Skip to content

Commit 6fde627

Browse files
authored
Merge pull request #1168 from lowasser/patch-1
Simplify Cauchy completeness of Dedekind reals
2 parents 3f3fd02 + 6c99787 commit 6fde627

File tree

1 file changed

+7
-19
lines changed

1 file changed

+7
-19
lines changed

reals.tex

Lines changed: 7 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -518,35 +518,23 @@ \subsection{Dedekind reals are Cauchy complete}
518518
U_y(q) &\defeq \exis{\epsilon, \theta : \Qp} U_{x_\epsilon}(q - \epsilon - \theta).
519519
\end{align*}
520520
%
521-
It is clear that $L_y$ and $U_y$ are inhabited, rounded, and disjoint. To establish
522-
locatedness, consider any $q, r : \Q$ such that $q < r$. There is $\epsilon : \Qp$ such
523-
that $5 \epsilon < r - q$. Since $q + 2 \epsilon < r - 2 \epsilon$ merely
521+
It is clear that $L_y$ and $U_y$ are inhabited and rounded. Disjointness follows from
522+
the Cauchy approximation condition. To establish locatedness, consider any
523+
$q, r : \Q$ such that $q < r$. There is $\epsilon : \Qp$ such that
524+
$4 \epsilon < r - q$. Since $q + 2 \epsilon < r - 2 \epsilon$ merely
524525
$L_{x_\epsilon}(q + 2 \epsilon)$ or $U_{x_\epsilon}(r - 2 \epsilon)$. In the first case
525526
we have $L_y(q)$ and in the second $U_y(r)$.
526527

527528
To show that $y$ is the limit of $x$, consider any $\epsilon, \theta : \Qp$. Because
528529
$\Q$ is dense in $\RD$ there merely exist $q, r : \Q$ such that
529530
%
530531
\begin{narrowmultline*}
531-
x_\epsilon - \epsilon - \theta/2 < q < x_\epsilon - \epsilon - \theta/4
532+
x_\epsilon - \epsilon - \theta < q < x_\epsilon - \epsilon - \theta/2
532533
< x_\epsilon < \\
533-
x_\epsilon + \epsilon + \theta/4 < r < x_\epsilon + \epsilon + \theta/2,
534+
x_\epsilon + \epsilon + \theta/2 < r < x_\epsilon + \epsilon + \theta,
534535
\end{narrowmultline*}
535536
%
536-
and thus $q < y < r$. Now either $y < x_\epsilon + \theta/2$ or $x_\epsilon - \theta/2 < y$.
537-
In the first case we have
538-
%
539-
\begin{equation*}
540-
x_\epsilon - \epsilon - \theta/2 < q < y < x_\epsilon + \theta/2,
541-
\end{equation*}
542-
%
543-
and in the second
544-
%
545-
\begin{equation*}
546-
x_\epsilon - \theta/2 < y < r < x_\epsilon + \epsilon + \theta/2.
547-
\end{equation*}
548-
%
549-
In either case it follows that $|y - x_\epsilon| < \epsilon + \theta$.
537+
and thus $q < y < r$. It follows that $|y - x_\epsilon| < \epsilon + \theta$.
550538
\end{proof}
551539

552540
For sake of completeness we record the classic formulation as well.

0 commit comments

Comments
 (0)