-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.cpp
262 lines (246 loc) · 8.82 KB
/
NeuralNetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/**
* MIT License
* Copyright (c) 2018 Javonne Jason Martin
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "NeuralNetwork.hpp"
#include <random>
#include <iostream>
#include <set>
/**
* Constructor for the Neural network
* @param layers, the size of each layer including input and output layers
* @param dense, default true, the network will be fully connected TODO implementation for nonfully connected
*/
NeuralNetwork::NeuralNetwork(std::vector<int> layers, float learningRate, bool dense) {
int i, j, k;
assert(layers.size() > 1);
_learningRate = learningRate;
for(i = 1; i < layers.size(); i++) {
_weights.emplace_back(Eigen::MatrixXf(layers[i], layers[i - 1]));
_deltaW.emplace_back(Eigen::MatrixXf(layers[i], layers[i - 1]));
_bias.emplace_back(Eigen::VectorXf(layers[i]));
}
_delta = std::vector<Eigen::MatrixXf>(_weights.size());
_a = std::vector<Eigen::MatrixXf>(layers.size());
_z = std::vector<Eigen::MatrixXf>(layers.size());
std::random_device rd;
std::mt19937 gen(0);//should be rd() instead of 0
std::uniform_real_distribution<> dis(0, 1.0);
for (i = 0; i < _weights.size(); i++) {
for (j = 0; j < _weights[i].rows(); j++) {
for (k = 0; k < _weights[i].cols(); k++) {
_weights[i](j, k) = (float) dis(gen);
}
}
// debug_print("Layer %d Rows: %ld Cols: %ld\n", i, _weights[i].rows(), _weights[i].cols());
// debug_print(_weights[i]);
// std::cout << _weights[i] << std::endl;
// exit(0);
}
// std::cout << "Bias" << std::endl;
for (i = 0; i < _bias.size(); i++) {
for (j = 0; j < _bias[i].size(); j++) {
_bias[i][j] = (float) dis(gen);
}
// std::cout << "Layer " << i << std::endl;
// std::cout << _bias[i] << std::endl << std::endl;
}
_layersSize = layers;
}
/**
* Perform the prediction of the neural network
* @param input, the initial input
* @param output, a reference a matrix where the result will be stored
*/
void NeuralNetwork::predict(Eigen::MatrixXf& input, Eigen::MatrixXf& output) {
int i;
assert(_weights.size() == _bias.size());
_a[0] = input;
for(i = 0; i < _weights.size(); i++) {
_z[i] = (_weights[i] * _a[i]).colwise() + _bias[i];
_a[i + 1] = _z[i];
applyActivationFunction(_a[i + 1]);
}
output = _a[i];
}
/**
* Set the activation function to use on each ouput neuron
* @param function, the function type
*/
void NeuralNetwork::setActivationFunction(ACTIVATION function) {
_activationFunction = function;
}
/**
* Get the Activation function that will be used
* @return ACTIVIATION, an enum
*/
NeuralNetwork::ACTIVATION NeuralNetwork::getActivationFunction() {
return _activationFunction;
}
/**
* Train the neural network using the input data and the expected output data.
* @param input, the input data <Input Layer> x <Datapoints>.
* @param output, the expected output data <Output layer> x <datapoints>.
*/
void NeuralNetwork::train(Eigen::MatrixXf& input, Eigen::MatrixXf& expectedOutput, bool printIteration) {
float cost;
long layerIndex;
Eigen::MatrixXf output;
predict(input, output);
if (printIteration) {
cost = costFunction(expectedOutput, _a[getLayerSize() - 1]).array().sum()/expectedOutput.cols();
std::cout << "Network Cost: " << cost << std::endl;
}
Eigen::MatrixXf layerOutput;
for (layerIndex = ((long) getLayerSize()) - 1l; layerIndex > 0; layerIndex--) {
layerOutput = _a[layerIndex];
Eigen::MatrixXf previousdx;
if (layerIndex == ((long) getLayerSize()) - 1l) {
previousdx = costFunctionDerivative(expectedOutput, layerOutput); //error //delta(C)/delta(a^{L})
} else {
previousdx = _delta[layerIndex];
previousdx = _weights[layerIndex].transpose() * previousdx; // delta(z^{L})/delta(a^{L - 1}) * delta(C)/delta(z^{L}) = delta(C)/delta(z^{l})
}
_delta[layerIndex - 1] = previousdx.array() * applyDerivativeActivationFunction(layerOutput).array(); //delta(C)/delta(z^{L}) * delta(z^{L})/delta(a^{L - 1}) = delta(C)/delta(a^{L - 1})
_deltaW[layerIndex - 1] = _a[layerIndex - 1] * _delta[layerIndex - 1].transpose();
}
for(int i = 0; i < _weights.size(); i++) {
_weights[i] = (_weights[i] + _learningRate * _deltaW[i].transpose());
_bias[i] = (_bias[i] + _learningRate * (_delta[i].rowwise().mean() ));
}
}
/**
* Returns the number of neurons in the input layer.
* @return int.
*/
int NeuralNetwork::getInputSize() {
return _layersSize[0];
}
/**
* Returns the number of neurons in the output layer.
* @return int.
*/
int NeuralNetwork::getOutputSize() {
return _layersSize[_layersSize.size() - 1];
}
/**
* Get number of layers
* @return unsigned long
*/
unsigned long NeuralNetwork::getLayerSize() {
return _layersSize.size();
}
float NeuralNetwork::costFunction(float C, float y) {
return (C - y) * (C - y);
}
/**
* Cost function used
* TODO implement system for different cost functions
* @param expectedOuput
* @param output
* @return
*/
Eigen::MatrixXf NeuralNetwork::costFunction(Eigen::MatrixXf& expectedOuput, Eigen::MatrixXf& output) {
Eigen::MatrixXf difference = expectedOuput - output;
return difference.array().square().matrix();
}
/**
* Cost function derivative
* TODO implement system for different cost functions
* @param expectedOuput
* @param output
* @return
*/
Eigen::MatrixXf NeuralNetwork::costFunctionDerivative(Eigen::MatrixXf& expectedOuput, Eigen::MatrixXf& output) {
Eigen::MatrixXf difference = 2 * (expectedOuput - output);
return difference;
}
/**
* Derivative of the Cost function
* TODO implement syste for different cost functions
* @param matrix
*/
Eigen::MatrixXf NeuralNetwork::applyDerivativeActivationFunction(Eigen::MatrixXf& matrix) {
float (*activationFunction)(float);
switch (_activationFunction) {
case SIGMOID:
activationFunction = sigmoidDerivative;
break;
case RELU:
activationFunction = reluDerivative;
break;
case SOFTMAX:
activationFunction = softmaxDerivative;
break;
default:
activationFunction = sigmoidDerivative;
std::cerr << "Requested activation function doesn't exist reverting to sigmoid" << std::endl;
}
return matrix.unaryExpr(activationFunction);
}
/**
* Applies the activation function to a input matrix elementwise
* @param input, the _z matrix obtained from applying the weights and bias
*/
void NeuralNetwork::applyActivationFunction(Eigen::MatrixXf& input) {
// int (*minus)(int,int) = subtraction;
float (*activationFunction)(float);
switch (_activationFunction) {
case SIGMOID:
activationFunction = sigmoid;
break;
case RELU:
activationFunction = relu;
break;
case SOFTMAX:
activationFunction = softmax;
break;
default:
activationFunction = sigmoid;
std::cerr << "Requested activation function doesn't exist reverting to sigmoid" << std::endl;
}
input = input.unaryExpr(activationFunction);
}
/**
* These are the activation functions and their derivatives
* These functions need to prototyped and added to applyActivationFunction
* and applyDerivativeActivationFunction
*/
/**
* Sigmoid function
* @param z
* @return
*/
static float sigmoid(float z) {
return 1.f/(1.f + expf(-z));
}
static float sigmoidDerivative(float z) {
return z * (1 - z);
}
static float relu(float z) {
return 1.f/(1.f + expf(-z));
}
static float reluDerivative(float z) {
return 1.f/(1.f + expf(-z));
}
static float softmax(float z) {
return 1.f/(1.f + expf(-z));
}
static float softmaxDerivative(float z) {
return 1.f/(1.f + expf(-z));
}