7613": 4, "761905": 13, "7626": 4, "764705882352942": 11, "7660": 4, "769": 2, "7698": 4, "7725": 4, "773205021308": 14, "7733": 4, "7750": 1, "7751": 4, "7780": [1, 4], "7790": 1, "7796": 4, "7799": 4, "7800": 1, "7810": 1, "7814": 4, "78260869565217": 11, "7833": 4, "7850": 1, "7852": 4, "7857": 4, "7860": 1, "7865": 4, "7891": 4, "7897": 4, "7911": 4, "7914": 4, "7925": 4, "7930": 1, "7932": 4, "7937": 4, "7955": 4, "7970": 1, "799": 3, "7dd": 14, "7tim": [2, 6], "8": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "80": [8, 13], "800": [1, 10], "8008": 4, "8013": 4, "801416": [12, 13], "8020": 1, "8041": 4, "8050": 4, "8088": 4, "8099": 4, "8114": 4, "8129": 4, "8133": 4, "8142": 4, "8143": 4, "8216": 4, "8220": 4, "8233": 4, "8240": 1, "8244": 4, "8249": 4, "8251": 4, "8252": 4, "8260": 4, "8268": 4, "8270": [1, 4], "8274": 4, "829652": [12, 13], "83": [10, 11], "8300": 4, "8319": 4, "8320": 1, "8326": 4, "8350": 1, "8353": 4, "8357": 4, "8360": 1, "8367": 4, "8371": 4, "8390": 1, "8394": 4, "840": 9, "8418": 4, "8426": 4, "8454": [0, 4], "8454285714285716": [0, 3], "847": 14, "8479": 4, "8482": 4, "8493": 4, "85": 6, "8506": 4, "8520": 4, "8565": 4, "8599": 4, "86": 11, "8627": 4, "8640": 1, "8643": 4, "8649": 4, "8652": 4, "8688": 4, "8690": 1, "87": 13, "8711": 4, "8720": 1, "8736": 4, "8738": 4, "8767": 4, "8770": 4, "8798": 4, "8816": 4, "8840": 1, "88494688682022": 4, "8860": 4, "8864": 4, "8880": 1, "8885": 4, "8888": 4, "8892": 4, "8894": 4, "89": 14, "8915": 4, "8920": 4, "8941": 4, "8945": 4, "8976": 4, "8983": 4, "8c6f": 14, "8gch": 5, "9": [1, 4, 6, 8, 9, 12, 13], "90": [4, 8, 10, 13], "900": 10, "9000": 1, "9020": 1, "9021": 4, "9030": 4, "9047": 4, "9070": 1, "9084": 4, "909091": 13, "9091": 14, "91": 6, "9100": 1, "9113": 4, "9116": 4, "9120": 4, "9127": 4, "9137": 4, "9140": 1, "9149": 4, "9151": 4, "9160": 4, "9181": 4, "9189": 4, "919": 9, "9190": 4, "9201": 4, "9216": 4, "9225": 4, "9228": 4, "92307692307692": 11, "9240": 1, "9243": 4, "9250": 1, "9257": 4, "9265": 4, "9273": 4, "9280": 1, "9285": 4, "93": 10, "9300": 1, "9315": 4, "93229707347896": 4, "9330": 1, "9336574705860224": 14, "9347193058098741": 14, "935": 3, "93574367649991": 4, "9364": 4, "9378": 4, "9387": 4, "9388": 4, "9417": 4, "9432": 4, "9441253498945321": 14, "9450": 4, "9452": 4, "9458": 4, "9474": 4, "9484": 4, "9490": 1, "9491": 4, "95": [0, 13], "950": 9, "9509": 4, "951": 10, "9517": 4, "9520": [1, 4], "9535": 4, "954703": 3, "9550": 4, "9560": 1, "9561": 4, "95652173913044": 11, "9565217391305": 11, "9570": 1, "9591093723128088": 14, "9599": 4, "9600": 1, "9610": 4, "9622": 4, "9630": 1, "9660": 1, "9666": 4, "9670": 1, "9680": 4, "96af": 14, "9700": 1, "9714": 4, "972362877827634": 14, "9724": 4, "9747": 4, "9748": 4, "9753": 4, "9760": 1, "9765": 4, "9772": 4, "9780": [1, 4], "9812": 4, "9824": 4, "9830": 4, "9833": 4, "9837": 4, "9859877949560755": 14, "9864": 4, "9881": 4, "9893": 4, "9898": 4, "9899": 4, "99": [2, 10], "9903": 4, "9911": 4, "9923": 4, "9927": 4, "994690398528738": [0, 3], "9948": 4, "9996": 4, "99p": 8, "A": [0, 1, 3, 4, 8, 9, 10, 12, 13, 14], "AND": 2, "AT": 14, "As": [0, 1, 2, 5, 8, 11, 12, 14], "At": [4, 9, 13], "Be": [5, 8, 12], "But": [6, 11], "By": [0, 9, 12], "For": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "IN": 2, "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15], "In": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "It": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "Its": 14, "No": 9, "OF": [2, 14], "On": [1, 5], "One": [2, 4, 5, 6, 10, 14], "Or": 2, "THE": 14, "THe": 10, "That": [0, 8], "The": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "Then": [2, 3, 5, 6, 9, 10, 13, 14, 15], "There": [0, 1, 2, 3, 5, 8, 10, 11, 12, 13, 14], "These": [0, 1, 2, 3, 9, 10, 12, 13], "To": [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "WITH": 2, "With": [4, 13], "_": [0, 3, 10, 11, 12, 13], "_cell": 10, "_citat": 10, "_df": [3, 12], "_entiti": 10, "_entity_poli": 10, "_entity_src_gen": 10, "_i": 13, "_ideal": 1, "_io": 8, "_m": 13, "_name": 4, "_w": 5, "_x": 5, "_y": 5, "_z": 5, "a595": [0, 3], "a_": [0, 3], "a_dict": 13, "abbrev": 2, "abbrevi": [0, 1, 2, 3, 8], "abil": [8, 12], "abl": 15, "about": [0, 1, 4, 8, 9, 10, 12, 13, 14, 15], "abov": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "absent": 9, "absorb": [0, 3, 12], "abspath": 2, "accept": [3, 8, 13], "access": [0, 1, 2, 3, 6, 11], "accomplish": 2, "accord": 1, "accur": 13, "aceton": 10, "achiev": 2, "acid": [2, 9, 14], "act": [1, 2], "actinobacterium": 14, "action": [6, 11], "activ": 1, "actual": [1, 2, 3, 4, 6, 9, 13], "ad": [0, 3, 4, 9, 10, 13], "add": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "add_compon": 9, "add_represent": 9, "addh": [4, 9], "addit": [5, 6, 8], "address": [2, 3, 11, 14], "adjust": 13, "advanc": 5, "advantag": [5, 6, 9], "advisor": 6, "af30": 14, "affect": 8, "after": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13], "again": [0, 1, 2, 4, 9, 10], "ahead": [2, 6], "ahm": 0, "aim": 1, "al": 9, "ala": [2, 9], "alcohol": 1, "algebra": 3, "alkalin": 12, "all": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15], "allchem": [1, 4, 9], "allow": [2, 9, 10, 11, 13, 14], "almost": [3, 5], "along": 6, "alongsid": 0, "alpha": 0, "alphanumer": 1, "alreadi": [2, 4, 6, 12, 16], "also": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "alter": 9, "altern": [1, 9], "altloc": 9, "alwai": [2, 3, 8, 9, 11, 14], "am": [1, 4], "amin": 9, "amino": [2, 8], "among": 3, "amount": [2, 6, 8], "an": [0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14], "analog": [8, 12], "analysi": [0, 2, 3, 8, 9, 11, 12, 13, 14, 15], "analyz": [0, 2, 3, 6, 8, 9, 12], "angle_alpha": 10, "angle_beta": 10, "angle_gamma": 10, "angstrom": [6, 14], "ani": [1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "anim": 0, "anis": 9, "annot": [0, 12, 13, 14], "anoth": [1, 5, 6, 8, 11, 12, 14], "answer": 16, "antibodi": 5, "antigen": 5, "anyth": [5, 6, 11], "anywher": 2, "ap_kin": [2, 8, 12], "ap_kin_df": 12, "ap_kinet": [2, 8], "apb": 9, "api": 1, "app": 5, "appear": [0, 4, 5, 8, 9, 12, 13, 15], "append": [2, 3, 4, 6, 11, 12, 14], "appli": [1, 3, 4, 9, 12, 15], "applic": 14, "approach": [0, 4, 5, 6], "appropri": 15, "apr": 1, "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "architectur": 10, "area": 9, "arg": 2, "argument": [0, 2, 8, 9, 12, 13, 14], "aromat": 4, "around": [0, 3, 13], "arrai": 13, "arrang": 8, "asc": 14, "ascend": [8, 14], "ask": [0, 14], "asn": 2, "asp": 2, "assai": [0, 3, 12], "assembli": [1, 14], "assembly_count": 14, "assembly_id": 14, "assign": [1, 2, 3, 5, 6, 8, 13, 16], "assignbondordersfromtempl": 9, "assist": 10, "associ": [1, 13, 14], "atom": [1, 2, 4, 6, 9, 10, 14], "atom_list": 10, "atomgroup": 9, "atp": 7, "atp3d": 4, "attach": [4, 8], "attempt": [4, 9, 13], "attent": [8, 11], "attr": [1, 9], "attract": 13, "attribut": [1, 9, 10, 14], "audit_author": 14, "autodock": 1, "autom": [2, 9], "automat": [6, 11], "avaiabl": 1, "avail": [0, 3, 5, 9, 12], "ax": [0, 12], "axi": [0, 13], "aziz": 0, "b": [4, 8, 9, 12, 13], "b01": 8, "b03": 8, "b04": 8, "back": [8, 9, 11], "background": 5, "backslash": 0, "ball": 5, "bank": [1, 6, 8, 9], "bar": 15, "base": [0, 1, 3, 4, 8, 9, 12, 13, 14], "basenam": 6, "baseurl": 1, "basic": 11, "bbox_inch": 0, "bc667b42": 14, "bca": 3, "becaus": [0, 3, 6, 9, 10, 11, 13, 14], "becom": [11, 14], "been": [2, 11], "befor": [0, 2, 4, 6, 8, 9, 10, 12], "begin": [2, 3, 9, 10], "being": [2, 3, 9, 11, 14, 16], "belong": 10, "below": [0, 1, 2, 4, 9, 11, 14, 15], "beneath": 6, "benzen": [4, 9], "best": [0, 2, 3, 4, 13], "better": [9, 10, 11], "between": [1, 3, 6, 8, 14], "beyond": 14, "bicarb": 3, "bicarbon": 3, "bind": [1, 10, 14], "binding_site_investig": [2, 8], "bio": [10, 14], "biochemist": [2, 7, 8, 10, 11, 15], "biochemistri": [2, 3, 5, 7, 15, 16], "bioinformatician": 10, "biolog": 1, "biologi": [2, 15, 16], "biologist": 10, "biomolecul": 9, "biomolecular": 9, "biopython_mmcif": [2, 8], "biotechnologi": 5, "bit": [0, 1, 5, 8, 9, 13, 15], "blank": 11, "block": [2, 11, 13], "blood": 1, "blue": 13, "bn": 5, "bo": 13, "bodi": [5, 13], "bold": 4, "bond": [1, 4, 9], "book": 2, "bore": 2, "both": [2, 8, 10, 11, 13], "bound": [0, 1, 2, 5, 9, 10], "bovin": 8, "box": [0, 5, 15], "brace": [0, 6, 13], "bracket": [3, 11, 13], "bradford": 3, "bradford_plot": [0, 2, 8], "bradford_plot2": [0, 2, 8], "bradford_plot3": [2, 8], "bradi": 13, "branched_entity_count": 14, "break": [1, 6, 13, 16], "brenda": [1, 6], "bridg": 9, "bring": 5, "broader": 1, "brows": 10, "browser": [1, 14, 15], "bu": 5, "bud": 10, "buffer": [1, 12], "bufferediobas": 8, "build": [3, 6, 8, 12], "built": [8, 11, 12], "burk": 3, "button": 15, "butyl": 4, "c": [1, 4, 8, 9, 10, 12], "c1": [1, 4], "c10": 1, "c11": 1, "c12": 1, "c13": 1, "c14": 1, "c14a13u": 9, "c14b13u": 9, "c15": 1, "c16": 1, "c17": 1, "c18": 1, "c19": 1, "c1c": 4, "c1ccc": 4, "c1cccc": 4, "c1ccccc1": 4, "c1m": 8, "c2": 1, "c20": 1, "c21": 1, "c23666e5e7ba": 14, "c23h35n5o2": 4, "c24": 4, "c2a": 8, "c2c": 4, "c3": [1, 4], "c3m": 8, "c4": 1, "c5": 1, "c6": 1, "c7": 1, "c8": 1, "c8h10n4o2": 4, "c9": 1, "c_rates_df": 13, "c_xdata": 13, "c_ydata": 13, "ca": 9, "cache_d": 8, "caffein": 4, "calcul": [0, 3, 8, 9, 11, 13], "calibr": 0, "call": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "callabl": 13, "came": 6, "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "capit": [2, 6, 12], "captur": [5, 7], "carbamimidoylbenzyl": [1, 4, 8], "carbohydr": 1, "carbon": 4, "care": [5, 11], "carefulli": [8, 11], "carri": 10, "case": [2, 3, 5, 6, 8, 9, 12, 13], "cast": [2, 11], "catalyst": 1, "catalyz": [1, 13], "categori": 10, "catodon": 10, "caus": [5, 13], "caveat": 2, "cb": 9, "cc": 4, "cc1": 4, "ccc": 4, "ccc1": 4, "cd": 9, "ce": 9, "cell": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14], "center": [5, 9], "central": 9, "certain": [5, 10, 13], "certainli": 0, "cfile": 1, "cfileloc": 1, "cfileurl": 1, "cg": 9, "ch3": 4, "chain": [9, 10], "chang": [0, 2, 3, 4, 5, 6, 11, 12, 13, 14], "channel": 15, "chapter": [2, 3, 7], "charact": [1, 4, 6, 10, 11], "character": 10, "characterist": 1, "charli": [3, 8, 12], "chart": 0, "chd": 1, "check": [1, 3, 9, 14, 15], "checkbox": 15, "chem": [1, 4, 9], "chem_comp": 1, "chemic": [1, 4, 5, 10], "chemid": 1, "cheminformat": [1, 4], "chemist": [3, 8, 12], "chemistri": [1, 4], "chlorophenyl": 8, "chloropyridin": 8, "choic": 4, "cholesterol": 1, "choos": [1, 5, 9, 11, 13, 15], "chunksiz": 8, "chymo_mm_data": [2, 8, 12, 13], "chymo_mm_df": 12, "chymo_rates_df": 12, "chymotrypsin": [12, 13], "chymotrypsin_kinet": [2, 8, 12], "cid": 7, "cif": [2, 10, 14], "circl": [10, 13, 15], "cis_peptide_count": 14, "citat": [1, 14], "cite": 9, "class": [6, 14], "classif": 1, "classifi": 1, "clear": 10, "clear_represent": 9, "clearli": [11, 13], "click": [1, 5, 11, 14, 15], "clinic": 2, "close": [2, 6, 11], "clot": 1, "cm": 12, "cmo": 14, "cn": 4, "cn1c": 4, "cnc": 4, "cnc3ccccccc3": 4, "cnd": 1, "coa": 1, "coc": 4, "cod": 1, "code": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "coder": 3, "coeffici": 12, "colleagu": 6, "collect": [0, 3, 4, 8, 10, 12, 14], "colon": [2, 5, 13], "color": [5, 9], "colorschem": 9, "column": [0, 4, 8, 12], "com": 4, "combin": [1, 10, 14], "combination_count": 14, "combination_str": 14, "come": [6, 15], "comma": [2, 8, 11], "command": [0, 1, 2, 3, 4, 6, 8, 9, 12], "comment": [8, 11], "commerci": 13, "commis": 1, "commiss": 6, "common": [2, 3, 4, 10, 11, 14], "common_name_1mbn": 10, "commonli": [2, 10, 14], "commun": [4, 14], "compar": [11, 13], "complet": [2, 3, 4, 5, 6, 8, 9, 12, 13, 15], "complex": [0, 2, 3, 9], "complic": 14, "compnd": [2, 6], "compon": [1, 2], "compos": 10, "composit": 10, "compound": 7, "compress": 8, "comput": [2, 3, 4, 6, 8, 10, 11, 12, 13, 15], "compute2dcoord": 4, "conc_list": 11, "concentr": [0, 8, 11, 12, 13], "concentration_nm": 11, "concern": 4, "conda": 15, "condit": [3, 10, 11, 12], "conditon": 10, "confid": 0, "confirm": 12, "conform": 4, "confus": 6, "consequ": 11, "consid": [4, 5, 10], "consist": [1, 10, 14], "constant": 13, "constraint": 4, "consum": [5, 6], "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "contains_phras": 14, "content": [1, 2, 4, 6, 8, 13], "context": [2, 6], "continu": 3, "control": [1, 4, 5, 6, 9, 13, 14], "conveni": [8, 9], "convent": [3, 4], "converg": 4, "convers": [1, 4, 9], "convert": [1, 6, 8, 9, 10, 11, 14], "cookbook": 4, "cool": 5, "coordin": [4, 8, 9, 10, 12], "cop": 4, "copi": [5, 11], "core": 14, "corei": [8, 12], "corner": [0, 11, 15], "correct": [1, 3, 4, 13], "correctli": [2, 11], "correl": 2, "correspond": [9, 10, 15], "could": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14], "count": [2, 6, 8, 11, 13, 14], "counter": 14, "cours": 3, "covari": 13, "cover": [3, 11, 15, 16], "cpl": 5, "creat": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16], "creating_plots_in_jupyter_notebook": [2, 8], "creation": 11, "critic": 7, "crucial": 10, "crystal": [2, 9, 10, 14], "crystallograph": 10, "crystallographi": 9, "csv": [0, 2, 8, 12, 13], "curli": [11, 13], "current": [0, 1, 2, 6, 8, 11, 14], "curv": [0, 11, 12, 13], "cut": [6, 10], "cutoff": 14, "cutoff_dist": [10, 14], "cy": 2, "cycl": 12, "cyclooctylglycyl": [1, 4], "cylind": 5, "d": [2, 8, 12, 14], "dai": 16, "data": [0, 1, 2, 4, 6, 9, 10, 15], "databas": [1, 10, 14], "datafil": [6, 8, 12, 13], "datafram": [0, 13], "dataset": [0, 3], "datatyp": [0, 3], "date": 14, "date_pars": 8, "dayfirst": 8, "dch": 8, "dd0b32e8a43d": 14, "deal": 10, "debump": 9, "decim": [0, 8, 13], "declar": [5, 11, 13], "deeper": [1, 3, 4, 13], "def": [5, 9, 13], "default": [0, 1, 2, 5, 9, 13, 15], "defin": [1, 2, 3, 4, 5, 9, 10, 11, 13, 14], "definit": [5, 9], "degre": 9, "dehydrogenas": 1, "delai": 0, "delet": 12, "delim_whitespac": 8, "delimit": [2, 8], "demonstr": [11, 13, 14], "deoxyhaemoglobin": 14, "depend": [0, 2, 3, 13], "deposited_atom_count": 14, "deposited_deuterated_water_count": 14, "deposited_hydrogen_atom_count": 14, "deposited_model_count": 14, "deposited_modeled_polymer_monomer_count": 14, "deposited_nonpolymer_entity_instance_count": 14, "deposited_polymer_entity_instance_count": 14, "deposited_polymer_monomer_count": 14, "deposited_solvent_atom_count": 14, "deposited_unmodeled_polymer_monomer_count": 14, "der": 9, "desc": 14, "describ": [0, 2, 3, 9, 10, 13, 15], "descript": [1, 10, 11], "descriptor": 13, "design": [2, 8, 9, 10, 12, 16], "desir": [2, 3, 4, 5, 6], "desktop": [1, 2, 15], "detail": [0, 1, 10, 13], "determin": [1, 2, 3, 10, 11], "deviat": 13, "diag": 13, "dialect": 8, "dialog": 5, "diaminomethyl": 8, "dict": 8, "dict_kei": 14, "dictionari": [1, 10, 13, 14], "dictionary_nam": 14, "did": [2, 4, 6, 9, 12], "didn": [0, 6, 11], "differ": [0, 2, 4, 5, 6, 8, 10, 11, 13, 14], "difficult": [9, 15], "diffract": [2, 8, 14], "diffrn": 14, "diffrn_resolution_high": 14, "dig": [4, 13], "digest": 1, "dimension": [8, 10, 12, 13], "dimer": 2, "dion": 4, "direct": [13, 14], "directli": [2, 10, 15], "directori": [1, 2, 6, 8, 9, 12, 14], "discoveri": 4, "discuss": 13, "disjoint": 13, "displai": [0, 2, 3, 4, 12, 14], "distal": 10, "distanc": [10, 14], "distinguish": 13, "disulfid": 9, "disulfide_bond_count": 14, "divid": [2, 11, 12], "dna": [5, 9, 10], "do": [0, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16], "doc": 9, "dock": [1, 9], "document": [9, 13, 14], "doe": [4, 5, 6, 8, 11, 13, 14, 15, 16], "doesn": [6, 11], "dolinski": 9, "dollar": 0, "don": [2, 10, 11, 15], "done": [1, 4, 6, 10, 14], "dot": [0, 2, 3, 6, 8], "doubl": [3, 4, 15], "doublequot": 8, "down": 15, "download": [4, 6, 15], "dozen": 1, "dpi": 0, "draw": [1, 4], "drawback": 10, "drop": 15, "dropdown": [5, 15], "drug": 2, "dtype": [3, 8, 12, 13], "dump": 14, "dure": [4, 10, 15], "dynam": 9, "e": [1, 4, 6, 8, 9, 13], "each": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "eadi": 3, "earli": 5, "earlier": [3, 6, 11, 12, 13], "easi": [0, 2], "easili": [0, 4, 6, 8, 12, 13], "ec": [1, 6], "ec_class": 6, "ec_class_ligands_search": [2, 4, 8], "ec_lin": 6, "ecnumb": 1, "editor": [2, 6, 8], "educ": 4, "effect": 4, "effici": 10, "either": 6, "electrochemistri": 4, "element": [2, 4, 8, 10, 11, 12, 14], "els": 2, "embedmolecul": 4, "emphas": 0, "emploi": [1, 6], "empti": [2, 4, 6, 12, 14], "enabl": [1, 3, 4, 5, 10, 13], "enclos": [0, 6, 8], "encod": 8, "encount": [3, 8, 13], "end": [0, 2, 3, 4, 6, 8, 11, 12, 14], "endopeptidas": 1, "endpoint": 14, "energi": [1, 4], "engin": [3, 8, 13], "english": 0, "enorm": 2, "enough": 1, "ensur": 12, "enter": [1, 2, 5, 8, 11, 15], "entir": 1, "entiti": [1, 10, 14], "entity_count": 14, "entri": [1, 2, 4, 5, 10, 14], "entry_id": 10, "enumer": 2, "env": 9, "environ": 15, "enzym": [3, 5, 6, 8, 12, 13], "enzyme_kinet": [2, 8], "equal": [2, 11, 13], "equat": [0, 11], "error": [0, 2, 3, 9, 12], "error_bad_lin": 8, "escapechar": 8, "especi": [5, 15], "et": 9, "etc": [8, 9, 12], "ethoxi": 8, "evalu": 11, "evan": 13, "even": [2, 5, 9, 11, 14], "ever": [10, 15], "everi": [3, 6, 11], "everyth": [1, 3, 11], "exact": [2, 3, 5, 11], "exactli": [1, 2, 11], "examin": 6, "exampl": [0, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15], "excel": [3, 8, 12], "excerpt": [9, 10], "excit": 13, "execut": [0, 1, 2, 4, 5, 6, 11, 13], "exercis": [2, 6], "exist": [4, 6, 8, 11, 12, 16], "exist_ok": [1, 9], "exit": 11, "exp_type_lin": 2, "expand": [3, 9], "expect": [10, 12, 13, 14], "experi": [2, 12], "experiment": [2, 3, 9, 10, 12, 13, 14], "experimental_method": 14, "experimental_method_count": 14, "explain": [1, 4, 11], "explicit": 4, "explor": [0, 2, 3, 4, 5, 6, 7, 8, 12, 14], "export": [0, 12], "express": 10, "exptl": [1, 14], "exptl_cryst": 14, "extens": [4, 5], "extinct": 12, "extra": 0, "extract": [2, 5, 6, 9, 14], "f": [0, 1, 6, 9, 12, 14], "f987c8a2": 14, "facet": 14, "fact": [5, 13], "factor": [5, 10], "fail": 5, "fals": 8, "false_valu": 8, "famili": 1, "familiar": [5, 6, 8, 12, 13, 14], "far": [7, 12], "farili": 14, "fashion": 4, "favorit": 5, "fe": [10, 14], "featur": [1, 4, 5, 14], "feedback": 16, "few": [0, 2, 5, 8, 9, 10, 11, 14, 15, 16], "field": 9, "fifth": 2, "figsiz": 0, "figur": [0, 11], "file": [0, 3, 4, 5, 8, 9, 12, 13, 15, 16], "file1": 1, "file_format": 14, "file_loc": 6, "file_nam": 6, "file_pars": [2, 8], "file_text": 1, "filehandl": [2, 6, 12, 13], "filenam": [0, 1, 6], "filepath": [2, 6], "filepath_or_buff": 8, "fill": [1, 9], "filter": 10, "final": [0, 3, 4, 12], "find": [0, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "finder": 15, "finger": 14, "fingerprint": 9, "finish": [6, 11], "first": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "first_fil": 6, "first_result": 14, "fit": [0, 3, 6, 12], "fit_i": 13, "five": [2, 3, 8, 12], "fix": 12, "flexibl": 2, "float": [0, 2, 3, 6, 11, 12, 13], "float64": [3, 8, 12, 13], "float_precis": 8, "focu": [1, 4], "folder": [0, 1, 2, 3, 4, 6, 8, 12, 14, 15], "follow": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15], "forc": 9, "forcefield": 9, "forg": 15, "forget": 2, "forgot": 6, "form": [5, 8, 11, 16], "formalcharg": 9, "format": [0, 1, 2, 3, 4, 5, 8, 10, 12, 14], "formula_weight": [1, 10], "forwardref": 8, "found": [0, 1, 2, 3, 8, 9, 10, 12, 14], "four": [1, 4, 8], "fourth": 4, "fp": 9, "fqevstjzsa": 4, "frac": [3, 13], "frame": 12, "free": [4, 8, 12], "frequent": 5, "from": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15], "from_mda": 9, "front": [6, 9], "full": [1, 2, 10, 14], "full_text": 14, "fulli": 0, "fun": 8, "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 14], "function_nam": [5, 6, 13], "funtion": [6, 8], "fusca": 14, "futur": [2, 3, 4, 8, 11], "g": [0, 1, 4, 8, 9, 13], "gain": [3, 6], "gave": 4, "geeksforgeek": 13, "gel": 13, "genbank": 10, "gene": 10, "gene_src_common_nam": 10, "gener": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15], "get": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16], "get_atom": [10, 14], "get_coord": [10, 14], "get_id": 10, "get_par": [10, 14], "get_resnam": [10, 14], "get_structur": [10, 14], "getcwd": [2, 7, 8], "github": [1, 3, 4, 8, 12], "give": [2, 3, 4, 6, 8, 11, 14], "given": [1, 2, 15], "gln": [2, 9], "glob": 6, "glu": 2, "gly": 2, "go": [0, 3, 4, 5, 6, 10, 11, 13, 14, 15], "goal": [4, 6, 8], "goe": [1, 11], "good": [2, 3, 6, 11], "googl": 8, "got": 12, "grad": 3, "grai": 5, "graph": [0, 13], "graphic": 2, "great": [2, 5, 15], "greater": [1, 11], "greek": 0, "green": 15, "grei": 5, "grip": 10, "ground": 3, "ground_wat": [2, 3, 8], "group": [0, 1, 4, 5, 9, 10, 11, 14, 16], "guanidino": 4, "guess": 9, "guru99": 3, "h": [1, 4, 8, 12], "h1": 1, "h10": [1, 4], "h11": 1, "h12": 1, "h13": 1, "h14": 1, "h15": 1, "h16": 1, "h17": 1, "h18": 1, "h19": 1, "h2": 1, "h20": 1, "h21": 1, "h22": 1, "h23": 1, "h24": 1, "h25": 1, "h26": 1, "h27": 1, "h28": 1, "h29": 1, "h3": [1, 4], "h30": 1, "h31": 1, "h4": 1, "h4h": 4, "h5": 1, "h6": 1, "h7": 1, "h8": 1, "h9": 1, "h_hem": 10, "h_oh": 10, "ha": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "had": [4, 6], "half": 13, "hand": [0, 1, 15], "handheld": 3, "handi": 2, "handl": [1, 2, 6, 11], "happen": [4, 11, 13], "hard": [3, 14], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "he": [8, 12], "head": [3, 8, 12, 13], "header": [0, 2, 3, 8, 9, 11], "heavi": 1, "help": [0, 1, 2, 3, 6, 8, 13, 16], "helper": 9, "hem": [10, 14], "heme": [5, 10, 14], "hemoglobin": 14, "henri": 5, "here": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "hetatm": 9, "hetero": 14, "heterogen": 2, "heteromer": 14, "hetnam": 2, "hetnam_lin": 2, "hetnam_list": 2, "hi": [2, 3, 5, 8, 10, 12, 14], "hierarch": [1, 6, 10], "hierarchi": 1, "high": [0, 2, 9, 13], "highest": 3, "highli": 4, "highlight": 4, "hint": 10, "histidin": 10, "hit": 13, "hiv": [2, 10], "hmg": 1, "hofste": 3, "hoh": 14, "hold": [2, 4, 12], "home": [1, 2, 7, 9, 16], "host": [10, 14], "houghton": 3, "hour": 16, "how": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "howev": [2, 3, 4, 8, 10, 14, 15], "http": [1, 4, 9, 14], "human": [8, 9, 14], "hundr": 13, "hydrogen": [4, 9], "hydrolas": [1, 2], "hydrophob": 9, "hydroxi": 8, "hydroxid": 10, "i": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "i48": 8, "icon": 15, "id": [1, 6, 8, 10, 14], "idea": 9, "ideal": [9, 13], "ident": 0, "identifi": [1, 4, 5, 7, 8, 10, 11, 12, 14], "ignor": [9, 12], "il": 2, "illustr": 5, "iloc": 8, "imag": [0, 1, 2, 8, 10, 15], "imagin": [4, 5], "immut": 11, "implement": [3, 5], "import": [0, 1, 2, 4, 5, 7, 9, 10, 11, 13, 14], "improv": 9, "inactiv": 3, "inch": 0, "inchi": 4, "inchikei": 4, "includ": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 16], "inclus": 0, "incorpor": 5, "incorrect": 11, "increas": [0, 10, 12], "indent": [5, 6, 11, 13], "independ": [3, 5, 6, 13], "independent_vari": [5, 13], "index": [3, 8, 10, 11, 12], "index_col": 8, "indic": [0, 4], "individu": [1, 2, 10, 12, 15], "infer": 8, "infer_datetime_format": 8, "info": [9, 14], "info_4hhb": 14, "inform": [1, 2, 5, 6, 7, 9, 10, 11, 12, 13], "inhibitor": 2, "initi": [1, 6, 8, 11, 13, 14], "initial_release_d": 14, "inlin": 0, "inner": 6, "inplac": [8, 12], "input": [4, 6, 8, 9, 10, 13], "insert": [0, 1, 6, 13], "insid": [2, 6, 9, 11], "inspect": [4, 9, 13], "instal": [5, 11], "instanc": [9, 14], "instead": [1, 2, 5, 10, 11, 14], "instruct": [6, 15, 16], "int": [2, 9, 11], "integ": [8, 11, 12], "integr": [3, 5], "intend": 1, "intent": [1, 16], "inter_mol_covalent_bond_count": 14, "inter_mol_metalic_bond_count": 14, "interact": [0, 5, 9, 10, 11], "intercept": [0, 3, 12], "interest": [1, 2, 4, 5, 7, 9, 10, 14], "interfac": [1, 9, 14], "interface_area": 14, "interface_charact": 14, "interface_id": 14, "interface_info": 14, "intern": 1, "internet": [14, 15], "interpret": [4, 11], "interv": 0, "intestin": 1, "introduc": [0, 2, 3, 6, 8, 11, 16], "introduct": [2, 8, 16], "invalid": 9, "involv": [1, 9], "io": 8, "ion": [1, 10], "ipynb": [2, 8], "ipynb_checkpoint": [2, 8], "iqb": 9, "iron": [10, 14], "iron_atom": 10, "iron_coord": 10, "iron_residu": [10, 14], "isol": [2, 9], "isomer": 4, "isomeras": 1, "isopropyl": 4, "issu": 3, "item": [1, 8, 10, 11, 12, 14], "iter": [2, 4, 8, 11, 14], "its": [1, 2, 7, 11, 14, 15], "iupac": [1, 4], "ix": 10, "jakubowski": 5, "janash": 9, "javascript": 5, "join": [0, 2, 3, 6, 8, 12, 13, 14], "journal": 1, "journei": 4, "json": 14, "jupyt": [1, 2, 3, 4, 5, 8, 9, 13, 16], "jupyterlab": [5, 15], "jupyterlab_3dmol": 5, "jurru": 9, "just": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14], "k": [1, 13], "k_m": 13, "keep": [2, 3, 6, 14, 15, 16], "keep_date_col": 8, "keep_default_na": 8, "kei": [10, 14], "kelvin": 2, "key_nam": 14, "keyboard": 15, "keystrok": 2, "keyword": [2, 5, 9, 10, 13, 14], "khelifi": 0, "kindli": 3, "kinet": [3, 8, 12, 13], "kinetics_df": 8, "kinetics_fil": 8, "km": [8, 11, 13], "know": [1, 2, 8, 9, 11], "knowledg": 10, "known": 10, "l": [1, 3, 4, 8], "lab": 3, "label": [0, 1, 8, 13, 15], "labextens": 5, "laboratori": [8, 12], "lack": 1, "languag": [4, 11, 15], "larg": [1, 9, 10], "larger": [0, 1, 3, 10], "last": [0, 1, 2, 4, 6, 8, 9, 11, 13], "later": [1, 6, 10, 11], "latex": [0, 13], "launch": 15, "layout": 12, "learn": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "least": [1, 9, 12, 13], "leav": 11, "left": [2, 11, 12, 15], "legend": 13, "len": [1, 2, 10, 11], "length": [9, 11], "length_a": 10, "length_b": 10, "length_c": 10, "less": [1, 11], "lesson": [0, 2, 3, 6, 8, 11, 12, 14], "let": [0, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14], "letter": [0, 1, 2, 5], "leu": 2, "leucyl": 8, "level": [0, 1, 3], "li": [8, 12], "lib": 9, "libari": 1, "librari": [0, 2, 4, 9, 10, 12, 13, 14], "library_nam": 6, "libretext": 5, "lig_converg": 4, "lig_list": 9, "lig_view": 9, "ligand": [2, 5, 8], "ligand13u": [2, 4, 8], "ligand13u_h": 4, "ligand13uipr": [2, 4, 8], "ligand13um": [2, 4, 8], "ligand13un": [2, 4, 8], "ligand_13u": [4, 8], "ligand_a": 9, "ligand_b": 9, "ligand_c_ipr": 4, "ligand_c_methyl": 4, "ligand_c_tbu": 4, "ligand_cn": 4, "ligand_h": 9, "ligand_mol": 9, "ligands_for_ec_class_": 1, "ligands_h": 4, "ligas": 1, "like": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "limit": [1, 4], "linalg": 3, "line": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "line2d": [0, 13], "linear": [0, 8, 11, 12, 13, 16], "linear_mm": 11, "linear_regress": [2, 8], "linenum": 2, "linetermin": 8, "lineweav": 3, "link": [0, 5, 14], "linregress": [0, 3, 12, 13], "linspac": 13, "linux": 2, "lipid": 1, "list": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 15], "list_nam": [2, 11], "listdir": [2, 8], "liter": [0, 9], "littl": [6, 8, 9], "live": 16, "ll": [1, 2, 3, 5, 8, 9, 10, 12, 13], "load": [9, 10, 14, 15], "loc": [3, 8], "locat": [1, 2, 6, 9, 14], "log": [3, 13], "long": [6, 8], "longer": 0, "look": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "loop": [2, 4, 10, 12, 14], "lot": [1, 2, 10], "low": 2, "low_memori": 8, "lower": [0, 1, 5, 11, 14], "lowercas": 14, "lowest": 3, "lowri": 3, "ly": [2, 9], "lyas": 1, "m": [4, 12, 13], "m0": 4, "m2": 4, "mac": [2, 8, 15], "macromolecul": 2, "macromolecular": [2, 7], "made": [2, 9, 14], "mai": [0, 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15], "mail": 6, "major": 1, "make": [0, 3, 4, 5, 6, 10, 12, 13, 14, 15], "makedir": [1, 9], "man": 10, "manag": [0, 2, 3, 6, 8, 12], "mangle_dupe_col": 8, "mani": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14], "manipul": [2, 3, 4, 8, 9, 14], "manual": 13, "manuscript": 0, "markdown": [0, 1, 11], "marker": 12, "match": [2, 6, 9], "materi": [6, 16], "math": [2, 3, 9], "mathemat": 3, "matlab": 0, "matplotlib": [12, 13], "matrix": 13, "matter": 0, "max": [3, 13], "maxim": 13, "maximum": [3, 10, 13, 14], "mda": 9, "mdanalysi": 9, "mean": [0, 1, 4, 6, 9, 10, 11, 13, 14], "meanin": 4, "meaning": 4, "member": 1, "memori": [6, 10], "memory_map": 8, "menten": [11, 12], "mention": [8, 14], "menu": [5, 15], "menuicon": 5, "messag": [2, 13], "messi": 9, "met": 8, "methanamin": 8, "method": [1, 2, 3, 6, 8, 9, 10, 14], "methyl": [4, 8], "methylpyridinium": 8, "mg": [0, 3, 8], "micha": [11, 12], "micromolar": [8, 11, 12], "micropl": 0, "middl": 11, "mifflin": 3, "might": [1, 2, 3, 5, 6, 8, 9, 10, 11, 12], "migrat": 13, "million": 13, "min": [3, 12, 13], "mind": 3, "miniconda3": 9, "minimum": [3, 13], "miss": 9, "mistak": 13, "ml": [0, 3, 8], "mm": [12, 13], "mm_data": [2, 8, 12, 13], "mm_data1": [2, 8], "mm_data_for_nlrpt2": [2, 8], "mm_df": 12, "mmap": 8, "mmcif": [1, 14], "mmcif2dict": 10, "mmcifpars": [10, 14], "mmdb": 5, "mmdbafid": 5, "mmdbid": [5, 7], "mmffoptimizemoleculeconf": 4, "mmloidmsbrjza": 4, "model": [3, 10, 13], "modif": [4, 5], "modifi": [0, 1, 2, 5, 6, 7, 10], "modifying_ligands_with_rdkit": [2, 8], "modul": [6, 8, 9, 12, 13, 16], "modular": 13, "mol": [4, 9], "mol2": [1, 4, 9], "mol_definit": 1, "mol_h": 4, "mol_id": 2, "molecul": [1, 2, 6, 9, 10, 14], "molecular": [1, 2, 4, 9, 10, 13, 15, 16], "molecular_weight": 14, "molecule_nam": 6, "molfrommol2fil": 9, "molfrompdbfil": 9, "molfromsmart": 4, "molfromsmil": 4, "molresultl": 1, "molsperrow": 4, "molssi": [4, 8, 11, 12], "molstogridimag": 4, "moltomolblock": 4, "moltomolfil": 9, "moltosmil": 4, "molvis_with_icn3d": [2, 8], "monom": 2, "month": 3, "more": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "most": [1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15], "most_common": 14, "most_common_combin": 14, "motif": [10, 14], "mousechang": 5, "move": [0, 6, 8, 15], "mu": [0, 3, 12, 13], "much": [2, 3, 4, 6, 8, 11, 13], "multi": 3, "multidrug": 2, "multipl": [5, 9, 14, 16], "muscl": 10, "must": [0, 1, 2, 8, 11, 12, 15], "my": [0, 8, 13], "my_queri": 14, "myoglobin": 10, "myview1": 5, "n": [1, 2, 4, 6, 8, 9, 10, 12, 13], "n1": [1, 4], "n2": [1, 4], "n2c": 4, "n2ccc": 4, "n3": 1, "n4": 1, "n5": 1, "na": 1, "na_filt": 8, "na_polymer_entity_typ": 14, "na_valu": 8, "nad": 1, "nai": 1, "naj": 1, "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nameerror": [4, 11], "nan": 3, "nanomol": 11, "nap": 8, "naphthalen": 8, "nation": 5, "navig": 15, "nc": 4, "nc2": 4, "ncc": 4, "ncc3": 4, "nd": [8, 12], "ne2": 9, "nearest": 4, "neat": 3, "neater": 6, "need": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "neg": 4, "neighbor": 14, "neighbor_list": 14, "neighbor_search": [10, 14], "neighborsearch": [10, 14], "network": 2, "new": [2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15], "new_list": 11, "new_molecul": 4, "new_th": 11, "newlin": 6, "next": [0, 1, 2, 3, 6, 9, 11, 12, 14, 15, 16], "nglview": 9, "nhheaelkplaqshatkhkipikylefiseaiihvlhsrhpgdfgadaqgamnkalelfrkdiaakykelgyqg": 10, "nitrogen": 4, "nitrophenol": 12, "nm": 11, "nmber": 11, "nmr": 10, "no_charg": 1, "non": [1, 3, 4, 9, 10, 12, 13, 16], "none": 8, "nonetyp": 8, "nonlinear": [5, 8], "nonlinear_regression_part_1": [2, 8, 13], "nonlinear_regression_part_2": [2, 8], "nonpolymer_bound_compon": 14, "nonpolymer_entity_count": 14, "nonpolymer_molecular_weight_maximum": 14, "nonpolymer_molecular_weight_minimum": 14, "normal": 0, "notat": [2, 3, 6, 8], "note": [0, 1, 3, 4, 5, 8, 10, 12, 13, 14], "notebook": [1, 2, 3, 5, 8, 9, 10, 12, 13, 16], "noth": [11, 15], "notic": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14], "novel": 14, "now": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nozawukj3ym": 4, "np": [0, 3, 8, 12, 13], "nrow": 8, "ntop": 14, "nucleic": [9, 14], "nucleocapsid": 10, "num_core_interface_residu": 14, "num_interface_residu": 14, "number": [0, 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15], "number_list": 11, "numer": [3, 8, 12], "numpi": [0, 3, 8, 12, 13], "nv": 9, "nz": 9, "o": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15], "o1": [1, 4], "o2": 1, "o3": 4, "o32a13u": 9, "o_2": 10, "object": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "obtain": [0, 4, 10], "obteain": 3, "obviou": 0, "oc": 4, "occup": 9, "occur": 14, "occurr": 14, "oe1": 9, "off": 10, "offer": [5, 16], "often": [2, 3, 6, 8, 9, 11, 14], "og": 9, "oh": 10, "okai": 1, "oldest": 14, "omit": [0, 12], "onc": [0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 15], "one": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "ones": 1, "onli": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "onlin": [3, 8, 10, 12, 13], "op": 4, "open": [1, 2, 4, 5, 6, 8, 9, 11, 15], "openbabel": 9, "oper": [0, 1, 2, 3, 6, 8, 14, 15], "operand": 2, "opt": 4, "opt_13u_h": 4, "optim": [1, 3, 4, 9, 13], "option": [0, 1, 2, 4, 6, 8, 12, 15, 16], "order": [2, 6, 8, 9, 10, 14], "org": [1, 9, 14], "organ": [1, 2, 4, 10, 13], "origin": [2, 4, 10, 13], "original_molecul": 4, "other": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14], "our": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "out": [1, 2, 3, 4, 6, 8, 10, 11, 13], "outer": 6, "outfil": [2, 6], "output": [1, 2, 3, 4, 6, 8, 9, 10, 12], "outputfil": 12, "outsid": [2, 11], "over": [5, 6, 8, 10, 11, 14], "overal": 6, "overflow": 13, "overview": 16, "overwrit": [6, 9, 11], "oxi": 14, "oxidas": 2, "oxidoreductas": 1, "oxygen": [10, 14], "p": [0, 3, 4, 8, 12], "p05": 8, "p_valu": [0, 3], "packag": [1, 9, 13, 15], "pad": 1, "page": [1, 2, 4, 7, 9, 10, 11, 13, 15], "pagin": 14, "pai": [8, 11], "pair": [0, 14], "pancrea": 1, "panda": [0, 13, 16], "panic": 15, "paper": 14, "paramat": 13, "paramet": [3, 5, 9, 10, 13, 14], "parameter1": [5, 13], "parameter2": [5, 13], "parent": 14, "parenthes": [2, 5, 8, 11, 13], "parenthesi": [2, 5, 13], "pars": [6, 8, 9, 10, 14, 16], "parse_d": 8, "parser": [8, 10, 14], "part": [0, 1, 3, 4, 5, 9, 10, 16], "part1": 4, "particular": [6, 8, 10, 11, 13, 14], "pass": [5, 8, 12, 13], "past": [1, 5, 6, 13], "path": [0, 1, 3, 6, 8, 12, 13], "pathcollect": 0, "pathlib": 2, "pathlik": 8, "patt": 4, "pattern": [4, 6, 9], "pcov": 13, "pd": [0, 3, 8, 12, 13], "pdb": [1, 2, 4, 6, 8, 9, 10], "pdb2pqr": 9, "pdb_file": [2, 6, 8, 10, 14], "pdb_filenam": 14, "pdb_id": [5, 9, 14], "pdb_info": 10, "pdb_ligand": 9, "pdb_list": 14, "pdb_request": 9, "pdbid": [5, 7], "pdblist": 14, "pdbqt": 1, "pdbx": 10, "pdbx_audit_revision_categori": 14, "pdbx_audit_revision_detail": 14, "pdbx_audit_revision_group": 14, "pdbx_audit_revision_histori": 14, "pdbx_audit_revision_item": 14, "pdbx_database_pdbobs_spr": 14, "pdbx_database_rel": 14, "pdbx_database_statu": 14, "pdbx_descript": 10, "pdbx_ec": 10, "pdbx_fragment": 10, "pdbx_gene_src_scientific_nam": 10, "pdbx_keyword": 14, "pdbx_mutat": 10, "pdbx_number_of_molecul": 10, "pdbx_reference_molecul": 1, "pdbx_seq_one_letter_cod": 10, "pdbx_unique_axi": 10, "pdir": 14, "pdq2pqr": 9, "peopl": [2, 3, 7, 11], "peptid": 1, "per": 0, "perform": [2, 3, 4, 8, 10, 11, 12, 13, 14], "perhap": [2, 3], "period": 10, "perman": 12, "perr": 13, "pertain": 2, "ph": [3, 9], "phe": 2, "phenylalanyl": 8, "phenylbutyl": 8, "phosphat": [1, 12], "phosphatas": 12, "phrase": [2, 5, 14], "physet": 10, "pi": 9, "pick": 9, "pictur": 0, "piec": [2, 6, 7, 13], "pl3": 1, "place": [0, 3, 4, 6, 8, 12, 13, 15], "placehold": 12, "plai": [0, 10], "plan": 1, "plate": 5, "pleas": [0, 1, 3, 5, 9, 12, 13], "plf": 9, "plot": [3, 8, 11, 12, 15, 16], "plot_lignetwork": 9, "plt": [0, 13], "plu": [0, 16], "pm": 16, "png": [0, 2, 8], "pnpa": [12, 13], "pnpp": [12, 13], "pocket": 9, "point": [1, 4, 11, 12, 13], "polym": [1, 10], "polymer": 14, "polymer_composit": 14, "polymer_entity_count": 14, "polymer_entity_count_dna": 14, "polymer_entity_count_nucleic_acid": 14, "polymer_entity_count_nucleic_acid_hybrid": 14, "polymer_entity_count_protein": 14, "polymer_entity_count_rna": 14, "polymer_entity_taxonomy_count": 14, "polymer_molecular_weight_maximum": 14, "polymer_molecular_weight_minimum": 14, "polymer_monomer_count_maximum": 14, "polymer_monomer_count_minimum": 14, "popt": 13, "popul": [2, 12], "popular": [9, 15], "portabl": 2, "portion": [4, 11], "posit": 4, "possibl": [0, 1, 2, 5, 10, 12], "potassium": 1, "power": [4, 6, 8, 10, 12], "ppm": 3, "pqr": 9, "practic": [3, 11], "precis": [0, 4, 13], "predesign": 5, "predict": 13, "prefer": [0, 2, 3, 6], "prefix": 8, "prepar": [13, 16], "presenc": 12, "present": [3, 10], "preserv": 3, "press": [11, 15], "pretti": 5, "prevent": 2, "previou": [0, 1, 2, 3, 6, 11, 13], "previous": [2, 5, 8, 9], "primari": [1, 8, 14], "principl": 12, "print": [0, 1, 2, 3, 4, 8, 10, 11, 12, 14], "pro": 2, "probabl": [6, 8, 13], "problem": [3, 8, 15], "proce": 8, "procedur": 15, "process": [1, 2, 3, 4, 9, 12, 13, 14, 16], "processing_multiple_files_and_writing_fil": [2, 8], "produc": [0, 1, 8, 12, 13], "program": [0, 4, 6, 8, 9, 11, 14, 15], "programmat": 3, "prolif": 9, "prolin": 8, "prolinamid": [1, 4, 8], "promin": 3, "proper": 9, "properli": [1, 4, 9], "propion": 8, "protconc": 3, "proteas": 2, "protein": [0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14], "protein_": 9, "protein_2zq2": 9, "protein_assai": [0, 2, 3, 8], "protein_assay2": [0, 2, 8], "protein_atom_lin": 2, "protein_conc": 3, "protein_fil": [0, 2, 3], "protein_file2": 0, "protein_h": 9, "protein_mol": 9, "protein_sampl": [2, 3, 8], "protoporphyrin": 10, "provenance_sourc": 14, "provid": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13], "pubchem": [4, 7], "public": 0, "publish": 14, "pubm": 14, "pull": [0, 1, 2, 10], "pure": 1, "purpos": [1, 11, 15], "put": [2, 3, 9, 11], "py": 9, "pybel": 9, "pyplot": [12, 13], "pyridin": [4, 8], "python": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 16], "python3": 9, "q": 5, "q1": 1, "q2": 1, "q3": 1, "qualiti": [0, 13], "quaternion": 5, "queri": [10, 14], "query_id": 14, "question": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 16], "quickli": 5, "quiet": [10, 14], "quit": [5, 9], "quot": [0, 2, 3, 6, 8, 9, 13], "quotechar": 8, "r": [0, 1, 2, 3, 6, 12, 13], "r_valu": [0, 3], "radian": 9, "rai": [2, 8, 9, 14], "ran": 6, "random": 3, "rang": [0, 3, 13], "rate": 12, "rates_df": 13, "rather": [3, 8, 12, 13, 14], "raw": 12, "rawiobas": 8, "rcsb": [1, 4, 9, 14], "rcsb_accession_info": 14, "rcsb_api": [2, 8], "rcsb_attribut": 1, "rcsb_ec_lineag": 1, "rcsb_entry_container_identifi": 14, "rcsb_entry_info": 14, "rcsb_id": 14, "rcsb_interface_info": 14, "rcsb_journal_abbrev": 1, "rcsb_polymer_ent": 1, "rcsb_primary_cit": [1, 14], "rcsbsearch": 14, "rcsbsearchapi": 1, "rdkit": [1, 4, 9], "re": [1, 2, 3, 4, 9, 11, 15], "reaction": [1, 13], "read": [1, 3, 4, 8, 9, 11, 12, 13], "read_csv": [0, 3, 8, 12, 13], "readabl": 9, "readfil": 9, "readi": [11, 15], "readlin": 6, "real": [2, 5, 6, 8], "realli": [1, 2, 9, 11, 14], "rearrang": 3, "reason": [5, 6, 11], "recal": 6, "recast": [2, 11], "receiv": [13, 14], "recent": [0, 2, 4, 11, 13, 14], "recogn": [4, 9], "recognit": [4, 10], "recommend": 15, "record": [9, 10], "red": [0, 13], "reduc": [6, 8], "reductas": 1, "refer": [3, 9, 13], "refin": [2, 14], "refine_hist": 14, "regener": 9, "regex": 2, "region": 0, "regplot": 0, "regress": [0, 5, 8, 16], "regresson": 0, "regul": 10, "reinforc": 16, "rel": 13, "relat": [6, 8], "relationship": [3, 13], "releas": 14, "relev": 10, "reliabl": 0, "remain": 9, "remark": [2, 9], "rememb": [2, 3, 5, 6, 8, 11, 12, 13], "remind": [3, 5, 11, 12], "remov": [0, 2], "removeallh": 9, "render": 5, "reopen": 2, "reorgan": 12, "repair": 9, "repeat": [0, 1, 3], "repeatedli": 2, "repl": 4, "replac": [4, 5, 7], "replacesubstruct": 4, "report": [0, 2, 3], "repositori": [1, 4], "repres": [0, 2, 3, 4, 5, 9, 10, 11, 12, 14], "represent": [5, 14], "repretoir": 0, "reproduc": 5, "request": [1, 9, 14], "request_opt": 14, "requir": [5, 6, 14], "res11u": 1, "res11u_mol2": 1, "res_count": 14, "res_lin": 6, "research": [2, 5, 15], "reserv": 3, "reset": 1, "resid": 9, "residu": [9, 10, 14], "residue_neighbor": 14, "resist": 2, "resnam": [9, 14], "resolut": [0, 2, 6, 8, 9, 14], "resolution_combin": 14, "resolv": 9, "resourc": [0, 8, 12, 14], "respons": 1, "rest": [9, 11, 14], "result": [1, 2, 3, 5, 6, 13, 15], "result_set": 14, "result_typ": 14, "resultl": 1, "results_df": [0, 3], "results_set": 14, "retain": 8, "retrieve_pdb_fil": 14, "return": [1, 2, 4, 5, 8, 9, 10, 11, 13, 14], "return_typ": 14, "reus": 13, "reversibli": 10, "ribbon": 5, "right": [0, 4, 8, 12, 15], "rigor": 4, "ring": [4, 9], "rit": 2, "ritonavir": 2, "rm": 4, "rna": [9, 10], "robust": 13, "role": 10, "rotate_view": 9, "round": 13, "row": [3, 8, 12, 14], "rstrip": 2, "run": [2, 3, 4, 5, 6, 9, 11], "run_from_iter": 9, "runner": [2, 7], "ryyvlzvuvijvgh": 4, "s1": 4, "s_length": 11, "s_list": 11, "sai": [2, 7, 10, 11, 15], "same": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12], "sampl": 10, "samples_df": 3, "samples_fil": 3, "save": [0, 1, 2, 4, 6, 9, 10, 11, 12, 13, 14], "savefig": 0, "saw": [8, 12], "sc": [0, 3], "scatter": 12, "scenario": 9, "scene": 5, "schafer": [8, 12], "sci": 9, "scicompforchemist": [3, 8, 12], "scienc": 3, "scientif": [3, 8, 10, 11, 12, 15], "scientific_name_1mbn": 10, "scipi": [0, 12, 13], "scope": 2, "score": 14, "screen": 11, "script": [2, 7, 8, 15, 16], "sd": 13, "sdf": [2, 4, 8, 9], "search": [1, 6, 7, 10, 13, 15], "searchabl": 1, "sec": [11, 12], "second": [0, 1, 2, 4, 6, 12, 13, 15], "secondari": 5, "section": [2, 9, 10, 12, 14, 15], "see": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "seem": [8, 9, 11], "seen": [5, 6], "select": [5, 9, 11, 13, 15], "select_atom": 9, "selected_polymer_entity_typ": 14, "semi": 3, "send": 14, "sentenc": 6, "sep": [0, 2, 6, 8], "separ": [0, 2, 6, 8, 9, 10, 11], "seper": 2, "seqr": 2, "sequenc": [2, 10, 14], "sequence_1mbn": 10, "sequenti": 3, "ser": 9, "seri": [2, 3, 6, 8, 12, 13], "serin": 1, "servic": [1, 14], "session": 16, "set": [0, 1, 2, 3, 6, 8, 9, 12, 13, 14, 16], "set_index": 12, "setprop": 4, "setup": [2, 6, 8, 11], "seven": 12, "sever": [1, 11], "shape": 4, "share": [5, 6], "sheet": [5, 8], "shift": 11, "short": [8, 9], "short_list": 11, "should": [0, 1, 2, 3, 4, 6, 11, 12, 13, 15, 16], "show": [1, 6, 10, 11, 14], "show_mdanalysi": 9, "shown": [3, 5, 11, 15], "side": 15, "sign": [0, 11], "signal": 1, "signfic": 13, "similar": [0, 9, 14], "similarli": 11, "simpl": [0, 3, 5, 8, 10, 12], "simpler": 4, "simplest": [7, 13], "simpli": [0, 3, 5, 8, 12, 13], "simplifi": [4, 10], "simul": 9, "sinc": [6, 13], "singl": [0, 1, 3, 6, 8, 11, 12, 13], "site": [0, 1, 2, 3, 8, 12], "situat": [2, 3, 11], "six": 3, "size": [0, 1], "skill": [2, 3, 6], "skip": 13, "skip_blank_lin": 8, "skipfoot": 8, "skipinitialspac": 8, "skiprow": 8, "slice1": 11, "slice2": 11, "slightli": [3, 10], "slope": [0, 3, 13], "slow": 6, "small": [1, 2, 4, 9, 10, 16], "smaller": 13, "smallmolvi": [2, 8], "smcra": 10, "smile": 4, "smooth_i": 13, "smooth_x": 13, "smoother": 13, "smush": 6, "sn": 0, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "softwar": [1, 4, 9, 13, 14], "solut": 1, "solvat": 9, "solvent": 10, "solvent_entity_count": 14, "some": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16], "someon": [6, 11], "someth": [0, 2, 11, 12, 13, 14], "sometim": [1, 2, 10, 11], "somewher": 11, "sophist": 0, "sort": [2, 14], "sort_bi": 14, "sort_valu": 8, "sourc": [1, 4, 10, 13], "sp": [0, 3], "space": [0, 2, 13], "speci": 14, "special": [6, 8, 9, 10, 11, 12], "specif": [1, 2, 3, 4, 6, 8, 10], "specifi": [2, 6, 10, 11, 14], "sperm": 10, "spin": 9, "split": [2, 6], "split_filenam": 6, "spotlight": 15, "spreadsheet": [0, 6, 8, 12], "sqrt": 13, "squar": [0, 3, 11, 12, 13], "squeez": 8, "src_method": 10, "stabil": 10, "stack": 13, "stage": 13, "stand": [0, 2, 4, 8, 14], "standard": [0, 2, 3, 4, 9, 12, 13, 14], "start": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14], "stat": [0, 3, 12, 13], "state": [2, 9, 14], "statement": [1, 2, 3, 5, 6, 10, 13], "static": 0, "statist": [0, 3, 13], "statment": 6, "statologi": 0, "statu": [1, 14], "status_cod": [1, 9, 14], "std_err": [0, 3], "stdev": 13, "step": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14], "stereochemistri": 4, "stick": 5, "still": [3, 15], "stop": 16, "storag": 14, "storage_opt": 8, "store": [1, 4, 14], "str": [2, 5, 6, 8, 11], "straightforward": 3, "strand": 5, "strang": 8, "strategi": 9, "string": [0, 1, 2, 3, 4, 5, 8, 11, 12], "struct": 14, "struct_keyword": 14, "structur": [1, 2, 6, 7, 8, 10, 11, 12, 14], "structure_determination_methodologi": 14, "structure_determination_methodology_prior": 14, "student": 3, "studi": [1, 9], "stuff": 2, "style": [0, 5, 10], "subcategori": 10, "subconc": 13, "subhead": 11, "subimgs": 4, "subscript": [0, 13], "subset": [0, 1, 3, 4, 11], "substate_conc": 11, "substitut": [4, 5], "substrat": [8, 11, 12, 13], "substrate_conc": [8, 11], "substrate_concentr": 11, "substructur": 4, "subtrate_conc": 11, "success": [1, 14], "successfulli": 14, "suffici": 13, "suffix": 8, "suggest": 5, "suit": 9, "suitabl": 0, "sulfat": 10, "superimpos": 5, "support": [0, 1, 4, 5], "sure": [1, 3, 4, 6, 9, 11, 12, 13, 15], "surfac": [5, 9], "survei": 3, "switch": 1, "symbol": 13, "symmetri": 14, "syn": 10, "syntax": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "synthesi": 1, "system": [0, 1, 2, 3, 4, 6, 8, 9, 14, 15], "systemat": [1, 4], "t": [0, 2, 4, 5, 6, 8, 9, 10, 11, 15], "t20": 4, "tab": [6, 15], "tabl": [0, 1, 3, 8], "tabular": [8, 10], "tad": 1, "tag": 2, "tail": 8, "take": [0, 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 16], "taken": [0, 3, 4, 5, 9, 12], "target": [4, 8], "task": [2, 4, 6, 8, 10, 13], "tast": 8, "teach": [5, 15], "technic": 3, "tediou": 6, "tell": [1, 2, 3, 6, 8, 10, 11, 13, 14], "temp": 11, "temp_lin": 2, "temperatur": [2, 11], "templat": 9, "term": [2, 3, 6, 9, 10, 13], "termin": [9, 14], "termini": 9, "test": [2, 3, 4, 6, 13], "tetrazol": 8, "texa": 3, "text": [0, 1, 2, 5, 6, 8, 9, 10, 14, 15], "textbook": [3, 5, 8, 12], "textiobas": 8, "textiowrapp": 8, "than": [1, 2, 3, 8, 9, 10, 11, 12, 13, 14], "thei": [1, 2, 3, 4, 8, 9, 10, 11, 14], "them": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14], "therebi": 10, "therefor": [3, 6], "thermobifida": 14, "thermost": 14, "thi": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [2, 5, 6, 8, 9, 10, 11, 12, 14], "think": [0, 1, 2, 6, 8, 10, 11], "third": [0, 4, 5, 8], "those": [1, 3, 5, 6, 11, 12, 13], "though": [2, 5, 11, 13, 14], "thought": 2, "thousand": [8, 13], "thr": 2, "three": [1, 2, 4, 5, 8, 10, 12, 13], "thrombin": 8, "thrombin_df": 8, "thrombin_fil": 8, "thrombin_with_ligand": [2, 8], "through": [1, 2, 3, 5, 6, 10, 11, 12, 14], "thu": 2, "tight": 0, "time": [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16], "titl": [0, 1, 2, 14], "tj": 9, "to_csv": 12, "togeth": [4, 6, 11], "token": 10, "told": 14, "tool": [0, 1, 3, 4, 8, 9, 10, 12, 13], "top": [1, 11, 13, 14], "top_5_combin": 14, "topologi": 9, "total": 1, "total_count": 14, "toward": 8, "traceback": [2, 4, 11, 13], "track": [0, 3, 12], "train": 4, "trajectori": 9, "transcript": [5, 10], "transfer": [5, 8, 14], "transferas": 1, "transform": 9, "translocas": 1, "transpar": 5, "transport": 14, "tree": 1, "triangl": 13, "trick": 3, "trimethylpurin": 4, "tripo": 1, "troubleshoot": 6, "trp": 2, "true": [1, 8, 9, 10, 12, 14], "true_valu": 8, "truncat": [9, 13], "try": [1, 2, 5, 6, 8, 10, 11, 14], "trypsin": [1, 9], "tube": 3, "tupl": [4, 14], "turn": 15, "tutori": [2, 3, 4, 8, 9, 12], "twice": 9, "two": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "txt": [2, 6, 8], "type": [0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 15], "type_of_resourc": 14, "typeerror": [2, 13], "typic": [3, 13], "tyr": 2, "u": [1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14], "ubiquit": 11, "uhfffaoysa": 4, "unambigu": 4, "undefin": 11, "under": [6, 10, 12, 15], "underscor": 10, "understand": [1, 4, 13, 14], "unintend": 11, "union": [1, 8], "uniprot": 10, "uniqu": [1, 4, 7, 8, 12, 14], "unit": [2, 3, 10, 11], "unitless": 3, "univers": 9, "unknown": 3, "unleash": 4, "unless": 14, "unlik": 13, "unsort": 8, "unsupport": 2, "until": 6, "untitl": 11, "unzip": 15, "up": [1, 2, 5, 6, 9, 12, 13, 16], "updat": [9, 14, 15], "upgrad": 9, "upon": 9, "upper": [1, 11, 15], "url": [1, 9, 14], "us": [2, 5, 6, 7, 9, 11, 15], "usabl": 2, "usecol": 8, "user": [1, 2, 11], "userwarn": 9, "usual": [6, 8, 9, 11, 14], "util": [4, 6], "v": [4, 8, 11, 13], "v1": 14, "v2": 14, "v2000": 4, "v3": 9, "v_": 13, "v_at_or_below_km": 11, "v_i": 13, "v_linear": 11, "v_nmols_per_min": 11, "val": [2, 14], "valid": [0, 3], "valu": [0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "value_to_return": [5, 13], "van": 9, "vari": [10, 14], "variabl": [0, 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14], "variable_nam": 11, "variable_valu": 11, "variou": 10, "vaue": 8, "ve": [0, 14], "veloc": [8, 11, 13], "velocity_str": 11, "verbos": 8, "veri": [0, 2, 3, 4, 6, 11, 13], "versatil": 10, "version": [0, 4, 7, 13], "versu": 13, "vi": 13, "via": 1, "video": 4, "view": 4, "view_binding_sit": 9, "viewer": 5, "vina": 1, "viral": 10, "viru": 10, "visit": 4, "visual": [0, 4, 10, 15], "vlsegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlkteaemkasedlkkhgvtvltalgailkkkg": 10, "vmax": [8, 11, 13], "w": [1, 2, 4, 6, 9], "w522": 9, "w525": 9, "wa": [0, 1, 2, 3, 5, 6, 10, 13, 14], "waal": 9, "wai": [2, 4, 5, 6, 7, 10, 13], "wait": 15, "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "warn": 9, "warn_bad_lin": 8, "watch": 4, "water": [1, 3, 10], "water_df": 3, "water_fil": 3, "we": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "web": 2, "webpag": 10, "websit": [4, 14], "weight": [1, 13], "weiss": [3, 8, 12], "well": [1, 3, 5, 9, 12, 13, 14, 15], "went": 3, "were": [0, 3, 5, 8, 14], "whale": 10, "what": [1, 2, 4, 6, 9, 10, 11, 13, 14, 16], "when": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "where": [0, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15], "wherea": 6, "whether": 3, "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "while": [2, 6, 7, 8, 12], "white": [0, 5, 13], "who": [6, 11, 12], "whole": [2, 6], "why": [0, 1, 2, 5, 6, 11], "wide": 10, "wildcard": 6, "window": [2, 5, 8, 15], "wirefram": 5, "wish": 4, "within": [0, 2, 3, 5, 6, 10, 11, 14], "without": [4, 6], "wkz": 1, "won": 2, "wonder": 6, "word": [2, 3, 6, 9, 10], "words1": 6, "words2": 6, "work": [1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16], "working_with_panda": [2, 8], "workshop": [4, 6, 8, 10, 11, 12, 14, 15], "workshop_schedul": [2, 8], "world": [4, 10], "would": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14], "wouldn": 5, "write": [1, 2, 3, 4, 8, 9, 11, 12, 16], "writer": 9, "written": [1, 6], "wrote": [0, 9], "www": 4, "x": [0, 2, 3, 5, 8, 9, 12, 13, 14], "xdata": [0, 3, 12, 13], "xlabel": [0, 12, 13], "xlsx": [2, 8, 12], "xxxx": 5, "xy": [0, 4, 13], "y": [0, 3, 5, 8, 9, 12, 13], "ydata": [0, 3, 12, 13], "year": 10, "yellow": 5, "yl": 8, "ylabel": [0, 13], "ylamino": 8, "ylmethyl": 8, "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "your": [1, 3, 4, 5, 9, 10, 13, 14, 15, 16], "your_user_nam": 2, "yourself": [0, 3], "youtub": [4, 8, 12], "z": [4, 8, 9, 12], "z_pdb": 10, "zero": [2, 4, 11], "zinc": 14, "zip": [2, 8], "zoom": 9, "\u00e5ngstr\u00f6m": 14, "\u03b4a": 12}, "titles": ["Creating Plots in Jupyter Notebooks", "Enzyme Commission Class with Ligands", "File Parsing", "Linear Regression", "Modifying Ligands in Python", "Molecular Visualization with iCN3D", "Processing Multiple Files and Writing Files", "Viewing Small Molecules in iCN3D", "Working with Pandas", "Investigation the Binding Site", "Analyzing MMCIF Files using Biopython", "Introduction", "Nonlinear Regression Part 1", "Nonlinear Regression Part 2", "Retrieving Information from the PDB using the Web API", "Set Up", "Workshop Schedule"], "titleterms": {"1": 12, "1d": [8, 12], "1et": 5, "2": 13, "2d": [4, 8, 12], "3d": [4, 8, 10, 12], "7": 1, "A": [2, 6, 11], "The": [1, 13], "about": [2, 6, 11], "absolut": 2, "access": 14, "ad": 5, "add": 3, "all": 1, "an": [5, 11], "anaconda": 15, "analysi": 10, "analyz": [10, 14], "answer": 2, "apart": 5, "api": 14, "appli": 5, "arrai": [8, 12], "assign": 11, "atp": 4, "base": 5, "behavior": 2, "bind": [4, 9], "biopython": [10, 14], "calcul": 12, "calibr": 3, "can": 1, "challeng": 10, "check": [0, 2, 6, 8, 11, 12], "choic": 11, "class": 1, "collect": 5, "column": 3, "command": 5, "commiss": 1, "common": 13, "concentr": 3, "contact": 9, "convert": 4, "creat": [0, 3, 5, 12, 13], "csv": 3, "curv": 3, "curve_fit": 13, "data": [3, 8, 11, 12, 13, 14], "datafram": [3, 8, 12], "datatyp": 12, "digit": 4, "do": [1, 4, 8, 12], "dock": 4, "download": [1, 9, 14], "elimin": 3, "enzym": 1, "equat": [3, 13], "error": 13, "exercis": [0, 1, 3, 5, 8, 11, 13], "exeris": 2, "express": 2, "extract": 13, "f": 13, "file": [1, 2, 6, 10, 14], "final": [2, 6], "find": [1, 8], "finger": 10, "fit": 13, "format": 6, "from": [5, 13, 14], "function": [2, 5, 13], "gener": 5, "get": 11, "glucos": 4, "go": 1, "hint": [2, 3, 6, 12], "home": [5, 13], "how": 1, "i": [4, 8, 12], "icn3d": [5, 7], "icn3dpi": 5, "id": 5, "import": [3, 6, 8, 12], "inform": [8, 14], "initi": 12, "inspect": 12, "instal": 15, "introduct": 11, "investig": 9, "iqb": 1, "jupyt": [0, 11, 15], "kei": [0, 2, 3, 6, 8], "known": 4, "lesson": 15, "librari": [1, 3, 5, 6, 8], "ligand": [1, 4, 9, 10], "line": 2, "linear": 3, "list": 11, "load": 5, "locat": 8, "logic": 11, "loop": [1, 6, 11], "make": [1, 9, 11], "mani": 11, "map": 9, "materi": 15, "matplotlib": 0, "measur": 10, "menten": 13, "micha": 13, "mmcif": 10, "modifi": 4, "modul": [2, 3], "molecul": [4, 7], "molecular": 5, "multipl": [6, 11], "need": 3, "neighbor": 10, "nest": 6, "nglview": 15, "nonlinear": [12, 13], "note": [2, 6, 11], "notebook": [0, 4, 11, 15], "number": 2, "o": 2, "obtain": 15, "onc": 11, "oper": 11, "option": 3, "output": 13, "outsid": 3, "overview": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "page": 5, "panda": [3, 8, 12], "pars": 2, "part": [12, 13], "particular": 2, "path": 2, "pattern": 2, "pdb": [5, 14], "plot": [0, 13], "point": [0, 2, 3, 6, 8], "power": 5, "prefer": 5, "prepar": [0, 9], "print": [6, 13], "process": 6, "programmat": 14, "project": 6, "properti": 10, "protein": 3, "pull": 5, "pyplot": 0, "python": [4, 5, 8, 15], "queri": 1, "question": 4, "read": [2, 6, 10], "readlin": 2, "regress": [3, 12, 13], "regular": 2, "rel": 2, "repeat": [10, 11], "represent": 4, "result": [4, 14], "retriev": 14, "review": 13, "sampl": 3, "scatter": 0, "schedul": 16, "scipi": 3, "seaborn": 0, "search": [2, 14], "select": 1, "set": [5, 11, 15], "site": 9, "slice": 11, "slope": 12, "small": 7, "smooth": 13, "solut": [0, 2, 3, 5, 6, 8, 11, 12, 13], "solv": 3, "sort": 8, "stage": 3, "start": [11, 15], "statement": 11, "string": [6, 13], "structur": [4, 5, 9], "take": [5, 13], "teas": 5, "thi": [3, 4], "thing": 4, "through": 15, "time": 11, "trypsin": 4, "type": 11, "understand": [0, 2, 6, 8, 11, 12], "up": [11, 15], "us": [0, 1, 3, 4, 8, 10, 12, 13, 14], "valu": 3, "variabl": 11, "veloc": 12, "view": [5, 7, 9], "visual": [5, 9], "we": [1, 8, 12], "web": [5, 14], "what": [8, 12], "where": 1, "why": [3, 8, 12], "work": [2, 8], "workshop": [1, 16], "write": 6, "you": 3, "your": [0, 2, 6, 8, 11, 12], "zinc": 10}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"1D arrays": [[8, "d-arrays"], [12, "d-arrays"]], "2D arrays": [[8, "id1"], [12, "id1"]], "3D arrays": [[8, "id2"], [12, "id2"]], "A final note about regular expressions": [[2, "a-final-note-about-regular-expressions"]], "A final note about string formatting": [[6, "a-final-note-about-string-formatting"]], "A note about jupyter notebooks": [[11, "a-note-about-jupyter-notebooks"]], "Absolute and relative paths": [[2, "absolute-and-relative-paths"]], "Add the column to the dataframe": [[3, "add-the-column-to-the-dataframe"]], "Adding commands to the icn3dpy.view function": [[5, "adding-commands-to-the-icn3dpy-view-function"]], "Analyzing MMCIF Files using Biopython": [[10, "analyzing-mmcif-files-using-biopython"]], "Answer": [[2, null], [2, null]], "Applying the power of python": [[5, "applying-the-power-of-python"]], "Assigning multiple variables at once": [[11, "assigning-multiple-variables-at-once"]], "Assigning variables and data types": [[11, "assigning-variables-and-data-types"]], "Calculate the Slopes": [[12, "calculate-the-slopes"]], "Calculate the initial velocity": [[12, "calculate-the-initial-velocity"]], "Calculating the initial velocity": [[12, "calculating-the-initial-velocity"]], "Challenge - Repeat analysis for a Zinc Finger": [[10, "challenge-repeat-analysis-for-a-zinc-finger"]], "Check Your Understanding": [[2, null], [2, null], [6, null]], "Check your Understanding": [[0, null], [2, null]], "Check your understanding": [[6, null], [8, null], [11, null], [12, null]], "Common errors": [[13, "common-errors"]], "Converting the 2D ligand structures to 3D structures for use in docking": [[4, "converting-the-2d-ligand-structures-to-3d-structures-for-use-in-docking"]], "Create the Equation": [[3, "create-the-equation"]], "Creating Functions": [[13, "creating-functions"]], "Creating Plots in Jupyter Notebooks": [[0, "creating-plots-in-jupyter-notebooks"]], "Creating functions based on preferred command sets generated from iCN3D web pages": [[5, "creating-functions-based-on-preferred-command-sets-generated-from-icn3d-web-pages"]], "Creating the pandas dataframe": [[12, "creating-the-pandas-dataframe"]], "Data Fitting": [[13, "data-fitting"]], "Data types": [[11, "data-types"]], "Datatype": [[12, "datatype"]], "Digital Representation of Molecules": [[4, "digital-representation-of-molecules"]], "Downloading all of the ligands using a for loop": [[1, "downloading-all-of-the-ligands-using-a-for-loop"]], "Downloading the Structure": [[9, "downloading-the-structure"]], "Eliminating values outside the calibration curve (optional)": [[3, "eliminating-values-outside-the-calibration-curve-optional"]], "Enzyme Commission Class with Ligands": [[1, "enzyme-commission-class-with-ligands"]], "Exercise": [[0, null], [1, "exercise"], [3, null], [5, null], [8, null], [11, null], [13, null], [13, null]], "Exerise on file parsing": [[2, null]], "Extracting the output from curve_fit": [[13, "extracting-the-output-from-curve-fit"]], "File Download using Biopython": [[14, "file-download-using-biopython"]], "File Parsing": [[2, "file-parsing"]], "Finding information in a dataframe": [[8, "finding-information-in-a-dataframe"]], "Finding the ligands": [[1, "finding-the-ligands"]], "Getting Started": [[11, "getting-started"]], "Hint": [[2, null], [3, null], [6, null], [12, null]], "How do we download the ligand files?": [[1, "how-do-we-download-the-ligand-files"]], "Importing data with pandas": [[3, "importing-data-with-pandas"]], "Importing libraries": [[6, "importing-libraries"]], "Importing python libraries": [[8, "importing-python-libraries"]], "Importing the Data": [[12, "importing-the-data"]], "Importing the data with pandas": [[8, "importing-the-data-with-pandas"]], "Inspect the data": [[12, "inspect-the-data"]], "Install nglview": [[15, "install-nglview"]], "Installing Python through Anaconda": [[15, "installing-python-through-anaconda"]], "Introduction": [[11, "introduction"]], "Investigation the Binding Site": [[9, "investigation-the-binding-site"]], "Key Points": [[0, null], [2, null], [3, null], [6, null], [8, null]], "Libraries for the IQB workshop": [[1, "libraries-for-the-iqb-workshop"]], "Libraries you will need": [[3, "libraries-you-will-need"]], "Linear Regression": [[3, "linear-regression"]], "Linear Regression with SciPy": [[3, "linear-regression-with-scipy"]], "Lists": [[11, "lists"]], "Loading the iCN3D library": [[5, "loading-the-icn3d-library"]], "Locating the data": [[8, "locating-the-data"]], "Making a Map of Ligand Contacts": [[9, "making-a-map-of-ligand-contacts"]], "Making choices: Logic Statements": [[11, "making-choices-logic-statements"]], "Making queries": [[1, "making-queries"]], "Measuring 3D Properties - Ligand Neighbors": [[10, "measuring-3d-properties-ligand-neighbors"]], "Modifying Ligands in Python": [[4, "modifying-ligands-in-python"]], "Modifying a ligand that is known to bind to trypsin": [[4, "modifying-a-ligand-that-is-known-to-bind-to-trypsin"]], "Modifying the ligand molecule": [[4, "modifying-the-ligand-molecule"]], "Molecular Visualization with iCN3D": [[5, "molecular-visualization-with-icn3d"]], "Nonlinear Regression Part 1": [[12, "nonlinear-regression-part-1"]], "Nonlinear Regression Part 2": [[13, "nonlinear-regression-part-2"]], "Obtain lesson materials": [[15, "obtain-lesson-materials"]], "Overview": [[0, null], [1, null], [2, null], [3, null], [5, null], [6, null], [8, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "PDB Data API": [[14, "pdb-data-api"]], "PDB Search API": [[14, "pdb-search-api"]], "Plotting the data": [[13, "plotting-the-data"]], "Preparing to Plot": [[0, "preparing-to-plot"]], "Printing to a File": [[6, "printing-to-a-file"]], "Processing Multiple Files and Writing Files": [[6, "processing-multiple-files-and-writing-files"]], "Processing multiple files": [[6, "processing-multiple-files"]], "Programmatic Access of APIs": [[14, "programmatic-access-of-apis"]], "Project": [[6, null]], "Pulling collections of commands from an iCN3D web page": [[5, "pulling-collections-of-commands-from-an-icn3d-web-page"]], "Questions": [[4, "questions"]], "Reading MMCIF Files": [[10, "reading-mmcif-files"]], "Reading a file": [[2, "reading-a-file"]], "Reading multiple files with nested for loops": [[6, "reading-multiple-files-with-nested-for-loops"]], "Repeating an operation many times: for loops": [[11, "repeating-an-operation-many-times-for-loops"]], "Results for Glucose and ATP": [[4, "results-for-glucose-and-atp"]], "Retrieving Information from the PDB using the Web API": [[14, "retrieving-information-from-the-pdb-using-the-web-api"]], "Review of f string printing": [[13, "review-of-f-string-printing"]], "Scatter Plots with Seaborn": [[0, "scatter-plots-with-seaborn"]], "Searching for a particular line number in your file": [[2, "searching-for-a-particular-line-number-in-your-file"]], "Searching for a pattern in your file": [[2, "searching-for-a-pattern-in-your-file"]], "Selected ligands": [[1, "selected-ligands"]], "Set Up": [[15, "set-up"]], "Setting up your Jupyter notebooks": [[11, "setting-up-your-jupyter-notebooks"]], "Slices": [[11, "slices"]], "Smoothing the plot": [[13, "smoothing-the-plot"]], "Solution": [[0, null], [0, null], [2, null], [2, null], [3, null], [5, null], [6, null], [6, null], [6, null], [8, null], [8, null], [11, null], [11, null], [12, null], [13, null], [13, null], [13, null]], "Solving for protein concentrations in samples": [[3, "solving-for-protein-concentrations-in-samples"]], "Sorting data with pandas": [[8, "sorting-data-with-pandas"]], "Stages of this module": [[3, "stages-of-this-module"]], "Start a Jupyter notebook": [[15, "start-a-jupyter-notebook"]], "Structure Preparation": [[9, "structure-preparation"]], "Take Home Exercise": [[5, "take-home-exercise"], [13, null]], "Teasing apart the command set from the iCN3D page for PDB ID 1ETS": [[5, "teasing-apart-the-command-set-from-the-icn3d-page-for-pdb-id-1ets"]], "The 7 Enzyme Classes": [[1, "the-7-enzyme-classes"]], "The Michaelis-Menten equation": [[13, "the-michaelis-menten-equation"]], "Things to Do for this Notebook": [[4, "things-to-do-for-this-notebook"]], "Use pandas to import the csv data into a dataframe": [[3, "use-pandas-to-import-the-csv-data-into-a-dataframe"]], "Using Biopython to Analyze Search Results": [[14, "using-biopython-to-analyze-search-results"]], "Using Matplotlib.pyplot": [[0, "using-matplotlib-pyplot"]], "Using curve_fit": [[13, "using-curve-fit"]], "View the structure": [[9, "view-the-structure"]], "Viewing Small Molecules in iCN3D": [[7, "viewing-small-molecules-in-icn3d"]], "Viewing a PDB structure": [[5, "viewing-a-pdb-structure"]], "Visualizing the Binding Site": [[9, "visualizing-the-binding-site"]], "What is pandas and why do we use it?": [[8, "what-is-pandas-and-why-do-we-use-it"], [12, "what-is-pandas-and-why-do-we-use-it"]], "Where can we go to download the ligand files?": [[1, "where-can-we-go-to-download-the-ligand-files"]], "Why Linear Regression?": [[3, "why-linear-regression"]], "Working with Pandas": [[8, "working-with-pandas"]], "Working with file paths - the os.path module": [[2, "working-with-file-paths-the-os-path-module"]], "Working with files": [[2, "working-with-files"]], "Workshop Schedule": [[16, "workshop-schedule"]], "iCN3D and Molecular Visualization": [[5, "icn3d-and-molecular-visualization"]], "readlines function behavior": [[2, "readlines-function-behavior"]]}, "docnames": ["chapters/Creating_Plots_in_Jupyter_Notebooks", "chapters/EC_class_ligands_search", "chapters/File_Parsing", "chapters/Linear_Regression", "chapters/Modifying_Ligands_with_rdkit", "chapters/MolVis_with_iCN3D", "chapters/Processing_Multiple_Files_and_Writing_Files", "chapters/SmallMolVis", "chapters/Working_with_Pandas", "chapters/binding_site_investigation", "chapters/biopython_mmcif", "chapters/introduction", "chapters/nonlinear_regression_part_1", "chapters/nonlinear_regression_part_2", "chapters/rcsb_api", "chapters/setup", "chapters/workshop_schedule"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["chapters/Creating_Plots_in_Jupyter_Notebooks.ipynb", "chapters/EC_class_ligands_search.ipynb", "chapters/File_Parsing.ipynb", "chapters/Linear_Regression.ipynb", "chapters/Modifying_Ligands_with_rdkit.ipynb", "chapters/MolVis_with_iCN3D.ipynb", "chapters/Processing_Multiple_Files_and_Writing_Files.ipynb", "chapters/SmallMolVis.ipynb", "chapters/Working_with_Pandas.ipynb", "chapters/binding_site_investigation.ipynb", "chapters/biopython_mmcif.ipynb", "chapters/introduction.ipynb", "chapters/nonlinear_regression_part_1.ipynb", "chapters/nonlinear_regression_part_2.ipynb", "chapters/rcsb_api.ipynb", "chapters/setup.ipynb", "chapters/workshop_schedule.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14], "0": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "00": [10, 12, 13, 16], "000": [2, 5], "0000": [1, 4], "000000": 13, "0004": 4, "0014948066523110296": 3, "0020": 4, "0030521595419827677": 3, "0040": 1, "0044": 4, "0046": 4, "0050": 1, "0056": 4, "005635": 12, "0060": 1, "007": 10, "0072": 4, "0078": 4, "0083": 4, "01": 2, "010": [3, 9], "0101": 4, "0104": 4, "011162": 12, "0124": 4, "0129": 4, "013": 3, "015": 12, "0165": 4, "016580": 12, "0170": [1, 4], "0171": 4, "0173": 4, "0179": 4, "01832": 12, "0190": 1, "0193": 4, "019578": 12, "01_molecule_represent": 4, "0200": 1, "020353": 12, "0210": 4, "0216": 4, "0217": 4, "022": 1, "022319": [12, 13], "022319351245112782": 12, "022757": 12, "0228": 4, "0240": 1, "0244": 4, "0250": 1, "0254": 4, "0259": 4, "0270": [1, 4], "027092": 12, "0280": [1, 4], "0283": 4, "0296": 4, "0300": 1, "0301": 4, "030884027089284245": [0, 3], "0310": 4, "0312": 4, "0326": 4, "0337": 4, "034661": 12, "0353": 4, "0356": 4, "0365": 4, "0369": 4, "0376": 4, "040318": 12, "0410": 1, "0434": 4, "0437": 4, "0447": 4, "0460": 4, "0461": 4, "0462": 4, "0463": 4, "0464": 4, "0466": 4, "046964": 3, "0480": 1, "0483": 4, "0484": 4, "0494": 4, "04948248037131796": 3, "0497": 4, "05": [0, 3, 6, 12, 13], "0501": 4, "0508": 4, "0513": 4, "051681": 12, "0520": 1, "0525": 4, "05263157894737": 11, "0533": 4, "0540": 4, "0543": 4, "0544": 4, "0556": 4, "0560": 1, "056988": 12, "0570": 4, "0574": 4, "0575": 4, "0590717448341336e": [0, 3], "0596": 4, "059896": 12, "0610": 1, "0622": 4, "062613": 12, "0629": 4, "0630": 1, "0633": 4, "0646": 4, "065213": 3, "0661": 4, "0680": 1, "068643": 12, "0690": 1, "0692": 4, "0694": 4, "0695": 4, "0715": 4, "0720": 1, "073658": 12, "0739": 4, "074": 9, "075985": 12, "076442": [12, 13], "07644213958496243": 12, "0767": 4, "0773": 4, "07806979615939849": 12, "078070": [12, 13], "0800": 1, "08042268476177239": 13, "0808": 4, "0814": 4, "0820": 1, "0822": 4, "0852": 4, "0860": 1, "0863": 4, "0869": 4, "0878": 4, "088": 9, "088046": 12, "0887": 4, "0896": 4, "09": 14, "090909": 13, "0932": 4, "0954": 4, "096143": [12, 13], "096204": [12, 13], "0963": 4, "0968": 4, "0970": 4, "097595134597833": 3, "099827": 12, "0999": 4, "099906": 12, "0ca": 1, "0cb": 1, "0kv": 1, "0x7efd3ce69790": 13, "0x7f7ce4593f90": 0, "0x7f7ce45a2bd0": 0, "0x7f99809963e0": 8, "0x7faff0484370": 13, "0x7fb0005728e0": 13, "0x7fb55cc756d0": 5, "0x7fb55cc7bcd0": 5, "0x7fb55cc86e50": 5, "0x7fb55cc9d590": 5, "0x7fb55cca1ed0": 5, "0x7fb55cca2650": 5, "0x7fb55cca3cd0": 5, "0x7fb55cca7550": 5, "0x7fb55ce5f450": 5, "0zg": 1, "0zw": 1, "0zx": 1, "0zy": 1, "1": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 16], "10": [0, 1, 4, 5, 8, 9, 11, 12, 13, 14], "100": [3, 6, 11, 13], "1000": [6, 11, 13], "100000": 11, "100796": 12, "101": 10, "1029058355571": 4, "103351": 12, "1040": 4, "104366": 12, "106": 10, "1060": 4, "1080": 1, "1086": 4, "1088": 4, "1095": 4, "1099": 4, "10u": 1, "11": [1, 4, 6, 9, 11, 12, 14], "1114": 4, "112": [1, 9], "1120": 1, "1129": 4, "113": 9, "1130": 4, "1140": 4, "1147": 4, "1152673937227531": 3, "1153": [4, 9], "118": [0, 3], "1193": 4, "1194": 4, "11u": 1, "11u_id": 1, "12": [1, 2, 4, 9, 11, 13, 16], "1200": 4, "1202": 4, "1203": 4, "121434": 12, "1216": 4, "122": 9, "1220": 1, "1221": 4, "122747": 12, "1230": 4, "123059": 12, "1233": 9, "1245": 4, "1253": 4, "1270": 1, "127118": 12, "1277": 4, "12786666666666657": [0, 3], "1279": [0, 9], "128": 9, "12u": 1, "13": [1, 4, 6, 11, 12, 13], "1321": 4, "134567": 12, "136443": [12, 13], "1364430576421053": 12, "1373": 4, "13u": [1, 4, 9], "13u_id": 9, "14": [1, 2, 4, 6, 8, 9, 10, 11], "141": 14, "1420": 4, "142857142857146": 11, "1430": 1, "1435": 4, "1438": 4, "144": 9, "1442": 4, "1446": 4, "146": 14, "147": 9, "1471": 4, "147517": 12, "148": 9, "1490": 1, "1495": 4, "1496": 4, "15": [0, 1, 4, 11, 12, 14], "150": 10, "1507": 4, "1514": [2, 9], "1522": 4, "1533": 4, "154": 10, "1542": 4, "1544": 4, "1546": 4, "155": 10, "1570": 4, "1590": 1, "1596": 4, "16": [1, 4, 11, 12, 13], "1600": 1, "1604": 4, "1620": 1, "1621": 4, "1625": 9, "1650": 4, "1661": 4, "167": 9, "1673": 9, "1674": 9, "1675": 9, "1677": 4, "16h2": 4, "17": [1, 4, 9, 10, 11], "170": 9, "1712": 4, "1720": 4, "1723": 4, "17234": 10, "173": 1, "1733": 4, "173306": 12, "1737": 4, "1749": 4, "1751": 4, "1752": 9, "1755": 9, "1759": 4, "176471": 13, "1765": 9, "1766": 4, "1770": 1, "1776": 4, "177801": 12, "1787": 4, "1796": 4, "18": [1, 4, 9, 12], "180": [1, 9], "1800": 1, "1807": 4, "1810": 1, "1826": 4, "183": 3, "1840": 1, "1842": 4, "1843": 4, "186": 9, "1874": 4, "1899": 4, "19": [1, 4], "1908": 4, "1914": 4, "1924": 4, "1925": 4, "1926322406324839": 13, "1932": 4, "193419": 12, "194682": 12, "1952": 4, "1960": 1, "1969": 4, "1970": 1, "198": 9, "1988": 4, "1990": 1, "1993": 4, "1a0j": 5, "1a1t": [2, 10], "1a6n": 2, "1aq7": 1, "1auj": 1, "1az8": 1, "1bjv": 1, "1btw": 1, "1btx": 1, "1btz": 1, "1c1": 1, "1c1t": 1, "1c2d": 1, "1d66": 5, "1ddo": [2, 6], "1h": 8, "1jp6": 14, "1jp8": 14, "1mba": 14, "1mbc": 14, "1mbd": 14, "1mbi": 14, "1mbn": [2, 10, 14], "1mbo": [5, 14], "1mlf": 14, "1mlg": 14, "1mlh": 14, "1mlj": 14, "1mlk": 14, "1mll": 14, "1mlm": 14, "1myg": 14, "1myh": 14, "1myi": 14, "1myj": 14, "1pmb": [2, 14], "1uvi": 14, "1uvt": 8, "1uvu": 8, "1uvx": 14, "1ux8": 14, "1yca": 14, "1ycb": 14, "2": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16], "20": [1, 4, 6, 8, 9, 11, 12, 13, 16], "200": [1, 8, 9, 14], "2004": 4, "2007": 9, "2018": 9, "2024": 9, "2026": 4, "20284295232781954": 12, "202843": [12, 13], "2030": 1, "2031": 4, "2035": 4, "204653": [12, 13], "2047": 4, "2048": 4, "2050": 1, "2051": 4, "2055": 4, "2080": 1, "2081": 4, "2086": 11, "209": 9, "21": [1, 4, 10, 11], "2100": 4, "210920": 12, "2117": 4, "2120": [1, 4], "2123": 4, "2129": 4, "2130": 1, "2157": 4, "216": 9, "2160": 1, "2163": 4, "2172": 4, "2178": 4, "2182": 4, "2199": 4, "22": [1, 4, 9, 12, 13], "2207": 4, "221": 14, "2217": 9, "2219": 4, "222": 9, "223": 9, "2232": 2, "2238": 4, "2246": 4, "2249": 4, "2254": 4, "2260": 4, "2270": 1, "2272": 4, "2275": 4, "2286": 4, "2296": 4, "23": [1, 4], "2308": 4, "231": 7, "2315": 4, "2319": 4, "2329": 4, "2336": 4, "2339": 4, "2354": 9, "236": 9, "2369": 4, "238": 9, "238095": 13, "2387": 4, "239086": 12, "24": [1, 4, 9], "240": 9, "2400": 1, "2403": 4, "2411": 4, "2419": 4, "2430": 9, "2449": 4, "2460": 1, "246186": 12, "24625953559097755": 12, "246260": [12, 13], "2469": 4, "2478": 4, "25": [0, 1, 4, 8, 10, 11, 12], "2526": 4, "2545": 4, "2547": 4, "2550": 1, "2561": 4, "2569": 4, "2573": 4, "257587": 12, "257892": 12, "2583": 9, "258405": 12, "2585": 4, "2593": 4, "26": [1, 4, 9], "2602": 4, "2605": 4, "2619": 4, "2654": 9, "2659": 4, "2661": 4, "2690": 1, "2696": 4, "269802": 12, "26h": 4, "27": [1, 4, 8, 9, 12, 13], "2700": 4, "2725": 4, "272718": [12, 13], "2739": 4, "2747": 4, "2757": 4, "2760": 4, "2763": 4, "2775": 4, "2776": 4, "2779": 4, "2780": 1, "2782": 4, "2790": 4, "2796": 4, "28": [1, 4, 10, 11, 13], "2800": 1, "2809": 4, "2836": 4, "285": [0, 3], "2867": 4, "2873": 4, "2876": 4, "29": [1, 4], "2910": 1, "2957": 4, "298": 2, "2980": 1, "2990": 1, "2996": 4, "2awc": 14, "2bmm": 14, "2c": 4, "2c8y": 8, "2c8z": 8, "2c90": 8, "2cccn2c": 4, "2d": [9, 13], "2eb8": 14, "2ef2": 14, "2f": 13, "2fal": 14, "2fam": 14, "2mb5": 14, "2mga": 14, "2mgb": 14, "2mgc": 14, "2mgd": 14, "2mge": 14, "2mgf": 14, "2mgg": 14, "2mgh": 14, "2mgi": 14, "2mgj": 14, "2mgk": 14, "2mgl": 14, "2mgm": 14, "2mya": 14, "2myb": 14, "2myc": 14, "2myd": 14, "2mye": 14, "2nd": 4, "2pkr": [2, 6], "2r": 8, "2spl": 14, "2spm": 14, "2spn": 14, "2spo": 14, "2znk": 8, "2zq2": 9, "3": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "30": [1, 4, 8, 9, 10, 11, 16], "300": 1, "3000": 4, "3010": 1, "3039": 4, "3047": 4, "3049": 4, "3057": 4, "3064": 4, "3084": 4, "3090": 1, "309966": 12, "31": [1, 4, 12, 13], "310": 2, "311": 2, "3110": [1, 4], "312": 2, "313": 2, "313216": 12, "314": 2, "3142": 4, "315": 2, "31637950083089": 4, "3169": 4, "3186": 4, "31u": 8, "32": [1, 4, 9], "320": 12, "3206": 4, "3220": 1, "3232": 4, "3247": 4, "3250": 1, "3253": 4, "3254": 4, "3268": 4, "3283": 4, "3287": 4, "3295": 4, "33": [1, 4, 12, 13], "3314": 4, "3318": 4, "3331": 4, "33333333333333": 11, "3342": 4, "3345": 4, "3360": 1, "3367": 4, "3372": 4, "3373": 4, "3380": 4, "339": 9, "3393": 4, "3399": 4, "34": [1, 4, 9, 10, 11, 12, 13], "340": 3, "3400": [1, 4], "3420": [1, 4], "34244478125714295": 12, "342445": [12, 13], "3427": 4, "3428": 4, "3440": 1, "3447": 4, "3456": 4, "3462": 4, "3485": 4, "3488": 4, "3495": 4, "35": [1, 4, 9], "3515": 4, "352183": 12, "3524": 4, "353": 9, "3530": 1, "355": 9, "3590": 1, "36": [1, 4, 13], "3600": 1, "3603": 4, "3604": 4, "3609": 4, "3617": 4, "362310": [12, 13], "3626": 4, "3630": 4, "3632": 4, "364301": 12, "3668": 4, "3683": 4, "3691": 4, "369177": 12, "3692": 4, "37": [1, 4], "3704": 4, "3710": 1, "3717": 4, "3732": 4, "373572": 12, "3740": 1, "3744": 4, "3754": 4, "3763": 4, "3764": 4, "3772": 4, "3783": 4, "3795": 4, "38": [1, 4, 9], "3825": 4, "3829": 4, "3837": 4, "3851": 4, "3889": 4, "3891": 4, "39": [1, 4, 9], "390": 9, "3900": 1, "3910": 1, "3914": 4, "3976": 4, "3980": 1, "3982": 4, "3989": 4, "3d": [2, 7, 9], "3f": 13, "3h3": 4, "3iva": [2, 6], "3mba": 14, "3p17": 8, "3shc": 8, "3si3": 8, "3si4": 8, "3sv2": 8, "3vnd": [2, 6], "4": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "40": [1, 4, 11, 13], "400": [1, 4], "400747": 12, "4008": 4, "4020": 1, "4024": 4, "4030": 1, "404": 14, "4040": 1, "405": 12, "4050": 1, "4053": 4, "4062": 4, "4070": [1, 4], "4072": 4, "4076": 4, "41": [1, 4, 13], "4120": 4, "4130": 1, "4139": 4, "417021": [12, 13], "4170212341052633": 12, "4173": 4, "417302": [12, 13], "4179": 4, "4195": 4, "42": [1, 4], "4205": 4, "4213": 4, "4220": 1, "4236": 4, "4244": 4, "4265": 4, "4283": [4, 9], "43": [1, 4, 8], "4337": 4, "433750": 3, "4345": 4, "4350": 1, "4361": 4, "4370": 1, "4390": 1, "4394": 4, "4395": 4, "44": [1, 4, 14], "4401": 4, "4413": 4, "444503": 12, "4453": 4, "4455": 4, "4481": 4, "4482": 4, "4487": 4, "449": 9, "45": [1, 4], "4528": 4, "4529": 4, "453": 9, "4535": 4, "4580": 1, "4590": 1, "4594": 4, "46": [1, 4, 9], "4605": 4, "4609": 14, "4630": 1, "4637": 4, "4641": 4, "4657": 4, "4678": 4, "468796": 12, "4690": 1, "47": [1, 4], "4704346427639096": 12, "470435": [12, 13], "4708": 4, "4718": 4, "473": 9, "4743": 4, "4779": [4, 14], "4782": 4, "4793": 9, "48": [1, 4], "4804": 4, "4810": 1, "4820": [1, 4], "4840": 4, "4846": 4, "485": 3, "4852": 4, "4855": 4, "4857": 4, "4860": 4, "487": 10, "487957": [12, 13], "4888": 4, "49": [1, 4], "490": 4, "4921": 4, "4928": 4, "4936": 4, "4945": 4, "4949": 4, "4958": 4, "4976": 4, "4980": 1, "4990": 1, "4991": 4, "4a64": 14, "4eyr": [2, 6], "4f": [0, 13], "4hhb": [5, 10, 14], "4mba": 14, "4mbn": 14, "5": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15], "50": [1, 4, 8, 11, 12, 13, 14], "500": 10, "500000": 13, "500455": 12, "500934": 12, "501": 9, "5020": 1, "5022": 4, "503140": [12, 13], "5031401632390977": 12, "5040": 1, "5043": 4, "5048": 4, "5051": 4, "5073": 4, "50845964fd08": 14, "5090": 1, "5098": 4, "51": [1, 4], "5104": 4, "5113": 4, "512": 9, "5139": 4, "5140907641142858": 12, "514091": [12, 13], "5165": 4, "5172": 4, "518850": 12, "5191": 4, "52": [1, 4], "5204": 4, "5206": 4, "5211": 4, "522863": [12, 13], "5247": 4, "5260": 1, "5267": 4, "5269": 4, "5281": 4, "5287": 4, "5289": 4, "53": [1, 4, 10], "5310": 1, "5314": 4, "5317": 4, "5322": 4, "5328": 4, "5350": 1, "5354": 4, "5360": 4, "5394": 9, "54": [1, 4], "541": 9, "5420": 1, "542678": [12, 13], "5442": 4, "5453": 4, "5456": 4, "5462": 4, "5469": 4, "5475": 4, "5482": 4, "55": [1, 4, 6, 8], "5507": 4, "5515": 4, "5518": 4, "5534": 4, "5540": 4, "5549": 4, "5559": 4, "556695": 12, "5569": 4, "5590": 1, "56": [1, 4], "5610": 4, "5620": 1, "5623": 4, "5635": 4, "5664": 4, "5683": 4, "5686": 4, "5688": 4, "57": [1, 4, 11], "5706": 4, "5709": 4, "571": 14, "571428571428573": 11, "571429": 13, "5730": 1, "574": 14, "5753": 4, "5770": [1, 4], "5778": 4, "5788": 4, "5793": 4, "5797": 4, "58": [1, 4], "5801": 4, "5805": 4, "5811": 4, "5818": 4, "5819": 4, "5863": 4, "5881": 4, "5890": 1, "5892": 4, "5898": 4, "59": [1, 4], "590": 10, "5903": 4, "5919": 4, "59439795024717": 4, "595": [0, 3, 13], "5964": 4, "5968": 4, "5990": 4, "5eu9": [2, 6], "5mba": 14, "5mbn": 14, "5rsa": 2, "5veu": [2, 6], "6": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 15], "60": [1, 4, 11], "600": [0, 1], "6000": 1, "6009": 4, "6032": 4, "6055": 4, "6065": 4, "6070": 1, "6095": 4, "61": [1, 4, 9], "6103": 4, "6107": 4, "6110": 1, "6119": 4, "6123": 4, "6133": 4, "613302": 12, "6143": 4, "6145": 4, "6152": 4, "6155": 4, "616": 10, "616135": 12, "6162": 4, "6163": 4, "6170": 4, "6171": 4, "6181": 4, "619": 14, "6193": 4, "6199": 4, "62": [4, 14], "621": 3, "6228": 4, "6230": 1, "6241": 4, "62520287388557": 4, "6256": 4, "6259": 4, "628": 9, "6288": 4, "63": [4, 10], "6300": 1, "6309": 4, "6310": [1, 4], "6329": 4, "6330": 1, "6335": 4, "6336": 4, "6380": 4, "64": [4, 10, 14], "6404": 4, "6417": 4, "6420": 1, "6433": 4, "6440": 1, "644208": 7, "6443": 4, "6464": 4, "6465": 4, "6490": 4, "6494": 4, "65": 4, "6509": 4, "6510": 1, "6538": 4, "6554": 4, "655447": 3, "6555": 4, "65734834390893": 13, "6590": 4, "6592": 4, "66": [11, 13], "6601": 4, "6635": 4, "6636": 4, "6642": 4, "6654": 4, "6660": 1, "666666666666668": 11, "66666666666667": 11, "666667": 13, "6670": 4, "668": 14, "6681": 4, "6690": 1, "67": [4, 13], "6716": 4, "6719": 4, "672": 9, "6736": 4, "67402b963e68": 14, "6745": 4, "6749595215280199": 13, "6750": 1, "6751": 4, "6770": 1, "6780": 1, "6814": 4, "6818": 4, "682": 3, "6837": 4, "6850": [1, 4], "6852": 4, "6867": 4, "6884": 4, "6890": 1, "6898": 4, "6924": 4, "6930": 1, "6945": 4, "6948": 4, "6963": 4, "6975": 4, "6977": 4, "6989": 4, "6992": 4, "6999": 4, "6zt7": [2, 6], "7": [4, 6, 8, 9, 11, 12, 13, 15], "70": 13, "700": [1, 10], "7032": 4, "7072": 4, "7091": 4, "7104": 4, "7110": 4, "7125": 4, "7130": 1, "7148": 4, "7157": 4, "7169": 4, "7172": 4, "7191": 4, "7219": 4, "7223": 4, "7251": 4, "7256": 4, "7266": 4, "7270": 1, "7284": 4, "7301": 4, "7307": 4, "7317": 4, "7354": 4, "7358": 4, "7380": 1, "7384": 4, "7387": 4, "7390": [1, 4], "7393": 4, "7397": 4, "74": 14, "7422": 4, "746525": 3, "7484": 4, "75": [11, 12], "7518": 4, "7520": 4, "7527": 4, "7548": 4, "755": 9, "7560": 1, "7571": 4, "7574": 4, "7583": 4, "759": 3, "76": 11, "7605": 4, "7613": 4, "761905": 13, "7626": 4, "764705882352942": 11, "7660": 4, "769": 2, "7698": 4, "7725": 4, "773205021308": 14, "7733": 4, "7750": 1, "7751": 4, "7780": [1, 4], "7790": 1, "7796": 4, "7799": 4, "7800": 1, "7810": 1, "7814": 4, "78260869565217": 11, "7833": 4, "7850": 1, "7852": 4, "7857": 4, "7860": 1, "7865": 4, "7891": 4, "7897": 4, "7911": 4, "7914": 4, "7925": 4, "7930": 1, "7932": 4, "7937": 4, "7955": 4, "7970": 1, "799": 3, "7dd": 14, "7tim": [2, 6], "8": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13], "80": [8, 13], "800": [1, 10], "8008": 4, "8013": 4, "801416": [12, 13], "8020": 1, "8041": 4, "8050": 4, "8088": 4, "8099": 4, "8114": 4, "8129": 4, "8133": 4, "8142": 4, "8143": 4, "817f2b57": 14, "8216": 4, "8220": 4, "8233": 4, "8240": 1, "8244": 4, "8249": 4, "8251": 4, "8252": 4, "8260": 4, "8268": 4, "8270": [1, 4], "8274": 4, "829652": [12, 13], "83": [10, 11], "8300": 4, "8319": 4, "8320": 1, "8326": 4, "8350": 1, "8353": 4, "8357": 4, "8360": 1, "8367": 4, "8371": 4, "8390": 1, "8394": 4, "840": 9, "8418": 4, "8426": 4, "8454": [0, 4], "8454285714285716": [0, 3], "847": 14, "8479": 4, "8482": 4, "8493": 4, "85": 6, "8506": 4, "8520": 4, "8565": 4, "8599": 4, "86": 11, "8627": 4, "8640": 1, "8643": 4, "8649": 4, "8652": 4, "8688": 4, "8690": 1, "87": 13, "8711": 4, "8720": 1, "8736": 4, "8738": 4, "8767": 4, "8770": 4, "8798": 4, "8816": 4, "8840": 1, "88494688682022": 4, "8860": 4, "8864": 4, "8880": 1, "8885": 4, "8888": 4, "8892": 4, "8894": 4, "89": 14, "8915": 4, "8920": 4, "8941": 4, "8945": 4, "8976": 4, "8983": 4, "8gch": 5, "9": [1, 4, 6, 8, 9, 12, 13], "90": [4, 8, 10, 13], "900": 10, "9000": 1, "9020": 1, "9021": 4, "9030": 4, "9047": 4, "9070": 1, "9084": 4, "909091": 13, "91": 6, "9100": 1, "9113": 4, "9116": 4, "9120": 4, "9127": 4, "9137": 4, "9140": 1, "9149": 4, "9151": 4, "9160": 4, "9181": 4, "9189": 4, "919": 9, "9190": 4, "9201": 4, "9216": 4, "9225": 4, "9228": 4, "92307692307692": 11, "9240": 1, "9243": 4, "9250": 1, "9257": 4, "9265": 4, "9273": 4, "9280": 1, "9285": 4, "93": 10, "9300": 1, "9315": 4, "93229707347896": 4, "9330": 1, "9336574705860224": 14, "9347193058098741": 14, "935": 3, "93574367649991": 4, "9364": 4, "9378": 4, "9387": 4, "9388": 4, "9417": 4, "9431": 14, "9432": 4, "9441253498945321": 14, "9450": 4, "9452": 4, "9458": 4, "9474": 4, "9484": 4, "9490": 1, "9491": 4, "95": [0, 13], "950": 9, "9509": 4, "951": 10, "9517": 4, "9520": [1, 4], "9535": 4, "954703": 3, "9550": 4, "9560": 1, "9561": 4, "95652173913044": 11, "9565217391305": 11, "9570": 1, "9591093723128088": 14, "9599": 4, "9600": 1, "9610": 4, "9622": 4, "9630": 1, "9660": 1, "9666": 4, "9670": [1, 14], "9680": 4, "9700": 1, "9714": 4, "972362877827634": 14, "9724": 4, "9747": 4, "9748": 4, "9753": 4, "9760": 1, "9765": 4, "9772": 4, "9780": [1, 4], "9812": 4, "9824": 4, "9830": 4, "9833": 4, "9837": 4, "9859877949560755": 14, "9864": 4, "9881": 4, "9893": 4, "9898": 4, "9899": 4, "99": [2, 10], "9903": 4, "9911": 4, "9923": 4, "9927": 4, "994690398528738": [0, 3], "9948": 4, "9996": 4, "99p": 8, "9bda": 14, "A": [0, 1, 3, 4, 8, 9, 10, 12, 13, 14], "AND": 2, "AT": 14, "As": [0, 1, 2, 5, 8, 11, 12, 14], "At": [4, 9, 13], "Be": [5, 8, 12], "But": [6, 11], "By": [0, 9, 12], "For": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "IN": 2, "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15], "In": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "It": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "Its": 14, "No": 9, "OF": [2, 14], "On": [1, 5], "One": [2, 4, 5, 6, 10, 14], "Or": 2, "THE": 14, "THe": 10, "That": [0, 8], "The": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16], "Then": [2, 3, 5, 6, 9, 10, 13, 14, 15], "There": [0, 1, 2, 3, 5, 8, 10, 11, 12, 13, 14], "These": [0, 1, 2, 3, 9, 10, 12, 13], "To": [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "WITH": 2, "With": [4, 13], "_": [0, 3, 10, 11, 12, 13], "_cell": 10, "_citat": 10, "_df": [3, 12], "_entiti": 10, "_entity_poli": 10, "_entity_src_gen": 10, "_i": 13, "_ideal": 1, "_io": 8, "_m": 13, "_name": 4, "_w": 5, "_x": 5, "_y": 5, "_z": 5, "a595": [0, 3], "a_": [0, 3], "a_dict": 13, "abbrev": 2, "abbrevi": [0, 1, 2, 3, 8], "abil": [8, 12], "abl": 15, "about": [0, 1, 4, 8, 9, 10, 12, 13, 14, 15], "abov": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "absent": 9, "absorb": [0, 3, 12], "abspath": 2, "accept": [3, 8, 13], "access": [0, 1, 2, 3, 6, 11], "accomplish": 2, "accord": 1, "accur": 13, "aceton": 10, "achiev": 2, "acid": [2, 9, 14], "act": [1, 2], "actinobacterium": 14, "action": [6, 11], "activ": 1, "actual": [1, 2, 3, 4, 6, 9, 13], "ad": [0, 3, 4, 9, 10, 13], "add": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "add_compon": 9, "add_represent": 9, "addh": [4, 9], "addit": [5, 6, 8], "address": [2, 3, 11, 14], "adjust": 13, "advanc": 5, "advantag": [5, 6, 9], "advisor": 6, "affect": 8, "after": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13], "again": [0, 1, 2, 4, 9, 10], "ahead": [2, 6], "ahm": 0, "aim": 1, "al": 9, "ala": [2, 9], "alcohol": 1, "algebra": 3, "alkalin": 12, "all": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15], "allchem": [1, 4, 9], "allow": [2, 9, 10, 11, 13, 14], "almost": [3, 5], "along": 6, "alongsid": 0, "alpha": 0, "alphanumer": 1, "alreadi": [2, 4, 6, 12, 16], "also": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "alter": 9, "altern": [1, 9], "altloc": 9, "alwai": [2, 3, 8, 9, 11, 14], "am": [1, 4], "amin": 9, "amino": [2, 8], "among": 3, "amount": [2, 6, 8], "an": [0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14], "analog": [8, 12], "analysi": [0, 2, 3, 8, 9, 11, 12, 13, 14, 15], "analyz": [0, 2, 3, 6, 8, 9, 12], "angle_alpha": 10, "angle_beta": 10, "angle_gamma": 10, "angstrom": [6, 14], "ani": [1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "anim": 0, "anis": 9, "annot": [0, 12, 13, 14], "anoth": [1, 5, 6, 8, 11, 12, 14], "answer": 16, "antibodi": 5, "antigen": 5, "anyth": [5, 6, 11], "anywher": 2, "ap_kin": [2, 8, 12], "ap_kin_df": 12, "ap_kinet": [2, 8], "apb": 9, "api": 1, "app": 5, "appear": [0, 4, 5, 8, 9, 12, 13, 15], "append": [2, 3, 4, 6, 11, 12, 14], "appli": [1, 3, 4, 9, 12, 15], "applic": 14, "approach": [0, 4, 5, 6], "appropri": 15, "apr": 1, "ar": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "architectur": 10, "area": 9, "arg": 2, "argument": [0, 2, 8, 9, 12, 13, 14], "aromat": 4, "around": [0, 3, 13], "arrai": 13, "arrang": 8, "asc": 14, "ascend": [8, 14], "ask": [0, 14], "asn": 2, "asp": 2, "assai": [0, 3, 12], "assembli": [1, 14], "assembly_count": 14, "assembly_id": 14, "assign": [1, 2, 3, 5, 6, 8, 13, 16], "assignbondordersfromtempl": 9, "assist": 10, "associ": [1, 13, 14], "atom": [1, 2, 4, 6, 9, 10, 14], "atom_list": 10, "atomgroup": 9, "atp": 7, "atp3d": 4, "attach": [4, 8], "attempt": [4, 9, 13], "attent": [8, 11], "attr": [1, 9], "attract": 13, "attribut": [1, 9, 10, 14], "audit_author": 14, "autodock": 1, "autom": [2, 9], "automat": [6, 11], "avaiabl": 1, "avail": [0, 3, 5, 9, 12], "ax": [0, 12], "axi": [0, 13], "aziz": 0, "b": [4, 8, 9, 12, 13], "b01": 8, "b03": 8, "b04": 8, "back": [8, 9, 11], "background": 5, "backslash": 0, "bad": 9, "ball": 5, "bank": [1, 6, 8, 9], "bar": 15, "base": [0, 1, 3, 4, 8, 9, 12, 13, 14], "basenam": 6, "baseurl": 1, "basic": 11, "bbox_inch": 0, "bca": 3, "becaus": [0, 3, 6, 9, 10, 11, 13, 14], "becom": [11, 14], "been": [2, 11], "befor": [0, 2, 4, 6, 8, 9, 10, 12], "begin": [2, 3, 9, 10], "being": [2, 3, 9, 11, 14, 16], "belong": 10, "below": [0, 1, 2, 4, 9, 11, 14, 15], "beneath": 6, "benzen": [4, 9], "best": [0, 2, 3, 4, 13], "better": [9, 10, 11], "between": [1, 3, 6, 8, 14], "beyond": 14, "bicarb": 3, "bicarbon": 3, "bind": [1, 10, 14], "binding_site_investig": [2, 8], "bio": [10, 14], "biochemist": [2, 7, 8, 9, 10, 11, 15], "biochemistri": [2, 3, 5, 7, 15, 16], "bioinformatician": 10, "biolog": 1, "biologi": [2, 15, 16], "biologist": 10, "biomolecul": 9, "biomolecular": 9, "biopython_mmcif": [2, 8], "biotechnologi": 5, "bit": [0, 1, 5, 8, 9, 13, 15], "blank": 11, "block": [2, 11, 13], "blood": 1, "blue": 13, "bn": 5, "bo": 13, "bodi": [5, 13], "bold": 4, "bond": [1, 4, 9], "book": 2, "bore": 2, "both": [2, 8, 10, 11, 13], "bound": [0, 1, 2, 5, 9, 10], "bovin": 8, "box": [0, 5, 15], "brace": [0, 6, 13], "bracket": [3, 11, 13], "bradford": 3, "bradford_plot": [0, 2, 8], "bradford_plot2": [0, 2, 8], "bradford_plot3": [2, 8], "bradi": 13, "branched_entity_count": 14, "break": [1, 6, 13, 16], "brenda": [1, 6], "bridg": 9, "bring": 5, "broader": 1, "brows": 10, "browser": [1, 14, 15], "bu": 5, "bud": 10, "buffer": [1, 12], "bufferediobas": 8, "build": [3, 6, 8, 12], "built": [8, 11, 12], "burk": 3, "button": 15, "butyl": 4, "c": [1, 4, 8, 9, 10, 12], "c1": [1, 4], "c10": 1, "c11": 1, "c12": 1, "c13": 1, "c14": 1, "c14a13u": 9, "c14b13u": 9, "c15": 1, "c16": 1, "c17": 1, "c18": 1, "c19": 1, "c1c": 4, "c1ccc": 4, "c1cccc": 4, "c1ccccc1": 4, "c1m": 8, "c2": 1, "c20": 1, "c21": 1, "c23h35n5o2": 4, "c24": 4, "c2a": 8, "c2c": 4, "c3": [1, 4], "c3m": 8, "c4": 1, "c5": 1, "c6": 1, "c7": 1, "c8": 1, "c8h10n4o2": 4, "c9": 1, "c_rates_df": 13, "c_xdata": 13, "c_ydata": 13, "ca": 9, "cache_d": 8, "caffein": 4, "calcul": [0, 3, 8, 9, 11, 13], "calibr": 0, "call": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "callabl": 13, "came": 6, "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "capit": [2, 6, 12], "captur": [5, 7], "carbamimidoylbenzyl": [1, 4, 8], "carbohydr": 1, "carbon": 4, "care": [5, 11], "carefulli": [8, 11], "carri": 10, "case": [2, 3, 5, 6, 8, 9, 12, 13], "cast": [2, 11], "catalyst": 1, "catalyz": [1, 13], "categori": 10, "catodon": 10, "caus": [5, 13], "caveat": 2, "cb": 9, "cc": 4, "cc1": 4, "ccc": 4, "ccc1": 4, "cd": 9, "ce": 9, "cell": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14], "center": [5, 9], "central": 9, "certain": [5, 10, 13], "certainli": 0, "cfile": 1, "cfileloc": 1, "cfileurl": 1, "cg": 9, "ch3": 4, "chain": [9, 10], "chang": [0, 2, 3, 4, 5, 6, 11, 12, 13, 14], "channel": 15, "chapter": [2, 3, 7], "charact": [1, 4, 6, 10, 11], "character": 10, "characterist": 1, "charli": [3, 8, 12], "chart": 0, "chd": 1, "check": [1, 3, 9, 14, 15], "checkbox": 15, "chem": [1, 4, 9], "chem_comp": 1, "chemic": [1, 4, 5, 10], "chemid": 1, "cheminformat": [1, 4], "chemist": [3, 8, 12], "chemistri": [1, 4], "chlorophenyl": 8, "chloropyridin": 8, "choic": 4, "cholesterol": 1, "choos": [1, 5, 9, 11, 13, 15], "chunksiz": 8, "chymo_mm_data": [2, 8, 12, 13], "chymo_mm_df": 12, "chymo_rates_df": 12, "chymotrypsin": [12, 13], "chymotrypsin_kinet": [2, 8, 12], "cid": 7, "cif": [2, 10, 14], "circl": [10, 13, 15], "cis_peptide_count": 14, "citat": [1, 14], "cite": 9, "class": [6, 14], "classif": 1, "classifi": 1, "clear": 10, "clear_represent": 9, "clearli": [11, 13], "click": [1, 5, 11, 14, 15], "clinic": 2, "close": [2, 6, 11], "clot": 1, "cm": 12, "cmo": 14, "cn": 4, "cn1c": 4, "cnc": 4, "cnc3ccccccc3": 4, "cnd": 1, "coa": 1, "coc": 4, "cod": 1, "code": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "coder": 3, "coeffici": 12, "colleagu": 6, "collect": [0, 3, 4, 8, 10, 12, 14], "colon": [2, 5, 13], "color": [5, 9], "colorschem": 9, "column": [0, 4, 8, 12], "com": 4, "combin": [1, 10, 14], "combination_count": 14, "combination_str": 14, "come": [6, 15], "comma": [2, 8, 11], "command": [0, 1, 2, 3, 4, 6, 8, 9, 12], "comment": [8, 11], "commerci": 13, "commis": 1, "commiss": 6, "common": [2, 3, 4, 10, 11, 14], "common_name_1mbn": 10, "commonli": [2, 10, 14], "commun": [4, 14], "compar": [11, 13], "complet": [2, 3, 4, 5, 6, 8, 9, 12, 13, 15], "complex": [0, 2, 3, 9], "complic": 14, "compnd": [2, 6], "compon": [1, 2], "compos": 10, "composit": 10, "compound": 7, "compress": 8, "comput": [2, 3, 4, 6, 8, 10, 11, 12, 13, 15], "compute2dcoord": 4, "conc_list": 11, "concentr": [0, 8, 11, 12, 13], "concentration_nm": 11, "concern": 4, "conda": 15, "condit": [3, 10, 11, 12], "conditon": 10, "confid": 0, "confirm": 12, "conform": 4, "confus": 6, "consequ": 11, "consid": [4, 5, 10], "consist": [1, 10, 14], "constant": 13, "constraint": 4, "consum": [5, 6], "contain": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "contains_phras": 14, "content": [1, 2, 4, 6, 8, 13], "context": [2, 6], "continu": 3, "control": [1, 4, 5, 6, 9, 13, 14], "conveni": [8, 9], "convent": [3, 4], "converg": 4, "convers": [1, 4, 9], "convert": [1, 6, 8, 9, 10, 11, 14], "cookbook": 4, "cool": 5, "coordin": [4, 8, 9, 10, 12], "cop": 4, "copi": [5, 11], "core": 14, "corei": [8, 12], "corner": [0, 11, 15], "correct": [1, 3, 4, 13], "correctli": [2, 11], "correl": 2, "correspond": [9, 10, 15], "could": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14], "count": [2, 6, 8, 11, 13, 14], "counter": 14, "cours": 3, "covari": 13, "cover": [3, 11, 15, 16], "cpl": 5, "creat": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16], "creating_plots_in_jupyter_notebook": [2, 8], "creation": 11, "critic": 7, "crucial": 10, "crystal": [2, 9, 10, 14], "crystallograph": 10, "crystallographi": 9, "csv": [0, 2, 8, 12, 13], "curli": [11, 13], "current": [0, 1, 2, 6, 8, 11, 14], "curv": [0, 11, 12, 13], "cut": [6, 10], "cutoff": 14, "cutoff_dist": [10, 14], "cy": 2, "cycl": 12, "cyclooctylglycyl": [1, 4], "cylind": 5, "d": [2, 8, 12, 14], "d744": 14, "dai": 16, "data": [0, 1, 2, 4, 6, 9, 10, 15], "databas": [1, 10, 14], "datafil": [6, 8, 12, 13], "datafram": [0, 13], "dataset": [0, 3], "datatyp": [0, 3], "date": 14, "date_pars": 8, "dayfirst": 8, "dc4f4404": 14, "dch": 8, "deal": 10, "debump": 9, "decim": [0, 8, 13], "declar": [5, 11, 13], "deeper": [1, 3, 4, 13], "def": [5, 9, 13], "default": [0, 1, 2, 5, 9, 13, 15], "defin": [1, 2, 3, 4, 5, 9, 10, 11, 13, 14], "definit": [5, 9], "degre": 9, "dehydrogenas": 1, "delai": 0, "delet": 12, "delim_whitespac": 8, "delimit": [2, 8], "demonstr": [11, 13, 14], "deoxyhaemoglobin": 14, "depend": [0, 2, 3, 13], "deposited_atom_count": 14, "deposited_deuterated_water_count": 14, "deposited_hydrogen_atom_count": 14, "deposited_model_count": 14, "deposited_modeled_polymer_monomer_count": 14, "deposited_nonpolymer_entity_instance_count": 14, "deposited_polymer_entity_instance_count": 14, "deposited_polymer_monomer_count": 14, "deposited_solvent_atom_count": 14, "deposited_unmodeled_polymer_monomer_count": 14, "der": 9, "desc": 14, "describ": [0, 2, 3, 9, 10, 13, 15], "descript": [1, 10, 11], "descriptor": 13, "design": [2, 8, 9, 10, 12, 16], "desir": [2, 3, 4, 5, 6], "desktop": [1, 2, 15], "detail": [0, 1, 10, 13], "determin": [1, 2, 3, 10, 11], "deviat": 13, "diag": 13, "dialect": 8, "dialog": 5, "diaminomethyl": 8, "dict": 8, "dict_kei": 14, "dictionari": [1, 10, 13, 14], "dictionary_nam": 14, "did": [2, 4, 6, 9, 12], "didn": [0, 6, 11], "differ": [0, 2, 4, 5, 6, 8, 10, 11, 13, 14], "difficult": [9, 15], "diffract": [2, 8, 14], "diffrn": 14, "diffrn_resolution_high": 14, "dig": [4, 13], "digest": 1, "dimension": [8, 10, 12, 13], "dimer": 2, "dion": 4, "direct": [13, 14], "directli": [2, 10, 15], "directori": [1, 2, 6, 8, 9, 12, 14], "discoveri": 4, "discuss": 13, "disjoint": 13, "displai": [0, 2, 3, 4, 12, 14], "distal": 10, "distanc": [10, 14], "distinguish": 13, "disulfid": 9, "disulfide_bond_count": 14, "divid": [2, 11, 12], "dna": [5, 9, 10], "do": [0, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16], "doc": 9, "dock": [1, 9], "document": [9, 13, 14], "doe": [4, 5, 6, 8, 11, 13, 14, 15, 16], "doesn": [6, 11], "dolinski": 9, "dollar": 0, "don": [2, 10, 11, 15], "done": [1, 4, 6, 10, 14], "dot": [0, 2, 3, 6, 8], "doubl": [3, 4, 15], "doublequot": 8, "down": 15, "download": [4, 6, 15], "dozen": 1, "dpi": 0, "draw": [1, 4], "drawback": 10, "drop": 15, "dropdown": [5, 15], "drug": 2, "dtype": [3, 8, 12, 13], "dump": 14, "dure": [4, 10, 15], "dynam": 9, "e": [1, 4, 6, 8, 9, 13], "each": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16], "eadi": 3, "earli": 5, "earlier": [3, 6, 11, 12, 13], "easi": [0, 2], "easili": [0, 4, 6, 8, 12, 13], "ec": [1, 6], "ec_class": 6, "ec_class_ligands_search": [2, 4, 8], "ec_lin": 6, "ecnumb": 1, "editor": [2, 6, 8], "educ": 4, "effect": 4, "effici": 10, "either": 6, "electrochemistri": 4, "element": [2, 4, 8, 10, 11, 12, 14], "els": 2, "embedmolecul": 4, "emphas": 0, "emploi": [1, 6], "empti": [2, 4, 6, 12, 14], "enabl": [1, 3, 4, 5, 10, 13], "enclos": [0, 6, 8], "encod": 8, "encount": [3, 8, 13], "end": [0, 2, 3, 4, 6, 8, 11, 12, 14], "endopeptidas": 1, "endpoint": 14, "energi": [1, 4], "engin": [3, 8, 13], "english": 0, "enorm": 2, "enough": 1, "ensur": 12, "enter": [1, 2, 5, 8, 11, 15], "entir": 1, "entiti": [1, 10, 14], "entity_count": 14, "entri": [1, 2, 4, 5, 10, 14], "entry_id": 10, "enumer": 2, "env": 9, "environ": 15, "enzym": [3, 5, 6, 8, 12, 13], "enzyme_kinet": [2, 8], "equal": [2, 11, 13], "equat": [0, 11], "error": [0, 2, 3, 9, 12], "error_bad_lin": 8, "escapechar": 8, "especi": [5, 15], "et": 9, "etc": [8, 9, 12], "ethoxi": 8, "evalu": 11, "evan": 13, "even": [2, 5, 9, 11, 14], "ever": [10, 15], "everi": [3, 6, 11], "everyth": [1, 3, 11], "exact": [2, 3, 5, 11], "exactli": [1, 2, 11], "examin": 6, "exampl": [0, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15], "excel": [3, 8, 12], "excerpt": [9, 10], "excit": 13, "execut": [0, 1, 2, 4, 5, 6, 11, 13], "exercis": [2, 6], "exist": [4, 6, 8, 11, 12, 16], "exist_ok": [1, 9], "exit": 11, "exp_type_lin": 2, "expand": [3, 9], "expect": [10, 12, 13, 14], "experi": [2, 12], "experiment": [2, 3, 9, 10, 12, 13, 14], "experimental_method": 14, "experimental_method_count": 14, "explain": [1, 4, 11], "explicit": 4, "explor": [0, 2, 3, 4, 5, 6, 7, 8, 12, 14], "export": [0, 12], "express": 10, "exptl": [1, 14], "exptl_cryst": 14, "extens": [4, 5], "extinct": 12, "extra": 0, "extract": [2, 5, 6, 9, 14], "f": [0, 1, 6, 9, 12, 14], "facet": 14, "fact": [5, 13], "factor": [5, 10], "fail": 5, "fals": 8, "false_valu": 8, "famili": 1, "familiar": [5, 6, 8, 12, 13, 14], "far": [7, 12], "farili": 14, "fashion": 4, "favorit": 5, "fe": [10, 14], "featur": [1, 4, 5, 14], "feedback": 16, "few": [0, 2, 5, 8, 9, 10, 11, 14, 15, 16], "field": 9, "fifth": 2, "figsiz": 0, "figur": [0, 11], "file": [0, 3, 4, 5, 8, 9, 12, 13, 15, 16], "file1": 1, "file_format": 14, "file_loc": 6, "file_nam": 6, "file_pars": [2, 8], "file_text": 1, "filehandl": [2, 6, 12, 13], "filenam": [0, 1, 6], "filepath": [2, 6], "filepath_or_buff": 8, "fill": [1, 9], "filter": 10, "final": [0, 3, 4, 12], "find": [0, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "finder": 15, "finger": 14, "fingerprint": 9, "finish": [6, 11], "first": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16], "first_fil": 6, "first_result": 14, "fit": [0, 3, 6, 12], "fit_i": 13, "five": [2, 3, 8, 12], "fix": 12, "flexibl": 2, "float": [0, 2, 3, 6, 11, 12, 13], "float64": [3, 8, 12, 13], "float_precis": 8, "focu": [1, 4], "folder": [0, 1, 2, 3, 4, 6, 8, 12, 14, 15], "follow": [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15], "forc": 9, "forcefield": 9, "forg": 15, "forget": 2, "forgot": 6, "form": [5, 8, 11, 16], "formalcharg": 9, "format": [0, 1, 2, 3, 4, 5, 8, 10, 12, 14], "formula_weight": [1, 10], "forwardref": 8, "found": [0, 1, 2, 3, 8, 9, 10, 12, 14], "four": [1, 4, 8], "fourth": 4, "fp": 9, "fqevstjzsa": 4, "frac": [3, 13], "frame": 12, "free": [4, 8, 12], "frequent": 5, "from": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15], "from_mda": 9, "front": [6, 9], "full": [1, 2, 10, 14], "full_text": 14, "fulli": 0, "fun": 8, "function": [0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 14], "function_nam": [5, 6, 13], "funtion": [6, 8], "fusca": 14, "futur": [2, 3, 4, 8, 11], "g": [0, 1, 4, 8, 9, 13], "gain": [3, 6], "gave": 4, "geeksforgeek": 13, "gel": 13, "genbank": 10, "gene": 10, "gene_src_common_nam": 10, "gener": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15], "get": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16], "get_atom": [10, 14], "get_coord": [10, 14], "get_id": 10, "get_par": [10, 14], "get_resnam": [10, 14], "get_structur": [10, 14], "getcwd": [2, 7, 8], "github": [1, 3, 4, 8, 12], "give": [2, 3, 4, 6, 8, 11, 14], "given": [1, 2, 15], "gln": [2, 9], "glob": 6, "glu": 2, "gly": 2, "go": [0, 3, 4, 5, 6, 10, 11, 13, 14, 15], "goal": [4, 6, 8], "goe": [1, 11], "good": [2, 3, 6, 11], "googl": 8, "got": 12, "grad": 3, "grai": 5, "graph": [0, 13], "graphic": 2, "great": [2, 5, 15], "greater": [1, 11], "greek": 0, "green": 15, "grei": 5, "grip": 10, "ground": 3, "ground_wat": [2, 3, 8], "group": [0, 1, 4, 5, 9, 10, 11, 14, 16], "guanidino": 4, "guess": 9, "guru99": 3, "h": [1, 4, 8, 12], "h1": 1, "h10": [1, 4], "h11": 1, "h12": 1, "h13": 1, "h14": 1, "h15": 1, "h16": 1, "h17": 1, "h18": 1, "h19": 1, "h2": 1, "h20": 1, "h21": 1, "h22": 1, "h23": 1, "h24": 1, "h25": 1, "h26": 1, "h27": 1, "h28": 1, "h29": 1, "h3": [1, 4], "h30": 1, "h31": 1, "h4": 1, "h4h": 4, "h5": 1, "h6": 1, "h7": 1, "h8": 1, "h9": 1, "h_hem": 10, "h_oh": 10, "ha": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "had": [4, 6], "half": 13, "hand": [0, 1, 15], "handheld": 3, "handi": 2, "handl": [1, 2, 6, 11], "happen": [4, 11, 13], "hard": [3, 14], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "he": [8, 12], "head": [3, 8, 12, 13], "header": [0, 2, 3, 8, 9, 11], "heavi": 1, "help": [0, 1, 2, 3, 6, 8, 13, 16], "helper": 9, "hem": [10, 14], "heme": [5, 10, 14], "hemoglobin": 14, "henri": 5, "here": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16], "hetatm": 9, "hetero": 14, "heterogen": 2, "heteromer": 14, "hetnam": 2, "hetnam_lin": 2, "hetnam_list": 2, "hi": [2, 3, 5, 8, 10, 12, 14], "hierarch": [1, 6, 10], "hierarchi": 1, "high": [0, 2, 9, 13], "highest": 3, "highli": 4, "highlight": 4, "hint": 10, "histidin": 10, "hit": 13, "hiv": [2, 10], "hmg": 1, "hofste": 3, "hoh": 14, "hold": [2, 4, 12], "home": [1, 2, 7, 9, 16], "host": [10, 14], "houghton": 3, "hour": 16, "how": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "howev": [2, 3, 4, 8, 10, 14, 15], "http": [1, 4, 9, 14], "human": [8, 9, 14], "hundr": 13, "hydrogen": [4, 9], "hydrolas": [1, 2], "hydrophob": 9, "hydroxi": 8, "hydroxid": 10, "i": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "i48": 8, "icon": 15, "id": [1, 6, 8, 10, 14], "idea": 9, "ideal": [9, 13], "ident": 0, "identifi": [1, 4, 5, 7, 8, 10, 11, 12, 14], "ignor": [9, 12], "il": 2, "illustr": 5, "iloc": 8, "imag": [0, 1, 2, 8, 10, 15], "imagin": [4, 5], "immut": 11, "implement": [3, 5], "import": [0, 1, 2, 4, 5, 7, 9, 10, 11, 13, 14], "improv": 9, "inactiv": 3, "inch": 0, "inchi": 4, "inchikei": 4, "includ": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 16], "inclus": 0, "incorpor": 5, "incorrect": 11, "increas": [0, 10, 12], "indent": [5, 6, 11, 13], "independ": [3, 5, 6, 13], "independent_vari": [5, 13], "index": [3, 8, 10, 11, 12], "index_col": 8, "indic": [0, 4], "individu": [1, 2, 10, 12, 15], "infer": 8, "infer_datetime_format": 8, "info": [9, 14], "info_4hhb": 14, "inform": [1, 2, 5, 6, 7, 9, 10, 11, 12, 13], "inhibitor": 2, "initi": [1, 6, 8, 11, 13, 14], "initial_release_d": 14, "inlin": 0, "inner": 6, "inplac": [8, 12], "input": [4, 6, 8, 9, 10, 13], "insert": [0, 1, 6, 13], "insid": [2, 6, 9, 11], "inspect": [4, 9, 13], "instal": [5, 11], "instanc": [9, 14], "instead": [1, 2, 5, 10, 11, 14], "instruct": [6, 15, 16], "int": [2, 9, 11], "integ": [8, 11, 12], "integr": [3, 5], "intend": 1, "intent": [1, 16], "inter_mol_covalent_bond_count": 14, "inter_mol_metalic_bond_count": 14, "interact": [0, 5, 9, 10, 11], "intercept": [0, 3, 12], "interest": [1, 2, 4, 5, 7, 9, 10, 14], "interfac": [1, 9, 14], "interface_area": 14, "interface_charact": 14, "interface_id": 14, "interface_info": 14, "intern": 1, "internet": [14, 15], "interpret": [4, 11], "interv": 0, "intestin": 1, "introduc": [0, 2, 3, 6, 8, 11, 16], "introduct": [2, 8, 16], "invalid": 9, "involv": [1, 9], "io": 8, "ion": [1, 10], "ipynb": [2, 8], "ipynb_checkpoint": [2, 8], "iqb": 9, "iron": [10, 14], "iron_atom": 10, "iron_coord": 10, "iron_residu": [10, 14], "isol": [2, 9], "isomer": 4, "isomeras": 1, "isopropyl": 4, "issu": 3, "item": [1, 8, 10, 11, 12, 14], "iter": [2, 4, 8, 11, 14], "its": [1, 2, 7, 11, 14, 15], "iupac": [1, 4], "ix": 10, "jakubowski": 5, "janash": 9, "javascript": 5, "join": [0, 2, 3, 6, 8, 12, 13, 14], "journal": 1, "journei": 4, "json": 14, "jupyt": [1, 2, 3, 4, 5, 8, 9, 13, 16], "jupyterlab": [5, 15], "jupyterlab_3dmol": 5, "jurru": 9, "just": [1, 2, 3, 6, 8, 9, 11, 12, 13, 14], "k": [1, 13], "k_m": 13, "keep": [2, 3, 6, 14, 15, 16], "keep_date_col": 8, "keep_default_na": 8, "kei": [10, 14], "kelvin": 2, "key_nam": 14, "keyboard": 15, "keystrok": 2, "keyword": [2, 5, 9, 10, 13, 14], "khelifi": 0, "kindli": 3, "kinet": [3, 8, 12, 13], "kinetics_df": 8, "kinetics_fil": 8, "km": [8, 11, 13], "know": [1, 2, 8, 9, 11], "knowledg": 10, "known": 10, "l": [1, 3, 4, 8], "lab": 3, "label": [0, 1, 8, 13, 15], "labextens": 5, "laboratori": [8, 12], "lack": 1, "languag": [4, 11, 15], "larg": [1, 9, 10], "larger": [0, 1, 3, 10], "last": [0, 1, 2, 4, 6, 8, 9, 11, 13], "later": [1, 6, 10, 11], "latex": [0, 13], "launch": 15, "layout": 12, "learn": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "least": [1, 9, 12, 13], "leav": 11, "left": [2, 11, 12, 15], "legend": 13, "len": [1, 2, 10, 11], "length": [9, 11], "length_a": 10, "length_b": 10, "length_c": 10, "less": [1, 11], "lesson": [0, 2, 3, 6, 8, 11, 12, 14], "let": [0, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14], "letter": [0, 1, 2, 5], "leu": 2, "leucyl": 8, "level": [0, 1, 3], "li": [8, 12], "lib": 9, "libari": 1, "librari": [0, 2, 4, 9, 10, 12, 13, 14], "library_nam": 6, "libretext": 5, "lig_converg": 4, "lig_list": 9, "lig_view": 9, "ligand": [2, 5, 8], "ligand13u": [2, 4, 8], "ligand13u_h": 4, "ligand13uipr": [2, 4, 8], "ligand13um": [2, 4, 8], "ligand13un": [2, 4, 8], "ligand_13u": [4, 8], "ligand_a": 9, "ligand_b": 9, "ligand_c_ipr": 4, "ligand_c_methyl": 4, "ligand_c_tbu": 4, "ligand_cn": 4, "ligand_h": 9, "ligand_mol": 9, "ligands_for_ec_class_": 1, "ligands_h": 4, "ligas": 1, "like": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "limit": [1, 4], "linalg": 3, "line": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "line2d": [0, 13], "linear": [0, 8, 11, 12, 13, 16], "linear_mm": 11, "linear_regress": [2, 8], "linenum": 2, "linetermin": 8, "lineweav": 3, "link": [0, 5, 14], "linregress": [0, 3, 12, 13], "linspac": 13, "linux": 2, "lipid": 1, "list": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 15], "list_nam": [2, 11], "listdir": [2, 8], "liter": [0, 9], "littl": [6, 8, 9], "live": 16, "ll": [1, 2, 3, 5, 8, 9, 10, 12, 13], "load": [9, 10, 14, 15], "loc": [3, 8], "locat": [1, 2, 6, 9, 14], "log": [3, 13], "long": [6, 8], "longer": 0, "look": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], "loop": [2, 4, 10, 12, 14], "lot": [1, 2, 10], "low": 2, "low_memori": 8, "lower": [0, 1, 5, 11, 14], "lowercas": 14, "lowest": 3, "lowri": 3, "ly": [2, 9], "lyas": 1, "m": [4, 12, 13], "m0": 4, "m2": 4, "mac": [2, 8, 15], "macromolecul": 2, "macromolecular": [2, 7], "made": [2, 9, 14], "mai": [0, 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15], "mail": 6, "major": 1, "make": [0, 3, 4, 5, 6, 10, 12, 13, 14, 15], "makedir": [1, 9], "man": 10, "manag": [0, 2, 3, 6, 8, 12], "mangle_dupe_col": 8, "mani": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14], "manipul": [2, 3, 4, 8, 9, 14], "manual": 13, "manuscript": 0, "markdown": [0, 1, 11], "marker": 12, "match": [2, 6, 9], "materi": [6, 16], "math": [2, 3, 9], "mathemat": 3, "matlab": 0, "matplotlib": [12, 13], "matrix": 13, "matter": 0, "max": [3, 13], "maxim": 13, "maximum": [3, 10, 13, 14], "mda": 9, "mdanalysi": 9, "mean": [0, 1, 4, 6, 9, 10, 11, 13, 14], "meanin": 4, "meaning": 4, "member": 1, "memori": [6, 10], "memory_map": 8, "menten": [11, 12], "mention": [8, 14], "menu": [5, 15], "menuicon": 5, "messag": [2, 13], "messi": 9, "met": 8, "methanamin": 8, "method": [1, 2, 3, 6, 8, 9, 10, 14], "methyl": [4, 8], "methylpyridinium": 8, "mg": [0, 3, 8], "micha": [11, 12], "micromolar": [8, 11, 12], "micropl": 0, "middl": 11, "mifflin": 3, "might": [1, 2, 3, 5, 6, 8, 9, 10, 11, 12], "migrat": 13, "million": 13, "min": [3, 12, 13], "mind": 3, "miniconda": 9, "miniconda3": 9, "minimum": [3, 13], "miss": 9, "mistak": 13, "ml": [0, 3, 8], "mm": [12, 13], "mm_data": [2, 8, 12, 13], "mm_data1": [2, 8], "mm_data_for_nlrpt2": [2, 8], "mm_df": 12, "mmap": 8, "mmcif": [1, 14], "mmcif2dict": 10, "mmcifpars": [10, 14], "mmdb": 5, "mmdbafid": 5, "mmdbid": [5, 7], "mmffoptimizemoleculeconf": 4, "mmloidmsbrjza": 4, "model": [3, 10, 13], "modif": [4, 5], "modifi": [0, 1, 2, 5, 6, 7, 10], "modifying_ligands_with_rdkit": [2, 8], "modul": [6, 8, 9, 12, 13, 16], "modular": 13, "mol": [4, 9], "mol2": [1, 4, 9], "mol_definit": 1, "mol_h": 4, "mol_id": 2, "molecul": [1, 2, 6, 9, 10, 14], "molecular": [1, 2, 4, 9, 10, 13, 15, 16], "molecular_weight": 14, "molecule_nam": 6, "molfrommol2fil": 9, "molfrompdbfil": 9, "molfromsmart": 4, "molfromsmil": 4, "molresultl": 1, "molsperrow": 4, "molssi": [4, 8, 11, 12], "molstogridimag": 4, "moltomolblock": 4, "moltomolfil": 9, "moltosmil": 4, "molvis_with_icn3d": [2, 8], "monom": 2, "month": 3, "more": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "most": [1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15], "most_common": 14, "most_common_combin": 14, "motif": [10, 14], "mousechang": 5, "move": [0, 6, 8, 15], "mu": [0, 3, 12, 13], "much": [2, 3, 4, 6, 8, 11, 13], "multi": 3, "multidrug": 2, "multipl": [5, 9, 14, 16], "muscl": 10, "must": [0, 1, 2, 8, 11, 12, 15], "my": [0, 8, 13], "my_queri": 14, "myoglobin": 10, "myview1": 5, "n": [1, 2, 4, 6, 8, 9, 10, 12, 13], "n1": [1, 4], "n2": [1, 4], "n2c": 4, "n2ccc": 4, "n3": 1, "n4": 1, "n5": 1, "na": 1, "na_filt": 8, "na_polymer_entity_typ": 14, "na_valu": 8, "nad": 1, "nai": 1, "naj": 1, "name": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nameerror": [4, 11], "nan": 3, "nanomol": 11, "nap": 8, "naphthalen": 8, "nation": 5, "navig": 15, "nc": 4, "nc2": 4, "ncc": 4, "ncc3": 4, "nd": [8, 12], "ne2": 9, "nearest": 4, "neat": 3, "neater": 6, "need": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "neg": 4, "neighbor": 14, "neighbor_list": 14, "neighbor_search": [10, 14], "neighborsearch": [10, 14], "network": 2, "new": [2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15], "new_list": 11, "new_molecul": 4, "new_th": 11, "newlin": 6, "next": [0, 1, 2, 3, 6, 9, 11, 12, 14, 15, 16], "nglview": 9, "nhheaelkplaqshatkhkipikylefiseaiihvlhsrhpgdfgadaqgamnkalelfrkdiaakykelgyqg": 10, "nitrogen": 4, "nitrophenol": 12, "nm": 11, "nmber": 11, "nmr": 10, "no_charg": 1, "non": [1, 3, 4, 9, 10, 12, 13, 16], "none": 8, "nonetyp": 8, "nonlinear": [5, 8], "nonlinear_regression_part_1": [2, 8, 13], "nonlinear_regression_part_2": [2, 8], "nonpolymer_bound_compon": 14, "nonpolymer_entity_count": 14, "nonpolymer_molecular_weight_maximum": 14, "nonpolymer_molecular_weight_minimum": 14, "normal": 0, "notat": [2, 3, 6, 8], "note": [0, 1, 3, 4, 5, 8, 10, 12, 13, 14], "notebook": [1, 2, 3, 5, 8, 9, 10, 12, 13, 16], "noth": [11, 15], "notic": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14], "novel": 14, "now": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "nozawukj3ym": 4, "np": [0, 3, 8, 12, 13], "nrow": 8, "ntop": 14, "nucleic": [9, 14], "nucleocapsid": 10, "num_core_interface_residu": 14, "num_interface_residu": 14, "number": [0, 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15], "number_list": 11, "numer": [3, 8, 12], "numpi": [0, 3, 8, 12, 13], "nv": 9, "nz": 9, "o": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15], "o1": [1, 4], "o2": 1, "o3": 4, "o32a13u": 9, "o_2": 10, "object": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "obtain": [0, 4, 10], "obteain": 3, "obviou": 0, "oc": 4, "occup": 9, "occur": 14, "occurr": 14, "oe1": 9, "off": 10, "offer": [5, 16], "often": [2, 3, 6, 8, 9, 11, 14], "og": 9, "oh": 10, "okai": 1, "oldest": 14, "omit": [0, 12], "onc": [0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 15], "one": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "ones": 1, "onli": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "onlin": [3, 8, 10, 12, 13], "op": 4, "open": [1, 2, 4, 5, 6, 8, 9, 11, 15], "openbabel": 9, "oper": [0, 1, 2, 3, 6, 8, 14, 15], "operand": 2, "opt": 4, "opt_13u_h": 4, "optim": [1, 3, 4, 9, 13], "option": [0, 1, 2, 4, 6, 8, 12, 15, 16], "order": [2, 6, 8, 9, 10, 14], "org": [1, 9, 14], "organ": [1, 2, 4, 10, 13], "origin": [2, 4, 10, 13], "original_molecul": 4, "oserror": 9, "other": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14], "our": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "out": [1, 2, 3, 4, 6, 8, 10, 11, 13], "outer": 6, "outfil": [2, 6], "output": [1, 2, 3, 4, 6, 8, 9, 10, 12], "outputfil": 12, "outsid": [2, 11], "over": [5, 6, 8, 10, 11, 14], "overal": 6, "overflow": 13, "overview": 16, "overwrit": [6, 9, 11], "oxi": 14, "oxidas": 2, "oxidoreductas": 1, "oxygen": [10, 14], "p": [0, 3, 4, 8, 12], "p05": 8, "p_valu": [0, 3], "packag": [1, 9, 13, 15], "pad": 1, "page": [1, 2, 4, 7, 9, 10, 11, 13, 15], "pagin": 14, "pai": [8, 11], "pair": [0, 14], "pancrea": 1, "panda": [0, 13, 16], "panic": 15, "paper": 14, "paramat": 13, "paramet": [3, 5, 9, 10, 13, 14], "parameter1": [5, 13], "parameter2": [5, 13], "parent": 14, "parenthes": [2, 5, 8, 11, 13], "parenthesi": [2, 5, 13], "pars": [6, 8, 9, 10, 14, 16], "parse_d": 8, "parser": [8, 10, 14], "part": [0, 1, 3, 4, 5, 9, 10, 16], "part1": 4, "particular": [6, 8, 10, 11, 13, 14], "pass": [5, 8, 12, 13], "past": [1, 5, 6, 13], "path": [0, 1, 3, 6, 8, 12, 13], "pathcollect": 0, "pathlib": 2, "pathlik": 8, "patt": 4, "pattern": [4, 6, 9], "pcov": 13, "pd": [0, 3, 8, 12, 13], "pdb": [1, 2, 4, 6, 8, 9, 10], "pdb2pqr": 9, "pdb_file": [2, 6, 8, 10, 14], "pdb_filenam": 14, "pdb_id": [5, 9, 14], "pdb_info": 10, "pdb_ligand": 9, "pdb_list": 14, "pdb_request": 9, "pdbid": [5, 7], "pdblist": 14, "pdbqt": 1, "pdbx": 10, "pdbx_audit_revision_categori": 14, "pdbx_audit_revision_detail": 14, "pdbx_audit_revision_group": 14, "pdbx_audit_revision_histori": 14, "pdbx_audit_revision_item": 14, "pdbx_database_pdbobs_spr": 14, "pdbx_database_rel": 14, "pdbx_database_statu": 14, "pdbx_descript": 10, "pdbx_ec": 10, "pdbx_fragment": 10, "pdbx_gene_src_scientific_nam": 10, "pdbx_keyword": 14, "pdbx_mutat": 10, "pdbx_number_of_molecul": 10, "pdbx_reference_molecul": 1, "pdbx_seq_one_letter_cod": 10, "pdbx_unique_axi": 10, "pdir": 14, "pdq2pqr": 9, "peopl": [2, 3, 7, 11], "peptid": 1, "per": 0, "perform": [2, 3, 4, 8, 10, 11, 12, 13, 14], "perhap": [2, 3], "period": 10, "perman": 12, "perr": 13, "pertain": 2, "ph": [3, 9], "phe": 2, "phenylalanyl": 8, "phenylbutyl": 8, "phosphat": [1, 12], "phosphatas": 12, "phrase": [2, 5, 14], "physet": 10, "pi": 9, "pick": 9, "pictur": 0, "piec": [2, 6, 7, 13], "pl3": 1, "place": [0, 3, 4, 6, 8, 12, 13, 15], "placehold": 12, "plai": [0, 10], "plan": 1, "plate": 5, "pleas": [0, 1, 3, 5, 9, 12, 13], "plf": 9, "plot": [3, 8, 11, 12, 15, 16], "plot_lignetwork": 9, "plt": [0, 13], "plu": [0, 16], "pm": 16, "png": [0, 2, 8], "pnpa": [12, 13], "pnpp": [12, 13], "pocket": 9, "point": [1, 4, 11, 12, 13], "polym": [1, 10], "polymer": 14, "polymer_composit": 14, "polymer_entity_count": 14, "polymer_entity_count_dna": 14, "polymer_entity_count_nucleic_acid": 14, "polymer_entity_count_nucleic_acid_hybrid": 14, "polymer_entity_count_protein": 14, "polymer_entity_count_rna": 14, "polymer_entity_taxonomy_count": 14, "polymer_molecular_weight_maximum": 14, "polymer_molecular_weight_minimum": 14, "polymer_monomer_count_maximum": 14, "polymer_monomer_count_minimum": 14, "popt": 13, "popul": [2, 12], "popular": [9, 15], "portabl": 2, "portion": [4, 11], "posit": 4, "possibl": [0, 1, 2, 5, 10, 12], "potassium": 1, "power": [4, 6, 8, 10, 12], "ppm": 3, "pqr": 9, "practic": [3, 11], "precis": [0, 4, 13], "predesign": 5, "predict": 13, "prefer": [0, 2, 3, 6], "prefix": 8, "prepar": [13, 16], "presenc": 12, "present": [3, 10], "preserv": 3, "press": [11, 15], "pretti": 5, "prevent": 2, "previou": [0, 1, 2, 3, 6, 11, 13], "previous": [2, 5, 8, 9], "primari": [1, 8, 14], "principl": 12, "print": [0, 1, 2, 3, 4, 8, 10, 11, 12, 14], "pro": 2, "probabl": [6, 8, 13], "problem": [3, 8, 15], "proce": 8, "procedur": 15, "process": [1, 2, 3, 4, 9, 12, 13, 14, 16], "processing_multiple_files_and_writing_fil": [2, 8], "produc": [0, 1, 8, 12, 13], "program": [0, 4, 6, 8, 9, 11, 14, 15], "programmat": 3, "prolif": 9, "prolin": 8, "prolinamid": [1, 4, 8], "promin": 3, "proper": 9, "properli": [1, 4, 9], "propion": 8, "protconc": 3, "proteas": 2, "protein": [0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14], "protein_": 9, "protein_2zq2": 9, "protein_assai": [0, 2, 3, 8], "protein_assay2": [0, 2, 8], "protein_atom_lin": 2, "protein_conc": 3, "protein_fil": [0, 2, 3], "protein_file2": 0, "protein_h": 9, "protein_mol": 9, "protein_sampl": [2, 3, 8], "protoporphyrin": 10, "provenance_sourc": 14, "provid": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13], "pubchem": [4, 7], "public": 0, "publish": 14, "pubm": 14, "pull": [0, 1, 2, 10], "pure": 1, "purpos": [1, 11, 15], "put": [2, 3, 9, 11], "py": 9, "pybel": 9, "pyplot": [12, 13], "pyridin": [4, 8], "python": [0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 16], "python3": 9, "q": 5, "q1": 1, "q2": 1, "q3": 1, "qualiti": [0, 13], "quaternion": 5, "queri": [10, 14], "query_id": 14, "question": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14, 16], "quickli": 5, "quiet": [10, 14], "quit": [5, 9], "quot": [0, 2, 3, 6, 8, 9, 13], "quotechar": 8, "r": [0, 1, 2, 3, 6, 12, 13], "r_valu": [0, 3], "radian": 9, "rai": [2, 8, 9, 14], "ran": 6, "random": 3, "rang": [0, 3, 13], "rate": 12, "rates_df": 13, "rather": [3, 8, 12, 13, 14], "raw": 12, "rawiobas": 8, "rcsb": [1, 4, 9, 14], "rcsb_accession_info": 14, "rcsb_api": [2, 8], "rcsb_attribut": 1, "rcsb_ec_lineag": 1, "rcsb_entry_container_identifi": 14, "rcsb_entry_info": 14, "rcsb_id": 14, "rcsb_interface_info": 14, "rcsb_journal_abbrev": 1, "rcsb_polymer_ent": 1, "rcsb_primary_cit": [1, 14], "rcsbsearch": 14, "rcsbsearchapi": 1, "rdkit": [1, 4, 9], "re": [1, 2, 3, 4, 9, 11, 15], "reaction": [1, 13], "read": [1, 3, 4, 8, 9, 11, 12, 13], "read_csv": [0, 3, 8, 12, 13], "readabl": 9, "readfil": 9, "readi": [11, 15], "readlin": 6, "real": [2, 5, 6, 8], "realli": [1, 2, 9, 11, 14], "rearrang": 3, "reason": [5, 6, 11], "recal": 6, "recast": [2, 11], "receiv": [13, 14], "recent": [0, 2, 4, 9, 11, 13, 14], "recogn": [4, 9], "recognit": [4, 10], "recommend": 15, "record": [9, 10], "red": [0, 13], "reduc": [6, 8], "reductas": 1, "refer": [3, 9, 13], "refin": [2, 14], "refine_hist": 14, "regener": 9, "regex": 2, "region": 0, "regplot": 0, "regress": [0, 5, 8, 16], "regresson": 0, "regul": 10, "reinforc": 16, "rel": 13, "relat": [6, 8], "relationship": [3, 13], "releas": 14, "relev": 10, "reliabl": 0, "remain": 9, "remark": [2, 9], "rememb": [2, 3, 5, 6, 8, 11, 12, 13], "remind": [3, 5, 11, 12], "remov": [0, 2], "removeallh": 9, "render": 5, "reopen": 2, "reorgan": 12, "repair": 9, "repeat": [0, 1, 3], "repeatedli": 2, "repl": 4, "replac": [4, 5, 7], "replacesubstruct": 4, "report": [0, 2, 3], "repositori": [1, 4], "repres": [0, 2, 3, 4, 5, 9, 10, 11, 12, 14], "represent": [5, 14], "repretoir": 0, "reproduc": 5, "request": [1, 9, 14], "request_opt": 14, "requir": [5, 6, 14], "res11u": 1, "res11u_mol2": 1, "res_count": 14, "res_lin": 6, "research": [2, 5, 15], "reserv": 3, "reset": 1, "resid": 9, "residu": [9, 10, 14], "residue_neighbor": 14, "resist": 2, "resnam": [9, 14], "resolut": [0, 2, 6, 8, 9, 14], "resolution_combin": 14, "resolv": 9, "resourc": [0, 8, 12, 14], "respons": 1, "rest": [9, 11, 14], "result": [1, 2, 3, 5, 6, 13, 15], "result_set": 14, "result_typ": 14, "resultl": 1, "results_df": [0, 3], "results_set": 14, "retain": 8, "retrieve_pdb_fil": 14, "return": [1, 2, 4, 5, 8, 9, 10, 11, 13, 14], "return_typ": 14, "reus": 13, "reversibli": 10, "ribbon": 5, "right": [0, 4, 8, 12, 15], "rigor": 4, "ring": [4, 9], "rit": 2, "ritonavir": 2, "rm": 4, "rna": [9, 10], "robust": 13, "role": 10, "rotate_view": 9, "round": 13, "row": [3, 8, 12, 14], "rstrip": 2, "run": [2, 3, 4, 5, 6, 9, 11], "run_from_iter": 9, "runner": [2, 7], "ryyvlzvuvijvgh": 4, "s1": 4, "s_length": 11, "s_list": 11, "sai": [2, 7, 10, 11, 15], "same": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12], "sampl": 10, "samples_df": 3, "samples_fil": 3, "save": [0, 1, 2, 4, 6, 9, 10, 11, 12, 13, 14], "savefig": 0, "saw": [8, 12], "sc": [0, 3], "scatter": 12, "scenario": 9, "scene": 5, "schafer": [8, 12], "sci": 9, "scicompforchemist": [3, 8, 12], "scienc": 3, "scientif": [3, 8, 10, 11, 12, 15], "scientific_name_1mbn": 10, "scipi": [0, 12, 13], "scope": 2, "score": 14, "screen": 11, "script": [2, 7, 8, 15, 16], "sd": 13, "sdf": [2, 4, 8, 9], "search": [1, 6, 7, 10, 13, 15], "searchabl": 1, "sec": [11, 12], "second": [0, 1, 2, 4, 6, 12, 13, 15], "secondari": 5, "section": [2, 9, 10, 12, 14, 15], "see": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "seem": [8, 9, 11], "seen": [5, 6], "select": [5, 9, 11, 13, 15], "select_atom": 9, "selected_polymer_entity_typ": 14, "semi": 3, "send": 14, "sentenc": 6, "sep": [0, 2, 6, 8], "separ": [0, 2, 6, 8, 9, 10, 11], "seper": 2, "seqr": 2, "sequenc": [2, 10, 14], "sequence_1mbn": 10, "sequenti": 3, "ser": 9, "seri": [2, 3, 6, 8, 12, 13], "serin": 1, "servic": [1, 14], "session": 16, "set": [0, 1, 2, 3, 6, 8, 9, 12, 13, 14, 16], "set_index": 12, "setprop": 4, "setup": [2, 6, 8, 11], "seven": 12, "sever": [1, 11], "shape": 4, "share": [5, 6, 9], "sheet": [5, 8], "shift": 11, "short": [8, 9], "short_list": 11, "should": [0, 1, 2, 3, 4, 6, 11, 12, 13, 15, 16], "show": [1, 6, 10, 11, 14], "show_mdanalysi": 9, "shown": [3, 5, 11, 15], "side": 15, "sign": [0, 11], "signal": 1, "signfic": 13, "similar": [0, 9, 14], "similarli": 11, "simpl": [0, 3, 5, 8, 10, 12], "simpler": 4, "simplest": [7, 13], "simpli": [0, 3, 5, 8, 12, 13], "simplifi": [4, 10], "simul": 9, "sinc": [6, 13], "singl": [0, 1, 3, 6, 8, 11, 12, 13], "site": [0, 1, 2, 3, 8, 12], "situat": [2, 3, 11], "six": 3, "size": [0, 1], "skill": [2, 3, 6], "skip": 13, "skip_blank_lin": 8, "skipfoot": 8, "skipinitialspac": 8, "skiprow": 8, "slice1": 11, "slice2": 11, "slightli": [3, 10], "slope": [0, 3, 13], "slow": 6, "small": [1, 2, 4, 9, 10, 16], "smaller": 13, "smallmolvi": [2, 8], "smcra": 10, "smile": 4, "smooth_i": 13, "smooth_x": 13, "smoother": 13, "smush": 6, "sn": 0, "so": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "softwar": [1, 4, 9, 13, 14], "solut": 1, "solvat": 9, "solvent": 10, "solvent_entity_count": 14, "some": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16], "someon": [6, 11], "someth": [0, 2, 11, 12, 13, 14], "sometim": [1, 2, 10, 11], "somewher": 11, "sophist": 0, "sort": [2, 14], "sort_bi": 14, "sort_valu": 8, "sourc": [1, 4, 10, 13], "sp": [0, 3], "space": [0, 2, 13], "speci": 14, "special": [6, 8, 9, 10, 11, 12], "specif": [1, 2, 3, 4, 6, 8, 10], "specifi": [2, 6, 10, 11, 14], "sperm": 10, "spin": 9, "split": [2, 6], "split_filenam": 6, "spotlight": 15, "spreadsheet": [0, 6, 8, 12], "sqrt": 13, "squar": [0, 3, 11, 12, 13], "squeez": 8, "src_method": 10, "stabil": 10, "stack": 13, "stage": 13, "stand": [0, 2, 4, 8, 14], "standard": [0, 2, 3, 4, 9, 12, 13, 14], "start": [0, 2, 3, 4, 5, 8, 9, 12, 13, 14], "stat": [0, 3, 12, 13], "state": [2, 9, 14], "statement": [1, 2, 3, 5, 6, 10, 13], "static": 0, "statist": [0, 3, 13], "statment": 6, "statologi": 0, "statu": [1, 14], "status_cod": [1, 9, 14], "std_err": [0, 3], "stdev": 13, "step": [1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14], "stereochemistri": 4, "stick": 5, "still": [3, 15], "stop": 16, "storag": 14, "storage_opt": 8, "store": [1, 4, 14], "str": [2, 5, 6, 8, 11], "straightforward": 3, "strand": 5, "strang": 8, "strategi": 9, "string": [0, 1, 2, 3, 4, 5, 8, 11, 12], "struct": 14, "struct_keyword": 14, "structur": [1, 2, 6, 7, 8, 10, 11, 12, 14], "structure_determination_methodologi": 14, "structure_determination_methodology_prior": 14, "student": 3, "studi": [1, 9], "stuff": 2, "style": [0, 5, 10], "subcategori": 10, "subconc": 13, "subhead": 11, "subimgs": 4, "subscript": [0, 13], "subset": [0, 1, 3, 4, 11], "substate_conc": 11, "substitut": [4, 5], "substrat": [8, 11, 12, 13], "substrate_conc": [8, 11], "substrate_concentr": 11, "substructur": 4, "subtrate_conc": 11, "success": [1, 14], "successfulli": 14, "suffici": 13, "suffix": 8, "suggest": 5, "suit": 9, "suitabl": 0, "sulfat": 10, "superimpos": 5, "support": [0, 1, 4, 5], "sure": [1, 3, 4, 6, 9, 11, 12, 13, 15], "surfac": [5, 9], "survei": 3, "switch": 1, "symbol": 13, "symmetri": 14, "syn": 10, "syntax": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "synthesi": 1, "system": [0, 1, 2, 3, 4, 6, 8, 9, 14, 15], "systemat": [1, 4], "t": [0, 2, 4, 5, 6, 8, 9, 10, 11, 15], "t20": 4, "tab": [6, 15], "tabl": [0, 1, 3, 8], "tabular": [8, 10], "tad": 1, "tag": 2, "tail": 8, "take": [0, 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 16], "taken": [0, 3, 4, 5, 9, 12], "target": [4, 8], "task": [2, 4, 6, 8, 10, 13], "tast": 8, "teach": [5, 15], "technic": 3, "tediou": 6, "tell": [1, 2, 3, 6, 8, 10, 11, 13, 14], "temp": 11, "temp_lin": 2, "temperatur": [2, 11], "templat": 9, "term": [2, 3, 6, 9, 10, 13], "termin": [9, 14], "termini": 9, "test": [2, 3, 4, 6, 13], "tetrazol": 8, "texa": 3, "text": [0, 1, 2, 5, 6, 8, 9, 10, 14, 15], "textbook": [3, 5, 8, 12], "textiobas": 8, "textiowrapp": 8, "than": [1, 2, 3, 8, 9, 10, 11, 12, 13, 14], "thei": [1, 2, 3, 4, 8, 9, 10, 11, 14], "them": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14], "therebi": 10, "therefor": [3, 6], "thermobifida": 14, "thermost": 14, "thi": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "thing": [2, 5, 6, 8, 9, 10, 11, 12, 14], "think": [0, 1, 2, 6, 8, 10, 11], "third": [0, 4, 5, 8], "those": [1, 3, 5, 6, 11, 12, 13], "though": [2, 5, 11, 13, 14], "thought": 2, "thousand": [8, 13], "thr": 2, "three": [1, 2, 4, 5, 8, 10, 12, 13], "thrombin": 8, "thrombin_df": 8, "thrombin_fil": 8, "thrombin_with_ligand": [2, 8], "through": [1, 2, 3, 5, 6, 10, 11, 12, 14], "thu": 2, "tight": 0, "time": [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16], "titl": [0, 1, 2, 14], "tj": 9, "to_csv": 12, "togeth": [4, 6, 11], "token": 10, "told": 14, "tool": [0, 1, 3, 4, 8, 9, 10, 12, 13], "top": [1, 11, 13, 14], "top_5_combin": 14, "topologi": 9, "total": 1, "total_count": 14, "toward": 8, "traceback": [2, 4, 9, 11, 13], "track": [0, 3, 12], "train": 4, "trajectori": 9, "transcript": [5, 10], "transfer": [5, 8, 14], "transferas": 1, "transform": 9, "translocas": 1, "transpar": 5, "transport": 14, "tree": 1, "triangl": 13, "trick": 3, "trimethylpurin": 4, "tripo": 1, "troubleshoot": 6, "trp": 2, "true": [1, 8, 9, 10, 12, 14], "true_valu": 8, "truncat": [9, 13], "try": [1, 2, 5, 6, 8, 10, 11, 14], "trypsin": [1, 9], "tube": 3, "tupl": [4, 14], "turn": 15, "tutori": [2, 3, 4, 8, 9, 12], "twice": 9, "two": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "txt": [2, 6, 8], "type": [0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 15], "type_of_resourc": 14, "typeerror": [2, 13], "typic": [3, 13], "tyr": 2, "u": [1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14], "ubiquit": 11, "uhfffaoysa": 4, "unambigu": 4, "undefin": 11, "under": [6, 10, 12, 15], "underscor": 10, "understand": [1, 4, 13, 14], "unintend": 11, "union": [1, 8], "uniprot": 10, "uniqu": [1, 4, 7, 8, 12, 14], "unit": [2, 3, 10, 11], "unitless": 3, "univers": 9, "unknown": 3, "unleash": 4, "unless": 14, "unlik": 13, "unsort": 8, "unsupport": 2, "until": 6, "untitl": 11, "unzip": 15, "up": [1, 2, 5, 6, 9, 12, 13, 16], "updat": [9, 14, 15], "upgrad": 9, "upon": 9, "upper": [1, 11, 15], "url": [1, 9, 14], "us": [2, 5, 6, 7, 9, 11, 15], "usabl": 2, "usecol": 8, "user": [1, 2, 11], "userwarn": 9, "usr": 9, "usual": [6, 8, 9, 11, 14], "util": [4, 6], "v": [4, 8, 11, 13], "v1": 14, "v2": 14, "v2000": 4, "v3": 9, "v_": 13, "v_at_or_below_km": 11, "v_i": 13, "v_linear": 11, "v_nmols_per_min": 11, "val": [2, 14], "valid": [0, 3], "valu": [0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14], "value_to_return": [5, 13], "van": 9, "vari": [10, 14], "variabl": [0, 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14], "variable_nam": 11, "variable_valu": 11, "variou": 10, "vaue": 8, "ve": [0, 14], "veloc": [8, 11, 13], "velocity_str": 11, "verbos": 8, "veri": [0, 2, 3, 4, 6, 11, 13], "versatil": 10, "version": [0, 4, 7, 13], "versu": 13, "vi": 13, "via": 1, "video": 4, "view": 4, "view_binding_sit": 9, "viewer": 5, "vina": 1, "viral": 10, "viru": 10, "visit": 4, "visual": [0, 4, 10, 15], "vlsegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlkteaemkasedlkkhgvtvltalgailkkkg": 10, "vmax": [8, 11, 13], "w": [1, 2, 4, 6, 9], "w522": 9, "w525": 9, "wa": [0, 1, 2, 3, 5, 6, 10, 13, 14], "waal": 9, "wai": [2, 4, 5, 6, 7, 10, 13], "wait": 15, "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "warn": 9, "warn_bad_lin": 8, "watch": 4, "water": [1, 3, 10], "water_df": 3, "water_fil": 3, "we": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16], "web": 2, "webpag": 10, "websit": [4, 14], "weight": [1, 13], "weiss": [3, 8, 12], "well": [1, 3, 5, 9, 12, 13, 14, 15], "went": 3, "were": [0, 3, 5, 8, 14], "whale": 10, "what": [1, 2, 4, 6, 9, 10, 11, 13, 14, 16], "when": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "where": [0, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15], "wherea": 6, "whether": 3, "which": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "while": [2, 6, 7, 8, 12], "white": [0, 5, 13], "who": [6, 11, 12], "whole": [2, 6], "why": [0, 1, 2, 5, 6, 11], "wide": 10, "wildcard": 6, "window": [2, 5, 8, 15], "wirefram": 5, "wish": 4, "within": [0, 2, 3, 5, 6, 10, 11, 14], "without": [4, 6], "wkz": 1, "won": 2, "wonder": 6, "word": [2, 3, 6, 9, 10], "words1": 6, "words2": 6, "work": [1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16], "working_with_panda": [2, 8], "workshop": [4, 6, 8, 10, 11, 12, 14, 15], "workshop_schedul": [2, 8], "world": [4, 10], "would": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14], "wouldn": 5, "write": [1, 2, 3, 4, 8, 9, 11, 12, 16], "writer": 9, "written": [1, 6], "wrote": [0, 9], "www": 4, "x": [0, 2, 3, 5, 8, 9, 12, 13, 14], "xdata": [0, 3, 12, 13], "xlabel": [0, 12, 13], "xlsx": [2, 8, 12], "xxxx": 5, "xy": [0, 4, 13], "y": [0, 3, 5, 8, 9, 12, 13], "ydata": [0, 3, 12, 13], "year": 10, "yellow": 5, "yl": 8, "ylabel": [0, 13], "ylamino": 8, "ylmethyl": 8, "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "your": [1, 3, 4, 5, 9, 10, 13, 14, 15, 16], "your_user_nam": 2, "yourself": [0, 3], "youtub": [4, 8, 12], "z": [4, 8, 9, 12], "z_pdb": 10, "zero": [2, 4, 11], "zinc": 14, "zip": [2, 8], "zoom": 9, "\u00e5ngstr\u00f6m": 14, "\u03b4a": 12}, "titles": ["Creating Plots in Jupyter Notebooks", "Enzyme Commission Class with Ligands", "File Parsing", "Linear Regression", "Modifying Ligands in Python", "Molecular Visualization with iCN3D", "Processing Multiple Files and Writing Files", "Viewing Small Molecules in iCN3D", "Working with Pandas", "Investigation the Binding Site", "Analyzing MMCIF Files using Biopython", "Introduction", "Nonlinear Regression Part 1", "Nonlinear Regression Part 2", "Retrieving Information from the PDB using the Web API", "Set Up", "Workshop Schedule"], "titleterms": {"1": 12, "1d": [8, 12], "1et": 5, "2": 13, "2d": [4, 8, 12], "3d": [4, 8, 10, 12], "7": 1, "A": [2, 6, 11], "The": [1, 13], "about": [2, 6, 11], "absolut": 2, "access": 14, "ad": 5, "add": 3, "all": 1, "an": [5, 11], "anaconda": 15, "analysi": 10, "analyz": [10, 14], "answer": 2, "apart": 5, "api": 14, "appli": 5, "arrai": [8, 12], "assign": 11, "atp": 4, "base": 5, "behavior": 2, "bind": [4, 9], "biopython": [10, 14], "calcul": 12, "calibr": 3, "can": 1, "challeng": 10, "check": [0, 2, 6, 8, 11, 12], "choic": 11, "class": 1, "collect": 5, "column": 3, "command": 5, "commiss": 1, "common": 13, "concentr": 3, "contact": 9, "convert": 4, "creat": [0, 3, 5, 12, 13], "csv": 3, "curv": 3, "curve_fit": 13, "data": [3, 8, 11, 12, 13, 14], "datafram": [3, 8, 12], "datatyp": 12, "digit": 4, "do": [1, 4, 8, 12], "dock": 4, "download": [1, 9, 14], "elimin": 3, "enzym": 1, "equat": [3, 13], "error": 13, "exercis": [0, 1, 3, 5, 8, 11, 13], "exeris": 2, "express": 2, "extract": 13, "f": 13, "file": [1, 2, 6, 10, 14], "final": [2, 6], "find": [1, 8], "finger": 10, "fit": 13, "format": 6, "from": [5, 13, 14], "function": [2, 5, 13], "gener": 5, "get": 11, "glucos": 4, "go": 1, "hint": [2, 3, 6, 12], "home": [5, 13], "how": 1, "i": [4, 8, 12], "icn3d": [5, 7], "icn3dpi": 5, "id": 5, "import": [3, 6, 8, 12], "inform": [8, 14], "initi": 12, "inspect": 12, "instal": 15, "introduct": 11, "investig": 9, "iqb": 1, "jupyt": [0, 11, 15], "kei": [0, 2, 3, 6, 8], "known": 4, "lesson": 15, "librari": [1, 3, 5, 6, 8], "ligand": [1, 4, 9, 10], "line": 2, "linear": 3, "list": 11, "load": 5, "locat": 8, "logic": 11, "loop": [1, 6, 11], "make": [1, 9, 11], "mani": 11, "map": 9, "materi": 15, "matplotlib": 0, "measur": 10, "menten": 13, "micha": 13, "mmcif": 10, "modifi": 4, "modul": [2, 3], "molecul": [4, 7], "molecular": 5, "multipl": [6, 11], "need": 3, "neighbor": 10, "nest": 6, "nglview": 15, "nonlinear": [12, 13], "note": [2, 6, 11], "notebook": [0, 4, 11, 15], "number": 2, "o": 2, "obtain": 15, "onc": 11, "oper": 11, "option": 3, "output": 13, "outsid": 3, "overview": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "page": 5, "panda": [3, 8, 12], "pars": 2, "part": [12, 13], "particular": 2, "path": 2, "pattern": 2, "pdb": [5, 14], "plot": [0, 13], "point": [0, 2, 3, 6, 8], "power": 5, "prefer": 5, "prepar": [0, 9], "print": [6, 13], "process": 6, "programmat": 14, "project": 6, "properti": 10, "protein": 3, "pull": 5, "pyplot": 0, "python": [4, 5, 8, 15], "queri": 1, "question": 4, "read": [2, 6, 10], "readlin": 2, "regress": [3, 12, 13], "regular": 2, "rel": 2, "repeat": [10, 11], "represent": 4, "result": [4, 14], "retriev": 14, "review": 13, "sampl": 3, "scatter": 0, "schedul": 16, "scipi": 3, "seaborn": 0, "search": [2, 14], "select": 1, "set": [5, 11, 15], "site": 9, "slice": 11, "slope": 12, "small": 7, "smooth": 13, "solut": [0, 2, 3, 5, 6, 8, 11, 12, 13], "solv": 3, "sort": 8, "stage": 3, "start": [11, 15], "statement": 11, "string": [6, 13], "structur": [4, 5, 9], "take": [5, 13], "teas": 5, "thi": [3, 4], "thing": 4, "through": 15, "time": 11, "trypsin": 4, "type": 11, "understand": [0, 2, 6, 8, 11, 12], "up": [11, 15], "us": [0, 1, 3, 4, 8, 10, 12, 13, 14], "valu": 3, "variabl": 11, "veloc": 12, "view": [5, 7, 9], "visual": [5, 9], "we": [1, 8, 12], "web": [5, 14], "what": [8, 12], "where": 1, "why": [3, 8, 12], "work": [2, 8], "workshop": [1, 16], "write": 6, "you": 3, "your": [0, 2, 6, 8, 11, 12], "zinc": 10}})
\ No newline at end of file