@@ -518,35 +518,23 @@ \subsection{Dedekind reals are Cauchy complete}
518
518
U_y(q) &\defeq \exis {\epsilon , \theta : \Qp } U_{x_\epsilon }(q - \epsilon - \theta ).
519
519
\end {align* }
520
520
%
521
- It is clear that $ L_y$ and $ U_y$ are inhabited, rounded, and disjoint. To establish
522
- locatedness, consider any $ q, r : \Q $ such that $ q < r$ . There is $ \epsilon : \Qp $ such
523
- that $ 5 \epsilon < r - q$ . Since $ q + 2 \epsilon < r - 2 \epsilon $ merely
521
+ It is clear that $ L_y$ and $ U_y$ are inhabited and rounded. Disjointness follows from
522
+ the Cauchy approximation condition. To establish locatedness, consider any
523
+ $ q, r : \Q $ such that $ q < r$ . There is $ \epsilon : \Qp $ such that
524
+ $ 4 \epsilon < r - q$ . Since $ q + 2 \epsilon < r - 2 \epsilon $ merely
524
525
$ L_{x_\epsilon }(q + 2 \epsilon )$ or $ U_{x_\epsilon }(r - 2 \epsilon )$ . In the first case
525
526
we have $ L_y(q)$ and in the second $ U_y(r)$ .
526
527
527
528
To show that $ y$ is the limit of $ x$ , consider any $ \epsilon , \theta : \Qp $ . Because
528
529
$ \Q $ is dense in $ \RD $ there merely exist $ q, r : \Q $ such that
529
530
%
530
531
\begin {narrowmultline* }
531
- x_\epsilon - \epsilon - \theta /2 < q < x_\epsilon - \epsilon - \theta /4
532
+ x_\epsilon - \epsilon - \theta < q < x_\epsilon - \epsilon - \theta /2
532
533
< x_\epsilon < \\
533
- x_\epsilon + \epsilon + \theta /4 < r < x_\epsilon + \epsilon + \theta /2 ,
534
+ x_\epsilon + \epsilon + \theta /2 < r < x_\epsilon + \epsilon + \theta ,
534
535
\end {narrowmultline* }
535
536
%
536
- and thus $ q < y < r$ . Now either $ y < x_\epsilon + \theta /2 $ or $ x_\epsilon - \theta /2 < y$ .
537
- In the first case we have
538
- %
539
- \begin {equation* }
540
- x_\epsilon - \epsilon - \theta /2 < q < y < x_\epsilon + \theta /2,
541
- \end {equation* }
542
- %
543
- and in the second
544
- %
545
- \begin {equation* }
546
- x_\epsilon - \theta /2 < y < r < x_\epsilon + \epsilon + \theta /2.
547
- \end {equation* }
548
- %
549
- In either case it follows that $ |y - x_\epsilon | < \epsilon + \theta $ .
537
+ and thus $ q < y < r$ . It follows that $ |y - x_\epsilon | < \epsilon + \theta $ .
550
538
\end {proof }
551
539
552
540
For sake of completeness we record the classic formulation as well.
0 commit comments