-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_accuracy_estCharacters.m
82 lines (70 loc) · 2.51 KB
/
calculate_accuracy_estCharacters.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function [ Accuracy_p300,signal ] = calculate_accuracy_estCharacters( x,y, signal, l, training, index_images )
%%% inputs %%%
% x (l, num_epochs): each column is a feature vector for an epoch (occurance of an stimulus
% image)
% y: vector of 0, 1 labels
% signal.Characters;
% signal.num_trial
% signal.num_labels % order of happening (repetition) of each "target" stimulus image in each trial
% l: logitboost classifier object
% training: 0, if you use your pretrained logitboost classifier object (l)
% index_images: each row is the constant order of repetiotions of each stimulus image
%%%% output %%%
% signal.estnum_labels2
% signal.estCharacters % for each trial
allCharacters=signal.Characters(1:size(index_images,1),:);
for tr=1:signal.num_trial
signal.mainCharacters(tr,:)= (allCharacters(signal.num_labels(1,tr),:));
end
counttrue3=0; est_y=[];
for num_epoch=1:size(x,2)
p3=round(classify(l,x(:,num_epoch)) );
if training
y3=length(find(p3==y(num_epoch)));
else
y3=length(find(p3==1));
end
if y3>=.6*length(p3) % iter is number of iterations or answers of logitboost for each input
counttrue3=counttrue3+1;
if training
est_y(1,num_epoch)=y(num_epoch);
else
est_y(1,num_epoch)=1;
end
else
if training
est_y(1,num_epoch)=abs(1-y(num_epoch));
else
est_y(1,num_epoch)=0;
end
end
end
% find character
counter2=1;
step2=size(index_images,1);est_label=[];label=[];
allCharacters=signal.Characters(1:size(index_images,1),:);
for tr=1: signal.num_trial
if training
label=y(1,counter2:counter2+step2-1);
end
est_label=est_y(1,counter2:counter2+step2-1);
counter2=counter2+step2;
num2=find(est_label==1);
if ~isempty(num2); num2=num2(1);else num2=1; end
signal.estnum_labels2(1,tr)=num2;
signal.estCharacters(tr,:)=allCharacters(num2,:);
sprintf(['trial=',num2str(tr), ', main character: ', signal.mainCharacters(tr,:), ' ,Estimated character: ', signal.estCharacters(tr,:)])
pause (1);
end
if training
num_true=0;
for tr=1:size(signal.estCharacters,1)
signal.mainCharacters(tr,:)=allCharacters(signal.num_labels(1,tr),:);
if strcmp(signal.mainCharacters(tr,:),signal.estCharacters(tr,:))
num_true=num_true+1;
end
end
Accuracy_p300 = num_true/tr ;
sprintf ([' Detection Accuracy = ', num2str(Accuracy_p300*100), ' %%'])
end
end