forked from 7ossam81/EvoloPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWOA.py
135 lines (88 loc) · 4.05 KB
/
WOA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
"""
Created on Mon May 16 14:19:49 2016
@author: hossam
"""
import random
import numpy
import math
from solution import solution
import time
def WOA(objf,lb,ub,dim,SearchAgents_no,Max_iter):
#dim=30
#SearchAgents_no=50
#lb=-100
#ub=100
#Max_iter=500
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
# initialize position vector and score for the leader
Leader_pos=numpy.zeros(dim)
Leader_score=float("inf") #change this to -inf for maximization problems
#Initialize the positions of search agents
Positions = numpy.zeros((SearchAgents_no, dim))
for i in range(dim):
Positions[:, i] = numpy.random.uniform(0,1,SearchAgents_no) *(ub[i]-lb[i])+lb[i]
#Initialize convergence
convergence_curve=numpy.zeros(Max_iter)
############################
s=solution()
print("WOA is optimizing \""+objf.__name__+"\"")
timerStart=time.time()
s.startTime=time.strftime("%Y-%m-%d-%H-%M-%S")
############################
t=0 # Loop counter
# Main loop
while t<Max_iter:
for i in range(0,SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
#Positions[i,:]=checkBounds(Positions[i,:],lb,ub)
for j in range(dim):
Positions[i,j]=numpy.clip(Positions[i,j], lb[j], ub[j])
# Calculate objective function for each search agent
fitness=objf(Positions[i,:])
# Update the leader
if fitness<Leader_score: # Change this to > for maximization problem
Leader_score=fitness; # Update alpha
Leader_pos=Positions[i,:].copy() # copy current whale position into the leader position
a=2-t*((2)/Max_iter); # a decreases linearly fron 2 to 0 in Eq. (2.3)
# a2 linearly decreases from -1 to -2 to calculate t in Eq. (3.12)
a2=-1+t*((-1)/Max_iter);
# Update the Position of search agents
for i in range(0,SearchAgents_no):
r1=random.random() # r1 is a random number in [0,1]
r2=random.random() # r2 is a random number in [0,1]
A=2*a*r1-a # Eq. (2.3) in the paper
C=2*r2 # Eq. (2.4) in the paper
b=1; # parameters in Eq. (2.5)
l=(a2-1)*random.random()+1 # parameters in Eq. (2.5)
p = random.random() # p in Eq. (2.6)
for j in range(0,dim):
if p<0.5:
if abs(A)>=1:
rand_leader_index = math.floor(SearchAgents_no*random.random());
X_rand = Positions[rand_leader_index, :]
D_X_rand=abs(C*X_rand[j]-Positions[i,j])
Positions[i,j]=X_rand[j]-A*D_X_rand
elif abs(A)<1:
D_Leader=abs(C*Leader_pos[j]-Positions[i,j])
Positions[i,j]=Leader_pos[j]-A*D_Leader
elif p>=0.5:
distance2Leader=abs(Leader_pos[j]-Positions[i,j])
# Eq. (2.5)
Positions[i,j]=distance2Leader*math.exp(b*l)*math.cos(l*2*math.pi)+Leader_pos[j]
convergence_curve[t]=Leader_score
if (t%1==0):
print(['At iteration '+ str(t)+ ' the best fitness is '+ str(Leader_score)]);
t=t+1
timerEnd=time.time()
s.endTime=time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime=timerEnd-timerStart
s.convergence=convergence_curve
s.optimizer="WOA"
s.objfname=objf.__name__
s.best = Leader_score
s.bestIndividual = Leader_pos
return s