-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhdb_c.c
128 lines (110 loc) · 3.34 KB
/
hdb_c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <omp.h>
#include <string.h>
// gcc -shared -o hdb.so hdb_c.c -O3 -march=native -lm -fopenmp -fPIC
int compare_doubles(const void *a, const void *b)
{
return (*(double *)a > *(double *)b) - (*(double *)a < *(double *)b);
}
double euclidean_distance(double *x, double *y, int dim)
{
double sum = 0.0;
for (int i = 0; i < dim; i++)
{
double diff = x[i] - y[i];
sum += diff * diff;
}
return sqrt(sum);
// return sum;
}
void calc_distance_matrix(double *data, unsigned long long n, int dim, double *distance_matrix)
{
#pragma omp parallel for schedule(dynamic, 4)
for (unsigned long long i = 0; i < n; i++)
{
for (unsigned long long j = 0; j < n; j++)
{
double distance = euclidean_distance(&data[i * dim], &data[j * dim], dim);
distance_matrix[i * n + j] = distance;
}
}
#pragma omp parallel for schedule(dynamic, 2)
for (unsigned long long i = 0; i < n; i++)
{
for (unsigned long long j = 0; j < i; j++)
{
distance_matrix[i * n + j] = distance_matrix[j * n + i];
}
}
}
void swap(double *const a, double *const b)
{
double temp = *a;
*a = *b;
*b = temp;
}
unsigned long long partition(double *const arr, const unsigned long long low, const unsigned long long high)
{
const double pivot = arr[high];
unsigned long long i = low - 1;
for (unsigned long long j = low; j < high; j++)
{
if (arr[j] <= pivot)
{
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return i + 1;
}
double quickSelect(double *const arr, const unsigned long long low, const unsigned long long high, const int k)
{
if (low <= high)
{
const int pivotIndex = partition(arr, low, high);
if (pivotIndex == k)
{
return arr[pivotIndex];
}
else if (pivotIndex < k)
{
return quickSelect(arr, pivotIndex + 1, high, k);
}
else
{
return quickSelect(arr, low, pivotIndex - 1, k);
}
}
return -1.0;
}
void calc_core_dist(unsigned long long n, int k, double *core_dist, double *distance_matrix)
{
#pragma omp parallel for
for (unsigned long long i = 0; i < n; i++)
{
double *temp_array = (double *)malloc(n * sizeof(double));
memcpy(temp_array, &distance_matrix[i * n], n * sizeof(double));
core_dist[i] = quickSelect(temp_array, 0, n - 1, k - 1);
}
}
double *calc_mutual_reachability_dist(double *data, unsigned long long n, int dim, int k)
{
double *distance_matrix = (double *)malloc(n * n * sizeof(double));
double *core_dist = (double *)malloc(n * sizeof(double));
double *mutual_reach_dist = (double *)malloc(n * n * sizeof(double));
calc_distance_matrix(data, n, dim, distance_matrix);
calc_core_dist(n, k, core_dist, distance_matrix);
#pragma omp parallel for // schedule(static, 2)
for (unsigned long long i = 0; i < n; i++)
{
for (unsigned long long j = i + 1; j < n; j++)
{
mutual_reach_dist[i * n + j] = fmax(fmax(core_dist[i], core_dist[j]), distance_matrix[i * n + j]);
mutual_reach_dist[j * n + i] = mutual_reach_dist[i * n + j];
}
}
return mutual_reach_dist;
}