-
Notifications
You must be signed in to change notification settings - Fork 423
/
LowestCommonAncestorOfABinarySearchTree.py
80 lines (59 loc) · 2.48 KB
/
LowestCommonAncestorOfABinarySearchTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself
according to the LCA definition.
Note:
All of the nodes' values will be unique.
p and q are different and both values will exist in the BST.
给定一颗 BST,找到两个子节点的最小公共祖先。
用普通的树的方法也是可以的,不过可以做个剪枝优化。
因为 BST 我们知道每个节点的左右子节点的范围。
1. 如果处于 root 左右,那么直接返回即可。
2. 如果都小于,那么去找左子树。
3. 如果都大,那么去找右子树。
在寻找过程中,
4. 只要有一个命中了,那么直接返回当前节点即可。因为剩下的那个节点只有可能在它的子树中,如果不在它的子树中也不会执行到这一步。
beat 99%
测试地址:
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/
"""
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if p.val == root.val or q.val == root.val:
return root
if p.val < root.val and q.val > root.val:
return root
elif p.val > root.val and q.val < root.val:
return root
if p.val > root.val and q.val > root.val:
return self.lowestCommonAncestor(root.right, p, q)
else:
return self.lowestCommonAncestor(root.left, p, q)