-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
322 lines (282 loc) · 11.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from modeling.tokenization_cheems import CheemsTokenizer
from modeling.configuration_cheems import CheemsConfig
from modeling.textfeature_classification_modeing import CheemsForSequenceClassification
from scripts.Dataset import HealthCare_Dataset
import torch
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
import os
import logging
import argparse
import transformers
transformers.logging.set_verbosity(logging.ERROR)
from transformers.models.bert.modeling_bert import BertConfig
from transformers.models.bert.modeling_bert import BertForSequenceClassification
from transformers.models.xlnet.modeling_xlnet import XLNetConfig
from transformers.models.xlnet.modeling_xlnet import XLNetForSequenceClassification
from transformers.models.llama.modeling_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaForSequenceClassification
from transformers.models.phi.modeling_phi import PhiConfig
from transformers.models.phi.modeling_phi import PhiForSequenceClassification
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
def evaluate_acc_precision_recall_f1(logits, labels):
preds = torch.argmax(logits, dim=1)
labels = labels.cpu().numpy()
preds = preds.cpu().numpy()
acc = accuracy_score(labels, preds)
precision = precision_score(labels, preds, zero_division=0)
recall = recall_score(labels, preds, zero_division=0)
f1 = f1_score(labels, preds, zero_division=0)
return acc, precision, recall, f1
# 训练函数
def trainer(
model: torch.nn.Module,
train_loader: DataLoader,
eval_loader: DataLoader,
optimizer: torch.optim.Optimizer,
scheduler: LambdaLR,
device: torch.device,
epochs: int,
logger: logging.Logger,
pass_epoch: int = 0
) -> None:
torch.manual_seed(233)
model.to(device)
# 如果是Linux, 编译模型
if os.name == 'posix':
torch.compile(model)
# 记录模型参数数量
num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(model)
logger.info(f"Total Parameters: {num_parameters}")
train_loss = []
for epoch in range(epochs):
model.train()
# 如果epoch小于pass_epoch, 则只更新学习率
if epoch < pass_epoch:
train_loader_len = len(train_loader)
for step in range(train_loader_len):
scheduler.step()
print(f"Epoch [{epoch+1}/{epochs}], Step [{step+1}/{train_loader_len}], lr: {scheduler.get_last_lr()[0]:.8f}")
continue
for step, batch in enumerate(train_loader):
# 获取数据
if model.__class__.__name__ == "CheemsForSequenceClassification":
inputs = {
"text_ids": batch["text_ids"].to(device),
"text_attention_mask": batch["text_attention_mask"].to(device),
"feature_ids": batch["feature_ids"].to(device),
"feature_attention_mask": batch["feature_attention_mask"].to(device),
"labels": batch["label"].to(device)
}
else:
inputs = {
"input_ids" : batch["text_ids"].to(device),
"attention_mask" : batch["text_attention_mask"].to(device),
"labels" : batch["label"].to(device)
}
# 梯度清零
optimizer.zero_grad()
# 前向传播
outputs = model(**inputs)
loss = outputs.loss
# 反向传播
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# 更新参数
optimizer.step()
# 更新学习率
scheduler.step()
# 记录损失
train_loss.append(loss.item())
if (step+1) % (len(train_loader)//10) == 0:
train_loss = sum(train_loss) / len(train_loss)
logger.info(f"Epoch [{epoch+1}/{epochs}], Step [{step+1}/{len(train_loader)}], lr: {scheduler.get_last_lr()[0]:.8f}, Loss: {train_loss}")
train_loss = []
# 模型评估 ACC
if (epoch+1) % 4 == 0:
model.eval()
accs = []
precisions = []
recalls = []
f1s = []
for step, batch in enumerate(eval_loader):
if model.__class__.__name__ == "CheemsForSequenceClassification":
inputs = {
"text_ids": batch["text_ids"].to(device),
"text_attention_mask": batch["text_attention_mask"].to(device),
"feature_ids": batch["feature_ids"].to(device),
"feature_attention_mask": batch["feature_attention_mask"].to(device),
"labels": batch["label"].to(device)
}
else:
inputs = {
"input_ids" : batch["text_ids"].to(device),
"attention_mask" : batch["text_attention_mask"].to(device),
"labels" : batch["label"].to(device)
}
outputs = model(**inputs)
logits = outputs.logits
labels = inputs["labels"]
acc, precision, recall, f1 = evaluate_acc_precision_recall_f1(logits, labels)
accs.append(acc)
precisions.append(precision)
recalls.append(recall)
f1s.append(f1)
acc = sum(accs) / len(accs)
precision = sum(precisions) / len(precisions)
recall = sum(recalls) / len(recalls)
f1 = sum(f1s) / len(f1s)
logger.info(f"\nEpoch [{epoch+1}/{epochs}], Eval ACC: {acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}\n")
# 保存模型
model.save_pretrained(f"./models/{model.__class__.__name__}_epoch_{epoch+1}")
def set_logger(model_name: str):
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.FileHandler(f"./logs/train_{model_name}.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def get_optimizer_and_scheduler(
model: torch.nn.Module,
lrate: callable,
):
no_decay = ["bias", "LayerNorm.weight"]
param_optimizer = list(model.named_parameters())
optimizer_grouped_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and not p.requires_grad == False],
"weight_decay": 0.01,
},
{
"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and not p.requires_grad == False],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1, betas=(0.9, 0.98), eps=1e-8)
scheduler = LambdaLR(optimizer, lr_lambda=lrate)
return optimizer, scheduler
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# lr
parser.add_argument("--lr", type=float, default=2e-5)
# epochs
parser.add_argument("--epochs", type=int, default=64)
args = parser.parse_args()
# 加载数据集
tokenizer = CheemsTokenizer('./modeling/cheems_tokenizer.model')
train_dataset = HealthCare_Dataset('./data/healthcare_stroke', 'train', tokenizer, max_length=128)
eval_dataset = HealthCare_Dataset('./data/healthcare_stroke', 'eval', tokenizer, max_length=128)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
eval_loader = DataLoader(eval_dataset, batch_size=1, shuffle=False)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 学习率
def lrate(
step: int
) -> float:
if step == 0:
return 0.0
return args.lr
# Cheems模型
config = CheemsConfig()
config.text_vocab_size = tokenizer.vocab_size
config.feature_vocab_size = 2
config.num_labels = 2
model = CheemsForSequenceClassification(config)
optimizer, scheduler = get_optimizer_and_scheduler(model, lrate)
logger = set_logger(model.__class__.__name__)
trainer(
model=model,
train_loader=train_loader,
eval_loader=eval_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=args.epochs,
logger=logger
)
# Bert模型
config = BertConfig()
config.vocab_size = tokenizer.vocab_size
config.hidden_size = 1024
config.intermediate_size = 1024*4
config.num_attention_heads = 16
config.num_labels = 2
model = BertForSequenceClassification(config)
optimizer, scheduler = get_optimizer_and_scheduler(model, lrate)
logger = set_logger(model.__class__.__name__)
trainer(
model=model,
train_loader=train_loader,
eval_loader=eval_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=args.epochs,
logger=logger
)
# XLNet模型
config = XLNetConfig()
config.vocab_size = tokenizer.vocab_size
config.d_model = 1024
config.d_inner = 1024*4
config.num_labels = 2
model = XLNetForSequenceClassification(config)
optimizer, scheduler = get_optimizer_and_scheduler(model, lrate)
logger = set_logger(model.__class__.__name__)
trainer(
model=model,
train_loader=train_loader,
eval_loader=eval_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=args.epochs,
logger=logger
)
# Llama模型
config = LlamaConfig()
config.vocab_size = tokenizer.vocab_size
config.pad_token_id = tokenizer.pad_token_id
config.num_hidden_layers = 12
config.hidden_size = 1024
config.intermediate_size = 1024*4
config.num_labels = 2
model = LlamaForSequenceClassification(config)
optimizer, scheduler = get_optimizer_and_scheduler(model, lrate)
logger = set_logger(model.__class__.__name__)
trainer(
model=model,
train_loader=train_loader,
eval_loader=eval_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=args.epochs,
logger=logger
)
# Phi模型
config = PhiConfig()
config.vocab_size = tokenizer.vocab_size
config.pad_token_id = tokenizer.pad_token_id
config.num_hidden_layers = 12
config.hidden_size = 1024
config.intermediate_size = 1024*4
config.num_labels = 2
model = PhiForSequenceClassification(config)
optimizer, scheduler = get_optimizer_and_scheduler(model, lrate)
logger = set_logger(model.__class__.__name__)
trainer(
model=model,
train_loader=train_loader,
eval_loader=eval_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=args.epochs,
logger=logger
)