@@ -489,73 +489,3 @@ def collate_csqa_graphs_and_paths(samples):
489
489
return sents_vecs , torch .Tensor ([[i ] for i in correct_labels ]), batched_graph , cpt_path_data , rel_path_data , qa_pair_data , concept_mapping_dicts
490
490
491
491
492
- # csqa_data = CSQA_Path("../datasets/csqa_new/dev_rand_split.jsonl.statements",
493
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.mcp.pf",
494
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.-2.mean.large.npy",
495
- # num_choice=5)
496
-
497
-
498
- # if __name__ == '__main__':
499
- # port = 22019
500
- # pf_json_data_client = PathFindingClient.getPathData(port)
501
- #
502
- #
503
- # # with open(pf_json_file, 'r') as f:
504
- # # pf_json_data = json.load(f)
505
- #
506
- # statement_json_data = []
507
- # with open("../datasets/csqa_new/dev_rand_split.jsonl.statements", "r") as fp:
508
- # for line in fp.readlines():
509
- # statement_data = json.loads(line.strip())
510
- # statement_json_data.append(statement_data)
511
- #
512
- #
513
- # num_choice = 5
514
- # port = 22019
515
- # pf_json_data_client = PathFindingClient.getPathData(port)
516
- #
517
- #
518
- # # pf_json_data = [pf_json_data_client.getPaths(index) for index in list(range(len(statement_json_data) * num_choice))]
519
- #
520
- # start_time = timeit.default_timer()
521
- # pf_json_data = pf_json_data_client.getAll()
522
- # print('\t Done! Time: ', "{0:.2f} sec".format(float(timeit.default_timer() - start_time)))
523
- #
524
- # start_time = timeit.default_timer()
525
- # pf_json_data = pf_json_data_client.getAll()
526
- # print('\t Done! Time: ', "{0:.2f} sec".format(float(timeit.default_timer() - start_time)))
527
-
528
-
529
- # csqa_graph_data = data_with_graphs("../datasets/csqa_new/dev_rand_split.jsonl.statements",
530
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.pnxg",
531
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.-2.mean.large.npy",
532
- # num_choice=5, reload=True)
533
- #
534
- #
535
- # dataset_loader = data.DataLoader(csqa_graph_data, batch_size=10, num_workers=0, shuffle=True,
536
- # collate_fn=collate_csqa_graphs)
537
- #
538
- # for k, (statements, correct_labels, graphs) in enumerate(
539
- # tqdm(dataset_loader, desc="Train Batch")):
540
- # # print(k)
541
- # bgs = dgl.unbatch(graphs)
542
-
543
-
544
-
545
- # csqa_graph_path_data = data_with_graphs_and_paths("../datasets/csqa_new/dev_rand_split.jsonl.statements",
546
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.pnxg",
547
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.mcp.pf.pickle",
548
- # "../datasets/csqa_new/dev_rand_split.jsonl.statements.-2.mean.large.npy",
549
- # num_choice=5, reload=True, cut_off=4)
550
- #
551
- #
552
- # dataset_loader = data.DataLoader(csqa_graph_path_data, batch_size=10, num_workers=0, shuffle=True,
553
- # collate_fn=collate_csqa_graphs_and_paths)
554
- #
555
- # for k, (statements, correct_labels, graphs, cpt_path_data, rel_path_data, qa_pair_data, concept_mapping_dicts) in enumerate(
556
- # tqdm(dataset_loader, desc="Train Batch")):
557
- # # print(k)
558
- # bgs = dgl.unbatch(graphs)
559
-
560
-
561
-
0 commit comments