-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_preprocess.py
265 lines (243 loc) · 10.9 KB
/
run_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import pathlib
import time
from typing import Dict
from runners.timmer import Timmers
from runners.saver import save_feature_dict, load_feature_dict_if_exist
from absl import app
from absl import flags
from absl import logging
import datapipeline_parallel as pipeline
from alphafold.data import templates
from alphafold.data.tools import hhsearch
from alphafold.model import data
from alphafold.model import config
from alphafold.model import model
# Internal import (7716).
flags.DEFINE_list('fasta_paths', None, 'root directory holding all .fa files')
flags.DEFINE_string('output_dir', None, 'Path to a directory that will store the results.')
flags.DEFINE_list('model_names', None, 'Names of models to use')
flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
flags.DEFINE_string('jackhmmer_binary_path', '/usr/bin/jackhmmer',
'Path to the JackHMMER executable.')
flags.DEFINE_string('hhblits_binary_path', '/usr/bin/hhblits',
'Path to the HHblits executable.')
flags.DEFINE_string('hhsearch_binary_path', '/usr/bin/hhsearch',
'Path to the HHsearch executable.')
flags.DEFINE_string('kalign_binary_path', '/usr/bin/kalign',
'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
'database for use by HHblits.')
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
'version of BFD used with the "reduced_dbs" preset.')
flags.DEFINE_string('uniref30_database_path', None, 'Path to the UniRef30 '
'database for use by HHblits.')
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
'database for use by HHsearch.')
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
'mapping from obsolete PDB IDs to the PDB IDs of their '
'replacements.')
flags.DEFINE_enum('preset', 'full_dbs',
['reduced_dbs', 'full_dbs', 'casp14'],
'Choose preset model configuration - no ensembling and '
'smaller genetic database config (reduced_dbs), no '
'ensembling and full genetic database config (full_dbs) or '
'full genetic database config and 8 model ensemblings '
'(casp14).')
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
'to obtain a timing that excludes the compilation time, '
'which should be more indicative of the time required for '
'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
'pipeline. By default, this is randomly generated. Note '
'that even if this is set, Alphafold may still not be '
'deterministic, because processes like GPU inference are '
'nondeterministic.')
flags.DEFINE_integer('n_cpu', None, 'CPU physical cores used in MSA '
'It is dependent on the instance number you want to run '
'simultaneosly. e.g. your #CPU_core=32 & #instance=8, '
'choose 4', lower_bound=1, required=True)
flags.DEFINE_boolean('run_in_parallel', False, 'Whether to run the MSA in parallel ')
FLAGS = flags.FLAGS
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 20
def _check_flag(flag_name: str, preset: str, should_be_set: bool):
if should_be_set != bool(FLAGS[flag_name].value):
verb = 'be' if should_be_set else 'not be'
raise ValueError(f'{flag_name} must {verb} set for preset "{preset}"')
def predict_structure(
timmer: Timmers,
fasta_path: str,
fasta_name: str,
output_dir_base: str,
data_pipeline: pipeline.DataPipeline,
model_runners: Dict[str, model.RunModel],
random_seed: int):
"""Predicts structure using AlphaFold for the given sequence."""
timings = {}
output_dir = os.path.join(output_dir_base, fasta_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
msa_output_dir = os.path.join(output_dir, 'msas')
tmp_output_dir = os.path.join(output_dir, 'intermediates')
if not os.path.exists(msa_output_dir):
os.makedirs(msa_output_dir)
if not os.path.exists(tmp_output_dir):
os.makedirs(tmp_output_dir)
is_save_intermediates = True
# Get features.
t_0 = time.time()
timmer.add_timmer('predict_%s_datapipeline' % fasta_name)
ftmp_featdict = os.path.join(tmp_output_dir, 'features.npz')
feature_dict = load_feature_dict_if_exist(ftmp_featdict)
if feature_dict is None:
print('#### 1. start data pipeline preprocessing from de novo.')
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
if is_save_intermediates:
save_feature_dict(ftmp_featdict, feature_dict)
else:
print('==== 1. loaded archive of data pipeline preprocessing.')
timings['features'] = time.time() - t_0
timmer.end_timmer('predict_%s_datapipeline' % fasta_name)
timmer.save()
# Run the models.
for model_name, model_runner in model_runners.items():
logging.info('Running model %s', model_name)
t_0 = time.time()
timmer.add_timmer('processfeatures_%s_by_%s' % (fasta_name, model_name))
ftmp_processed_featdict = os.path.join(tmp_output_dir, 'processed_features.npz')
processed_feature_dict = load_feature_dict_if_exist(ftmp_processed_featdict)
if processed_feature_dict is None:
print('#### 2. start feature pre-model processing from de novo.')
processed_feature_dict = model_runner.process_features(
feature_dict,
random_seed=random_seed
)
if is_save_intermediates:
save_feature_dict(ftmp_processed_featdict, processed_feature_dict)
else:
print('==== 2. loaded archive of feature pre-model processing.')
timmer.end_timmer('processfeatures_%s_by_%s' % (fasta_name, model_name))
timmer.save()
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
use_small_bfd = FLAGS.preset == 'reduced_dbs'
_check_flag('small_bfd_database_path', FLAGS.preset,
should_be_set=use_small_bfd)
_check_flag('bfd_database_path', FLAGS.preset,
should_be_set=not use_small_bfd)
if FLAGS.preset in ('reduced_dbs', 'full_dbs'):
num_ensemble = 1
elif FLAGS.preset == 'casp14':
num_ensemble = 8
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
# init timmers
f_timmer = os.path.join(FLAGS.output_dir, 'timmers_%s.txt' % fasta_names[0])
h_timmer = Timmers(f_timmer)
print('### use %d CPU cores' % FLAGS.n_cpu)
h_timmer.add_timmer('template_hit_featurizer')
template_searcher = hhsearch.HHSearch(
binary_path=FLAGS.hhsearch_binary_path,
databases=[FLAGS.pdb70_database_path])
template_featurizer = templates.HmmsearchHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
h_timmer.end_timmer('template_hit_featurizer')
h_timmer.save()
h_timmer.add_timmer('data_pipeline')
data_pipeline = pipeline.DataPipeline(
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
hhblits_binary_path=FLAGS.hhblits_binary_path,
uniref90_database_path=FLAGS.uniref90_database_path,
mgnify_database_path=FLAGS.mgnify_database_path,
bfd_database_path=FLAGS.bfd_database_path,
uniref30_database_path=FLAGS.uniref30_database_path,
small_bfd_database_path=FLAGS.small_bfd_database_path,
template_searcher=template_searcher,
template_featurizer=template_featurizer,
use_small_bfd=use_small_bfd,
n_cpu=FLAGS.n_cpu,
run_in_parallel=FLAGS.run_in_parallel)
h_timmer.end_timmer('data_pipeline')
h_timmer.save()
model_runners = {}
for model_name in FLAGS.model_names:
h_timmer.add_timmer('model_%s_compilation' % model_name)
model_config = config.model_config(model_name)
model_config.data.eval.num_ensemble = num_ensemble
model_params = data.get_model_haiku_params(
model_name=model_name, data_dir=FLAGS.data_dir)
model_runner = model.RunModel(model_config, model_params)
model_runners[model_name] = model_runner
h_timmer.end_timmer('model_%s_compilation' % model_name)
h_timmer.save()
logging.info('Have %d models: %s', len(model_runners),
list(model_runners.keys()))
random_seed = 5582232524994481130
logging.info('Using random seed %d for the data pipeline', random_seed)
# Predict structure for each of the sequences.
for fasta_path, fasta_name in zip(FLAGS.fasta_paths, fasta_names):
h_timmer.add_timmer('predict_%s' % fasta_name)
predict_structure(
timmer=h_timmer,
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=FLAGS.output_dir,
data_pipeline=data_pipeline,
model_runners=model_runners,
random_seed=random_seed)
h_timmer.end_timmer('predict_%s' % fasta_name)
h_timmer.save()
if __name__ == '__main__':
flags.mark_flags_as_required([
'fasta_paths',
'output_dir',
'data_dir',
'uniref90_database_path',
'mgnify_database_path',
'pdb70_database_path',
'template_mmcif_dir',
'max_template_date',
'obsolete_pdbs_path',
'n_cpu'
])
t1 = time.time()
app.run(main)
t2 = time.time()
print('### total time: %d sec' % (t2-t1))