|
| 1 | +package org.jetbrains.bio.statistics.distribution |
| 2 | + |
| 3 | +import org.apache.commons.math3.distribution.AbstractIntegerDistribution |
| 4 | +import org.apache.commons.math3.distribution.NormalDistribution |
| 5 | +import org.apache.commons.math3.random.RandomGenerator |
| 6 | +import org.apache.commons.math3.random.Well19937c |
| 7 | +import org.jetbrains.bio.statistics.standardDeviation |
| 8 | +import java.util.* |
| 9 | +import java.util.stream.DoubleStream |
| 10 | +import kotlin.math.* |
| 11 | + |
| 12 | +class NormalIntDistribution( |
| 13 | + val mean: Double, |
| 14 | + val variance: Double, |
| 15 | + rng: RandomGenerator = Well19937c(), |
| 16 | +) : AbstractIntegerDistribution(rng) { |
| 17 | + |
| 18 | + init { |
| 19 | + require(variance > 0) { |
| 20 | + "Variance $variance should be > 0" |
| 21 | + } |
| 22 | + require(mean >= 0) { |
| 23 | + "Mean $mean should be >= 0" |
| 24 | + } |
| 25 | + } |
| 26 | + |
| 27 | + private val backNormalDistribution = NormalDistribution(mean, sqrt(variance)) |
| 28 | + |
| 29 | + override fun probability(k: Int): Double { |
| 30 | + if (k < 0 || k == Integer.MAX_VALUE) { |
| 31 | + return 0.0 |
| 32 | + } |
| 33 | + return backNormalDistribution.probability(k.toDouble(), k.toDouble() + 1) |
| 34 | + } |
| 35 | + |
| 36 | + override fun logProbability(k: Int): Double { |
| 37 | + if (k < 0 || k == Integer.MAX_VALUE) { |
| 38 | + return Double.NEGATIVE_INFINITY |
| 39 | + } |
| 40 | + return ln(backNormalDistribution.probability(k.toDouble(), k.toDouble() + 1)) |
| 41 | + } |
| 42 | + |
| 43 | + override fun cumulativeProbability(k: Int): Double { |
| 44 | + if (k == Integer.MAX_VALUE) { |
| 45 | + return 1.0 |
| 46 | + } |
| 47 | + return backNormalDistribution.cumulativeProbability(k.toDouble() + 1) |
| 48 | + } |
| 49 | + |
| 50 | + override fun getNumericalMean(): Double { |
| 51 | + return mean |
| 52 | + } |
| 53 | + |
| 54 | + override fun getNumericalVariance(): Double { |
| 55 | + return variance * variance |
| 56 | + } |
| 57 | + |
| 58 | + override fun getSupportLowerBound(): Int { |
| 59 | + return Integer.MIN_VALUE |
| 60 | + } |
| 61 | + |
| 62 | + override fun getSupportUpperBound(): Int { |
| 63 | + return Integer.MAX_VALUE |
| 64 | + } |
| 65 | + |
| 66 | + override fun isSupportConnected(): Boolean { |
| 67 | + return true |
| 68 | + } |
| 69 | + |
| 70 | + override fun sample(): Int { |
| 71 | + return backNormalDistribution.sample().toInt() |
| 72 | + } |
| 73 | + |
| 74 | + override fun toString(): String { |
| 75 | + return "NormalDistribution(mean=$mean, sd=$variance)" |
| 76 | + } |
| 77 | + |
| 78 | + companion object { |
| 79 | + |
| 80 | + /** |
| 81 | + * Uses defaults from *Constants*. |
| 82 | + * @see [of] |
| 83 | + */ |
| 84 | + @Throws(IllegalArgumentException::class) |
| 85 | + fun of(values: DoubleArray): NormalIntDistribution { |
| 86 | + return of(DoubleStream.of(*values).mapToInt { x -> x.toInt() }.toArray()) |
| 87 | + } |
| 88 | + |
| 89 | + /** |
| 90 | + * Creates Negative binomial distribution from MLE of parameters. |
| 91 | + * |
| 92 | + * @param values sample to estimate parameters from. |
| 93 | + * @return Negative binomial distribution. |
| 94 | + */ |
| 95 | + fun of(values: IntArray): NormalIntDistribution { |
| 96 | + val weights = DoubleArray(values.size) |
| 97 | + Arrays.fill(weights, 1.0) |
| 98 | + |
| 99 | + val mean = values.average() |
| 100 | + val sd = values.standardDeviation() |
| 101 | + |
| 102 | + return NormalIntDistribution(mean, sd * sd) |
| 103 | + } |
| 104 | + } |
| 105 | +} |
| 106 | + |
0 commit comments