-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_translate.py
187 lines (167 loc) · 6.06 KB
/
train_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from Dataset.translation_dataset import EnglishToGermanDataset
from Transformer.transfomer import TransformerTranslator
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from tqdm import tqdm
import os
import random
"""
Hyperparameters
"""
CUDA = True
PRINT_INTERVAL = 5000
VALIDATE_AMOUNT = 10
SAVE_INTERVAL = 5000
batch_size = 128
embed_dim = 64
num_blocks = 2
num_heads = 1 # Must be factor of token size
max_context_length = 1000
num_epochs = 1000
learning_rate = 1e-3
use_teacher_forcing = False
device = torch.device("cuda:0" if CUDA else "cpu")
"""
Dataset
"""
dataset = EnglishToGermanDataset(CUDA=CUDA)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
dataloader_test = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=True
)
"""
Model
"""
encoder_vocab_size = dataset.english_vocab_len
output_vocab_size = dataset.german_vocab_len
torch.set_default_tensor_type(torch.cuda.FloatTensor if CUDA else torch.FloatTensor)
model = TransformerTranslator(
embed_dim, num_blocks, num_heads, encoder_vocab_size,output_vocab_size,CUDA=CUDA
).to(device)
"""
Loss Function + Optimizer
"""
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.KLDivLoss(reduction='batchmean')
"""
Load From Checkpoint
"""
LOAD = -1
if LOAD != -1:
checkpoint = torch.load(
os.path.join("Checkpoints", "Checkpoint" + str(LOAD) + ".pkl")
)
test_losses = checkpoint["test_losses"]
train_losses = checkpoint["train_losses"]
num_steps = checkpoint["num_steps"]
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
else:
test_losses = []
train_losses = []
num_steps = 0
"""
Train Loop
"""
for epoch in range(num_epochs):
running_loss = []
running_test_loss = []
dataset.train()
"""
TRAIN LOOP
"""
for idx, item in enumerate(tqdm(dataloader)):
"""
============================================================
"""
model.train()
###################
# Zero Gradients
model.zero_grad()
optimizer.zero_grad()
###################
###################
# Encode English Sentence
model.encode(item["english"])
###################
###################
# Output German, One Token At A Time
all_outs = torch.tensor([], requires_grad=True).to(device)
all_outs_tokens = item["german"][:,:1]
for i in range(item["german"].shape[1]-1):
if(use_teacher_forcing):
out = model(item["german"][:,: i+1])
else:
#Minus one because we don't need to predict from <end> token
out = model(all_outs_tokens[:, : i + 1]) #Start with seeing <start> token
all_outs = torch.cat((all_outs, out), dim=1)
#Get the token output, so to feed it back to self in next round.
out_token = torch.argmax(out,dim=1)
all_outs_tokens = torch.cat((all_outs_tokens,out_token),dim=1)
###################
###################
# Mask Out Extra Padded Tokens In The End(Optional)
all_outs = all_outs * item["logit_mask"][:, 1:, :]
item["logits"] = item["logits"] * item["logit_mask"]
###################
###################
# BackProp
loss = criterion(all_outs, item["logits"][:, 1:, :]) #Shift one so as not to predict start token
loss.backward()
optimizer.step()
###################
running_loss.append(loss.item())
num_steps += 1
"""
============================================================
"""
if num_steps % PRINT_INTERVAL == 0 or idx == len(dataloader) - 1:
"""
Validation LOOP
"""
all_outs.detach().cpu()
item["logits"].detach().cpu()
dataset.test()
model.eval()
with torch.no_grad():
for jdx, item in enumerate(dataloader_test):
model.encode(item["english"])
all_outs = torch.tensor([], requires_grad=False).to(device)
all_outs_tokens = item["german"][:,:1]
for i in range(item["german"].shape[1] - 1):
#No teacher forcing in validation
out = model(all_outs_tokens[:,:i+1])
out_token = torch.argmax(out,dim=1)
all_outs = torch.cat((all_outs, out), dim=1)
all_outs_tokens = torch.cat((all_outs_tokens,out_token),dim=1)
all_outs = all_outs * item["logit_mask"][:,1:,:]
item["logits"] = item["logits"] * item["logit_mask"]
loss = criterion(all_outs, item["logits"][:,1:,:])
running_test_loss.append(loss.item())
if jdx == VALIDATE_AMOUNT:
break
avg_test_loss = np.array(running_test_loss).mean()
test_losses.append(avg_test_loss)
avg_loss = np.array(running_loss).mean()
train_losses.append(avg_loss)
print("LABEL: ", dataset.logit_to_sentence(item["logits"][0]))
print("===")
print("PRED: ", dataset.logit_to_sentence(all_outs[0]))
print(f"TRAIN LOSS {avg_loss} | EPOCH {epoch}")
print(f"TEST LOSS {avg_test_loss} | EPOCH {epoch}")
print("BACK TO TRAINING:")
dataset.train()
if num_steps % SAVE_INTERVAL == 0:
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"num_steps": num_steps,
"train_losses": train_losses,
"test_losses": test_losses,
},
os.path.join("Checkpoints", "Checkpoint" + str(num_steps) + ".pkl"),
)