forked from mocorr/MyDLRoad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
159 lines (133 loc) · 5.64 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import tensorflow as tf
import numpy as np
import reader
DATA_PATH = "data"
HIDDEN_SIZE = 200
NUM_LAYERS = 2
VOCAB_SIZE = 10000
LEARNING_RATE = 1.0
TRAIN_BATCH_SIZE = 20
TRAIN_NUM_STEP = 35
EVAL_BATCH_SIZE = 1#学习速率
EVAL_NUM_STEP = 1
NUM_EPOCH = 2#训练轮数
KEEP_PROB = 0.5#不dropout的概率
MAX_GRAD_NORM = 5#控制梯度膨胀的参数
class PTBModel(object):
def __init__( self, is_training, batch_size, num_steps ):
self.batch_size = batch_size
self.num_steps = num_steps
#初始化输入数据的维度
self.input_data = tf.placeholder( tf.int32, [batch_size, num_steps] )
self.targets = tf.placeholder( tf.int32, [batch_size, num_steps] )
#多层LSTM,设置dropout
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell( HIDDEN_SIZE )
if is_training :
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob = KEEP_PROB )
cell = tf.nn.rnn_cell.MultiRNNCell( [lstm_cell] * NUM_LAYERS )
#初始化
self.initial_state = cell.zero_state( batch_size, tf.float32 )
#将id转换为词向量,从 batch_size * num_steps 到 batch_size * num_steps * HIDDEN_SIZE
embedding = tf.get_variable( "embedding", [VOCAB_SIZE, HIDDEN_SIZE] )
inputs = tf.nn.embedding_lookup( embedding, self.input_data )
if is_training :
inputs = tf.nn.dropout( inputs, KEEP_PROB )
outputs = []
#训练
state = self.initial_state
with tf.variable_scope( "RNN" ) :
for time_step in range( num_steps ) :
if time_step > 0 :
tf.get_variable_scope().reuse_variables()
cell_output, state = cell( inputs[ :, time_step, : ], state )
outputs.append( cell_output )
output = tf.reshape( tf.concat( outputs, 1 ), [ -1, HIDDEN_SIZE ] )
#一个全连接得到最后的结果
weight = tf.get_variable( "weight", [ HIDDEN_SIZE, VOCAB_SIZE ] )
bias = tf.get_variable( "bias", [ VOCAB_SIZE ] )
logits = tf.matmul( output, weight ) + bias
#计算交叉熵作为loss
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape( self.targets, [-1] )],
[tf.ones([batch_size * num_steps], dtype=tf.float32)]
)
self.cost = tf.reduce_sum( loss ) / batch_size
self.final_state = state
if not is_training :
return
#通过clip_by_global_norm控制梯度大小 避免膨胀
#tf.trainable_variables()返回所有训练的变量
#tf.gradients()计算梯度 然后处理梯度
trainable_variables = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(
tf.gradients(
self.cost, trainable_variables
),
MAX_GRAD_NORM
)
#定义优化方法
optimizer = tf.train.GradientDescentOptimizer( LEARNING_RATE )
#定义训练步骤
self.train_op = optimizer.apply_gradients(
zip( grads, trainable_variables )
)
#训练过程函数
def run_epoch( session, model, data, train_op, output_log ) :
total_costs = 0.0
iters = 0
state = session.run( model.initial_state )
# step = 0
# [x,y] = reader.ptb_producer( data, model.batch_size, model.num_steps )
# coord = tf.train.Coordinator()
# tf.train.start_queue_runners(session, coord=coord)
for step, ( x, y ) in enumerate(
reader.ptb_iterator( data, model.batch_size, model.num_steps )
):
# [a,b] = session.run([x,y])
# if a.size != model.batch_size * model.num_steps :
# break
cost, state, _ = session.run(
[ model.cost, model.final_state, train_op ],
{
model.input_data : x,
model.targets : y,
model.initial_state : state
}
)
total_costs += cost
iters += model.num_steps
step += 1
if output_log and step % 100 == 0 :
print("After %d steps, perplexity is %.3f"%( step, np.exp( total_costs / iters ) ) )
return np.exp( total_costs / iters )
def main(_) :
train_data, valid_data, test_data, _ = reader.ptb_raw_data( DATA_PATH )
initializer = tf.random_uniform_initializer( -0.05, 0.05 )
#variable_scope为变量空间,当reuse=true时共享变量。
with tf.variable_scope( "language_model", reuse = None, initializer = initializer ) :
train_model = PTBModel( True, TRAIN_BATCH_SIZE, TRAIN_NUM_STEP )
with tf.variable_scope( "language_model", reuse = True, initializer = initializer ) :
eval_model = PTBModel( False, EVAL_BATCH_SIZE, EVAL_NUM_STEP )
with tf.Session() as session :
tf.global_variables_initializer().run()
#训练,每次训练后用valid数据测试
for i in range( NUM_EPOCH ) :
print( "In iteration : %d " %( i + 1 ) )
run_epoch( session, train_model, train_data, train_model.train_op, True )
valid_perplexity = run_epoch( session, eval_model, valid_data, tf.no_op(), False )
print("Epoch: %d Validation Perplexity : %.3f"%( i + 1, valid_perplexity ) )
#在最终测试集上进行测试
test_perplexity = run_epoch( session, eval_model, test_data, tf.no_op(), False )
print("test Perplexity : %.3f"%( test_perplexity ) )
if __name__ == "__main__":
tf.app.run()
# session = tf.Session()
# coord = tf.train.Coordinator()
# tf.train.start_queue_runners(session, coord=coord)
# [a,b] = session.run([x,y])
# print(a)
# [a,b] = session.run([x,y])
# print(a)
# # print("444")