-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathparallel_reinforce_algorithm.py
executable file
·1058 lines (1002 loc) · 44.8 KB
/
parallel_reinforce_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import os
from random import random
from re import L
from unittest import result
from sqlalchemy import all_
from tqdm import tqdm
import torch
import numpy as np
import json
import copy
import os.path as osp
import math
import gtimer as gt
from collections import OrderedDict
import torch.optim as optim
import torch.multiprocessing as mp
import multiprocessing as python_mp
from environments import SCIPCutSelEnv
from cutsel_agent_parallel import CutSelectAgent, HierarchyCutSelectAgent
from logger import logger
from algorithms import ReinforceBaselineAlg, HRLReinforceAlg
from utils import setup_logger, create_stats_ordered_dict, set_global_seed, get_average_models
from utilss.mean_std import RunningMeanStd
# for debug
# from ipdb import set_trace
def generate_samples(return_queue,env,policy,value,epoch,samples_per_worker,sel_cuts_percent,device,train_decode_type,reward_type,seed,mean_std,policy_type,random_seed):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
log_prefix = os.getpid()
_ = set_global_seed(seed%4096)
logger.log(f"{log_prefix}: debug log random seed {seed%4096}")
logger.log(f"{log_prefix}: sampling data ...")
env_step_infos = {
"solving_time": [],
"ntotal_nodes": [],
"primal_dual_gap": [],
"primaldualintegral": []
} # dict of list
training_datasets = {
"state": [],
"action": [],
"sel_cuts_num": [],
"neg_reward": []
} # list of numpy/list/int
# cuts_infos = {
# "length_cuts": [],
# "length_forced_cuts": [],
# "cut_features": []
# }
env.set_seed(seed)
for step in range(samples_per_worker):
logger.log(f"{log_prefix}: training... epoch: {epoch}... steps: {step+1}")
logger.log(f"{log_prefix}: cuda memory: {torch.cuda.memory_allocated(0)/1024**3} GB")
logger.log(f"{log_prefix}: cuda cached: {torch.cuda.memory_cached(0)/1024**3} GB")
env.reset()
# reset action agent
cutsel_agent = CutSelectAgent(
env.m,
policy,
value,
sel_cuts_percent,
device,
train_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
state_action_dict = cutsel_agent.get_data()
lp_info = cutsel_agent.get_lp_info()
# cuts_info = cutsel_agent.get_cuts_info()
if not state_action_dict:
logger.log(f"{log_prefix}: warning!!! current instance cuts len <= 1")
continue
if reward_type == "lp_solution_value":
if len(lp_info["lp_solution_value"]) < 2:
continue
else:
neg_reward = lp_info["lp_solution_value"][0] - lp_info["lp_solution_value"][1]
for key in env_step_info.keys():
assert key in env_step_infos.keys()
env_step_infos[key].append(env_step_info[key])
# for key in cuts_info.keys():
# cuts_infos[key].append(cuts_info[key])
for key in state_action_dict.keys():
training_datasets[key].append(state_action_dict[key])
if reward_type == 'lp_solution_value':
training_datasets['neg_reward'].append(neg_reward)
else:
training_datasets['neg_reward'].append(env_step_info[reward_type])
cutsel_agent.free_problem()
# list dict numpy cuda tensor 都可以传,cpu tensor 传不了,带梯度信息的cuda tensor 传不了
return_queue.put((env_step_infos, training_datasets))
def generate_hierarchy_samples(return_queue,env,policy,cutsel_policy,value,epoch,samples_per_worker,sel_cuts_percent,device,train_decode_type,reward_type,seed,mean_std,policy_type,random_seed):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
cutsel_policy = cutsel_policy.to(device)
log_prefix = os.getpid()
_ = set_global_seed(seed%4096)
logger.log(f"{log_prefix}: debug log random seed {seed%4096}")
logger.log(f"{log_prefix}: sampling data ...")
env_step_infos = {
"solving_time": [],
"ntotal_nodes": [],
"primal_dual_gap": [],
"primaldualintegral": []
} # dict of list
training_datasets = {
"state": [],
"action": [],
"sel_cuts_num": [],
"neg_reward": []
} # list of numpy/list/int
training_high_level_datasets = {
"state": [],
"action": [],
"neg_reward": []
}
env.set_seed(seed)
for step in range(samples_per_worker):
logger.log(f"{log_prefix}: training... epoch: {epoch}... steps: {step+1}")
logger.log(f"{log_prefix}: cuda memory: {torch.cuda.memory_allocated(0)/1024**3} GB")
logger.log(f"{log_prefix}: cuda cached: {torch.cuda.memory_cached(0)/1024**3} GB")
env.reset()
# reset action agent
cutsel_agent = HierarchyCutSelectAgent(
env.m,
policy,
cutsel_policy,
value,
sel_cuts_percent,
device,
train_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
state_action_dict = cutsel_agent.get_data()
lp_info = cutsel_agent.get_lp_info()
high_level_state_action_dict = cutsel_agent.get_high_level_data()
if (not state_action_dict) or (not high_level_state_action_dict):
logger.log(f"{log_prefix}: warning!!! current instance cuts len <= 1")
continue
if reward_type == "lp_solution_value":
if len(lp_info["lp_solution_value"]) < 2:
continue
else:
neg_reward = lp_info["lp_solution_value"][0] - lp_info["lp_solution_value"][1]
for key in env_step_info.keys():
assert key in env_step_infos.keys()
env_step_infos[key].append(env_step_info[key])
for key in state_action_dict.keys():
training_datasets[key].append(state_action_dict[key])
for key in high_level_state_action_dict.keys():
training_high_level_datasets[key].append(high_level_state_action_dict[key])
if reward_type == 'lp_solution_value':
training_datasets['neg_reward'].append(neg_reward)
training_high_level_datasets['neg_reward'].append(neg_reward)
else:
training_datasets['neg_reward'].append(env_step_info[reward_type])
training_high_level_datasets['neg_reward'].append(env_step_info[reward_type])
cutsel_agent.free_problem()
# list dict numpy cuda tensor 都可以传,cpu tensor 传不了,带梯度信息的cuda tensor 传不了
return_queue.put((env_step_infos, training_datasets, training_high_level_datasets))
def evaluate(
return_queue,
env,
policy,
value,
epoch,
evaluate_samples_per_worker,
sel_cuts_percent,
device,
evaluate_decode_type,
seed,
mean_std,
policy_type,
random_seed
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
log_prefix = os.getpid()
_ = set_global_seed(random_seed)
logger.log(f"{log_prefix}: debug log random seed {random_seed}")
logger.log(f"{log_prefix}: evaluating... epoch: {epoch}")
neg_solving_time = np.zeros((evaluate_samples_per_worker, 1))
neg_total_nodes = np.zeros((evaluate_samples_per_worker, 1))
primaldualintegral = np.zeros((evaluate_samples_per_worker, 1))
primal_dual_gap = np.zeros((evaluate_samples_per_worker,1))
lp_solution_value = []
env.set_seed(seed)
for i in range(evaluate_samples_per_worker):
env.reset()
cutsel_agent = CutSelectAgent(
env.m,
policy,
value,
sel_cuts_percent,
device,
evaluate_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
lp_info = cutsel_agent.get_lp_info()
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
if len(lp_info['lp_solution_value']) >= 2:
lp_solution_value.append(lp_info['lp_solution_value'][0] - lp_info['lp_solution_value'][1])
return_queue.put(
(neg_solving_time, neg_total_nodes, primaldualintegral, lp_solution_value,primal_dual_gap)
)
def evaluate_hierarchy(
return_queue,
env,
policy,
cutsel_percent_policy,
value,
epoch,
evaluate_samples_per_worker,
sel_cuts_percent,
device,
evaluate_decode_type,
seed,
mean_std,
policy_type,
random_seed
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
cutsel_percent_policy = cutsel_percent_policy.to(device)
_ = set_global_seed(random_seed)
log_prefix = os.getpid()
logger.log(f"{log_prefix}: debug log random seed {random_seed}")
logger.log(f"{log_prefix}: evaluating... epoch: {epoch}")
neg_solving_time = np.zeros((evaluate_samples_per_worker, 1))
neg_total_nodes = np.zeros((evaluate_samples_per_worker, 1))
primaldualintegral = np.zeros((evaluate_samples_per_worker, 1))
primal_dual_gap = np.zeros((evaluate_samples_per_worker,1))
lp_solution_value = []
env.set_seed(seed)
for i in range(evaluate_samples_per_worker):
env.reset()
cutsel_agent = HierarchyCutSelectAgent(
env.m,
policy,
cutsel_percent_policy,
value,
sel_cuts_percent,
device,
evaluate_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
lp_info = cutsel_agent.get_lp_info()
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
if len(lp_info['lp_solution_value']) >= 2:
lp_solution_value.append(lp_info['lp_solution_value'][0] - lp_info['lp_solution_value'][1])
return_queue.put(
(neg_solving_time, neg_total_nodes, primaldualintegral, lp_solution_value,primal_dual_gap)
)
def test(
return_queue,
instance_path,
instance_file_list,
policy,
sel_cuts_percent,
device,
test_decode_type,
seed,
mean_std,
policy_type,
scip_seed,
**env_kwargs
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
_ = set_global_seed(seed)
print(f"pid: {os.getpid()} debug log random seed {seed}")
print(f"pid: {os.getpid()}, instance_files: {instance_file_list}")
neg_solving_time = np.zeros((len(instance_file_list), 1))
neg_total_nodes = np.zeros((len(instance_file_list), 1))
primaldualintegral = np.zeros((len(instance_file_list), 1))
primal_dual_gap = np.zeros((len(instance_file_list), 1))
sel_cuts_info = {
'sel_cuts_num': [],
'cuts_total_num': []
}
f_name_list = []
for i, f_name in enumerate(instance_file_list):
env_kwargs['single_instance_file'] = f_name
env = SCIPCutSelEnv(
instance_path,
scip_seed,
seed,
**env_kwargs
)
env.reset()
cutsel_agent = CutSelectAgent(
env.m,
policy,
None,
sel_cuts_percent,
device,
test_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
state_action_dict = cutsel_agent.get_data()
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
f_name_list.append(f_name)
if not state_action_dict:
sel_cuts_info['sel_cuts_num'].append(1)
sel_cuts_info['cuts_total_num'].append(1)
else:
sel_cuts_info['sel_cuts_num'].append(state_action_dict['sel_cuts_num'])
sel_cuts_info['cuts_total_num'].append(len(state_action_dict['state']))
return_queue.put(
(neg_solving_time, neg_total_nodes,primaldualintegral,primal_dual_gap,f_name_list,sel_cuts_info)
)
def test_hierarchy(
return_queue,
instance_path,
instance_file_list,
policy,
cutsel_percent_policy,
sel_cuts_percent,
device,
test_decode_type,
seed,
mean_std,
policy_type,
scip_seed,
**env_kwargs
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
cutsel_percent_policy = cutsel_percent_policy.to(device)
_ = set_global_seed(seed)
print(f"pid: {os.getpid()} debug log random seed {seed}")
print(f"pid: {os.getpid()}, instance_files: {instance_file_list}")
neg_solving_time = np.zeros((len(instance_file_list), 1))
neg_total_nodes = np.zeros((len(instance_file_list), 1))
primaldualintegral = np.zeros((len(instance_file_list), 1))
primal_dual_gap = np.zeros((len(instance_file_list), 1))
sel_cuts_info = {
'sel_cuts_num': [],
'cuts_total_num': []
}
f_name_list = []
for i, f_name in enumerate(instance_file_list):
env_kwargs['single_instance_file'] = f_name
env = SCIPCutSelEnv(
instance_path,
scip_seed,
seed,
**env_kwargs
)
env.reset()
cutsel_agent = HierarchyCutSelectAgent(
env.m,
policy,
cutsel_percent_policy,
None,
sel_cuts_percent,
device,
test_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
state_action_dict = cutsel_agent.get_data()
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
if not state_action_dict:
sel_cuts_info['sel_cuts_num'].append(1)
sel_cuts_info['cuts_total_num'].append(1)
else:
sel_cuts_info['sel_cuts_num'].append(state_action_dict['sel_cuts_num'])
sel_cuts_info['cuts_total_num'].append(len(state_action_dict['state']))
f_name_list.append(f_name)
return_queue.put(
(neg_solving_time, neg_total_nodes,primaldualintegral,primal_dual_gap,f_name_list,sel_cuts_info)
)
def online_test(
return_queue,
test_instance_path,
instance_file_list,
policy,
sel_cuts_percent,
device,
test_decode_type,
seed,
mean_std,
policy_type,
scip_seed,
random_seed,
**test_env_kwargs
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
_ = set_global_seed(random_seed)
pid_num = os.getpid()
logger.log(f"{pid_num}: debug log random seed {random_seed}")
neg_solving_time = np.zeros((len(instance_file_list), 1))
neg_total_nodes = np.zeros((len(instance_file_list), 1))
primaldualintegral = np.zeros((len(instance_file_list), 1))
primal_dual_gap = np.zeros((len(instance_file_list), 1))
f_name_list = []
for i, f_name in enumerate(instance_file_list):
logger.log(f"pid: {pid_num}, instance: {f_name}")
test_env_kwargs['single_instance_file'] = f_name
env = SCIPCutSelEnv(
test_instance_path,
scip_seed,
seed,
**test_env_kwargs
)
env.reset()
cutsel_agent = CutSelectAgent(
env.m,
policy,
None,
sel_cuts_percent,
device,
test_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
f_name_list.append(f_name)
return_queue.put(
(neg_solving_time, neg_total_nodes,primaldualintegral,primal_dual_gap,f_name_list)
)
def online_test_hierarchy(
return_queue,
test_instance_path,
instance_file_list,
policy,
cutsel_percent_policy,
sel_cuts_percent,
device,
test_decode_type,
seed,
mean_std,
policy_type,
scip_seed,
random_seed,
**test_env_kwargs
):
os.environ['CUDA_VISIBLE_DEVICES'] = device
device = 'cuda:0'
policy = policy.to(device)
cutsel_percent_policy = cutsel_percent_policy.to(device)
_ = set_global_seed(random_seed)
pid_num = os.getpid()
logger.log(f"{pid_num}: debug log random seed {random_seed}")
neg_solving_time = np.zeros((len(instance_file_list), 1))
neg_total_nodes = np.zeros((len(instance_file_list), 1))
primaldualintegral = np.zeros((len(instance_file_list), 1))
primal_dual_gap = np.zeros((len(instance_file_list), 1))
f_name_list = []
for i, f_name in enumerate(instance_file_list):
logger.log(f"pid: {pid_num}, instance: {f_name}")
test_env_kwargs['single_instance_file'] = f_name
env = SCIPCutSelEnv(
test_instance_path,
scip_seed,
seed,
**test_env_kwargs
)
env.reset()
cutsel_agent = HierarchyCutSelectAgent(
env.m,
policy,
cutsel_percent_policy,
None,
sel_cuts_percent,
device,
test_decode_type,
mean_std,
policy_type
)
env_step_info = env.step(cutsel_agent)
neg_solving_time[i,:] = env_step_info['solving_time']
neg_total_nodes[i,:] = env_step_info['ntotal_nodes']
primaldualintegral[i,:] = env_step_info['primaldualintegral']
primal_dual_gap[i,:] = env_step_info['primal_dual_gap']
f_name_list.append(f_name)
return_queue.put(
(neg_solving_time, neg_total_nodes,primaldualintegral,primal_dual_gap,f_name_list)
)
def process_and_log_results(raw_results,instance_type,out_dir,cutsel_rule,sel_cuts_percent,log_prefix):
neg_solving_time = np.vstack([result[0] for result in raw_results])
neg_total_nodes = np.vstack([result[1] for result in raw_results])
primaldualintegral = np.vstack([result[2] for result in raw_results])
primal_dual_gap = np.vstack([result[3] for result in raw_results])
f_name_list = []
sel_cuts_num = []
cuts_total_num = []
for result in raw_results:
f_name_list.extend(result[4])
for result in raw_results:
sel_cuts_num.extend(result[5]['sel_cuts_num'])
cuts_total_num.extend(result[5]['cuts_total_num'])
new_results = {
'solving_time': neg_solving_time,
'neg_total_nodes': neg_total_nodes,
"primaldualintegral": primaldualintegral,
"primal_dual_gap": primal_dual_gap,
"f_name_list": f_name_list,
"sel_cuts_num": sel_cuts_num,
"cuts_total_num": cuts_total_num
}
print(f"solving time mean: {np.mean(neg_solving_time)}, and std: {np.std(neg_solving_time)}")
print(f"total nodes mean: {np.mean(neg_total_nodes)}, and total nodes std: {np.std(neg_total_nodes)}")
print(f"primal dual integral mean: {np.mean(primaldualintegral)}, and std: {np.std(primaldualintegral)}")
print(f"primal dual gap mean: {np.mean(primal_dual_gap)}, and std: {np.std(primal_dual_gap)}")
print(f"sel_cuts_num mean: {np.mean(sel_cuts_num)}, and std: {np.std(sel_cuts_num)}")
print(f"cuts_total_num mean: {np.mean(cuts_total_num)}, and std: {np.std(cuts_total_num)}")
out_dir = instance_type + out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
save_npy = f"{out_dir}/{log_prefix}_{cutsel_rule}_max_cuts_root_{sel_cuts_percent}.npy"
np.save(save_npy, new_results)
def online_process_and_log_results(raw_results, epoch, test_type):
neg_solving_time = np.vstack([result[0] for result in raw_results])
neg_total_nodes = np.vstack([result[1] for result in raw_results])
primaldualintegral = np.vstack([result[2] for result in raw_results])
primal_dual_gap = np.vstack([result[3] for result in raw_results])
f_name_list = []
for result in raw_results:
f_name_list.extend(result[4])
stats = {}
if test_type == 'online_test':
prefix = 'testing'
else:
prefix = 'evaluating'
stats.update(
create_stats_ordered_dict(f'{prefix}/solving time', neg_solving_time)
)
stats.update(
create_stats_ordered_dict(f'{prefix}/neg_total_nodes', neg_total_nodes)
)
stats.update(
create_stats_ordered_dict(f'{prefix}/primaldualintegral', primaldualintegral)
)
stats.update(
create_stats_ordered_dict(f'{prefix}/primal_dual_gap', primal_dual_gap)
)
new_results = {
'solving_time': neg_solving_time,
'neg_total_nodes': neg_total_nodes,
"primaldualintegral": primaldualintegral,
"primal_dual_gap": primal_dual_gap,
"f_name_list": f_name_list
}
if test_type == 'online_test':
logger.save_npy(epoch, new_results)
logger.log(f"solving time mean: {np.mean(neg_solving_time)}, and std: {np.std(neg_solving_time)}")
logger.log(f"total nodes mean: {np.mean(neg_total_nodes)}, and total nodes std: {np.std(neg_total_nodes)}")
logger.log(f"primal dual integral mean: {np.mean(primaldualintegral)}, and std: {np.std(primaldualintegral)}")
logger.log(f"primal_dual_gap mean: {np.mean(primal_dual_gap)}, and std: {np.std(primal_dual_gap)}")
return stats
def _get_epoch_timings():
times_itrs = gt.get_times().stamps.itrs
times = OrderedDict()
epoch_time = 0
for key in sorted(times_itrs):
time = times_itrs[key][-1]
epoch_time += time
times['time/{} (s)'.format(key)] = time
times['time/epoch (s)'] = epoch_time
times['time/total (s)'] = gt.get_times().total
return times
def main():
torch.multiprocessing.set_start_method('spawn', force=True)
from pointer_net import PointerNetwork, CutsPercentPolicy
from pointer_net_end_token import PointerNetworkEndToken
from value_net import CriticNetwork
# 参数配置:固定参数json 文件;调试参数命令行
parser = argparse.ArgumentParser(description="RL for learning to cut")
parser.add_argument('--config_file', type=str, default='/datasets/learning_to_cut_via_rl/configs/easy_max_independent_set_config.json', help="base config json dir")
parser.add_argument('--sel_cuts_percent', type=float, default=0.1)
parser.add_argument('--single_instance_file', type=str, default="all")
parser.add_argument('--reward_type', type=str, default="lp_solution_value")
parser.add_argument('--baseline_type', type=str, default="simple")
parser.add_argument('--train_type', type=str, default="train")
parser.add_argument('--instance_type', type=str, default="item_placement") # for log file name
parser.add_argument('--time_limit', type=int, default=10) # for log file name
parser.add_argument('--use_cutsel_percent_policy', type=str, default='False')
parser.add_argument('--policy_type', type=str, default='with_token')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--scip_seed', type=int, default=1)
args = parser.parse_args()
all_kwargs = json.load(open(args.config_file, 'r'))
if args.use_cutsel_percent_policy == 'True':
all_kwargs['cutsel_percent_policy']['use_cutsel_percent_policy'] = True
else:
all_kwargs['cutsel_percent_policy']['use_cutsel_percent_policy'] = False
all_kwargs['policy_type'] = args.policy_type
if args.policy_type == 'with_token':
Pointer = PointerNetworkEndToken
else:
Pointer = PointerNetwork
# test
if args.train_type == 'test':
test_kwargs = all_kwargs['test_kwargs']
device_kwargs = all_kwargs['devices']
# get instance file path
test_instance_path = test_kwargs['test_instance_path']
f_name_list = os.listdir(test_instance_path)
# assert len(f_name_list) % test_kwargs['n_jobs'] == 0
file_num_each_worker = math.ceil(len(f_name_list) / (test_kwargs['n_jobs'] * len(device_kwargs['multi_devices'])))
env_kwargs = all_kwargs['env']
env_kwargs.pop('instance_file_path')
all_kwargs['experiment']['seed'] = args.seed
seed = set_global_seed(all_kwargs['experiment']['seed'])
# load policy model
device = torch.device(device_kwargs['global_device'])
# multi_devices = [torch.device(d) for d in device_kwargs['multi_devices']]
multi_devices = device_kwargs['multi_devices']
net_share_kwargs = all_kwargs['net_share']
policy_kwargs = all_kwargs['policy']
value_kwargs = all_kwargs['value']
cutsel_percent_policy_kwargs = all_kwargs['cutsel_percent_policy']
test_model_base_path = test_kwargs['test_model_base_path']
test_model_file = test_kwargs['test_model']
if len(test_model_file) == 1:
state_dict = torch.load(os.path.join(test_model_base_path, test_model_file[0]))
else:
list_state_dict = [torch.load(os.path.join(test_model_base_path, cur_test_model_file)) for cur_test_model_file in test_model_file]
state_dict = get_average_models(list_state_dict)
# load policy
policy = Pointer(
embedding_dim=net_share_kwargs['embedding_dim'],
hidden_dim=net_share_kwargs['hidden_dim'],
n_glimpses=policy_kwargs['n_glimpses'],
tanh_exploration=net_share_kwargs['tanh_exploration'],
use_tanh=net_share_kwargs['use_tanh'],
beam_size=policy_kwargs['beam_size'],
use_cuda=torch.cuda.is_available()
)
# .to(device)
policy.load_state_dict(state_dict['pointer_net'])
policy.eval()
# load running mean std
feature_shape = (policy.embedding_dim,)
if 'mean' in state_dict.keys():
mean_std = RunningMeanStd(feature_shape)
mean_std.set_mean_std(state_dict['mean'], state_dict['std'])
else:
mean_std = None
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
cutsel_percent_policy = CutsPercentPolicy(
embedding_dim=net_share_kwargs['embedding_dim'],
hidden_dim=net_share_kwargs['hidden_dim'],
n_process_block_iters=value_kwargs['n_process_block_iters'],
tanh_exploration=net_share_kwargs['tanh_exploration'],
use_tanh=net_share_kwargs['use_tanh'],
use_cuda=torch.cuda.is_available()
)
# .to(device)
cutsel_percent_policy.load_state_dict(state_dict['cutsel_percent_net'])
cutsel_percent_policy.eval()
# running multiprocessing
return_queue = mp.SimpleQueue()
processes = []
for i, worker_device in enumerate(multi_devices):
st_index = i * test_kwargs['n_jobs']
for num in range(test_kwargs['n_jobs']):
if i == (len(multi_devices)-1) and num == (test_kwargs['n_jobs']-1):
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:]
else:
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:(st_index+num+1)*file_num_each_worker]
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
p = mp.Process(
target=test_hierarchy,
args=(return_queue,test_instance_path,cur_f_list,policy,cutsel_percent_policy,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed),
kwargs=env_kwargs
)
else:
p = mp.Process(
target=test,
args=(return_queue,test_instance_path,cur_f_list,policy,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed),
kwargs=env_kwargs
)
p.start()
processes.append(p)
raw_results = [return_queue.get() for p in processes] # list of tuple
for p in processes:
p.join()
# for p in processes:
# p.close()
log_prefix = f"seed_{args.scip_seed}_model_{all_kwargs['test_kwargs']['test_model']}"
process_and_log_results(raw_results, args.instance_type + '_use_hrl_' + str(cutsel_percent_policy_kwargs['use_cutsel_percent_policy']), "heuristics_cutsel", "RL", args.sel_cuts_percent,log_prefix)
# get model
# test
# process test results
elif args.train_type == 'train':
# preprocess config from cmd
all_kwargs['experiment']['exp_prefix'] = all_kwargs['experiment']['exp_prefix'] + '_' + args.single_instance_file + '_' + args.instance_type
all_kwargs['env']['single_instance_file'] = args.single_instance_file
all_kwargs['algorithm']['reward_type'] = args.reward_type
all_kwargs['algorithm']['baseline_type'] = args.baseline_type
if args.reward_type == "lp_solution_value":
all_kwargs['env']['max_rounds_root'] = 2
all_kwargs['env']['scip_time_limit'] = args.time_limit
all_kwargs['parser_args'] = dict(vars(args))
experiment_kwargs = all_kwargs['experiment']
seed = set_global_seed(experiment_kwargs['seed'])
all_kwargs['experiment']['seed'] = seed
# init logger
logger.reset()
trainer_kwargs = all_kwargs['trainer']
variant = copy.deepcopy(all_kwargs)
actual_log_dir = setup_logger(
variant=variant,
**experiment_kwargs
)
# data or environments 如何生成
# 离线生成一系列train instances valid instances test instances: 训练集训练,验证集调参,测试集测试
# train: 10000 instances; valid: 2000 instances; test: 20 instances GCNN 的配置,为何test instance 数目这么小
env_kwargs = all_kwargs['env']
instance_file_path = env_kwargs.pop('instance_file_path')
env = SCIPCutSelEnv(
instance_file_path,
args.scip_seed,
seed,
**env_kwargs
)
# cutsel agent
device_kwargs = all_kwargs['devices']
device = torch.device(device_kwargs['global_device'])
# worker_devices = [torch.device(worker_device) for worker_device in device_kwargs['multi_devices']]
worker_devices = device_kwargs['multi_devices']
net_share_kwargs = all_kwargs['net_share']
policy_kwargs = all_kwargs['policy']
value_kwargs = all_kwargs['value']
cutsel_percent_policy_kwargs = all_kwargs['cutsel_percent_policy']
pointer_net = Pointer(
embedding_dim=net_share_kwargs['embedding_dim'],
hidden_dim=net_share_kwargs['hidden_dim'],
n_glimpses=policy_kwargs['n_glimpses'],
tanh_exploration=net_share_kwargs['tanh_exploration'],
use_tanh=net_share_kwargs['use_tanh'],
beam_size=policy_kwargs['beam_size'],
use_cuda=torch.cuda.is_available()
)
# .to(device)
if all_kwargs['algorithm']['baseline_type'] == 'net':
value_net = CriticNetwork(
embedding_dim=net_share_kwargs['embedding_dim'],
hidden_dim=net_share_kwargs['hidden_dim'],
n_process_block_iters=value_kwargs['n_process_block_iters'],
tanh_exploration=net_share_kwargs['tanh_exploration'],
use_tanh=net_share_kwargs['use_tanh'],
use_cuda=torch.cuda.is_available()
)
# .to(device)
else:
value_net = None
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
cutsel_percent_policy = CutsPercentPolicy(
embedding_dim=net_share_kwargs['embedding_dim'],
hidden_dim=net_share_kwargs['hidden_dim'],
n_process_block_iters=value_kwargs['n_process_block_iters'],
tanh_exploration=net_share_kwargs['tanh_exploration'],
use_tanh=net_share_kwargs['use_tanh'],
use_cuda=torch.cuda.is_available()
)
# .to(device)
# preload model for retraining
if experiment_kwargs['base_log_dir'] is not None and 'params.pkl' in os.listdir(experiment_kwargs['base_log_dir']):
state_dict = torch.load(os.path.join(experiment_kwargs['base_log_dir'], 'params.pkl'))
pointer_net.load_state_dict(state_dict['pointer_net'])
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
cutsel_percent_policy.load_state_dict(state_dict['cutsel_percent_net'])
# train 函数
alg_kwargs = all_kwargs['algorithm']
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
algorithm = HRLReinforceAlg(
env,
pointer_net,
value_net,
cutsel_percent_policy,
args.sel_cuts_percent,
device,
cutsel_percent_policy_kwargs['train_freq'],
cutsel_percent_policy_kwargs['train_highlevel_batch_size'],
cutsel_percent_policy_kwargs['highlevel_actor_lr'],
**alg_kwargs
)
else:
algorithm = ReinforceBaselineAlg(
env,
pointer_net,
value_net,
args.sel_cuts_percent,
device,
**alg_kwargs
)
if alg_kwargs['normalize']:
mean_std = algorithm.mean_std
else:
mean_std = None
gt.reset_root()
test_stats = {}
eva_stats = {}
train_highlevel_stats = {}
tmp_stats = {}
# training loop
for epoch in gt.timed_for(range(all_kwargs['start_epoch'], alg_kwargs['num_epochs']), save_itrs=True):
# for epoch in range(alg_kwargs['num_epochs']):
# samples per epoch
# mini_batchsize
# n_jobs
# multiprocessing sampling data
pointer_net = pointer_net.to('cpu') # policy to cpu
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
cutsel_percent_policy = cutsel_percent_policy.to('cpu')
assert trainer_kwargs['samples_per_epoch'] % trainer_kwargs['n_jobs'] == 0
samples_each_worker = int(trainer_kwargs['samples_per_epoch'] / trainer_kwargs['n_jobs'])
train_multiprocess_seeds = [np.random.randint(2 ** 30) for _ in range(trainer_kwargs['n_jobs'])]
eval_multiprocess_seeds = [np.random.randint(2 ** 30) for _ in range(trainer_kwargs['n_jobs'])]
for i, s in enumerate(train_multiprocess_seeds):
logger.record_tabular(f'train {i+1}th process seed', s)
for i, s in enumerate(eval_multiprocess_seeds):
logger.record_tabular(f'evaluate {i+1}th process seed', s)
# online testing ............
online_test_kwargs = all_kwargs['online_test_kwargs']
if online_test_kwargs['test_freq'] > 0 and (epoch % online_test_kwargs['test_freq'] == 0):
logger.log(f"testing... epoch: {epoch+1}")
# get instance file path
test_instance_path = online_test_kwargs['test_instance_path']
f_name_list = os.listdir(test_instance_path)
# assert len(f_name_list) % test_kwargs['n_jobs'] == 0
file_num_each_worker = math.ceil(len(f_name_list) / (online_test_kwargs['test_n_jobs'] * len(worker_devices)))
test_env_kwargs = online_test_kwargs['test_env_kwargs']
return_queue = mp.SimpleQueue()
processes = []
for i, worker_device in enumerate(worker_devices):
st_index = i * online_test_kwargs['test_n_jobs']
for num in range(online_test_kwargs['test_n_jobs']):
if i == (len(worker_devices)-1) and num == (online_test_kwargs['test_n_jobs']-1):
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:]
else:
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:(st_index+num+1)*file_num_each_worker]
# cur_policy = policy.to(worker_device)
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
p = mp.Process(
target=online_test_hierarchy,
args=(return_queue,test_instance_path,cur_f_list,pointer_net,cutsel_percent_policy,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed,seed),
kwargs=test_env_kwargs
)
else:
p = mp.Process(
target=online_test,
args=(return_queue,test_instance_path,cur_f_list,pointer_net,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed,seed),
kwargs=test_env_kwargs
)
p.start()
processes.append(p)
raw_results = [return_queue.get() for p in processes] # list of tuple
for p in processes:
p.join()
test_stats = online_process_and_log_results(raw_results, epoch, 'online_test')
if test_stats:
logger.record_dict(test_stats)
gt.stamp('online_testing', unique=False)
# evaluating ..........
if (alg_kwargs['evaluate_freq'] > 0) and (epoch % alg_kwargs['evaluate_freq'] == 0):
# logger.log(f"evaluating... epoch: {epoch+1}")
# assert alg_kwargs['evaluate_samples'] % trainer_kwargs['n_jobs'] == 0
# evaluate_sample_each_worker = int(alg_kwargs['evaluate_samples'] / trainer_kwargs['n_jobs'])
# return_queue = mp.SimpleQueue()
# processes = []
# for i, worker_device in enumerate(worker_devices):
# for num in range(trainer_kwargs['n_jobs']):
# s = eval_multiprocess_seeds[num] + i
# if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
# p = mp.Process(
# target=evaluate_hierarchy,
# args=(return_queue,env,pointer_net,cutsel_percent_policy,value_net,epoch+1,evaluate_sample_each_worker,args.sel_cuts_percent,worker_device,alg_kwargs['evaluate_decode_type'],s,mean_std,args.policy_type,seed)
# )
# else:
# p = mp.Process(
# target=evaluate,
# args=(return_queue,env,pointer_net,value_net,epoch+1,evaluate_sample_each_worker,args.sel_cuts_percent,worker_device,alg_kwargs['evaluate_decode_type'],s,mean_std,args.policy_type,seed)
# )
# p.start()
# processes.append(p)
# evaluate_results = [return_queue.get() for p in processes] # list of tuple
# for p in processes:
# p.join()
# eva_stats = algorithm.log_evaluate_stats(evaluate_results)
evaluate_kwargs = all_kwargs['evaluate_kwargs']
logger.log(f"evaluating... epoch: {epoch+1}")
# get instance file path
test_instance_path = evaluate_kwargs['test_instance_path']
f_name_list = os.listdir(test_instance_path)
# assert len(f_name_list) % test_kwargs['n_jobs'] == 0
file_num_each_worker = math.ceil(len(f_name_list) / (evaluate_kwargs['test_n_jobs'] * len(worker_devices)))
test_env_kwargs = evaluate_kwargs['test_env_kwargs']
return_queue = mp.SimpleQueue()
processes = []
for i, worker_device in enumerate(worker_devices):
st_index = i * evaluate_kwargs['test_n_jobs']
for num in range(evaluate_kwargs['test_n_jobs']):
if i == (len(worker_devices)-1) and num == (evaluate_kwargs['test_n_jobs']-1):
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:]
else:
cur_f_list = f_name_list[(st_index+num)*file_num_each_worker:(st_index+num+1)*file_num_each_worker]
# cur_policy = policy.to(worker_device)
if cutsel_percent_policy_kwargs['use_cutsel_percent_policy']:
p = mp.Process(
target=online_test_hierarchy,
args=(return_queue,test_instance_path,cur_f_list,pointer_net,cutsel_percent_policy,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed,seed),
kwargs=test_env_kwargs
)
else:
p = mp.Process(
target=online_test,
args=(return_queue,test_instance_path,cur_f_list,pointer_net,args.sel_cuts_percent,worker_device,'greedy',seed,mean_std,args.policy_type,args.scip_seed,seed),
kwargs=test_env_kwargs
)
p.start()