-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
233 lines (124 loc) · 6.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
from datetime import datetime
import logging
from functools import partial
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import mean_absolute_error
from dataloader.MicroLens100k.dataset import MyData, custom_collate_fn
import random
import numpy as np
from scipy.stats import spearmanr
from model.MicroLens100k.MMRA import Model
BLUE = '\033[94m'
ENDC = '\033[0m'
def seed_init(seed):
seed = int(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def print_init_msg(logger, args):
logger.info(BLUE + 'Random Seed: ' + ENDC + f"{args.seed} ")
logger.info(BLUE + 'Device: ' + ENDC + f"{args.device} ")
logger.info(BLUE + 'Model: ' + ENDC + f"{args.model_path} ")
logger.info(BLUE + "Dataset: " + ENDC + f"{args.dataset_id}")
logger.info(BLUE + "Metric: " + ENDC + f"{args.metric}")
logger.info(BLUE + "Number of retrieved items used in this testing: " + ENDC + f"{args.num_of_retrieved_items}")
logger.info(BLUE + "Alpha: " + ENDC + f"{args.alpha}")
logger.info(BLUE + "Number of frames: " + ENDC + f"{args.frame_num}")
logger.info(BLUE + "Testing Starts!" + ENDC)
def delete_special_tokens(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
content = content.replace(BLUE, '')
content = content.replace(ENDC, '')
with open(file_path, 'w', encoding='utf-8') as file:
file.write(content)
def test(args):
device = torch.device(args.device)
model_id = args.model_id
dataset_id = args.dataset_id
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
folder_name = f"test_{model_id}_{dataset_id}_{timestamp}"
father_folder_name = args.save
if not os.path.exists(father_folder_name):
os.makedirs(father_folder_name)
folder_path = os.path.join(father_folder_name, folder_name)
os.mkdir(folder_path)
logger = logging.getLogger()
logger.handlers = []
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
file_handler = logging.FileHandler(f'{father_folder_name}/{folder_name}/log.txt')
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
batch_size = args.batch_size
test_data = MyData(os.path.join(os.path.join(args.dataset_path, args.dataset_id, 'test.pkl')))
custom_collate_fn_partial = partial(custom_collate_fn, num_of_retrieved_items=args.num_of_retrieved_items,
num_of_frames=args.frame_num)
test_data_loader = DataLoader(dataset=test_data, batch_size=batch_size, collate_fn=custom_collate_fn_partial)
model = torch.load(args.model_path)
total_test_step = 0
total_MAE = 0
total_nMSE = 0
total_SRC = 0
print_init_msg(logger, args)
model.eval()
with torch.no_grad():
for batch in tqdm(test_data_loader, desc='Testing'):
batch = [item.to(device) if isinstance(item, torch.Tensor) else item for item in batch]
visual_feature, textual_feature, similarity, retrieved_visual_feature, retrieved_textual_feature, retrieved_label, label = batch
output = model.forward(visual_feature, textual_feature, similarity, retrieved_visual_feature,
retrieved_textual_feature,
retrieved_label)
output = output.to('cpu')
label = label.to('cpu')
output = np.array(output)
label = np.array(label)
MAE = mean_absolute_error(label, output)
SRC, _ = spearmanr(output, label)
nMSE = np.mean(np.square(output - label)) / (label.std() ** 2)
total_test_step += 1
total_MAE += MAE
total_SRC += SRC
total_nMSE += nMSE
logger.warning(f"[ Test Result ]: \n {args.metric[0]} = {total_nMSE / total_test_step}"
f"\n{args.metric[1]} = {total_SRC / total_test_step}\n{args.metric[2]} = {total_MAE / total_test_step}\n")
logger.info("Test is ended!")
delete_special_tokens(f"{father_folder_name}/{folder_name}/log.txt")
def main(args):
seed_init(args.seed)
test(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default='2024', type=str, help='value of random seed')
parser.add_argument('--device', default='cuda:0', type=str, help='device used in testing')
parser.add_argument('--metric', default=['nRMSE', 'SRC', 'MAE'], type=list, help='the judgement of the testing')
parser.add_argument('--save', default='test_results', type=str, help='folder to save the results')
parser.add_argument('--batch_size', default=256, type=int, help='training batch size')
parser.add_argument('--dataset_id', default='MicroLens100k', type=str, help='id of dataset')
parser.add_argument('--dataset_path', default='data', type=str, help='path of dataset folder')
parser.add_argument('--model_id', default='MMRA', type=str, help='id of model')
parser.add_argument('--num_of_retrieved_items', default=10, type=int, help='number of retrieved items used this training, hyper-parameter')
parser.add_argument('--alpha', default=0.6, type=int, help='Alpha, hyper-parameter')
parser.add_argument('--frame_num', default=10, type=int, help='frame number of each video, hyper-parameter')
parser.add_argument('--feature_num', type=int, default=2, help='Number of features')
parser.add_argument('--feature_dim', type=int, default=768, help='Dimension of features')
parser.add_argument('--label_dim', type=int, default=1, help='Dimension of labels')
parser.add_argument('--model_path',
default=r'',
type=str, help='path of trained model')
args = parser.parse_args()
main(args)