|
| 1 | +From HoTT Require Import Basics.Overture Basics.Tactics Types.Paths. |
| 2 | + |
| 3 | + |
| 4 | +(** Here we test the [transport_paths FlFr] style tactics. *) |
| 5 | + |
| 6 | +(** *** 0 functions *) |
| 7 | + |
| 8 | +(** Transporting the left *) |
| 9 | +Definition transport_paths_l {A : Type} {x1 x2 y : A} (p : x1 = x2) (q : x1 = y) |
| 10 | + (r : x2 = y) |
| 11 | + (expected : p^ @ q = r) |
| 12 | + : transport (fun x => x = y) p q = r. |
| 13 | +Proof. |
| 14 | + by transport_paths l. |
| 15 | +Defined. |
| 16 | + |
| 17 | +(** Transporting both *) |
| 18 | +Definition transport_paths_lr {A : Type} {x1 x2 : A} (p : x1 = x2) (q : x1 = x1) |
| 19 | + (r : x2 = x2) |
| 20 | + (expected : p @ r = q @ p) |
| 21 | + : transport (fun x => x = x) p q = r. |
| 22 | +Proof. |
| 23 | + by transport_paths lr. |
| 24 | +Defined. |
| 25 | + |
| 26 | +(** Transporting the right *) |
| 27 | +Definition transport_paths_r {A : Type} {x y1 y2 : A} (p : y1 = y2) (q : x = y1) |
| 28 | + (r : x = y2) |
| 29 | + (expected : q @ p = r) |
| 30 | + : transport (fun y => x = y) p q = r. |
| 31 | +Proof. |
| 32 | + by transport_paths r. |
| 33 | +Defined. |
| 34 | + |
| 35 | +(** *** 1 function *) |
| 36 | + |
| 37 | +Definition transport_paths_Fl {A B : Type} {f : A -> B} {x1 x2 : A} {y : B} |
| 38 | + (p : x1 = x2) (q : f x1 = y) |
| 39 | + (r : f x2 = y) |
| 40 | + (expected : q = ap f p @ r) |
| 41 | + : transport (fun x => f x = y) p q = r. |
| 42 | +Proof. |
| 43 | + by transport_paths Fl. |
| 44 | +Defined. |
| 45 | + |
| 46 | +Definition transport_paths_Flr {A : Type} {f : A -> A} {x1 x2 : A} |
| 47 | + (p : x1 = x2) (q : f x1 = x1) |
| 48 | + (r : f x2 = x2) |
| 49 | + (expected : ap f p @ r = q @ p) |
| 50 | + : transport (fun x => f x = x) p q = r. |
| 51 | +Proof. |
| 52 | + by transport_paths Flr. |
| 53 | +Defined. |
| 54 | + |
| 55 | +Definition transport_paths_lFr {A : Type} {f : A -> A} {x1 x2 : A} |
| 56 | + (p : x1 = x2) (q : x1 = f x1) |
| 57 | + (r : x2 = f x2) |
| 58 | + (expected : p @ r = q @ ap f p) |
| 59 | + : transport (fun x => x = f x) p q = r. |
| 60 | +Proof. |
| 61 | + by transport_paths lFr. |
| 62 | +Defined. |
| 63 | + |
| 64 | +Definition transport_paths_Fr {A B : Type} {g : A -> B} {y1 y2 : A} {x : B} |
| 65 | + (p : y1 = y2) (q : x = g y1) |
| 66 | + (r : x = g y2) |
| 67 | + (expected : q @ ap g p = r) |
| 68 | + : transport (fun y => x = g y) p q = r. |
| 69 | +Proof. |
| 70 | + by transport_paths Fr. |
| 71 | +Defined. |
| 72 | + |
| 73 | +(** *** 2 functions *) |
| 74 | + |
| 75 | +Definition transport_paths_FFl {A B C : Type} {f : A -> B} {g : B -> C} |
| 76 | + {x1 x2 : A} {y : C} (p : x1 = x2) (q : g (f x1) = y) |
| 77 | + (r : g (f x2) = y) |
| 78 | + (expected : q = ap g (ap f p) @ r) |
| 79 | + : transport (fun x => g (f x) = y) p q = r. |
| 80 | +Proof. |
| 81 | + by transport_paths FFl. |
| 82 | +Defined. |
| 83 | + |
| 84 | +Definition transport_paths_FFlr {A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} |
| 85 | + (p : x1 = x2) (q : g (f x1) = x1) |
| 86 | + (r : g (f x2) = x2) |
| 87 | + (expected : ap g (ap f p) @ r = q @ p) |
| 88 | + : transport (fun x => g (f x) = x) p q = r. |
| 89 | +Proof. |
| 90 | + by transport_paths FFlr. |
| 91 | +Defined. |
| 92 | + |
| 93 | +Definition transport_paths_FlFr {A B : Type} {f g : A -> B} {x1 x2 : A} |
| 94 | + (p : x1 = x2) (q : f x1 = g x1) |
| 95 | + (r : f x2 = g x2) |
| 96 | + (expected : ap f p @ r = q @ ap g p) |
| 97 | + : transport (fun x => f x = g x) p q = r. |
| 98 | +Proof. |
| 99 | + by transport_paths FlFr. |
| 100 | +Defined. |
| 101 | + |
| 102 | +Definition transport_paths_lFFr {A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} |
| 103 | + (p : x1 = x2) (q : x1 = g (f x1)) |
| 104 | + (r : x2 = g (f x2)) |
| 105 | + (expected : p @ r = q @ ap g (ap f p)) |
| 106 | + : transport (fun x => x = g (f x)) p q = r. |
| 107 | +Proof. |
| 108 | + by transport_paths lFFr. |
| 109 | +Defined. |
| 110 | + |
| 111 | +Definition transport_paths_FFr {A B C : Type} {f : A -> B} {g : B -> C} |
| 112 | + {x1 x2 : A} {y : C} (p : x1 = x2) (q : y = g (f x1)) |
| 113 | + (r : y = g (f x2)) |
| 114 | + (expected : q @ ap g (ap f p) = r) |
| 115 | + : transport (fun x => y = g (f x)) p q = r. |
| 116 | +Proof. |
| 117 | + by transport_paths FFr. |
| 118 | +Defined. |
| 119 | + |
| 120 | +(** *** 3 functions *) |
| 121 | + |
| 122 | +Definition transport_paths_FFFl {A B C D : Type} |
| 123 | + {f : A -> B} {g : B -> C} {h : C -> D} {x1 x2 : A} {y : D} |
| 124 | + (p : x1 = x2) (q : h (g (f x1)) = y) |
| 125 | + (r : h (g (f x2)) = y) |
| 126 | + (expected : q = ap h (ap g (ap f p)) @ r) |
| 127 | + : transport (fun x => h (g (f x)) = y) p q = r. |
| 128 | +Proof. |
| 129 | + by transport_paths FFFl. |
| 130 | +Defined. |
| 131 | + |
| 132 | +Definition transport_paths_FFFlr {A B C : Type} |
| 133 | + {f : A -> B} {g : B -> C} {h : C -> A} {x1 x2 : A} |
| 134 | + (p : x1 = x2) (q : h (g (f x1)) = x1) |
| 135 | + (r : h (g (f x2)) = x2) |
| 136 | + (expected : ap h (ap g (ap f p)) @ r = q @ p) |
| 137 | + : transport (fun x => h (g (f x)) = x) p q = r. |
| 138 | +Proof. |
| 139 | + by transport_paths FFFlr. |
| 140 | +Defined. |
| 141 | + |
| 142 | +Definition transport_paths_FFlFr {A B C : Type} |
| 143 | + {f : A -> B} {g : B -> C} {h : A -> C} {x1 x2 : A} |
| 144 | + (p : x1 = x2) (q : g (f x1) = h x1) |
| 145 | + (r : g (f x2) = h x2) |
| 146 | + (expected : ap g (ap f p) @ r = q @ ap h p) |
| 147 | + : transport (fun x => g (f x) = h x) p q = r. |
| 148 | +Proof. |
| 149 | + by transport_paths FFlFr. |
| 150 | +Defined. |
| 151 | + |
| 152 | +Definition transport_paths_FlFFr {A B C : Type} |
| 153 | + {f : A -> C} {g : B -> C} {h : A -> B} {x1 x2 : A} |
| 154 | + (p : x1 = x2) (q : f x1 = g (h x1)) |
| 155 | + (r : f x2 = g (h x2)) |
| 156 | + (expected : ap f p @ r = q @ ap g (ap h p)) |
| 157 | + : transport (fun x => f x = g (h x)) p q = r. |
| 158 | +Proof. |
| 159 | + by transport_paths FlFFr. |
| 160 | +Defined. |
| 161 | + |
| 162 | +Definition transport_paths_lFFFr {A B C : Type} |
| 163 | + {f : A -> B} {g : B -> C} {h : C -> A} {x1 x2 : A} |
| 164 | + (p : x1 = x2) (q : x1 = h (g (f x1))) |
| 165 | + (r : x2 = h (g (f x2))) |
| 166 | + (expected : p @ r = q @ ap h (ap g (ap f p))) |
| 167 | + : transport (fun x => x = h (g (f x))) p q = r. |
| 168 | +Proof. |
| 169 | + by transport_paths lFFFr. |
| 170 | +Defined. |
| 171 | + |
| 172 | +Definition transport_paths_FFFr {A B C D : Type} |
| 173 | + {f : A -> B} {g : B -> C} {h : C -> D} {x1 x2 : A} {y : D} |
| 174 | + (p : x1 = x2) (q : y = h (g (f x1))) |
| 175 | + (r : y = h (g (f x2))) |
| 176 | + (expected : q @ ap h (ap g (ap f p)) = r) |
| 177 | + : transport (fun x => y = h (g (f x))) p q = r. |
| 178 | +Proof. |
| 179 | + by transport_paths FFFr. |
| 180 | +Defined. |
| 181 | + |
| 182 | +(** *** 4 functions *) |
| 183 | + |
| 184 | +Definition transport_paths_FFFlFr {A B C D : Type} |
| 185 | + {f : A -> B} {g : B -> C} {h : C -> D} {k : A -> D} {x1 x2 : A} |
| 186 | + (p : x1 = x2) (q : h (g (f x1)) = k x1) |
| 187 | + (r : h (g (f x2)) = k x2) |
| 188 | + (expected : ap h (ap g (ap f p)) @ r = q @ ap k p) |
| 189 | + : transport (fun x => h (g (f x)) = k x) p q = r. |
| 190 | +Proof. |
| 191 | + by transport_paths FFFlFr. |
| 192 | +Defined. |
| 193 | + |
| 194 | +Definition transport_paths_FFlFFr {A B B' C : Type} |
| 195 | + {f : A -> B} {f' : A -> B'} {g : B -> C} {g' : B' -> C} {x1 x2 : A} |
| 196 | + (p : x1 = x2) (q : g (f x1) = g' (f' x1)) |
| 197 | + (r : g (f x2) = g' (f' x2)) |
| 198 | + (expected : ap g (ap f p) @ r = q @ ap g' (ap f' p)) |
| 199 | + : transport (fun x => g (f x) = g' (f' x)) p q = r. |
| 200 | +Proof. |
| 201 | + by transport_paths FFlFFr. |
| 202 | +Defined. |
0 commit comments