forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convnext.yml
133 lines (133 loc) · 4.37 KB
/
convnext.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Models:
- Name: upernet_convnext_tiny_fp16_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-T
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 50.25
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (512,512)
Training Memory (GB): 4.23
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.11
mIoU(ms+flip): 46.62
Config: configs/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth
- Name: upernet_convnext_small_fp16_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-S
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 65.88
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (512,512)
Training Memory (GB): 5.16
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.56
mIoU(ms+flip): 49.02
Config: configs/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth
- Name: upernet_convnext_base_fp16_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-B
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 69.4
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (512,512)
Training Memory (GB): 6.33
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.71
mIoU(ms+flip): 49.54
Config: configs/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth
- Name: upernet_convnext_base_fp16_640x640_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-B
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 91.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (640,640)
Training Memory (GB): 8.53
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.13
mIoU(ms+flip): 52.66
Config: configs/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth
- Name: upernet_convnext_large_fp16_640x640_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-L
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 130.04
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (640,640)
Training Memory (GB): 12.08
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 53.16
mIoU(ms+flip): 53.38
Config: configs/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth
- Name: upernet_convnext_xlarge_fp16_640x640_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: ConvNeXt-XL
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 157.98
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (640,640)
Training Memory (GB): 26.16
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 53.58
mIoU(ms+flip): 54.11
Config: configs/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth