|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<div style=\"background-color: #04D7FD; padding: 20px; text-align: left;\">\n", |
| 8 | + " <h1 style=\"color: #000000; font-size: 30px; margin: 0;\">data-prep-kit planning agent</h1> \n", |
| 9 | + "</div>" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "%pip install -qq -r requirements.txt" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "from IPython.display import HTML\n", |
| 28 | + "task = \"Process the provided PDF dataset to identify and extract only documents that don't contain inappropriate language. Remove the duplications.\"\n", |
| 29 | + "HTML(f\"<p><span style='color:blue; font-weight:bold; font-size:14.0pt;'>TASK: {task}</span></p>\")" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "import logging\n", |
| 39 | + "import os\n", |
| 40 | + "\n", |
| 41 | + "from llm_utils.logging import prep_loggers\n", |
| 42 | + "os.environ[\"LLM_LOG_PATH\"] = \"./logs/llm_log.txt\"\n", |
| 43 | + "prep_loggers(\"llm=INFO\")" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "# The tools in DPK agents are the transforms.\n", |
| 53 | + "# Each tool is described as json dictionary with its name, description, input parameters, and how to import it.\n", |
| 54 | + "# The list of the tools exists in llm_utils/tools.py file.\n", |
| 55 | + "from llm_utils.dpk.tools import *\n", |
| 56 | + "print(tools_json)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "# This is an example of a plan for a simple task. It is possed to the prompt to enhance the planning results.\n", |
| 66 | + "from llm_utils.dpk.examples import *\n", |
| 67 | + "print(example_task)" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": null, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "# This is a string that contains several constraints on the order of the tools in the plan.\n", |
| 77 | + "# It is a free text and can be found in llm_utils/constraints.py file.\n", |
| 78 | + "from llm_utils.dpk.constraints import *\n", |
| 79 | + "print(constraints)" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "metadata": {}, |
| 85 | + "source": [ |
| 86 | + "## Define LLM models\n", |
| 87 | + "\n", |
| 88 | + "We have have tested our project with the following LLM execution frameworks: [Watsonx](https://www.ibm.com/watsonx), [Replicate](https://replicate.com/), and locally running [Ollama](https://ollama.com/).\n", |
| 89 | + "To use one of the frameworks uncomment its part in the cell below while commenting out the other frameworks.\n", |
| 90 | + "Please note that the notebooks have been tested with specific Large Language Models (LLMs) that are mentioned in the cell, and due to the inherent nature of LLMs, using a different model may not produce the same results.\n", |
| 91 | + "\n", |
| 92 | + "- To use Replicate:\n", |
| 93 | + " - Obtain Replicate API token\n", |
| 94 | + " - Store the following value in the `.env` file located in your project directory:\n", |
| 95 | + " ```\n", |
| 96 | + " REPLICATE_API_TOKEN=<your Replicate API token>\n", |
| 97 | + " ```\n", |
| 98 | + "- To use Ollama: \n", |
| 99 | + " - Download [Ollama](https://ollama.com/download).\n", |
| 100 | + " - Download one of the supported [models](https://ollama.com/search). We tested with `llama3.3` model.\n", |
| 101 | + " - update the `model_ollama_*` names if needed.\n", |
| 102 | + "- To use Watsonx:\n", |
| 103 | + " - Register for Watsonx\n", |
| 104 | + " - Obtain its API key\n", |
| 105 | + " - Store the following values in the `.env` file located in your project directory:\n", |
| 106 | + " ```\n", |
| 107 | + " WATSONX_URL=<WatsonX entry point, e.g. https://us-south.ml.cloud.ibm.com>\n", |
| 108 | + " WATSON_PROJECT_ID=<your Watsonx project ID>\n", |
| 109 | + " WATSONX_APIKEY=<your Watsonx API key>\n", |
| 110 | + " ```" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": null, |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [], |
| 118 | + "source": [ |
| 119 | + "from llm_utils.models import getChatLLM\n", |
| 120 | + "from dotenv import dotenv_values\n", |
| 121 | + "\n", |
| 122 | + "# watsonx part \n", |
| 123 | + "# config = dotenv_values(\"./.env\")\n", |
| 124 | + "# model_watsonx_id1 = \"ibm-granite/granite-3.1-8b-instruct\"\n", |
| 125 | + "# model_watsonx_id2 = \"meta-llama/llama-3-1-70b-instruct\"\n", |
| 126 | + "# model_watsonx_id3 = \"meta-llama/llama-3-3-70b-instruct\"\n", |
| 127 | + "# model_watsonx_id4 = \"ibm/granite-34b-code-instruct\"\n", |
| 128 | + "\n", |
| 129 | + "# llm_plan = getChatLLM(\"watsonx\", model_watsonx_id2, config)\n", |
| 130 | + "# llm_judge = getChatLLM(\"watsonx\", model_watsonx_id2, config)\n", |
| 131 | + "# llm_generate = getChatLLM(\"watsonx\", model_watsonx_id2, config)\n", |
| 132 | + "\n", |
| 133 | + "# # ollama part\n", |
| 134 | + "# model_ollama = \\\"llama3.3\\\"\\n\",\n", |
| 135 | + "# llm_plan = getChatLLM(\\\"ollama\\\", model_ollama);\\n\",\n", |
| 136 | + "# llm_judge = getChatLLM(\\\"ollama\\\", model_ollama)\\n\",\n", |
| 137 | + "# llm_generate = getChatLLM(\\\"ollama\\\", model_ollama)\"\n", |
| 138 | + "\n", |
| 139 | + "# replicate part\n", |
| 140 | + "config = dotenv_values(\"./.env\")\n", |
| 141 | + "# You can use different llm models\n", |
| 142 | + "model_replicate_id1 = \"meta/meta-llama-3-70b-instruct\"\n", |
| 143 | + "llm_plan = getChatLLM(\"replicate\", model_replicate_id1, config)\n", |
| 144 | + "llm_judge = getChatLLM(\"replicate\", model_replicate_id1, config)\n", |
| 145 | + "llm_generate = getChatLLM(\"replicate\", model_replicate_id1, config)" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "from langgraph.graph import StateGraph, END\n", |
| 155 | + "from llm_utils.agent_helpers import *\n", |
| 156 | + "from llm_utils.prompts.planner_prompt import *\n", |
| 157 | + "from llm_utils.prompts.judge_prompt import *\n", |
| 158 | + "from llm_utils.prompts.generate_prompt import *\n", |
| 159 | + "from llm_utils.dpk.tools import *\n", |
| 160 | + "from llm_utils.dpk.examples import *\n", |
| 161 | + "from llm_utils.dpk.constraints import *\n", |
| 162 | + "from functools import partial\n", |
| 163 | + "\n", |
| 164 | + "\n", |
| 165 | + "# Create the graph\n", |
| 166 | + "workflow = StateGraph(State)\n", |
| 167 | + "\n", |
| 168 | + "# Add nodes\n", |
| 169 | + "workflow.add_node(\"planner\", partial(planner, prompt=planner_prompt_str, tools=tools_json, example=example_task1, context=constraints, llm=llm_plan))\n", |
| 170 | + "workflow.add_node(\"judge\", partial(judge, prompt=judge_prompt_str_dpk, tools=tools_json, context=constraints, llm=llm_judge))\n", |
| 171 | + "workflow.add_node(\"user_review\", get_user_review)\n", |
| 172 | + "workflow.add_node(\"code generator\", partial(generator, prompt=generate_prompt_str_with_example, llm=llm_generate))\n", |
| 173 | + "workflow.add_node(\"code validator\", code_validator_noop)\n", |
| 174 | + "\n", |
| 175 | + "# Add edges\n", |
| 176 | + "workflow.set_entry_point(\"planner\")\n", |
| 177 | + "workflow.add_edge(\"code generator\", \"code validator\")\n", |
| 178 | + "workflow.add_edge(\"code validator\", END)\n", |
| 179 | + "\n", |
| 180 | + "# Add conditional edges from judge\n", |
| 181 | + "workflow.add_conditional_edges(\n", |
| 182 | + " \"judge\",\n", |
| 183 | + " is_plan_OK,\n", |
| 184 | + " {\n", |
| 185 | + " False: \"planner\", # If needs revision, go back to planner\n", |
| 186 | + " True: \"user_review\" # If plan is good, proceed to user review\n", |
| 187 | + " }\n", |
| 188 | + ")\n", |
| 189 | + "\n", |
| 190 | + "# Add conditional edges from planner\n", |
| 191 | + "workflow.add_conditional_edges(\n", |
| 192 | + " \"planner\",\n", |
| 193 | + " need_judge,\n", |
| 194 | + " {\n", |
| 195 | + " True: \"judge\", # If needs revision, go back to planner\n", |
| 196 | + " False: \"user_review\" # If plan is good, proceed to user review\n", |
| 197 | + " }\n", |
| 198 | + ")\n", |
| 199 | + "\n", |
| 200 | + "workflow.add_conditional_edges(\n", |
| 201 | + " \"user_review\",\n", |
| 202 | + " is_user_review_OK,\n", |
| 203 | + " {\n", |
| 204 | + " False: \"planner\", # If needs revision, go back to planner\n", |
| 205 | + " True: \"code generator\",\n", |
| 206 | + " }\n", |
| 207 | + ")\n" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": null, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "app = workflow.compile()\n", |
| 217 | + "\n", |
| 218 | + "from IPython.display import Image, display\n", |
| 219 | + "\n", |
| 220 | + "#display(Image(app.get_graph(xray=True).draw_mermaid_png()))\n", |
| 221 | + "display(Image(app.get_graph().draw_mermaid_png()))" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": null, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "# Run the graph\n", |
| 231 | + "initial_state = {\n", |
| 232 | + " \"task\": task,\n", |
| 233 | + " \"context\": \"\",\n", |
| 234 | + " \"plan\": [\"still no plan\"],\n", |
| 235 | + " \"planning_attempts\": 0,\n", |
| 236 | + " \"feedback\": \"Still no review\",\n", |
| 237 | + " \"needs_revision\": \"\",\n", |
| 238 | + " \"need_judge\": True,\n", |
| 239 | + "}\n", |
| 240 | + "\n", |
| 241 | + "state = initial_state\n", |
| 242 | + "\n", |
| 243 | + "for output in app.stream(state):\n", |
| 244 | + " pass" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": null, |
| 250 | + "metadata": {}, |
| 251 | + "outputs": [], |
| 252 | + "source": [] |
| 253 | + } |
| 254 | + ], |
| 255 | + "metadata": { |
| 256 | + "kernelspec": { |
| 257 | + "display_name": "Python 3 (ipykernel)", |
| 258 | + "language": "python", |
| 259 | + "name": "python3" |
| 260 | + }, |
| 261 | + "language_info": { |
| 262 | + "codemirror_mode": { |
| 263 | + "name": "ipython", |
| 264 | + "version": 3 |
| 265 | + }, |
| 266 | + "file_extension": ".py", |
| 267 | + "mimetype": "text/x-python", |
| 268 | + "name": "python", |
| 269 | + "nbconvert_exporter": "python", |
| 270 | + "pygments_lexer": "ipython3", |
| 271 | + "version": "3.11.9" |
| 272 | + } |
| 273 | + }, |
| 274 | + "nbformat": 4, |
| 275 | + "nbformat_minor": 4 |
| 276 | +} |
0 commit comments