-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspark_read_write.py
48 lines (34 loc) · 1.52 KB
/
spark_read_write.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from pyspark.sql import SparkSession
# https://www.kaggle.com/stoney71/new-york-city-transport-statistics?select=mta_1706.csv
# spark-submit --packages org.apache.spark:spark-avro_2.12:3.0.1
INPUT_DATA_PATH = '###'
INPUT_FILE_NAME = 'mta_1706.csv'
if __name__ == '__main__':
spark = SparkSession \
.builder \
.appName('PySpark read and write') \
.getOrCreate()
df = spark.read.csv(os.path.join(INPUT_DATA_PATH, INPUT_FILE_NAME), header=True)
for c in df.columns:
df = df.withColumnRenamed(c, c.replace('.', '_'))
df.printSchema()
df.show()
# Write to Sequence File
output_sequence_file_name = INPUT_FILE_NAME[:-4] + '_sequence'
rdd_data = df.rdd.map(tuple)
res = rdd_data.map(lambda line: (None, line))
res.saveAsSequenceFile(output_sequence_file_name)
# Write to Avro
output_avro_file_name = INPUT_FILE_NAME[:-4] + '_avro'
df.write.format('avro').save(output_avro_file_name)
# # Write to Parquet
output_parquet_file_name = INPUT_FILE_NAME[:-4] + '_parquet'
df.write.parquet(output_parquet_file_name + '_gzip', compression='gzip')
# output_parquet_file_name = INPUT_FILE_NAME[:-4] + '_parquet'
# df.write.parquet(output_parquet_file_name + '_lz4', compression='lz4')
output_parquet_file_name = INPUT_FILE_NAME[:-4] + '_parquet'
df.write.parquet(output_parquet_file_name + '_snappy', compression='snappy')
# Write to ORC
output_orc_file_name = INPUT_FILE_NAME[:-4] + '_orc'
df.write.orc(output_orc_file_name)