-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataSet.cs
260 lines (229 loc) · 9.29 KB
/
DataSet.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//
// DataSet.cs
//
// Author:
// Tom Diethe <[email protected]>
//
// Copyright (c) 2016 University of Bristol
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
namespace BayesianDictionaryLearning
{
using System;
using System.Collections.Generic;
using System.Linq;
using Vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using Matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using MicrosoftResearch.Infer.Maths;
public class DataSet
{
public string Name { get; set; }
/// <summary>
/// The train labels.
/// </summary>
private Vector trainLabels;
/// <summary>
/// The test labels.
/// </summary>
private Vector testLabels;
/// <summary>
/// Gets or sets the train signals.
/// </summary>
/// <value>The train signals.</value>
public Matrix TrainSignals { get; set; }
/// <summary>
/// Gets or sets the train features.
/// </summary>
/// <value>The train features.</value>
public Matrix TrainFeatures { get; set; }
/// <summary>
/// Gets or sets the test signals.
/// </summary>
/// <value>The test signals.</value>
public Matrix TestSignals { get; set; }
/// <summary>
/// Gets or sets the test features.
/// </summary>
/// <value>The test features.</value>
public Matrix TestFeatures { get; set; }
/// <summary>
/// Gets or sets the train labels.
/// </summary>
public Vector TrainLabels
{
get
{
return trainLabels;
}
set
{
trainLabels = value;
if (trainLabels == null)
{
TrainLabelsBinary = null;
TrainLabelsInteger = null;
TrainClasses = null;
TrainLabelCounts = null;
}
else
{
var trainGroups = trainLabels.GroupBy(x => (int)x).OrderBy(ia => ia.Key);
TrainClasses = trainGroups.Select(ia => ia.Key).ToArray();
TrainLabelCounts = trainGroups.Select(ia => $"[{ia.Key}: {ia.Count()}]");
TrainLabelsBinary = new bool[trainLabels.Count];
TrainLabelsInteger = new int[trainLabels.Count];
for (int i = 0; i < trainLabels.Count; i++)
{
TrainLabelsBinary[i] = Math.Abs(trainLabels[i] - PositiveClass) < double.Epsilon;
TrainLabelsInteger[i] = Array.FindIndex(TrainClasses, x => x == (int)trainLabels[i]);
}
}
}
}
/// <summary>
/// Gets the test labels.
/// </summary>
public Vector TestLabels
{
get
{
return testLabels;
}
set
{
testLabels = value;
if (testLabels == null)
{
TestLabelsBinary = null;
TestLabelsInteger = null;
TestClasses = null;
TestLabelCounts = null;
}
else
{
var testGroups = testLabels.GroupBy(x => (int)x).OrderBy(ia => ia.Key);
TestClasses = testGroups.Select(ia => ia.Key).ToArray();
TestLabelCounts = testGroups.Select(ia => $"[{ia.Key}: {ia.Count()}]");
TestLabelsBinary = new bool[testLabels.Count];
TestLabelsInteger = new int[testLabels.Count];
for (int i = 0; i < testLabels.Count; i++)
{
TestLabelsBinary[i] = Math.Abs(testLabels[i] - PositiveClass) < double.Epsilon;
TestLabelsInteger[i] = Array.FindIndex(TestClasses, x => x == (int)testLabels[i]);
}
}
}
}
/// <summary>
/// Gets or sets the positive class (binary classification only).
/// </summary>
public int PositiveClass { get; set; }
/// <summary>
/// Gets the train labels in binary format.
/// </summary>
public bool[] TrainLabelsBinary { get; set; }
/// <summary>
/// Gets the test labels in binary format.
/// </summary>
public bool[] TestLabelsBinary { get; set; }
/// <summary>
/// Gets the train labels in ingeger format.
/// </summary>
public int[] TrainLabelsInteger { get; set; }
/// <summary>
/// Gets the test labels in integer format.
/// </summary>
public int[] TestLabelsInteger { get; set; }
/// <summary>
/// Gets the train classes.
/// </summary>
/// <value>The train classes.</value>
public int[] TrainClasses { get; set; }
/// <summary>
/// Gets the test classes.
/// </summary>
/// <value>The test classes.</value>
public int[] TestClasses { get; set; }
/// <summary>
/// Gets the train label counts.
/// </summary>
/// <value>The train label counts.</value>
public IEnumerable<string> TrainLabelCounts { get; set; }
/// <summary>
/// Gets the test label counts.
/// </summary>
/// <value>The test label counts.</value>
public IEnumerable<string> TestLabelCounts { get; set; }
/// <summary>
/// Normalise this instance.
/// </summary>
public void Normalise()
{
TrainSignals = TrainSignals.NormalizeRows(2.0);
TestSignals = TestSignals.NormalizeRows(2.0);
}
/// <summary>
/// Gets the random subsets.
/// </summary>
/// <returns>The random subsets.</returns>
/// <param name="numTrain">Number train.</param>
/// <param name="numTest">Number test.</param>
/// <param name="testSignals">Test signals.</param>
/// <param name="trainSignals">Train signals.</param>
/// <param name="trainFeatures">Train features.</param>
/// <param name="trainLabels">Train labels.</param>
/// <param name="testFeatures">Test features.</param>
/// <param name="testLabels">Test labels.</param>
public void GetRandomSubsets(int numTrain, int numTest,
out double[][] trainSignals, out double[][] trainFeatures, out int[] trainLabels,
out double[][] testSignals, out double[][] testFeatures, out int[] testLabels)
{
var trainIndices = Rand.Perm(Math.Min(numTrain, TrainSignals.RowCount));
trainSignals = trainIndices.Select(i => TrainSignals.Row(i).ToArray()).ToArray();
trainFeatures = TrainFeatures == null ? null : trainIndices.Select(i => TrainFeatures.Row(i).ToArray()).ToArray();
trainLabels = trainIndices.Select(i => TrainLabelsInteger[i]).ToArray();
var testIndices = Rand.Perm(Math.Min(numTest, TestSignals.RowCount));
testSignals = testIndices.Select(i => TestSignals.Row(i).ToArray()).ToArray();
testFeatures = TestFeatures == null ? null : testIndices.Select(i => TestFeatures.Row(i).ToArray()).ToArray();
testLabels = testIndices.Select(i => TestLabelsInteger[i]).ToArray();
}
/// <summary>
/// Prints the summary.
/// </summary>
/// <returns>The summary.</returns>
public void PrintSummary()
{
Console.WriteLine($"# train signals: {TrainSignals.RowCount}");
Console.WriteLine($"# test signals: {TestSignals.RowCount}");
Console.WriteLine($"signal width: {TrainSignals.ColumnCount}");
if (TrainFeatures != null)
{
Console.WriteLine($"# features: {TrainFeatures.ColumnCount}");
}
if (TrainLabels != null)
{
Console.WriteLine($"Train Label Counts: {string.Join(", ", TrainLabelCounts)}");
}
if (TestLabels != null)
{
Console.WriteLine($"Test Label Counts: {string.Join(", ", TestLabelCounts)}");
}
}
}
}