-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_test.py
251 lines (218 loc) · 10.2 KB
/
ppo_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os, random, time
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Beta
from src.baselines import MEABM_gym
class Args:
exp_name = os.path.basename(__file__).rstrip(".py")
seed = 123
torch_deterministic = True
cuda = True
env_id = 'Ant-v5' # 'InvertedPendulum-v5' # "HalfCheetah-v5" # 'BipedalWalker-v3' # "LunarLanderContinuous-v3" #
total_timesteps = 1000000
learning_rate = 3e-4
num_envs = 1 # the number of parallel game environments
num_steps = 500 # the number of steps to run in each environment per policy rollout
anneal_lr = True
gae = True
gae_lambda = 0.95
gamma = 0.99
num_minibatches = 32
update_epochs = 10 # K epochs to update the policy
norm_adv = True
clip_coef = 0.2
clip_vloss = True
ent_coef = 0.0 # coefficient of the entropy
vf_coef = 0.5 # coefficient of the value function
max_grad_norm = 0.5 # the maximum norm for the gradient clipping
target_kl = None # the target KL divergence threshold
batch_size = int(num_envs * num_steps) # 8*2048
minibatch_size = int(batch_size // num_minibatches)
def make_env(env_id, seed):
def thunk():
# env = gym.make(env_id)
env = MEABM_gym(event=1, step_len=50)
env = gym.wrappers.RecordEpisodeStatistics(env)
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10), None)
env = gym.wrappers.NormalizeReward(env)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
env.reset(seed=seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, envs):
super().__init__()
self.fc1 = layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64))
self.fc2 = layer_init(nn.Linear(64, 64))
self.critic = layer_init(nn.Linear(64, 1), std=1.0)
self.actor_A = layer_init(nn.Linear(64, 1), std=0.01) # np.prod(envs.single_action_space.shape
self.actor_B = layer_init(nn.Linear(64, 1), std=0.01)
def get_value(self, x):
x = torch.tanh(self.fc1(x))
x = torch.tanh(self.fc2(x))
x = self.critic(x)
return x
def get_action_and_value(self, xx, action=None):
x = torch.tanh(self.fc1(xx))
x = torch.tanh(self.fc2(x))
alpha = F.softplus(self.actor_A(x))
beta = F.softplus(self.actor_B(x))
probs = Beta(alpha, beta)
if action is None:
action = probs.sample()
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.get_value(xx)
def ppo_train(args: Args, agent:Agent, ):
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl: break
return agent
if __name__ == "__main__":
import datetime
args = Args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
print(run_name)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
envs = gym.vector.SyncVectorEnv( # AsyncVectorEnv( SyncVectorEnv
[make_env(args.env_id, args.seed + i) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
obs_, info = envs.reset(seed=args.seed)
next_obs = torch.Tensor(obs_).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size # total update counts
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
print(next_obs)
next_obs, reward, done, trun, info = envs.step(action.cpu().numpy()*2-1)
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
if info != {}:
# print(info)
for item in info:
if item == "episode":
rewards_ = info['episode']['r']
print(f"global_step={global_step}, episodic_return={rewards_[rewards_!=0]}, time={time.time()-start_time}")
start_time = time.time()
break
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
print('start training')
agent = ppo_train(args, agent)
envs.close()