-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
41 lines (30 loc) · 1.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from flask import Flask, request, jsonify, render_template
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
import joblib
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
scaler= joblib.load('std_scaler.bin')
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
int_features = [float(x) for x in request.form.values()]
final_features = [np.array(int_features)]
final_features_scaled= scaler.transform(final_features)
prediction = model.predict(final_features_scaled)
if prediction==0:
output='Non-diabetic'
else:
output='Diabetic'
return render_template('index.html', prediction_text='The Person is {}'.format(output))
@app.route('/results',methods=['POST'])
def results():
data = request.get_json(force=True)
prediction = model.predict([np.array(list(data.values()))])
output = prediction[0]
return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)