forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmenter.yml
125 lines (125 loc) · 4.04 KB
/
segmenter.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
Collections:
- Name: Segmenter
Metadata:
Training Data:
- ADE20K
Paper:
URL: https://arxiv.org/abs/2105.05633
Title: 'Segmenter: Transformer for Semantic Segmentation'
README: configs/segmenter/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Version: v0.21.0
Converted From:
Code: https://github.com/rstrudel/segmenter
Models:
- Name: segmenter_vit-t_mask_8x1_512x512_160k_ade20k
In Collection: Segmenter
Metadata:
backbone: ViT-T_16
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 35.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 1.21
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.99
mIoU(ms+flip): 40.83
Config: configs/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth
- Name: segmenter_vit-s_linear_8x1_512x512_160k_ade20k
In Collection: Segmenter
Metadata:
backbone: ViT-S_16
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 35.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 1.78
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.75
mIoU(ms+flip): 46.82
Config: configs/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth
- Name: segmenter_vit-s_mask_8x1_512x512_160k_ade20k
In Collection: Segmenter
Metadata:
backbone: ViT-S_16
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 40.32
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 2.03
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.19
mIoU(ms+flip): 47.85
Config: configs/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth
- Name: segmenter_vit-b_mask_8x1_512x512_160k_ade20k
In Collection: Segmenter
Metadata:
backbone: ViT-B_16
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 75.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 49.6
mIoU(ms+flip): 51.07
Config: configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
- Name: segmenter_vit-l_mask_8x1_640x640_160k_ade20k
In Collection: Segmenter
Metadata:
backbone: ViT-L_16
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 330.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (640,640)
Training Memory (GB): 16.99
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 51.65
mIoU(ms+flip): 53.58
Config: configs/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k/segmenter_vit-l_mask_8x1_640x640_160k_ade20k_20220614_024513-4783a347.pth