-
Notifications
You must be signed in to change notification settings - Fork 11
/
110. Balanced Binary Tree.cpp
68 lines (62 loc) · 2.23 KB
/
110. Balanced Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
//Runtime: 40 ms, faster than 5.25% of C++ online submissions for Balanced Binary Tree.
//Memory Usage: 17.3 MB, less than 72.64% of C++ online submissions for Balanced Binary Tree.
https://leetcode.com/problems/balanced-binary-tree/discuss/35691/The-bottom-up-O(N)-solution-would-be-better
/**
top-down approach
time complexity:
treeDepth needs O(n), and we need to calculate for every node, so total O(n^2)
**/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int treeDepth(TreeNode* root){
if(root == NULL) return 0;
return 1 + max(treeDepth(root->left), treeDepth(root->right));
}
// bool isSubtreeBalanced(TreeNode* root){
// if(root == NULL) return true;
// return abs(treeDepth(root->left) - treeDepth(root->right)) <= 1;
// }
bool isBalanced(TreeNode* root) {
if(root == NULL) return true;
// return isSubtreeBalanced(root) && isSubtreeBalanced(root->left) && isSubtreeBalanced(root->right);
// cout << root->val << endl;
// if(abs(treeDepth(root->left) - treeDepth(root->right)) > 1){
// cout << "***" << root->val << "***" << endl;
// cout << (root->left->val) << " " <<(root->right->val) << endl;
// cout << treeDepth(root->left) << " " << treeDepth(root->right) << endl;
// }
return (abs(treeDepth(root->left) - treeDepth(root->right)) <= 1) && isBalanced(root->left) && isBalanced(root->right);
}
};
/**
bottom-up approach
time complexity: O(n)
**/
//Runtime: 16 ms, faster than 99.39% of C++ online submissions for Balanced Binary Tree.
//Memory Usage: 17.1 MB, less than 88.68% of C++ online submissions for Balanced Binary Tree.
/**
class Solution {
public:
int dfsHeight(TreeNode* root){
if(!root) return 0;
int left = dfsHeight(root->left);
if(left == -1) return -1;
int right = dfsHeight(root->right);
if(right == -1) return -1;
if(abs(left - right) > 1) return -1;
return max(left, right)+1;
}
bool isBalanced(TreeNode* root) {
return dfsHeight(root) != -1;
}
};
**/