-
Notifications
You must be signed in to change notification settings - Fork 245
/
lane.py
619 lines (474 loc) · 24.4 KB
/
lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""Departure Warning System with a Monocular Camera"""
__author__ = "Junsheng Fu"
__email__ = "[email protected]"
__date__ = "March 2017"
import numpy as np
import cv2
import matplotlib.pyplot as plt
from timeit import default_timer as timer
from calibration import load_calibration
from copy import copy
class Lane():
def __init__(self):
# was the line detected in the last frame or not
self.detected = False
#x values for detected line pixels
self.cur_fitx = None
#y values for detected line pixels
self.cur_fity = None
# x values of the last N fits of the line
self.prev_fitx = []
#polynomial coefficients for the most recent fit
self.current_poly = [np.array([False])]
#best polynomial coefficients for the last iteration
self.prev_poly = [np.array([False])]
def average_pre_lanes(self):
tmp = copy(self.prev_fitx)
tmp.append(self.cur_fitx)
self.mean_fitx = np.mean(tmp, axis=0)
def append_fitx(self):
if len(self.prev_fitx) == N:
self.prev_fitx.pop(0)
self.prev_fitx.append(self.mean_fitx)
def process(self, ploty):
self.cur_fity = ploty
self.average_pre_lanes()
self.append_fitx()
self.prev_poly = self.current_poly
left_lane = Lane()
right_lane = Lane()
frame_width = 1280
frame_height = 720
LANEWIDTH = 3.7 # highway lane width in US: 3.7 meters
input_scale = 1
output_frame_scale = 1
N = 4 # buffer previous N lines
# fullsize:1280x720
x = [194, 1117, 705, 575]
y = [719, 719, 461, 461]
X = [290, 990, 990, 290]
Y = [719, 719, 0, 0]
src = np.floor(np.float32([[x[0], y[0]], [x[1], y[1]],[x[2], y[2]], [x[3], y[3]]]) / input_scale)
dst = np.floor(np.float32([[X[0], Y[0]], [X[1], Y[1]],[X[2], Y[2]], [X[3], Y[3]]]) / input_scale)
M = cv2.getPerspectiveTransform(src, dst)
M_inv = cv2.getPerspectiveTransform(dst, src)
# Only for creating the final video visualization
X_b = [574, 706, 706, 574]
Y_b = [719, 719, 0, 0]
src_ = np.floor(np.float32([[x[0], y[0]], [x[1], y[1]],[x[2], y[2]], [x[3], y[3]]]) / (input_scale*2))
dst_ = np.floor(np.float32([[X_b[0], Y_b[0]], [X_b[1], Y_b[1]],[X_b[2], Y_b[2]], [X_b[3], Y_b[3]]]) / (input_scale*2))
M_b = cv2.getPerspectiveTransform(src_, dst_)
# Only for creating the final video visualization
# Threshold for color and gradient thresholding
s_thresh, sx_thresh, dir_thresh, m_thresh, r_thresh = (120, 255), (20, 100), (0.7, 1.3), (30, 100), (200, 255)
# load the calibration
calib_file = 'calibration_pickle.p'
mtx, dist = load_calibration(calib_file)
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the derivative in x or y given orient = 'x' or 'y'
# 3) Take the absolute value of the derivative or gradient
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel))
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
scaled_sobel = np.uint8(255.*abs_sobel/np.max(abs_sobel))
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return binary_output
def mag_thresh(img, sobel_kernel=3, thresh=(0, 255)):
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Calculate the magnitude
gradmag = np.sqrt(sobelx**2 + sobely**2)
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
# 5) Create a binary mask where mag thresholds are met
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1
return binary_output
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)):
""" threshold according to the direction of the gradient
:param img:
:param sobel_kernel:
:param thresh:
:return:
"""
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Take the absolute value of the x and y gradients
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
# 5) Create a binary mask where direction thresholds are met
binary_output = np.zeros_like(absgraddir)
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
return binary_output
def gradient_pipeline(image, ksize = 3, sx_thresh=(20, 100), sy_thresh=(20, 100), m_thresh=(30, 100), dir_thresh=(0.7, 1.3)):
# Apply each of the thresholding functions
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=ksize, thresh=sx_thresh)
grady = abs_sobel_thresh(image, orient='y', sobel_kernel=ksize, thresh=sy_thresh)
mag_binary = mag_thresh(image, sobel_kernel=ksize, thresh=m_thresh)
dir_binary = dir_threshold(image, sobel_kernel=ksize, thresh=dir_thresh)
combined = np.zeros_like(mag_binary)
combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
# combined[(gradx == 1) | ((mag_binary == 1) & (dir_binary == 1))] = 1
return combined
def threshold_col_channel(channel, thresh):
binary = np.zeros_like(channel)
binary[(channel >= thresh[0]) & (channel <= thresh[1])] = 1
return binary
def find_edges(img, s_thresh=s_thresh, sx_thresh=sx_thresh, dir_thresh=dir_thresh):
img = np.copy(img)
# Convert to HSV color space and threshold the s channel
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(np.float)
s_channel = hls[:,:,2]
s_binary = threshold_col_channel(s_channel, thresh=s_thresh)
# Sobel x
sxbinary = abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=sx_thresh)
# mag_binary = mag_thresh(img, sobel_kernel=3, thresh=m_thresh)
# # gradient direction
dir_binary = dir_threshold(img, sobel_kernel=3, thresh=dir_thresh)
#
# # output mask
combined_binary = np.zeros_like(s_channel)
combined_binary[(( (sxbinary == 1) & (dir_binary==1) ) | ( (s_binary == 1) & (dir_binary==1) ))] = 1
# add more weights for the s channel
c_bi = np.zeros_like(s_channel)
c_bi[( (sxbinary == 1) & (s_binary==1) )] = 2
ave_binary = (combined_binary + c_bi)
return ave_binary
def warper(img, M):
# Compute and apply perspective transform
img_size = (img.shape[1], img.shape[0])
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image
return warped
## fit the lane line
def full_search(binary_warped, visualization=False):
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
out_img = out_img.astype('uint8')
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = np.floor(100/input_scale)
# Set minimum number of pixels found to recenter window
minpix = np.floor(50/input_scale)
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
if visualization:
cv2.rectangle(out_img,(int(win_xleft_low),int(win_y_low)),(int(win_xleft_high),int(win_y_high)),(0,255,0), 2)
cv2.rectangle(out_img,(int(win_xright_low),int(win_y_low)),(int(win_xright_high),int(win_y_high)),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Visualization
# Generate x and y values for plotting
if visualization:
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# plt.subplot(1,2,1)
plt.imshow(out_img)
# plt.imshow(binary_warped)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim((0, frame_width / input_scale))
plt.ylim((frame_height / input_scale, 0))
plt.show()
return left_fit, right_fit
def window_search(left_fit, right_fit, binary_warped, margin=100, visualization=False):
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's easier to find line pixels with windows search
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
if visualization:
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# And you're done! But let's visualize the result here as well
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
out_img = out_img.astype('uint8')
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
plt.imshow(result)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim((0, frame_width / input_scale))
plt.ylim((frame_height / input_scale, 0))
plt.show()
return left_fit, right_fit
def measure_lane_curvature(ploty, leftx, rightx, visualization=False):
leftx = leftx[::-1] # Reverse to match top-to-bottom in y
rightx = rightx[::-1] # Reverse to match top-to-bottom in y
# choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/(frame_height/input_scale) # meters per pixel in y dimension
xm_per_pix = LANEWIDTH/(700/input_scale) # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Now our radius of curvature is in meters
# print(left_curverad, 'm', right_curverad, 'm')
if leftx[0] - leftx[-1] > 50/input_scale:
curve_direction = 'Left curve'
elif leftx[-1] - leftx[0] > 50/input_scale:
curve_direction = 'Right curve'
else:
curve_direction = 'Straight'
return (left_curverad+right_curverad)/2.0, curve_direction
def off_center(left, mid, right):
"""
:param left: left lane position
:param mid: car position
:param right: right lane position
:return: True or False, indicator of off center driving
"""
a = mid - left
b = right - mid
width = right - left
if a >= b: # driving right off
offset = a / width * LANEWIDTH - LANEWIDTH /2.0
else: # driving left off
offset = LANEWIDTH /2.0 - b / width * LANEWIDTH
return offset
def compute_car_offcenter(ploty, left_fitx, right_fitx, undist):
# Create an image to draw the lines on
height = undist.shape[0]
width = undist.shape[1]
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
bottom_l = left_fitx[height-1]
bottom_r = right_fitx[0]
offcenter = off_center(bottom_l, width/2.0, bottom_r)
return offcenter, pts
def create_output_frame(offcenter, pts, undist_ori, fps, curvature, curve_direction, binary_sub, threshold=0.6):
"""
:param offcenter:
:param pts:
:param undist_ori:
:param fps:
:param threshold:
:return:
"""
undist_ori = cv2.resize(undist_ori, (0,0), fx=1/output_frame_scale, fy=1/output_frame_scale)
w = undist_ori.shape[1]
h = undist_ori.shape[0]
undist_birdview = warper(cv2.resize(undist_ori, (0,0), fx=1/2, fy=1/2), M_b)
color_warp = np.zeros_like(undist_ori).astype(np.uint8)
# create a frame to hold every image
whole_frame = np.zeros((int(h*2.5), int(w*2.34), 3), dtype=np.uint8)
if abs(offcenter) > threshold: # car is offcenter more than 0.6 m
# Draw Red lane
cv2.fillPoly(color_warp, np.int_([pts]), (255, 0, 0)) # red
else: # Draw Green lane
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) # green
newwarp = cv2.warpPerspective(color_warp, M_inv, (int(frame_width/input_scale), int(frame_height/input_scale)))
# Combine the result with the original image # result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
newwarp_ = cv2.resize(newwarp,None, fx=input_scale/output_frame_scale, fy=input_scale/output_frame_scale, interpolation = cv2.INTER_LINEAR)
output = cv2.addWeighted(undist_ori, 1, newwarp_, 0.3, 0)
############## generate the combined output frame only for visualization purpose ################
# whole_frame[40:40+h, 20:20+w, :] = undist_ori
# whole_frame[40:40+h, 60+w:60+2*w, :] = output
# whole_frame[220+h/2:220+2*h/2, 20:20+w/2, :] = undist_birdview
# whole_frame[220+h/2:220+2*h/2, 40+w/2:40+w, 0] = cv2.resize((binary_sub*255).astype(np.uint8), (0,0), fx=1/2, fy=1/2)
# whole_frame[220+h/2:220+2*h/2, 40+w/2:40+w, 1] = cv2.resize((binary_sub*255).astype(np.uint8), (0,0), fx=1/2, fy=1/2)
# whole_frame[220+h/2:220+2*h/2, 40+w/2:40+w, 2] = cv2.resize((binary_sub*255).astype(np.uint8), (0,0), fx=1/2, fy=1/2)
#
# font = cv2.FONT_HERSHEY_SIMPLEX
if offcenter >= 0:
offset = offcenter
direction = 'Right'
elif offcenter < 0:
offset = -offcenter
direction = 'Left'
#
# info_road = "Road Status"
# info_lane = "Lane info: {0}".format(curve_direction)
# info_cur = "Curvature {:6.1f} m".format(curvature)
# info_offset = "Off center: {0} {1:3.1f}m".format(direction, offset)
# info_framerate = "{0:4.1f} fps".format(fps)
# info_warning = "Warning: offcenter > 0.6m (use higher threshold in real life)"
#
# cv2.putText(whole_frame, "Departure Warning System with a Monocular Camera", (23,25), font, 0.8, (255,255,0), 1, cv2.LINE_AA)
# cv2.putText(whole_frame, "Origin", (22,70), font, 0.6, (255,255,0), 1, cv2.LINE_AA)
# cv2.putText(whole_frame, "Augmented", (40+w+25,70), font, 0.6, (255,255,0), 1, cv2.LINE_AA)
# cv2.putText(whole_frame, "Bird's View", (22+30,70+35+h), font, 0.6, (255,255,0), 1, cv2.LINE_AA)
# cv2.putText(whole_frame, "Lanes", (22+225,70+35+h), font, 0.6, (255,255,0), 1, cv2.LINE_AA)
# cv2.putText(whole_frame, info_road, (40+w+50,70+35+h), font, 0.8, (255,255,0), 1,cv2.LINE_AA)
# cv2.putText(whole_frame, info_warning, (35+w,60+h), font, 0.4, (255,255,0), 1,cv2.LINE_AA)
# cv2.putText(whole_frame, info_lane, (40+w+50,70+35+40+h), font, 0.8, (255,255,0), 1,cv2.LINE_AA)
# cv2.putText(whole_frame, info_cur, (40+w+50,70+35+80+h), font, 0.8, (255,255,0), 1,cv2.LINE_AA)
# cv2.putText(whole_frame, info_offset, (40+w+50,70+35+120+h), font, 0.8, (255,255,0), 1,cv2.LINE_AA)
# cv2.putText(whole_frame, info_framerate, (40+w+250,70), font, 0.6, (255,255,0), 1,cv2.LINE_AA)
lane_info = {'curvature': curvature, 'curve_direction': curve_direction, 'dev_dir': direction, 'offset': offset}
return whole_frame, output, lane_info
def tracker(binary_sub, ploty, visualization=False):
left_fit, right_fit = window_search(left_lane.prev_poly, right_lane.prev_poly, binary_sub, margin=100/input_scale, visualization=visualization)
left_fitx = left_fit[0] * ploty**2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty**2 + right_fit[1] * ploty + right_fit[2]
std_value = np.std(right_fitx - left_fitx)
if std_value < (85 /input_scale):
left_lane.detected = True
right_lane.detected = True
left_lane.current_poly = left_fit
right_lane.current_poly = right_fit
left_lane.cur_fitx = left_fitx
right_lane.cur_fitx = right_fitx
# global tt
# tt = tt + 1
else:
left_lane.detected = False
right_lane.detected = False
left_lane.current_poly = left_lane.prev_poly
right_lane.current_poly = right_lane.prev_poly
left_lane.cur_fitx = left_lane.prev_fitx[-1]
right_lane.cur_fitx = right_lane.prev_fitx[-1]
def detector(binary_sub, ploty, visualization=False):
left_fit, right_fit = full_search(binary_sub, visualization=visualization)
left_fitx = left_fit[0] * ploty**2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty**2 + right_fit[1] * ploty + right_fit[2]
std_value = np.std(right_fitx - left_fitx)
if std_value < (85 /input_scale):
left_lane.current_poly = left_fit
right_lane.current_poly = right_fit
left_lane.cur_fitx = left_fitx
right_lane.cur_fitx = right_fitx
left_lane.detected = True
right_lane.detected = True
else:
left_lane.current_poly = left_lane.prev_poly
right_lane.current_poly = right_lane.prev_poly
if len(left_lane.prev_fitx) > 0:
left_lane.cur_fitx = left_lane.prev_fitx[-1]
right_lane.cur_fitx = right_lane.prev_fitx[-1]
else:
left_lane.cur_fitx = left_fitx
right_lane.cur_fitx = right_fitx
left_lane.detected = False
right_lane.detected = False
def lane_process(img, visualization=False):
start = timer()
# resize the input image according to scale
img_undist_ = cv2.undistort(img, mtx, dist, None, mtx)
img_undist = cv2.resize(img_undist_, (0,0), fx=1/input_scale, fy=1/input_scale)
# find the binary image of lane/edges
img_binary = find_edges(img_undist)
# warp the image to bird view
binary_warped = warper(img_binary, M) # get binary image contains edges
# crop the binary image
binary_sub = np.zeros_like(binary_warped)
binary_sub[:, int(150/input_scale):int(-80/input_scale)] = binary_warped[:, int(150/input_scale):int(-80/input_scale)]
# start detector or tracker to find the lanes
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
if left_lane.detected: # start tracker
tracker(binary_sub, ploty, visualization)
else: # start detector
detector(binary_sub, ploty, visualization)
# average among the previous N frames to get the averaged lanes
left_lane.process(ploty)
right_lane.process(ploty)
# measure the lane curvature
curvature, curve_direction = measure_lane_curvature(ploty, left_lane.mean_fitx, right_lane.mean_fitx)
# compute the car's off-center in meters
offcenter, pts = compute_car_offcenter(ploty, left_lane.mean_fitx, right_lane.mean_fitx, img_undist)
# compute the processing frame rate
end = timer()
fps = 1.0 / (end - start)
# combine all images into final video output (only for visualization purpose)
_, single_view, lane_info = create_output_frame(offcenter, pts, img_undist_, fps, curvature, curve_direction, binary_sub)
return img_undist_, single_view, lane_info