Skip to content

Commit 1882d22

Browse files
committed
re-add line after intro
1 parent f7f121f commit 1882d22

File tree

11 files changed

+20
-1
lines changed

11 files changed

+20
-1
lines changed

ee364a/approx.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -73,6 +73,7 @@ <h1>Approximation</h1>
7373
\]
7474
with variable $x \in \mathrm{R}^n$, where $A\in \mathrm{R}^{m \times n}$,
7575
with $m \ll n$.</div>
76+
<hr/>
7677
<div>
7778
<div class="description">
7879
For $p=2$, we would expect to see many components of $x^\star$ equal to zero.</div>

ee364a/duality.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,7 @@ <h1>Duality</h1>
8080
and then solve the modified problem.
8181
We are interested in the optimal objective value of this modified problem,
8282
compared to the original one above.</div>
83+
<hr/>
8384
<div>
8485
<div class="description">
8586
If $\lambda^\star$ is large, then decreasing $s$</div>
@@ -174,6 +175,7 @@ <h1>Duality</h1>
174175
\end{array}
175176
\]
176177
that satisfies Slater's constraint qualification.</div>
178+
<hr/>
177179
<div>
178180
<div class="description">
179181
The primal and dual problems have the same objective value.</div>

ee364a/functions.html

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -174,6 +174,7 @@ <h1>Convex functions</h1>
174174
<br/>
175175
<fieldset>
176176
<div class="intro">$f(x) = (x^2 + 2)/(x+2)$, with $\mathbf{dom}f = (-\infty, -2)$.</div>
177+
<hr/>
177178
<div>
178179
<div class="description">
179180
$f$ is convex.</div>
@@ -219,6 +220,7 @@ <h1>Convex functions</h1>
219220
<br/>
220221
<fieldset>
221222
<div class="intro">$f(x) = 1/(1-x^2)$, with $\mathbf{dom} f = (-1, 1)$.</div>
223+
<hr/>
222224
<div>
223225
<div class="description">
224226
$f$ is convex.</div>
@@ -287,6 +289,7 @@ <h1>Convex functions</h1>
287289
<br/>
288290
<fieldset>
289291
<div class="intro">$f(x) = \cosh x = (e^x+e^{-x})/2$.</div>
292+
<hr/>
290293
<div>
291294
<div class="description">
292295
$f$ is convex.</div>
@@ -404,6 +407,7 @@ <h1>Convex functions</h1>
404407
<fieldset>
405408
<div class="intro">We define $(x)_-$ to be $\max\{0,-x\}$,
406409
such that $x = (x)_+ - (x)_-$.</div>
410+
<hr/>
407411
<div>
408412
<div class="description">
409413
The constraint $\mathbf{1}^T(x)_- \leq (1/2) \mathbf{1}^T(x)_+$

ee364a/geom.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -68,6 +68,7 @@ <h1>Geometrical problems</h1>
6868
linear inequalities, and $a$ a point in $\mathbf{R}^n$.
6969
Are the following problems easy or hard? (Easy means the solution can
7070
be found by solving one or a modest number of convex optimization problems.)</div>
71+
<hr/>
7172
<div>
7273
<div class="description">
7374
Find a point in $\mathcal P$ that is closest to $a$

ee364a/intro.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -166,6 +166,7 @@ <h1>Introduction to convex optimization</h1>
166166
{\rm D} &amp; 11 &amp; 50 \\ \hline
167167
\end{array}
168168
\]</div>
169+
<hr/>
169170
<div>
170171
<div class="description">
171172
Design B is better than design A.</div>

ee364a/num_lin_alg.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -203,6 +203,7 @@ <h1>Numerical linear algebra</h1>
203203
<br/>
204204
<fieldset>
205205
<div class="intro">Suppose $A\in \mathbf{R}^{n \times n}$ is lower triangular.</div>
206+
<hr/>
206207
<div>
207208
<div class="description">
208209
The flop count for computing $Ab$ is
@@ -229,6 +230,7 @@ <h1>Numerical linear algebra</h1>
229230
<fieldset>
230231
<div class="intro">Suppose $A\in \mathbf{R}^{m \times n}$, and we need to compute $x$ that
231232
minimizes $\|Ax-b\|^2_2 + (\rho/2)\|x\|_2^2$, where $\rho &gt;0$.</div>
233+
<hr/>
232234
<div>
233235
<div class="description">
234236
For $m \geq n$, the flop count (order) is</div>

ee364a/problems.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -72,6 +72,7 @@ <h1>Convex problems</h1>
7272
\end{array}
7373
\]
7474
with variable $x=(x_1,x_2)$.</div>
75+
<hr/>
7576
<div>
7677
<div class="description">
7778
The point $(-1,1)$ is a solution.</div>

ee364a/sets.html

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -67,6 +67,7 @@ <h1>Convex sets</h1>
6767
<div class="intro">Define the square (in $\mathbf{R}^2$)
6868
$S = \{ x \in \mathbf{R}^2 \mid 0 \leq x_i \leq 1,~i=1,2 \}$,
6969
and the disk $D = \{ x \in \mathbf{R}^2 \mid \|x\|_2 \leq 1 \}$.</div>
70+
<hr/>
7071
<div>
7172
<div class="description">
7273
$S \cap D$ is convex.</div>
@@ -133,6 +134,7 @@ <h1>Convex sets</h1>
133134
<br/>
134135
<fieldset>
135136
<div class="intro">$C = \{ (1,0), (1,1), (-1,-1), (0,0) \}$.</div>
137+
<hr/>
136138
<div>
137139
<div class="description">
138140
$(0,-1/3) \in \mathbb{conv}\; C$.</div>
@@ -199,6 +201,7 @@ <h1>Convex sets</h1>
199201
<br/>
200202
<fieldset>
201203
<div class="intro">Consider the set $S = \{ (0,2),~ (1,1),~ (2,3),~ (1,2),~ (4,0) \}$.</div>
204+
<hr/>
202205
<div>
203206
<div class="description">
204207
$(0,2)$ is the minimum element of $S$.</div>
@@ -310,6 +313,7 @@ <h1>Convex sets</h1>
310313
<fieldset>
311314
<div class="intro">$S = \{ \alpha \in \mathbf{R}^3 \mid \alpha_1 + \alpha_2e^{-t} +
312315
\alpha_3 e^{-2t} \leq 1.1 \mbox{ for } t\geq 1\}$.</div>
316+
<hr/>
313317
<div>
314318
<div class="description">
315319
$S$ is affine.</div>
@@ -377,6 +381,7 @@ <h1>Convex sets</h1>
377381
<fieldset>
378382
<legend>Generalized inequality.</legend>
379383
<div class="intro">$K = \{(x_1,x_2) \mid 0 \leq x_1 \leq x_2 \}$.</div>
384+
<hr/>
380385
<div>
381386
<div class="description">
382387
$(1,3) \preceq_K (3,4)$.</div>

ee364a/stat.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,7 @@ <h1>Statistical estimation</h1>
6969
$\Sigma^\mathrm{min} \preceq \Sigma \preceq \Sigma^\mathrm{max}$,
7070
where $\Sigma^\mathrm{min},~ \Sigma^\mathrm{max}$
7171
are given positive definite matrices.</div>
72+
<hr/>
7273
<div>
7374
<div class="description">
7475
The associated log-likelihood function $\ell(\mu,\Sigma)$ (including

ee364a/unconstrained.html

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -311,6 +311,7 @@ <h1>Algorithms for unconstrained optimization</h1>
311311
f(x) = (c^Tx)^4 + \sum_{i=1}^n w_i \exp x_i,
312312
\]
313313
over $x \in \mathbf{R}^n$, where $w \succ 0$.</div>
314+
<hr/>
314315
<div>
315316
<div class="description">
316317
Newton's method would probably require fewer iterations than the gradient

0 commit comments

Comments
 (0)