-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
75 lines (69 loc) · 2.76 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//
// Program.cs
//
// Author:
// Tom Diethe <[email protected]>
//
// Copyright (c) 2016 University of Bristol
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
using System;
using System.Linq;
using MicrosoftResearch.Infer;
using MicrosoftResearch.Infer.Distributions;
using MicrosoftResearch.Infer.Maths;
using MicrosoftResearch.Infer.Models;
namespace DGMM
{
class MainClass
{
public static void Main(string[] args)
{
var numExamples = 300;
var numDims = 2;
var data = GenerateData(numExamples);
//Models.MixtureOfGaussians(data, 4);
Models.SwitchOverMixtures(data, new[] { 1, 2, 3 });
}
/// <summary>
/// Generates a data set from a particular true model.
/// </summary>
public static Vector[] GenerateData(int nData)
{
var trueM1 = Vector.FromArray(2.0, 3.0);
var trueM2 = Vector.FromArray(7.0, 5.0);
var trueP1 = new PositiveDefiniteMatrix(
new double[,] { { 3.0, 0.2 }, { 0.2, 2.0 } });
var trueP2 = new PositiveDefiniteMatrix(
new double[,] { { 2.0, 0.4 }, { 0.4, 4.0 } });
var trueVG1 = VectorGaussian.FromMeanAndPrecision(trueM1, trueP1);
var trueVG2 = VectorGaussian.FromMeanAndPrecision(trueM2, trueP2);
double truePi = 0.6;
var trueB = new Bernoulli(truePi);
// Restart the infer.NET random number generator
Rand.Restart(12347);
var data = new Vector[nData];
for (int j = 0; j < nData; j++)
{
data[j] = trueB.Sample() ? trueVG1.Sample() : trueVG2.Sample();
}
return data;
}
}
}