-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
191 lines (146 loc) · 6.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import os.path as osp
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from datasets.samplers import CategoriesSampler
from torch.utils.data import DataLoader
from datasets.get_dataset import get_loader
from convnet import Convnet1d
from utils import time_output, set_gpu, ensure_path, Averager, count_acc, euclidean_metric, seed_torch, compute_confidence_interval
import datetime
import time
import pytz
def main(args):
ensure_path(args.save_path)
trainset = get_loader(args, 'train')
train_sampler = CategoriesSampler(trainset.label, args.train_batch,
args.train_way, args.shot + args.train_query)
train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler,
num_workers=args.worker, pin_memory=True)
valset = get_loader(args, 'val')
val_sampler = CategoriesSampler(valset.label, args.val_batch,
args.test_way, args.shot + args.train_query)
val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler,
num_workers=args.worker, pin_memory=True)
model = Convnet1d().cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
def save_model(name):
torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))
trlog = {}
trlog['args'] = vars(args)
trlog['train_loss'] = []
trlog['val_loss'] = []
trlog['train_acc'] = []
trlog['val_acc'] = []
trlog['max_acc'] = 0.0
best_epoch = 0
for epoch in range(1, args.max_epoch + 1):
time1 = time.time()
tl, ta = train(args, model, train_loader, optimizer)
lr_scheduler.step()
vl, va = validate(args, model, val_loader)
if va > trlog['max_acc']:
trlog['max_acc'] = va
save_model('max-acc')
best_epoch = epoch
trlog['train_loss'].append(tl)
trlog['train_acc'].append(ta)
trlog['val_loss'].append(vl)
trlog['val_acc'].append(va)
torch.save(trlog, osp.join(args.save_path, 'trlog'))
save_model('epoch-last')
'''if epoch % args.save_epoch == 0:
save_model('epoch-{}'.format(epoch))'''
time2 = time.time()
if args.detail:
print('Epoch {}/{}, train loss={:.4f} - acc={:.4f} - val loss={:.4f} - acc={:.4f} - max acc={:.4f} [{} total {}]'.format(
epoch, args.max_epoch, tl, ta, vl, va, trlog['max_acc'],
datetime.datetime.now(pytz.timezone('Asia/Kuala_Lumpur')).strftime("%H:%M"),
time_output(time2-time1)))
#if epoch == args.max_epoch:
# print("Best Epoch is {} with acc={:.4f}...".format(best_epoch, trlog['max_acc']))
# print("---------------------------------------------------")
return trlog['train_acc'], trlog['val_acc'], best_epoch
def train(args, model, train_loader, optimizer):
model.train()
tl = Averager()
ta = Averager()
for i, batch in enumerate(train_loader, 1):
data, _ = [_.cuda() for _ in batch]
p = args.shot * args.train_way
data_shot, data_query = data[:p], data[p:] # datashot (30, 3, 84, 84)
proto = model(data_shot) # (30, 1600)
proto = proto.reshape(args.shot, args.train_way, -1).mean(dim=0)
label = torch.arange(args.train_way).repeat(args.train_query)
label = label.type(torch.cuda.LongTensor)
logits = euclidean_metric(model(data_query), proto)
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
tl.add(loss.item())
ta.add(acc)
optimizer.zero_grad()
loss.backward()
optimizer.step()
proto = None; logits = None; loss = None
return tl.item(), ta.item()
def validate(args, model, val_loader):
model.eval()
vl = Averager()
va = Averager()
for i, batch in enumerate(val_loader, 1):
data, _ = [_.cuda() for _ in batch]
p = args.shot * args.test_way
data_shot, data_query = data[:p], data[p:]
proto = model(data_shot)
proto = proto.reshape(args.shot, args.test_way, -1).mean(dim=0)
label = torch.arange(args.test_way).repeat(args.train_query)
label = label.type(torch.cuda.LongTensor)
logits = euclidean_metric(model(data_query), proto)
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
vl.add(loss.item())
va.add(acc)
proto = None; logits = None; loss = None
vl = vl.item()
va = va.item()
return vl, va
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max-epoch', type=int, default=200)
parser.add_argument('--shot', type=int, default=1) # shot
parser.add_argument('--train-query', type=int, default=15)
parser.add_argument('--test-query', type=int, default=15)
parser.add_argument('--train-way', type=int, default=30) # train way
parser.add_argument('--test-way', type=int, default=5)
parser.add_argument('--save-path', default='./save/0')
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--train-batch', type=int, default=100)
parser.add_argument('--val-batch', type=int, default=400)
parser.add_argument('--test-batch', type=int, default=2000)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--wd', type=float, default=0.1)
parser.add_argument('--step-size', type=int, default=20)
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--worker', type=int, default=0)
parser.add_argument('--seed', type=int, default=2512)
parser.add_argument('--dataset', type=str, default='mini', choices=['mini','tiered','cifarfs','fc100'])
parser.add_argument('--detail', default=True, action='store_true')
args = parser.parse_args()
start_time = datetime.datetime.now()
# fix seed
seed_torch(args.seed)
set_gpu(args.gpu)
train_acc, val_acc, best_epoch = main(args)
end_time = datetime.datetime.now()
print("Total executed time :", end_time - start_time)
# print graph for accuracy
plt.figure(figsize=(10,5))
plt.title("Training Accuracy")
plt.plot(train_acc, label="Training")
plt.plot(val_acc, label="Validation")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
plt.show()