-
Notifications
You must be signed in to change notification settings - Fork 319
/
train.py
104 lines (94 loc) · 4.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.vision_transformer import SwinUnet as ViT_seg
from trainer import trainer_synapse
from config import get_config
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='../data/Synapse/train_npz', help='root dir for data')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--output_dir', type=str, help='output dir')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=150, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=24, help='batch_size per gpu')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
# parser.add_argument("--dataset_name", default="datasets")
parser.add_argument("--n_class", default=4, type=int)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--eval_interval", default=1, type=int)
args = parser.parse_args()
if args.dataset == "Synapse":
args.root_path = os.path.join(args.root_path, "train_npz")
config = get_config(args)
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
dataset_name = args.dataset
dataset_config = {
args.dataset: {
'root_path': args.root_path,
'list_dir': f'./lists/{args.dataset}',
'num_classes': args.n_class,
},
}
if args.batch_size != 24 and args.batch_size % 6 == 0:
args.base_lr *= args.batch_size / 24
args.num_classes = dataset_config[dataset_name]['num_classes']
args.root_path = dataset_config[dataset_name]['root_path']
args.list_dir = dataset_config[dataset_name]['list_dir']
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).cuda()
net.load_from(config)
# trainer = {'Synapse': trainer_synapse}
trainer_synapse(args, net, args.output_dir)
# python train.py --output_dir ./model_out/datasets --dataset datasets --img_size 224 --batch_size 32 --cfg configs/swin_tiny_patch4_window7_224_lite.yaml --root_path /media/aicvi/11111bdb-a0c7-4342-9791-36af7eb70fc0/NNUNET_OUTPUT/nnunet_preprocessed/Dataset001_mm/nnUNetPlans_2d_split