-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_acvae.py
159 lines (130 loc) · 5.62 KB
/
train_acvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#-------------------------------------
# ------------------------This files train the Action conditioned VAE---------------------------------------
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
import pandas as pd
import numpy as np
import argparse
from utils.visualize import create_directory
from dataset.dataset import Kimore, load_data,load_class
from model.acvae import ACVAE
from model.vae import VAE
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader,Subset
import torch
from utils.normalize import normalize_skeletons, unnormalize_generated_skeletons
def get_args():
parser = argparse.ArgumentParser(
description="Choose which samples to train the GRU classifier on with the type of split.")
parser.add_argument(
'--generative-model',
help="generative model to use .",
type=str,
choices=['ACVAE','VAE'],
default='ACVAE',
)
parser.add_argument(
'--dataset',
help="Which dataset to use.",
type=str,
default='Kimore'
)
parser.add_argument(
'--output-directory',
type=str,
default='results/'
)
parser.add_argument(
'--wrec',
help="Weight for the reconstruction loss.",
type=float,
default=0.999
)
parser.add_argument(
'--wkl',
help="Weight for the kl loss.",
type=float,
default=1e-3
)
parser.add_argument(
'--runs',
help="Number of experiments to do.",
type=int,
default=5
)
parser.add_argument(
'--epochs',
help="Number of epochs to train the model.",
type=int,
default=2000
)
parser.add_argument(
'--device',
help="Device to run the training on.",
type=str,
choices=['cpu', 'cuda', 'mps'],
default='cuda' if torch.cuda.is_available() else ('mps' if torch.backends.mps.is_available() else 'cpu')
)
parser.add_argument(
'--class_index',
help="which class to generate from.",
type=int,
default=0
)
parser.add_argument(
'--samples',
help='how many samples to generate',
type = int,
default= 4,
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
output_directory_results = args.output_directory
create_directory(output_directory_results)
output_directory_gen_models = output_directory_results + 'Generative_models/'
create_directory(output_directory_gen_models)
output_directory_dataset = output_directory_gen_models + 'Action_conditioned/'
create_directory(output_directory_dataset)
output_directory_generator = output_directory_dataset + args.generative_model + '/'
create_directory(output_directory_generator)
output_directory_weights_losses = output_directory_generator + 'Wrec_' + str(args.wrec) + '_Wkl_' + str(args.wkl) + '/'
create_directory(output_directory_weights_losses)
dataset_dir = 'data/' + args.dataset + '/'
for _run in range(args.runs):
output_directory_run = output_directory_weights_losses + 'run_' + str(_run) + '/'
create_directory(output_directory_run)
output_directory_skeletons = output_directory_run + 'class_' + str(args.class_index) + '/'
create_directory(output_directory_skeletons)
output_directory_skeletons_class = output_directory_skeletons + 'generated_samples/'
create_directory(output_directory_skeletons_class)
if args.generative_model == 'ACVAE':
#-----------------------Data Handling
data,labels,scores = load_data(root_dir=dataset_dir)
xtrain,xtest,ytrain,ytest,strain,stest= train_test_split(data,labels,scores,test_size=0.2,random_state=42)
xtrain,min_X, max_X,min_Y,max_Y, min_Z,max_Z= normalize_skeletons(xtrain)
train_set = Kimore(xtrain,ytrain,strain)
train_loader = DataLoader(train_set,batch_size=16,shuffle =True)
xtest,_,_,_,_,_,_= normalize_skeletons(xtest,min_X, max_X,min_Y,max_Y, min_Z,max_Z)
test_set = Kimore(xtest,ytest,stest)
test_loader = DataLoader(test_set,batch_size=16,shuffle=False)
#------------------------Initialize the generative model
generator = ACVAE(output_directory=output_directory_run,
epochs=args.epochs,
device=args.device)
generator.train_function(train_loader,device=args.device)
generator.visualize_latent_space(train_loader,device=args.device)
elif args.generative_model == 'VAE':
data,labels,scores = load_class(args.class_index,root_dir=dataset_dir)
xtrain,xtest,ytrain,ytest,strain,stest= train_test_split(data,labels,scores,test_size=0.2,random_state=42)
xtrain,min_X, max_X,min_Y,max_Y, min_Z,max_Z= normalize_skeletons(xtrain)
train_set = Kimore(xtrain,ytrain,strain)
train_loader = DataLoader(train_set,batch_size=16,shuffle =True)
xtest,min_X, max_X,min_Y,max_Y, min_Z,max_Z= normalize_skeletons(xtest,min_X, max_X,min_Y,max_Y, min_Z,max_Z)
test_set = Kimore(xtest,ytest,stest)
test_loader = DataLoader(test_set,batch_size=16,shuffle=False)
generator = VAE(output_directory=output_directory_skeletons,epochs=args.epochs,device=args.device)
generator.train_function(dataloader=train_loader,device=args.device)