-
Notifications
You must be signed in to change notification settings - Fork 56
/
MPC.cpp
263 lines (218 loc) · 8.49 KB
/
MPC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include "MPC.h"
#include <cppad/cppad.hpp>
#include <cppad/ipopt/solve.hpp>
#include "Eigen-3.3/Eigen/Core"
using CppAD::AD;
// TODO: Set the timestep length and duration
// N*dt should not be more than a few seconds, since the real-life self-driving car
// The delta_t is purposely choose to be the same as the latency 0.1s.
size_t N = 10;
double dt = 0.12; //tested with 0.3, 0.12, 0.1, 0.08
// This value assumes the model presented in the classroom is used.
//
// It was obtained by measuring the radius formed by running the vehicle in the
// simulator around in a circle with a constant steering angle and velocity on a
// flat terrain.
//
// Lf was tuned until the the radius formed by the simulating the model
// presented in the classroom matched the previous radius.
//
// This is the length from front to CoG that has a similar radius.
const double Lf = 2.67;
// Reference velocity
double ref_v = 84 * 0.447; // convert from mph to m/s
// The solver takes all the state variables and actuator
// variables in a singular vector. Thus, we should to establish
// when one variable starts and another ends to make our lifes easier.
// start index for each state
size_t x_start = 0;
size_t y_start = x_start + N;
size_t psi_start = y_start + N;
size_t v_start = psi_start + N;
size_t cte_start = v_start + N;
size_t epsi_start = cte_start + N;
size_t delta_start = epsi_start + N;
size_t a_start = delta_start + N - 1;
class FG_eval {
public:
// Fitted polynomial coefficients
Eigen::VectorXd coeffs;
FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
void operator()(ADvector& fg, const ADvector& vars) {
// TODO: implement MPC
// fg a vector of constraints, x is a vector of constraints.
// NOTE: You'll probably go back and forth between this function and
// the Solver function below.
fg[0] = 0;
// Define the cost functions
// cost based on the state
size_t i;
for (i = 0; i < N; ++i) {
fg[0] += 100 * CppAD::pow(vars[cte_start + i], 2);
fg[0] += CppAD::pow(vars[epsi_start + i], 2);
fg[0] += CppAD::pow(vars[v_start+ i] - ref_v, 2);
}
// cost based on the actuator values
for (i = 0; i < N - 1; ++i) {
fg[0] += 100 * CppAD::pow(vars[delta_start + i], 2);
fg[0] += CppAD::pow(vars[a_start + i], 2);
}
// cost based on the sequential value
for (i = 0; i < N - 2; ++i) {
fg[0] += 100 *CppAD::pow(vars[delta_start + i + 1] - vars[delta_start + i], 2);
fg[0] += CppAD::pow(vars[a_start + i +1] - vars[a_start + i], 2);
}
// Setup Constraints
//
// NOTE: In this section you'll setup the model constraints.
// Initial constraints
// Since the cost being located at index 0 of fg, so we add 1 to each of the starting indices
fg[1 + x_start] = vars[x_start];
fg[1 + y_start] = vars[y_start];
fg[1 + psi_start] = vars[psi_start];
fg[1 + v_start] = vars[v_start];
fg[1 + cte_start] = vars[cte_start];
fg[1 + epsi_start] = vars[epsi_start];
// The rest of the constraints
for (i = 0; i < N - 1; i++) {
// state at time t+1
AD<double> x1 = vars[x_start + i + 1];
AD<double> y1 = vars[y_start + i + 1];
AD<double> psi1 = vars[psi_start + i + 1];
AD<double> v1 = vars[v_start + i + 1];
AD<double> cte1 = vars[cte_start + i + 1];
AD<double> epsi1 = vars[epsi_start + i + 1];
// state at time t
AD<double> x0 = vars[x_start + i];
AD<double> y0 = vars[y_start + i];
AD<double> psi0 = vars[psi_start + i];
AD<double> v0 = vars[v_start + i];
AD<double> cte0 = vars[cte_start + i];
AD<double> epsi0 = vars[epsi_start + i];
// Only consider the actuation at time t.
AD<double> delta0 = vars[delta_start + i];
AD<double> a0 = vars[a_start + i];
AD<double> f0 = coeffs[0] + coeffs[1]*x0 + coeffs[2]*x0*x0 + coeffs[3]*x0*x0*x0;
AD<double> psides0 = CppAD::atan(coeffs[1] + 2*coeffs[2]*x0 + 3*coeffs[3]*x0*x0);
// Setup the rest of the model constraints
// NOTE: Handle the latency here: since the dt is same as the latency 100ms, so
// "2 + x_start + i" is the correct index in stead of "1 + x_start + i" for corresponding fg value.
fg[2 + x_start + i] = x1 - (x0 + v0 * CppAD::cos(psi0) * dt);
fg[2 + y_start + i] = y1 - (y0 + v0 * CppAD::sin(psi0) * dt);
fg[2 + psi_start + i] = psi1 - (psi0 + v0 * delta0 / Lf * dt);
fg[2 + v_start + i] = v1 - (v0 + a0 * dt);
fg[2 + cte_start + i] = cte1 - ((f0 - y0) + (v0 * CppAD::sin(epsi0) * dt));
fg[2 + epsi_start + i] = epsi1 - ((psi0 - psides0) + v0 * delta0 / Lf * dt);
}
}
};
//
// MPC class definition implementation.
//
MPC::MPC() {
max_steer = 25;
}
MPC::~MPC() {}
vector<double> MPC::Solve(Eigen::VectorXd x0, Eigen::VectorXd coeffs) {
typedef CPPAD_TESTVECTOR(double) Dvector;
double x = x0[0];
double y = x0[1];
double psi = x0[2];
double v = x0[3];
double cte = x0[4];
double epsi = x0[5];
// Set the number of model variables (includes both states and inputs).
size_t n_vars = N * 6 + (N - 1) * 2;
// Set the number of constraints
size_t n_constraints = N * 6;
// Initial value of the independent variables, which should be 0 besides initial state.
Dvector vars(n_vars);
size_t i;
for (i = 0; i < n_vars; i++) {
vars[i] = 0;
}
// Set the initial variable values
vars[x_start] = x;
vars[y_start] = y;
vars[psi_start] = psi;
vars[v_start] = v;
vars[cte_start] = cte;
vars[epsi_start] = epsi;
Dvector vars_lowerbound(n_vars);
Dvector vars_upperbound(n_vars);
// Set lower and upper limits for variables.
for (i = 0; i < delta_start; i++) {
vars_lowerbound[i] = -1.0e19;
vars_upperbound[i] = 1.0e19;
}
// The upper and lower limits of delta are set to -25 and 25
// degrees (values in radians).
// NOTE: Feel free to change this to something else.
for (i = delta_start; i < a_start; i++) {
vars_lowerbound[i] = -0.436332;
vars_upperbound[i] = 0.436332;
}
// Acceleration/decceleration upper and lower limits.
// NOTE: Feel free to change this to something else.
for (i = a_start; i < n_vars; i++) {
vars_lowerbound[i] = -1.0;
vars_upperbound[i] = 1.0;
}
// Lower and upper limits for the constraints
// Should be 0 besides initial state.
Dvector constraints_lowerbound(n_constraints);
Dvector constraints_upperbound(n_constraints);
for (i = 0; i < n_constraints; i++) {
constraints_lowerbound[i] = 0;
constraints_upperbound[i] = 0;
}
constraints_lowerbound[x_start] = x;
constraints_lowerbound[y_start] = y;
constraints_lowerbound[psi_start] = psi;
constraints_lowerbound[v_start] = v;
constraints_lowerbound[cte_start] = cte;
constraints_lowerbound[epsi_start] = epsi;
constraints_upperbound[x_start] = x;
constraints_upperbound[y_start] = y;
constraints_upperbound[psi_start] = psi;
constraints_upperbound[v_start] = v;
constraints_upperbound[cte_start] = cte;
constraints_upperbound[epsi_start] = epsi;
// object that computes objective and constraints
FG_eval fg_eval(coeffs);
// options for IPOPT solver
std::string options;
options += "Integer print_level 0\n";
// NOTE: Setting sparse to true allows the solver to take advantage
// of sparse routines, this makes the computation MUCH FASTER. If you
// can uncomment 1 of these and see if it makes a difference or not but
// if you uncomment both the computation time should go up in orders of
// magnitude.
options += "Sparse true forward\n";
options += "Sparse true reverse\n";
// NOTE: Currently the solver has a maximum time limit of 0.5 seconds.
// Change this as you see fit.
options += "Numeric max_cpu_time 0.5\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
constraints_upperbound, fg_eval, solution);
// Check some of the solution values
bool ok = true;
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
// Cost
//auto cost = solution.obj_value;
// Return the first actuator values
double steering = solution.x[delta_start];
double acceleration = solution.x[a_start];
vector<double> ouputs = {steering, acceleration};
// attach the predicted route to display
for (i=0; i<N; i++) {
ouputs.push_back(solution.x[x_start+i]);
ouputs.push_back(solution.x[y_start+i]);
}
return ouputs;
}