-
Notifications
You must be signed in to change notification settings - Fork 423
/
3SumWithMultiplicity.py
144 lines (104 loc) · 3.69 KB
/
3SumWithMultiplicity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Given an integer array A, and an integer target, return the number of tuples i, j, k such that i < j < k and A[i] + A[j] + A[k] == target.
As the answer can be very large, return it modulo 10^9 + 7.
Example 1:
Input: A = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation:
Enumerating by the values (A[i], A[j], A[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input: A = [1,1,2,2,2,2], target = 5
Output: 12
Explanation:
A[i] = 1, A[j] = A[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Note:
3 <= A.length <= 3000
0 <= A[i] <= 100
0 <= target <= 300
思路:
首先排序,然后按照正常的3sum。
这样做有个问题:
重复的太多会超级耗时,我的做法是重新生成列表,若超过三个,则按3个加入。
继续之前的思路所要生成的重复的次数:
[1,1,2,2,3,3,4,4,5,5]
1 2 5
1出现了两次,2出现了两次,5出现了两次,那么总次数为 2*2*2 = 8
(2, 2, 4)
2出现了两次,4出现了两次,不过 2 在这个子问题中也出现了两次,所以总数应为 2的总数-1的阶加 * 4出现的总数。
sum(range(2)) * 2
如果是
0 0 0
0
这样子问题是
0 0 0,出现三次的情况。
若原列表中出现了 3 次,那么只有 1种情况。
4 次,则是 4 种。
5 次,则是 10 种。
6 次,则是 20 种。
这个次数其实是 3 次则是 sum(range(2)) + sum(range(1))
4 次则是 sum(range(3)) + sum(range(2)) + sum(range(1))
...
按照这个思路我的做法是首先生成最大次数的阶加结果。
可以 passed. 320ms。 运行测试的话每次都要 生成阶加列表,如果可以只生成一次到是可以减少很大运行时间,可能还有其他方法?
测试地址:
https://leetcode.com/problems/3sum-with-multiplicity/description/
"""
class Solution(object):
def threeSumMulti(self, A, target):
"""
:type A: List[int]
:type target: int
:rtype: int
"""
mod = 10**9 + 7
def get_multiple(time, all_times):
if time==1:
return all_times
elif time==2:
return sum(range(all_times))
elif time==3:
return sum(plus[:all_times])
x = {}
for j in set(A):
x[j] = A.count(j)
maxes = max(x, key=lambda t: x[t])
plus = [sum(range(i)) for i in range(x[maxes])]
A = []
for i in sorted(x.keys()):
if x[i] > 3:
A.extend([i]*3)
else:
A.extend([i]*x[i])
result = 0
length = len(A) - 1
sets = set()
for i in range(length):
t = target - A[i]
start = i+1
end = length
while start < end:
if A[start] + A[end] == t:
# pass
_ = [A[i], A[start], A[end]]
y = {e:_.count(e) for e in set(_)}
_ = "{}{}{}".format(*_)
if _ in sets:
start += 1
continue
c = 1
for g in y:
c *= get_multiple(y[g], x[g])
result += c
sets.add(_)
start += 1
if A[start] + A[end] > t:
end -= 1
else:
start += 1
return result % mod